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SUMMARY

In decentralized learning, a branch of machine learning, data is distributed across several

nodes. With this approach, each node has its own dataset, usually a fraction of the whole

dataset, and it can train a model with its own data without the need to communicate with the

other nodes. One of the most popular algorithms used in this field is Random Walk Learning

(RWL).In the Random Walk with Learning (RWL) approach, we dispatch a solitary model to

a node chosen at random from the network. This node is responsible for training the model for

a predetermined number of epochs, often just one, before forwarding it to a neighboring node,

also selected at random. The receiving node then undertakes the same procedure. During the

learning process, the model is capable of acquiring knowledge from diverse nodes, but it faces

some challenges, such as scenarios where the data distribution among the nodes is heterogenous,

leading to accuracy issues because the accuracy could depend on the path chosen from the first

node to the last one.

A new algorithm called Random Walking Spiders(RWS) has been introduced to solve these

issues. The main difference between RWL and RWS is that in RWS, we have more models

trained simultaneously instead of just one, like in RWL. Each model is initially sent to a

random node and is trained with the local dataset, like in RWL, for a certain number of epochs

(usually one epoch). After the nodes have trained the model assigned to them, all the models

are sent to the same node, and an average of the model parameters is performed there, so

every model becomes equal to each other, and then each model is sent to a new node chosen
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SUMMARY (continued)

randomly, and the process repeats itself. The idea behind this new algorithm is to learn from

more nodes simultaneously instead of just one at a time, as in RWL.

The RWS algorithm can be implemented in two different variants: non-adaptive RWS and

adaptive RWS. The non-adaptive RWS is the process described before, where the models are

trained in different nodes, then averaged, and passed to other nodes. The adaptive-RWS is

an update of the non-adaptive case where we have just one model at the beginning since it’s

enough in the first epochs, while after certain conditions are met, it is split into more models.

The results show the superiority of both the non-adaptive and adaptive RWS over the RWL

algorithm in terms of accuracy. While the non-adaptive RWS is better in the long term, the

adaptive RWS is better also in short-medium scenarios. This performance improvement makes

this algorithm a significant advancement in the decentralized learning field.
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CHAPTER 1

INTRODUCTION

The term machine learning is used to identify the process where a machine processes some

input data(this process is called the training phase) to predict the outputs of data that were

not part of the training dataset. There are different types of machine learning algorithms,

and one of the most popular is the one called artificial neural networks. These networks are

modeled on the structure of the human neuron and can be used for different purposes, such

as classification, clustering, and predictions. The model’s training can be accomplished using

different methods; three of the most used are supervised learning, unsupervised learning, and

reinforcement learning

1.1 Types of learning algorithm

In supervised learning, the network parameters ( also called weights) are modified using

the samples present in the dataset, called training samples. Every sample comprises the input

pattern (it could be an image if we are doing an image classification task) and its corresponding

output. This technique is one of the most used because the network can be trained to make

good predictions on data that are not part of the training dataset by utilizing a set of training

samples with known input-output. [1, 2]

In unsupervised learning, the aim is to discover patterns and structures in data without

having corresponding outputs, in contrast to the approach taken with supervised learning.

1
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Without the presence of explicit labels (supervision), this technique tries to reveal hidden

insights or grouping within the data to learn from the provided data and make predictions

about new, unseen samples. This approach is particularly useful when the outputs of the

training data are unavailable or when the dataset is too large to be labeled. Unsupervised

learning is mostly used in data science, where we want to discover insights and patterns in large

and complex datasets. [3–5]

In Reinforcement Learning there is an agent that can make decisions by interacting with an

environment to achieve specific goals. Unlike supervised learning, it doesn’t learn from a set

of data but from rewards or penalties based on the actions taken by the agent. Reinforcement

learning algorithms learn a policy that maximizes cumulative rewards over time. [6, 7]

In the course of this study, we will have to test our new algorithm with a classification

task where the dataset is composed of data in the input-output format. Therefore, the obvious

choice is to use a supervised learning algorithm to train our models.

1.2 Network architechtures

There are multiple types of neural networks, each one specialized in accomplishing specific

tasks and objectives and has its own architecture designed to solve those specific tasks. It is very

important to understand the specific features of every type of neural network in order to choose

the best one when facing a new problem. The types we will focus on are the Feedforward Neural

Networks and the Convolutional Neural Networks. The Feedforward Neural Networks are made

by layers of interconnected neurons where data moves in a unidirectional manner, starting from

the input and proceeding to the output. They are mainly employed for classification and
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regression purposes. FNNs are characterized by the number of layers, usually divided into 3

types: the input layer, the hidden layers(can be more than one), and the output layer. [8, 9]

Convolutional Neural Networks are specifically engineered to process data structured in a

grid pattern, like that found in images. These networks utilize convolutional layers to identify

and extract spatial patterns within the input data. Common applications of CNNs include

image recognition, object detection, and categorizing images. [10–12]

Since the dataset that we will use to test our algorithm is composed of images, we will use

a CNN with an FNN at the end to classify the images. To better understand this process, we

will now focus on how to train a CNN model.

1.3 Training a CNN

CNNs are a popular tool for image classification tasks. A dataset of images of size nxn

pixels is typically utilized to train a CNN for such a task. Each image in the dataset is assigned

to a specific class, corresponding to a particular type of image (e.g., dog, cat). The ultimate

objective is to develop a CNN that can accurately classify new and unseen images to one of the

pre-defined classes with the highest possible degree of accuracy.

Therefore, selecting an appropriate dataset with appropriate class labels is essential to ensure

that the CNN is trained effectively. The CNN architecture must also be carefully designed and

trained using an appropriate algorithm to maximize its performance. Once trained, the CNN

can be used to classify new and unseen images.

The learning process is usually designed in this way:
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1. Data preprocessing: Before training a CNN, it is necessary to preprocess the data. First

of all, we want all the images to have the same size, so we have to resize every image to a

fixed size; after that process, the pixel values are usually normalized to a predetermined

range like [0, 1] or [-1, 1]. Following the processing of all images, we categorize the dataset

into three distinct sections: training, validation, and test set.

2. Initialization: The CNN parameters, including both weights and biases of the convolu-

tional layers, are initialized with techniques such as random initialization, Xavier initial-

ization, or He initialization. [13, 14]

3. Forward pass: In the forward pass, the input data is transformed into feature represen-

tations by applying convolutions, activations, and pooling sequentially. The final layer

produces the predicted class probabilities or values. This is a crucial component of the

training process.

4. Loss computation: After the forward pass, the CNN proceeds to compare its output with

the true labels given together with the input, utilizing a loss function to quantify how the

predicted output is close to the correct one. Some examples of loss functions employed

in classification tasks are cross-entropy loss[15, 16], softmax loss[17], and hinge loss[18],

while the mean square error (MSE) [19, 20] is used in regression tasks. Since our goal is

to solve a classification task, we decided to use the cross-entropy loss.

5. Backpropagation: Backpropagation is a crucial process in training a CNN, where, with

respect to the parameters of the CNN, the gradients of the loss function are computed. In

the backpropagation process, the error is spread regressively through the network, layer by
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layer, using the chain rule of calculus. For each parameter, the gradients are computed, to

show how a small change in that parameter would change the loss. This process helps the

neural network to iteratively optimize the parameters in order to improve its performance.

[21, 22]

6. Parameter Update (Optimization): Upon completion of gradient computation, the CNN

parameters are updated using an optimization algorithm. Some examples of optimization

algorithms are Stochastic Gradient Descent (SGD)[23], Adam [24], RMSprop [25], and

AdaGrad [26]. These algorithms modify parameters to reduce the loss function, aiming

to find the best set of parameters that decrease prediction error. In this work, we decided

to use the Adam optimizer.

7. Iteration: The process from steps 3 to 6 is repeated iteratively for a specific number of

times, called epochs, or until the model reaches a convergence criterion. In each iteration,

the CNN learns to approach the true correlation that connects the input data with the

output labels, gradually improving its performance on the training dataset.

8. Validation and Testing: During the training process of a CNN, it is important to monitor

the generalization performance and avoid overfitting [27]. To achieve this, the performance

of the CNN is periodically evaluated on a separate validation dataset. Once the training

is completed, the final performance of the CNN is assessed on an independent test dataset

to determine its performance on new and unseen data.

At the conclusion of the training phase, the main goal is to have a model that can accurately

classify new samples into one of the classes featured in the dataset if it is a member of any.
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However, we made the assumption that we would have access to the whole dataset, but what

if such a dataset is distributed across multiple clients? In this case, we are in a decentralized

learning scenario.

1.4 Decentralized Learning principles

Decentralized learning [28] is a machine learning field in which the training process is spread

out over various devices or nodes., often without sharing the underlying data. Decentralized

learning is an innovative approach that stands on several key principles. First and foremost, it

involves the distribution of data across various nodes, which can range from personal devices

such as smartphones and IoT devices to servers. The core idea behind this distribution is

not only to utilize the computational power available at the edge but also to significantly

enhance privacy. By ensuring that data remains on its original node and isn’t shared with

others or a central repository, decentralized learning places a high value on preserving the

privacy of individual data. [29] Another cornerstone of decentralized learning is its support

for collaborative efforts. It achieves this through a unique model where updates or gradients

calculated locally are then aggregated to improve a global model. This process happens without

the need to share sensitive or private data directly, leveraging either a central server that

synthesizes these updates or a consensus mechanism among the nodes. Moreover, decentralized

learning heavily relies on edge computing [30]. This means computations are performed as close

to the data source as possible, which not only enhances processing speeds but also significantly

reduces latency and the demand on bandwidth since there’s less need to send data back and

forth to a central server. In terms of safety and security, this learning model offers robust
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protection. Avoiding a centralized point where data is stored or processed makes it much

tougher for any single point of failure or attack to compromise the system. This distributed

nature makes the entire framework more resilient to adversarial attacks. Decentralized learning

is also designed to scale efficiently. Because the computational efforts are spread out across

numerous devices or nodes, it allows for processing large datasets without the need for extensive

computing power centrally. This scalable nature is vital for handling the increasing volumes of

data generated and used today. Finally, an important benefit of decentralized learning is its

ability to aid organizations in meeting regulatory compliance, particularly with regard to data

protection regulations like GDPR [31]. By minimizing the central collection and storage of data,

organizations can better align with regulatory demands, ensuring that sensitive information is

managed appropriately and reducing the risk of non-compliance.

Decentralized learning presents itself as a privacy-preserving and collaborative approach

that facilitates the development of robust and scalable models while upholding individual pri-

vacy and data sovereignty. However, it is necessary to acknowledge that this approach has

limitations. Despite the advantages of decentralized learning, it presents certain challenges

that must be addressed. It is essential to understand these limitations to ensure that this

approach is implemented effectively and efficiently.

1.5 Decentralized Learning limitations

In our previous discussion, we delved into the core principles of decentralized learning and

its potential advantages for machine learning. However, it’s essential to acknowledge that this

methodology comes with its own set of challenges and limitations. One significant challenge in-
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volves the communication overhead required for model aggregation or synchronization between

the central server and participating nodes. This can lead to increased latency and reduced ef-

ficiency, particularly in scenarios involving numerous nodes or under poor network conditions.

[32]

Another hurdle is the heterogeneity of the nodes due to the diverse computing capabilities,

network connectivity, and data distributions of the nodes. Ensuring compatibility and fairness

across such a wide range of devices and data sources poses a considerable challenge. Linked to

this is the problem of data imbalance, where an uneven distribution of data among nodes can

lead to nodes with scant data contributing less effectively to the model training, potentially

resulting in biased or less accurate global models.

Security concerns also emerge as a prominent issue, especially the risk of model poison-

ing attacks by malicious nodes intending to undermine the overall model’s integrity. Thus,

guaranteeing the security and trustworthiness of participating nodes is crucial. In addition,

as theoretically scalable as decentralized learning might be, the reality of managing numerous

nodes and coordinating model updates at scale introduces complex scalability challenges. This

complexity makes ensuring efficient aggregation and synchronization mechanisms increasingly

difficult. [33]

Developing efficient algorithms for decentralized learning also presents a notable challenge.

These algorithms need to strike a balance between privacy, communication overhead, conver-

gence speed, and model quality, which is far from trivial. Such algorithms must be carefully

designed to perform well across diverse datasets and computational environments.
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Lastly, decentralized learning can face regulatory compliance challenges, particularly in

highly regulated industries like healthcare or finance, which are governed by strict data pro-

tection laws and regulations. Navigating these regulations while leveraging the benefits of

decentralized approaches can be complex. These challenges underscore the need for continuous

exploration and improvement in the field of decentralized learning to fully harness its potential.

[34]

Ongoing research and development initiatives serve a crucial role in addressing the limi-

tations associated with decentralized learning. Therefore, it is crucial to focus on key areas,

including communication protocols, privacy-preserving techniques, security mechanisms, and

algorithmic innovations. These efforts aim to improve the robustness, efficiency, and applicabil-

ity of decentralized learning across various domains. As a result, the development of innovative

and effective strategies in these areas can significantly contribute to advancing the field of

decentralized learning.

Our main goal is to create a new algorithm that can obtain a higher accuracy with respect

to other decentralized learning algorithms.



CHAPTER 2

PREVIOUS WORK

2.0.1 Federated Learning

Federated Learning (FL) [35, 36] is a method used in the decentralized learning field. The

centralized FL is the most common type among all the FL approaches. Despite the name, also

the Centralized FL refers to a context where data are distributed across multiple nodes; the

name is due to the fact that we have a main node that has the task of managing the other

nodes, controlling the steps of the learning algorithm such as moving a model from one node

to another. This approach has some advantages and disadvantages, so we have to explore all

of its features before choosing to use it.

Centralized Federated Learning offers a series of benefits that address core concerns around

data privacy, efficiency, and utilization. One of its key advantages is the promise of enhanced

privacy and security. By allowing data to remain on local devices and only sharing model

updates, Federated Learning greatly diminishes the risk of sensitive data exposure. This feature

is crucial for industries that handle confidential information, ensuring they can train models

without compromising data security. [37]

Another significant benefit is the improved utilization of data. Federated Learning enables

the leverage of decentralized data sources, which may be siloed or unreachable due to privacy

10
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laws or regulatory boundaries. This approach widens the scope and diversity of data accessible

for model training, offering a more robust dataset than traditional methods.

Additionally, the model boasts efficiency in data transmission. By transmitting model up-

dates rather than the raw data itself, there’s a substantial reduction in bandwidth requirements.

This is particularly advantageous in settings with limited network resources, ensuring smooth

and cost-effective operations.

Lastly, localized training underpins the customization and relevance of models. Since the

training occurs on the devices generating the data, the models inherently reflect local preferences

and behaviors, making them highly tailored to the specific needs and nuances of each data

environment.

The disadvantages of Federated Learning [38] include various factors crucial to the operation

and efficiency of federated networks. One significant challenge is communication costs, primarily

due to the imperative to keep data local on devices to address privacy concerns, making wide-

scale data consolidation impractical. Federated networks must manage a myriad of devices,

each differing in storage, computational power, and connectivity. This diversity creates an

environment where only a limited subset of devices might actively participate at any given time

due to constraints like battery power or network access, further compounded by the possibility

of devices becoming unreliable due to connectivity issues or power failures.

Another aspect to consider is the variability in data among the network’s devices, which

can be quite uneven, influencing both the amount and type of data collected. This effect is

evident in scenarios requiring predictions based on data inputs that vary significantly, such as
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in language processing tasks on mobile phones. Such diversity poses challenges in achieving

uniform model accuracy across the network.

Privacy preservation remains a towering concern within federated learning applications,

primarily because the methodology involves transmitting model updates rather than raw data.

Despite this approach minimizing direct exposure, the indirect sharing of information through

model updates can still potentially reveal sensitive data either to a middleman or the central

server controlling the operation. Although advancements like secure multiparty computation

and differential privacy are in development to fortify privacy measures, they often lead to

compromises in model effectiveness or operational efficiency.

Lastly, the risk of central failure is an inherent disadvantage. Despite the decentralized data

approach of federated learning, the presence of a central node critical to managing the network’s

operations introduces a single point of failure. Any malfunction at this node could disrupt the

entire learning algorithm, leading to significant operational setbacks for the federated network.

To conclude, Federated Learning (FL) offers enhanced privacy and efficiency by training

models on decentralized data sources while keeping data local. However, challenges such as

communication costs, heterogeneous device capabilities, and privacy concerns remain signifi-

cant. The reliance on a central coordinating node introduces potential single points of failure.

Addressing these complexities is essential for maximizing FL’s benefits while mitigating oper-

ational risks and ensuring data security across diverse applications.
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2.0.2 Gossip Algorithms

Gossip algorithms [39–49], also known as epidemic algorithms in certain contexts, are decen-

tralized methods that are employed for information dissemination in distributed systems and

networks. These algorithms are inspired by the way rumors or information proliferate in social

networks, and they allow nodes within a network to communicate with each other randomly.

This random communication pattern facilitates the propagation of information throughout the

network in an organic and efficient manner.

Within the framework of Gossip Algorithms, the process begins with each participant,

known as a node or agent, being equipped with particular information or a value. As the

algorithm unfolds, these nodes engage in a randomized exchange of information during each

cycle. This is achieved by having one node select another at random to share the data it holds.

This strategic sharing ensures that with each round, every participant is increasingly informed

about the broader picture within the network. Following the exchange, nodes assimilate the

newly acquired data into their existing information, gradually leading to a unified understanding

across the network. This methodology highlights the power of distributed communication and

the iterative refinement of information towards consensus.

Gossip algorithms stand out for their exceptional scalability, achieved through a decentral-

ized approach that eliminates the need for a central controller. This allows them to seamlessly

adapt and grow within networks of varying sizes, from small clusters to large-scale distributed

systems and peer-to-peer networks. Their flexibility is unparalleled, making them versatile

across different network types. Furthermore, these algorithms are bolstered by robust fault
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tolerance, courtesy of their decentralized nature. This ensures that even if some nodes fail or

disconnect, the dissemination of information can continue through alternative pathways, thus

maintaining the integrity and flow of data across the network.

Notably, gossip protocols are highly adaptable and flexible, perfectly suited for dynamic

environments where nodes frequently change, join, or leave. This ability to adjust to ongoing

changes in network topology underscores their effectiveness in such settings.

However, these algorithms are not without their drawbacks. Their convergence speed can

be relatively slow in certain network conditions due to their reliance on random communica-

tion, which may necessitate multiple iterations for complete information dissemination across

all nodes. This aspect underscores the need for careful parameter adjustments to achieve ef-

ficient network communication. Additionally, the very nature of their communication pattern

can lead to redundant data transmission. This redundancy might overwhelm the network by

consuming excessive bandwidth and computational resources. Lastly, despite their decentral-

ized design, gossip algorithms cannot always guarantee successful information spread to every

node, especially in large or rapidly changing networks. This could result in delayed information

propagation or some nodes being completely bypassed.

In summary, while gossip algorithms offer significant advantages in scalability, fault tol-

erance, and adaptability, they also come with challenges such as slower convergence speeds,

potential resource intensiveness, and no absolute guarantees on information dissemination.

Gossip algorithms provide a decentralized, scalable, and fault-tolerant way to distribute

information in distributed systems and networks. They offer many benefits, such as adaptability
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and resilience, but can also pose challenges, such as possible delays in convergence and resource-

intensive operations. The effectiveness and suitability of gossip algorithms depend largely on

the specific requirements, constraints, and characteristics of the network environment in which

they are deployed.

2.0.3 Random Walk Learning

Random Walk Learning (RWL) [50–53] is a novel approach in the machine learning land-

scape, where the learning process is analogous to a random walk. This methodology is especially

prominent in decentralized learning environments, where it leverages the distributed nature of

data across various nodes or agents. RWL embodies the principle of incremental learning from

multiple data sources in a network without a centralized database.

Random Walk Learning (RWL) brings a novel edge to the field with its decentralized nature,

effortlessly fitting into scenarios where data centralization is hindered by privacy, legalities, or

sheer volume. Its seamless scalability makes it a powerhouse for extensive applications, where

it can distribute its learning process across countless nodes without a hitch. Privacy doesn’t

take a backseat either; RWL maintains an ironclad grip on data security by learning from data

without the need to relocate it—a nod to the principles of federated learning. Additionally,

RWL stands out for its adaptability, gracefully accommodating data shifts or the introduction

of fresh data, a vital trait for thriving in dynamic data landscapes.

However, RWL’s journey is not devoid of challenges. Its hallmark, the random walk al-

gorithm, while unique, can decelerate the convergence process, as the lack of an optimized

learning path leads to variability. The architecture’s dependency on network topology further
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complicates matters; a weakly connected network can severely dampen the learning efficacy.

There’s also the issue of data skewness and bias—frequent visits to certain nodes or dominantly

influential data could distort the model, presenting hurdles in managing non-Uniformly dis-

tributed data. Alongside, RWL’s implementation complexity and the overhead of managing

model updates across a broad network can’t be overlooked. And akin to other decentralized

learning frameworks, RWL navigates through murky waters of security, where the threat of

model tampering by malevolent nodes looms large, underscoring the complexity of safeguard-

ing the learning process in an open ecosystem.

In summary, Random Walk Learning presents an innovative approach to learning in de-

centralized environments, offering scalability, privacy preservation, and adaptability benefits.

However, the challenges associated with convergence efficiency, data skewness, and security

need careful consideration and mitigation in practical applications. Balancing the pros and

cons is essential when deploying RWL in real-world scenarios.



CHAPTER 3

RANDOM WALKING SPIDERS

This section presents a new algorithm called Random Walking Spiders, which has been

developed to overcome existing approaches’ limitations and improve the final model’s accu-

racy. The introduction of this approach is intended to provide a more effective solution to the

problems that have been encountered in the decentralized learning field. The Random Walk-

ing Spiders algorithm has been designed to address the challenges associated with traditional

methodologies, incorporating unique features that make it a more robust and reliable alter-

native. Our discussion will delve into the technical aspects of this approach, highlighting its

unique features and the potential it holds for advancing the field.

3.1 Network Model and Random Walk Learning

In network analysis, the structure is often illustrated as an undirected graph, denoted as

G(V,E). In this representation, V = [N ] = {1, . . . , N} denotes the nodes or vertices, while

E ⊆ V ×V symbolizes the links or communication pathways connecting these nodes [54].Imagine

we have a dataset X = {x1, . . . , xK} ⊂ Rd accompanied by a set of corresponding labels D =

{d1, . . . , dK}. This dataset is not centralized but rather distributed across the graph’s nodes.

Specifically, every node n can see only a subset of the data, denoted by Xn ⊂ {x1, . . . , xK},

and the associated labels Dn. The goal for each node is to utilize its local data, Xn, Dn(where

Xn is the input and Dn is the output), in the training process. The main goal is to adjust the

17
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neural network weights w to minimize a global loss function, which is computed as an average

over all the data points in the dataset X.

To better understand, we recall the Random Walk Learning (RWL) concept, explaining

how its training process works. RWL starts with the initialization of the model at a node,

typically selected randomly. This node begins the learning process by training the model on

its local dataset using a method known as stochastic gradient descent, carried out over several

epochs. After this local training phase is completed, the model is transferred to a neighboring

node. The selection of this next node is also random, though various strategies can be devised

to determine which neighbor to choose. This training procedure is performed at a node, and

then the model is passed to a randomly selected neighbor, which is repeated iteratively. The

process continues this cycle of local training and model passing until a point is reached where

the model weights no longer experience significant changes, indicating convergence.

This method facilitates the development of a distinct model by eliminating the necessity to

gather all data in a single location, thus safeguarding the privacy and independence of every

node in the network.

3.2 Random Walking Spiders (RWS): The Non-Adaptive Case

We now present a novel method, RWS, that builds upon the RWL concept to provide a more

flexible and dynamic approach to distributed learning across a network graph. In its simplest

form, RWS initializes M instances of a model on M distinct nodes n1, ..., nM , chosen randomly

from a larger set of N nodes within a graph. This ensures an unbiased distribution of model

instances across the network, and enables parallel processing across multiple nodes.
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Like RWL, each node is responsible for training its assigned model using exclusively the

data available to it. This localized training methodology ensures that each model instance is

uniquely adapted to the data characteristics of its node, thereby enhancing model diversity. In

our experimental setup, we have standardized the training duration to one epoch per node to

maintain consistency and simplicity in the process evaluation.

An innovative aggregation strategy is employed following the local training phase. This

strategy involves averaging the parameters of the locally trained models at a designated node

among n1, ..., nM . To facilitate this, we presume that each node has access to a common random

seed, enabling it to generate and share a sequence of random numbers predictably. This shared

sequence ensures that all nodes are synchronized in based on their knowledge of which nodes

are participating in the model initialization and aggregation phases. Thus, each node knows

that they have to send their model (after the local training) to the node designated as the

aggregator, determined to be Node minj∈{1,...,M} nj , for the averaging process.

Upon completion of the averaging process at the aggregator node, the newly averaged model

is distributed to the next set of nodes, n′
1, ..., n

′
M , which were previously selected randomly from

each node’s neighbors. This sequential progression of training and aggregation phases enables

a continuous flow of learning and model refinement across the network.

It is noteworthy that when the model initialization parameter M is set to 1, RWS simplifies

to the RWL process. This versatility of RWS makes it a promising framework for distributed

learning across various scales of network graphs.
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To describe the operational dynamics of RWS, we use the analogy of a spider, with the

nodes where training occurs representing the legs of a spider, and the aggregation node serving

as the head. Once training on the ’legs’ is complete and the averaging is done at the ’head’,

the spider ’moves’ to a new set of positions. This randomness in node selection for training and

aggregation gives the appearance of a spider moving unpredictively across the network graph,

hence the naming of the method as Random Walking Spiders (RWS). This visual metaphor not

only aids in understanding the process but also highlights the inherently dynamic and adaptive

nature of RWS as it navigates the network graph, optimizing distributed learning through a

combination of localized training and strategic aggregation. The algorithm is illustrated in Fig.

Figure 1.
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Figure 1: An illustration of the RWS algorithm for M = 2. In (a), the initialization for n1 = 5

and n2 = 1 is shown. Next neighbors of the nodes are assumed to be chosen as n′
1 = 6 and

n′
2 = 3. After local training, Node 5 sends its model to Node 1 for averaging. In (b), the

averaged model is forwarded to the Nodes 3 and 6 for further training.

Convergence time stands as a pivotal metric for assessing the efficacy of learning algorithms.

In the context of graph-based learning algorithms, achieving convergence necessitates that each

node within the graph is visited at least once. The absence of such a visitation precludes the

model from assimilating the data associated with any unvisited nodes, thereby impeding the

learning process. Consequently, the expected time, denoted by T , required for all nodes to be

visited at least once, emerges as a key indicator of the learning algorithm’s convergence speed.

The relationship between the expected time T and the structural characteristics of the graph,

”Specifically, the total count of nodes, represented as N , and the quantity of spider legs, repre-

sented as M .”, is elucidated through the subsequent theorem:

Theorem 1 Let V be a complete graph. The expected time to visit all nodes at least once

satisfies T ∈ Θ( 1
MN logN).

This theorem elucidates that employing M spider legs facilitates a training process that is M

times faster than the traditional approach, which utilizes a singular leg as seen in ordinary

random walk learning algorithms. This enhancement in processing speed, however, is not the

sole advantage. The use of Random Walk Spiders (RWS) over Random Walk Learning (RWL)
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significantly bolsters model diversity, an attribute of paramount importance, especially when

dealing with heterogeneous data sets.

In this way, it would appear that the RWS algorithm is M times faster than the RWL algo-

rithm. However, we have to consider that when we train a single model in RWL for n epochs,

we do nC number of computations where C denotes the number of computations needed to

train a model for 1 epoch. When we train M models for n epochs, we do MnC number of

computations, so it seems like there’s no real improvement. Nevertheless, The extra advantage

of RWS over RWL is the model diversity it provides, especially in the case of heterogeneous

data. Note that RWL updates only a single version of a model. If a node alters this single

version to a largely suboptimal direction (for example, due to a local data distribution that is

significantly biased towards one class), then recovering from such an unfavorable local update

may not be straightforward. On the other hand, RWS updates multiple copies of the model

and then averages them out. Bad updates, if any, are smoothed over to an overall decent model

improvement.

3.3 Random Walking Spiders (RWS): The Adaptive Case

In this section, we elucidate an advanced variation of the RWS algorithm, termed Adaptive

RWS. This innovation was conceptualized to circumvent a specific limitation identified in the

non-adaptive iteration of the algorithm.

A pivotal consideration in evaluating the efficacy of the RWL and RWS algorithms involves a

nuanced comparison of their accuracies after a designated number of epochs. It is imperative

to recognize that a direct comparison is not feasible due to the augmented computational effort
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in the RWS method, where computations are magnified by a factor of M. Consequently, the

initial i epochs in the RWS algorithm are juxtaposed against the first iM epochs in the RWL

algorithm for a balanced assessment.

A notable challenge emerges in the initial stages, where the accuracy disparity between RWL

and RWS, despite equivalent computational exertion, might be pronounced. However, it is

anticipated that RWS will demonstrate superior performance over an extended duration. To

address this, the adaptive mechanism initiates with the RWL algorithm until a predefined

accuracy criterion is satisfied, subsequently transitioning to the RWS algorithm. This strategy

aims to match the early-epoch accuracy of RWL while achieving enhanced accuracy in the later

epochs.

Delving into specifics, the adaptive version commences with a singular instantiation of the

Model on a randomly selected node, ni, from among the N nodes constituting the graph. This

approach mirrors the non-adaptive variant, wherein the node subjects the model to training

on its localized data for a predetermined number of epochs. In our experimental setup, this

duration was standardized to one epoch per node. This phase parallels the RWL methodology,

whereupon completion of training, the incumbent node selects the subsequent node for training.

The selection process involves choosing one of the neighbors of the actual node, referred to as

Node n′
i, in a uniformly random manner. For every node ni, one of its neighbors is selected in

this way, for all i in the range 1, ..., N .

The defining feature of adaptivity intervenes after each training epoch, i. The algorithm eval-

uates the discrepancy between the accuracy on the training set after i epochs of training (Tri)
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and that after j = i−K epochs of training (Trj), where K is a predetermined constant. Upon

the difference, ∆Tr = Tri − Trj , falling below a pre-specified threshold, τ , a bifurcation of the

model is triggered.

This bifurcation entails the initialization of M − 1 additional instances of the model across

M − 1 randomly chosen nodes, n1, ..., nM−1, from the N nodes of the graph. These models are

endowed with identical parameters as the initial model, culminating in M congruent models.

Subsequently, the algorithm reverts to the methodology of the non-adaptive variant, with each

node independently training its model on localized data for a fixed epoch count. In our ex-

perimental framework, this was set to one epoch per node. Post-training, the models undergo

an averaging process at one of the nodes, n1, ..., nM . The node responsible for averaging then

disseminates the aggregated model to Nodes n′
1, ..., n

′
M , thereby perpetuating the learning cycle.

The following theorem elucidates the operational principle of this algorithm:

Theorem 2 Let K be the depth of epochs to be checked, τ a threshold value and Tri the training

accuracy after the ith epoch of training, the split is performed if:

Tri − Trj < τ where j = i−K

For our empirical investigation, constants were established at K = 3 and τ = 0.05. This metic-

ulous design and the adaptive strategy underscore our commitment to refining the algorithm’s

efficiency and accuracy, ensuring it remains at the forefront of distributed machine learning

methodologies.
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3.4 Numerical Results

In this part, we aim to meticulously detail the results derived from the experimental simula-

tions conducted on two distinct algorithms. These experiments were methodically carried out

utilizing the CIFAR10 and the Fashion-MNIST datasets, applying them to a standard CNN

model framework. It is pertinent to articulate that the term ’epochs’ within the context of

our experiments refers to the total number of computations executed. Specifically, a single

computation corresponds to the training of one model for one epoch.

For the purpose of these experiments, certain constants were established. Notably, the constants

selected for the study were K = 3 and τ = 0.05. These parameters were thoughtfully chosen

based on their relevance and potential impact on the outcomes of the experiments. The inclusion

of these constants serves to provide a structured framework within which the experimental

results can be accurately assessed and interpreted.

The experimental design and its execution are fundamental to the integrity and reliability of

the results obtained. As such, a meticulous approach was adopted in the planning and execu-

tion stages, ensuring that each step of the process was carefully considered and appropriately

implemented. The aim of this rigorous methodology is to furnish clear, comprehensible, and

actionable insights based on the data collected from the simulations.

This analysis not only contributes to the existing body of knowledge on the subject but also

lays the groundwork for future research in this area. By presenting these findings, we hope to

offer valuable perspectives and stimulate further discussion among researchers and practitioners

in the field.
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3.4.1 Non-adaptive RWS with Homogenous data distribution

Figure 2: The result of the non-adaptive RWS algorithm with a homogenous data distribution

among N = 5 nodes for M = 2 models using the CIFAR-10 dataset compared to the standard

RWL.

The non-adaptive RWS algorithm was implemented on M = 2 models using a homogenous

data distribution among N = 5 nodes. The results were consistent with our expectations, as

the algorithm had lower accuracy than the RWL algorithm during the initial epochs. However,

it eventually surpassed the RWL algorithm in terms of accuracy in the long run. Additionally,

the standard deviation was found to be almost identical in both algorithms.
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3.4.2 Adaptive RWS with Homogenous data distribution

Figure 3: The result of the Adaptive RWS algorithm with a homogenous data distribution

among N = 5 nodes for M = 2 models using the CIFAR-10 dataset compared to the standard

RWL. N = 5 nodes

The results obtained from the adaptive RWS algorithm for M = 2 using a homogenous data

distribution among N = 5 nodes were in accordance with the expectations. During the initial

epochs, the accuracy was consistent with the RWL algorithm, which indicates a significant

improvement with respect to the non-adaptive scenario. Furthermore, in the later epochs, the

adaptive RWS algorithm outperformed the RWL algorithm in terms of accuracy. Upon analysis,

it was determined that the adaptive RWS reaches superior accuracy compared to RWL in just
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5 epochs, in contrast to the non-adaptive RWS, which necessitates 20 epochs to achieve similar

results. Moreover, the standard deviation was almost the same as that of the RWL algorithm.

3.4.3 Adaptive RWS with Dirichlet distribution

In this particular subsection, the data are distributed among the nodes using a Dirichlet distri-

bution.

Figure 4: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 5 nodes for M = 2 using the CIFAR-10 dataset compared to the standard RWL.

The results obtained through the adaptive RWS algorithm utilizing the Dirichlet data distribu-

tion among N = 5 nodes with M = 2 models are akin to those observed with homogeneous data

distribution. It is noteworthy, however, that the standard deviation is higher in the former case
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due to the data distribution. Additionally, comparing this figure with its predecessor reveals a

slight increase in the difference between RWS and RWL. Moreover, the standard deviation was

almost the same as that of the RWL algorithm.

3.4.4 Adaptive RWS with 2 classes per Node

In this case, we observe an extreme data distribution among the nodes. Our approach involved

utilizing N = 1
2C nodes, where C represents how many classes the dataset has. Consequently,

we assigned all the samples of two randomly selected classes to every node. As we are working

with the CIFAR-10 dataset, which has 10 classes, we maintained a constant number of nodes,

with N remaining at 5.
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Figure 5: The result of the Adaptive RWS algorithm using 2 classes per node data distribution

among N = 5 nodes for M = 2 using the CIFAR-10 dataset compared to the standard RWL.

The results of the study conducted on the Adaptive RWS algorithm utilized to process 2

classes per node data distribution for M = 2 indicate that an increase in the extremity of

the distribution leads to a concomitant increase in the standard deviation. Although the high

standard deviation may appear to be a concern, the RWS algorithm still outperforms the RWL

algorithm in terms of accuracy.

3.4.5 Increasing the number of nodes

When increasing the number of nodes, we expect to need more models to have the best accuracy.

This is due to the fact that we need more models to learn enough information with more nodes.
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Figure 6: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 10 nodes for M = 2 using the CIFAR-10 dataset compared to the standard RWL.

As we can see from the figure, using 2 models with a higher number of nodes leads to an

accuracy that is not clearly better, so we will now try with 3 models instead of 2.

Figure 7: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 10 nodes for M = 3 using the CIFAR-10 dataset compared to the standard RWL.

From this plot, the improvement obtained using 3 models instead of 2 is clear; in this case, the

accuracy of the RWS algorithm is always higher than the RWL one. We can also observe that
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the standard deviation obtained using the RWS algorithm is lower than the one obtained with

the RWL one.

Figure 8: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 30 nodes for M = 3 using the CIFAR-10 dataset compared to the standard RWL.

In this figure, we have again increased the number of nodes to 30 without changing the number

of models. The accuracy of the RWS algorithm is always higher than that of the RWL one. We

can observe that also, in this case, the standard deviation obtained using the RWS algorithm

is lower than the one obtained with the RWL one.



33

Figure 9: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 50 nodes for M = 3 using the CIFAR-10 dataset compared to the standard RWL.

In this figure, we have again increased the number of nodes to 50 without changing the number

of models. The accuracy of the RWS algorithm is always higher than that of the RWL one. We

can observe that, differently from the previous cases, the standard deviation obtained using the

RWS algorithm is the same as that obtained with the RWL one.

We can conclude that even after increasing the number of nodes, the RWS algorithm is capable

of performing better than the RWL algorithm, with some small changes to the number of models

used.
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3.4.6 Changing dataset

All the previous simulations were done with the CIFAR-10 dataset, so now we will test our

algorithm using another dataset to verify that it is working in different scenarios. To accomplish

this, we have chosen to use the Fashion-MNIST dataset.

Figure 10: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 10 nodes for M = 3 using the Fashion-MNIST dataset compared to the standard RWL.

This first figure shows that the accuracy obtained using the RWS algorithm is higher than

the one obtained with the RWL algorithm. We have also noticed that RWS converges faster.

Regarding the standard deviation, the 2 algorithms obtain almost the same values.
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Figure 11: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 30 nodes for M = 3 using the Fashion-MNIST dataset compared to the standard RWL.

In this figure, we have the results obtained by increasing the number of nodes to 30; the behavior

is pretty similar to the one with 10 nodes, except for a smaller standard deviation in the RWS

algorithm.
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Figure 12: The result of the Adaptive RWS algorithm using a Dirichlet data distribution among

N = 50 nodes for M = 3 using the Fashion-MNIST dataset compared to the standard RWL.

In this figure, we have the results obtained by increasing the number of nodes to 50. The

behavior is pretty similar to the figures with 10 and 30 nodes, the standard deviation, as in the

30 nodes case, is smaller in the RWS algorithm.

From the last 3 figures, we can conclude that even after changing the dataset, the RWS algorithm

performs better than the RWL algorithm.



CHAPTER 4

CONCLUSION

In this thesis, we presented an innovative methodology for decentralized learning called Random

Walking Spiders (RWS), which addresses the limitations inherent in the traditional Random

Walk Learning (RWL) approach. Through rigorous exploration and empirical analysis, the

study demonstrates the effectiveness of RWS in improving learning accuracy and efficiency

across distributed nodes, particularly in environments marked by heterogeneous data distribu-

tion. The introduction of both non-adaptive and adaptive RWS methodologies underscores the

adaptability and potential of RWS to respond effectively to dynamic learning environments and

performance metrics.

This research contributes significantly to the machine learning domain by proposing a novel

strategy for decentralized learning that overcomes the challenges of traditional approaches. It

opens new avenues for future investigations aiming at optimizing distributed learning systems.

The detailed examination of challenges and the iterative enhancements introduced through

the RWS strategy underscores the evolving nature of machine learning technologies. Such

advancements have a profound impact on the methodologies for processing and learning data

across decentralized networks.

The findings of this study reveal that the RWS strategy substantially improves the accuracy

and efficiency of decentralized learning models, especially in scenarios characterized by uneven

data distribution among nodes. The methodology’s adaptability and responsiveness to changing

37



38

dynamics and performance indicators make it a promising approach for practical applications

in decentralized learning environments. This approach heralds a future where collaborative and

distributed learning models are not only more efficient and adaptable but also more accessible.

In conclusion, this thesis not only advances academic knowledge but also lays the groundwork

for practical implementations in decentralized learning environments. It promises a future

where collaborative and distributed learning models achieve greater efficiency, adaptability,

and accessibility, ”Representing a substantial advancement in machine learning.”
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