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Abstract 
Cities represent dynamic symbols of human progress and creativity, continuously shaped by evolving 
urban planning influenced by technological advancements aimed at enhancing governance efficiency. 
Embracing digital tools becomes crucial in fostering sustainable urban development. This 
transformation underscores the synergy between technology and effective management, facilitating the 
evolution of cities into adaptable, future-ready environments. 

Aligned with this transformative vision, this thesis aims to offer valuable insights into advancing urban 
sustainability through sophisticated simulation techniques, focusing specifically on estimating solar 
radiation within Turin's urban area focusing on four reference buildings with diverse orientations and 
characteristics in the district 6. This research contributes to the broader goal of enhancing digital twin 
applications in the energy sector, illustrating their potential to revolutionize urban planning and 
environmental management practices. 

The study aims to gather reliable inputs data to build a supporting database and estimate solar radiation 
on an urban scale with GIS-based tools; the precision of GIS-based is assessed by observing variations 
connected to the input parameters, and the procedure automated using the Graphical Modeler tool in 
QGIS software. This methodology facilitates achieving research objectives and allows for a 
comprehensive analysis of the findings.  

Evaluation commences by comparing two commonly used GIS tools for solar radiation estimation, 
followed by gathering data from open-source datasets, including a high-resolution DSM file, monthly 
Linke turbidity (TL) factor, monthly Diffuse to Global radiation (DG) ratio values, and global horizontal 
irradiance (GHI). By organizing these parameters into 28 plans of test, and and evaluating the results, 
the study highlights the significance of selecting appropriate inputs influenced by geographic and 
architectural factors. 

Utilizing the Graphical Modeler tool in QGIS, the study develops three models for solar radiation 
estimation using monthly, seasonal, and annual parameters. These models utilize digital elevation 
models and building-specific information to derive median, maximum, and minimum monthly solar 
radiation values. 

It could be concluded that using aggregated seasonal parameters strikes a balance between efficiency 
and accuracy in solar radiation estimation, requiring fewer inputs than monthly data while maintaining 
reasonable precision, with the differences between results obtained from seasonal parameters and 
monthly data averaging +2.1% in monthly solar irradiation and +0.3% in yearly solar irradiation. This 
approach supports more effective solar energy production and environmental monitoring in urban 
contexts.  
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Chapter 1 - Introduction 

1.1 - Problem Statement and Background 
In the grand vision of urban development, cities appear as living legacies of humanity's pursuit of 
progress and efficiency. Within the corridors of urban governance resonate the echoes of technological 
strides, each innovation a stroke on the vast canvas of local administration. Building upon this 
foundation, the implementation of digital frameworks becomes imperative for driving sustainable urban 
development. This mosaic of transformation reveals the fusion of cutting-edge technology and 
governance as the linchpin driving cities' metamorphosis into agile, adaptable entities. As this narrative 
of collaboration and ingenuity unfolds, it offers a glimpse into a future where cities transcend mere 
habitats, becoming thriving ecosystems of innovation and sustainability. In the contemporary landscape 
of local administrations, integrating technological advancements and digital frameworks is a 
cornerstone for effective urban governance.  
The transformation of cities into smart cities is strongly dependent on the integration of technical, 
scientific, and digital knowledge inside administrative frameworks. The initial step towards this 
evolution is to examine the fundamental changes occurring in municipal management, which are 
motivated by the need to adopt innovative tools and techniques.  
With a focus on enhancing city management across diverse domains, from infrastructure maintenance 
to educational strategies, incorporating tools like the Digital Twin (DT) emerges as a pivotal step. There 
are many transformative potentials for technological integration within local administrations, 
illustrating these advancements' broader context and significance in modern urban governance.  
Several cities lead the charge toward sustainable development, integrating new technologies for 
progress. In particular, European cities stand out, embracing innovation and eco-friendly urban 
planning. They employ digital frameworks and smart solutions to enhance transportation, cut emissions, 
and prioritize renewable energy. With ambitious sustainability goals and collaborations between 
administrations, universities, and tech hubs, these cities pioneer resilient, eco-conscious urban 
landscapes, marking a path toward a sustainable global future.  

In order to achieve advanced urban development, the City of Turin began the execution of an urban DT 
in collaboration with the Polytechnic University of Turin (Polito). This strategic plan is a concentrated 
and organized effort to use contemporary technological frameworks to create, assess, and improve 
energy-related strategies within the city's urban landscape. It represents a significant advancement 
towards achieving sustainable urban growth. The main goals are to cultivate a culture that embraces 
cutting-edge digital and information technology, with specific focuses on energy efficiency, sustainable 
transportation, urban planning, creative infrastructure, and the broader imperatives of ecological and 
digital transformation. The DT, a thorough 3D digital model created by Polito, is the central component 
of this collaborative project. Its purpose is to provide guidance for various efforts, such as intricate 
maintenance plans and strategic updates to the city's master plan. Through this partnership, a connection 
is established between the local government and the academic community, allowing them to integrate 
their resources and ambitions to work towards a common objective. There is an opportunity for this 
partnership to have significant effects on both the regional and national levels.  

Understanding the reasons behind this initiative provides further insight into its strategic importance 
and potential impact. 
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As stated by Leopold et al. [1], the DT simplifies scenario modelling, incorporates open-source tools 
for assessing energy transitions, promotes the adoption of renewable energy sources (RES), and offers 
seamless support to stakeholders in urban planning. The motivations for implementing the DT in Turin 
are multifaceted and align with broader energy and sustainability goals. The strategic importance of the 
energy sector, one of the major DT themes for the City, is due to the current global scenario. The 
worldwide energy consumption is experiencing a significant increase caused by the rapid growth of the 
economy. Considering the current rate of urbanization, it is undeniable that cities have a significant 
impact on the rise in energy consumption, affecting both the global and national levels in Europe. 
Various European Union regulations [2, 3, 4, 5] encourage member states to implement policies that 
enhance building energy efficiency and promote the development of RESs. These policies aim to 
transform national energy systems towards greater environmental friendliness and sustainability. 
Recently, geopolitical conflicts and the problems posed by the COVID-19 pandemic have altered the 
worldwide energy supply networks, resulting in significant difficulties in supplying the growing global 
energy demand [6]. In light of the energy issues that countries are confronting, each member state of 
the European Union needs to establish its own strategy to achieve renewable energy objectives.  This 
underscores the crucial importance of local initiatives in transitioning to RESs, necessitating assistance 
for cities to evaluate their energy strategies to align with broader sustainability objectives [7]. 
With initiatives like the European Green Deal [3] and the REPowerEU plan [8], the EU has led in the 
direction of the region's shift toward clean energy and renders solar energy a pivotal contributor to 
shielding consumers from unpredictable energy price fluctuations. In May 2022, the Commission 
introduced the EU solar energy strategy [9] as a part of a comprehensive approach aimed at targeting 
existing barriers in the industry and devising a roadmap for surmounting them. The strategy aims for 
over 320 gigawatts (GW) of solar photovoltaic (PV) capacity by 2025 and approximately 600 GW by 
2030, introducing amendments to the Renewable Energy Directive (EU/2023/2413) [10] and measures 
facilitating the authorization of renewable energy projects, promising to expedite the EU's embrace and 
assimilation of solar energy.  
Recent European legislation, such as the Renewable Energy Directive (RED) [11], which was recast in 
2023 as part of the Green Deal and the 'Fit for 55' package, introduces new directives aimed at achieving 
climate neutrality by 2050; and exemplifies the continent's dedication to promoting renewable energy 
adoption and reducing dependency on fossil fuels [12]. Formulated within the broader legislative 
framework, directives like the RED seek to harmonize regional policies with global sustainability 
objectives articulated in initiatives like the European Green Deal [13]. The RED mandates the 
development of supportive mechanisms at both local and national levels to facilitate the integration of 
renewable energy sources into the energy matrix [12]. This directive, alongside others like the Energy 
Performance of Buildings Directive (EPBD), holds significance in reshaping the energy landscape, with 
a specific emphasis on fostering the utilization of renewable energy in urban settings [14]. 
The 20-20-20 Program [15] targeted a 20% cut in greenhouse gas (GHG) emissions, a 20% surge in 
renewable energy, and a 20% progress in energy efficiency by 2020, and the EU's 2030 Climate Targets 
Plans sought a 55% reduction of GHG [16].  
These commitments significantly align with SDG 7 - Affordable and Clean Energy - one of the 17 
Sustainable Development Goals (SDGs) set in the United Nations (UN) Agenda 2030 [17]. 
Furthermore, they interlink seamlessly with SDG 11 – Sustainable Cities and Communities – and 
numerous other goals; for instance, SDG 13 – Climate Action – specifically indicator 13.2.2, 
underscores the crucial need to reduce GHG emissions, emphasizing their pivotal role in achieving 
decarbonization. Reforms to the Renewable Energy Directives and supportive measures for renewable 
energy projects promise to expedite the EU's adoption of solar energy, contributing to the global goal 



 Chapter 1 - Introduction  

 
4 

 

of ensuring access to affordable and clean energy for all. The City of Turin's efforts are a practical 
manifestation of these broader policies, reflecting local implementation of global and regional 
initiatives. 
Turin's implementation of the DT is a significant example of local action contributing to national and 
EU energy goals. Italy has seen a rapid rise in renewable energy over the last decade, propelled by 
governmental policies, EU initiatives, and substantial public and private investments despite facing a 
slower rate than neighbouring countries [18]. This country has concentrated on creating infrastructure 
to support sustainable clean generation, aiming for carbon neutrality by 2050, yet enduring path 
dependency in the energy system poses substantial barriers, impacting sustainable policy responses 
[19]. Additionally, Italy's geographical position offers a chance for energy self-sufficiency by 
improving infrastructure and embracing new methods [20].  
While Italy grapples with its energy policy goals, Turin's initiative aligns with international policies for 
renewable energy and sustainable urban development, aligning local action with global and European 
initiatives.  Turin reflects Italy's dedication to sustainability and achieving energy policy goals by 2050 
in taking steps forward. In this framework, Turin is also part of a set of ten thousand cities which signed 
the EU Covenant of Mayors for Climate and Energy [21], targeting climate neutrality by 2030. 
Exploring Turin's role in Italy's energy progress will provide insights into overcoming significant 
challenges in the system. In order to improve Turin's energy assessment and planning policies, a part of 
District 6 is selected as a study area to present a pilot application as a precursor to city-wide 
implementation. This initiative aims to pave the way for broader policy integration and enhancement 
across Turin. The study area, corresponding to the Barriera di Milano district, shows manifestations of 
social distress and physical degradation. The study area, corresponding to the Barriera di Milano 
district, shows manifestations of social distress and physical degradation. This area, which includes 
various types of buildings and historical ties to industry (such as an abandoned railway branch), faced 
challenges due to the increased demand for housing after the war, as there wasn't sufficient construction 
to meet this need. Despite industrial decay and attempts at revitalization, remnants of historic structures 
have been preserved for cultural heritage. The complexity of this area comes from the combination of 
residential and industrial spaces and forms a distinct urban structure defined by functional diversity. 
The impact of past renovations and ongoing regeneration efforts affects its physical and social fabric, 
creating a unique but marginal urban space characterized by diverse functional areas and historical 
remains. Moreover, fostering community engagement and awareness programs in these areas can 
vitalize public participation and support for sustainable energy initiatives. 
While the strategic integration of PV systems into urban environments is widely recognized as 
instrumental in advancing the global shift towards sustainable energy, given the advantageous 
proximity of building rooftops to energy consumption hubs and the spatial constraints inherent in urban 
landscapes [22], Geographic Information Systems (GIS) can serve as a helpful tool for optimizing PV 
system placements, and play a pivotal role in advancing the efficacy of simulation and modelling tools 
for distributed energy systems. GIS is defined by the Environmental Systems Research Institute (ESRI) 
as a comprehensive collection of computer hardware, software, humans, and geographic data that is 
purposefully designed to effectively capture, store, update, modify, analyze, and display any data that 
is geographically related [23].  
GIS is a framework that enables spatial analysis, mapping, and visualization of energy infrastructure 
and facilitates the precision required for simulations and modelling. Moreover, GIS can contribute to 
analyzing energy infrastructure, enabling precise simulations for RES in specific regions. Incorporating 
data on population, buildings, energy resources, and sensors facilitates accurate planning for electricity 
generation. Moreover, the creation of thematic maps using GIS helps with data visualization, which in 
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turn facilitates better decision-making by utilizing easily accessible geographic data. By incorporating 
Geographic Information System (GIS) technology, urban planners and policymakers can improve their 
study of energy infrastructure and demonstrate the wider impact that technology has on the formation 
of resilient and sustainable urban landscapes. 

1.2 - Research Questions 
This thesis investigates urban PV potential evaluation, focusing on precise input parameters, tool 
assessment, and automation. The ultimate goal is to enhance understanding, accelerate the processes, 
and promote solar energy integration in Turin's urban environment. 
Within the context of solar energy in Turin, two essential aspects come into play. First, accurately 
assessing PV energy potential relies on weather, topography, and system features. These elements, 
incorporating meteorological and geographical data alongside technical specifics, inform how solar 
energy integrates into the city's construction. In addition, the use of GIS techniques provides an 
opportunity to gain essential insights into the evaluation of Turin's urban PV potential. This 
investigation achieves a better understanding of the interdependence and sensitivity of the various tool 
settings and configurations. This understanding paves the way for enhancing assessment methods, 
thereby enhancing the precision of evaluations in urban settings. In order to advance the endeavour 
towards comprehensive solar energy integration in Turin's urban landscape, this thesis is going to 
address these crucial questions concerning computational parameters and process automation: 

Question 1.  What is the impact of weather, geography and geometry parameters on the accuracy 
of GIS-based solar radiation estimation in complex urban settings? 
 

Question 2.  How does integrating the automation of solar radiation estimation in PV potential 
evaluation as part of DT enhance process efficiency and boost accuracy levels? 

1.3 - Objectives 
Various methods have been proposed using GIS to integrate and evaluate PV systems in urban contexts, 
and applied to various research areas and spatiotemporal resolutions [24, 25, 26, 27]. 
The main objective of this thesis is to measure and analyze precisely and accurately the potential of PV 
energy production in Turin's urban environment, thus determining the capacity and ability to integrate 
PV systems into the city's infrastructure and built environment. 

1.3.1 - Goal I – Parameters Accuracy 

The primary purpose of the thesis is to have the correct parameters so as to ensure that the calculation 
of the solar radiation is appropriately carried out in assessing urban solar radiation for PV potential in 
Turin. This process involves meticulously selecting factors like atmospheric conditions, geographic 
characteristics, and specific technological aspects essential for solar radiation estimation for solar 
irradiation in the PV systems. Achieving accurate parameterization entails relying on various data 
sources such as meteorological records, geographic information, and system specifications for thorough 
calibration. Integrating these parameters aims to enhance the accuracy and reliability of subsequent 
analyses significantly. This foundational step provides a robust framework for precisely evaluating 
urban PV potential and facilitating informed decision-making processes in this domain. 
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1.3.2 - Goal II – Tools Precision 

The subsequent goal involves evaluating tools precision to clarify how variations in settings and 
properties, influenced by different inputs, affect outcomes in solar radiation estimation for PV potential 
assessments. This task entails systematically examining differing processes and configurations 
employed in the evaluation process, aiming to discern the slight effects of altering settings, parameters, 
and input variables. By comprehensively exploring these variations, this aspect of the study attempts to 
demonstrate the multifaceted consequence of diverse configurations on the outcomes of solar radiation 
estimation in PV potential assessments. This analysis contributes to a deeper understanding of the 
sensitivity and dependencies inherent in the tools and configurations, enriching the methodologies for 
accurate and robust evaluation of solar radiation for PV potentials in urban environments. 

1.3.3 - Goal III – Automation  

The final objective of the thesis is to automate this assessment procedure through computer 
programming, utilizing Python-based algorithms and workflows to streamline and expedite the 
assessment of solar radiation in PV potential. Integrating these computational techniques allows AI and 
ML algorithms to enhance predictive capabilities, enabling the anticipation of potential outcomes based 
on varied parameters and scenarios. Furthermore, this automation endeavor recognizes the seamless 
connection between computer programming, particularly Python, and tools within software. This 
linkage aims to facilitate a more efficient and integrated workflow, enabling the utilization of Python's 
programming capabilities alongside the functionalities present in software for enhanced analysis and 
predictive modeling in assessing solar radiation in PV potential within urban landscapes. 

1.4 - Thesis Structure  
The thesis structure unfolds comprehensively, commencing with: 
After the introduction, the literature review delves into existing research, elucidating various 
perspectives and findings relevant to the field, focusing on the numerous viewpoints and discoveries 
that are associated with digital twins, particularly in PV systems, as well as the various factors that are 
used in solar radiation models. 
In the third section, the methodology of the study is broken down in detail, with an emphasis placed on 
the utilization of the case study approach in the estimation process. Sections within the methodology 
chapter provide an overview of the procedures that were followed in order to carry out the research, 
addressing both the research questions and the objectives. 
The results are described in the following chapter, which is broken up into subsections that examine the 
theoretical obtained results, the instruments that were utilized in the assessment, and the outcomes that 
are obtained using the study approach. In this chapter, a critical assessment of the findings is presented, 
with a connection made between those findings and the aims of the study as well as the theoretical 
framework. 
The findings are summarized and critically analyzed in the Conclusions chapter, which also provides a 
summary of the findings. The purpose of this part is to investigate how the findings correspond to the 
primary research challenge and to make suggestions for possible directions that future study could go. 
It presents a full conclusion to the research and analysis that was conducted during the study, indicating 
chances for additional development and improvements in the past and future. 
Lastly, the References chapter provides a list of all sources cited and consulted throughout the study, 
ensuring transparency and scholarly rigor in the research process.  
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Chapter 2 - Literature Review 

The notion of energetic transition is based on the concept of sustainable development, described in the 
Brundtland report [28], following major energy and environmental disasters in the 1970s and 1980s, 
including the oil crisis and the Chernobyl disaster. Sustainable development is defined as «development 
that meets the needs of the present generation without compromising the ability of future generations 
to meet their own needs» [28]. 
This paradigm evolved through UN frameworks such as the Kyoto Protocol in 1997 and the Rio de 
Janeiro Conference in 1992, aiming to reduce polluting emissions caused by human activities and 
establish global standards for environmental protection. These global frameworks laid the groundwork 
for renewable energy strategies. The development of renewable energy strategies is influenced by 
various aspects, including technological innovation and international cooperation [29]. 
Several studies [30, 31, 32, 33, 34] establish a bidirectional relationship between technological 
innovation and renewable energy, emphasizing technology's significant impact on renewable energy 
consumption. This notion is further supported by other research, highlighting the critical role of 
renewable energy in future electricity generation and addressing environmental challenges during the 
ongoing energy transition [35, 36].  
Once broad frameworks for energy transition and renewable solutions have been established, it is 
crucial to explore particular applications in sustainable urban development. An essential aspect of this 
transition involves integrating PV technology into the urban environment. Assessing PV potential faces 
numerous challenges due to existing barriers, including architectural restrictions, visibility assessment, 
and computational demands [22].Evaluating urban-scale PV potential requires considering factors like 
high temporal-resolution simulations and the solar energy potential of rooftops to accurately estimate 
overall PV potential [37]. Moreover, beyond fluctuating meteorological conditions, different building 
types, complex urban structures, and barriers to incident sunlight in metropolitan areas all contribute to 
limiting the potential of PV systems [38, 39]. 
In line with these efforts, while numerous studies have been conducted to quantify the PV potential of 
buildings and enhance solar evaluation through the development of software and algorithms, the full 
release of 3D city models into the public domain remains pending [39]. Quantification of energy 
demand and renewable generation for a vast array of buildings is made possible through the combination 
of 3D city models and simulation functionalities [40]. 
In assessing solar radiation availability for PV potential in a city context, the integration of GIS 
technologies with numerical radiation methodologies can be beneficial. This combination enables a 
more precise simulation of topography and building structures, facilitating the accurate prediction of 
solar radiation patterns, although achieving detailed findings necessitates balancing computation time 
and accuracy, particularly concerning spatial and temporal resolutions [38]. In the broader energy 
transition framework, solar radiation emerges as a critical element in calculating PV potential; a study 
by Anselmo and Ferrara [41] highlights diverse methods for estimating solar energy, primarily utilizing 
tools like ArcGIS and QGIS. These methods heavily rely on weather data input. However, despite the 
accuracy of the formula used for determining PV potential, there is a need for comprehensive validation 
of the input parameters. This gap in validation underscores the importance of shifting towards advanced 
3D models that consider temporal variations for more accurate estimation. This synthesis integrates 
findings from previous research while emphasizing the ongoing evolution in solar energy estimation 
methodologies, underscoring the importance of rigorous validation and the adoption of advanced 



 Chapter 2 - Literature Review  

 
8 

 

modelling techniques to accurately assess PV potential and facilitate informed decisions in urban energy 
planning. 

2.1 - Digital Twins 
In the age of advanced technology, Digital Twins have transformed how digital and physical worlds 
interact. This evolution, driven by digitization, seamlessly integrates modern energy systems with 
virtual models, data, and their real-world applications. 
As mentioned by Negri et al. [42], despite the term Digital Twins being used increasingly in business 
and research ventures, there is a conspicuous lack of a generally accepted description for the notion in 
the scientific literature. Additionally, they presented several definitions of Digital Twins available in 
scholarly sources [42]. While debates surround the exact terminology (Figure 1), a common thread 
unites these definitions. In general, Digital Twins can be defined as sophisticated, technology-driven 
three-dimensional representations of physical objects or systems. These representations integrate multi-
physics and multi-scale simulations with real-time data and historical information. These complex 
models make it possible to carry out predictive analysis, which implies that they can anticipate future 
states or behaviours in reality that represent them [43, 44, 45]. 

 
Figure 1 - The Digital Twins definitions word group cloud [46] 

Three primary elements make up the Digital Twins idea [47]:1) A real-world physical object, 2) A 
virtual object in the digital space, and 3) A collection of links between the digital and the real world. 
The idea of digital twins covers every stage of a system's lifecycle, indicating that it can be applied in 
many different ways. During the design phase, activities such as optimization, produce and receive data, 
and virtual evaluation are prominent; in the operational phase, the focus shifts towards monitoring, 
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production control, process forecasting, and optimization, alongside planning activities; and finally, in 
the maintenance phase, applications extend to predictive maintenance, fault detection and diagnosis, as 
well as virtual testing procedures [46].  
By means of data and advanced models, Digital Twins can be helpful in monitoring, simulating, 
predicting, optimizing, and performing various tasks in a system; additionally, the core of Digital Twins 
functionality lies in its accurate representation of real-world objects, enabling it to deliver specific 
services and meet application needs effectively [48]. 
Based on the level of data integration from both the digital and real worlds (Figure 2), different levels 
of a digital twin are mentioned by Jeddoub et al. [49]: 

• Digital model (DM): a simple abstraction of a physical object requiring manual updates in both 
directions. 

• Digital shadow (DS): refers to system that allows automatic data flow from the physical object 
to the digital copy but requires manual updates from the digital to the physical. 

• Digital twin (DT): a system that enables automatic data updates in both directions without 
human intervention, facilitated by artificial intelligence and actuators. 

 

Figure 2 - Digital Twin concept: Stages of maturity based on data integration levels [49] 

It is critical to comprehend the differences between Digital Twins and existing technologies. The Table 
1 shows how Digital Twins differentiate themselves by seamlessly integrating big data, cybersecurity, 
machine learning, and other technologies with their necessary Internet of Things (IoT) counterparts 
[44]. 

Table 1 - How Digital Twins varies from current technology [44] 
Technology How the technology differs from DT 

Simulation No real-time twinning 
Machine Learning No twinning 
Digital Prototype No IoT components necessarily 
Optimization No simulation and real-time tests 
Autonomous Systems No self-learning (learning from its past outcomes) necessarily 
Agent-based modelling No real-time twinning 

The virtual model's parameters and dynamics are continuously refined, ensuring an accurate 
representation of the actual entities being modelled using real-time data from the physical system [47, 
50]. This process is depicted in Figure 3. 
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Figure 3 - The stages  of a digital twin [51] 

2.1.1 - Photovoltaic Digital Twins 

Digital Twins can play a crucial role in multiple applications to increase the sustainability of the energy 
sector, ranging from identifying faults in a PV system [52] to larger scales, facilitating citizen 
engagement in urban planning decisions [53]. Specific use cases of digital twins in the sustainable 
energy solution sector include managing energy consumption by leveraging smart meter data to 
optimize energy usage patterns [54], and assessing urban heat dynamics to inform strategies for 
mitigating heat island effects and enhancing urban resilience [55].  
Since solar energy power generation, and photovoltaic (PV) panels utilization as a sustainable energy 
solution is gaining more popularity because of the current energy and climate problems and becoming 
a part of urban infrastructure, digitalization in this sector can facilitate the rapid deployment of solar 
energy production in sustainable cities. This approach can increase reliability and ensure optimal 
performance. 
The recent advancements in technologies like the Internet of Things (IoT), Machine Learning (ML), 
Artificial Intelligence (AI), and cloud computing are steering the global energy sector towards 
digitalization and interconnectivity [56]. This digital transformation allows the implementation of 
advanced strategies, such as Digital Twins, significantly boosting the efficiency of energy systems [57]. 

Using Digital Twins enables the simulation and optimization of active solar systems in urban areas by 
analyzing various factors such as weather conditions, ageing, dust accumulation, and shading effects 
on solar panels. This technology forecasts energy production and preemptively identifies maintenance 
needs to prevent potential issues. During design phases, Digital Twins optimizes PV panel 
configurations, pinpointing optimal locations for solar power generation. It also models the integration 
of solar energy into urban energy systems at different levels and determines the most effective methods 
to connect these systems to the grid [58]. 
To utilize Digital Twins for distributed solar systems on an urban scale, Kaitouni et al. [59] propose a 
strategy for an optimal operation that can be utilized (Figure 4).  
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Figure 4 - Urban-scale solar photovoltaic systems Digital Twin model [59] 

The Digital Twins framework can continuously monitor the efficiency of solar panels, collecting data 
on irradiance and temperature to quickly detect and fix issues with the components, and by integrating 
machine learning techniques, makes it possible to predict required maintenance and identify weaknesses 
in systems, providing an optimum maintenance timetable and preventing costly repairs. Moreover, it 
can optimize solar efficiency and provide real-time insights and financial analysis for operators, as well 
as offer energy management plans by simulating several scenarios involving panel layout, shading, 
energy consumption patterns, and grid restrictions [59, 60]. 
Using the Digital Twins paradigm, PV panels can be considered as physical objects whose digital 
representation of the system’s energy production can provide real-time insights. These data can be 
produced as RGB or infrared images using satellite platforms [61, 62, 63] or be captured by Unmanned 
Aerial Vehicles (UAVs) [64, 65] (Figure 5). 

 
Figure 5 -  An overview of a workflow for monitoring PV panels [66] 

Another approach to obtaining real-time insights is enabling the data received from sensors and 
instruments inside the solar panel system. Implementing this method could significantly reduce 
expenses and result in a self-diagnosing automated system [67]. By incorporating PV potential 
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assessment using data flow, making simulations, and integrating real-time data, the system can be 
introduced as Digital Twins. Assessing the data flow can be mentioned as a layer of Digital Twins 
within the urban energy management sector, enabling stakeholders to take advantage of this strategy. 
Furthermore, this technique helps facilitate the deployment of solar energy sustainably and accelerates 
the transition towards smart cities and sustainable energy systems. 

2.2 - Photovoltaic Potential Assessment 
Improvements in the energy sector are required to address environmental degradation caused by carbon 
emissions. A global shift to low-carbon energy sources would assist in sustainability efforts and reduce 
environmental impacts, and renewable energy sources (RESs) can play a pivotal role in decarbonizing 
energy systems, and stabilizing energy prices [68, 69]. Solar panels offer several advantages as a 
renewable energy source in tackling climate change. They harness renewable sunlight to generate 
electricity, producing zero greenhouse gas emissions during operation. This clean energy production 
helps reduce reliance on fossil fuels, thereby lowering carbon emissions that contribute to global 
warming. Moreover, solar energy is abundant and widely distributed, making it accessible for 
deployment across diverse geographical regions. The optimal placement of PV plants in urban areas is 
made possible by remote sensing identification of ideal places, which is essential for advancing solar 
technology. Growing acknowledgement of the potential of this technology, new government programs, 
more power consumption, and improved cost parity and competitiveness with other technologies are 
the main reasons for the increased development of PV panels [70]. Evaluating the feasibility of 
integrating PV panels onto building rooftops requires considering principles like available area, solar 
radiation, and economic factors within a comprehensive framework to overcome efficiency evaluation 
barriers [71]. Furthermore, factors such as geography and climate also have an impact on the evaluation 
of PV potential in urban areas [72]. Therefore, to conduct an effective evaluation, it is necessary to take 
into consideration the characteristics that are related to these aspects (Figure 6).  

 
Figure 6 - A general workflow  for modeling solar PV potential proposed by Walch et al. [73] 

2.2.1 - Solar Radiation Models 

Anselmo and Ferrara [41] have analyzed more than 100 research papers to identify the general trends 
in GIS-based PV potential calculation. One of the major outcomes of their study is the absolute 
relevance that solar radiation has in estimating the PV potential, because it is the only parameter which 
cannot be extracted from technical sheets but has to be estimated. Most of the models are clear-sky 
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models. Clear-sky solar irradiance parametric models seek to simplify atmospheric attenuation with 
relatively simple parameterizations to estimate solar irradiance under clear-sky conditions [74]. 
Several components can affect Solar Radiation (Figure 7), with physically based formulas not being 
able to consider them all e.g., they are not able to calculate radiation in the presence of solar barriers 
for real topographies. Such analyses can be done more accurately via computer modeling of the physical 
context across various spatial and temporal scales. Direct radiation barriers are almost simple to model 
while reducing diffuse irradiance from various sky directions is a significant difficulty because of 
anisotropy and the amount of visible sky at any given location.  

 
Figure 7 - Solar radiation components [75] 

Solar energy research explores diverse models for irradiation. Freitas et al. [38], discuss computational 
solar radiation models (Table 2), highlighting the crucial balance between accuracy and computation 
time in model development among various categorizations available for solar irradiation models. 
Generally, to accurately assess the physical and geographic solar potential, a sequence of processes 
must be followed. This includes acquiring input data such as topographic information from Digital 
Surface Models derived from LiDAR, aerial or satellite imagery, and stereo imagery, as well as 
meteorological data from ground-based stations or satellites. Subsequently, integrating these inputs with 
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radiation models and GIS analysis enables the computation of solar irradiance, considering factors like 
sun position and local conditions such as shadows from buildings and vegetation in urban areas. 

Table 2 - Computational solar radiation models by Freitas et al. [38] 

Numerical methods 

GOSOL 
SHADOWPACK 
ATM 
Sky view factor 
Solei-32 
SolarFlux 
Kumar et al. model 
RADIANCE 
Cumulative sky approach 
Daysim 
ArcGIS Solar Analyst 
SRAD 
Solar Envelopes 
Albedo calculator and Albedo viewer 
ESRA clear-sky model 
r.sun 
RayMan 
Preferable sky window 
Tooke et al. 
Solar3DBR 
SORAM 
Model comparison 

Solar potential urban-oriented models. 
 

All-in-one models 
CAD plugin-based models 
GIS-based models 

Web-based solar maps 
PVGIS 
PVWATTS and In My Backyard 
Mapdwell Solar Systems maps 

The GIS-based approach for assessing suitable rooftops for PV panel installation involves developing 
models to estimate PV energy and solar radiation, considering geographical variables such as rooftop 
aspect and slope, resulting in a faster and more accurate evaluation process in comparison to manual 
methods or approaches based on constant values [71]. This approach can utilize both vector-based and 
raster-based methods. Raster-based 2.5D solutions, employing a Digital Elevation Model (DEM) raster, 
have been extensively embraced in various software for their simplicity [76, 77]. Open-source tools 
such as the r.sun command in GRASS GIS [78], utilized also by the UMEP plugin for QGIS [79], 
employ these raster-based methods for shadow computations. The insol package in R [80] provides 
similar features, suited for extensive natural landscapes, alongside the Solar Analyst extension [81] in 
ArcGIS supports raster-based shadow calculations [82]. 
According to Haklay and Weber [83], the vector-based 2.5D methodology offers several advantages 
over alternative approaches; firstly, it benefits from a broader availability of input data compared to 
specialized 3D models and high-resolution raster surfaces, facilitating comprehensive urban analysis; 
secondly, the processing doesn't require proprietary software or interoperability with complex 
specialized tools, enhancing accessibility and ease of implementation; and thirdly, the results can be 
seamlessly associated with individual urban elements, enabling precise analysis and interpretation. 
However, it's important to acknowledge that the 2.5D vector-based approach comes with certain 
assumptions and limitations, and in cases where these assumptions do not hold, results may be less 
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accurate compared to alternative approaches, such as the inability to represent complex geometric 
shapes beyond simple extrusions, which could limit the model's accuracy, particularly in intricate urban 
environments [84, 85]. Additionally, the computational efficiency of vector-based calculations may be 
challenged, especially for large study areas, compared to raster-based approaches [86]. 

2.2.1.1 - Digital Elevation Model 

An important dataset for many GIS applications, the digital elevation model (DEM) represents terrain 
through an ordered set of ground elevation (spot height) in digital form. A DEM is an ordered array of 
numbers that describes the spatial distribution of elevations above a pre-defined datum, capturing 
various points in a given area in digital format [87]. This dataset is commonly referred to in many 
literatures by three terms: digital elevation model (DEM), digital surface model (DSM), and digital 
terrain model (DTM). 

According to Zhou [88], the differentiation between the three terms is not universally agreed upon, but 
certain common principles may be outlined, including: 

- A DEM represents the "bare" land surface, purportedly excluding trees, buildings, or other 
"nonground" objects. 

- A DSM encompasses elevations of all elements, incorporating structures like buildings, 
treetops, and open ground. 

- A DTM is a broader term denoting a DEM with various types of terrain data, such as 
morphological features, drainage patterns, and soil characteristics. When focusing solely on 
one terrain data type, such as elevation, it is termed a DEM, which is a subset of DTMs [89]. 

According to Croneborg et al. [90], a general name for digital images of topography, bathymetry, and/or 
elevation is a DEM, typically handled in electronic format. DEMs are usually represented as raster 
datasets, consisting of a grid where each cell indicates a specific elevation point on the ground [91]. 
The resolution of a DEM is determined by the size of these cells, significantly influencing the model's 
accuracy and practical utility. Higher resolution DEMs, characterized by smaller cell sizes, offer more 
detailed terrain depictions but also demand increased storage capacity and computational resources. 
The accuracy of DEMs and DEM-derived products depends on several factors, including the horizontal 
resolution, vertical precision, and the source of the elevation data. This accuracy becomes increasingly 
important as we extend the use of DEM data for spatial prediction of soil attributes [92]. 
Ideally, data collection would occur at a higher resolution, but this is typically constrained by cost and 
manpower [93].  
Various representations exist for DEMs and similar models, ranging from flat depictions involving cell 
classification and colour assignment based on elevation to more complicated graphical renders like 
hatching techniques. 
Lastly, a DEM serves as both a pixel-based "modelled representation" of the earth's surface and as input 
for modelling or analyzing topography using computers or algorithms [90] (Figure 8). 
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Figure 8 - Difference between DTM and DSM [94]  

2.2.1.2 - Slope and Aspect 

Aspect and slope are fundamental geographical parameters that play a crucial role in determining the 
suitability of sites for PV power plants. Slope, representing the steepness of terrain as a percentage of 
inclination, and aspect, delineating the direction of slope through azimuth angles ranging from 0° to 
360°, are integral in assessing sunlight exposure and microclimate variances [95]. These parameters 
are commonly utilized for pre-filtering in site selection processes [41]. By leveraging DSM, DEM, and 
DTM, slope percentages and topographic orientations can be derived, facilitating comprehensive site 
assessments. The incorporation of slope and aspect data from terrain analyses allows for a thorough 
evaluation of terrain suitability, which is essential for determining optimal locations for the installation 
of PV panels. The aspect and slope of a surface directly affect the sunlight's incident angle on that 
surface, requiring precise computations using surface data to account for topographical nuances and 
accurately representing shadow estimation on the surface caused by surrounding landforms, a crucial 
factor influencing solar irradiation [96]. These computations also account for temporal variations, 
highlighting the dynamic nature of solar exposure. 

2.2.1.3 - Solar Irradiation 

The terminology related to solar energy outlines different aspects of the sun's influence on Earth. The 
term "solar radiation" describes the energy that the sun emits, which encompasses all types of 
electromagnetic energy that the sun emits, including visible, ultraviolet, and infrared light [97]. “Solar 
irradiation” is known as the quantity of solar radiation received per unit area at a specific location on 
Earth's surface [98]. This amount is commonly measured for a given period in Wh/m2 or kWh/m2. The 
power per unit area of solar radiation received at a particular location on Earth's surface is known as 
“solar irradiance”, and it is expressed in W/m². It is a representation of the power of solar radiation at a 
particular instant in time [99]. 

Solar irradiation, reaching the Earth's surface, results from complex energy interactions between the 
rays, the atmosphere and the ground. Comprehending solar irradiation is essential for harnessing the 
sun's energy for various applications. Within the renewable energy sector, solar irradiation stands as a 
key concept, representing the energy reaching a specific area within a defined timeframe, usually 
quantified as Wh/m2 [100]. Solar radiation can be categorized into direct, diffuse, and reflected 
components, which together constitute global irradiation. Direct radiation refers to sunlight that reaches 
the Earth's surface in a straight line. Diffuse radiation, on the other hand, originates from various 
directions due to the scattering of solar radiation by clouds, air molecules, and aerosols in the 
atmosphere. This scattering phenomenon, including multiple reflections between the ground and clouds, 
contributes significantly to the diffuse radiation reaching the Earth's surface (Figure 9). Reflected 
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radiation occurs due to the reflection of both direct and diffuse radiation from the surface on which the 
collector is located, as well as from surrounding objects [101].  

Various models have been developed to estimate diffuse radiation. Fan et al. [102] conducted a 
comparative study of these models, thoroughly examining techniques for determining diffuse radiation 
patterns. PVGIS  utilizes an anisotropic two-component estimation model presented by Muneer [103] 
to calculate diffuse radiation values [104]. Understanding this differentiation is crucial, as various 
technologies harness different forms of solar energy. 

 
Figure 9 - Direct normal irradiance and Diffuse horizontal irradiance [105] 

According to Freitas et al. [38], Meteorological stations generally measure the direct radiation 
component by quantifying global and diffuse radiation received on a horizontal plane, which can be 
obtained from equation below: 

𝐺𝐺ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 cos Z + 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝐿𝐿𝐿𝐿 

𝐺𝐺ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Global horizontal irradiance 
𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Direct normal irradiance (DNI) 
𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Diffuse horizontal irradiance (DHI) 
Z Sun's zenith angle. 
TLm Linke turbidity long-term monthly average 

2.2.1.4 - Linke Turbidity (TL) Factor  

The Linke turbidity factor, serving as a valuable approximation for simulating air absorption and 
scattering of solar radiation in clear skies, characterizes the optical thickness of the atmosphere due to 
both water vapour absorption and aerosol particle absorption and scattering in comparison to a dry and 
clean atmosphere [106, 107]. A greater TL factor corresponds to increased attenuation of radiation 
within the clear sky atmosphere, serving as a convenient metric to encapsulate atmospheric turbidity, 
widely utilized by engineers and consultants and essential in numerous models evaluating downwelling 
irradiance under clear skies across various disciplines such as renewable energies, climatology, agro-
meteorology, and atmospheric pollution studies [108].  
According to Chaâbane et al. [109], an indication of atmospheric turbidity can be described as the 
difference between the attenuation of solar radiation through a genuine atmosphere and that through a 
clean, dry atmosphere; moreover, It is precious when determining the amount of solar radiation and 
natural daylight in a location without clouds, and the TL factor is crucial in calculating direct sunlight 
and scattered light in a specific area [109]. As highlighted in the study by Diabaté et al. [108], while 
direct determination of TL factor using very clear sky observations is theoretically possible, such 
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experimental data is rarely available, leading to the common practice of assuming TL factor as a 
parameter. Furthermore, the limited duration of radiation data time series poses a challenge for daily 
estimation; therefore, for practical purposes in numerous applications, researchers often rely on long-
term monthly average values (TLm), as a suitable alternative [108]. 

2.2.1.5 - Albedo 

Albedo, which translates to "whiteness," is the percentage of sunlight that a surface reflects back and 
affects temperature, evaporation, and heat transfer [110]. Albedo influences the amount of energy that 
the Earth absorbs from the Sun, thus directly influencing atmospheric conditions by controlling 
available energy; concurrently, roughness length, a vital physical characteristic at the land-atmosphere 
interface, influences mass, momentum, and energy exchanges [111]. 
The materials used in an urban environment and building coatings significantly impact the urban 
thermal environment (Table 3). Low-reflective and highly absorptive materials can boost the Urban 
Heat Island (UHI) phenomenon, impacting both building energy consumption and indoor and outdoor 
thermal comfort. This effect is notably heightened in Urban Heat Canyon (UHC) configurations, where 
the inter-building influence amplifies the thermal impact [112]. Dark-colored surfaces prevalent in 
urban areas, such as asphalt and roofs, typically exhibit low albedo, thus exacerbating the urban heat 
island effect. Conversely, light-coloured roofing materials utilization can reduce local heating, offering 
potential energy savings, especially in densely populated urban spaces [113]. 

Table 3 - Typical surface albedo values [114] 
Material Albedo coefficient 

Highly reflective roof 0.60 - 0.70 

White paint 0.50 - 0.90 

Grass 0.25 - 0.30 

Brick and stone 0.20 - 0.40 

Trees 0.15 - 0.18 

Red or brown tile 0.10 - 0.13 

Concrete 0.10 - 0.35 

Corrugated roof 0.10 - 0.16 

Tar and gravel 0.08 - 0.20 

Asphalt 0.05 - 0.20 

2.2.2 - Panel Efficiency 

Decades of dedicated research and innovation within the solar PV field have produced great progress, 
characterized by notable enhancements in energy conversion efficiency and substantial reductions in 
the costs associated with manufacturing processes, thereby facilitating broader accessibility to 
sustainable energy solutions. Solar PV power generation is an effective way to exploit renewable 
resources for power production [115]. It operates based on the PV effect, where potential differences 
are generated between dissimilar semiconductors or different areas of semiconductors combined with 
metals when exposed to sunlight [116]. Increased incident sunlight leads to higher photovoltaic power 
generation. 
The performance and efficiency of PV modules are affected by several factors such as the kind of 
technology used, the light spectrum, solar irradiance, ambient temperature, humidity, and wind, with 
ageing and degradation also dependent on climatic and environmental conditions [117]. 
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2.2.3 - Installation Area 

When developing strategies to enhance sustainability in urban environments, the integration of rooftop 
PV panels emerges as a crucial consideration. A fundamental aspect of this process involves evaluating 
the rooftop space available for PV installations and understanding its potential impact on energy 
production potential. To promote the deployment of solar PV systems in buildings and inform future 
policy decisions, accurately assessing the rooftop solar PV potential is important. This assessment 
necessitates precise calculations of the usable rooftop area, which may be influenced by factors such as 
surrounding building shadows, elevator shafts, and architectural features like parapet walls and sloping 
roofs. By excluding shaded areas and accounting for structural elements, the total usable roof area can 
be determined. Subsequently, the available area for PV panels can be calculated based on panel 
dimensions and density, enabling the estimation of rooftop PV electricity generation. Identifying areas 
with high potential for rooftop PV installation holds significance for various stakeholders. Utilities can 
prepare to manage financial and technical implications, while developers can promote business 
opportunities, and policymakers can prepare inclusive policies for affordable and sustainable electricity 
access. This holistic approach to evaluating rooftop space for PV installations facilitates informed 
decision-making towards a greener and more resilient urban landscape. 
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Chapter 3 - Methodology 

This study aims to evaluate the influence of value variation on solar irradiation calculation for urban 
buildings, given the relevance it has in photovoltaic (PV) energy production potential.  The analysis 
attempts to present comprehensive results going beyond the limited availability of open-source data for 
model construction. Given the time-consuming characteristics of the process and the temporary outputs 
generated by the software, an automation model is defined to simplify operations. This automation 
model proposes a systematic approach to handling the sequential calculations involved in solar 
irradiation assessment and PV energy production estimation for buildings. By implementing automated 
procedures, the study seeks to enhance efficiency and reliability in data processing, thereby facilitating 
more robust analyses of urban energy dynamics. 

3.1 - Tool Selection 
Aligned with the goals set by international sustainability frameworks, deploying 3D GIS emerges as a 
practical tool, allowing precise analysis of geographical data for sustainable energy planning. This 
advanced analytical approach has prompted several studies to improve the evaluation of rooftop PV 
potential in cities, as mentioned by Anselmo and Ferrara [41]. 
Urban rooftop PV potential assessment remains challenging despite the various methodologies 
presented. Gagnon et al. [118] propose constant-value techniques, while Denholm and Margolis [119] 
suggest estimation methods considering roof area availability. Another method involves extracting roof 
planes from RGB images and converting them into 3D models [120]. 
However, the most efficient and practical approach is GIS-based, considered superior for its precision 
over constant-value techniques and scalability across extensive datasets, overcoming limitations of 
manual selection [118]. In order to utilize GIS-based methodologies, various studies employ land use 
data, satellite imagery, and models for urban PV potential assessment, emphasizing 3D urban 
modelling's significance aided by LiDAR technology for precise mapping in dense urban areas [121, 
122, 123, 124]. 
Liao et al. [24] proposed a method aimed at accurately estimating rooftop solar irradiation in urban 
areas by addressing challenges in assessing PV potential over large built-up areas; it identifies seven 
crucial parameters (including Digital Surface Model (DSM), Sky View Factor, and building 
characteristics) forming the basis for modelling solar irradiation and compares the accuracy and 
computation time using three ML methods. 
Furthermore, Vecchi et al. [125] employed a multi-scalar approach and GIS analysis to assess solar PV 
potential among diverse residential building archetypes, aiming for a holistic evaluation of solar energy 
in densely populated urban areas.  A review by Anselmo and Ferrara [41] underscores the tools 
embedded in QGIS and ArcGIS as the most common GIS-based for solar irradiation analysis, 
highlighting their widespread usage in the field. 
Therefore, this study considered these two, respectively r.sun.insoltime and Area Solar Radiation 
(ASR), for the quantification of global solar radiation. A crucial considered criterion for selecting these 
tools is the coherence between input and output, and checking the variability in inputs and their impact 
on the results. Additionally, the capability to be automated using Python programming, which is one of 
the objectives of the study, is considered. Using a comparative analysis will enable the selection of the 
most suitable tool for proceeding with the assessment of results. By employing commonly used tools in 
sustainable energy planning, this approach ensures a comprehensive evaluation of solar energy potential 
while leveraging the strengths of each software tool. 
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QGIS software offers the r.sun module, developed by Hofierka and Šúri [78], for solar irradiation 
analysis, seamlessly operates within the GRASS GIS framework, which is integrated into QGIS, an 
open-source platform [126]. This model utilizes equations from the European Solar Radiation Atlas 
(ESRA) [127] to calculate solar potential based on a user-inputted DSM. 
This model is complex and flexible, generating raster maps of solar radiation based on factors like day, 
latitude, surface, and atmospheric conditions, including direct, diffuse, and reflected solar energy. Users 
can access solar parameters such as daylight length and sunrise/sunset times from the map history file 
or specify local time for custom calculations. Additionally, the model offers an option to account for 
topography's shadowing effect. Specifically, the r.sun.insoltime function is used to create a model of 
solar irradiance and irradiation, producing raster files that summarize daily sums of hours of sun, global 
radiation, beam radiation, reflected radiation, and diffuse radiation. 
ArcGIS-Pro provides the ASR tool, part of the Spatial Analyst, for deriving incoming solar radiation. 
Similar to r.sun, it computes solar energy using a Digital Surface Model (DSM). Its parameters are 
classified into two main groups, including radiation parameters (such as azimuth and zenith divisions) 
and topography parameters (such as the "z factor" for bias correction). A DSM for the analysis area 
serves as this tool's primary input. 
Comparatively, r.sun operates in two modes, calculating solar incidence and irradiance for a specific 
time or summing daily solar radiation values. Its parameters are more disaggregated than ArcGIS-Pro 
ASR, which shares the DSM as the principal input, thus requiring more comprehensive knowledge 
about the territory under analysis. Additionally, r.sun does not compute slope and aspect at every 
iteration, requiring pre-calculation of these maps. Further parameters in r.sun include options for the 
Linke turbidity (TL) factor, albedo, beam and diffuse radiation, horizon values for shadowing 
calculation, days of the year for radiation calculation, time step for daily radiation sums computation, 
and solar constant. These multiple output options lead to diverse usages in the analyzed studies. 

3.2 - Data Gathering 
The data-gathering step in the methodology involves creating a supporting dataset for conducting the 
assigned tasks in the software. GIS-based model investigations require access to relevant environmental 
and geographic data for the chosen study area. This step involves identifying and collecting the specified 
datasets and parameters, ensuring they align with the precise specifications and requirements for 
successfully executing the planned analysis and computations within the software environment. 
Therefore, a preliminary phase includes defining the parameters needed by software packages for solar 
radiation analysis. 

3.2.1 - Required Inputs 

Accurate and efficient solar radiation calculations require careful consideration of various factors, 
including computational requirements and potential time consumption, particularly for large Digital 
Surface Models (DSMs). The latitude of the site location is pivotal in solar declination and position 
calculations. However, parameters like sky size, transmissivity, and diffuse proportion significantly 
impact calculation accuracy and time efficiency. These factors, along with essential inputs such as the 
TL factor and beam and Diffuse to Global Radiation (DG) ratio, contribute to the precise solar analysis. 
Incorporating these considerations ensures robust and reliable outcomes in sustainable development 
initiatives. The selected GIS-based solar radiation analysis tools for this study, ASR in ArcGIS Pro and 
r.sun.insoltime in QGIS, both utilize DSMs as the primary mandatory input to efficiently compute three-
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dimensional geometries, enabling accurate solar radiation estimations. For QGIS, the only other 
mandatory input is the day number, ranging from 1, January 1st, to 365, December 31st. 
Several optional inputs enhance solar radiation estimation in these tools, meaning that if these inputs 
are not provided by the user, the algorithm will use default values. For ASR, these inputs include 
latitude, sky size, time configuration, hour interval, z-factor, directions, zenith divisions, azimuth 
divisions, diffuse model type, transmissivity, slope, and aspect. For r.sun.insoltime, the inputs include 
the TL factor, albedo coefficient, real-sky beam radiation coefficient, real-sky diffuse radiation 
coefficient, latitude, longitude, slope, and aspect. 
ASR calculates the aspect and slope from the inserted DSM raster file or allows the user to insert a 
constant value for calculation, while r.sun.insoltime requires the aspect and slope as separate raster file 
inputs or allows the user to insert a constant value. 
Considering all the mentioned above, the only parameters common to both tools are the DSM and the 
diffuse to global radiation ratio. Notably, for result evaluation purposes, the study opted not to include 
the albedo coefficient, focusing instead on the DSM, TL factor, and DG ratio for precise solar analysis. 

3.2.2 - Data Sources 

The first input for analyzing solar irradiation is a Digital Surface Model (DSM), which is created by 
capturing raw laser scanning data as 3D points and interpolating them onto a regular grid to form a 
continuous height surface; it can directly affect analyses like image segmentation, feature extraction, 
and object reconstruction [128]. For tasks requiring accurate topographic data sets, the availability of 
digital terrain information at high spatial and temporal resolutions and accuracy is becoming more 
crucial [129]. Unmanned aerial vehicles (UAVs) equipped with nonmetric digital cameras are being 
studied as a potential solution to the limitations of traditional methods [130]. UAVs are a relatively 
new type of remote sensing platform that have several advantages over satellites and traditional piloted 
aircraft, such as superior temporal and geographical resolutions, reduced operating costs, and greater 
operational flexibility [131]. 
Given the requirement for high precision in reconstructing urban surface features, a 50cm Digital 
Surface Model (DSM) obtained from the TerraItaly™ Metro HD project's LiDAR acquisition on 
January 29, 2022, was selected. This DSM was specifically procured for the SDG11 Lab at Politecnico 
di Torino. The data for this file was acquired by Compagnia Generale Ripreseaeree S.p.a., which 
utilized photogrammetric images and LiDAR (Light Detection and Ranging) data captured across the 
entire City of Turin using a Leica CityMapper-2S Digital sensor. 
This research collects essential weather parameters from widely used open-source datasets to establish 
a dependable dataset. Specifically, datasets from PV Geographical Information System (PVGIS), Solar 
radiation Data (SoDa) website, and Meteonorm software (v8.2.0) were selected. 
PVGIS, supported by the European Commission, includes the SARAH-2.1 solar radiation database, 
offering global solar radiation and PV production data from 2005 to 2020, excluding the polar regions. 
Other available datasets include SARAH (1st version) covering 2005 to 2016, and ERA5, which 
provides climate variables and irradiance values validated against ground station data from 2005 to 
2020 [132]. The PVGIS-SARAH2 solar radiation data are based on the second version of the SARAH 
data record from the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) [133]. 
This dataset utilizes images from METEOSAT geostationary satellites, which cover Europe, Africa, 
and Asia within the longitude and latitude range of ±65°. The data consist of long-term averages derived 
from hourly global and diffuse irradiance values over the years 2005-2020. The solar radiation datasets 
contain average irradiance over the specified period, measured in W/m², considering both day and night 
time. Optimum angle datasets are measured in degrees from horizontal for a plane facing the equator 
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(south-facing in the northern hemisphere and vice-versa). Available data sets include monthly and 
yearly average values [134]. 
SoDa offers a diverse range of services encompassing solar, meteorological, altitude, astronomical, and 
atmospheric data, catering to various solar energy applications such as site assessment, electricity 
production monitoring, and forecasting [135]. The SoDa dataset utilizes the HelioClim family of 
databases, which employ a satellite-based method to provide total solar irradiance and irradiation values 
at ground level. The total irradiance, equivalent to spectrally integrated solar radiation, is available 
across regions including Africa, Europe, the Atlantic Ocean, the Mediterranean Basin, and parts of the 
Indian Ocean (approximately -66° to 66° latitude and longitude) [136]. Within this website dataset, the 
TL factor is calculated using beam or global radiation measurements at the ground, supported by the 
European Solar Radiation Atlas (ESRA) clear sky radiation model. This approach integrates satellite 
and ground-based information, applying fusion methods to address the significant spatial resolution 
differences. Additionally, the dataset incorporates water vapour maps and orography information to 
enhance accuracy [137]. 
Meteonorm software offers a detailed climatological database created for solar energy applications, 
generating typical years based on long-term monthly averages for global locations, and it is used as a 
standard tool for engineering design, environmental research, agriculture, forestry, and other 
meteorological and solar energy-related tasks. [138].  
Meteonorm software obtains data from numerous reliable databases, uses methods to merge the ground 
and satellite data [139],  ensuring comprehensive global simulation capabilities for solar energy 
systems and environmental simulations. The Swiss database, compiled by MeteoSwiss, includes 10-
year mean data for parameters such as global radiation, temperature, wind speed, and sunshine duration, 
covering the 1983–1992 period. In Meteonorm V8.2.0, this foundational dataset has been extended to 
include radiation data from 2001–2020 and temperature, wind, and precipitation data from 2000–2019. 
Additional international datasets are incorporated, including the GEBA (Global Energy Balance 
Archive), which has been updated to cover the period 2001–2020, and the Globalsod data from the 
National Climatic Data Center (NCDC), which includes temperature, precipitation, and wind speed data 
processed for 2000–2019. Furthermore, radiation data from the German Weather Service (DWD) for 
2001–2020 is included. Monthly average radiation values are calculated over periods of at least ten 
years, with a uniform period applied to each continent. For some weather stations, data has been 
supplemented using a differential procedure from neighboring stations. The Meteonorm database 
comprises data from more than 8'300 weather stations globally. The type and the distribution of the 
weather stations worldwide are outlined in Table 4. This software allows customization of the dataset 
and period for calculations. The "contemporary dataset" utilized in this study spans from 2000 to 2019 
for air temperature, dew point temperature, wind speed, wind direction, days with precipitation, and 
precipitation amount, while radiation data is available from 2001 to 2020 [138]. 

Table 4 - Distribution and number of available weather stations for Meteonorm software [138]  

Available parameters 
Global radiation and 

temperature 
Temperature, additional 

parameters 
Only temperature or 

radiation 
Total 

Europe 450 1'133 62 1'645 
Asia (with Russia) 287 1'514 40 1'841 
Africa 134 431 35 600 
North America 356 1'477 80 1913 
South/Central America  76 530 20 626 
Australia / Pacific  77 1'607 24 1'708 
World  1'380 6'692 261 8'333 



 Chapter 3 - Methodology  

 
24 

 

Incorporating insights from scholarly literature related to solar irradiation assessment in the city of 
Turin, this research considers the TL factor calculated for the selected area [140]. Additionally, 
suggested standard values for the TL factor provided by Hofierka [141], as outlined in the QGIS manual, 
are utilized as sources for data gathering. 

To bring it all together, in this study, the TL factor is derived from the SoDa and Meteonorm datasets, 
supplemented by values calculated for Turin and suggested constants outlined in the QGIS manual. 
Moreover, the DG ratio is collected from PVGIS and Meteonorm datasets; lastly, the Global Horizontal 
Irradiance (GHI) is collected from the PVGIS dataset as well. This multifaceted approach could ensure 
robust and precise data for subsequent analysis and applications. 

3.3 - Data Processing 
Following the completion of data gathering, the subsequent phase involves processing the data on solar 
radiation, including translating gathered data into plans of tests for evaluation, which is a critical step 
in determining PV potential. To understand the impact of different input values on the outcomes, 
exploring various combinations of extracted values is imperative. The diversity in input combinations 
is directly proportional to the multitude of values extracted from the sources, necessitating a meticulous 
approach to analysis. Weather parameters have been extracted on a monthly basis, allowing monthly 
solar irradiation calculations. Subsequently, these acquired values have been considered for further 
analysis, where they are averaged across distinct portions of time: seasonal intervals, which encompass 
winter (spanning from November to February), spring/autumn (comprising September, October, March, 
and April), and summer (encompassing May to August), as well as yearly periods, representing the 
average value across all months. 

Aggregating these parameters not only allows for verifying the need for temporal accuracy and the level 
of detail in the information but also ensures that variations in solar radiation are appropriately 
considered and help in identifying significant seasonal patterns or anomalies. Furthermore, 
computational complexity can be decreased by aggregating the data, which speeds up the evaluation 
process and makes it simpler to compare data across various time scales, thereby streamlining the 
derivation of meaningful conclusions and informed decisions. 
This process extends to values from sources including the TL factor and DG ratio, providing a 
comprehensive understanding of their impact on solar radiation. 
Afterwards, the obtained seasonal and yearly values serve as input data for monthly solar irradiation 
analysis. 
In ArcGIS software, the monthly interval calculation can be exploited, whereas, in QGIS, the process 
first involves calculating daily radiation and then conducting monthly solar irradiation calculations 
using the raster calculator tool and multiplying the daily acquired value by the number of days in the 
respective month to derive the total monthly solar radiation. The number of days in the evaluation period 
is necessary for accurate estimation, with each day of the year ranging from 1 (1st January) to 365 (31st 
December). The list of significant days corresponding to each month, provided by Klein [142], is 
shown in Table 5, which is considered in this study. 

Table 5 - Day number and number of days for each month of the year [142] 
 Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. 

Cumulative average days 17 47 75 105 135 162 198 228 258 288 318 
Number of days 31 28-29 31 30 31 30 31 31 30 31 30 
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Given that both assessing GIS tools generate raster files as outputs, the zonal statistics tool is utilized to 
derive statistical indicators, including minimum, maximum, and median values, to understand solar 
radiation variations for the selected buildings. 

3.4 - Automation 
The process of calculating solar irradiation through QGIS software is time-consuming due to its 
repetitive nature. This process requires operating the same tool and procedure multiple times with 
varying input values, resulting in the generation of numerous temporary files. While these files are 
helpful in the computation phase, they become redundant once the final results are obtained. This 
accumulation of temporary files consumes storage space and increases the complexity of managing the 
overall process. Automating this process can significantly reduce these challenges and streamline the 
workflow. 
The "Graphical Modeler" tool in QGIS facilitates the automation of the entire solar irradiation 
calculation process. This tool allows users to create a workflow with composite functions, where the 
output of one algorithm or operation serves as the input for subsequent steps, thereby eliminating the 
need for intermediate files. Automation reduces the computational load and enhances resource 
efficiency. 
This tool provides an intuitive interface for creating complex models in Geographic Information 
Systems (GIS), where analysis operations are typically interconnected rather than isolated, integrating 
these operations into a single process, executing the chain of operations with different inputs later as a 
single algorithm regardless of the number of steps and algorithms involved, thereby streamlining the 
workflow and saving time. 
Creating a model involves two key steps: 

1. Definition of Necessary Inputs: 

Inputs are added to the parameters window, allowing user to set their values when 
executing the model. Since the model is an algorithm, the parameters window is 
generated automatically, similar to other algorithms in the processing framework. 

2. Definition of the Workflow: 

The workflow is defined using the model's input data. Algorithms are added, and their 
use of defined inputs or outputs generated by other algorithms in the model is specified. 

Additionally, the Graphical Modeler tool generates Python code corresponding to the defined workflow. 
This feature enables access to Python scripting capabilities, allowing for further customization and 
integration with external libraries. Python scripting extends the functionality of the automation process 
beyond the built-in tools of QGIS, enhancing its versatility for various scenarios. 
In this study, the steps for calculating solar irradiation are executed sequentially using the Graphical 
Modeler tool in QGIS. 

The process starts with the insertion of a Digital Surface Model (DSM) file - which serves as the input 
for computing the Aspect and Slope files - and selected buildings shape file. Then, incorporating 
additional weather and geographical inputs along with the aspect and slope data, the r.sun.insoltime 
algorithm is executed for specified days. In the next step, the raster calculator algorithm calculates the 
solar radiation for each month using specific values corresponding to number of days of the month is 
calculated; and finally, the zonal statistics algorithm provides statistical indicators - in this study 
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Maximum, Minimum, and Median values are obtained - for buildings, which are included in the final 
results. 
Overall, the use of the graphical modeler not only simplifies complex processes but also enhances 
efficiency and resource management in GIS operations, making it a powerful tool for tasks such as solar 
irradiation calculation. 

3.5 - Case Study 
To address the municipality's interest in urban development on the outskirts, our study focuses on the 
Northern edge, particularly District 6, chosen for its diverse characteristics. This district encompasses 
a range of human activities, from densely populated areas to industrial zones and the primary Turin 
dump. Divided by the Stura river, the Barriera di Milano area near the city center contrasts with the 
residential and infrastructural landscape of Falchera, characterized by a housing district established in 
the 1950s. 
The district's evolution has been influenced historically by its industrial heritage. The nearby Aurora 
area housed significant national plants, including the FIAT engine production facility. Post-World War 
II, the surge in employment led to a demand for housing, resulting in the development of marginal 
districts like Barriere. Construction peaked in the 1970s, with sporadic additions in the 1980s. Notably, 
the area's northwest border aligns with the renovated backbone, following the Gregotti and Cagnardi 
masterplan in the 2000s. Similarly, the Bologna street area underwent revitalization during this period. 
Exceptions to the post-war development include pre-war industrial buildings outside toll barriers, such 
as the Docks Dora warehouses, biscuit production facility to the west, and a woollen mill and military 
warehouse to the east. 
The construction period influences building height, which is crucial for our research. Buildings typically 
range from 3 to 6 floors, with newer constructions adhering to urbanization standards, preventing 
shadowing of surrounding structures. 
Understanding the spatial and historical context of District 6 is essential for our study, as it informs 
decisions regarding urban planning, energy assessment, and sustainable development initiatives. 
Established in the late 19th century, Barriera experienced rapid growth due to factories like FIAT, 
attracting migrants from rural and urban areas. Recent demographic changes include immigration from 
Africa and Eastern Europe. 
The municipality has undertaken significant regeneration efforts, notably through the Integrated 
Programme of Urban Development (PISU) launched between 2007 and 2013. These initiatives aimed 
to improve public spaces and mobility infrastructure. 
Additionally, the proposed Variante 200 urban transformation plan anticipates further development, 
leveraging planned subway lines. Recent years have seen a growing cultural scene in Barriera. These 
transformations and cultural activities provide valuable context for studying the district's socio-
economic and environmental dynamics. 

In this study, four representative buildings are selected within the study area to facilitate the process 
and enable efficient analysis of result variations, each with unique characteristics: 

• Building 1: This building features a simple two-pitched roof, oriented North-South, covering 
an area of 700.3m². It has six floors, and the elevation is covered with light-colored materials. 
The straightforward design makes it an ideal candidate for analyzing the basic impacts of solar 
irradiation on a conventional roof structure. The North-South orientation allows for a 
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comparative study of solar exposure on both the eastern and western slopes throughout the day 
(Figure 10). 

 
Figure 10 -  Schematic representation of building 1 roof, and street view. 

• Building 2: This structure has a more complex four-pitched roof, oriented Northwest-
Southeast, covering an area of 680.2m². It is a four-floor building made of brick. The orientation 
allows for an analysis of how different roof pitches and angles affect solar irradiation levels, 
particularly during transitional periods of the day, such as early morning and late afternoon 
(Figure 11). 

 
Figure 11 - Schematic representation of building 2 roof, and street view. 

• Building 3: Similar to Building 2, Building 3 also has a four-pitched roof but is oriented 
Southwest-Northeast, covering an area of 419.2m². It is also a four-floor building made of brick. 
This orientation allows for the study of the impact of afternoon and early evening sun on solar 
irradiation levels (Figure 12). 
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Figure 12 - Schematic representation of building 3 roof, and street view 

• Building 4: The most complex of the selected buildings, Building 4, features multiple pitches 
and surrounding shadowing elements, primarily trees, covering an area of 1371.1m². It is a 
single-story building. The intricate roof structure and the presence of shadows provide insight 
into how shading from nearby elements can influence solar irradiation (Figure 13). 

 
Figure 13 - Schematic representation of building 4 roof, and street view 

By selecting these four buildings with diverse roof structures and orientations, the study aims to cover 
a broad spectrum of scenarios, ensuring a comprehensive analysis of solar irradiation impacts on 
different types of buildings. This approach helps in understanding the nuances of solar energy capture 
and the factors that influence its efficiency in various architectural and environmental contexts.  
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Chapter 4 - Results 

This thesis concentrates on attaining predefined goals in evaluating the PV systems' energy production 
potential in urban areas and investigates essential elements of precise parameterization, evaluation of 
tools, and automation. The study explores the impact of parameters on accuracy, the efficacy of tools 
and setups, and the possibility of automating processes using GIS tools.  

4.1 - Tool Selection 
To determine which of the two tools, r.sun.insoltime in QGIS and Area Solar Radiation (ASR) in 
ArcGIS Pro, provides the most accurate estimation of solar irradiation, variations in DG ratios are 
assessed for both tools using identical input parameters. Changing the DG ratios allowed us to check 
the impact on the results and compare the outcomes from each tool.  

For ASR, the DG ratios used are 0.25, 0.5, and 0.75, with the transmittivity set to 0.5 by default. For 
r.sun.insoltime, the DG ratio input values are also 0.25, 0.5, and 0.75, with the Linke turbidity (TL) 
factor and other values not set. The median yearly solar irradiation for the four buildings under study 
are considered to compare the results and analyse the variations. 

 
Figure 14 - Comparison of  obtained results from ASR by changing the DG ratio parameter 

Results from ASR (Figure 14) show that for all four buildings, changing the input affected the output. 
When the DG ratio increased, the solar irradiation outcome also increased. 
The DG ratio was increased in two steps, each by 0.25. However, the second increase in results was 
larger than the first. 
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Figure 15 - Comparison of obtained results from r.sun.insoltime by changing the DG ratio parameter 

On the other hand, results from r.sun.insoltime (Figure 15) showed that for all four buildings, changing 
the input also affected the output. However, when the DG ratio increased, the solar irradiation outcome 
decreased. The DG ratio was increased in two steps, each by 0.25, and the decrease in results was almost 
the same for each step. 
According to the results, the outcomes from r.sun.insoltime were found to be more consistent with 
changes in the inputs. By using the same parameters for both tools and comparing the results, the study 
found that the trends in r.sun.insoltime were more logically expected, making it the preferred tool for 
this study. 

4.2 - Collected Data 
The primary results begin with observations on the meteorological parameters gathered for Turin, 
highlighting both yearly and monthly outcome trends and evaluating different data sources and 
aggregations. In this phase, the investigation centres on calculating solar radiation using the 
r.sun.insoltime tool in QGIS. Essential data for this tool, including DEM, TL factor, and DG ratio, are 
collected from open-source datasets. Monthly values are collected and aggregated into seasonal and 
yearly parameters to assess the variations and their impact on output. This approach illustrates the trend 
of variations, and by comparing the differences in output, it is possible to identify suitable parameters 
for solar radiation estimation in Turin. 

4.2.1 - Digital Elevation Model 

In the data gathering category, the primary elevation file used for this research is the Digital Surface 
Model (DSM), which is produced in 2022 and covers the entire area of Turin. The data was collected 
using a Piper PA31 aircraft that was calibrated to an altitude of roughly 1500 meters. Through an 
accurate acquisition approach, the density of the LiDAR point cloud was estimated to be approximately 
40 points per square meter. This high density allowed for the development of a DSM with a spatial 
resolution of 0.5 meters. This high-resolution capability facilitates in-depth investigations, enabling the 
accurate identification of specific characteristics such as roof slopes, chimneys, and dormers. 
Afterwards, the study area is extracted from this dataset, with a specific focus on geographical borders 
that are important to the research region. 
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The study gathers the essential meteorological factors required for solar irradiation estimation tools. 
These parameters, crucial for GIS tools, encompass TL factor and DG ratio. The collection of these 
parameters is vital for ensuring accurate calculations, given the specific combinations demanded by 
different tools. For example, ASR in ArcGIS Pro relies on the DG ratio and transmissivity for its 
computations. On the other hand, the r.sun.insoltime tool in QGIS utilizes a distinct combination, 
emphasizing both the DG ratio and TL factor for its estimations. 

4.2.2 - Linke Turbidity (TL) Factor 

The TL factor for the Turin study area is obtained from various sources, including SoDa datasets, 
Meteonorm software datasets, constant values reported by Fracastoro et al., and values mentioned in 
r.sun documentation. Meteonorm offers four different configurations for Turin, resulting in four distinct 
values for the TL factor, thus indicating the contribution of seven different sources to the dataset. 
Monthly data collection ensures the highest temporal resolution possible. The SoDa dataset combines 
global satellite data on clear sky radiation, water vapor, and aerosol optical depth with ground-level 
turbidity measurements, using fusion methods to address differences in spatial resolution along with 
water vapor maps and terrain information. This results in raster data with different values across 
multiple pixels for the study area. Due to the SoDa raster's spatial resolution of about 10 km at mid-
latitude (1/12°), multiple values are returned for Turin [137]. In order to address this, an average value 
for each month is calculated, producing a single TL value from SoDa. Meteonorm determines the TL 
factor using satellite data and ground station measurements. Ground data for Turin are collected from 
Aeronet stations, with the nearest located in Ispra, approximately 110 km away, as well as from weather 
stations at Turin Airport (Caselle Torinese, TO) and in the area of the Maddalena Hill (Figure 16). Four 
configuration options in Meteonorm offer various methods for calculating the TL factor, incorporating 
direct measurements from Aeronet stations and weather stations (with and without (W/O) the 
inclusion of direct global radiation measurement) alongside interpolated data for a central location in 
the city [138]. 

 
Figure 16 - Available locations for Turin in Meteonorm software (v8.2.0) 
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Additionally, values from the documentation supporting the use of the r.sun tool by Hofierka et al. 
[141] are incorporated into the analysis. These values, categorized broadly into city, mountains, 
countryside, and industrial areas, represent average values for a mild climate in the Northern 
Hemisphere, serving as alternatives when specific data are unavailable. Nonetheless, their inclusion in 
this study allows for evaluating their influence on the final results. Furthermore, site-specific values, 
such as those calculated by Fracastoro et al. [140], were also integrated into the dataset. Table 6 presents 
the TL values for the city of Turin, obtained specifically for this study. 

Table 6 - Linke Turbidity factor values extracted from the sources for the city of Turin 

Month 
Source 

QGIS (city) 
[141] 

Fracastoro 
et al. [140] 

Meteonorm 
Weather station 

Meteonorm 
Aeronet 

Meteonorm 
Interpolated 

Meteonorm 
w/o 

SoDa 
[143] 

January 3.10 3.50 2.58 2.99 2.60 2.40 3.40 
February 3.20 4.30 2.79 3.70 2.82 2.60 4.15 
March 3.50 4.00 3.26 4.04 3.29 3.03 4.60 
April 4.00 4.20 3.77 4.41 3.8 3.51 4.65 
May 4.20 4.60 3.74 4.44 3.77 3.48 4.60 
June 4.30 4.60 3.76 4.62 3.79 3.50 4.90 
July 4.40 4.40 3.51 4.14 3.54 3.27 4.25 
August 4.30 4.50 3.43 3.97 3.46 3.19 4.15 
September 4.00 4.30 3.34 4.23 3.37 3.11 4.15 
October 3.60 4.00 3.25 4.19 3.28 3.02 4.15 
November 3.30 4.40 2.84 2.91 2.87 2.64 3.25 
December 3.10 4.40 2.55 2.73 2.57 2.37 3.15 

Meanwhile, these numbers are displayed in Figure 17, in order to graphically represent the findings to 
facilitate better understanding. 

 
Figure 17 - Monthly values of  Linke Turbidity Factor for the city of Turin 
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Upon examining the data, it is evident that the TL Factor has a higher value during the summer months 
(June, July, and August) in comparison with the winter months (December, January, and February). 
The variation of this factor can be attributed to the levels of aerosols [144] and water vapour [145] 
present in the atmosphere during seasons, as well as the influence of air mass, the irradiance on a surface 
normal to the solar beam, the solar constant, and the reduction factor for mean solar distance at specific 
times [146].  

The comparison of the data from the sources and the computation of the averages reveals significant 
inconsistencies. More precisely, the TL factor, calculated using the Meteonorm W/O data set, regularly 
exhibits lower values throughout the year in comparison to other sources. 
In contrast, the computed yearly TL factor averages, using the values reported by Fracastoro et al. 
consistently show greater values, especially during the winter season. These differences can be ascribed 
to variances in the data collection methods, spatial resolution, or interpolation techniques used by each 
source. 
Further analysis shows that some sources exhibit consistent trends across all months. As an example, 
Meteonorm Interpolated and Meteonorm Weather Station datasets, regularly report similar TL factor 
values, indicating reliable and consistent data, while, data extracted from the SoDa dataset has more 
fluctuations, with some months showing higher values compared to other sources. The obtained 
monthly values are utilized as primary values to calculate averages for specific periods, including 
seasonal intervals and the entire year.  

The average for the winter season is determined by using values from November to February, while the 
average for the summer season is computed using values from May to August. The average value for 
spring and autumn is found by calculating the median of the values from September, October, March, 
and April. In addition, an annual average value is computed to indicate the overall mean value across 
all months. The computed seasonal and annual averages are shown in Table 7. 

Table 7 - Aggregated Linke Turbidity factor values for the city of Turin 

Season 

Source 

QGIS 
(city) 

Fracastoro et al. 
Meteonorm 

Weather 
station 

Meteonorm 
Aeronet 

Meteonorm 
Interpolated 

Meteonorm 
w/o 

SoDa 

Winter 3.17 4.15 2.69 3.08 2.71 2.50 3.48 
Spring/Autumn 3.77 4.12 3.40 4.21 3.43 3.16 4.38 
Summer 4.3 4.52 3.61 4.29 3.64 3.36 4.47 
Yearly average 3.75 4.26 3.23 3.86 3.26 3.01 4.11 

For the summer, the values show the highest turbidity, ranging from 3.36 to 4.52. Fracastoro et al. report 
the greatest value again, while the Meteonorm W/O dataset, shows the lowest. During this season, the 
majority of sources indicate that the values are around 4.0, which suggests a substantial increase in 
turbidity compared to previous seasons. 

Considering the annual average, the values range from 3.01 to 4.26. The yearly data presents a 
comprehensive overview of general atmospheric conditions. Similar to monthly average values, 
Fracastoro et al. report the highest annual average, suggesting a consistently higher perception of 
turbidity, while Meteonorm W/O reports the lowest, indicating clearer overall conditions. The yearly 
averages show moderate turbidity with a slight inclination towards higher values, reflecting the 
combined seasonal effects. 
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Overall, the data reveals clear seasonal variations in atmospheric turbidity for Turin. The lowest values 
are generally observed in winter, with a gradual increase through spring and autumn, peaking in summer 
months. This seasonal trend is consistent across most sources, highlighting the impact of seasonal 
changes on atmospheric clarity. 

Overall, it is evident that the sources generally exhibit a trend of increasing turbidity from winter to 
summer. However, the specific values are not equal, highlighting the importance of using multiple data 
sources for a better analysis. Comparing monthly and aggregated values, differences are evident. 
Aggregated seasonal values show a difference of 3.2% to 7.0% across different sources. The difference 
between aggregated yearly and monthly values ranges from 5.3% to 13.5% across sources. Notably, 
values sourced from the Fracastoro et al. show only a 1.2% difference between aggregated seasonal and 
yearly values, indicating lower fluctuations compared to other sources. 

4.2.3 - Diffuse to Global Radiation Ratio 

To determine the diffuse to global radiation (DG) ratio for the Turin study region, numerous sources, 
such as the datasets given by the Meteonorm software and the PVGIS dataset, are utilized. 
Meteonorm software provides three unique setups for Turin, resulting in three separate results for the 
DG ratio, thereby demonstrating the contribution of totally four distinct sources to the dataset. 
The utilization of monthly data-gathering methodologies is done to reach the highest possible temporal 
resolution that is yet practical. 

Through the utilization of ground station data recording, the Meteonorm software enables the 
calculation of the DG ratio.The information for these measurements comes from the meteorological 
stations that are situated in the neighbourhood of Maddalena Hill (Figure 16) and at Turin Airport 
(Caselle Torinese, TO). 
The values that are available in the PVGIS dataset are also taken into consideration during the analysis 
processes. The exact location which is picked in order to access the PVGIS database and extract the 
relevant data, is situated at a latitude of 45.097 degrees and a longitude of 7.710 degrees, which is 
located in Corso Taranto in the study area (Figure 18). 

 
Figure 18 - Selected location in PVGIS platform to extracting data 

The DG ratio values for the city of Turin are presented in Table 8. These values are obtained specifically 
for the purpose of this study. 
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Table 8 - DG ratio values extracted from the sources for the city of Turin 

Month 
Source 

PVGIS Meteonorm W/O Meteonorm Interpolated Meteonorm weather station 
January 0.39 0.16 0.19 0.17 
February 0.41 0.21 0.23 0.23 
March 0.39 0.17 0.19 0.19 
April 0.40 0.17 0.20 0.19 
May 0.42 0.16 0.18 0.18 
June 0.38 0.18 0.20 0.20 
July 0.35 0.15 0.18 0.17 
August 0.37 0.18 0.21 0.20 
September 0.41 0.14 0.16 0.16 
October 0.48 0.19 0.22 0.21 
November 0.47 0.17 0.21 0.20 
December 0.40 0.19 0.22 0.20 

In addition, these numerical values are shown in Figure 19 to provide a visual representation of the 
findings and facilitate a better understanding. 

 
Figure 19 - Monthly values of Diffuse to Global radiation ratio for the city of Turin 

According to Table 8 and Figure 19, the months of summer tend to exhibit lower levels of diffuse 
radiation in comparison to global radiation, whereas the months of winter exhibit significantly higher 
levels throughout the winter months. Analyzing the trends reveals a mixed pattern across the months. 
Generally, the DG ratio tends to decrease from January to June, and from July to October, it has a 
tendency to increase. However, the magnitude of these changes varies across the data sources. 
Additionally, although the values of the DG ratio from PVGIS appear to be consistently greater than 
those from the Meteonorm datasets, the trends of both datasets are almost the same, which indicates 
that the DG ratio can be measured with a high level of accuracy. 

However, there are some discrepancies with the values provided by the DG Meteonorm, which can be 
regarded as a hint to the possibility of inaccuracy under certain meteorological conditions.  To calculate 
the averages for specific periods such as seasonal intervals and the entire year, the collected monthly 
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DG ratio values served as the primary data. The readings from November to February are utilized to 
compute the average for the winter season, while those from May to August form the basis for the 
summer season average. For Spring/Autumn, the average is derived by computing the median of the 
numbers from September, October, March, and April. Additionally, an annual average value is 
generated to indicate the overall average value across all months. The results of these computations for 
the seasonal and annual averages are shown in Table 9. 

Table 9 - Aggregated DG ratio values for the city of Turin 

Season 
Source 

PVGIS  Meteonorm W/O Meteonorm Interpolated Meteonorm weather station 
Winter 0.42 0.18 0.21 0.20 
Spring/Autumn 0.42 0.17 0.19 0.19 
Summer 0.38 0.17 0.19 0.19 
Yearly average 0.40 0.17 0.20 0.19 

There are noticeable shifts in the seasonal and yearly values of the DG Ratio across all datasets, as 
shown in Table 9. The winter season shows considerable variation in the DG Ratio depending on the 
dataset, while in the summer, the range of values narrows slightly. The Spring/Autumn season also 
reflects this pattern.  
These results indicate seasonal differences in DG ratios, with winter months often having higher values 
than summer months. The variation in DG Ratio values across datasets underscores the influence of 
regional weather data on the precision of solar radiation estimation. 

4.3 - Solar Radiation Calculation 
In this section, the focus shifts from data extraction to the application and testing of solar radiation 
calculation methodologies. The comprehensive data gathered from various sources are used as a robust 
foundation for the analysis. 
Diverse combinations of DG ratios and TL factors are created to evaluate the influence of different input 
parameters on solar radiation outcomes. This systematic approach allows for a detailed examination of 
how regional weather variations and data precision impact the accuracy of solar radiation estimations. 
Each combination is replicated across yearly, seasonal, and monthly configurations, ensuring a 
thorough investigation of solar irradiation patterns. 
The subsequent test plans, elaborations, and calculations are designed to shed light on the optimal 
conditions and parameters for accurate solar radiation estimation, ultimately contributing to more 
efficient urban energy planning in the city of Turin. 

4.3.1 - Test Plan Definition 

Following the extraction of the necessary data, the subsequent phase involved creating various 
combinations of datasets from the extracted values to evaluate the influence of different inputs on the 
outcomes.  
Specifically, the analysis is based on seven distinct TL factor values and four DG ratio values, all 
meticulously extracted from the available sources. These diverse values are used to create 28 possible 
input combinations, ensuring a comprehensive examination of potential scenarios. Each combination 
provides a unique set of conditions under which the solar radiation calculations can be tested, offering 
insights into how each variable influences the results. 
The development of these combinations is detailed in Table 10 which outlines the specific 
configurations used in the study. 
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Table 10 - Sequential numbering of test plans with specified DG ratio and Linke Turbidity Factor values 
Number DG ratio Source TL Source 

1 

Meteonorm w/o 

Meteonorm w/o 
2 Meteonorm weather station 
3 Meteonorm interpolated 
4 QGIS (city) 
5 Meteonorm Aeronet (Ispra) 
6 SoDa 
7 Fracastoro et al. 
8 

Meteonorm weather station 

Meteonorm w/o 
9 Meteonorm weather station 
10 Meteonorm interpolated 
11 QGIS (city) 
12 Meteonorm Aeronet (Ispra) 
13 SoDa 
14 Fracastoro et al. 
15 

Meteonorm interpolated 

Meteonorm w/o 
16 Meteonorm weather station 
17 Meteonorm interpolated 
18 QGIS (city) 
19 Meteonorm Aeronet (Ispra) 
20 SoDa 
21 TL_Fracastoro et al. 
22 

PVGIS 

Meteonorm w/o 
23 Meteonorm weather station 
24 Meteonorm interpolated 
25 QGIS (city) 
26 Meteonorm Aeronet (Ispra) 
27 SoDa 
28 Fracastoro et al. 

Each combination is replicated with yearly, seasonal, and monthly input, resulting in 84 series of 
elaborations and 1008 monthly values. To better understand how variations in the input data influence 
the results, the values in the series were sorted in ascending order by the DG ratio values and then by 
the TL factor, making it easier to recognize any emerging patterns. 

4.3.2 - Yearly Solar Irradiation 

The average yearly solar irradiation for each of the four buildings is determined using the yearly 
average, seasonal average, and monthly values presented in tables 6 to 9, and the aggregated results’ 
median values for the buildings are demonstrated in Figure 20. In order to cover all planning scenarios, 
the estimation process was conducted across 28 plans for the intervention periods, totalling 84 
calculations.  

During the initial computation process, a single set of average yearly values is considered for each 
testing plan, as input parameters across all months. Following this step, the calculating procedure is 
repeated, however, this time the computed seasonal average values are used as the main inputs for the 
estimation process. For each testing plan, this strategy requires the utilization of a constant set of 
parameters throughout the months that reflect each season. Lastly, the monthly values are taken into 
account as the inputs for calculating the solar irradiation of each building. The medians of the findings 
assigned to each test plan are visualized in Figures 21 to 24 for better comprehension. 
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Figure 20 - Median Yearly solar irradiation  for Each Building 

According to Figure 20, it is evident for the four selected buildings in this research, that using yearly 
parameters as inputs for solar irradiation calculation results in a higher amount of solar irradiation than 
seasonal parameters, which in turn results in higher values than monthly parameters. 
Further explorations reveal that for all buildings, the median of estimated solar irradiation using 
aggregated yearly parameters shows a +2.80% increase on average, compared to the results obtained 
using monthly parameters, which is greater than the difference between using aggregated seasonal 
parameters and monthly parameters, which is only +0.16% on average. 

Based on the findings, the building 2 is the one that receives the maximum annual solar irradiation 
among the buildings that were selected. This is attributed to its optimal orientation, specifically with 
one of its pitches facing South-West, which maximizes exposure to afternoon solar radiation. This 
results in an annual average solar irradiation of 1.00 MWh/m² for the building 2. 
On the other hand, the building 1, which is oriented in a north-south direction, benefits from the least 
amount of annual solar irradiation of all the structures that were investigated, with an average of 0.88 
MWh/m2. 

The building 3 and building 4 exhibit intermediate levels of annual solar irradiation. The building 3 
benefits from morning solar radiation, resulting in an average of 0.95 MWh/m² annually. 
On the other hand, the building 4 benefits from the complex geometry of its roof, ensuring continuous 
exposure to solar radiation throughout the day, with an average annual solar irradiation of 0.91 
MWh/m². 
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Figure 21 - Median solar irradiation on building 1, differentiated by input level of aggregation 

 
Figure 22 - Median solar irradiation on building 2, differentiated by input level of aggregation 

 
Figure 23 - Median solar irradiation on building 3, differentiated by input level of aggregation 
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Figure 24 - Median solar irradiation on building 4, differentiated by input level of aggregation 

Figures 21 to 24, demonstrate the medians of the results assigned to each plan of test, as well as the 
average of yearly solar irradiation - in dashed lines - received by the building estimated by monthly, 
aggregated seasonal and yearly input values. 
A recognizable pattern appears as a result of the analysis of the data that is collected, which 
encompasses a similar trend for the buildings. Over a large range, there is a consistent pattern of 
decreasing irradiation levels observed across the series of plans. This pattern aligns with the expected 
logic, attributed to rising turbidity values indicating increased haze in the atmosphere, and larger DG 
ratios indicating greater diffusion of solar radiation. In particular, this pattern demonstrates a steady 
decline beginning with Plan 01 and continuing all the way to Plan 07. After this, there is a significant 
increase, and then the fall occurs again, beginning with Plan 08 and continuing through Plan 14. 
Consequently, following an upward movement, the trend maintains its downward track from Plan 15 
all the way through Plan 21. Specifically, the decrease in irradiation levels exhibits a significantly 
smoother trajectory among the subset that covers plans 22 through 28. 

Regarding the results corresponding to each building, the solar irradiation tests values assigned to plans 
22 to 28, where the DG ratio is gathered from PVGIS dataset, often show lower values in comparison 
to other plans, while plans 01 to 07, which use the DG ratio offered by Meteonorm W/O dataset, 
frequently have elevated values. 
Overall, Plan 01, using the yearly values as inputs for the building 2 shows the highest yearly average 
solar irradiation at 1.15 MWh/m², and Plan 28, using the yearly values as inputs for the building 1 shows 
the lowest average solar irradiation at 0.74 MWh/m². 
Analyzing the differences between achieved results reveals variations and the impact of inputs on 
outcomes, quantified as percentages. The difference between the results are shown in the Table 11. 

Table 11 - Percentage difference of the results for each building 

Building 
The difference compared to median of outcomes using monthly parameters (%) 

Median of outcomes using yearly parameters Median of  outcomes using seasonal parameters 
Building 1 +2.8 +0.21 
Building 2 +2.7 +0.12 
Building 3 +2.9 +0.17 
Building 4 +2.9 +0.15 
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According to Table 11, across all 28 plans, the building 1 demonstrates an average difference of +2.8% 
with yearly values and +0.21% with seasonal values, both compared to results derived from monthly 
values. Similarly, for the building 2, the differences are +2.7% and +0.12%, though, for the building 3, 
the differences are +2.9% and +0.17% in the same order; and regarding the building 4, the differences 
are +2.9% and +0.15%, respectively.  
The comparative analysis shows that the building 2 has relatively smaller variances in outcomes. On 
the other hand, the building 1 is more sensitive to input changes, resulting in a more significant 
fluctuation compared to other buildings. 

4.3.3 - Monthly Solar Irradiation 

To enhance the insights into the impact of parameters on the obtained results, the monthly solar 
irradiation median values used for calculating the average yearly solar irradiation (Section 4.3.2 -) have 
been assessed.  

4.3.3.1 - Median Outcomes 

This step involved a thorough investigation of the median results using yearly, seasonal, and monthly 
parameters for plans 01 and 28, which have the lowest and highest DG ratio and TL factor, respectively. 
This analysis was conducted across all four buildings in the study.By focusing on these specific plans, 
the full range of potential variations in solar radiation estimates was explored, providing a detailed 
comparison of how different input values affect the outcomes. 
Figures 25 to 28 present the elaborations for buildings under test plans 01 and 28, utilizing the three 
input configuration. 

 
Figure 25 - Monthly solar irradiation calculated for building 1 regarding plans 01 and 28 
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Figure 26 - Monthly solar irradiation calculated for building 2 regarding plans 01 and 28 

 
Figure 27 - Monthly solar irradiation calculated for building 3 regarding plans 01 and 28 

 
Figure 28 - Monthly solar irradiation calculated for building 4 regarding plans 01 and 28 
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According to Figures 25 to 28, the result lines generally shift downward from plan 01 to plan 28 with 
three sets of parameters (yearly, seasonal, and monthly). 
This downward shift indicates a consistent trend where the results decrease as the DG ratio and TL factor 
increase. Furthermore, the differences are more significant in summer months, when the radiation 
estimation values are higher. 
Given that the variation in monthly solar radiation results for each building varies across months, 
comparing the scale of the differences as a percentage shows the effect of inputs on the outcome (Table 
12). 

Table 12 - Percentage Differences in Outcomes for Plans 01 and 28 Across Monthly, Seasonal, and Yearly Parameters for 
Each Building 
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1 yearly 18.23 34.38 36.68 38.10 40.59 39.15 41.43 38.83 37.38 35.23 27.79 13.46 33.44 

Seasonal 27.54 43.38 34.34 36.46 34.58 33.48 35.35 33.18 35.36 32.32 36.95 22.66 33.80 

monthly 25.59 39.90 33.08 28.98 37.75 31.52 33.98 33.31 40.06 36.94 35.16 25.61 33.49 

B
ui

ld
in

g 
2 yearly 23.61 33.93 40.03 40.60 41.74 42.34 42.17 41.12 40.51 38.07 30.22 24.91 36.61 

Seasonal 34.00 44.38 37.30 38.66 35.66 36.22 36.05 35.06 38.11 35.12 41.31 35.81 37.31 

monthly 32.18 40.36 35.91 30.28 39.27 34.16 34.46 35.27 43.27 39.92 42.00 40.29 37.28 
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g 
3 yearly 19.71 32.70 39.34 40.73 41.44 42.18 42.04 40.72 40.78 38.65 28.74 10.43 34.79 

Seasonal 29.08 43.50 36.59 38.67 35.41 36.10 35.91 34.63 38.36 34.70 37.63 19.28 34.99 

monthly 28.28 39.97 35.53 30.23 38.90 34.03 34.34 34.91 43.55 40.49 39.46 23.96 35.30 
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4 yearly 3.04 21.63 31.75 36.49 38.46 39.25 39.12 37.48 34.35 26.28 11.47 3.82 26.29 

Seasonal 9.84 29.14 29.69 35.08 32.90 33.54 33.53 32.02 32.65 23.92 18.38 2.17 26.07 

monthly 12.81 25.85 29.12 27.66 36.37 31.66 32.11 31.97 36.91 26.84 15.34 4.41 25.92 

According to Table 12, across all buildings studied, the results show variations in solar irradiation values 
between plan 01 and plan 28. The percentage differences in outcomes for plans 01 and 28 are calculated 
across monthly, seasonal, and yearly parameters for each building, determined by comparing the 
percentage differences between maximum and median outcome values, as well as between median and 
minimum outcome values. Specifically, for the building 1, plan 01 returns values that are on average 
33.6% higher than those of Plan 28. Similarly, the building 2 sees values from plan 01 that are 37.1% 
higher compared to plan 28. In contrast, the building 3 exhibits an average increase of 35.0% in values 
from plan 01 compared to plan 28. Lastly, the building 4 shows values from Plan 01 that are on average 
26.1% higher than those from Plan 28. More into detail, comparing the results for plans 01 and 28, the 
building 1 shows a maximum difference of 40.59% in May and a minimum difference of 13.45% in 
December, both using yearly inputs. For the building 2, the highest difference is 40.51% in October 
with monthly inputs, while the lowest is 10.42% in December with yearly inputs. In addition, a peak 
difference of 41.44% is observed for the building 3 during November when monthly inputs are used, 
while the minimum difference is observed in December when yearly inputs are used. Furthermore, for 
the building 4, the greatest and smallest differences, 39.11% and 2.16%, are observed in July and 
December, respectively, both using yearly inputs. 
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Furthermore, except for five conditions, which correspond to the building 4 - including -3.82% in 
December with yearly inputs, 2.17% in December with seasonal inputs, 4.41% in December with 
monthly inputs, 3.04% in January with yearly inputs, and 9.84% in January with seasonal inputs- the 
all other amount of differences are more than 10%. 
Overall, it is noticeable that across all three input settings, differences are minimal during winter when 
solar radiation is lower, both in terms of percentage change and actual values. However, these 
differences become more evident during the spring, summer, and autumn months. Another significant 
contrast is seen in the peak solar radiation period. Generally, using yearly and seasonal inputs, 
maximum solar radiation occurs in June. In contrast, when using monthly parameters, solar radiation 
increases from May and reaches a peak in July, with slightly lower values in June. 

The next stage involves analyzing the median values of all the plans assigned for each month (Figures 
29 to 40) for each building. In the graphs, the results from monthly inputs are categorized based on the 
DG ratio, indicated by color, and the TL factor, represented by symbols. 

 
Figure 29 - Comparison of monthly results’ median from elaborations with yearly inputs for building 1 

 
Figure 30 - Comparison of monthly results’ median from elaborations with yearly inputs for building 2 
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Figure 31 - Comparison of monthly results’ median from elaborations with yearly inputs for building 3 

 
Figure 32 - Comparison of monthly results’ median from elaborations with yearly inputs for building 4 

 
Figure 33 - Comparison of monthly results’ median from elaborations with seasonal inputs for building 1 
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Figure 34 - Comparison of monthly results’ median from elaborations with seasonal inputs for building 2 

 
Figure 35 - Comparison of monthly results’ median from elaborations with seasonal inputs for building 3 

 
Figure 36 - Comparison of monthly results’ median from elaborations with seasonal inputs for building 4 
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Figure 37 - Comparison of monthly results’ median from elaborations with monthly inputs for building 1 

 
Figure 38 - Comparison of monthly results’ median from elaborations with monthly inputs for building 2 

 
Figure 39 - Comparison of monthly results’ median from elaborations with monthly inputs for building 3 
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Figure 40 - Comparison of monthly results’ median from elaborations with monthly inputs for building 4 

The displayed trends in Figures 29 to 40 reveal the general expected pattern that appears across all four 
buildings when the 28 plans are taken into consideration. Beginning in January, the trends show an 
increase in the levels of solar radiation, peaks in July, and then followed by a subsequent decrease that 
continues until December.  

Generally, during the summer months, higher levels of solar radiation are estimated, whereas during 
the winter months, lower levels are seen. This pattern is a reflection of the variation in solar radiation 
that happens throughout the year. 
As a result of the fact that this pattern has been matched consistently throughout all four buildings, the 
permanence of the seasonal impact in solar radiation that has been detected is brought to light. 
Moreover, it is clear that there is a smaller degree of range in the outcomes during the winter months, 
when the values are lower, whereas the variation is greater during the summer months when the values 
are larger.  
To put it another way, the difference between the results increases as the amount of estimated solar 
radiation increases. Furthermore, the results assigned to plans 22 to 28, where the DG ratio derived 
from PVGIS (the highest DG ratio value in this research) typically shows lower values compared to 
those of other plans, align with the expected logic that larger DG ratios indicate greater diffusion of 
solar radiation; and plans 01 through 07, on the other hand, which use the DG ratio from Meteonorm 
W/O (the lowest DG ratio value), often display greater values in comparison.   

As for the monthly solar radiation outcomes, the final comparison evaluates all four analyzed buildings. 
Figure 41 illustrates the median solar radiation for each building throughout the year, along with the 
average of these medians. 
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Figure 41 - Monthly median irradiation for the four analyzed buildings 

According to Figure 41, the examination of median values across twelve months displays distinct 
performance patterns among the buildings under study. Specifically, building 1 consistently shows the 
lowest median values from April to September, indicating a period of relatively lower performance 
compared to other buildings. 
Conversely, building 4 demonstrates lower median values from January to March and October to 
December. 
Throughout the entire year, building 2 consistently exhibits the highest median values across all months, 
underscoring its favorable orientation compared to the other buildings. Further analysis reveals that the 
median solar irradiation of building 4 surpasses the average in only four months, where the difference 
does not exceed 1% compared to the other buildings. Additionally, the overall performance of buildings 
2 and 3 remains closely aligned throughout the year. 
Building 2 consistently receives the maximum amount of solar radiation every month. On the other 
hand, building 4 experiences the least amount of solar radiation during the first and last three months 
of the year, while building 1 absorbs the least amount from April until September. 
Moreover, while buildings 2, 3, and 4 experience their highest solar radiation levels in June, building 1 
reaches its peak in July. 

4.3.3.2 - Maximum and Minimum Outcomes 

In the next stage, after investigating the median values, the focus shifts to examining the maximum and 
minimum outcomes. This step aims to determine the variations in solar radiation received by each 
building throughout the year. 
The results are presented as line charts (Figures 42 to 53), showing the maximum and minimum solar 
irradiation values for each month. This analysis reveals the range of solar exposure and highlights the 
months with significant fluctuations, offering a clearer picture of each building's solar performance 
under different conditions. 
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Figure 42 - Comparison of monthly results’ maximum from elaborations with yearly inputs for building 1 

 
Figure 43 - Comparison of monthly results’ maximum from elaborations with yearly inputs for building 2 

 
Figure 44 - Comparison of monthly results’ maximum from elaborations with yearly inputs for building 3 
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Figure 45 - Comparison of monthly results’ maximum from elaborations with yearly inputs for building 4 

 
Figure 46 - Comparison of monthly results’ maximum from elaborations with seasonal inputs for building 1 

 
Figure 47 - Comparison of monthly results’ maximum from elaborations with seasonal inputs for building 2 
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Figure 48 - Comparison of monthly results’ maximum from elaborations with seasonal inputs for building 3 

 
Figure 49 - Comparison of monthly results’ maximum from elaborations with seasonal inputs for building 4 

 
Figure 50 - Comparison of monthly results’ maximum from elaborations with monthly inputs for building 1 



 Chapter 4 - Results  

 
53 

 

 
Figure 51 - Comparison of monthly results’ maximum from elaborations with monthly inputs for building 2 

 
Figure 52 - Comparison of monthly results’ maximum from elaborations with monthly inputs for building 3 

 
Figure 53 - Comparison of monthly results’ maximum from elaborations with monthly inputs for building 4 
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According to Figures 42 to 45, considering yearly inputs, the building 1 shows maximum outcomes 
ranging from 200.6 kWh/m² to 65.8 kWh/m², while for the building 2, the maximum outcomes vary 
between 207.8 kWh/m² and 66.5 kWh/m². Similarly, the building 3 shows maximum outcomes ranging 
from 204.5 kWh/m² to 63.7 kWh/m². Lastly, the building 4 records maximum outcomes ranging from 
203.0 kWh/m² to 62.1 kWh/m². 

In terms of seasonal parameters, the Figures 46 to 49 illustrate the maximum monthly solar radiation 
outcomes across the same four buildings. 
The building 1 reports maximum outcomes ranging from 193.4 kWh/m² to 66.3 kWh/m², while for the 
building 2, the maximum outcomes vary between 200.0 kWh/m² and 67.2 kWh/m². Similarly, the 
building 3 shows maximum outcomes ranging from 196.7 kWh/m² to 64.3 kWh/m². Lastly, the building 
4 exhibits maximum outcomes ranging from 195.2 kWh/m² to 62.6 kWh/m². 

Regarding monthly parameters shown in Figures 50 to 53, the maximum monthly solar radiation 
outcomes across four buildings over a year are depicted. The building 1 shows maximum values ranging 
from 197.6 kWh/m² to 82.9 kWh/m². 
In the case of the building 2, maximum outcomes vary between 203.8 kWh/m² and 76.9 kWh/m². 
Similarly, the building 3 exhibits maximum outcomes ranging from 200.1 kWh/m² to 78.9 kWh/m². 
Lastly, the building 4 records maximum outcomes ranging from 195.6 kWh/m² to 72.9 kWh/m².  

Considering the depiction of the minimum outcomes in Figures 54 to 65, an adjustment has been made 
to enhance the clarity of the charts; the scale of the vertical axis has been modified to fit the relatively 
smaller values observed in these outcomes. 
This modification ensures that the presented data is clear and accessible, facilitating a detailed analysis 
of the variations in minimum solar radiation across different months and buildings. 

 
Figure 54 - Comparison of monthly results’ minimum from elaborations with yearly inputs for building 1 
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Figure 55 - Comparison of monthly results’ minimum from elaborations with yearly inputs for building 2 

 
Figure 56 - Comparison of monthly results’ minimum from elaborations with yearly inputs for building 3 

 
Figure 57 - Comparison of monthly results’ minimum from elaborations with yearly inputs for building 4 
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Figure 58 - Comparison of monthly results’ minimum from elaborations with seasonal inputs for building 1 

 
Figure 59 - Comparison of monthly results’ minimum from elaborations with seasonal inputs for building 2 

 
Figure 60 - Comparison of monthly results’ minimum from elaborations with seasonal inputs for building 3 
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Figure 61 - Comparison of monthly results’ minimum from elaborations with seasonal inputs for building 4 

 
Figure 62 - Comparison of monthly results’ minimum from elaborations with monthly inputs for building 1 

 
Figure 63 - Comparison of monthly results’ minimum from elaborations with monthly inputs for building 2 
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Figure 64-  Comparison of monthly results’ minimum from elaborations with monthly inputs for building 3 

 
Figure 65 - Comparison of monthly results’ minimum from elaborations with monthly inputs for building 4 

According to the Figures 54 to 57, considering the yearly inputs, the minimum monthly solar radiation 
outcomes for the building 1 ranges from 10.9 kWh/m² to 1.5 kWh/m², while for the building 2, outcomes 
vary between 11.2 kWh/m² and 1.5 kWh/m². Similarly, the building 3 exhibits values ranging from 11.3 
kWh/m² to 1.5 kWh/m². Lastly, the building 4 shows outcomes ranging from 11.2 kWh/m² to 1.4 
kWh/m². 

Regarding seasonal parameters shown in Figures 58 to 61, the minimum monthly solar irradiation 
outcomes for the building 1 is ranging from 10.8 kWh/m² to 1.1 kWh/m², while for the building 2, 
outcomes vary between 11.1 kWh/m² and 1.3 kWh/m². Similarly, the building 3 shows values ranging 
from 11.2 kWh/m² to 1.3 kWh/m². Lastly, the building 4 exhibits values ranging from 11.1 kWh/m² to 
1.3 kWh/m². 

In terms of monthly parameters illustrated in Figures 62 to 65, the minimum solar radiation outcomes 
for the building 1 vary from 11.8 kWh/m² to 1.1 kWh/m², while for the building 2, outcomes vary 
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between 12.2 kWh/m² and 1.2 kWh/m². Similarly, the building 3 shows values ranging from 12.3 
kWh/m² to 1.1 kWh/m². Lastly, the building 4 records values ranging from 12.2 kWh/m² to 1.2 kWh/m². 

Overall, an expected patterns, similar to the median outcomes (in Section 4.3.3.1 -), are observed. From 
January, the values start to increase until the summer months, and after reaching a peak, they begin to 
decrease until winter. 
A significant difference can be seen between the minimum and maximum values, which may result 
from building orientation or shadows on the buildings during the estimation period.  
To better compare the maximum and minimum outcomes, the average of the maximum outcomes, the 
average of the minimum outcomes, and the average of the median outcomes are considered and 
presented in Figures 66 to 69 for each building separately.  

 
Figure 66 - The average of minimum, median, and maximum outcomes for the building 1 

 
Figure 67 - The average of minimum, median, and maximum outcomes for the building 2 
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Figure 68 - The average of minimum, median, and maximum outcomes for the building 3 

 
Figure 69 - The average of minimum, median, and maximum outcomes for the building 4 

Figures 66 to 69 show that in summer months, median solar radiation values are closer to the maximum 
outcomes, indicating higher sunlight exposure. 
In contrast, during winter months, the median values align more closely with the minimum outcomes, 
suggesting lower levels of solar radiation. 

Table 13 provides the percentage differences between the average maximum and median values, as well 
as between the average median and minimum values. This comparison helps to understand how solar 
radiation varies across seasons, highlighting the seasonal fluctuations and their impact on sunlight 
exposure throughout the year. 
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Table 13 - Percentage Differences Between Average Maximum and Average Median Values, and Between Average Median 
and Average Minimum Values 
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1 Maximum 

Outcomes 
455.13 210.36 110.53 62.27 31.71 29.21 25.42 48.15 88.83 163.27 338.91 549.65 

Minimum 
Outcomes 

822.99 1233.51 1532.05 1744.63 2073.01 2100.95 2333.72 1899.50 1701.12 1213.63 920.35 635.34 

B
ui

ld
in

g 
2 Maximum 

Outcomes 
331.14 163.65 64.02 36.54 19.26 17.07 18.00 27.79 52.07 108.90 259.51 385.27 

Minimum 
Outcomes 

1043.4
9 

1352.34 1707.15 1998.65 2238.90 2326.54 2493.81 2170.22 1940.66 1381.61 1100.18 895.71 

B
ui

ld
in

g 
3 Maximum 

Outcomes 
389.21 191.64 88.70 42.29 21.95 18.69 19.68 32.12 63.07 136.04 296.12 495.29 

Minimum 
Outcomes 

899.33 1211.22 1497.15 1822.25 2145.10 2238.75 2375.54 2031.30 1756.34 1248.94 953.93 666.59 

B
ui

ld
in

g 
4 Maximum 

Outcomes 
483.20 227.21 101.53 45.63 23.19 19.51 19.25 34.10 66.90 170.42 393.14 569.35 

Minimum 
Outcomes 

699.93 1032.09 1422.52 1839.88 2143.15 2228.55 2372.69 2023.71 1708.08 1063.23 779.43 548.02 

Average 
of difference 

640.55 702.75 815.46 949.02 1087.03 1122.41 1207.26 1033.36 922.13 685.75 630.20 593.15 

 

In general, Table 13 demonstrates that there are considerable seasonal variations in solar radiation 
differences. The most significant variations occur notably in summer months when solar radiation is 
highest. July stands out as the month with the largest differences across all buildings, while the lowest 
variation is seen in December, which highlights the impact of seasonal changes as well as the effects of 
orientation and shadowing on the solar radiation recieved by the buildings. 

4.4 - Automation 
Due to the complicated algorithms that are involved and the several required steps, the process of 
estimating solar irradiation using the r.sun.insoltime tool in the QGIS software is a very time-consuming 
process. Estimating the daily solar irradiation is the first step in the process, which is then followed by 
calculating the monthly outcomes and then aggregating all of the findings to obtain the yearly solar 
radiation. In order to complete this process, it is required to calculate the solar radiation for the area 
under study and then determine the quantity of solar radiation received by the buildings located within 
that area. The process also requires a significant amount of computer resources, which includes the use 
of a substantial amount of memory and the creation of temporary files that are only usable during 
particular projects and calculations. 

The method of estimating solar radiation is carried out for a total of 28 different plans within the scope 
of this investigation, making use of the criteria described in section 4.2 -. Due to the repetitive nature 
of this task, the importance of automating the process to improve both speed and accuracy became 
evident. In response to this, incorporating computer programming in Python would be highly efficient. 
Python scripts can continuously iterate and perform calculations, using the output of each function and 
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algorithm as an input for the next iteration, all while avoiding the generation of a large number of 
temporary files. 

Since QGIS models are based on Python programming, the software can generate Python script codes 
for these models, and the Graphical Modeler tool is not an exception. Therefore, the Graphical Modeler 
tool in QGIS was chosen to automate the solar radiation estimation procedure. It utilizes Python, can 
be extracted into Python scripts for further development or use, and features a simple user interface that 
connects the required nodes to create the desired algorithm.. 

As this study requires input parameters on a monthly, seasonal, and yearly basis, three distinct models 
are presented in order to account for the fluctuations that exist in these parameters (Figures 70 to 72). 
In the raster and shapefile formats, respectively, the Elevation model and the buildings that are planned 
to be located in the research area are brought into each of these models as the main inputs. 

 
Figure 70 - Composite function for the solar radiation estimation with monthly inputs 
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Figure 71 - Composite function for the solar radiation estimation with seasonal  input aggregation 

 
Figure 72 - Composite function for the solar radiation estimation with yearly input aggregation 

Twelve distinct parameters for the TL factor, each of which corresponds to a particular month, are 
required for the monthly model. Additionally, twelve distinct parameters for the DG ratio are required, 
each of which corresponds to a different month. By employing three distinct parameters for the TL factor 
and the DG ratio, the seasonal model makes this process more straightforward. These parameters are as 
follows: 

• one for the summer months 
• one for the winter months 
• one for the spring and fall months 

A single number is used for both the TL factor and the DG ratio in the yearly model, which is relevant 
to all months. To prepare a raster file for the r.sun.insoltime algorithm, the Create Constant Raster Layer 
tool is utilized to generate the TL Factor and DG ratio raster files. This simplification makes the 
procedure faster and more efficient.  
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The model determines the values of aspect and slope by using the Elevation model its input. The 
automatic calculation of solar radiation is made by the input values provided by the user and the results 
obtained from the algorithms in the model. 

For the buildings in the area under study, the global radiation (irradiance/irradiation) outputs of these 
models are computed using the Zonal Statistics tool, within the model, which contain the minimum, 
maximum, and median values of the monthly solar radiation. The measuring unit of the outcomes are 
in Wh/m2y. In order to facilitate analysis, the user has the ability to select the format of the output, 
which is offered by the QGIS software. 

 
Figure 73 - Python script extracted from QGIS for the solar radiation estimation with yearly input aggregation 

Regarding the Python script provided by the QGIS (Figure 73), to detail the technical implementation 
of the model, a Python class designed as a QGIS processing algorithm, plays a crucial role. This class, 
inheriting from QgsProcessingAlgorithm in the QGIS core library, is tailored to compute yearly 
irradiation statistics using various inputs such as building vector layers, DSM raster files, yearly DG 
ratio, and yearly Linke turbidity. It leverages components from the QGIS core and processing modules, 
including: 

• QgsProcessingParameterVectorLayer 
• QgsProcessingParameterRasterLayer 
• QgsProcessingParameterNumber 

Using the Graphical Modeler tool in QGIS to automate the process of estimating solar radiation is a 
significant progress in comparison to the typical manual strategies. This tool provides a flexible and 
efficient solution for accurate solar radiation assessment by adjusting to a broad variety of input 
parameter categories through the utilization of custom models. 

4.5 - Critical Assessment of the Findings  
This study has explored how different input parameters —yearly, seasonal, and monthly—affect solar 
irradiation estimates in the QGIS software for four distinct buildings, shedding light on their potential 
for solar energy production. Beyond simply looking at median values, it has also examined the 
variability in solar irradiation results across the buildings.  
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The results produced by the r.sun.insoltime tool in QGIS are described in detail in section 4.3 -. In this 
stage, in order to better describe the variety of outcomes that can occur, visual representations of the 
fluctuations in minimum, median, and maximum monthly values throughout the year under yearly, 
seasonal, and monthly parameters are provided in Figures 74 to 76; additionally, Figure 77 is included 
that overlays these values in a single visualization for easier comparison. 

 

Figure 74 - Range between averages of minimum and maximum values for each month compared to the median with yearly 
inputs  for all buildings 

 
Figure 75 - Range between averages of minimum and maximum values for each month compared to the median with seasonal 
inputs  for all buildings 
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Figure 76 - Range between averages of minimum and maximum values for each month compared to the median with monthly 
inputs  for all buildings 

According to Figures 74 to 76, the average minimum and maximum solar irradiation outcomes for all 
four buildings vary across different timescales. 

Regarding yearly parameters (Figure 74), the average of minimum outcomes ranges from 2,100 kWh/m² 
to 5,670 kWh/m², and the average of maximum results ranges from 8.7 kWh/m² to 176.5 kWh/m². 
Concerning seasonal parameters (Figure 75), the average of minimum results ranges from 1.9 kWh/m² 
to 6.1 kWh/m², and the average of maximum results ranges from 9.8 kWh/m² to 170.9 kWh/m². 
Lastly, for monthly parameters (Figure 76), the average of minimum outcomes ranges from 1.8 kWh/m² 
to 6.5 kWh/m², and the average of maximum outcomes ranges from 98.5 kWh/m² to 166.1 kWh/m². 

In general, the near-null minimum obtained values are mainly due to shadow-casting elements such as 
chimneys and dormers, which limit incident radiation. Conversely, maximum values exceed 100 
kWh/m² in all months except December. Despite these variations, the overall distribution of values 
mirrors that of the median, with the highest increase in March, the most notable decrease in September, 
and a peak in July. 
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Figure 77 - Comparison of minimum, median, and maximum monthly solar irradiation  for all building, concidering yearly, 
seasonal, and monthly parameters 

These findings suggest that using minimum and maximum values for calculating average solar radiation 
is flawed and less accurate than using median values. The median values provide a more reliable 
measure, as indicated by the small percentage differences when comparing outcomes using different 
parameters. Specifically, the percentage difference between outcomes using seasonal and monthly 
parameters, for median monthly solar irradiation outcomes is always less than 5%, with an average 
difference of +2.1%. For yearly and monthly parameters, the difference is always less than 10%, 
averaging +3.66%. 

When examining yearly solar irradiation, the differences in median values also remain minimal. The 
percentage difference between seasonal and monthly parameters averages +0.3%, while the difference 
between yearly and monthly parameters averages +2.0%. These observations, detailed in Section 4.3.2 
-, underscore the importance of using median values for a more accurate and consistent assessment of 
solar irradiation outcomes. 
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Chapter 5 - Conclusion and Future Developments 

Based on the findings of this study, several key insights have emerged, highlighting the complexities 
and differences in solar radiation analysis and its application in urban environments. 

The research utilized a GIS-based approach to estimate solar radiation on an urban scale and evaluate 
the capabilities of GIS tools. As mentioned by Anselmo and Ferrara [41], due to the common use of 
tools embedded in QGIS and ArcGIS for solar radiation estimation, this study aimed to choose between 
the r.sun.insoltime tool in QGIS and the ASR tool in ArcGIS Pro. The ASR tool offers notable flexibility 
with customizable viewshed algorithms and diffuse model types, catering to diverse analytical needs. 
In contrast, the r.sun.insoltime tool is particularly adept for large-scale assessments due to its efficient 
processing of slope and orientation maps, allowing it to work faster than ArcGIS. Additionally, QGIS 
uses raster inputs for factors such as the Linke turbidity (TL) factor and DG, enhancing the accuracy of 
solar radiation distribution evaluations. By using the same parameters for both tools and comparing the 
results, the study found that the trend correlation of the parameters and outcomes in r.sun.insoltime was 
more logically expected, making it the chosen tool for this study [Section 3.1 -]. 

Regarding the first objective, which aimed to identify the best input parameters for solar radiation 
estimation in the urban area of Turin, data were collected from trusted sources. These included an 
accurate DSM file with a resolution of 0.5m provided by the SDG11 Lab, monthly TL factor values 
from seven sources, monthly DG ratio values from four sources, and Global Horizontal Irradiance 
(GHI) from one source. The complexity of solar radiation modeling underscores the necessity of 
considering multiple data sources in solar energy assessments and climate studies, crucial for accurate 
solar energy production and environmental monitoring in the region 
A general trend was observed where winter months exhibited lower TL values compared to summer 
months. However, the DG ratio values did not show a recognizable trend. The monthly data were then 
aggregated into seasonal intervals—winter (November to February), summer (May to August), 
spring/autumn (September, October, March, and April)—and yearly periods, showing the average value 
across all months [Section 4.2 -]. 

For the second objective, the collected data were organized into a series of plans as input parameters to 
be tested. The parameters were sorted in ascending order by DG ratio and then by TL factor, resulting 
in 28 distinct plans for each temporal category (monthly, seasonal, and yearly), totaling 84 plans 
[Section 4.3.1 -]. 
Each plan produced 12 monthly values, totaling 1008 monthly outcomes. By aggregating the monthly 
outcomes, yearly solar radiation estimation was provided. A general pattern emerged where an increase 
in the TL factor and the DG ratio led to a decrease in estimated solar radiation, and shifted the trend line 
downward. Yearly results for the four buildings under study showed that using yearly and seasonal 
parameters as inputs provided higher median solar radiation estimations compared to monthly 
parameters, with yearly parameters showing +0.30% and seasonal parameters showing +0.28% higher 
median outcomes. Comparing plan 01 and plan 28, which included the lowest and highest values for 
DG ratio and TL factor respectively, plan 01 provided +34.4% higher outcomes on average. Building 2 
consistently showed the highest solar irradiation, highlighting the importance of building orientation 
[Section 4.3.2 -]. 
Monthly solar radiation estimation results demonstrated that solar radiation received by the buildings 
increased from January, peaked in the summer months, and decreased until December. Similar to yearly 
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results, the monthly outcomes showed a decreasing trend from plan 01 to plan 28. Median values were 
considered the best representation of the outcomes due to potential obstructions and shadows on 
rooftops. 
Moreover, observed trends in solar radiation levels across different months aligned with seasonal 
variations, informing decision-making processes related to solar energy production and environmental 
monitoring. The analyses revealed that variations in solar irradiation levels across different plans 
emphasized the importance of selecting appropriate input parameters for accurate estimation. This 
consistency highlighted the influence of geographical and architectural factors on solar irradiation 
outcomes, indicating how different buildings can have optimal months for solar energy collection due 
to their unique orientations, designs, or surrounding environmental factors [Section 4.3.3 -]. 

Following the third objective, Python programming was used to automate the procedure. The Graphical 
Modeler tool in QGIS was utilized due to its easy and understandable interface, creating three models 
for solar radiation estimation with monthly, seasonal, and yearly parameters. These models used digital 
elevation data and building-specific information to generate monthly median, maximum, and minimum 
solar radiation values [Section 4.4 -]. 

Overall, while using monthly values could generate more accurate results, the significant discovery is 
that using aggregated seasonal values as the input configuration offers the best trade-off between 
efficiency and precision. This approach simplifies the model—requiring only a quarter of the 
parameters needed for monthly inputs—while maintaining a high level of precision, with an average 
overestimation of +0.16% for yearly solar radiation estimation and +2.1% for monthly solar radiation 
estimation for the four buildings under study [Section 4.5 -]. 

Regarding automation, QGIS provides the Python script of the automated procedure, making it possible 
to use available data from online sources or real-time data from sensors or measuring instruments. 
Methods to extract data from online sources include using APIs, such as the PVGIS API, which allows 
for direct access to solar radiation data by specifying parameters like location, time range, and panel 
orientation. These parameters could be defined in a suitable format to be used for the automated 
algorithm, preparing real-time solar irradiation data in an urban context. 

Future studies should examine daily variations to better understand and improve solar energy system 
sizing. Increasing the temporal resolution of the analysis is also crucial. Instead of just using aggregated 
values, examining monthly and daily productivity variations will provide more accurate data for 
defining the size of solar energy systems. Accurate albedo estimation should be incorporated into future 
research to account for the reflectance of urban surfaces. This would allow for more precise calculations 
of global solar radiation, especially in areas with reflective materials. 

Additionally, exploring the differences in solar radiation estimates when using coarser Digital Surface 
Models (DSMs) with ground sampling distances of 1m or 5m compared to finer resolutions will help 
determine the optimal DSM resolution for accurate assessments. Extracting roof pitches from LiDAR 
point clouds or DSMs could also enhance the accuracy of solar potential estimation. This would help 
identify buildings with optimal orientations for solar energy production. Future research should focus 
on simulation accuracy by comparing the optimized simulation methodology with real-world data, 
acquiring data from existing systems or installing dedicated panels for validation. 

Lastly, integrating three-dimensional data on roof pitches into the calculation model could improve the 
estimation of photovoltaic (PV) potential, going beyond the standard area calculation used in the current 



 Chapter 5 - Conclusion and Future Developments  

 
70 

 

study. Moreover, using Artificial Intelligence (AI) and Machine Learning (ML) algorithms, it would be 
possible to provide future scenarios of solar irradiation. AI and ML can analyze historical solar radiation 
data, weather patterns, and other relevant factors to predict future solar radiation levels more accurately. 
By addressing these areas, future research can improve the precision, accuracy, and applicability of 
solar radiation estimation models, contributing to more efficient and effective solar energy production 
and environmental monitoring.  
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