
   

 

1 
 

POLITECNICO DI TORINO 

Master’s degree programme in Civil Engineering 

 
 
 

 
 
 
 

Master Thesis 
 

Theoretical Investigation of Multiple Pounding in 
Curved Bridges due to Vertical Ground Motion 

 
 
Supervisors Candidate 

Prof. Gian Paolo Cimellaro                                              Zukhuriddin Abdubokiev    

Dr. Alessandro Cardoni 

 
A.Y. 2023/2024 

 



   

 

2 
 

Index 
I. Chapter 1: Introduction 

II. Chapter 2: 
2.1  Continuous Curved Bridges 

2.1.1 Curved Bridges: Structure and Significance 
2.1.2 Geometry and Behavior 
2.1.3 Problems Associated with Bridge Curvature. 

2.1.3.1 Bearing Unseating 
2.1.3.2 Complex Dynamic Behavior 
2.1.3.3 Torsional Problem 
2.1.3.4 Pounding Effect 

2.2  Curved Bridges: Theory and analysis 
2.2.1 Global Structural Analysis of Curved Bridge. 
2.2.2 System of Coordinates. 
2.2.3 Fundamental DFE for Stress Resultants 
2.2.4 Fundamental DFE for Displacements 
2.2.5 Solution for Moment 
2.2.6 Solution for Torsion using Approximate Method 
2.2.7 Solution for Torsion through Statics 
2.2.8 Dynamic of a Curved Beam 

2.2.8.1 Governing Equation of Motion of Curved Beam 
2.2.8.2 Frequency Determination for Curved Beam 

III. Chapter 3: 
3.1  Case Study 
3.1.1 Overview 
3.1.2 Static Solution 
3.1.2.1 Vertical Quasi-static Displacement for In-contact 

Phase 
3.1.2.2 Vertical Quasi-static Displacement for Out-of-contact 

Phase 
3.1.3 Dynamic Solution 
3.1.3.1 Vertical Dynamic Displacement for In-contact Phase 
3.1.3.2 Vertical Dynamic Displacement for Out-of-contact 

Phase 
 

3.2  Numerical Results 
3.2.1 Bridge Parameters 
3.2.2 Convergence of Analysis Outcome 



   

 

3 
 

3.2.3 Wave propagation across the beam induced by vertical 
ground motion 

3.2.4 Multiple Pounding Phenomena 
3.2.5 Mode Shapes 
3.2.6 Response of the bridge under uniform seismic excitation 

IV. Chapter 4: Conclusion 
V. Appendix 

  



   

 

4 
 

Introduction 
 

Design and analysis in the bridge structure, especially under seismic action, are one of the most critical 
aspects within civil engineering. Curved bridges are normally adopted because of the esthetic point of 
view in landscape designs along with the economy of space. In seismic impacts, this geometrical 
nonlinearity creates additional challenges. The above thesis entitled "Theoretical Investigation of 
Pounding Effect Generated in Curved Bridges" provides information about the dynamic responses of 
such kind of structures to seismic forces, putting a spotlight on this phenomenon.  

Pounding effect occurs when oscillating bridge segments collide during earthquakes, potentially 
causing significant damage both on girder and isolation system. The risk of such impacts is prominent 
in horizontally curved bridges due to their varying radii and altered dynamic properties. This study 
systematically investigates how different curvature radii influence the pounding or contact forces at the 
critical girder-pier interfaces due to the vertical component of seismic events, providing insights that 
are crucial for the design and retrofitting of safer bridges and viaducts. 

To achieve a comprehensive understanding, this research employs a dual approach combining 
theoretical analytical methods with sophisticated finite element analysis. This methodology allows for 
the precise modeling of seismic interactions within curved bridge structures under various vertical 
seismic excitations. By changing the seismic input periods to match and deviate from the natural periods 
of the bridge in both in-contact and out-of-contact phases, the study points out the influence of period 
matching on the intensity and magnitude of pounding phenomena. 

The present work contributes to the number of  fields, significantly earthquake and bridge engineering 
by elucidating the impact of structural curvature on the dynamic responses of bridges. The findings are 
intended to guide the development of advanced design strategies that enhance the structural resilience 
and safety of in-plane curved bridges in earthquake-prone areas. Through this detailed exploration, the 
research aims to support the engineering community in creating bridge designs that not only meet 
technical and functional requirements but also withstand the challenges posed by seismic excitations.  
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Chapter 2 
2.1 Continuous Curved Brdiges 

 

2.1.1 Curved Bridges: Structure and Significance 

Bridges with curved alignment were once uncommon, but nowadays, the majority of straight bridges 
have become curved due to various factors such as site constraints, architectural considerations, traffic 
volume, and changes in speed limits. The curved bridge design is widely recognized for its 
effectiveness, stability, functionality, economy, and aesthetics. These bridges are often selected to have 
a circular plan with transition curves. 

 

Figure 1.1. Curved I-girder viaduct 

Analyzing bridges curved in the plan is more complex than analyzing straight bridges because they are 
subjected to a combination of bending and torsion induced by the curvature of the girders. Therefore, 
when designing a curved bridge, it’s crucial to choose a section with high torsional stiffness to ensure 
efficiency. However, in small curvature bridges, the effect of the curve angle on bending moments 
(BM), shear forces (SF), torsional moments (TM), and vertical deflections (VD) may be negligible if it 
remains within acceptable limits.(Agarwal et al.) 
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Figure 1.2. Box-girder curved bridge 

One of the most common techniques for analyzing and designing curved bridges is to treat them as if 
they were straight, with well-defined limitations. In curved bridges, torsion is induced, affecting the 
bridge’s response in terms of flexural behavior, shear, and torsion. It twists the bridge cross-section and 
generates uneven stresses in the flange. Thanks to the accessibility of high-capacity computational 
systems, the analysis and design of curved bridges with greater curvature have become more 
manageable. 

So far, many studies were conducted on curved bridges and some latest of them are included in this 
thesis. Gupta et al. (2019a, b) performed the static analysis of RC curved box-girder bridge using 
SAP2000 software and determined that the effect of curvature angle under the 12° is not significant on 
forces and deflection. Agarwal et al. (2019) investigated the maximum bending moment and shear force 
in a single-cell skewed box-girder bridge by FEM. Tamaddon (2020) studied the effect of curvature 
angle of curved RC box-girder continuous bridges on their transient response and vertical pounding 
subjected to near-source earthquake. Agarwal et al. (2020a, b) examined the behavior of RC skew box-
girder bridge subjected to Indian loadings using CsiBridge. Gupta (2022) illustrated seismic response 
of horizontally curved bridges in combination with skewed abutments. Mairone et al. (2022a,b) 
decoupled the coupling between bending and torsion that arises in curved bridges by solving differential 
equations and presented a case study on a horizontally curved steel box-girder bridge located in North 
of Italy. Guan et al. (2023) introduced the method to identify the critical seismic input for curved 
bridges. 

2.1.2 Geometry and Behaviour 
The use of horizontally curved steel girders in highway bridges has seen remarkable developments over 
the past several decades. Initially, when curved bridge superstructures were introduced, they typically 
consisted of a series of straight girder chords. In the early years of modern bridge design, engineers 
hesitated to employ curved girders due to the mathematical complexities associated with their 
design.(Mairone et al.) 

Bridges with complex geometries or structures featuring curvilinear axes with variable radii are 
sometimes necessary for optimizing road paths and minimizing material usage. To address the complex 
stress redistribution and torque, the superstructure of curvilinear viaducts can be characterized by decks 
with specific cross-sectional geometries, including: 

• Box decks with a single cell, composed of composite steel-concrete, prestressing steel, or steel 
materials (Figure 1(a)). 
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• Box beams interconnected with a slab (Figure 1(b)). 
• Multicellular box decks in steel, prestressed concrete, or composite systems (Figure 1(c)). 
• Decks with I-section beams in reinforced or prestressed concrete. 

 
Figure 1.3. Types of box section: (a) Single cell; (b) Interconnected single-cell; (c) Multicellular; 
 
The use of closed sections has proven to be an efficient structural solution for bridges and flyovers 6. 
These closed sections offer high torsional stiffness, efficient distribution of eccentric variable traffic 
loads among the cores of the box girder, and benefits in terms of maintainability, economy, and 
aesthetics. 

However, curvilinear bridge decks always exhibit torsional deformation under vertical loads, resulting 
from an eccentricity between applied loads and support reactions. Consequently, an interaction between 
bending and torsion moments occurs along the spans. While finite element models facilitate this 
analysis, analytical calculations often treat bridges with curvilinear layouts as horizontally curved 
structures. 

According to the type of cross-section, the torsional behavior of bridge decks can be described by two 
main categories: 

• Open cross-sections: These are often obtained either by using two main beams (twin girder) or 
several main beams (multi-girder). Open cross-sections resist non-uniform (warping) torsional 
actions and provide limited torsional rigidity. 

• Closed cross-sections: These may comprise a box that is entirely made of steel, a steel U-shaped 
section, or a twin girder section closed by lower plan bracing. Essentially, closed cross-sections 
resist uniform (St-Venant) torsion and deform very little. These systems are advantageous for 
bridges subjected to significant torsion, such as curved bridges or bridges with substantial 
cantilevers to the slab. 

In the present thesis, we discuss different analytical and numerical approaches that can be used to design 
horizontally curved girders, focusing on a case study of a steel-box girder bridge. Here are the key 
points: 

1. Analytical Approach: Originally used by designers, this approach is strongly simplified and 
conservative in terms of torque action computations. 

2. Improved Analytical Evaluation: We propose an improved analytical evaluation of the torque 
action based on a more realistic representation of boundary conditions. 

3. Finite Element Method Calculations: We present finite element method calculations with 
varying levels of detail regarding the geometrical description of the bridge. 

The main aim is to highlight the advantages and disadvantages of different approaches available for 
designing such complex structures, including analytical formulations and numerical models. The case 
study involves a simple bridge with only three spans, allowing us to analyze different load and boundary 
conditions that significantly impact the interplay between bending and torque actions. 
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2.1.3  Specific problems related to curved bridges. 
 

2.1.3.1 Bearing unseating 

Multi-span bridges on connecting roads at highway junctions are usually constructed of reinforced 
concrete or prestressed concrete. These are usually structures with beams, beams or hollow girder 
sections. Despite many years of experience in planning such structures, unfortunately there are still 
cases in which negative events and problems occur that were not foreseen by the planners and 
contractors. This is especially true for prestressed structures that cannot be determined statically. The 
most common problems are separation of the head plate from the outermost bearing and its overloading, 
excessive mutual displacement of the bearing plates in plan, changes in the shape of the superstructure, 
and changes in the inclination of the superstructure. cross beam. A section also related to reaching the 
permissible rotation angle of the bearing. 

 

Separation of the head plate on the outermost bearing is related to the uneven distribution of loads on 
pairs of bearings on the same support. This is because there is a significantly larger torsional moment 
than in a simple structure. In most cases this involves bearings on the abutment, and for obvious reasons 
the reaction force is often less than half of the reaction force on the intermediate support. Dead load 
distribution in the presence of strong curvature is the reason why there is significantly more material on 
the outside of the connecting road. As a result, the reaction force at the bottom bracket is lower, and 
preload effects and unfavorable payload distribution can reduce the reaction force and cause the top 
plate to rise (Figure 4).  

Typical bridge bearings are not designed for this type of work. A minimum amount of pressure is 
required so that the bearing performs its function and does not cause damage or accelerated wear. 
Overloading of the inner bearing is usually accompanied by overloading of the adjacent outer bearing. 
If not anticipated by the designer, unexpectedly exceeding the load capacity can cause permanent 
damage to the support structure, requiring replacement (Figure 6) 

Proper support of a structure requires bearings that provide the maximum possible flexibility with 
respect to deformation of the superstructure while meeting the general stability conditions. Structures 
with large curvatures are very difficult to avoid deforming. Among the many ways to support the field 
on bearings, there are two methods that are most commonly called: tangent and radius.(Klikowicz et 
al.) 

The first method (tangential) is to align the deformation due to thermal effects along the beam axis. 
Such an arrangement typically introduces additional stresses in areas where the structure is not 
deformed. 

The second method (radial section) minimizes the additional internal forces caused by additional 
members in the plan and maximizes the freedom of displacement. The deformation is directed along 
the line defined by the section from the specified direction bearing to the fixed bearing. 

Depending on the bearing, the internal forces of every action have different values. Thermal and 
rheological effects and compression of the strongly curved multi-span superstructure result in floor plan 
deviations and deformations. The upper plates of plain bearings move relative to each other. A lack of 
detailed analysis of these interactions during the design stage may result in bearings having too little 
freedom of movement, which could lead to excessive slippage or axle carrier drop in emergency 
situations. It can appear during operation (Figure 5). 



   

 

9 
 

 

Fig.1.4. Detachment of bearing top’s plate 

 

Fig.1.5. Excessive displacement of bearing plate 

 

Fig.1.6. The effect of bearing overload 

 

2.1.3.2 Complex dynamic response. 

In general, box girder bridges are used when larger spans and wider bridge decks arise. They have high 
strength and greater torsional and bending stiffness. The straight bridge deck is supported orthogonally 
to traffic. But due to some reasons, such as site conditions and land acquisition issues, the axis of the 
bridge may not be perpendicular to the piers supporting the ground and such bridges are said to be 
skewed as shown in Figure 1a. Many straight bridges can also be curved in plan (Figure 1b) due to 
speed variations, high traffic volumes, site constraints, and alignment configurations. The combination 
of two different bridges mentioned above results in an obliquely curved bridge, as shown in Figure 1c. 
The response of these types of bridges cannot be measured directly by adding the individual effects of 
asymmetry and curvature. So, it is necessary to combine the effects of skewness and curvature at the 
analysis stage itself to assess the structural behaviour of skew-curved bridges. The free vibration 
analysis is very important to determine the structure’s response to check whether the deck’s natural 

frequency is away from excitation frequencies. The free vibration occurs naturally, with no energy being 
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added to the vibrating system. The vibration starts with some energy input but dies away with time as 
the energy is dissipated. The natural frequencies and vibration modes depend upon the whole system, 
i.e., road characteristics, the material used, cross-sectional properties, etc. Because vibration is 
proportional to the mass of the system, steel and prestressed concrete bridges are more susceptible to 
vibration than concrete bridges.  

 

Fig 1.7. a. Skew (left), b. Curved (middle) c. Skew-curved (right) box girder bridges. 

Several commercial software programs based on the finite element method (FEM) are available. For 
bridges, which are large structures or similar structures, FEM-based software can be used to evaluate 
the natural frequencies, regardless of the size and complexity of such structures. 

In study of (Gupta and Sandhu), skew-curved bridges have been studied for their seismic behavior under 
both free and forced vibrations. Using 3-D bridge models in CSiBridge, we varied the skew angle (θ) 

from 0° to 60° at 15° intervals and the curvature angle (β) from 0° to 90° at 30° intervals. The detailed 
finite element analysis assessed how these bridges respond to seismic forces when subjected to both 
free and forced vibrations. 

Modal analysis results reveal that regardless of skewness and curvature, the in-plane vibrational 
mode is the fundamental mode of bridge vibration, followed by longitudinal and out-of-plane modes. 
For the first in-plane vibrational mode the time-period increases with the skew angle and vice versa, it 
decreases with the degree of curvature. The mode participation factor becomes higher for skew-curved 
bridges when introducing greater angles than the bridge’s original configuration. Generally, the mode 
participation factor of the third out-of-plane vibrational mode decreases with increasing skew and 
curvature angles. However, for higher curvature angles (i.e., β = 90°), introducing skew angles leads to 
an increased mode participation factor for this mode. 

Seismic behavior of skew-curved bridges has been thoroughly investigated under forced vibrations. The 
analysis involved response spectrum analysis using design response spectra from AASHTO 2007. From 
that analysis, it was found that, under longitudinal seismic excitations, the in-plane bending moment is 
significantly higher for curved and skew-curved bridge configurations compared to skew bridges. As 
the curvature angle increases, the longitudinal torsion and out-of-plane bending moment also increase. 
However, with an increase in skewness, longitudinal torsion increases while out-of-plane bending 
moment decreases. For straight bridge configurations, very little out-of-plane bending moment is 
noticed under transverse excitations. Introducing curvature increases the demand for out-of-plane 
bending moment, and this effect becomes more pronounced with greater curvature angles. 
Under transverse excitations, all the principal moments decrease as the curvature of the bridge deck 
increases. The in-plane bending moment under transverse seismic excitations experiences very high 
demand. Changes in bridge configuration cause only a slight variation in all the principal moments 
under vertical seismic excitations. 
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Above research helps to understand that, depending on skew and curvature angle, the bridge exhibits 
different type of behavior compared to straight ones. Consequently, a bridge may undergo unpredicted 
way of loadings that have to be taken into account through rigorous analysis. 

 

 

2.1.3.3 Torsional Problems 

As it was mentioned previously, due to the particular geometry of a curved bridges, torsion interacts 
with moment that can’t be said about straight ones. In curved bridges torsion is induced by vertical 

loads, the loads that is symmetrical about longitudinal axis of the structure. Bending and torsion are 
coupled, and their relationship depends on mainly:  

− Raduis of curvature 
− Bending to torsional stiffness ratio EI/GK 
− Boundry conditions 

The problem be solved using either by using approximate method (Reis and Pedro) or by classical 
curved beam theory which is based on balance equations between internal forces and applied external 
loads that can be established through statics by considering an element of a curved girder with an 
infinitesimal length. 

2.1.3.4 Pounding effect 

Although the effect of pounding is as a one of above listed problems in curved bridges, it might be the 
main cause of the other type of failures that will follow. For instance, due to the high vertical seismic 
forces, the deck can be separated from the pier which leads to unseating. Moreover, in combination 
with horizontal components of earthquake, the bridge is susceptible to global damage when the deck 
may collapse after separation. Therefore, the close attention was given to this phenomenon in this thesis. 
Pounding on curved bridge is more significantly influenced by the change in parameters, such as 
excitation conditions and expansion joint gap size. There are several poundings: 

• Span to span 
• Abutment to span 
• Pier to span 

After the strong earthquake of 1971 in San Fernando, (Jennings and Wood) where a number of curved 
bridges were destroyed, many authors started to study pounding phenomena caused by horizontal 
components of earthquake. (Li et al.) conducted shake table test on a 1/10 scaled curved bridge model 
to study the influence of adjacent pounding (AP) on excitation conditions and gap size. Author found 
that the state of excitation waves and pounding force peak values can be greater under the bidirectional 
excitation than those the unidirectional one. Gap size decrease the pounding frequency, but peak 
pounding force does not decrease as gap size increase. Bridges are vulnerable to local damage due to 
seismic pounding between the deck and the abutment at expansion joint and this type of seismic seismic 
damage is much more serious in short span highway bridges, specifically those with an irregularly 
shaped deck. Abutment-span pounding was investigated and analytical model was introduced by 
(Amjadian and Agrawal) to identify the parameters affecting the seismic response quantities of curved 
bridges. Obtained results were verified by FEM analysis.  



   

 

12 
 

 

Fig 1.8. Curved bridge collapse due to 1971 San Fernando earthquake 

 

Above studies illustrate the behavior of a curved bridges only under horizontal excitations, however, 
the impact of the pounding due to vertical components of earthquake has been rarely considered. In 
previous researches, it was shown that the peak motion of the earthquake is characterized by a P wave 
and vertical component has a lower frequency than a P wave. Moreover, as the source-to-site distance 
increases, the vertical component dampens faster than horizontal one. Therefore, for better seismic 
evaluation, a parameter so called vertical to horizontal component acceleration (V/H) ratio was adopted. 
According to studies based on real events, it was found that V/H ratio is highly dependent on source-
to-site focal distance at less than 20 km. Further investigation showed that V/H ratio is larger than one 
at distance less than 5 km and it is greater than 2/3 at distances between 5-25 km. Another key parameter 
is the time interval between the instant maximum vertical and horizontal accelerations. Typically, the 
maximum vertical acceleration occurs slightly earlier than maximum horizontal acceleration, the same 
can be said about P waves that arrive earlier than S waves since the propagation speed is higher in first 
case. Thus, pounding due to the vertical component may damage a deck before horizontal component 
start to vibrate the bridge. With high frequencies and large amplitude, pounding may cause separation 
of members, collision of bridge components, girder detachment, destruction of rubber bearings and 
failure of piers.  

Due to the irregular geometry and nonuniform mass distribution, curved bridges are more vulnerable to 
effect of pounding caused by vertical excitations than straight bridges. X. Yin (2015) investigated the 
pounding force due to the vertical component of earthquake by introducing theoretical approach on 
continuous beam-spring-rod model subjected to multiple vertical pounding derived by the expansion of 
transient wave functions in a series of eigenvalues.  
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2.2 Curved Bridges: Theory and analysis. 
 

2.2.1 Global structural analysis. 

To fully understand the statics of curved girder, it is always convenient to consider girder as a beam 
with generic and unsymmetrical cross-section due to the following main reasons: 

- The cross-section of girder bridges has various type of forms and dimensions depending on 
type of bridges, span length, designation and etc. 

- Outer girder experiences higher stresses compared to inner one because of centrifugal force of 
vehicle that can be accommodated by suitable cants to prevent vehicles sliding outward. 
Therefore, outer girder requires larger dimensions and needs to be designed to handle increased 
stresses. 

In such cases, the shear center of the cross-section doesn’t coincide with the center of gravity as in Fig. 
2.1 which leads moment-torsion coupling. This phenomenon is already studied S.P Timashenko for 
straight beams. On top of that, the center of gravity moves towards the concave side of a beam due to 
the curvature. Komatsu and Nakai introduced the practical formulae for static equations of curved beam 
using Vlaslov’s thin-walled beam theory in addition to determining frequency equations which is 
discussed later in details. 

2.2.2 System of coordinates. 

First, analyzing the general section of curved girder, let’s denote shear center, center of figure, the center 

of gravity and the loading point as 𝑆, 𝑂𝑛, 𝐺 and 𝑃 respectively. These points lay on the circumferences 
of the circles with radius 𝑅𝑠, 𝑅𝑜, 𝑅𝐺 and 𝑅𝑃 away from center of curvature 𝑂 − 𝑂 as in Fig.2.1 

 

Fig 2.1. System of coordinates of curved bridge girder. 

Then, we consider two kinds of coordinate systems: right-hand rectangular coordinates (𝑋, 𝑌, 𝑍) along 
longitudinal axis through the center 𝑂𝑛, rectangular coordinates (𝜉, 𝜂) parallel to both principal axes 
through the same point 𝑂𝑛 inclined at an angle 𝛼. Orthogonal system of coordinates (𝑥, 𝑦, 𝑧) and 
(𝑥, Ŷ, Ẑ) through shear center S are parallel to the axes 𝑂𝑛𝑋, 𝑂𝑛𝜉,  𝑂𝑛𝜂 and 𝑂𝑛𝑋, 𝑂𝑛𝑌,  𝑂𝑛𝑍 
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respectively. A point P on girder surface is selected to represent the location of external force action. 
Similarly, the pair of orthogonal coordinates (𝑥 , 𝑦 , 𝑧 ) and (𝑥 , Ȳ, Z̅) through the point P are parallel to the 
axes 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 and 𝑆𝑋, 𝑆Ŷ, 𝑆Ẑ respectively. Following relationship can be given between (𝑦, 𝑧) and 
(Ŷ, Ẑ): 

 
ˆ

ˆ

n

ˆ cos sin
ˆsi cos

y

z

Y Z

Y Z

 

 

+

= −

=

+
 (1.1) 

The same relationships are held between (𝑦 , 𝑧 ) and (Ȳ, Z̅). As it was stated previously, circumferential 
coordinates on shear center can be written as (see Fig.2.1): 

 Ss R =  (1.2) 

Basic equations are now derived by using curvilinear coordinates: 

 

Fig 2.2. Components of curvature 

Above figure demonstrates the components of curvature about the axes Sy and Sx, thus: 

 
sin /
cos /

y S

z S

R
R

 
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=

=
 (1.3) 

2.2.3 Fundamental Differential Equations for Stress Resultants 

Let’s examine now the equilibrium of stress resultants acting on differential element cut off by two 
adjacent 𝑠 and 𝑠 + 𝑑𝑠 sections as earlier when we considered the infinitesimal part of curved beam to 
analyze torsion. Fig.2.3 illustrates internal forces at any cross-section 𝑠. 
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Fig 2.3. Stress Resultants. 

𝑁𝑋 is the axial force along 𝑂𝑛𝑋 axis, 𝑉𝑦, 𝑉𝑧 are shear forces along 𝑆𝑦, 𝑆𝑧 axes, 𝑇𝑥 is the torsional moment 
about  𝑆𝑥 and 𝑀𝜉 , 𝑀𝜂 are two bending moment about 𝑂𝑛𝜉,  𝑂𝑛𝜂 axes. By translating all the forces to the 
shear center, the following linearized equation can be obtained in the direction of axes 𝑥, 𝑦 and 𝑧: 
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Since shear and gravity center are not at the same point, it is necessary to take into consideration also 
moments caused by eccentricity of external torque and stress forces. Moment equilibrium resultants can 
be given as: 
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Whereas symbols 𝑦𝑜, 𝑧𝑜 and 𝑦𝑝, 𝑧𝑝 mean coordinates of 𝑂𝑛 and P with respect to 𝑦, 𝑧 coordinates. These 
coordinates have been already provided in Eq.(1.1). In case curved girder is subjected to arbitrary 
external force, one is able to readily solve Eq.(1.4) for stress resultants 𝑁𝑋 , 𝑉𝑦, 𝑉𝑧 and substituting those 
values into Eq.(1.5) it is possible to get stress resultants 𝑇𝑥 ,𝑀𝜉 , 𝑀𝑧. 

In actual loading conditions a bridge rarely undergoes force along the axial direction except horizontal 
components of seismic activity, therefore: 
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 0xq =  (1.6) 

If a transversal load q acts at an angle 𝛿 from vertical axis as shown in Fig.2.4, the horizontal and 
vertical components of q in the directions 𝑂𝑛𝑋 and 𝑂𝑛𝑌 can be determined: 

 ˆ

ˆ

sin
cos

y

z

q q
q q





=

=
 (1.7) 

 

Fig 2.4. Arbitrary force q. 

So, in the direction of 𝑥  and 𝑦̅ components of 𝑞𝑌̂ are again rewritten as: 

 
' cos sin
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and by substituting these into Eq. (1.4) we get differential equation of normal force due to the horizontal 
component of 𝑞: 

 
2
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The same procedure can be repeated for 𝑞𝑍̂: 
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The differential equation of normal force due to vertical component of 𝑞 then becomes: 

 
2

2 0X X

S

d N N
ds R

+ =  (1.11) 

Practically, vertical force in most cases is only the dead load while horizontal force can be live load in 
terms of centrifugal movement of vehicles running along longitudinal curved axis. However, the 
magnitude of the horizontal force in comparison with the vertical load is so small, that it’s effect can be 

neglected. For this reason, in general 𝛿 might be considered as zero: 
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 0 =  (1.12) 

Consequently, the differential equation for normal force reduces to Eq.(1.11), the solution is: 

 1 2sin cosXN C C = +  (1.13) 

The boundary condition is as in case of simply supported beam where one end is fixed, and another end 
is free to move in longitudinal direction. There is no axial force at both 𝜑 = 0 and 𝜑 = Ф ends, which 
means 𝐶1 = 𝐶2 = 0. So, we get: 

 0XN =  (1.14) 

In other words, there is no normal force acting at any cross section. Accordingly, the new approximated 
differential equation is obtained by eliminating axial force from Eq. (1.4) and Eq.(1.5): 

 

( )

( )

( )

2
2

2

2
2

2

x P
z y x P y P z

S

P
z y z z z x P y P z

S

P
y y z y y x P y P z

S

dT RM M z q y q
ds R

d M RM M q z q y q
ds R

d M RM M q z q y q
ds R

 



 



 

  

    

    

− + = − − +

 + − = − − − +
 

 + − = − − +
 

 (1.15) 

Above equations represent the relation between moments and torsion, previous chapters already contain 
the solutions for each of them as a function of opening angle so that these parameters are not 
interdependent. 

2.2.4 Fundamental Differential Equations for Displacements 

In this chapter we closely analyze the dependency between shear as well as moments and displacements 
𝑢, 𝑣, 𝑤 in the direction 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 axes. Rotation about 𝑆𝑥 is denoted by symbol 𝛽.  

 

Fig 2.5. Displacements 𝒖, 𝒗,𝒘 and 𝜷 at shear center 𝑺. 

These distortions referring to point 𝑆 will produce additional twisting angle 𝜗 in the cross-section s and 
curvature 𝜌𝑦′, 𝜌𝑧′ in the cross-section 𝑠 + 𝑑𝑠. If the radius of the curvature is constant all over the span, 
these quantities can be described as below: 



   

 

18 
 

 

2

2

2

2

'

'

y y z y

z z y z

y z

d w du
ds ds
d v du
ds ds

d dv dw
ds ds ds

    

    


  

= + − +

= − + +

= + +

 (1.16) 

Next, by integrating 𝜗 with respect to variable s and assuming rotation matrix as rigid body we obtain 
the notation 𝜃 called as torsional angle: 

 y zv w   = + +  (1.17) 

On the other hand, the axial strain at shear center can be expressed as follows: 

 x z y
du v w
ds

  = − +  (1.18) 

Knowing the moments and product of inertia 𝐼𝑌,𝐼𝑋 and 𝐼𝑋𝑌 with respect to axis 𝑂𝑛𝑌 and 𝑂𝑛𝑍, the angle 
𝛼 and principal moments of inertia 𝐼𝜉 and 𝐼𝜂 can be estimated by following formulas:                                                    

 1 21 tan
2

YZ

Z Y

I
I I

 −  
=  

− 
 (1.19) 

 
( )

( )

2 2

2 2

1 4
2
1 4
2

Y Z Y Z YZ

Y Z Y Z YZ

I I I I I I

I I I I I I





 = + + − +
  

 = + − − +
  

 (1.20) 

Taking into account the Eq.(1.6): 

 

3

3

( ' )

( ' )

x s s w

S
S y y

O

S
S z z

O

d dT G J E C
ds ds

RM E I
R
RM E I
R

 

 

 

 

 

= −

= −

= −

 (1.21) 

Whereas:  

𝐸𝑠: Young’s modulus 

𝐺𝑠: shear modulus of elasticity 

J:    torsional constant 

𝐶𝑤: warping constant 

Torsion consists of two components: left hand side is called St. Venant’s torsional moment 𝑇𝑠, another 
term is 𝑇𝑤 is torsional moment due to warping. Wrapping moment is denotes as 𝑀𝑤. 

  



   

 

19 
 

 s s
dT G J
ds


=  (1.22) 

 
3

3w s w
dT E C
ds


= −  (1.23) 

 
2

2w s w
dM E C
ds


=  (1.24) 

If we express strain through 𝑀𝜉 , 𝑀𝜂 and 𝑀𝑤, it yields: 

 
1o w

x s s s
S s s w

M MR M W
R E I I E C

 

 

  
 

= − + + 
  

 (1.25) 

𝜉𝑠, 𝜂𝑠 stand for distances between points 𝑂𝑛 and 𝑆 in the direction of axes 𝑂𝑛𝜉 and 𝑂𝑛𝜂. At the shear 
center, warping 𝑊𝑠 is zero, therefore strain 𝜀𝑥is evaluated again by replacing Eq.(1.21) into Eq.(1.25): 

 ( ) ( )' 'x y y S z z S       = − − + −
 

 (1.26) 

By substituting Eq.(1.16) and Eq.(1.18) into above, we can obtain relationship among displacements 
𝑢, 𝑣, 𝑤 and 𝛽 as following: 

 

( )
2 2

2 2

1 1 1 sin cos
1 sin cos

S S S S
z y

S S S S S SS S

S S

du d v d wv w
R ds R R R R ds R ds

R R

   
    

 
 

  
= − + − − +  

    + + 
 

 (1.27) 

Now the relationship between forces and displacements can be achieved by making use of Eq.(1.27)in 
Eq.(1.16) and substituting into Eq.(1.21): 
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 
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 (1.28) 
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 (1.29) 
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=  (1.30) 

Eccentric distances 𝜉𝑆 and 𝜂𝑆 in ordinary curved bridges are small enough compared with radius of 
curvature 𝑅𝑆 to be neglected, so by omitting those terms in Eq.(1.27), the third term on the right-hand 
side of the Eq.(1.16) can be described utilizing Eq.(1.3): 
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 −

 (1.31) 

Finally, using above equation together with Eq.(1.16) and Eq.(1.21), linearized formulas for stress 
resultants 𝑀𝜉 , 𝑀𝜂 and 𝑇𝑥: 
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 (1.32) 

Whereas 𝐼𝜉′ and 𝐼𝜂′ are: 
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So far, the theoretical representation of statics has been described through various mathematical 
manipulations and rational assumptions. However, finding solution for stress resultants might be still 
challenging. Therefore, further simplification is needed. 

First, let us specify the components of arbitrary load 𝑞 in the direction of 𝑃𝑦̅ and 𝑃𝑧  as shown in the 
Figx: 

 
sin
cos

y

z

q q
q q





=

=
 (1.34) 

 

Fig 2.6. Analysis of forces and stress resultants. 

The same can be applied for shearing force 𝑄𝑧̂ acting along the vertical axis 𝑆𝑧̂ and subdividing it into 
two shearing forces 𝑄𝑦 and 𝑄𝑧: 

 ˆ

ˆ

sin
cos

y z

z z

Q Q
Q Q





=

=
 (1.35) 

Likewise, the bending moment 𝑀𝑌 about horizontal axis 𝑂𝜂𝑌 is resolved into two bending moments 𝑀𝜉 
and 𝑀𝜂: 

 
cos

sin
Y

Y

M M
M M









=

= −
 (1.36) 

If we substitute last three equation into Eq.(1.4) and Eq.(1.15), 𝑄𝑧̂ will be reduced to: 

 Ẑ P

S

dQ R q
ds R

= −  (1.37) 

Moreover, by using Eq.(1.1), 𝑀𝑌 can be rewritten as below: 

 
22

2 2
Y Y P

S S

d M M R q
ds R R

 
+ = − 

 
 (1.38) 

As it can be clearly seen that moment and shear can be solved separately. By applying Eq.(1.1), 
Eq.(1.34), and Eq.(1.36) into Eq.(1.15) and also by using above expression for 𝑀𝑌, we can obtain 
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differential equations for torsional moment 𝑇𝑥 whereas 𝑌𝑃̂ means the horizontal distance between 𝑆 and 
𝑃: 

 ˆx Y P
P

S S

dT M R Y q
ds R R

= −  (1.39) 

Next chapters contain the solution for determining 𝑀𝑌 and 𝑇𝑥 by introducing appropriate boundary 
conditions. Nevertheless, by using above equation, as well as Eq.(1.21) and Eq.(1.24), the warping 
moment 𝑀𝑤 can be derived: 

 
2

2
ˆw s O Y

w P
s w S S

d M G J R MM Y q
ds E C R R

− = −  (1.40) 

If we assume 𝑀𝑌 is known, warping moment is found again by using boundary conditions. Recalling 
the Eq.(1.22) and Eq.(1.23), torsional angle can be easily determined: 

 2
1 2

w

s w

M ds C C
E C

 = + +  (1.41) 

Once we know 𝑀𝜉, 𝑀𝜂and 𝜃, the simplified form of relation between stress resultants and displacement 
is achieved by making use of Eq.(1.16) and Eq. (1.21): 
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 (1.42) 

Up to this point, the methodology of solving the static problem in curved girders has been clearly 
demonstrated and practical formulas are provided. Following sections govern the dynamic behavior of 
the curved girder and different approaches to obtain equation of motion girder with curvature. 

2.2.5 Solution for Moment 

In order to determine the external moment 𝑀𝑌 from Eq.(1.38), let’s suppose  𝑅𝑃 ≅ 𝑅𝑆 = 𝑅 since the 
vertical load is acting symmetrically (e.g the 𝑃 point is located in center), so the difference between 
point 𝑃 and 𝑆 is negligible. Next, we denote semi-angle as 𝜑0 = 𝜑 2⁄ , knowing that  𝑠 = 𝑅 ∙ 𝜑, the Eq. 
(1.38) reduces to: 

 
2

2
2
Y

Y
d M M q R
d

+ = −   (1.43) 

 

Fig 2.7. Simply supported beam (front view). 
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Fig 2.8. Simply supported beam (top view). 

 

The general solution of this linear differential equation is: 

 2
1 2cos sinYM C C qR = + −  (1.44) 

See appendix 1 for derivation. For simply supported curved bridge deck, using boundary conditions, 
one is able to determine constants 𝐶1 and  𝐶2: 

 2
20, 0 0YM C R p = = → =  (1.45) 

 2
1 22, 0 cos( / 2) sin( / 2) 0YM C C qR   = = → − − =  (1.46) 

Solving for 𝐶1and 𝐶2 and replacing it in the general solution, one obtains: 

                  

 
( )

2

0

cos 1
cosYM qR 



 
= −  

 
 (1.47) 

Below comparison illustrates the way of expression bending moment of curved girder in terms of 
equivalent bending moment in a straight girder: 
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Figure 2.9. Simplified method for moment determination in curved bridge girder. 

 
( )

2
2

0 0

cos 8 cos1 1
cos cosY eqM qR M 
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   
= − = −    

  
 (1.48) 

The effect of the curvature on the calculation of bending moments might be ignored for the most 
practical bridge applications, so the transformation of the curved deck to an equivalent straight deck of 
span length equal to the arc length gives similar results in small errors. For example, single simply 
supported beam with constant in-plan radius, under uniformly distributed load, the error for maximum 
bending moment is no more than 1% for aperture angles less than 17 degrees. 

2.2.6 Solution for Torsion using Approximate Method 

Reis and Pedro has introduced approximation method where they consider an element of a curved beam 
with infinitesimal length under uniform vertical load and torque, so equilibrium equation of free body 
diagram is: 

0zF V V dV q ds= − + + +  =  

 0 dVdV q ds q r d dV q
rd




+  =   + = −→=  (1.49) 

Moment balance equation around perpendicular axis:  

( ) ( )cos ( )sin sin 0
2Y Y Y x x t
dsM M dM d T dT d V dV ds q ds m ds d  − + + + + − − −   + =  

whereas cos 𝑑𝜑 ≈ 1 and sin 𝑑𝜑 ≈ 𝑑𝜑, we obtain: 

 0 xY
Y x Y x

TdMV ds dM T d V r d dM T d V
rd r

  


−  + + = −   + + = → = −  (1.50) 

Moment balance equation around longitudinal axis:  

( ) ( )cos ( )sin sin sin
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x x x Y Y
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dsT T dT d M dM d V dV ds d qds d

m ds d

   



− + + − + + − + +

=
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 0 x Y
t Y x t Y x t

dT Mm ds M d dT m r d M d dT m
rd r

  


− + = =  + → = − −  (1.51) 

 

 

Figure 2.10. Infinitesimal part of curved beam 

 

By adding external torque into Eq.(1.43) and in case 𝑟 ≠ 𝑐𝑜𝑛𝑠𝑡, the differential equation can be solved 
by considering straight beam with span length of  𝑠 = 𝑟 ∙ 𝜑: 

 
2

2 2
tY Ymd M M q

d r r
= − −  (1.52) 

Often, we have |𝑞| ≫ |
𝑀𝑌

𝑟2
|, therefore the equation can be illustrated as: 

 
2

2
tY md M q

d r
 −  (1.53) 

The moment 𝑀𝑌 is determined through iteration until convergence is achieved. Similarly, T can be 
determined as well using Eq.(1.51): 

 Y
Y t t

MdT dTM m r m
d ds r

= − → = −  (1.54) 

This method is applicable both for single span and continuous bridge decks.  

Another approach is 3D finite element method which is more general and comprehensive and allows 
modelling complex geometries (sharp and/or variable curvature, skew supports, composite cross-
sections). It also provides detailed information of displacement (at various construction stages), accurate 
analysis of stress and forces, economical solution in terms of optimization of cross-section, material 
properties etc. In following chapters, the case study is described in which the viaduct is analyzed by 
finite element software. 
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2.2.7 Solution for Torsion through Statics 

In previous chapters, the simplified method was discussed the to determine torsion and moment in 
curved decks. However, the torsion was described only at instant point along curved beam and global 
torsion was not explicitly described with certain parameters. Furthermore, due to the practical reasons, 
the moment over the radius were neglected in the equation. Recent analysis (Mairone et al.) allows to 
illustrate the torsion of overall curved beam. In this case, the beam is subjected to vertical load 𝑞, 
without external torsion 𝑚𝑡. 

By substituting Eq.(1.54) into Eq.(1.44), one gets: 

 2
1 2cos sin 0xdT C C qR

d
 


− − + =  (1.55) 

 2
1 2 3sin cosxT C C qR C  = − − +  (1.56) 

Constants are determined by applying boundary conditions for torsion and moment: 

                                                                          0YM = at 0 =                                                                  (1.57) 

                                                                           0xT = at 0 =                                                                    (1.58) 

This one is able to solve the system of equation: 

{
𝐶1𝑐𝑜𝑠𝜑0 + 𝐶2𝑠𝑖𝑛𝜑0 − 𝑞𝑅2 = 0

−𝐶2 + 𝐶3 = 0
 

 2 3 0C C= =  (1.59) 

 
2

0cos
qRA


=  (1.60) 

Replacing these coefficients into the torsion equation we get: 

 2

0

sin
cosxT qR 




 
= − 

 
 (1.61) 

As it can be seen from the above expression, the torsion of a curved girder can be represented separately 
from moment. 
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2.2.8 Dynamics of curved beam. 
 

2.2.8.1 Governing equation of motion of curved beam 

The Timoshenko beam theory is commonly employed to analyze the dynamic behavior of horizontally 
curved beams. This method extends beyond basic assumptions by accounting for shear deformation and 
rotational inertia effects, making it particularly suitable for beams with relatively thin walls and lower 
shear and torsional rigidity. 

In essence, Timoshenko beam is the enhanced version of Euler Bernoulli beam incorporating shear 
deformation and rotational inertia, making it more accurate for beams where these effects are 
significant, such as short beams or those with thick cross-sections. Suzuki and Takahashi (1981) 
compared the natural frequencies and mode shapes in out of plane of clamped curved bars using 
Timoshenko theory with the classical beam theory. Later, Irie et al. (1982) studied the free vibration of 
curved arcs considering all types of boundary conditions. 

However, in our specific case, the beam exhibits high torsional rigidity and can be classified as a slender 
beam. Given these characteristics, we can effectively use the simpler Euler-Bernoulli beam theory for 
our analysis. Earlier, Pang (1966) investigated the behavior of curved beam under the both free and 
forced vibration solving the equation of motion based on classical beam theory. Previously, the static 
balance equation was already derived using Euler Bernoulli beam method, by adding kinematic terms 
into Eq.(1.50) and Eq.(1.51), one is able to construct the equation of motion of curved beam: 
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Note that the sign convection for shear is changed in this case and 𝑎 is the radius of gyration. 
Differentiating Eq.(1.62) once with respect to 𝜑 and substituting it into Eq.(1.63) gives: 
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 (1.64) 

Replacing the Eq.(1.42) and Eq.(1.32) for torsion into Eq.(1.62) and Eq.(1.64) and collecting like terms 
leads to the following differential equations: 
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 (1.65) 
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 (1.66) 

Obtained equation of motions will be further used and solved through eigenvalue problems applying 
boundary conditions in next chapters. 

2.2.8.2 Frequency determination for curved beam 
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Analysis of out-of-plane vibration frequencies of curved beams has been a subject of continuous interest 
due to its critical importance in structural engineering, aerospace, and mechanical systems. There are 
extensive research and many literatures about the natural frequencies of straight and curved beam and 
only few of them will be discussed in this thesis. This section reviews the key methodologies and 
findings in the field as outlined in the seminal works and recent research contributions. 

The foundational work by Culver (1967) provided earlier exploration into determining the natural 
frequencies of curved beams by applying Rayleigh-Ritz method which become important sources of 
comparison for subsequent studies. In structural mechanics, this method is used to approximate the 
natural frequencies and mode shapes of the structures. It assumes a trial solution for displacement field 
of the structure expressed as a sum of assumed shape functions that satisfy certain boundary conditions. 
Next, those functions are substituted into the energy expression (kinetic and potential) of the system 
resulting eigenvalue problem and eigenvalues corresponds to the squared natural frequencies of a 
structure such as beam or plates. 

Significant advancement in the field of structural dynamics was done by the works of Toshihiro Irie et 
al. (1982) where he analyzed out of plan vibration of arcs focusing on transfer matrix method. The 
author was able to derive frequency equation by setting up the problem as a series of matrix differential 
equation. He proposed formulas of frequency parameters that takes into account various boundary 
conditions. The numerical analysis provided detailed understanding of dynamic properties of curved 
bars and allows systematically compare how different assumptions impacts to vibrational characteristics 
of curved beams. 

Another method so called Wittrick Williams Algorithm is the relevant in the context of frequency. The 
algorithm  operates on the principle of systematically bracketing and zeroing in eigenvalues of a system 
(Howson et al. 1993). It starts by establishing an initial range where eigenvalues are expected to lie and 
then iteratively narrows down these ranges. This process known as interval bisection combined with 
Strum sequence property of eigenvalue problems to determine eigenvalues which represents the 
frequency. The advantage of this method is robustness in converging towards the correct eigenvalues. 

The Difference Quadrate Method was effectively used by Kang et al. (1995) to analyze the vibration in 
horizontally curved beams with warping. DQM is well known for its precision and efficiency in 
handling complex geometrical and boundary conditions. It simplifies the differential equation of motion 
by discretizing them into a system of algebraic equations which can be solved numerically providing 
high degree of accuracy with less computational effort compared to traditional finite element methods. 

One of the latest works in determining the frequency of beams is the application of dynamic Green’s 

method explored by Abu-Hilal (2003) . This is a mathematical concept used to solve inhomogeneous 
differential equations. The author determined dynamic response of prismatic damped Euler-Bernoulli  
beam subjected to various loading conditions. The paper details the derivation of Green functions which 
represents the response of a system to a point source of impulse providing the exact solution in closed 
form. 

Above examples are the few works among the other numerous investigations of dynamic behavior of 
beams. In this thesis, simplified approaches were adopted to calculate the frequency of curved beam 
using classical beam theory, however it is highly advantageous for the future research to validate the 
numerical results through comparative analyses with the aforementioned techniques. 

Assuming the rotational inertial term being zero in the Eq.(1.66), the vibration frequencies of curved 
beam can be expressed in terms of the free vibration frequencies of straight beam which has the same 
length and flexural rigidity as curved beam (Pang 1937): 
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In conclusion, the derived formulas above for the natural frequencies of horizontally curved beam 
provide a fundamental basis to understand the dynamic behavior of a beam and are crucial for predicting 
vibrations in such elements. 
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Chapter 3 
 

3 Case Study 
 

3.1.1 Overview  

In this thesis, the model proposed by X. Yin (2015) will be examined as a case study. Two span 
continuous beam bridges with rubber bearings are investigated. According to the principles of equal-
stiffness, different cross section can be displaced equivalently. The girder, pier and rubber bearing are 
considered to be simply supported curved beam, clamped rod and linear elastic spring, respectively. As 
shown in Fig.3.1, the simply supported curved beam has length 2𝑠0, cross-section area 𝐴, Young’s 

modulus 𝐸, area moment of inertia 𝐼 and mass density 𝜌. The clamped rod has length 𝐿, cross-section 
area 𝐴𝑟, Young’s modulus 𝐸𝑟 and mass density 𝜌𝑟. The gravity of the bridge acting upon the beam is 
modeled as a linear loading 𝑞. The vertical ground motion excited at point A, D and B in Fig.3.1 are 
represented as 𝐵1(𝑡), 𝐵2(𝑡) and 𝐵3(𝑡), respectively. It should be noted that the primary objective of 
this thesis is to develop a theoretical approach for investigating the vertical pounding responses of 
bridge structures under vertical ground motion, although the horizontal motions will cause bridge 
structures to vibrate and the responses induced by horizontal and vertical ground motions are coupled; 
for clear observations of the effects of vertical ground excitations, in this study only the vertical ground 
excitations are considered. Further study to investigate the coupled effects of horizontal and vertical 
ground motions on vertical pounding responses between bridge girders and supports is deemed 
necessary. Moreover, although damages to bridge pier and bearings owing to vertical poundings have 
been observed in previous earthquakes, to avoid further complicate the problem and allow the study 
concentrate on investigating the influences of vertical pounding on bridge responses, in the present 
study material nonlinearity is not considered. 
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Fig 3.1. Two-span continuous bridge model 

 

During vertical ground movement, the bridge's response has three stages: 

1. Pre-separation: The initial contact between the beam and the bearing is reserved, therefore the 
beam vibrates at the same frequency 𝑤𝑛 with the rod. 

2. Separation: The beam is no longer in contact with the bearing which cause the different 
vibration of 𝑤𝑏𝑛 and 𝑤𝑟𝑛 for the beam and the rod respectively. 

3. Pounding: The beam comes into contact with the bearing again as in first phase making the 
beam and the rod to vibrate at the same frequency 𝑤𝑛. 

During the pounding process, the pounding force 𝐹 is generated between the girder and the bearing. 
Generally, the stereo-mechanical approach and the contact element approach are used to analyze the 
pounding phenomena in bridge structures under earthquake. The pounding forces obtained from these 
two models depend on the coefficient of restitution and the damping coefficient, while the selection of 
these coefficients is difficult because it depends on many factors. In this study, a new theoretical 
approach of the vertical pounding forces is presented based on the transient internal force on the contact 
surface of the girder and bearing. In this new approach, there are two main steps to calculate the 
pounding force. First, the transient responses in the in-contact phase, then, the internal forces, i.e. the 
internal pressure at the pier end or the spring force, are obtained and form the solution of the transient 
responses. Therefore, based on the internal force, the pounding force can be found as follows: 
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The solution for transient wave propagation for in-contact phase contains two parts: 

 1 1 1( , ) ( , ) ( , )s dw s t w s t w s t= +  (2.2) 

 2 2 2( , ) ( , ) ( , )s dw s t w s t w s t= +  (2.3) 

 ( , ) ( , ) ( , )s ds t s t s t  = +  (2.4) 

 ( , ) ( , ) ( , )s du t u t u t  = +  (2.5) 

Basically, the pounding force is evaluated in terms of static and dynamic displacements of both beam 
and pier’s top. Following chapters show the methods to obtain these displacements with already derived 
formulas. In addition, the differences between straight beam compared with curved one are pointed out. 

3.1.2 Static Solution  
3.1.2.1 Vertical quasi-static displacement for in-contact phase 

For a straight beam, vertical deflection and applied load along the length 𝑥 can be described through 
well-known Euler-Bernoulli equation (Gere 2011): 
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Rewriting the Eq.(1.42): 
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As most of the bridges, the bridge girder under study is not inclined, so 𝛼 = 0. Since 𝑅 = 𝑅𝑆 ≅ 𝑅𝑃 is 
significantly higher than vertical deflection 𝑤 and rotation 𝜃, the second terms of both right and left 
hand side of the equation can be neglected. Moreover, let’s denote rigidity parameters 𝐸𝜂𝐼𝜂 as simpler 
form EI because we consider only vertical load and displacements. By substituting Eq.(1.36) into above, 
we get: 
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= −  (2.8) 

If we replace previously calculated moment 𝑀𝑌  in Eq.(1.47) into above, the deflection can be evaluated 
as a function of radius and angle of the curvature: 
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The solution can be found by twice integrating the equation and introducing boundary conditions to 
determine constant coefficients: 
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Deflection at both ends of curved beam is equal to zero: 

 1 0( ) 0w s− =  (2.11) 

 2 0( ) 0w s =  (2.12) 

0 0C = and  
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 (2.13) 

Obtaining these integrant constants one can reconstruct the vertical deflection expression for the beam 
OA due to the linear loading q . 

 2 2
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 
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However, there is also the contribution of static contact force 𝐹 on vertical deflection and from balance 
equation at the mid-span we know that: 

 2 0V F− + =  (2.15) 

Substituting above expression into Eq. (1.5) and then into (1.42) we can relate shear and displacement 
by following: 
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Boundy conditions are following: 

 1 0 2 0( ) ( )dw s dw s
ds ds
−

=  (2.18) 
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 1 0( ) 0dw s
ds
−

=  (2.19) 

 1 0( ) 0w s− =  (2.20) 

Setting the right boundary conditions, one is able to determine integration constants again: 

0 0C =  

2
0

1 2
sFC

EI
=  

3
0

2 3
sFC

EI
=  

So, the vertical deflection of the curved beam 𝑂𝐴 due to the 𝐹 will be: 

 ( )3 3 2
1 0 0( ) 2 3

6
Fw s s s s s
EI

= − +  (2.21) 

The total static vertical deflection of the curved beam 𝑂𝐴 becomes: 
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Similarly, the displacement of 𝑂𝐵 due to the loading 𝑞 is the same as in case 𝑂𝐵 while displacement 
due to the contact force 𝐹 differ according to boundary conditions together with (2.18): 

 2 0( ) 0dw s
ds

=  (2.23) 

 1 0( ) 0w s =  (2.24) 

Coefficients 𝐶0, 𝐶1 and 𝐶2 are: 
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2 3
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Therefore, the vertical deflection of the curved beam 𝑂𝐵 due to the 𝐹: 

 ( )3 3 2
2 0 0( ) 2 3

6
Fw s s s s s
EI

= − − +  (2.25) 

The total static vertical deflection of the curved beam 𝑂𝐵: 
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On the other hand, longitudinal displacement of the rod is: 

 ( )
r r

Fu
E A

 =  (2.27) 

Chai Hong Yoo (1986) suggests that if the dimensionless coefficient 𝐿2𝐺𝐽 𝐸𝐶𝑤⁄  is larger than 100, the 
contribution of warping effect to the lateral buckling can be neglected both for straight and curved 
beams as in Fig.3.2.  

 

Fig 3.2. Warping contribution to lateral buckling 

 

In next chapters, given all parameters of the bridge (material properties, dimensions and etc) this 
coefficient can be easily calculated and it is equal to 2586112, which is much higher than 100, meaning 
that one can surely ignore the warping wherever in solving static or dynamic problems. Hence, the 
Eq.(1.21) simplifies to: 

 x s
dT G J
ds


=  (2.28) 

 

Above variables are the initial displacements in pre-separation phase (at 𝑡 = 0). Finding torsional angle 
𝜃 by using Eq.(1.61) and substituting it into (1.42),  we can now input vertical ground motion in terms 
of displacements, for simplicity, let’s add the sum and difference of 𝐵1(𝑡), 𝐵2(𝑡) and 𝐵3(𝑡): 
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 = +  (2.31) 

In order to determine force 𝐹(𝑡), we apply the continuity condition for shearing force and displacement 
between beam and spring for in-contact case: 

 1
( , )( , ) (0, ) r rE AF u L tu L t w t

K K



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− = = = −


 (2.32) 

By substituting Eq.x into continuity condition, dynamic contact forced between bearing and girder can 
be easily found: 
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Note that initial velocity of the beam and the rod in pre-separation are: 

 1( ,0) 0w s
t


=


 (2.34) 

 2 ( ,0) 0w s
t


=


 (2.35) 

 ( ,0) 0u
t


=


 (2.36) 

3.1.2.2 Vertical quasi-static displacement for out-of-contact phase 

Up to now, the static solution was provided only for in-contact phase. Due to the support conditions 
changes when the girder is separated from the pier, there is no contact force 𝐹 acting beneath. Moreover, 
the girder may rotate about its longitudinal axis because of coupling with vertical displacement. 
Determining the static rotation can be performed either by solving Eq.(1.41) or by Eq.(1.21). 

the vertical quasi-static displacement 𝑤𝑏𝑠(𝑠, 𝑡) for out-of-contact phase by making use of the same 
boundary condition as in contact phase except those in the mid-span. 
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Now quasi-static rotation of the girder can be easily determined by substituting above into Eq.(1.17): 
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3.1.3 Dynamic Solution  
3.1.3.1 Vertical dynamic displacement for in-contact phase 

Second part of the problem can be understood as a summation of infinite series of the product of time 
function 𝑞𝑛(𝑡) and the wave modes specific to both the girder (flexural modes for the beam 𝜑𝑏𝑛1  and 
𝜑𝑏𝑛2) and the pier (longitudinal modes for the rod 𝜑𝑟𝑛). Each mode describes a distinct pattern of how 
the beam bends or how the rod stretches over time. 
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Boundary conditions of the two-span bridge in the mid-span prevents rotation of the cross-section of 
the girder 𝛽 = 0, and assuming the radius of curvature is significantly higher than vertical displacement, 
the equation of motion of curved beam reduces to the equation of motion of straight beam. The Eq.(1.65) 
can be rewritten as: 
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The equation of motion of the pier can be considered as a St. Venant Rod: 
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Substituting Eq.(2.39) into above two equation of motions, the eigenequations of beams and rod are 
obtained: 
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where 𝑎 = √𝐸𝐼 𝜌𝐴⁄  and 𝑐 = √𝐸𝑟 𝜌𝑟⁄  is the coefficients associated with the flexural wave speed of the 
beam and phase speed of the rod. The solution for the flexural wave modes 𝜙𝑏𝑛  and longitudinal wave 
mode 𝜙𝑟𝑛can be expressed as: 
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where 

𝑘𝑛 = [𝑘𝑏𝑛, 𝑘𝑟𝑛]
𝑇 = [√𝜔𝑛 𝑎⁄ ,𝜔𝑛 𝑐⁄ ]

𝑇
 

𝐴𝑛
∗ = [𝐴𝑛1, 𝐴𝑛2, 𝐵𝑛1, 𝐵𝑛2, 𝐶𝑛1, 𝐶𝑛2, 𝐷𝑛1, 𝐷𝑛2, 𝐸𝑛, 𝐹𝑛]

𝑇 

are the parameter related to frequency and beam-rod wave mode coefficients. Boundary conditions for 
eigen modes: 
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Substituting wave mode functions into above boundary and continuity conditions yields a system of 
linear algebraic equations in matrix form. Non-trivial solutions are indicated by the determinant of the 
coefficient matrix being equal to zero which results the beam-rod frequency equation: 
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 (2.45) 

System of linear algebraic equations (see Appendix 3) together with mode orthogonality (see Appendix 
2) give the coefficients of wave modes meaning that eigenfunctions itself can be determined: 
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In order to solve temporal part of the eigenvalue problem, we substitute Eq.(2.39) into Eq.(2.40) and 
Eq.(2.41) and using orthogonality condition derive time differential equation: 

 * 2 *( ) ( ) ( )n n n nq t q t Q t+ =  (2.47) 

The solution can be obtained by using Laplace transform: 
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Since the external force is applied through static displacement in terms of 𝐵1, 𝐵2 and 𝐵3 (see Eq.(2.29)
), it is necessary to project static displacement onto eigenfunctions to decompose beam’s response into 

a series of eigenmodes of the structure. The projection involves integrating the product of the static 
displacement and eigenfunctions. Multiplying the eigenmode by static displacement serves to weight 
the static displacement according to the shape of each eigenmode: 
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where 𝑡2𝑘 is the initial time of the k-th in-contact phase, 𝑡∗ = 𝑡 − 𝑡2𝑘 is the time variable of the k-th in-
contact phase, 𝑦0(𝑠, 𝑡2𝑘− ), 𝑦0̇(𝑠, 𝑡2𝑘

− ), 𝑢0(𝜉, 𝑡2𝑘
− ) 𝑎𝑛𝑑 𝑢0̇(𝜉, 𝑡2𝑘

− ) are the initial displacement and velocity 
which are remaining distribution at the moment of the end of previous phase: 
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3.1.3.2 Vertical dynamic displacement for out-of-contact phase 

The dynamic behavior of the bridge in out of contact phase is straightforward simply because two 
system don’t vibrate with the same frequency as previously. Although separation time in most case is 

quite short, nevertheless, in combination with horizontal ground motion just after vertical component, 
the bridge girder may collapse due to the absence of any friction between pier and girder. Therefore, 
exact and reliable analytical solutions is required to better understand such phenomena. In this section 
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the same method is adopted as in-contact phase to solve wave modes, frequencies, coefficients of wave 
modes and time functions. 

Equation of motion for separation phase has been already derived in Eq.(1.65) and Eq.(1.66). It becomes 
much simpler if the term rotational inertia term 𝑚𝑎2 𝜕2𝛽

𝜕𝑡2
 since no external rotational load is acting on 

the beam. The eigenfunctions for separation phase for the beam: 

 0( ) sin ( )bm bm bms A k s s = +  (2.51) 

where the coefficient 𝐴𝑏𝑚 is obtained by normalization of the eigenmode: 
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and 𝑘𝑏𝑚 is the parameter related to frequency already described in Eq.(1.67): 
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The general solution of time function for the curved beam in out of contact phase is: 
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where 𝑡2𝑘+1 is the initial time of the k-th out-of-contact phase, 𝑡∗ = 𝑡 − 𝑡2𝑘+1 is the time variable of 
the k-th out-of-contact phase, 𝑦𝑏0(𝑠, 𝑡2𝑘+1− ) 𝑎𝑛𝑑 𝑦𝑏0̇ (𝑠, 𝑡2𝑘+1

− ) are the initial displacement and velocity 
which are remaining distribution at the moment of the end of previous phase: 
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The eigenfunctions for separation phase for the rod: 

 ( ) sinrm rm rms A k =  (2.57) 

where the coefficient 𝐴𝑟𝑚 is obtained by normalization of the eigenmode: 
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and 𝑘𝑟𝑚 is the parameter related to rod frequency in longitudinal direction: 
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The general solution of time function for the rod in out of contact phase is: 
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Initial displacement and velocity: 
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Quasi-static displacement for the rod: 

 2( , ) ( )bsu t B t =  (2.63) 

 

 

 

3.2 Numerical Results 
 

3.2.1 Bridge parameters 

In this section, we'll examine the numerical results using a standard highway bridge in China as an 
example. It is advisable to keep the endpoints of the beam fixed (76 m) and examine the forces that lead 
to an increased imaginary curvature, reducing the radius of curvature up to the midpoint of the beam 
(38m). All other parameters such as rigidity and density don’t vary. Such method allows to detect 

critical radius or angle of curvature that may cause damage or very high pounding forces. 

The bridge contains single pier that is composed of two circular concrete columns with longitudinal 
bars as in Fig.3.3.  
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Fig 3.3. Cross-section details of bridge girder and pier 

Parameter of bridge girder 

Mass density 𝜌 = 2600 𝑘𝑔/𝑚3 

Cross-section area 𝐴𝑐 = 6.04 𝑚2 
Young’s modulus of concrete 𝐸𝑐 = 34.5 𝐺𝑃𝑎 
Inertia moment of girder 
cross section 𝐼𝑐 = 3.409 𝑚4 

Reinforcement cross-section area 𝐴𝑦 = 0.04712 𝑚2 
Young’s modulus of reinforcement 𝐸𝑦 = 200 𝐺𝑃𝑎 
Inertia moment of reinforcement 
cross section 𝐼𝑌 = 0.1925 𝑚4 

Prestressed steel strand section area 𝐴𝑝 = 0.02688 𝑚2 
Young’s modulus of prestressed steel 
strand cross section 𝐸𝑝 = 195 𝐺𝑃𝑎 

Inertia moment of prestressed steel 
strand cross section 𝐼𝑝 = 0.07585 𝑚4 

Parameter of bridge pier 
Height of the pier 
Mass density 

𝐿 = 5.2 𝑚 
𝜌𝑟 = 2600 𝑘𝑔/𝑚3 

Cross-section area 𝐴𝑐 = 3.0772 𝑚2 
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Young’s modulus of concrete 𝐸𝑐 = 30.0 𝐺𝑃𝑎 
Reinforcement cross-section area 𝐴𝑦 = 0.0157 𝑚2 
Young’s modulus of reinforcement 𝐸𝑦 = 200 𝐺𝑃𝑎 
  

Table x. Properties of the girder and pier 

Technical code in China requires considering equivalent parameters for design of highway reinforced 
concrete bridges. Hence, the equivalent section area of the girder 𝐴 = 𝐴𝑐 + 𝐴𝑦(𝑎𝑦 − 1) + 𝐴𝑝(𝑎𝑝 − 1), 
the equivalent inertia moment of the girder is 𝐼 = 𝐼𝑐 + 𝐼𝑦 + 𝐼𝑝 = 3.684 𝑚4, the equivalent flexural 
stiffness of the girder is 𝐸𝐼 = 0.95𝐸𝑐𝐼 = 1.21 ∙ 1011 𝑁𝑚2. The equivalent Young’s modulus of the of 

the pier is 𝐸𝑟 = (𝐸𝑐𝐴𝑐 + 𝐸𝑦𝐴𝑦) (𝐴𝑐 + 𝐴𝑦) = 31.7 𝐺𝑃𝑎⁄ , the equivalent section area of the pier is 𝐴𝑟 =
𝐴𝑐 + 𝐴𝑦(𝑎𝑦 − 1) where 𝑎𝑦 = 𝐸𝑦 𝐸𝑐⁄  is the enhancement coefficient. A circular plate rubber bearing, 
GYZ850 × 171, is installed between the girder and the pier. Recent theoretical and experimental studies 
on the vertical stiffness of rubber bearings indicate that the hysteresis curve of the rubber bearing is 
elongated and narrow, allowing the vertical stiffness to be considered constant. For simplicity in 
deriving a theoretical solution, this thesis treats the rubber bearing as an elastic spring, with its vertical 
stiffness estimated at K = 2 × 10^9 N/m.  

The bridge is situated in a region with a seismic intensity of 8°. According to the Chinese seismic design 
code for buildings, the peak horizontal earthquake acceleration is 510 gal (5.1 𝑚/𝑠2). The peak vertical 
earthquake acceleration, as commonly recommended by engineering guidelines, is two-thirds of the 
horizontal value. However, studies have identified distinctive characteristics in the V/H response spectra 
Bozorgnia (2004). To accurately represent the vertical earthquake characteristics, the simplified V/H 
spectra used in reference Bozorgnia (2004) are adopted. The local site consists of firm soil, with source-
to-site distances (𝑟𝑠𝑒𝑖𝑠) of 3, 10, and 20 km, accordingly. 
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 (2.64) 

In this description, T represents the period of the vertical earthquake, α is the maximum ratio of vertical 
to horizontal ground motion (V/H), and β is the coefficient for linear attenuation. Specifically, α = 1.5, 
β = 5, and the critical time 𝑡𝑟𝑐 =  0.5 s  when the source-to-site distance (𝑟𝑠𝑒𝑖𝑠)  is 3 km; α = 1.3, β = 
4, and 𝑡𝑟𝑐 = 2.0 𝑠 for a 𝑟𝑠𝑒𝑖𝑠 of 10 km; and α = 1.1, β = 3, and 𝑡𝑟𝑐 =  4.0 s   at 20 km 𝑟𝑠𝑒𝑖𝑠. Seismic 
excitation often comprises a superposition of harmonic components derived via Fourier transformation. 
This thesis discusses two distinct linear elastic systems: the in-contact phase and the out-of-contact 
phase. The nonlinear interaction during seismic events, or pounding, is modeled in segments, alternating 
between these two states. Transitions between these systems are dictated by specific conditions for in-
contact and out-of-contact states Eq.(2.1). Within each system, the equation of motion is solved using 
the superposition principle of linear harmonic motion. For simplification in theoretical analyses, simple 
harmonic motion substitutes for actual vertical seismic excitation. To capture the primary characteristic 
of the excitation, the peak acceleration of the simple harmonic motion is aligned with that of the actual 
vertical seismic excitation. 
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In this context, B1, B2, and B3 represent the peak displacements due to vertical seismic excitation, while 
𝜔1,  𝜔2, 𝑎𝑛𝑑 𝜔3 correspond to the frequencies of these seismic excitations. Here, 𝑎𝐻 denotes the peak 
acceleration of the horizontal seismic excitation, and v is the apparent wave velocity. It is important to 
note that, unless stated otherwise, the seismic excitation is assumed to be uniform throughout the 
subsequent numerical analysis. 

3.2.2 Convergence of analysis outcome 

To evaluate the convergence of the current method, a thorough numerical comparison of pounding force 
histories at various time-step increments is depicted in Fig.3.4. For increments of 0.1 s and 0.05 s, the 
outcomes display only smooth pounding forces lacking high-frequency oscillations. With increments 
of 0.02 s and 0.01 s, high-frequency oscillations are present, but the accuracy of contact time, separation 
time, and pounding force is compromised. The time histories for the time increment of 0.001 seconds, 
the analysis yields precise and accurate results for the pounding force. Consequently, this time step has 
been selected for further analysis. Additionally, using a smaller time step would require significantly 
more computational resources, thus affirming the efficiency and efficacy of the chosen increment. 
Nonetheless, capturing transient wave phenomena such as shear force waves, bending moment waves 
in the girder, and axial force waves in the pier requires even smaller time-step increments. For instance, 
considering the longitudinal wave velocity in a St. Venant rod, which is 3492 m/s, the maximum time-
step increment should be less than the time it takes for the wave to travel the length of the pier, 
approximately 1.5e-3 s. To accurately observe the axial force wave propagation, smaller increments are 
necessary, leading to the use of 1.0e-5 s increments in this analysis to effectively capture the transient 
wave propagation, including that induced by pounding. 
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Fig. 3.4. Pounding force generated in curved bridge (R=∞ ) vs straight bridge computed by 
different time increment (𝑵 = 𝟐𝟓, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔)  
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Fig. 3.5. Pounding force generated in curved bridge (R=∞ ) vs straight bridge computed by 
different number of modes (∆𝐭 = 𝟎. 𝟎𝟎𝟏 𝐬, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔)  

Additionally, the convergence related to the number of wave modes is assessed by analyzing the time 
histories of pounding force for truncation term numbers of 5, 10, 25, 50 and 100 as shown in Fig.x. 
With a truncation number of 5, the pounding force history appears smooth, losing significant high-
frequency detail. Increasing the number to 10 introduces some high-frequency elements. However, with 
25, the measures of contact time, separation time, and pounding force remain imprecise. The histories 
for wave mode numbers of 50 and 100 are closely aligned, demonstrating convergence in the time 
history of multiple-pounding forces. To address high-frequency transient responses adequately, larger 
wave modes are essential. 

3.2.3 Wave propagation across the beam induced by vertical ground motion 

Fig-x illustrates the propagation of structural response waves induced by a vertical earthquake, 
displaying the travel of shearing force and bending moment waves across the structure. The horizontal 
axes 𝑠 is normalized by 𝑠0. Fig.3.6 depicts the movement of the shearing force wave along the girder 
following the onset of the vertical earthquake, with waveforms at moments 𝑡 =  0.1 𝑚𝑠, 0.5 𝑚𝑠, and 
1.0 𝑚𝑠. These waves fluctuate around the static shearing force and visibly progress from the ends 
towards the center of the girder, disturbing the static shearing force as they arrive. 

 

Fig. 3.6. Shearing forve wave propagation along the girder of curved bridge with R=𝟕𝟎 𝐦  (𝑵 =

𝟐𝟓, ∆𝐭 = 𝟎. 𝟎𝟎𝟏 𝐬, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔)  
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Fig. 3.7. Dynamic bending moment wave propagation along the girder of curved bridge with 
R=𝟕𝟎 m  (𝑵 = 𝟐𝟓, ∆𝐭 = 𝟎. 𝟎𝟎𝟏 𝐬, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔)  

Fig.3.7  presents the propagation of the dynamic bending moment wave along the girder. The 
waveforms at the same instants show that the dynamic bending moment, which is the difference 
between the total and static bending moments, also advances from both ends towards the middle. Wave 
propagation along the girder exhibits dispersive characteristics. In addition, obtained data indicate that 
the two ends of the girder experience more dynamic excitation compared to the mid-span of the girder. 
Such increased activity at the ends highlights the significant impact of seismic forces initiating from 
these points and emphasizes the need for careful consideration of end conditions in structural design 
and analysis. 

3.2.4 Multiple pounding phenomena 

This section provides detailed information about the effects of curvature on the pounding force. As it 
was mentioned before, the chord length will be kept constant while the beam gets more curved till to 
the almost half-ring shape, though the last one is not applicable in real engineering practice.  

 

Fig 3.8. Comparative diagrams of bridge curvatures 
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The Fig.3.9 (from a-g) shows a distinct pattern where the magnitude and the frequency of the contact 
force vary with the radius. Generally, with the increasing the radius, the behavior of pounding forces 
seems to stabilize and become less intense. On the other hand, for smaller radii (eg., R=40÷60 m), the 
pattern is more erratic and exhibit higher peak values. It means that tighter curvatures may lead to more 
significant interactions or collisions between girder and pier due to the more pronounced movement or 
deflections in more curved bridges. Moreover, as radius decreases, the span length of a bride increases, 
leading to an increase of the self-weight of girder, meaning that contact force will be higher due to 
altered static conditions. This will cause the concentration of forces at specific points, particularly where 
the girder meets the columns. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

Fig 3.9. The effect of the curvature (R=40÷∞) on pounding force dynamics (𝑵 = 𝟐𝟓, ∆𝐭 =

𝟎. 𝟎𝟎𝟏 𝐬, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔) 

It is worth to note that, in addition to above listed observations, the curved geometry may cause 
asymmetrical load transfer during the seismic event, where the different sides might experience 
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different level of stress. Another remarkable fact is that the angular component of the earthquake 
seismic waves could cause more pronounced rotational and lateral movement of the bridge girder 
relative the pier which might cause the increase of the frequency and intensity of collisions between 
bridge segments. Seismic waves typically travel in all directions from their sources, but when they 
encounter structures, they path can be altered based on the layout and properties of the material of a 
structure. In straight, uniform structures, seismic waves might propagate more predictably which can’t 

be said about curved paths. From design perspective, engineers need to account for these amplified 
forces by incorporating additional damping or isolation system, especially at critical junctions 

To better understand the trend of the pounding force under different radius of curvature, it is advisable 
to plot the peak and mean pounding forces versus the radius and curvature of the bridge (see Fig.3.10.a). 
In first graph, it shows clear increase in both mean and maximum pounding forces as the curvature 
increases. This can be attributed to the elongated span which weighs more than less curved girders. As 
regards the Fig.3.10.b, the pounding force shows non-linear behavior. Both the maximum and mean 
forces decrease from 𝑅 = 40 𝑚 to 𝑅 = 70 𝑚, then slightly increase at 𝑅 = 80 𝑚 before dropping 
again. It suggests that wider curves moderate the impact of seismic forces, however, slightly increase 
at 𝑅 = 80 𝑚 may indicate specific structural responses that could be unique to certain bridge 
geometries. Nevertheless, the analysis was conducted with time interval 2 s, and the output could be 
more accurate and reliable under longer period of time. 

 

(a) 
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(b) 

Fig 3.10. The impact of the curvature (a) and the radius (b) on pounding force vibration (𝑵 =

𝟐𝟓, ∆𝐭 = 𝟎. 𝟎𝟎𝟏 𝐬, 𝝀 = 𝟎. 𝟓 𝐚𝐧𝐝 𝑻 = 𝟎. 𝟑 𝒔) 

 

3.2.5 Mode shapes 

Below graphs provides information about mode shapes of the curved bridge (𝑅 = 70 𝑚) both in-
contact and out-of-contact phases. Each mode shape represents the deformation pattern of the structure 
under seismic excitation with different characteristics observed based on phase and mode number. 
When the girder is in contact with the pier, it demonstrates the figure possibly involving sections where 
the beam and rod mechanically engaged due to vertical ground motion. Note that mode shapes are 
always symmetrical indicating both beam and rod vibrates with the same frequency. On contrary, the 
mode shapes are more uniformly distributed and smoother in separation phase pointing out less 
constrained deformation. The figure in this case shows symmetrical shapes for odd numbers of 𝑁 and 
asymmetrical for even numbers of 𝑁. However, for both cases, mode shapes are more complex behavior 
as the number of modes increases. 
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(a) 

     

    (b) 

Fig 3.11. Mode shapes for in-contact phase (a) and out-of-contact phase (b) 

3.2.6 Response of the bridge under uniform seismic excitation 

The bridge's natural periods were determined analytically and validated by Finite Element Modeling 
(FEM) using SAP2000. The natural period in the separation phase is 0.176 seconds and 0.062 seconds 
in the in-contact phase, with FEM adjustments showing a slight increase for the in-contact phase to 
0.082 seconds. 
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                  (a)           (b)   

 

     (c)           (d)    

           

                      (c)           (d)    

Fig 3.12. Responses of the bridge in different vertical seismic excitation periods 

When the bridge was excited at its natural period during the separation phase, the maximum pounding 
force was observed as 110.2 MN with 15 multiple poundings, and the frequency of pounding incidents 
was significantly higher compared to other tested periods. On the other hand, when the bridge was 
excited by T=0.08 s, it resulted minimal or no multiple pounding events, indicating that reducing the 
period to half of the natural frequency significantly reduces the intensity and frequency of interactions 
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between the bridge components. Increased by half natural period T=0.26 s showed reduced pounding 
compared to the natural period but still resulted in a notable number of pounding incidents (10 times). 

The findings clearly demonstrate that aligning the seismic excitation period with the bridge's natural 
period, especially during the separation phase, dramatically increases both the peak pounding force and 
the number of pounding events. This suggests that resonance effects are significant and potentially 
damaging under these conditions. 
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Conclusion 
 

This thesis has provided an in-depth analysis of the seismic responses of horizontally curved bridges, 
with a specific emphasis on the phenomenon of pounding effects, which are critical to the structural 
integrity of these constructions during earthquakes. Building upon the foundational work of X. Yin 
(2015), this research adapted and extended existing models to better understand and predict the dynamic 
interactions specific to curved bridge geometries under seismic loads. 

One of the key aspect of this study was the detailed analysis of how the number of modes and time steps 
affect the convergence of results in the computational models. By gradually varying these parameters, 
the research demonstrated that both factors play crucial roles in achieving accurate and stable simulation 
outcomes. The appropriate selection of mode numbers and time increments was shown to critically 
influence the precision of the modeled seismic responses, ensuring reliable predictions of the dynamic 
behaviors observed in curved bridges. 

Furthermore, the thesis explored wave propagation phenomena along the bridge structure, providing 
novel insights into how seismic waves are transmitted through curved bridge geometries. It was 
observed that the dynamic waves initially impact the ends of the bridge before progressively moving 
toward the center which means under the higher vertical ground motions, ends of the girder experiences 
higher dynamic load. This propagation pattern underscores the importance of considering the spatial 
distribution of dynamic effects when designing bridges to withstand seismic forces. 

The research has shown that seismic period matching, where the seismic excitations align with the 
bridge's natural periods, significantly exacerbates the pounding effects. This alignment typically leads 
to increased forces and stresses at the girder-pier interfaces, highlighting potential vulnerabilities in 
bridge design. By varying the seismic periods around the bridge's natural frequencies—both in-contact 
and out-of-contact phases—we observed noticeable differences in how these forces manifest, providing 
crucial insights into effective seismic design strategies. 

Specifically, the simulations indicated that when the excitation periods are slightly shorter or longer 
than the natural periods, the severity of pounding forces can be mitigated. This suggests that avoiding 
resonance phenomena through careful tuning of structural frequencies could be a key strategy in 
reducing the risk of damage during earthquakes. 

The outcomes of this thesis not only advance our understanding of how horizontally curved bridges 
respond to seismic forces but also serve as a critical resource for engineers and designers. The insights 
gained from this research should inform future designs, promoting the integration of seismic resilience 
features that can accommodate and counteract the dynamic challenges posed by bridge curvature. It is 
recommended that future studies continue to explore innovative materials and dynamic damping 
solutions that can further enhance the resilience of curved bridges to seismic activities. 

In conclusion, this thesis underscores the necessity for targeted seismic design considerations in the 
development of curved bridges, ensuring their safety and functionality in the face of seismic challenges. 
The strategic incorporation of the findings from this research into engineering practices can lead to the 
construction of safer, more durable structures in seismically active regions.  
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Appendix: 

1. In order to find solution for 
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Since we know that cos sinie i  = +  and cos sinie i  − = − ,the homogenous solution can 
rewritten as: 
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Particular solution takes the form: 
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Finally, we get: 
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1. To demonstrate orthogonality condition, let’s consider two modes called 𝜙𝑛 and 𝜙𝑚: 
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Multiplying both modes to each other and taking integration both sides along the length of the beam: 
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Performing the same operation for rod and second half of the beam and subtracting obtained equation, 
one gets: 
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Above expression is equal to Dirac function and when 𝑚 ≠ 𝑛 is zero and when 𝑚 = 𝑛 becomes 1. 

2. After applying boundary condition provided in Eq.(2.44), the set of equations are formed: 
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Once system of equations is identified, beam coefficients can be now determined: 
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Substituting all these coefficients into orthogonality condition, it is possible to determine undefined 
coefficient 𝐸𝑛: 
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Where 𝑀𝑛 is the coefficient related beam-rod frequency equation: 
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