
POLITECNICO DI TORINO

Master’s Degree Course in Mathematical Engineering

Master’s Degree Thesis

Enhanced Normalized Cuts with Spectral
Weight Adjustment for Image

Segmentation

Supervisor

Prof. EDOARDO FADDA

Candidate

GIACOMO BASTIANI

July 2024





Abstract

This work investigates an enhancement to the normalized cuts algorithm, intro-
ducing a preliminary spectral segmentation analysis to make the process of binary
image segmentation more effective. In particular, we propose two improvements: (i)
use the results of the proposed preliminary spectral clustering algorithm as a prior
for the final segmentation (ii) use Bayesian optimization coupled with Gaussian
processes to tune the hyperparameters.
Then, using the results from this procedure, and by maximizing a confidence
measure it is possible to obtain a set of pixels belonging to the foreground and
the background. These pixels are passed to a min-cut/max-flow algorithm as the
source and sink nodes for further refinement, therefore automating the process of
foreground/background pixel selection for this algorithm.
Finally, the normalized cuts algorithm has been customized to perform video
segmentation in real time. Experiments on a subset of the MSRA10K dataset and
in different video conditions showed relevant improvements in segmentation quality
and real-time usage. The proposed methodologies have the potential to be the
starting point for more advanced techniques in fields requiring precise and efficient
video segmentation, such as hand tracking.





Table of Contents

List of Figures v

Acronyms vii

1 Introduction 1

2 Literature review 5

3 Preliminary Spectral Clustering 9
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Hyperparameter exploration . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Evaluation of σcolor . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Evaluation of σspace . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Evaluation of σknn . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Hypeprarameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Bayesian optimization using Gaussian Processes . . . . . . . 15
3.3.3 Image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Hyperparameter selection . . . . . . . . . . . . . . . . . . . 17

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Normalized Cuts 23
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Enhanced Normalized Cuts 29
5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Confidence measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



5.4.1 Comparison with PSC and Ncut . . . . . . . . . . . . . . . . 34
5.5 Integration with min-cut/max-flow . . . . . . . . . . . . . . . . . . 39

5.5.1 Refined results . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Real-time video segmentation using Normalized Cuts 43
6.1 Normalized Cuts for video segmentation . . . . . . . . . . . . . . . 43
6.2 Issues and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusion 49

8 Future work 51

A Code structure overview 53

Bibliography 55

iv



List of Figures

3.1 PSC: Effect of different values of σcolor - bear image . . . . . . . . . 12
3.2 PSC: Effect of different values of σcolor - fruit image . . . . . . . . . 12
3.3 PSC: Effect of different values of σspace - bear image . . . . . . . . . 13
3.4 PSC: Effect of different values of σspace - fruit image . . . . . . . . . 13
3.5 PSC: Effect of different values of σknn . . . . . . . . . . . . . . . . . 14
3.6 Original image from MSRA10K, resized image, resized mask . . . . 18
3.7 PSC: Image 72377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 PSC: Image 198837 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 PSC: Image 178773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 PSC: Image 178145 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 PSC: Image 198958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 PSC: Image 54160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 PSC: Image 124674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Ncut: Image 198406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Ncut: Image 178773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Ncut: Image 198958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Ncut: Image 53923 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Ncut: Image 198394 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Enhanced Normalized Cuts: Image 178773 . . . . . . . . . . . . . . 32
5.2 Comparison between different algorithms: Image 128465 . . . . . . 35
5.3 Comparison between different algorithms: Image 79799 . . . . . . . 35
5.4 Comparison between different algorithms: Image 162706 . . . . . . 36
5.5 Comparison between different algorithms: Image 103452 . . . . . . 36
5.6 Comparison between different algorithms: Image 137258 . . . . . . 37
5.7 Comparison between different algorithms: Image 107659 . . . . . . 37
5.8 Comparison between different algorithms: Image 140145 . . . . . . 38
5.9 Comparison between different algorithms: Image 152323 . . . . . . 38
5.10 Highest confidence pixels: Image 162706 . . . . . . . . . . . . . . . 41
5.11 min-cut/max-flow: Image 162706 . . . . . . . . . . . . . . . . . . . 41

v



5.12 Highest confidence pixels: Image 103452 . . . . . . . . . . . . . . . 42
5.13 min-cut/max-flow: Image 103452 . . . . . . . . . . . . . . . . . . . 42

6.1 Video segmentation issue . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Video segmentation: Bare hands on white background . . . . . . . . 45
6.3 Video segmentation: Red glove on white background . . . . . . . . 45
6.4 Video segmentation: Blue glove on white crowded background . . . 46
6.5 Video segmentation: Red glove on red background . . . . . . . . . . 46
6.6 Video segmentation: Bare hands on red background . . . . . . . . . 47
6.7 Video segmentation: Blue glove on red background . . . . . . . . . 47
6.8 Video segmentation: Black glove on red background . . . . . . . . . 48

vi



Acronyms

Ncut
Normalized Cuts

MFSC
Multiscale Fast Spectral Clustering

S/T
Source/Sink

KNN
K-Nearest Neighbors

GP
Gaussian Process

PSC
Preliminary Spectral Clustering

vii





Chapter 1

Introduction

An important challenge in computer vision is the perceptual grouping problem,
which consists in trying to aggregate the visual elements within a scene into co-
herent structures. For example, considering a simple image with a red ball in
the foreground and a green grassy field in the background, the challenge consists
in accurately separating the object (ball) from the background (grass) despite
the visual impediments, like shadows, that might lead to grouping them partially
together. This problem involves exploiting the relationships between pixels, edges,
colors, and other visual features, and trying to organize them into meaningful and
distinct objects.

Graph cuts, a computational technique that draws inspiration from the principles
of graph theory, have widely been used to address the segmentation of objects
inside images: This approach consists in representing the image as a graph, where
the nodes are represented by the pixels, and the edges capture the relationships
between them. The ultimate goal of this graph-based representation is to extract
the global impressions of an image, i.e., the most prominent shapes and objects,
the way elements are positioned within the frame, and the overall crowdedness or
sparseness of the image. The graph cut algorithms seek an optimal cut that sepa-
rates the graph into two disjoint sets: One set represents the foreground (object of
interest), and the other set represents the background (or other objects). To obtain
a meaningful segmentation, many of these algorithms include the manual selection
of at least one pixel for both the foreground (source node, S) and the background
(sink node, T ). However, without any interaction with the user, it can be difficult
to identify certain nodes in the graph as belonging to the foreground/background
to achieve a reasonable partitioning of the image.

As the foundation for this work is the Normalized Cuts (Ncut) algorithm, in-
troduced in [1], which has been one of the most important algorithms in the field

1



Introduction

of image segmentation. The traditional Ncut approach can be computationally
intensive, and is not always as accurate as some applications require. To address
these limitations, this work explores an enhanced approach to the Ncut algorithm
by integrating a preliminary spectral segmentation analysis as a prior step. This
spectral analysis helps in adjusting the edge weights, leading to more accurate
segmentation boundaries.

Spectral clustering is a technique that leverages the properties of eigenvalues
and eigenvectors of similarity matrices derived from the data. Unlike traditional
clustering methods that rely on direct measures of data similarity in the original
feature space, spectral clustering operates by mapping data points to a lower-
dimensional space where the clustering structure becomes more apparent. This is
particularly advantageous in image segmentation, where the relationships between
pixels are often complex and non-linear. The strength of spectral clustering lies
in its ability to handle complex structures and its flexibility in defining similarity
measures. It is particularly effective in settings where the clusters are not spherical
or linearly separable, as it relies on the global structure of the data rather than local
properties alone. This makes spectral clustering a versatile tool for image segmenta-
tion, capable of producing high-quality results in a variety of challenging conditions.

This combination of spectral clustering and normalized cuts improves the seg-
mentation results compared to using each method individually. In fact, despite
employing a similar graph construction and using spectral techniques to obtain the
values for the bipartition of the graph, spectral clustering and the normalized cuts
algorithm often yield different results. This difference arises from the distinct ob-
jectives and constraints that each method applies during the segmentation process.
Spectral clustering aims to partition the graph based on the eigenvectors of the
similarity matrix, focusing primarily on minimizing the cut size. This approach
emphasizes separating the nodes (pixels) into internally cohesive groups, without
explicitly considering the relative size of the segments. On the other hand, the
Ncut algorithm seeks to minimize the normalized cut value, which balances the
cut size with the association within each segment. Ncut ensures that the resulting
segments are not only cohesive but also approximately balanced in terms of size.
This additional constraint often leads to partitions that better capture the global
structure of the image and can prevent the formation of disproportionately small
or large segments.

After obtaining the initial segmentation result by combining spectral clustering
as a prior to the normalized cuts algorithm, the highest confidence pixels are finally
passed to a min-cut/max-flow algorithm. In this way, the selection procedure for
the foreground/background pixels is completely automated.

2



Introduction

A key challenge in implementing image segmentation algorithms is the selection
and tuning of hyperparameters. In spectral clustering, the chosen parameters play
a crucial role in determining the quality of the segmentation. Efficient hyperpa-
rameter optimization is essential to achieve a good performance. In this sense,
Bayesian optimization is a robust technique, which offers an approach to explore
the hyperparameter space and identify the best configuration. It is based on the use
of probabilistic models, and it provides both good performances and computational
efficiency.

Another important challenge is the adaptation of the normalized cuts algorithm
for live image segmentation. This involves modifying the traditional Ncut approach
to meet the real-time processing and dynamic requirements of live image streams,
which is critical for applications that demand immediate and accurate segmentation.
The main focus is on the bipartition of each frame of the video into the object of
interest and the background. This can be crucial for applications such as hand
tracking, where real-time and accurate image segmentation is essential. Furthermore,
the advancements in live image segmentation could have significant potential for
future applications in various fields, as virtual reality, where precise and dynamic
segmentation can greatly enhance user interaction and immersion.

3



4



Chapter 2

Literature review

Many methods have been developed to tackle the difficult challenge of image
segmentation. In particular, in [2], the authors provide an overview of some image
segmentation methods, dividing them into three main categories: Traditional meth-
ods, such as thresholding and clustering, graph theoretical methods, like normalized
cuts and efficient graph-based image segmentation, and combinations of both. They
emphasize the role of graph-based methods: By modeling the images as weighted
graphs it is possible to achieve an effective segmentation. The methods highlighted
in the survey are particularly suitable for handling complex image data, given their
flexibility and computational efficiency.

Furthermore, an interesting summary of graph-based algorithms is provided in
[3]. Various graph-cut techniques are discussed in the paper, including min-cut/
max-flow algorithms, which have proven to be effective for precise and efficient
image segmentation tasks. The authors also address interactive-based graph cut
algorithms, in which the user has to interact with the image, providing either a
bounding box to confine the object of interest or one or more pixels which have
the role of background/foreground seeds.

In fact, many algorithms require the addition of hard constraints (seeds) to be
able to segment the image in an efficient way: The topological constraints lower
the dimension of the search space of feasible segmentations. This is the case for
the algorithm presented in [4], which requires the user to provide initial labels for
some pixels in the image, marking them as either foreground or background. These
user-defined seeds are used to create terminal nodes (source node, S, and sink node,
T ) in the graph, which represent the foreground and background, respectively. The
graph cut algorithm then finds the minimum cut that separates the foreground and
background nodes, effectively segmenting the image. The cut minimizes an energy
function, resulting in an optimal segmentation based on the provided seeds and

5



Literature review

the defined energy terms.

Another interesting interactive image segmentation algorithm is proposed in
[5]: The user has to mark the image with two polygons, one for the foreground
boundary, and another for the background boundary. The foreground boundary is
marked along the inner side of the object’s contour using red points, creating the
foreground region, while the background boundary is marked along the outer side
of the object’s contour using blue points, creating the background region. These
marked regions serve as input parameters for the graph cut.

More complex approaches that involve user interaction have been proposed in
recent years, like the one presented in [6], which includes geodesic distance and
appearance overlap constraints.

An algorithm that does not rely on user interaction is the normalized cuts
algorithm, which has been proposed in [1]. This paper has been a cornerstone in
the field of image segmentation since its publication in 2000. Based on the graph
theoretic formulation of grouping, the authors propose the Normalized Cut, a crite-
rion that measures the disassociation between two groups while taking into account
the total association within the groups. This approach aims to minimize the cut
across a graph representing the image, ensuring that the segmented regions are as
distinct from each other as possible while maintaining strong internal cohesion. The
algorithm operates by solving an eigenvalue problem to find the optimal partitioning
of the graph. By looking at the segmentation as a global optimization problem,
the Ncut algorithm provides a robust framework that can be applied to various
types of images, like natural scenes, and in many applications, like person detection.

The normalized spectral clustering approach discussed in [1] served as a basis for
other image segmentation methods. In [7], the authors introduced the Multiscale
Fast Spectral Clustering (MFSC) algorithm, which aims at reducing the computa-
tional complexity of normalized cuts while maintaining high performances. By
applying spectral clustering at multiple scales this method can adapt to different
levels of detail within an image. Moreover this approach enhances the overall
segmentation quality: The multiscale fusion ensures that the segmentation results
are not only accurate but also robust to variations in image content and resolution.

Despite its high computational cost, Ncut can still be useful in many applica-
tions. An interesting approach for detecting early blight in potato leaves using
spectral clustering enhanced by normalized cuts is presented in [8]. The spectral
clustering process involves constructing spectral embeddings using a certian number
of eigenvectors of the Laplacian and then performing K-means clustering.

6



Literature review

Efficient hyperparameter optimization is important to enhance the performance
of these complex image segmentation algorithms. Bayesian optimization is a robust
technique for this purpose. In [9] the authors demonstrated the application of
Bayesian optimization for tuning machine learning algorithms, highlighting its
efficiency in exploring the hyperparameter space to improve the model performance.
Moreover they provide a method that uses probabilistic models to guide the search
for optimal parameters, therefore ensuring computational efficiency and good model
performance.

Similarly, in [10] the authors introduce the application of Bayesian optimization
in scenarios where function evaluations are costly. By constructing surrogate models
to approximate the objective function, Bayesian optimization facilitates efficient
parameter tuning, which is particularly convenient for computationally intensive
tasks like image segmentation.

7



8



Chapter 3

Preliminary Spectral
Clustering

3.1 Method
Spectral clustering is particularly effective in partitioning an image into distinct
regions due to its ability to capture the global structure of the image by analyzing
the spectrum (eigenvalues) of the graph Laplacian. In the proposed spectral clus-
tering workflow, the focus is on RGB images, which are composed of three color
channels: Red, green, and blue. Each pixel in an RGB image is represented by a
triplet of values corresponding to the intensity of these three channels.

To ensure computational efficiency, particularly for high-resolution images, a
preprocessing step is employed, where the image is resized if its dimensions exceed
a specified target size. In particular, given an image I of size (h, w, c), where h, w,
and c represent, respectively, the height, width and number of color channels of the
image, it is resized based on a target dimension (H, W ) if either h or w exceeds H
or W . The scaling factor s can be computed as:

s =
 H

max(h, w) · 100
, (3.1)

and the new dimensions will be h′ =
7
h · s

100

8
, w′ =

7
w · s

100

8
. The number of color

channels will remain the same.

Each of the M = h′ × w′ pixels in the resized image is represented by a feature
vector that combines its spatial coordinates and color values. The pixel at position

9



Preliminary Spectral Clustering

(i, j) is denoted by pij, with color values cij = (rij, gij, bij) for the red, green, and
blue channels respectively. The feature vector fij is defined as:

fij =
A

i

σspace

,
j

σspace

,
rij

σcolor

,
gij

σcolor

,
bij

σcolor

B
, (3.2)

where σspace and σcolor are hyperparameters that control the influence of spatial
and color information. If, for example, σspace is high, the algorithm will be less
sensitive to the spatial distance between pixels. Therefore the feature matrix will
be:

F =



f00
f10
.
.
.

f(H−1)(W −1)


. (3.3)

The next step is to create the K-Nearest Neighbors (KNN) graph G = (V, E), where
each node (pixel) is connected to its K nearest neighbors based on the Euclidean
distance in the feature space. These distances are converted to similarities using a
Gaussian kernel to form the adjacency matrix W , the elements of which represent
the weight of the edges between each pair of nodes. In particular, indicating by Nu

the set of the K nearest neighbors of the pixel u, it holds:
Wuv = exp

A
−∥fu−fv∥2

σknn

B
, if v ∈ Nu

0, if v /∈ Nu

, (3.4)

with fu and fv being the feature vectors of pixels u and v, while σknn controls the
width of the Gaussian kernel. A larger value of σknn results in a slower decay of
similarity, meaning that even pixels with larger distances between their feature
vectors will still have significant similarity values.

The Laplacian matrix L can be computed as:

L = D −W, (3.5)

where D (which is known as Degree matrix) is a diagonal matrix with diagonal
elements du = qM

v=1 Wuv. After obtaining the Laplacian matrix, it is possible to
partition the graph into B sets by applying the following steps:

10



3.2 – Hyperparameter exploration

1. Compute the B smallest eigenvalues of L, λ1, . . . , λB, in ascending order and
their corresponding eigenvectors zb, b = 1, . . . , B;

2. Build the matrix Z ∈ RM×B, in which the b-th column corresponds to the
vector zb. Let ym = Z(m, :), m = 1, . . . , M , ym ∈ RB. The rows of the matrix
Z represent the low-dimensional embeddings of the pixels;

3. Cluster the points ym, m = 1, . . . , M into B clusters C1, . . . , CB using the
K-Means algorithm, which solves the following optimization problem:

min
{Cb}B

b=1

BØ
b=1

Ø
y∈Cb

||y− µb||2,

where y is a row of the matrix Z and µb is the centroid of the b-th cluster Cb.

Since we focus on background and foreground, in the following B will be set to 2.
The result of the K-Means clustering is a label for each pixel indicating its cluster
membership (in this case foreground or background). Finally, the label vector is
reshaped to the original resized image dimensions to obtain the final segmented
image.

3.2 Hyperparameter exploration
Throughout all the experiments, the target dimensions have been fixed to (H, W ) =
(50,50), the number of clusters is set to B = 2 (as already mentioned), and in the
construction of the KNN graph the number of neighbors considered for each pixel
is 128. Moreover the identified clusters depend on the seed used for the K-Means
algorithm. In all the experiments the seed was fixed in order to be able to replicate
the results.

Before addressing the hyperparameter tuning process, a series of preliminary
experiments have been conducted to show the effect of different sigma values (σcolor,
σspace, σknn). By fixing these hyperparameters, it is possible to make different
observations for every single hyperparameter by varying one of them at a time.
The first one to be analyzed has been σcolor. In fact, in general, it is more likely
that pixels with the same color belong to the same set. The two images used to
evaluate the effect of σcolor, σspace, and σknn are taken from the COCO dataset [11].

The starting point that has been considered is:

σcolor = σspace = σknn = 1 .

11



Preliminary Spectral Clustering

3.2.1 Evaluation of σcolor

As previously discussed, σcolor is used as a normalization parameter to vary the
influence of the color information of a pixel. For low values of this hyperparameter,
the algorithm becomes very sensitive to changes in color between pixels, tending
to group together pixels that have similar colors like in Figure 3.1(a) and 3.2(a).
On the other hand, for high values of σcolor the color information about the pixels
becomes irrelevant, and the image tends to be split in half at random, as it is
possible to notice by comparing Figures 3.1(b) and 3.2(b).

(a) σcolor = 0.05 (b) σcolor = 10

Figure 3.1: PSC: Effect of different values of σcolor - bear image

(a) σcolor = 0.2 (b) σcolor = 10

Figure 3.2: PSC: Effect of different values of σcolor - fruit image

12



3.2 – Hyperparameter exploration

3.2.2 Evaluation of σspace

The hyperparameter σspace determines the sensitivity of the clustering algorithm to
the spatial distance between pixels. A higher value of σspace makes the algorithm less
sensitive to spatial distances, while a lower value of σspace increases the sensitivity to
spatial differences, making the algorithm more responsive to the relative positions
of the pixels. If the objective is to segment based on distinct regions that are
spatially coherent, it could be better to use a lower σspace. On the other hand, for
segmenting regions based on color similarity across the image, a higher σspace might
be more appropriate.

(a) σspace = 3 (b) σspace = 20

Figure 3.3: PSC: Effect of different values of σspace - bear image

(a) σspace = 3 (b) σspace = 20

Figure 3.4: PSC: Effect of different values of σspace - fruit image

13



Preliminary Spectral Clustering

After the σcolor hyperparameter has been fixed (σcolor = 0.08 in these examples),
it can be noticed in Figures 3.3(a) and 3.4(a) that using a lower value of σspace

(in this case σspace = 3) different colors and textures are segmented separately. In
Figure 3.3(a) and in Figure 3.4(a), the objects are separated from the background
in an effective way. With higher values of σspace (in this case σspace = 20) the
algorithm tends to merge larger regions together, as shown in Figures 3.3(b) and
3.4(b). This can lead to under-segmentation, where large regions of the image are
grouped together, potentially merging some parts of the foreground and background
that should be distinct. The segmentation boundary becomes less precise, failing
to capture finer details.

3.2.3 Evaluation of σknn

The parameter σknn plays an important role in determining how pixel similarities
are weighted. For low values of this hyperparameter, the similarities will have lower
values for higher distances, and so only pixels with very similar feature vectors will
have high similarity values. On the other hand, for high values of σknn even pixels
with very different feature vectors can have significant similarity values. The effect
of the choice σknn = 1 can be noticed in Figures 3.3(a) and 3.4(a), while the results
of using of a large value for the considered hyperparameter are shown in Figure 3.5.

(a) σknn = 10 (b) σknn = 10

Figure 3.5: PSC: Effect of different values of σknn

3.3 Hypeprarameter tuning
The set of hyperparameters (σcolor, σspace, σknn) has been obtained, drawing inspira-
tion from [9], by applying Bayesian optimization using Gaussian Processes (GP).

14



3.3 – Hypeprarameter tuning

The method operates by constructing a surrogate model of the objective function,
which in this case is the Intersection over Union (IoU) score.

3.3.1 Metric
The IoU metric is used to evaluate the binary segmentation performance. It
measures the overlap between two bounding boxes. The predicted bounding box
(result from the model) and the ground truth bounding box (actual labeled data).
It can be computed as:

IoU = Area of overlap

Area of union
, (3.6)

where Area of overlap is the area where the predicted and ground truth bounding
boxes intersect, while Area of union is the total area covered by both bound-
ing boxes combined, calculated as the sum of the individual areas minus the
Area of overlap. Its interpretation is quite straightforward:

• IoU = 0: No overlap between the predicted and ground truth bounding boxes;

• 0 < IoU < 1: Partial overlap between the predicted and ground truth
bounding boxes;

• IoU = 1: Perfect overlap between the predicted and ground truth bounding
boxes.

A common threshold for considering a detection as correct is IoU > 0.5, like
proposed in [12], though this can vary depending on the specific application or
dataset.

3.3.2 Bayesian optimization using Gaussian Processes
Returning to the Bayesian optimization framework, an objective function f : Θ→ R,
defined over the bounded set Θ, is considered. This function represents the
negative mean IoU score, and the goal is to find the set of hyperparameters
θ = (σknn, σcolor, σspace) that minimizes f (θ), thus maximizing the mean IoU score
over a given set of labelled images. Bayesian optimization constructs a probabilistic
model for f (θ) and uses this model to decide where to evaluate the function next
within Θ, while accounting for uncertainty.

A space-filling design [13] is used to select an initial set of hyperparameters.
In particular, Latin Hypercube Sampling (LHS), introduced in [14], is a statistical
method used to create a range of possible parameter values from a multidimensional

15



Preliminary Spectral Clustering

distribution. Given a number k of parameters and a number n of samples, for each
parameter xi its range [ai, bi] is divided into n intervals:C

ai, ai + bi − ai

n

B
,

C
ai + bi − ai

n
, ai + 2bi − ai

n

B
, . . . ,

C
ai + (n− 1)bi − ai

n
, bi

D
.

Then one value vij is randomly sampled from each interval j for xi. The sampled
values for each parameter are finally permuted to create the sampling matrix. This
method ensures that the initial points cover the hyperparameter space uniformly
and reduces the likelihood of missing important regions of the parameter space. In
this case, the hyperparameters were considered within the following ranges:

σknn ∈ [0.5, 10], σcolor ∈ [0.001, 0.1], σspace ∈ [1, 10] .

For each set of initial hyperparameters θi = (σknni
, σcolori

, σspacei
), the objective

function is evaluated. This involves:

1. Running the spectral clustering algorithm with the given hyperparameters;

2. Computing the IoU score for each segmentation result;

3. Averaging the IoU scores across a subset of images to obtain the mean IoU ;

4. Negating the mean IoU (since the optimization process seeks to minimize the
objective function).

These evaluations provide a set of data points D = {(θi, yi)}n
i=1, where yi represents

the negative mean IoU scores obtained using the set θi.

The Gaussian Process regression involves learning a distribution over functions
that best explains the observed data D. It is assumed that:

f(θ) ∼ GP(µ(θ), k(θ, θ′)) ,

i.e., f(θ) is taken from a Gaussian process prior. The GP defines a distribution over
functions, where µ(θ) is the mean function, which represents the expected value of
the function at θ, and k(θ, θ′) is the covariance function. The Gaussian process
provides probabilistic predictions, giving both a mean estimate and uncertainty for
each set of hyperparameters θ = (σknn, σcolor, σspce).

Given the initial data D = {(θi, yi)}n
i=1, where yi = f(θi) + ϵi, ϵi ∼ N (0, σ2

n), the
GP updates its prior belief to form the posterior distribution with new mean and
variance given by Equations (3.7) and (3.8).

16



3.3 – Hypeprarameter tuning

µ∗(θ∗) = µ(θ∗) + k(θ∗, Θ)[K(Θ, Θ) + σ2
nI]−1(y − µ(Θ)) (3.7)

σ2
∗(θ∗) = k(θ∗, θ∗)− k(θ∗, Θ)[K(Θ, Θ) + σ2

nI]−1k(Θ, θ∗) (3.8)

In particular, Θ is the matrix of observed hyperparameters, K(Θ, Θ) is the
covariance matrix of the observed points, k(θ∗, Θ) is the covariance vector between
the new point θ∗ and the observed points, and σ2

n is the noise variance.

An acquisition function α : Θ→ R+ is used to select the next set of hyperparam-
eters to evaluate by optimizing θnext = arg maxθ α(θ). Please note that the acquisi-
tion function depends on the previous observations. The Expected Improvement
(EI) function, which balances exploration and exploitation, can be written as:

αEI(θ) = E[max(fbest − f(θ),0)] . (3.9)

Then following steps are repeated until the maximum number of iterations is
reached:

1. Evaluate the objective function at θnext;

2. Update the dataset D ← D(θnext, ynext);

3. Refit the GP model with the updated dataset.

3.3.3 Image dataset
A subset of images from the MSRA10K dataset [15] [16] [17] [18] has been used to
tune the hyperparameters. The dataset contains a total of 10,000 images. Each
image in the MSRA10K dataset is paired with a binary mask that highlights the
salient object in the image. This makes it particularly useful for training models
designed for binary image segmentation. Additionally, the dataset contains images
of various scenes and objects, making it ideal for obtaining hyperparameters that
lead to good performances in a wide range of applications and cases.

3.3.4 Hyperparameter selection
Due to the computational complexity of the image segmentation task, processing the
entire dataset would be computationally prohibitive. To ensure that the evaluation
was feasible within the available computational resources, we select a random subset
of 100 images. This subset provides a representative sample while making the
optimization process manageable. Each image and its corresponding binary mask

17



Preliminary Spectral Clustering

in the selected subset were resized using the same approach proposed in Section
3.1. The resizing step for the binary masks involves interpolation, which takes
into account the neighboring pixels to compute the new value: This can result in
non-binary values. To convert these interpolated values back to binary, a threshold
of 0.5 is applied. In particular, if the interpolated value is greater than or equal
to 0.5, the pixel is assigned a value of 1; otherwise, it is assigned a value of 0. An
example image is shown in Figure 3.6.

Figure 3.6: Original image from MSRA10K, resized image, resized mask

The triplet of hyperparameters that gives the best IoU value is:

(σcolor = 0.03, σspace = 1, σknn = 6) ,

with a mean score, which can be computed as described in Equation (3.10), of
IoU ≈ 0.49. This can be considered an acceptable value, given the resizing process
applied to both images and masks.

IoU = 1
N

NØ
i=1

IoUi (3.10)

3.4 Results
The focus of the proposed spectral clustering algorithm is more on grouping similar
pixels rather than ensuring balanced segment sizes. This method produces seg-
ments that are more distinct based on the feature vectors, leading to segments that
might be less spatially coherent but more distinct in terms of color. The proposed
approach offers great flexibility, resulting in segments that are more variable in size
and coherence.

18



3.4 – Results

In some cases the proposed approach already produces high-quality segmentation
results. An example is illustrated in Figure 3.7, which shows, from left to right, the
original image, the resized image, and the segmented result using the optimized
hyperparameters. In this case, the segmentation algorithm successfully isolates
the flower from the background, demonstrating the capability of the method to
accurately identify and segment distinct regions within the image. By leveraging
the optimized hyperparameters found through Bayesian optimization, the proposed
spectral clustering algorithm can effectively balance the trade-offs between different
aspects of the image, such as color and spatial information, to produce precise
segmentation results.

Figure 3.7: PSC: Image 72377

For many images, the algorithm only partially identifies the objects within the
scene. Examples illustrating partial segmentations are shown in Figures 3.8, 3.9,
and 3.10. In particular, in Figure 3.8 the segmentation algorithm correctly identifies
a big part of the foreground. Even if it does not capture the entire object, the small
segments identified in Figures 3.9 and 3.10 are correctly classified, indicating that
the algorithm is able to recognize key features within the image even if it tends to
group together a reduced portion of pixels.

In other cases, the algorithm fails to perfectly isolate the object. Figures 3.11,
3.12, and 3.13 show that while the algorithm is able to distinguish part of the
object, it does not produce a perfect segmentation. This indicates areas where
further refinement is necessary.

The algorithm has been tested on a subset of 50 images from the aforementioned
dataset, resulting in a mean score IoU ≈ 0.51. Values above 0.5 typically indicate
a good level of agreement between the predicted segmentation and the ground
truth, reflecting the algorithm’s effectiveness even after resizing.

19



Preliminary Spectral Clustering

Figure 3.8: PSC: Image 198837

Figure 3.9: PSC: Image 178773

Figure 3.10: PSC: Image 178145

20



3.4 – Results

Figure 3.11: PSC: Image 198958

Figure 3.12: PSC: Image 54160

Figure 3.13: PSC: Image 124674

21



22



Chapter 4

Normalized Cuts

4.1 Method
In the approach proposed in [1], a weighted undirected graph G = (V, E) is
constructed by taking each pixel as a node and forming an edge between every pair of
nodes. The goal is to partition the set of nodes V into m disjoint sets V1, V2, . . . , Vm

in such a way to have a high intra-similarity and a low inter-similarity between
the sets, where the similarity can be measured using the Normalized Cut, which is
presented in Equation (4.1). Given the graph G = (V, E), two disjoint sets A, B
can be obtained by eliminating the edges between these sets. Please note that it
holds:

A ∪B = V, A ∩B = ∅ .

Since the weights of the edges define how strong two connected nodes are, the
optimal bipartition of the graph is the one corresponding to the minimum cut
value (4.2), i.e., the sum of the removed weights. However in this way, for example
considering weights that are inversely proportional to the distance between the
nodes, partitions with one node or a very small number of nodes are favoured. The
measure of disassociation proposed by the authors can be computed as:

Ncut(A, B) = cut(A, B)
assoc(A, V ) + cut(A, B)

assoc(B, V ) , (4.1)

where
cut(A, B) =

Ø
u∈A,v∈B

w(u, v), (4.2)

and
assoc(A, V ) =

Ø
u∈A,t∈V

w(u, t). (4.3)

23



Normalized Cuts

In Equation (4.3), assoc(A, V ) represents the sum of the weights connecting the
nodes belonging to A to all the other nodes in the graph. In this way, the disasso-
ciation between a small set of nodes and the rest of the graph is not necessarily
small anymore.

As shown in the paper, the bipartition that minimizes the Ncut value can be
obtained by taking the eigenvector corresponding to the second smallest eigenvalue
for the following generalized eigensystem:

(D −W )y = λDy . (4.4)

Note that this system can be rewritten as a standard eigensystem:

D− 1
2 (D −W )D− 1

2 z = λz, (4.5)

with z = D
1
2 y. Moreover, since for an undirected graph the Laplacian matrix

(D −W ) is symmetric positive semidefinite, the matrix D− 1
2 (D −W )D− 1

2 is still
symmetric positive semidefinite.

In the proposed implementation, the weights of the edges, i.e., the elements of
W , have been defined as:

wij =
exp

1
−∥I(pi)−I(pj)∥2

σI

2
· exp

1
−∥pi−pj∥2

σd

2
, if ∥pi − pj∥ ≤ r

0, otherwise
, (4.6)

where pi and pj represent the pixels at positions (xi, yi) and (xj, yj), and I(pi)
denotes the vector of color intensities of the i-th pixel. Even if in the original
paper the primary focus is on brightness images, in the proposed implementation
the algorithm has been adapted to work with RGB images. The parameters σI

and σd control, similarly to what has already been discussed in Sections 3.2.1 and
3.2.2, the sensitivity of the algorithm to the pixel color intensities and to spacial
distances. Note that the weight is 0 if two pixels are more distant than a certain
fixed value r.

The normalized cuts method was employed for bipartitioning the image. The
primary objective is to segment the image into the foreground and background
regions. By minimizing the normalized cut value, the algorithm produces segments
that are both internally coherent and balanced in size.

There are many ways in which the eigenvector corresponding to the second
smallest eigenvalue for the eigensystem described in Equation (4.4) can be used to
partition the graph into two sets. The choice has been to take the sign of the elements

24



4.2 – Hyperparameter tuning

of the eigenvector to label each pixel as belonging to the foreground/background.
In particular, given the eigenvector of interest y2, for the i-th pixel it holds:

Label(i) =
Foregorund, if y2(i) > 0

Backgorund, otherwise
. (4.7)

Another possibility could be to take the median value as a splitting point,
but this approach leads to worse results in general. In their implementation, the
authors use as the splitting point for the eigenvector the point that gives the best
Ncut(A, B) value. This is obtained by checking multiple evenly spaced splitting
points. However in this work, after various test, it has been chosen to stick with
the sign function, as it already gives good results and is much faster.

4.2 Hyperparameter tuning
Before applying the Ncut algorithm, the images have been preprocessed as shown
in Section 3.1. The target dimensions considered are still (H, W ) = (50,50). There
are three hyperparameters that need to be tuned: r, σI , and σd.

The hyperparameter r defines the radius of the neighborhood around each
pixel within which the weight between the considered pixel and the other pixels is
computed. When it is small, the algorithm considers only a limited local neigh-
borhood for each pixel. This can be useful for capturing fine details and small
structures within the image. However, it might miss larger, more global structures,
leading to over-segmentation. For high values of r, the graph will emphasize global
relationships over local details, potentially ignoring fine structures and boundaries.

σI controls the algorithm’s sensitivity to differences in pixel intensity. If it is too
high, the algorithm fails to distinguish between different regions with significant
intensity differences. However if this hyperparameter is too low, the image might
be segmented into small regions because the algorithm perceives the edge between
two pixels with small color differences as having a smaller weight than it should have.

Finally, the hyperparameter σd controls the influence of the spatial distance
between pixels. If it is too low, the algorithm becomes very sensitive to the dis-
tances between pixels. This means that even small distances between two pixels
will result in a tiny weight associated to the edge that connects them, and so the
algorithm might fail to capture meaningful structures within the image. On the
other hand, if this hyperparameter is too high, even pixels that are far apart will be
considered similar if, for example, their color is similar. Therefore it might happen

25



Normalized Cuts

that distinct objects are merged into a single element.

These hyperparameters have been tuned using the same method proposed in
Chapter 3, Section 3.3. In this case, drawing inspiration from the original paper
[1], the ranges that have been chosen for the Bayesian optimization process are:

r ∈ [1,20], σI ∈ [0.001,0.5], σd ∈ [1,20] ,

with r being an integer value.

4.3 Results
The triplet of hyperparameters that has been obtained using the same subset of
100 images considered in Section 3.3.4 is:

(r = 10, σI = 0.0057, σd = 9.3)

which, in this case, gives a mean score IoU ≈ 0.51.

The Ncut algorithm is designed to segment images by minimizing the disasso-
ciation between segments while maximizing the association within segments. In
particular, this approach works well for images where the regions to be segmented
have distinct global properties, i.e, the features (like color, texture, overall inten-
sity, etc.) of the image are consistent across large regions. An example of good
performance of this algorithm in presented in Figure 4.1, in which both the original
image and the segmented resized image are reported.

Figure 4.1: Ncut: Image 198406

26



4.3 – Results

This method is better, with respect to the PSC algorithm, at considering the
overall structure of the image, as it can be seen in Figure 4.2.

However, with some images, the normalized cuts algorithm struggles in accurately
isolating objects that have complex shapes or color patterns, as it is show in Figures
4.3 and 4.4.

Figure 4.2: Ncut: Image 178773

Figure 4.3: Ncut: Image 198958

27



Normalized Cuts

Figure 4.4: Ncut: Image 53923

In scenes with complex objects or where the foreground and background share
similar properties, like the one presented in Figure 4.5, the normalized cuts method
has difficulties in separating the segments in a meaningful way.

Figure 4.5: Ncut: Image 198394

The overall performance of the Ncut algorithm is evaluated on the same subset
of 50 random images from the MSRA10K dataset used in Section 3.4. The mean
Intersection over Union score achieved in this case is 0.54, indicating a moderate
level of accuracy in the segmentation results.

28



Chapter 5

Enhanced Normalized Cuts

5.1 The algorithm
To improve the segmentation results obtained from the standard Ncut algorithm,
this section proposes an enhanced method that incorporates prior information from
the spectral clustering segmentation.

The choice to use spectral clustering as a prior for the normalized cuts algorithm
is driven by the observation that the preliminary spectral clustering algorithm
described in Chapter 3 often successfully identifies a small, but correct part of
the object with respect to the background. This initial segmentation can be used
as a reliable prior for further refinement. In particular, the weights in the Ncut
algorithm can be adjusted to reflect this prior information.

The enhanced normalized cuts method involves, first of all, obtaining an initial
segmentation of the image by applying the PSC algorithm. Using this segmentation,
the weights between pixels in the normalized cuts algorithm are adjusted. It holds:

wij =
exp

1
−∥I(pi)−I(pj)∥2

σI

2
· exp

1
−∥pi−pj∥2

σd

2
· Sij, if ∥pi − pj∥ ≤ r

0, otherwise
, (5.1)

where

Sij =
α, if labeli = labelj

1
α
, if labeli /= labelj

, (5.2)

with α > 1.

29



Enhanced Normalized Cuts

pi and I(pi) represent, respectively, the spatial coordinates and the color in-
tensities of the i-th pixel. The role of σI and σd has been widely discussed in
Chapters 3 and 4. In this case the factor Sij, called similarity factor, influences
how strongly the initial PSC results affect the final segmentation. High values of
S increase the weight between pixels that have the same label in the preliminary
spectral clustering result, therefore encouraging these pixels to stay together in the
final segmentation.

The rest of the algorithm is the same as the one presented in Section 4.1.
The graph is constructed, where each node represents a pixel and each edge is
represented by the computed weight 5.1 between pixels. After computing the
symmetric normalized Laplacian matrix defined in Equation (5.3), the eigenvalue
problem described in Equation (5.4) is solved for the smallest eigenvalues.

Lsym = D− 1
2 (D −W )D− 1

2 (5.3)

Lsymvk = λkvk (5.4)

The eigenvector v2 corresponding to the second smallest eigenvalue λ2 is used to
bipartition the graph based on the sign of its components:

Label(i) =
1, if v2(i) > 0
−1, if v2(i) ≤ 0

. (5.5)

The normalized cuts algorithm benefits from the preliminary spectral clustering
result by focusing on refining the segmentation rather than starting from scratch.
This approach leads to a better handling of complex structures and boundaries
within the image. The initial segmentation acts as a guide, helping the Ncut
algorithm to maintain coherence within segments that have already been roughly
identified.

The images have been resized using (H, W ) = (50,50) as target dimensions.
However, after the segmentation, the image is resized using (H ′, W ′) = (100,100)
as new target dimensions. This process is necessary because the highest confidence
(see Section 5.2) pixels will be passed to the min-cut/max-flow algorithm to refine
the segmentation. For this purpose it is better to use higher quality images. The
method that has been used to map the original segmentation result to the new
dimensions is the nearest neighbor interpolation: It assigns the value of the nearest
pixel in the original image to the corresponding pixel in the new resized image.

30



5.2 – Confidence measure

Specifically, denoting the source image as Is with dimensions Hs ×Ws, and the
target image as It with dimensions Ht ×Wt, the target coordinates are given by:

xt =
xs ·Wt

Ws

, yt =
ys ·Ht

Hs

 .

5.2 Confidence measure
In order to identify the single pixels belonging to the foreground/background that
should be passed to the successive min-cut/max-flow algorithm to automate the
process of the S/T nodes selection, a confidence measure is introduced to under-
stand how reliable the segmentation result is for each pixel.

The Gaussian Kernel presented in Equation (5.6) is used to weight the con-
tribution of the neighboring pixels when computing the confidence for a given
pixel.

G(x, y; σ) = exp
A
−x2 + y2

2σ2

B
(5.6)

The parameter σ controls the spread of the kernel, while (x, y) are the coordinates
relative to the center of the kernel.

For each pixel (i, j) in the segmented image only a local neighborhood around
it is considered, and the confidence is computed by following these steps:

1. Extract a region of radius r around the pixel (i, j);

2. Apply the Gaussian kernel to the local neighborhood. The kernel weights the
contribution of each pixel based on its distance from the center pixel (i, j);

3. Sum the weighted contributions of the pixels in the local neighborhood that
belong to the foreground and background segments separately;

4. Normalize these sums to obtain the final confidence values.

Equations (5.7) and (5.8) describe how the foreground and background confidences
are computed, respectively.

Cforeground(i, j) =
Ø

k,l∈N(i,j)
G(k − i, l − j; σ) · 1{S(k,l)=1} (5.7)

Cbackground(i, j) =
Ø

k,l∈N(i,j)
G(k − i, l − j; σ) · 1{S(k,l)=0} (5.8)

31



Enhanced Normalized Cuts

N(i, j) denotes the neighborhood around the pixel (i, j), S(k, l) is the segment
label of the pixel (k, l), and 1{S(k,l)=b} is an indicator function that is 1 if S(k, l) = b
(b = 1 indicates the foreground, b = 0 indicates the background), 0 otherwise.

The normalization step ensures that the confidence values are in the [0,1] range:

Cforeground(i, j)← Cforeground(i, j)
max(Cforeground) ,

Cbackground(i, j)← Cbackground(i, j)
max(Cbackground) .

An example of confidence map is presented in Figure 5.1. In the first row the
original image and the corresponding segmentated image can be found, whereas
in the second row the confidence map and the image representing the highest
confidence pixels are represented.

Figure 5.1: Enhanced Normalized Cuts: Image 178773

The red color in the confidence map indicates the pixels belonging to the back-
ground, while the green color indicates the pixels that belong to the foreground.
The shadowed areas represent the pixels that have a lower confidence value. As it
can be noticed, these areas are present near the boundary between the object and
the background.

One pixel with the highest confidence for both the foreground and the background
is then passed to the subsequent min-cut/max-flow algorithm.

32



5.3 – Hyperparameter tuning

5.3 Hyperparameter tuning
The hyperparameters have been tuned by exploiting the Bayesian optimization
using Gaussian processes method presented in Section 3.3 too.

In this case the hyperparameter r, whose role has already been presented in
Section 4.2, is fixed to r = 10. This choice originates from the observation that
using a very high value or a very low value for this parameter leads to almost the
same results. Moreover, in this way the hyperparameter space dimension is smaller,
reducing the computational cost, and therefore making the the parameter tuning
process faster.

Apart from σI and σd, already discussed in Section 4.2, the new hyperparameter
that needs to be tuned is the similarity factor S. As it is shown in Section 5.1, this
factor is used to adjust the weights between pixels. The similarity factor helps in
reinforcing the boundaries identified through the PSC algorithm, possibly leading
to more accurate boundaries in the final segmentation, particularly in complex
images where the standard Ncut algorithm might struggle. High values of S ensure
that the homogenous regions identified in the initial segmentation remain intact,
providing a stable foundation for the subsequent process. On the other hand, a
low value of the similarity factor allows the algorithm to adapt in a better way to
the specific local features of the image, improving segmentation in areas where the
initial clustering might be inaccurate or too coarse. Moreover this could provide
the flexibility to refine and adjust segment boundaries based on the image’s specific
characteristics rather than strictly sticking to the PSC result.

The selected ranges for the hyperparameters in the Bayesian optimization process
are:

σI ∈ [0.001,0.5], σd ∈ [1,20], S ∈ [1.01,10] .

5.4 Results
The triplet of hyperparameters obtained after the tuning process is:

(σI = 0.027, σd = 14.40, S = 5.58) ,

with a score IoU ≈ 0.52.

Various experiments have shown that the enhanced normalized cuts algorithm
provides slightly improved segmentation results compared to the standard Ncut
algorithm. In particular, the test on the same subset of 50 images presented in

33



Enhanced Normalized Cuts

Sections 3.4 and 4.3 gives a mean Intersection over Union value of IoU ≈ 0.56.

In general, the results obtained by the enhanced normalized cuts algorithm are
similar to those achieved using the standard normalized cuts, as it can be noticed
in Figures 5.2 and 5.3. However, in certain situations, the preliminary spectral
clustering segmentation incorporated into the enhanced algorithm helps to achieve
better segmentation results.

5.4.1 Comparison with PSC and Ncut

In order to be able to show the actual improvements that can be obtained using
the proposed enhanced normalized cuts algorithm, in this Section the same op-
timal hyperparameters obtained for the standard normalized cuts are used, i.e.,
σI = 0.0057, σd = 9.3. The similarity factor that is here considered is S = 2.5.

The figures presented in this section show four images, arranged from top to
bottom and left to right corresponding, respectively, to the original image, PSC
segmentation, standard Ncut segmentation, and enhanced normalized cuts segmen-
tation.

In images with complex textures or varying intensities due to the presence of,
for example, shadows, the enhanced algorithm benefits from the preliminary spec-
tral clustering result. By leveraging the preliminary segmentation, the proposed
algorithm obtains a better balance between global consistency and local detail
refinement, leading to more coherent segmentations in certain challenging images.

In Figure 5.4, even if a part of the background is still associated to the object,
the corresponding area is smaller in the enhanced normalized cuts segmentation
with respect to the standard Ncut segmentation.

It is possible to see in Figures 5.5, 5.6, 5.7, 5.8, and 5.9 that the inclusion of
the PSC segmentation result in the Ncut algorithm leads to better results. The
standard normalized cuts algorithm typically performs well in segmenting images.
However, it can sometimes struggle with accurately delineating object boundaries
and maintaining segment coherence. The improvement obtained using the enhanced
normalized cuts algorithm is due to the increased weight given to pixels belonging
to the same segment in the preliminary spectral clustering step, which helps in
preserving segment coherence and improving boundary detection.

34



5.4 – Results

Figure 5.2: Comparison between different algorithms: Image 128465

Figure 5.3: Comparison between different algorithms: Image 79799

35



Enhanced Normalized Cuts

Figure 5.4: Comparison between different algorithms: Image 162706

Figure 5.5: Comparison between different algorithms: Image 103452

36



5.4 – Results

Figure 5.6: Comparison between different algorithms: Image 137258

Figure 5.7: Comparison between different algorithms: Image 107659

37



Enhanced Normalized Cuts

Figure 5.8: Comparison between different algorithms: Image 140145

Figure 5.9: Comparison between different algorithms: Image 152323

38



5.5 – Integration with min-cut/max-flow

Despite these improvements, the results are not perfect and require further
refinement. However, they represent a solid foundation for many applications,
considering the diversity of the dataset used. The robustness of the enhanced
normalized cuts algorithm across varied image conditions suggests its potential for
broad applicability and its capability to serve as a baseline for future advancements
in segmentation techniques.

5.5 Integration with min-cut/max-flow

The highest confidence pixels are used as seeds to a min-cut/max-flow algorithm,
which takes inspiration from [4]. After numerous tests, it has been decided to
consider as seeds the first high confidence pixel for both the foreground and the
background (going from top to bottom and from left to right) encountered in the
enhanced normalized cuts results.

Like the algorithms discussed in Chapters 3, 4, and 5, given a graph G = (V, E),
where V is the set of nodes (corresponding to the pixels) and E is the set of edges
(connections between pixels), each pixel p in the image corresponds to a node in V .
There are two types of edges:

• t-links: They connect pixels to the source (foreground) or sink (background)
nodes. The weight w(p, source) reflects the cost of assigning pixel p to the
foreground, while the weight w(p, sink) is the cost of assigning pixel p to the
background;

• n-links: These edges connect neighboring pixels. The weight w(p, q) reflects
the similarity between pixels p and q, and it is computed based on their
intensity and spatial similarities.

In particular, w(p, source) is set to a high value if p is the highest confidence
foreground pixel, while w(p, sink) is set to a high value if the pixel p is the highest
confidence background pixel, as:

w(pforeground, source) =∞, (5.9)

w(pbackground, sink) =∞. (5.10)

Finally, the cut that minimizes the total weight of edges crossing the cut is found,
partitioning the image into foreground and background.

39



Enhanced Normalized Cuts

Using the highest confidence pixels from the enhanced normalized cuts algo-
rithm as seeds ensures that the min-cut/max-flow algorithm starts with reliable
informations about the foreground and background regions. min-cut/max-flow
adapts well to local image features, capturing complex boundaries and fine details
of objects, which can be challenging for methods that rely only on global criteria
like normalized cuts.

As already mentioned, the images in this case are resized using H ′ and W ′ as
target dimensions:

(H ′, W ′) = (100,100) .

The higher quality of the images produces overall better results.

5.5.1 Refined results
After identifying the highest confidence pixels using the enhanced normalized cuts
algorithm, the segmentation results are refined by applying the min-cut/max-flow
algorithm.

This refinement process has shown to enhance in a significant way the segmen-
tation results by ensuring that the final partitions are both globally consistent and
locally accurate. In particular, the algorithm is particularly effective in dealing with
complex textures and intensity variations within an image, as it globally optimizes
the segmentation based on the flow network, therefore reducing the effects of local
noise and texture variations. Even in challenging conditions, such as images with
low contrast or intricate details, the refined results show a marked improvement
over the initial segmentation.

In Figures 5.10 and 5.12 the biggest and brighter pixels represent the ones
selected as seeds for both the foreground (red pixel) and background (blue pixel).

The integration of the min-cut/max-flow algorithm as a post-processing step
in the enhanced normalized cuts framework improves the overall quality of segmen-
tation. This combined approach not only refines the segmentation boundaries and
increases segment coherence but also provides robust results across diverse and
challenging images, like the ones presented in Figures 5.11 and 5.13.

40



5.5 – Integration with min-cut/max-flow

Figure 5.10: Highest confidence pixels: Image 162706

Figure 5.11: min-cut/max-flow: Image 162706

41



Enhanced Normalized Cuts

Figure 5.12: Highest confidence pixels: Image 103452

Figure 5.13: min-cut/max-flow: Image 103452

42



Chapter 6

Real-time video
segmentation using
Normalized Cuts

6.1 Normalized Cuts for video segmentation
The computational complexity of Ncut, presented in Chapter 4, makes it difficult to
adapt this algorithm for video segmentation. Constructing a graph where each pixel
is a node and each edge represents the similarity between pixels is computationally
intensive. The number of edges increases quadratically with the number of pixels,
making this process highly demanding for high-resolution videos.

Given the computational demands of normalized cuts, the following adaptations
were implemented to make it feasible for real-time video segmentation:

• Frame resizing: Images are resized to a much smaller target size using the
resizing method proposed in Section 3.1, using (H ′′, W ′′) = (25, 25) as target
dimensions;

• Uniform background: A plain, single-colored background reduces the
complexity of the segmentation task by minimizing the number of distinct
regions in the image;

• Bright glove: A glove with a bright color ensures that the hand stands out
clearly against the background, facilitating easier detection and segmentation;

• Real-time constraints: To achieve real-time performance, additional opti-
mizations are considered, like lowering the frame resolution to (H ′′′, W ′′′) =
(400,600) and processing only every n-th frame if necessary.

43



Real-time video segmentation using Normalized Cuts

6.2 Issues and challenges

One important challenge encountered with this implementation is the inherent vari-
ability in the labels produced by the normalized cuts algorithm across consecutive
frames. Ncut labels segments based on eigenvector values, which can vary slightly
between frames due to many factors, like changes in lighting, object movement,
and so on. As a result, there can be frequent switches between foreground and
background labels. This issue occurs as a flickering effect in the real-time seg-
mented video, where regions identified as foreground in one frame may be labeled
as background in the next frame, and vice versa, as it is possible to notice in the
sequence of frames shown in Figure 6.1. This instability is a critical challenge for
real-time applications.

Figure 6.1: Video segmentation issue

44



6.3 – Results

6.3 Results
To test the effectiveness of the segmentation algorithm, various experiments have
been conducted using both bare hands and bright-colored gloves against different
backgrounds.

The segmentation results obtained testing bare hands on a white background
are not perfect, as presented in Figure 6.2. Shadows and varying lighting conditions
significantly affect the segmentation performance. The presence of shadows causes
the algorithm to mislabel shadowed regions as part of the foreground, leading to
inconsistent and inaccurate segmentation.

A similar observation can be made when using a red glove on the same back-
ground, as shown in Figure 6.3.

Figure 6.2: Video segmentation: Bare hands on white background

Figure 6.3: Video segmentation: Red glove on white background

45



Real-time video segmentation using Normalized Cuts

Particularly good results are obtained using a bright, blue colored glove on the
same white background, as it is possible to notice in Figure 6.1. Moreover, Figure
6.4 shows that the presence of other objects in the scene does not significantly
affect the segmentation accuracy, indicating robust performance in this scenario.

Clearly, using a glove which is similar in color to the background leads to poor
results due to the lack of contrast between the object and the background, as
it is possible to see in Figure 6.5. However the results are not great even when
using bare hands on the red background (Figure 6.6). The algorithm is unable to
consistently differentiate between the skin tone and the red background.

Figure 6.4: Video segmentation: Blue glove on white crowded background

Figure 6.5: Video segmentation: Red glove on red background

46



6.3 – Results

Figure 6.6: Video segmentation: Bare hands on red background

On the other hand, the Ncut algorithm performs well with both black and blue
gloves on the red background, as shown in Figures 6.7 and 6.8. The high contrast
between the object and the background allows normalized cuts to accurately identify
and segment the hand.

The results demonstrate that the proposed algorithm performs best in scenarios
where there is a high contrast between the object of interest and the background.
For instance, using a blue glove on a red or a white background produces consistent
and accurate segmentation results. The clear differentiation in color allows Ncut to
easily identify and separate the hand from the background.

Figure 6.7: Video segmentation: Blue glove on red background

47



Real-time video segmentation using Normalized Cuts

Figure 6.8: Video segmentation: Black glove on red background

48



Chapter 7

Conclusion

This work explores and evaluates different advanced image segmentation techniques,
including preliminary spectral clustering, normalized cuts, enhanced normalized
cuts, and the application of Ncuts for real-time video segmentation. The results
demonstrate the potential and limitations of each method, giving useful insights
for future research and uses in image processing

Preliminary spectral clustering, together with normalized cuts, serves as the
foundation for the enhanced normalized cuts method. By leveraging the spectral
properties of the Laplacian matrix corresponding to the image graph, PSC is able
to identify the primary segments within the image. Even if the results from prelim-
inary spectral clustering alone are often incomplete, capturing only small parts of
the object of interest, they provide important initial segmentations that can be
refined further.

Contrary to preliminary spectral clustering, which often identifies smaller seg-
ments, normalized cuts is able to consider larger portions of the object. This is
because Ncut uses the Normalized Cut as measure of dissociation, which balances
the cut cost with the total connection strength within each segment, rather than
using a simple cut criterion, that tends to segments isolated points or small clusters
of pixels. While effective in many scenarios, standard normalized cuts occasionally
struggles with complex images, particularly those with intricate textures.

In order to try addressing the limitations of the standard Ncut, we introduced
an enhanced normalized cuts algorithm that incorporates the preliminary spectral
clustering segmentation results as a prior. The integration of this prior helps to
guide the algorithm, resulting in better object detection and boundary delineation.
The results that have been obtained indicate that while both methods perform simi-
larly in many cases, the enhanced approach significantly improves the segmentation

49



Conclusion

accuracy in challenging images, i.e., in scenarios with complex textures and diverse
image content. The final refinement is obtained through a min-cut/max-flow al-
gorithm. This method uses the high-confidence pixels identified from the enhanced
normalized cuts results as seeds. This step further optimizes the segmentation by
ensuring globally optimal cuts, effectively refining object boundaries.

Finally standard normalized cuts has been adapted for real-time video segmen-
tation. The experiments revealed that high contrast between the foreground object
and the background is essential for an effective segmentation. The algorithm strug-
gles in low-contrast scenarios, such as red gloves on a red background or bare hands
on the same background, leading to poor results. Shadows and varying lighting
conditions also pose important challenges. Despite these issues, the algorithm
shows robustness in simpler settings with bright gloves and plain or moderately
textured backgrounds, even in the presence of other objects, providing accurate
and consistent results.

50



Chapter 8

Future work

While the proposed enhanced normalized cuts and real-time video segmentation
methods have shown promising results, their computational complexity remains
a challenge. Future work should focus on optimizing these algorithms for speed
and efficiency. Techniques such as parallel processing or GPU acceleration could
be explored to make the proposed methods faster, and therefore more suitable also
for real-time applications without compromising the segmentation quality.

Once a better computational efficiency is reached, the hyperparameter tuning
step for the various algorithms could be performed using the entire MSRA10K
dataset, possibly using cross-validation to obtain more robust results. Moreover, us-
ing diverse datasets with different image content, such as medical imaging datasets,
satellite imagery, and autonomous driving datasets, cold help generalize even more
the final results. An ambitious final goal could be to implement an adaptive algo-
rithm that can dynamically adjust all the parameters based on the image content
without reducing the final segmentation quality.

For real-time segmentation, incorporating temporal smoothing techniques can
help stabilize the segmentation across consecutive frames, possibly reducing the
flickering effect observed, in particular, in low-contrast scenarios. Additionally, im-
plementing shadow removal methods and improving the handling of varying lighting
conditions is important to address the challenges posed by shadows and lighting
variations, particularly in scenarios involving bare hands or similar foreground-
background colors. Finally, incorporating a user feedback mechanisms to fine-tune
the segmentation in real-time could enhance the overall algorithm’s accuracy.

51





Appendix A

Code structure overview

Here a general overview of the structure of the Python code used in this work
is provided. We use a functional programming approach, focusing on specific
tasks through individual functions rather than object-oriented programming with
classes. This design choice makes the code modular and easy to maintain, as
each function is responsible for a distinct part of the workflow. There are three
main scripts and several submodules contained within a subfolder named sp_segm.

The three main scripts are:

• main_ncut.py: In this script the single image name from the considered
dataset has to be specified in order to be able to call the identified image
inside the sp_segm subfolder. It uses the highest confidence pixels from
the enhanced normalized cuts results to obtain the final refined segmentation
through the min-cut/max-flow algorithm. The final result is stored in the
results subfolder;

• visualization_image.py: It provides the visualization of the original image
and the segmentation results obtained using the preliminary spectral clustering,
Ncut, and enhanced normalized cuts algorithms;

• video_segmentation.py: This handles the real-time video segmentation
task using normalized cuts, capturing the frames with the local device camera.

The scripts contained inside the sp_segm subfolder are:

• Bayes_opt_param.py: This script conducts Bayesian optimization to
obtain the optimal hyperparameters for the various segmentation algorithms;

• param_evaluation.py: Given the algorithm and the chosen hyperparame-
ters, this script provides the IoU score on a test set;

53



Code structure overview

• spectral_segmentation.py: It performs the preliminary spectral segmenta-
tion;

• Ncut_prior_rgb.py: Implementation of the enhanced normalized cuts
algorithm using the results from the ‘spectral_segmentation.py’ script as
a prior;

• Normalized_cut.py: It contains the implementation of the standard nor-
malized cuts algorithm;

• res_visualization.py: This includes the function used to display the original
image and the various segmentation results in the visualization_image.py
script;

• Ncut_video.py: It provides the function used in video_segmentation.py
for real-time video segmentation;

• take_photo.py: This script captures an image using the local device camera
and stores it in the hands subfolder, as it has been used to capture photos of
an hand on different backgrounds.

54



Bibliography

[1] Jianbo Shi and J. Malik. «Normalized cuts and image segmentation». In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 22.8 (2000),
pp. 888–905. doi: 10.1109/34.868688. url: https://doi.org/10.1109/
34.868688 (cit. on pp. 1, 6, 23, 26).

[2] Ravindra Hegadi, Jonathan L. Gross, George C. Stockman, Linda G. Shapiro,
and Xiaoping Cheng. «A Survey on Traditional and Graph Theoretical Tech-
niques for Image Segmentation». In: 2014. url: https://api.semanticsch
olar.org/CorpusID:8894823 (cit. on p. 5).

[3] Faliu Yi and Inkyu Moon. «Image segmentation: A survey of graph-cut
methods». In: 2012 International Conference on Systems and Informatics
(ICSAI2012). IEEE, May 2012. doi: 10.1109/icsai.2012.6223428. url:
http://dx.doi.org/10.1109/ICSAI.2012.6223428 (cit. on p. 5).

[4] Yuri Boykov and Gareth Funka-Lea. «Graph Cuts and Efficient N-D Image
Segmentation». In: International Journal of Computer Vision 70.2 (Nov.
2006), pp. 109–131. issn: 1573-1405. doi: 10.1007/s11263-006-7934-5.
url: http://dx.doi.org/10.1007/s11263-006-7934-5 (cit. on pp. 5, 39).

[5] Qiuhua Zheng, Wenqing Li, Weihua Hu, and Guohua Wu. «An Interactive
Image Segmentation Algorithm Based on Graph Cut». In: Procedia Engi-
neering 29 (2012), pp. 1420–1424. issn: 1877-7058. doi: 10.1016/j.proeng.
2012.01.149. url: http://dx.doi.org/10.1016/j.proeng.2012.01.149
(cit. on p. 6).

[6] Zili Peng, Shaojun Qu, and Qiaoliang Li. «Interactive image segmentation
using geodesic appearance overlap graph cut». In: Signal Processing: Image
Communication 78 (Oct. 2019), pp. 159–170. issn: 0923-5965. doi: 10.1016/
j.image.2019.06.012. url: http://dx.doi.org/10.1016/j.image.2019.
06.012 (cit. on p. 6).

[7] Chongyang Zhang, Guofeng Zhu, Minxin Chen, Hong Chen, and Chenjian Wu.
Image Segmentation Based on Multiscale Fast Spectral Clustering. 2018. doi:
10.48550/ARXIV.1812.04816. url: https://arxiv.org/abs/1812.04816
(cit. on p. 6).

55

https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://api.semanticscholar.org/CorpusID:8894823
https://api.semanticscholar.org/CorpusID:8894823
https://doi.org/10.1109/icsai.2012.6223428
http://dx.doi.org/10.1109/ICSAI.2012.6223428
https://doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1016/j.proeng.2012.01.149
https://doi.org/10.1016/j.proeng.2012.01.149
http://dx.doi.org/10.1016/j.proeng.2012.01.149
https://doi.org/10.1016/j.image.2019.06.012
https://doi.org/10.1016/j.image.2019.06.012
http://dx.doi.org/10.1016/j.image.2019.06.012
http://dx.doi.org/10.1016/j.image.2019.06.012
https://doi.org/10.48550/ARXIV.1812.04816
https://arxiv.org/abs/1812.04816


BIBLIOGRAPHY

[8] Deepkiran, Mrinal Pandey, and Laxman Singh. «Spectral Segmentation Aug-
mented with Normalized Cuts for Detection of Early Blight Disease in Potato».
In: Procedia Computer Science 233 (2024), pp. 1034–1043. issn: 1877-0509.
doi: 10.1016/j.procs.2024.03.292. url: http://dx.doi.org/10.1016/
j.procs.2024.03.292 (cit. on p. 6).

[9] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. 2012. doi: 10.48550/ARXIV.
1206.2944. url: https://arxiv.org/abs/1206.2944 (cit. on pp. 7, 14).

[10] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning. 2010. doi: 10.48550/
ARXIV.1012.2599. url: https://arxiv.org/abs/1012.2599 (cit. on p. 7).

[11] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2014. doi:
10.48550/ARXIV.1405.0312. url: https://arxiv.org/abs/1405.0312
(cit. on p. 11).

[12] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. «The Pascal Visual Object Classes (VOC) Challenge».
In: International Journal of Computer Vision 88.2 (Sept. 2009), pp. 303–
338. issn: 1573-1405. doi: 10 . 1007 / s11263 - 009 - 0275 - 4. url: http :
//dx.doi.org/10.1007/s11263-009-0275-4 (cit. on p. 15).

[13] Thomas J. Santner, Brian J. Williams, and William I. Notz. «Space-Filling
Designs for Computer Experiments». In: The Design and Analysis of Computer
Experiments. Springer New York, 2018, pp. 145–200. isbn: 9781493988471. doi:
10.1007/978-1-4939-8847-1_5. url: http://dx.doi.org/10.1007/978-
1-4939-8847-1_5 (cit. on p. 15).

[14] M. D. McKay, R. J. Beckman, and W. J. Conover. «Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code». In: Technometrics 21.2 (May 1979), pp. 239–245.
issn: 1537-2723. doi: 10 . 1080 / 00401706 . 1979 . 10489755. url: http :
//dx.doi.org/10.1080/00401706.1979.10489755 (cit. on p. 15).

[15] Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, and
Shi-Min Hu. «Global Contrast based Salient Region Detection». In: IEEE
TPAMI 37.3 (2015), pp. 569–582. doi: 10.1109/TPAMI.2014.2345401 (cit.
on p. 17).

[16] Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai Zheng, Vibhav
Vineet, and Nigel Crook. «Efficient Salient Region Detection with Soft Image
Abstraction». In: IEEE ICCV. 2013, pp. 1529–1536 (cit. on p. 17).

56

https://doi.org/10.1016/j.procs.2024.03.292
http://dx.doi.org/10.1016/j.procs.2024.03.292
http://dx.doi.org/10.1016/j.procs.2024.03.292
https://doi.org/10.48550/ARXIV.1206.2944
https://doi.org/10.48550/ARXIV.1206.2944
https://arxiv.org/abs/1206.2944
https://doi.org/10.48550/ARXIV.1012.2599
https://doi.org/10.48550/ARXIV.1012.2599
https://arxiv.org/abs/1012.2599
https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-1-4939-8847-1_5
http://dx.doi.org/10.1007/978-1-4939-8847-1_5
http://dx.doi.org/10.1007/978-1-4939-8847-1_5
https://doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1109/TPAMI.2014.2345401


BIBLIOGRAPHY

[17] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. «Salient Object
Detection: A Survey». In: ArXiv e-prints (2014). arXiv: arXiv:1411.5878
(cit. on p. 17).

[18] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. «Salient Object
Detection: A Benchmark». In: IEEE TIP 24.12 (2015), pp. 5706–5722. doi:
10.1109/TIP.2015.2487833 (cit. on p. 17).

57

https://arxiv.org/abs/arXiv:1411.5878
https://doi.org/10.1109/TIP.2015.2487833

	List of Figures
	Acronyms
	Introduction
	Literature review
	Preliminary Spectral Clustering
	Method
	Hyperparameter exploration
	Evaluation of color
	Evaluation of space
	Evaluation of knn

	Hypeprarameter tuning
	Metric
	Bayesian optimization using Gaussian Processes
	Image dataset
	Hyperparameter selection

	Results

	Normalized Cuts
	Method
	Hyperparameter tuning
	Results

	Enhanced Normalized Cuts
	The algorithm
	Confidence measure
	Hyperparameter tuning
	Results
	Comparison with PSC and Ncut

	Integration with min-cut/max-flow
	Refined results


	Real-time video segmentation using Normalized Cuts
	Normalized Cuts for video segmentation
	Issues and challenges
	Results

	Conclusion
	Future work
	Code structure overview
	Bibliography

