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Summary

Dynamic job-shop scheduling is a significant challenge in the quickly evolving field
of manufacturing technology. It requires flexible and optimized solutions that
can adapt to changes in operations in real time. The use of deep reinforcement
learning (DRL) to solve the Dynamic Job-Shop Scheduling Problem (DJSP) in
high-utilization systems is investigated in this thesis. The goal of the study is
to build a stable environment based on the OpenAI Gym structure, dynamically
modeling machine operations and job arrivals. By leveraging Double Deep Q-
Learning (DDQN), an advanced DRL technique, the research aims to train an
intelligent agent capable of optimizing job sequences to minimize weighted tardiness
and improve overall scheduling efficiency.

The framework that has been developed integrates essential elements like action
selection, reward computation, and state representation, specifically designed to
manage the unpredictable nature of job arrivals and processing times. The DDQN
agent’s performance is assessed using a simulation-based method in comparison to
conventional dispatching rules under various utilization scenarios. The outcomes
show that in high-utilization environments, the DDQN agent performs noticeably
better than heuristic-based techniques, indicating its potential to improve real-world
manufacturing processes. This work contributes to the larger field of operations
research and industrial engineering by laying the foundation for future studies in
the application of reinforcement learning to intricate, dynamic scheduling problems.
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Chapter 1

Introduction

1.1 Motivation
At a time when technological progress is advancing very rapidly, industries cannot
afford not to embrace innovation and integrate it into their production systems.
In fact, applied mathematics makes a huge innovative contribution to the world
of manufacturing with studies on optimizing its processes. Although Scheduling
problems are classic problems in Operations Research and have been addressed
extensively, the literature has focused more on combinatorial solving of static
cases, giving little consideration to problems involving dynamic and stochastic new
arrivals, addressed more with heuristics. However, recent advances in the field of
artificial intelligence, particularly Reinforcement Learning, have made it possible to
re-address the problem using this technology, attempting to create agents capable
of addressing the scheduling problem even in dynamic and stochastic contexts. This
thesis fits exactly into this context, seeking to lay the groundwork for using the RL
framework in the search for new solutions for Dynamic Scheduling problems.

1.2 Problem Definition
As mentioned before, we are in the context of Dynamic Scheduling problems,
in particular we are considering the Job-Shop Dynamic problem. The Job-shop
Scheduling Problem (JSP) represents a classical challenge in operational research
and production management, involving the allocation of jobs to resources at specific
times. Each job consists of a sequence of operations that must be processed on
specific machines in a predetermined order. The primary objective is typically to
optimize a performance criterion, such as minimizing the total completion time
(makespan), minimizing delays, or maximizing machine utilization. In its static
form, JSP assumes that all jobs, machines, and constraints are known in advance
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Introduction

and the problem consist into finding the best combinatory order for the Jobs on
the machine, respecting the order constraints of the operations.

However, real-world manufacturing environments are rarely static. They are
dynamic and often subject to unpredictable changes, such as machine breakdowns,
urgent job arrivals, changes in job priorities, and variations in processing times.
This variability introduces significant complexity, requiring adaptive and flexible
scheduling approaches. The dynamic Job-shop Scheduling Problem (DJSP) extends
the static version by incorporating these real-time changes and uncertainties, thereby
providing a more realistic and applicable model for practical scenarios.

The shift from static to dynamic scheduling is not merely a theoretical exercise
but a practical necessity for modern manufacturing systems striving for agility
and responsiveness. While static scheduling provides foundational insights and
solutions, dynamic scheduling aims to reflect the operational realities and enhances
the system’s ability to maintain high performance under fluctuating conditions.

1.3 Reinforcement Learning for Dynamic Job-
Shop Scheduling Problems

As we have already seen, the main complexity of this type of problem is its dynamic
nature. This can happen in many ways, from the stochastic arrival of new orders
to the breakdown of some machines or the arrival of particularly urgent jobs. The
simplest way to deal with this dynamism is to use so-called dispatching rules,
heuristics that choose to schedule one job before another using simple priority
rules (the most famous is the so-called FIFO or First In First Out, which involves
scheduling jobs in the order in which they arrive on the system, with the first
one to arrive being executed first). We can easily imagine that these rules, while
providing agile and fast methods, provide sub-optimal solutions, sometimes far
from the best solution.

Can better solutions be found? The literature explores the path of reinforcement
learning to find agents that are able to provide the best possible action (i.e. which
and how to schedule the next job) given the state we are in at the moment this
decision needs to be made.

This problem is very complex and has a large number of variables to be taken
into account: the nature of the scheduling problem (there is not only the classical
job shop), the nature of the dynamic component (new arrivals, machine breakdowns,
priority changes,...), the presence of stochastic factors (new arrivals at random
times, random processing times,...), different objective functions to be minimised
(tardiness, weighted tardiness, makespan, just in time,...). For this reason, the
solutions found in the literature can be very different and will be examined in more
detail in the following sections.
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1.4 Contribution
In this thesis we focus on the Job-Shop problem in which the dynamic factor lies
in the arrival at stochastic times of new jobs with stochastic processing times.
The main contribution is on two fronts. On one side the development of an
Environment from scratch that models the problem, following the reset-action-step-
reward structure of OpenAI’s gym library, making the use of the same Environment
very agile and easily adaptable to different agents. On the other hand, I developed
a Framework for training an Automated Agent using double deep Q-Learning
(DDQN), one of the most advanced deep reinforcement learning techniques to date,
resulting in training the agent and testing its performance on different instances
compared with dispatching rules.
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Chapter 2

Literature Review

As I introduced in the previous section, the problem of dynamic scheduling with
RL is really broad and complex. Even just small differences in problem definition
and/or instances result in very different and specific approaches, especially in the
case of Reinforcement Learning.

This is due to the fact that as much as Reinforcement Learning tries to be
an “Artificial Intelligence” method and we therefore think that it is able to solve
problems in a general way, it actually finds solutions that depend very much on the
state-action combination that we define in our problem and on the condition of the
problem itself. To understand this better, let us take an example concerning this
work: when we are in a dynamic Job-Shop Environment with stochastic arrivals
of new jobs and these jobs have stochastic processing times, it means that each
new job that arrives at the system is (almost certainly) different from the previous
one and each instance generated is different from the others. This means that
the "job space" can be potentially infinite and can quickly become overwhelming
for the RL agent if not trained properly. To address this issue, some approaches
involve selecting only a subset of jobs at each step or defining the state as a set
of aggregate features of the available jobs to have always a fixed dimension of the
state space. The definitions of actions also vary across different approaches. This
illustrates how even minor changes in the problem can lead to significantly different
solutions. In the next section, we will explore these various solutions.

2.1 Job-Shop Dynamic Problem
Let’s give a broader and more technical introduction to the problem of Dynamic
Job-Shop. Note that in this thesis we will not consider its Flexible version but only
the pure Job-Shop. Starting with a general notation introduction:

• Machines: M is the set of m machines, k is the index of a machine, k =
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1, 2, . . . , m

M = {M1, M2, . . . , Mk, . . . , Mm}

• Jobs: J is the set of n jobs, i is the index of a job, i = 1, 2, . . . , n

J = {J1, J2, . . . , Ji, . . . , Jn}

• Operations: Each job Ji has a sequence of ni operations, Oi,j is the j-th
operation of job Ji

OJi
= {Oi,1, Oi,2, . . . , Oi,j, . . . , Oi,ni

}

The Job Shop Problem (JS) is defined as: Each job in J has its distinct route to be
processed on each of m machines, all Ji have the same number of operations, and
ni = m. The Dynamic Job Shop Problem (DJSP) is a variant of the classical Job
Shop Scheduling (JSP) problem where the job and machine environment changes
over time. Unlike the static job-shop problem, where all jobs are known in advance
and do not change, the dynamic version incorporates real-time events, in our case
we consider only new job arrivals.

The objective of scheduling is to optimize resource use to meet due dates at
minimal cost, enhancing inventory management, resource utilization, and customer
satisfaction. These measurements are done through a so-called objective function,
which measures how good that schedule is relative to the objective to be achieved.
Let ri, di, and ci be the release date, due date, and completion date of Ji, respectively.
In some cases, there is a weight wi associated with Ji to address its importance or
value. Some common objective functions to be minimized are:

• Makespan: Cmax = max{ci | i = 1, . . . , n}

• Flow time: Fi = (ci − ri)

• Lateness: Li = ci − di

• Earliness: Ei = max{0, di − ci}

• Tardiness: Ti = max{0, ci − di}

• Absolute deviation: Di = |ci − di|

• Unit penalty:

Ui =
1, if ci > di

0, otherwise
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Figure 2.1: An example of a solution of a Job-Shop scheduling problem with 20
jobs. This kind of representation is called Gantt chart, on the vertical axis we have
the 10 different machines, on the horizontal the time. Each colored bar represent
an operation of a specific job (order) and we can see from this chart the flow of
jobs and their position in the schedule

Schedulers usually use maximum, sum, average or weighted sum of above-
mentioned performance measures or some combinations of them.

Before the development of RL to solve DJSP, solutions were mainly based on a
set of dispatching rules heuristics (very easy and fast to use but clearly sub-timed)
and meta-heuristics that however were often complex and computationally heavy
and slow. So let’s give a look to some works that develop RL algorithms to solve
DJSP.

2.2 Reinforcement Learning in Dynamic Job-
Shop Scheduling problems

Let’s dive deep into the latest researches on Reinforcement Learning in Dynamic
Job-Shop Scheduling problems. In this section I report only papers related to the
Job-Shop problem in the strict sense without considering its flexible variant.

The first work by Inal et al. [1] propose a multi-agent system with reinforcement

6
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learning (MAS-RL) for the DJSS problem. Their approach is designed to minimize
tardiness and flow time, improving the dynamic scheduling capabilities compared
to traditional dispatching rules. The study compares the MAS-RL approach
with FIFO, SPT, and EDD rules across various performance metrics such as
the proportion of tardy jobs, mean tardiness, and mean flow time. The results
demonstrate that the MAS-RL outperforms these traditional methods, particularly
under high workload conditions. However, this work has limitations since although
they are considered stochastic time arrivals, new jobs are only taken from a finite
closed set. This represents a major simplification since having a finite representation
of the state a Q-learning algorithm can be applied, which however cannot be
generalized to the case where new jobs have unfixed and randomly generated
processing times.

Also in the work of Wang at al. [2] fixed instances are considered to measure
the performance of their algorithm, although in a final section they show how
randomly changing some instance operations maintains good performance with
quick retraining of the agent. A policy iteration algorithm is used here, thus
involving policy training, rather than in updating state-action pair values as in
value learning algorithms (e.g., Q-learning). In particular they use PPO algorithm
that is the state-of-the-art for policy iteration. Their objective in this case is the
simple Makespan, so this reward structure incentivizes the agent to develop policies
that effectively schedule jobs to minimize the overall completion time. They use as
benchmark some dispatching rules to test their framework.

Wang and Liao (2023) [3] present an interesting approach in their study where
they simulate the dynamic arrival of jobs in a discrete event simulation (DES)
system. In their system, both the arrival times of jobs and their processing times on
the machines are simulated from exponential and uniform distributions, respectively.
This results in each job being different, leading to a potentially infinite state space
and causing a "dimensional explosion" that can confuse the agent in reinforcement
learning (RL) problems. To address this problem, they opt for an aggregate
state representation. The state is represented by aggregate features-specifically,
the minimum, maximum, mean, and standard deviation of certain job attributes.
These attributes include the number of jobs, their processing times, and the state
of the machines. This aggregated state information helps the RL agent generalize
across different scenarios, thereby increasing the scalability and robustness of the
model. Due to the aggregate nature of the state representation, the agent’s actions
cannot directly involve selecting one job over another. Instead, at each decision
point, the agent chooses one of 11 possible scheduling rules. These rules represent
common scheduling heuristics. The Proximal Policy Optimization (PPO) algorithm
is then used to learn the optimal policy for scheduling the jobs.

Wu et al. [4] also use PPO as learning algorithm but with a different approach on
feature representation side. To deal with the variability of the state dimension they
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represent the state using two matrices, the machine matrix and the remaining time
matrix. The machine matrix captures the status of machines, while the remaining
time matrix tracks the processing time left for jobs. These matrices are treated as
image-like inputs to a convolutional neural network (CNN) within the SPP-Net
which converts variable-sized inputs into fixed-length feature vectors. The action
space in their model consists of paired priority dispatching rules (PDRs), which
include common scheduling heuristics such as Shortest Processing Time (SPT),
Most Work Remaining (MWKR), and Longest Remaining Machine time (LRM),
among others.

Liu et al. [5] propose another interesting approach to solve the scheduling
problem. Like Wang and Liao, they simulate both the arrival times and processing
times of jobs, leading to a potentially infinite state space. However, unlike Wang
and Liao, Riu et al. do not aggregate job features to create a fixed-size state.
Instead, they maintain a job-level state representation. To address the challenge
of having a possible different number of jobs to choose from at each step, they
developed a method to ensure the state always has the same dimensions. Their
experiments showed that the agent rarely had to choose among more than four
jobs at a time. Based on this insight, they defined four dispatching rules, each
selecting one job from the buffer. If fewer than four jobs are in the buffer, some
jobs are repeated in the state. They also included the option to wait for a job that
is about to finish its current operation on the previous machine, adding this to the
state. This approach ensures that the state always has a dimension of five, and the
action corresponds directly to selecting one of these five jobs. They use a Double
Deep Q-learning algorithm (value learning) with tardiness as the objective function
and a reward based on the queuing time of a job at each machine.

8



Chapter 3

Solution Framework and
Implementation

3.1 Markov Decision Process Framework for a
RL solution

Before going into the details of our problem, it is necessary to make a small
introduction to how RL problems are modeled through Markov Decision Processes.
An MDP provides a formalism for decision-making in environments that evolve
over time following both deterministic and stochastic factors. It is defined by the
following components:

• States (S): The set of all possible states in the environment. A state s ∈ S
represents a specific configuration of the environment at a given time.

• Actions (A): The set of all possible actions. An action a ∈ A(s) is a decision
or move that an agent can take when in state s.

• Transition Function (T): The probability of transitioning from one state
to another, given a specific action. Formally, this is defined as T (s, a, s′) =
P (s′ | s, a), which represents the probability of reaching state s′ from state s
when action a is taken.

• Reward Function (R): The immediate reward received after transitioning
from state s to state s′ due to action a. It is denoted as R(s, a, s′). In some
cases, a simpler form R(s, a) is used, representing the expected reward for
taking action a in state s.

• Policy (π): A policy defines the behavior of the agent. It is a mapping from
states to a probability distribution over actions. A deterministic policy is
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denoted as π(s) = a, where the agent always takes action a in state s. A
stochastic policy is represented as π(a | s), the probability of taking action a
in state s.

• Discount Factor (γ): A factor γ ∈ [0, 1] that discounts future rewards. It
represents the degree to which future rewards are considered less valuable
than immediate rewards. A discount factor of 0 means the agent only cares
about immediate rewards, while a discount factor close to 1 means the agent
values future rewards almost as much as immediate ones.

The goal of an RL agent is to find an optimal policy π∗ that maximizes the
expected cumulative reward, often referred to as the return. The return Gt is
defined as the sum of discounted rewards from time step t onwards:

Gt =
∞Ø

k=0
γkRt+k+1

3.2 Problem Description
This study addresses the challenges associated with Dynamic Job Shop Scheduling
Problems (DJSP). Initially, the workshop consists of ninitial = 10 jobs {J1, .., J10}
and m = 10 machines {M1, . . . , M10}. Each job Ji is composed of ni operations (the
number can vary for each job) {Oi1, . . . , Oini

} that must be processed sequentially
on the machines. In this dynamic workshop environment, where nnew jobs arrive
randomly, the processing and sequencing information for each job Ji can only be
determined after it enters the system. The processing time for the operation Oij is
denoted as OPij. We define a due date tightness factor, fi, each job has an arrival
time Ai, and the due date Di is generated based on OPij and fi.

Di = Ai + fi ·
niØ

j=1
OPij (3.1)

Let Ci represent the completion time of job Ji, and Ti denote its corresponding
tardiness and wi his weight. Thus, the optimization objective weighted total
tardiness T (w)

sum is calculated as:

Ti = max(Ci −Di, 0) (3.2)

T (w)
sum =

ninitial+nnewØ
i=1

wiTi (3.3)

A complete and comprehensive list of the nomenclature, description and symbols
of all quantities involved in the problem can be found in the List of Symbols at the
beginning of the document.
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3.3 Modelling of the Simulation-Based dynamic
Job-Shop problem

In Reinforcement Learning (RL), training involves an interactive process between an
intelligent agent and its environment. Consequently, designing a smart scheduling
framework requires focusing on three essential components: the environment, the
agent, and the Markov Decision Process (MDP) model. The MDP, characterized
by its defined states, actions, and rewards, comprehensively describes the intricate
learning process.

I decided to model the environment through the concept of machine buffers:
within the environment, there are m = 10 buffers, each corresponding to a specific
machine. These buffers contain the set of job operations waiting to be executed on
their respective machines. Whenever a job completes an operation on a machine, it
is transferred to the buffer of the next machine in its execution sequence (machine
setup time and job movement time are ignored). Additionally, when a new job
arrives in the system, its first operation is placed in the buffer of the machine
designated for its execution. The agent’s task is to select the best possible operation
from the buffer of a machine whenever that machine becomes idle. Thus, differently
from the static problem where the whole set of operations is considered to optimize
the schedule and the action becomes the entirety of the schedule itself, the dynamic
problem configuration requires selecting one action at a time. Each chosen action
is then incorporated into the schedule sequentially, continuing this process until
the entire simulation is complete.

In our case the 10 static jobs are solved with Gurobi Solver, giving an initial
solution. Anyway I decided that the instant the first of the new jobs arrives at the
system, all operations that have not yet been executed from the static schedule
can be rescheduled (even if they belong to the initial static jobs) and they are
considered as "dynamic jobs" arrived at time 0.

Now we can break down the main components of the Environment with their
implementation

3.3.1 Objective and Scenarios
For this project i chose to minimize the total weighted tardiness of all jobs:

Minimize T (w)
sum =

nØ
i=1

wi · Ti

where wi is the weight indicating the importance of Ji’s tardiness.
The development and validation of scheduling strategy are simulation-based;

three types of factors need to be specified to create the simulation environment:
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• Arrival times of the jobs distributed by an exponential distribution of rate β.
This rate (as will be reported more precisely in the numerical experiments),
is chosen in dependence on the average time of simulated job operations:
Let E(t) denote the expected processing time of operations, In a DJSP in
which jobs visit all machines, the expected utilization rate of the job shop is
calculated as:

E(utilization_rate) = E(t)
β

1̇00%

I preferred to select the right beta in order to have high utilization rate since
in these scenarios the difference between a trained Agent and dispatching rules
can be better seen.

• Each job has processing times on the machines distributed uniformly so
ti,k ∼ U [1, upper_value].

• I defined the due date as the sum of the working times of the operations of
each job times a multiplication factorDi = αi ×

qOi
j=1 ti,j. The multiplication

tightness factor αi = 1.5 for each job.

3.3.2 State representation
As we introduced earlier our Environment consists of a set of 10 machines, each
of which corresponds to a buffer of operations-jobs waiting to be processed on
that machine. In the case of a DJSP it comes naturally to think of the action
as the choice of one of these operations to be mounted on the machine when the
machine becomes idle, so the state will have to somehow give us a description of
the characteristics of the jobs in the buffer so that the agent, "reading" the state,
can make its choice. As explained in the literature review, though, this way of
conceiving the environment brings with it a major problem regarding resolution
with RL, since it is impossible to establish a fixed size of the state since the
number of operations within a machine’s buffer is constantly changing. While
there are those who solve this issue by using a fixed number of aggregate features
of operations in the buffer, such as [3], I decided to take a different approach, as
described in [5], using a Minimum Repetition algorithm.

To understand this algorithm first we need to observe (as is pointed out in the
paper [5]) how in most cases the action to be taken is trivial (there are 0 or 1 jobs
in the queue when the machine gets idle) or there are 2 to 4 jobs in the buffer, with
a few cases where 4 jobs are exceeded. Therefore it is decided as a first step to set
the number of jobs that are considered in our state to 4 whenever an action is to
be taken. With this fixed number, each time a machine becomes idle, 4 jobs must
be selected from the buffer. If the buffer contains fewer than 4 jobs (but more than
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zero, as zero implies a null action), some jobs will be selected multiple times. If
there are more than 4 jobs, only a subset of 4 will be chosen.

There is a need to clarify how this selection called "Minimum Repetition" (MR)
occurs.

Some additional variables are introduced to have more information within the
system: (1) for job Ji, the available time of its succeeding machine is denoted as
SAMi; (2) the time Ji has waited in the current queue is denoted as CQi.

Six features are extracted for each candidate job: (1) ti,k represents the time
required to process the candidate job, which also extends the queuing time for
other jobs if selected; (2) WRi indicates the minimal time before the completion
of a job, showing the potential to reduce system congestion; (3) Si is the slack
time, measuring the urgency of a job; (4) SAMi acts as a surrogate measure of the
queuing time for the job’s next operation; (5) CQi represents the time the agent
has detained the job, indicating the agent’s responsibility for any job tardiness ; (6)
wi, the weight of the candidate job, since, differently from [5], we want to consider
the weight of the jobs in the tardiness.

Than we introduce 4 different well-known sequencing rules are used to select
candidate jobs, whose information would be filled into the state space. These rules
focus on different aspects of jobs to ensure that the candidates possess at least one
unique feature that makes them more urgent or more suitable than other jobs. The
rationales are introduced as follows:

Shortest processing time (SPT): selects the job that can be processed in
the shortest time, to minimize the slack time consumption for other queuing jobs.

Least work remaining (LWKR): selects the job that could exit the system
in the shortest estimated time, to reduce the overall congestion level.

Minimal slack (MS): selects the most urgent job to protect it from being
tardy or incurring too much tardiness.

Work in queue (WINQ): selects the job that exposes its succeeding operation
to the least congestion, to balance the workload of machines and avoid wasting
machine idle time.

Now the MR approach is just an application of these four sequencing rules to
the candidate jobs, included without repetition when the number of jobs in queue
is greater than 3; otherwise, the jobs that conform to more rules would appear
more times in state space. The Pseudocode of MR is presented in Algorithm 1,
while its implementation is presented in Appendix A.1:

We finally obtain a (4x6) state composed of 4 candidate jobs with 6 corresponding
features each.
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Algorithm 1 Minimal-repetition approach to build the state space for Mk

Require: Jk

1: Initialize empty state tensor: st ← [ ]
2: Initialize the buffer job set: Jbuffer ← Jk

3: Initialize the rule set: Rules← [SPT, LWKR, MS, WINQ]
4: Initialize the rule count: x← 1, y ← 1
5: while Jbuffer /= empty and x ≤ 4 do
6: Select Ja from Jbuffer by xth rule in Rules
7: Append feature vector [ta,k, WRa, Sa, SAMa, CQa, wa] to st

8: x← x + 1
9: Delete Ja from Jbuffer

10: end while
11: while x ≤ 4 do
12: Select Jb from Jk by yth rule in Rules
13: Append feature vector [tb,k, WRb, Sb, SAMb, CQb, wb] to st

14: x← x + 1, y ← y + 1
15: end while
16: return st

3.3.3 Action
Following the state definition outlined above, defining the action space becomes
straightforward, as it corresponds directly to the state space. Whenever an action is
required, the agent will select a job from those presented in the state, as determined
by the MR algorithm.

3.3.4 Reward
A significant challenge in DRL-based scheduling lies in the design of the reward
function.

In a dynamic scheduling problem focused on minimizing cumulative tardiness,
the production performance results from the collective behavior of agents over an
extended period. During this time, a series of reward signals (realized tardiness of
jobs) appear and must be associated with the actions that caused them. Addition-
ally, the information about tardiness is quite sparse, as it is only experienced at
the end of each job. To address this, it is necessary to find a way to distribute the
responsibilities of tardiness across each action taken during the whole process.

The idea for Reward shaping arises from the fact that the final tardiness comes
from the resultant of all the times a job was held in a machine’s buffer. In high
utilization environments, with many jobs arriving dynamically, tardiness is itself
unavoidable but each decision made by machine agents in the job’s sequence of
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operations affects subsequent states, subsequent decisions, and the final value of
tardiness itself.

While dispatching rules are "constructive" methods, which look neither at the
past nor the future of the schedule but make a decision only on the current state
situation, in this paper an attempt is made to develop a method that succeeds in
somehow understanding how the agent’s action on each machine affects the actions
of subsequent agents and the final tardiness of the job.

Therefore, again inspired by the work of [5], I decided to implement an Asyn-
chronous Reward system, based on the queueing times (the times spent in the
buffer) of each job on the respective machines. This system is called asynchronous
since only at the end of the job’s path in the system I can compute its tardiness
and queueing times on each machine.

In contrast to a classical MDP, where an action taken in a given state yields
an immediate reward, or a multi-agent system, where multiple agents take actions
simultaneously to receive an immediate joint reward, this system operates differently.
Here, multiple agents (each machine) make sequential decisions on which job to
select from the buffer. They receive a joint reward only after several asynchronous
time steps, as illustrated in fig.3.1.

So I implemented a reward-shaping algorithm based on queue time, where the
joint reward is given upon job completion, once the effects of all actions have been
fully realized. At this stage, the production history is backtracked, and the reward
for each agent’s action is determined based on the duration they contributed to
the job. Some of the crucial points for reward shaping are:

1. All agents along a job’s trajectory incur penalties for any tardiness, but there
are no rewards for early completion. While offering rewards for timeliness
might speed up policy convergence, it could also lead to a focus on maximiz-
ing earliness, thereby decreasing the incidence of tardy jobs but potentially
increasing the overall tardiness accumulated.

2. Sequencing choices impact not only the jobs in the current buffer but also
influence other agents by determining the next buffer the job will join and its
timing. If a job is tardy, agents share responsibility for both the time spent in
their own buffer and the time spent in the subsequent buffer. Agents learn to
avoid overloading other agents’ buffers by adjusting their own buffer times,
validated with a shift-back ratio of α = 0.2.

3. As previously discussed, queuing is unavoidable and tardiness is a common
occurrence in the given training and validation scenarios. To prevent undue
penalization, agents are not penalized for slack time consumption beyond their
control. The queuing time is only counted once jobs are ready for processing.
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Figure 3.1: Different state-action-reward system between MDP, Multi-Agent
MDP and Asynchronous MDP

Figure 3.2: Transition and experience building in proposed algorithm

4. Agents incur harsher penalties for holding up jobs with shorter slack times.
The initial slack time of a job is converted into a criticality factor β ∈ (0, 2)
using a sigmoid function. The sensitivity of β to slack time is controlled by a
parameter δ.

5. An additional criticality factor is introduced to impose greater penalties on
jobs with higher weights, through a "weighting factor" ν. This factor is defined
as νi = 1 + wi, where defining it as one plus the weight (where wi ∈ (0,1))
ensures that the reward value is not diminished excessively, maintaining the
effectiveness of the criticality factor since both factors are multiplied.

6. The magnitude of queue time is scaled by a factor ϕ, ensuring that most
reward values lie within the range [−1, 0], which is suitable for neural network
inputs. The square of the waiting time is used to impose severe penalties for
long waiting durations.

For each job Ji we define some extra notations: (1) queue time before each
operation, denoted as vector Qi = [Q1

i , .., QOi
i ], (2) slack time at the time of job
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arrival at each buffer SAi = [S1
i , .., SOi

i ] and the results will be stored in the reward
vector Ri = [R1

i , .., ROi
i ]. The pseudo-algorithm for reward computation is presented

in Algorithm 2, while the implementation is in AppendixA.2

Algorithm 2 Calculation of reward upon the completion of job Ji

Require: Ti, Qi and SAi

1: Initialize empty reward vector Ri ← [ ]
2: if Ti == 0 then
3: Fill reward vector with 0s: Ri ← [0, . . . , 0], |Ri| = Oi

4: else
5: for j ← 1 to Oi do
6: Re-construct the queue time: RQj

i = (1− α)×Qj
i + α×Qj+1

i

7: Compute the criticality factor: β = 1−
3

Sj
i

|Sj
i |+δ

4
8: Compute the weighting factor: ν = 1 + w

9: Get the reward: Rt
j = −

3
β × ν × RQj

i

ϕ

42

10: Clip the Rtj to [−1, 0]
11: Append Rtj to Ri

12: end for
13: end if
14: return Ri
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3.4 Environment Implementation
We saw how all the components of an MDP have been defined in the project, starting
from the ideas of [5] with some new components. One key part of the project is
missing to be presented is to show how all these components (state-action-reward)
interact with each other in the Dynamic Job-Shop system we have described. The
place where these interactions take place, which evolves the dynamics of the system,
which houses the agents and their actions, and which stores the information of the
states is clearly the Environment. This class is the core of the code implementation
of this work, around which all other objects are built. It is therefore necessary that
its implementation be as general, robust, and modular as possible, so that different
agents and different solution methodologies can be tested within it.

Even if the description of his implementation is not crucial for the results, I
think it’s important to explain how the Environment code have been designed in
order to be used eventually in the future for other researches.

To achieve the most general implementation possible, the best approach was
to follow the structure of the Gymnasium (formerly Gym) library developed by
OpenAI. This framework provides a standardized way to implement environments
in reinforcement learning by defining several common methods, such as:

• init : as in any declaration of a class, the first method to be implemented
is always initialization, within which we instantiate all the initial variables
necessary for the unfolding of the problem

• reset: the reset function is in charge of generating a new episode of the
problem, resetting all variables to their initial conditions in order to re-start
the system evolution process. It is a crucial function especially in training-
evaluation phases since in these situations we have to generate new episodes
several times.

• step: the step function is the central function of the environment, since it is
responsible for its evolution. It takes in the action taken by the agent and
evolves the current state of the system to the next step, changing all the
variables internal to the environment itself.

The pseudo-code of a gym-like Environment that we followed is shown below:

1 c l a s s DynamicPlant (gym . Env) :
2

3 de f __init__( s e l f , instance_name ) :
4 super ( ) . __init__ ( )
5 " implement the i n i t i a l i z a t i o n here "
6
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7 de f s tep ( s e l f , a c t i on ) :
8

9 reward = compute_reward ( ac t i on )
10 obs = get_next_state ( ac t i on )
11

12 i n f o = {}
13 s e l f . current_event += 1
14 done = done_condit ion
15

16 re turn obs , reward , done , i n f o
17

18 de f r e s e t ( s e l f , seed=None ) :
19

20 s e l f . current_event = 0
21 s e l f . s c e n a r i o = simulate_new_scenario
22 obs = g e t _ i n i t i a l _ s t a t e
23

24 re turn obs

And the structure of the main function is something like:

1 i f __name__ == ’__main__ ’ :
2

3 env = DynamicPlant ( instance_name , n_new_orders=10)
4 agent = Agent ( env )
5

6 done = False
7 obs = env . r e s e t ( )
8

9 whi le not done :
10 ac t i on = agent . get_act ion ( obs )
11 obs , reward , done , _ = env . s tep ( ac t i on )
12 pr in t ( reward , obs )

This outline presents only the structural foundation of the algorithm. The
problem we are addressing is significantly more complex and involves numerous
intricate challenges that require in-depth examination. Therefore, the following
sections will detail each function I have implemented, providing insight into the
solutions developed for this problem. Before deep diving into the implementation
of these functions , it’s important to note that the DJSP can be modeled and
approached in various ways. The method I chose for this project addresses the
problem using a "single" approach, focusing on the evolution of the system one
operation at a time. When an operation is completed on a machine, the agent’s
task is to select only the next operation for that machine, repeating this process
until the end of the simulation. An alternative approach is to reschedule the entire
set of future operations whenever a new job enters the environment. This method is
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not "single," as it aims to provide a complete schedule rather than just determining
the next operation.

3.4.1 Init Function
The initialization of the environment class contains some essential steps:

• As we mentioned earlier our system consists of 10 static jobs to which dy-
namic jobs are added later via stochastic arrivals. In the initialization of the
environment, the first step that is performed is to read the static instance
(and also the dynamic one, which, however, can be regenerated multiple times
in the reset in case of multiple training or evaluation) and its solution via the
commercial solver Gurobi that determines the best initial solution.

• Some functions such as timing, envmanager, and reward are initialized that
will be needed later in the step function

• The dimensions of the state and action tensors needed for the Deep Q-learning
algorithm are defined

The full implementation of the Init function can be found in Appendix A.3.1

3.4.2 Reset Function
The reset function serves several purposes:

• It generates new dynamic instances when we are in a training or evaluation
scenario where we want to keep the static solution unchanged (or avoid
recomputing it, as it is particularly time-consuming) and only generate new
dynamic jobs.

• During the reset, all system variables are initialized, establishing the connection
between the static and dynamic parts. At the moment of the first dynamic
arrival, the number of completed operations for each job up to that point
is counted, machine buffers are filled, and all necessary information for the
simulation’s start is defined.
This includes one of the fundamental elements of the whole code, which is the
event list. Within this list are entered all the arrival times of the simulated
dynamic jobs, and will then be entered during the evolution of the system the
end-of-processing events of a machine when a job is mounted on it.

The pseudoalgorithm 3 shows the main steps of the reset function, the full
implementation of the Reset function can be found in Appendix A.3.3
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Algorithm 3 Env Reset Function
1: if mode == ’train’ then
2: Generate dynamic jobs instance with train parameters
3: end if
4: if mode == ’evaluate’ then
5: Generate dynamic jobs instance with evaluation parameters
6: end if
7: Initialize buffers, finished op per job counter, event list
8: Fill the event list with dynamic arrivals
9: Pop the first arrival event with his timestamp

10: Compute the number of finished op per job at timestamp
11: Fill the buffers at timestamp
12: Create the current "machine end operation" events
13: Select the first machine where to take action
14: Get first state

3.4.3 Step Function
The step function is the core of the evolution of the environment. It receives
incoming action taken by the agent and is responsible for making sure that this is
recorded in the environment and that it evolves accordingly. Four main operations
take place within it:

The first is the "timing" operation. It is so called since the action taken by
the agent corresponds just the operation to be mounted on the machine next, but
without any timing indication. This function then takes the operation that is chosen
by the agent and places it appropriately in the schedule, assigning the starting and
ending time. Clearly in the "single" solving method we have adopted this operation
is trivial since the start time corresponds with the instant the decision is made,
adding the processing time of the operation we get the end time.1

Then we have the "next" function. This function performs several critical tasks:

• It updates the buffers when a machine finishes processing a job, either moving
the job to its new buffer or removing it from the system.

• It advances the time by moving the event clock forward.

1The timing operation is clearly more important in the case of a "non-singular" solving method
in which the action returned to me by the agent is the ordered sequence of all operations until
the end of the schedule on each machine without any indication of time. At that point my timing
fuction must construct the times of the entire schedule from the order of operations set in the
action.
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• It handles job arrival events by placing the new job in the buffer corresponding
to its first operation.

Algorithm 4 Env Step Function
1: if Action a is not None then
2: Add action a to the schedule (timing)
3: Compute partial reward r̃ for actual state-action
4: Create machine end operation event for the current action
5: end if
6: if there is any idle machines with non-empty buffer Midle = [..., Mi, ...] then
7: Pop first idle machine Mk = Midle[0]
8: Use MR algorithm to get the state from Mk buffer
9: else ( so no idle machines →Midle = ∅ )

10: Evolve the Env to the next event:
11: if next event type is end operation Ol of the job Ji on machine Mj then
12: Move job Ji to the next machine buffer or outside the Env if Ol is the

last operation
13: Update n_finished_operation(Ji)+ = 1
14: Set Mj as idle
15: else if next event type is new job Jn arrival then
16: Add first operation O1 of Jn to the buffer of the respective machine
17: Set n_finished_operation(Jn) = 0
18: end if
19: end if

At each step, this function returns the current state, allowing the agent to take
appropriate actions.

The full implementation of step function can be found in Appendix A.3.2

3.5 Double Deep Q-network (DDQN) Agent
So far, we have explored the structure of the Dynamic Job-Shop Scheduling Problem
(DJSP), the definition of all the components of the Markov Decision Process (MDP),
and their interactions within the environment, including the implementation details.
Now, it is time to introduce the agent responsible for making decisions. Here, I
will provide a brief explanation of the reinforcement learning framework used for
the decision agent in this project: Double Deep Q-Learning, building upon Deep
Q-learning. More detailed information about the agent’s training and testing will
be provided in the next chapter.
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3.5.1 Double Deep Q-learning
Deep Q-learning (DQN) [6] has established itself as a powerful technique in the
field of Reinforcement Learning (RL), particularly for handling environments with
high-dimensional state spaces as in our case. However, one significant limitation
of DQN is its tendency to overestimate action values, a bias that can lead to
suboptimal policy learning.

This overestimation arises from DQN’s use of the maximum action value as part
of its Q-value update rule. Specifically, the same network is used to both select
and evaluate the best action, which can result in overly optimistic value estimates.
To address this issue, Double Deep Q-learning (DDQN) was introduced in van
Hasselt et al. paper [7] of 2016 , incorporating a key modification to decouple
action selection from action evaluation, thereby reducing the overestimation bias.

These are the key steps and components of the training of a DDQN :

• Experience Replay: The agent stores its experiences, defined as tuples
(st, at, rt, st+1), in a replay buffer D. This buffer helps in breaking the cor-
relation between consecutive samples and enables the agent to learn from a
diverse set of experiences.

• Mini-Batch Learning: From the replay buffer D, we sample a mini-batch
of N experiences {(si, ai, ri, si+1)}N

i=1. This mini-batch is used to perform
updates on the network.

• Target Network: The DDQN maintains two separate neural networks:

– The online Q-network Q(s, a; θ) with parameters θ

– The target Q-network Q′(s, a; θ−) with parameters θ−

The target network’s parameters θ− are periodically updated to match the
online network’s parameters θ to provide stable Q-Value targets.

• Bellman Equation: The Bellman equation is used to compute the target
Q-Value yi for each experience in the mini-batch. For DDQN, the target
Q-Value is computed as:

yi = ri + γQ′(si+1, arg max
a

Q(si+1, a; θ); θ−)

where:

– ri is the reward received
– γ is the discount factor
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– Q′(si+1, arg maxa Q(si+1, a; θ); θ−) is the value of the next state si+1, using
the action chosen by the online network and evaluated by the target
network.

• Double Q-Learning Update: In Double Q-Learning, the action a′ that
maximizes the Q-Value for the next state is selected using the online network,
and the value of this action is obtained using the target network:

a′ = arg max
a

Q(si+1, a; θ)

yi = ri + γQ′(si+1, a′; θ−)

• Loss Function: The difference between the predicted Q-Values Q(si, ai; θ)
and the target Q-Values yi is measured using a chosen loss function (in this
case is Huber Loss):

L(θ) = 1
N

NØ
i=1

l(yi, Q(si, ai; θ))

where the Huber Loss l is defined as:

l(y, Q) =


1
2(y −Q)2 for |y −Q| ≤ δ,

δ|y −Q| − 1
2δ2 otherwise.

Here, δ is a threshold parameter that controls the point at which the loss
function transitions from quadratic to linear.

• Optimization: To minimize the loss L(θ), we use backpropagation to compute
the gradients of the loss with respect to the network parameters θ:

θ ← θ − α∇θL(θ)

where α is the learning rate, and ∇θL(θ) represents the gradients of the loss
function.

The primary distinction between DDQN and DQN is the method used to address
overestimation bias. In DQN, the Q-value update uses:

y = r + γ max
a

Qθ′(s′, a).

This formulation can lead to overestimation because the same network is used to
determine both the action and its value. In contrast, DDQN’s update rule:

y = r + γQθ′(s′, arg max
a

Qθ(s′, a)),
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separates the action selection process (handled by the online network) from the
action evaluation process (handled by the target network). This separation reduces
the likelihood of overestimation, leading to more accurate Q-value estimates and,
consequently, more reliable policy learning.

By mitigating the overestimation bias, DDQN not only enhances the stability of
the learning process but also improves the overall performance of the agent across
various environments. This modification, while conceptually straightforward, has a
profound impact on the effectiveness of the learning algorithm, making DDQN a
robust choice for many RL applications.

3.5.2 DDQN Agent implementation
As we saw in the previous section, the Double Deep Q-Learning algorithm works
through two neural networks, so-called Q-networks, which are updated during
training. The network that is returned at the end of the training and works as
the agent, providing action values based on the current state, is referred to as the
"Online Network."

The distinction between these two Q-networks is made to enhance the stability
and accuracy of the learning process and every few steps, one network’s weights
are updated with the weights of the other to ensure they remain aligned. So even
if we have two separate networks, they work exactly in the same way, thus we need
them to be identical.

For this task, it is unnecessary to use overly complex networks that demand
extensive training and large datasets. Instead, simpler networks that can still make
sensible decisions based on the available data are preferable. An ideal choice in
this scenario is the Multi-Layer Perceptron (MLP), the simplest network structure.
This structure includes:

• An input normalization and concatenation layer to process the data efficiently.
Normalization ensures that each state feature is appropriately weighted. With-
out normalization, features such as tardiness weight might be undervalued
compared to features like slack time, which can be three orders of magnitude
higher.

• Six hidden layers of neurons, respectively with dimensions [64, 48, 48, 36, 24, 12]

• Each neuron is activated by a tanh activation function and the loss function
used is the Huber Loss function.
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Figure 3.3: Visula representation of the Network. The input state is a 4x6 tensor
(x64 that is the dimension of minibatch). Then we have a normalization layer that
normalizes within the minibatch and a concatenation layer that transforms the
4x6 tensor into a 1x24. Then an MLP structure with 64x48x48x36x24x12 Hidden
Layers and an output of dimension 4 (4 possible jobs to choose).
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Chapter 4

Numerical Results

4.1 Agent Training
In the previous chapter we saw how DDQN training takes place theoretically, in
this section we will focus on its implementation and numerical results.

Indeed, it is crucial to focus meticulously on all the hyperparameters involved in
these kinds of algorithms since they are very sensitive to them. One has to choose
the right learning rate, the length of the training episodes and their number, how
often to update the weights of the online network (do a training step) and how
often to synchronize the target network, after how many steps to update the replay
memory with new data, and how big the minibatches extracted from the replay
memory should be. Several tests were done, observing the performance of the trailed
model and the loss time series to find the best combination of hyperparameters.

The best result was found by generating 1 training episode, consisting of 3600
jobs (each job has between 7 and 10 operations, considering also the steps where
there are no possible actions to be taken we get about 36k steps). The first 3600
steps are so-called "warmup" steps, i.e., actions are chosen randomly instead of
via the online network, to ensure a fair degree of exploration and to initially fill
the replay memory. The replay memory has a maximum size of 1024 and at each
training step a minibatch of size 64 is sampled. Every 2 steps an iteration of training
is done (so we have about 18k iterations of training). The replay memory is updated
with new experiences every 100 steps1 and the target network is synchronized with

1This parameter proved crucial for the success of the training process. In previous sections, I
explained that rewards are "asynchronous" and can only be computed after several steps. Setting
the number of these steps too low poses a problem: many jobs within a short time frame would
not reach completion, making it impossible to determine if they are tardy or not. Consequently,
we wouldn’t be able to assign the correct reward for different actions, rendering several data points
unusable. On the other hand, using too high a value results in the replay memory being updated
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the online network every 500 steps. Finally, the best learning rate found is 0.005
which is updated every 4000 steps with a decay rate of 0.9 up to 0.001. The
complete set of hyperparameters can be found in table 4.1

Hyperparameter Value
Number of Episodes 1
Number of Jobs per Episode 3600
Number of Operations per Job 7 to 10
Interarrival time of new jobs β 28.5
Operation processing time uniform distribution Between[1,50]
Total Steps per Episode ~36,000
Warmup Steps 3600
Replay Memory Size 1024
Mini-batch Size 64
Training Steps Interval Every 2 steps
Training Iterations ~18,000
Replay Memory Update Interval Every 100 steps
Target Network Update Interval Every 500 steps
Learning Rate 0.005
Learning Rate Update Interval Every 4000 steps
Learning Rate Decay Rate 0.9
Final Learning Rate 0.001
Gamma (Discount Factor) 0.95
Epsilon (Initial Exploration Rate) 0.4
Epsilon Decay Rate 0.95
Minimum Epsilon 0.1

Table 4.1: Hyperparameters for DDQN Training

In Fig.4.1 I show the time series of the loss function of the training experiment.
The pseudocode 5 explains the main steps of the DDQN training framework.

The full implementation of the training framework is shown and explained in
Appendix A.4

too infrequently, causing the agent to overfit on the limited data available, which significantly
degrades performance. After several attempts, I found that updating the replay memory every
100 steps provides the best balance and yields optimal results.
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Algorithm 5 Duble deep QNetwork learning
1: Initialize environment E, online network Qθ, and target network Q′

θ−

2: Initialize target network Q′
θ− with the same parameters as online network Qθ

3: Initialize replay memory D
4: for episode in range(num_episodes) do
5: Reset environment E
6: Clear replay memory D
7: Initialize Done to False and step_count to 1
8: while not Done do
9: if step_count < warmup_steps then

10: Select random action a′

11: else
12: Get action with online network a′ = arg maxa Q(s, a; θ)
13: end if
14: Execute action a′, observe temporary reward r̃ and next state s′

15: Append state s, action a′, and temporary reward r̃ to memory D
16: Set s = s′ and increment step_count
17: if step_count mod memory_step_update == 0 then
18: Compute final reward for the last memory_step_update state-action

pairs
19: Update the memory D with the final reward
20: end if
21: if step_count mod train_step == 0 then
22: Sample minibatch of 64 state, action, reward, next state

(s, a, r, s′)i=1,...,64 from D
23: for each sample i in minibatch do
24: Choose action a′ = arg maxa Q(s′, a; θ)
25: Compute yi = ri + γQ′(s′, a′; θ−)
26: Compute loss L(θ) = 1

N

qN
i=1 l(yi, Q(si, ai; θ))

27: Perform a training step θ ← θ − α∇θL(θ)
28: end for
29: end if
30: if step_count mod update_step == 0 then
31: Sync weights of Qθ and Q′

θ−

32: end if
33: if step_count mod update_params_step == 0 then
34: Update learning rate α and ϵ
35: end if
36: end while
37: end for
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Figure 4.1: This plot shows the time series of the moving average of the loss
during training. During the approximately 18,000 training iterations (x-axis), we
observed a significant decrease in the loss value. The loss decreased from an initial
value of about 0.25 to values around 0.07, marking a reduction of approximately 70
percent. However, occasional jumps in the moving average of the loss are observed.
These jumps are likely due to the sampling of state-action-reward data points from
the replay memory that contain particularly high (in the sense of particularly low
negative) rewards, resulting in large fluctuations in the loss value.

4.2 Agent performances evaluation

Having reached this point we can finally show the performance of the DDQN trained
agent in different evaluation settings. As a first thing, we should mention that this
agent was trained in a high-utilization system. This means having processing times
evenly distributed between [1,50] (with mean value 15.5) and an average dynamic
job interarrival time β = 28. As we already pointed out in Sec.3.3.1 this means an
utilization rate of ∼ 90%, so an high-utilization rat

So, of course, I will test it under the specified optimal conditions to highlight
its strengths. Additionally, I will expose it to various other environments and
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conditions to assess its robustness. This dual approach not only emphasizes the
agent’s capabilities but also reveals its weaknesses. It’s important to remember
that reinforcement learning (RL) is a numerical and model-free algorithm, making
it particularly sensitive to changes in data and parameters. Although training
such an algorithm can be computationally intensive, achieving the best results
necessitates retraining whenever conditions are altered.

The agent will be tested against different dispatching rules agents:

• FIFO: the baseline benchmark is clearly the FIFO agent. This agent just
choose, each time an action must be taken, the job that entered the system
before, i.e. the job with the lowest Job id. Using FIFO is clearly the easiest
way to solve a DJSP problem so we need to have better performances respect
to it with our custom agent.

• WINQ: The second agent chosen follows the least Work In Queue rule. As
observed previously, this agent selects the job with the minimum SAM, or
"Available time of the Succeeding Machine." For each job in the buffer, the
agent identifies the machine required for the next operation and computes the
total processing times of both the ongoing operation and those queued in the
buffer of that machine. This calculation serves as an indicator of potential
congestion at the succeeding machine, which the agent aims to minimize when
selecting a job. This approach helps in avoiding bottlenecks and ensuring
smoother workflow.

• PT+WINQ+S: This is the first of the two Composed Agents developed,
referred to in the plots as ComposedAgent1. This agent selects the job that
minimizes the sum of three components: the processing time of the job’s
operation in the buffer, the job’s SAM (Available time of the Succeeding
Machine explained before), and its slack time.

• PT+LWKR+S This is the second of the two Composed Agents developed,
referred to in the plots as ComposedAgent2. This agent, similarly to the
previous one, selects the job that minimizes the sum of three components: the
processing time of the job’s operation in the buffer, the job’s Work Remaining
(the sum of the processing times of all the operations not processed yet), and
its slack time.

All evaluation tests involve generating 100 distinct dynamic scenarios for each
agent, with each scenario containing 300 jobs. We chose a simulation with a high
number of jobs to better highlight the differences between the agents. With a small
number of jobs, it’s more likely to encounter lucky instances where simpler strategies,
like FIFO, outperform more complex agents. However, with a large number of jobs,
such fluctuations are less frequent, as only agents consistently making good decisions
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throughout the simulation achieve favorable results, eliminating the impact of a
few fortunate choices. The initial static solution remains consistent across all
scenarios, and a seed ensures that each agent is tested under identical conditions.
The evaluation scenarios are controlled by two key parameters: the interarrival time
(β) and the extreme values of the processing time distribution on the machines.
Together, these parameters determine the utilization rate of the simulation. The
subsequent sections will present the results.

4.2.1 DDQN in high-utilization systems outperforms Dis-
patching rules

First, we decided to test the agent in a system as similar as possible to the
one in which we trained it. We set the interarrival times to β = 28 and evenly
distributed the processing times between [1,50], achieving a utilization rate of 90%.
As shown in plot 4.2, the QNetwork Agent demonstrates superior performance
in this configuration, significantly outperforming all other agents. Specifically,
over three-quarters of the QNetwork’s performance results fall below the median
value achieved by FIFO. The median weighted tardiness value for the QNetwork is
approximately 115, which represents an improvement of over 30% compared to the
average performance of FIFO, as highlighted in Fig 4.3

Figure 4.2: The plot shows the differences in the weighted tardiness between
all the different agents with 90% utilization rate (β = 28, t : U ∼ [1,50]). The
dashed black line represent the median performance of FIFO Agent that is used as
benchmark, the dashed purple line represent the median performance of QNetwork
agent that is our result
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Figure 4.3: This plot, like the previous one, aims to illustrate the performance
differences among the agents under the same settings, 90% utilization rate (β =
28, t : U ∼ [1,50]). However, unlike the last plot, this one presents the performance
differences in terms of percentages relative to the benchmark of FIFO’s mean
weighted tardiness. The blue horizontal line is the FIFO’s mean weighted tardiness
value used as a baseline.

While it’s important to assess the "average" performance to understand an
agent’s overall effectiveness, analyzing the outcomes of individual instances is also
crucial. We seek not only that an agent performs well on average but also that it
demonstrates reliability. This means the agent should not produce extremely poor
results in any instance, and its performance should remain within a reasonable
range without excessive fluctuations. Additionally, a good agent should consistently
add value relative to other agents, frequently outperforming them in the same
scenarios. Even when it does not come out on top, its performance should not
drastically lag behind that of the winning agent.

As can be seen from the plot 4.4 in this setting the QNetwork agent is not
only the agent that has the best performance "on average" but is also the one
that performs best overall on individual instances since it has the lowest weighted
tardiness (it is therefore the "winner") 49 times out of 100. We can also observe
an important finding about how FIFO , in this high utilization setting does not
result in even a single instance out of 100 in which it has the best performance.
So for these settings we can say that QNetwork is for sure the best Agent among
the ones chosen for the comparison, followed by Winq. In fact Winq has the best
performance in almost 1/3 of the 100 simulations.

Therefore, I have included a last plot 4.5 in this section that compares the
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Figure 4.4: The winning counts for weighted tardiness on 100 simulated instances.
A seed is fixed before the simulation so each Agent is tested on the same instances.
As we can see the best performing Agent is QNetwork, followed by Winq, while
Fifo doesn’t win in a single instance.

performance of QNetwork and Winq across all individual instances by measuring
the difference in their weighted tardiness. Since lower tardiness values are preferable,
the plot specifically illustrates the discrepancies in performance between the two
agents. It highlights that when QNetwork underperforms relative to Winq, the
difference in their tardiness is lower, indicating that QNetwork’s performance is
closer to that of Winq. Conversely, when Winq underperforms, the difference
is more pronounced, showing that Winq tends to be significantly more tardy
than QNetwork, showing also some spikes of very bad performances. This visual
representation effectively demonstrates the consistency and relative performance of
QNetwork compared to Winq.
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Figure 4.5: This plot displays the performance differences (QNet−Winq) between
the QNetwork and Winq agents. The blue bars represent episodes where the
QNetwork Agent performs worse, meaning it is more tardy than Winq, resulting
in a positive difference. Conversely, the orange bars indicate episodes where the
Winq Agent performs worse, meaning it is more tardy than QNetwork, leading
to a negative difference. As observed, the average difference is approximately
83 when Winq performs worse, and around 54 when QNetwork is less effective.
This indicates that even when QNetwork underperforms compared to Winq, the
degree of its tardiness is relatively moderate, underscoring its competitive reliability
against Winq.

4.2.2 DDQN in low-utilization systems is outperformed by
Dispatching rules

As expected, not in all cases the DDQN agent performs better than traditional
dispatching rules. In fact, we had already anticipated that we expected a worse
performance when the degree of system utilization would drop, that is, in cases
where the ratio of the average processing time to the average arrival time drops.
We generated an evaluation setting with β = 36.5 and processing times uniformly
distributed between [1,50]. So we are in a utilization setting of ∼ 70%, quite
lower than the level we utilized to train the agent. As we can see in Fig. 4.6 the
QNetwork Agent performs again better than Fifo, but with poor performances if
compared with previous setting and wit other dispatching rule Agents.

This is probably due to several factors: first in a system with a lower utilization
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rate the number of jobs that are buffered when we have to make a decision can
often be lower and this leads somewhat to leveling the performance of the various
agents since it is less likely to make many different choices. Additionally, the agent
was trained in a high-utilization environment characterized by quick reactions
and frequent turnovers of operations on the machines. This training environment
encouraged the agent to prioritize specific job characteristics that are advantageous
in highly congested settings—such as selecting jobs with low work-in-queue to
prevent system clogging. However, these strategies may not yield the same benefits
in systems where the utilization level is lower, where such selective decision-making
is less critical.

Figure 4.6: This plot, similarly to the previous one, wants to show the differences in
performance of the Agents with these settings. differently from the last plot i wanted
to show the performance difference in percentage respect to the benchmark of FIFO
mean weighted tardiness. Clearly the best result is again the ComposedAgent1
that beats FIFO average performance on 75% of the cases

Another curious observation is that, despite FIFO being by definition a par-
ticularly greedy agent, it actually achieves the best performance in 25% of cases
according to the plot 4.8. This is because FIFO, as defined in this system, is highly
subject to statistical fluctuations: FIFO always chooses the operation of the job
that entered the system first, thus favoring the earliest jobs and often causing the
later ones to be tardy. Since jobs are generated with random processing times
and especially random weights, there can be particularly fortunate scenarios where
many jobs towards the end of the simulation have low weights, resulting in very
low weighted tardiness, and making FIFO the best performer. On the flip side, just
as there are very fortunate scenarios, there are also very unfortunate ones, where
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Figure 4.7: This plot shows the differences in performance of the Agents with
these 70% utilization settings. We can see how the performance of QNetwork
agent are just sligthly better than FIFO because the distribution of results is
tighter so avoids very high tardiness results. For sure the best performing agent is
ComposedAgent1 with these settings.

the weighted tardiness is extremely high for the opposite reason.
Other agents, including QNetwork, adopt a more balanced approach, which may

not always yield the best result but certainly has a tighter distribution of outcomes.
They might not always achieve the best solution but avoid disastrous results in
unfortunate cases.
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Figure 4.8: The winning counts for weighted tardiness on 100 simulated instances
for 70% utilization rate. A seed is fixed before the simulation so each Agent
is tested on the same instances. As we can see the best performing Agent is
ComposedAgent1, instead in this case QNetwork Agent has quite poor performances
in terms of winning counts.

4.2.3 DDQN in extremely high-utilization systems outper-
forms Dispatching rules

Another very interesting result, in my opinion, is the one concerning systems with
an even higher utilization rate. In the title of the section, it has been defined as
"extreme" because a value of β was chosen such that the utilization rate exceeds
even 100%. In a real setting, this is hard to imagine since a production plant would
hardly accept orders at a faster rate than it can process them, certainly incurring
in tardiness in deliveries. However, we can observe that with the parameters of
β = 22 and the usual processing times distributed as U ∼ [1,50], resulting in a
utilization rate of 115%, the QNetwork agent performs excellently compared to
other heuristic agents. As we can see from fig.4.9, with these settings, all the other
agents do not have comparable performances, unlike the setting with a utilization
rate of 90% where Winq had performances close to our QNetwork agent.
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Figure 4.9: The plot shows the differences in the weighted tardiness between
all the different agents with 115% utilization rate (β = 22, t : U ∼ [1,50]). The
dashed black line represent the median performance of FIFO Agent that is used as
benchmark, the dashed purple line represent the median performance of QNetwork
agent that is our result

In particular the QNetwork agent gains more than 20% (see fig 4.10) of perfor-
mance respect to Fifo, solidly outperforming the other agents.

Even from the pie chart fig.4.11, we can see how, in terms of winning rate,
QNetwork is dominant compared to the other agents with a winning rate of as
much as 60% in this setting.

Therefore, it is understood from this further test how the QNetwork agent
has somehow learned during training to manage highly congested environments,
with high utilization frequency and a wider range of operations to choose from
in the queues, rather than working in low-utilization systems where it is easily
outperformed by heuristics.
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Figure 4.10: This plot, like the previous one, aims to illustrate the performance
differences among the agents under the same settings, 115% utilization rate (β =
22, t : U ∼ [1,50]). However, unlike the last plot, this one presents the performance
differences in terms of percentages relative to the benchmark of FIFO’s mean
weighted tardiness. The blue horizontal line is the FIFO’s mean weighted tardiness
value used as a baseline.

Figure 4.11: The winning counts for weighted tardiness on 100 simulated instances
for 115% utilization rate. A seed is fixed before the simulation so each Agent is
tested on the same instances. As we can see the best performing Agent is QNetwork
with 60%, while Fifo doesn’t win in a single instance.
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Chapter 5

Conclusions

This thesis work contributes to the field of Operations Research, specifically focusing
on dynamic scheduling. The primary contributions are twofold: both in the areas
of implementation and modeling, and in the development of a benchmark solution
method inspired by the work of Liu et al. [5].

Firstly, this work has enabled a flexible and robust modeling of the problem
with a "single operation" approach that can be utilized in future research and for
the development of new agents easily integrated into the code. This achievement
was made possible through extensive literature research on state-of-the-art methods
for modeling and solving the Dynamic Job Shop Scheduling Problem (DJSP), as
well as a computational and IT study of the best frameworks and structures to
ensure flexibility and robustness.

Secondly, it focused on developing a reinforcement learning solution using Double
Deep Q-learning to surpass simple heuristic solutions.As observed from the results,
when the DDQN agent is tested in a high-utilization environment, particularly
with an utilization rate around 90%, it yields significantly positive outcomes. The
agent improves performance in terms of weighted tardiness by an average of 30%
compared to FIFO, with a winning rate of nearly 50%. However, it is also noted
that slightly more sophisticated dispatching rules (such as WINQ) can deliver good
performances, with (clearly) a higher degree of explainability and interpretability
compared to an agent based on a neural network.

In contrast, in systems with a lower utilization rate, the performance of the agent
predictably declines, and some dispatching rules outperform it. This is because
reinforcement learning is a numerical algorithm that allows the agent to prioritize
certain state features over others, and when trained in a high-utilization system
and tested in a low-utilization one, the learned policy might no longer be optimal.

Probably, seeing how different agents can have the best performance in various
situations, future improvements in dynamic scheduling might involve developing
systems capable of selecting among different agents based on the state features each
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time an action needs to be taken, to fully leverage the potential of each individual
agent.

In conclusion, this work leaves considerable scope for improvement in the
potential development of new agents and methods that can be compared with those
defined here and used as benchmarks.
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Code Implementation

A.1 MR algorithm implementation

1 de f get_state ( s e l f ) :
2 # Check i f the re i s no ac tua l machine in the environment
3 i f s e l f . env . actual_machine i s None :
4 # Return a zero matrix s t a t e
5 s t a t e = np . z e r o s ( ( 4 , 6) , dtype=np . f l o a t 3 2 )
6 re turn s t a t e
7 e l s e :
8 bu f f e r_opera t i on s = [ ]
9

10 # I t e r a t e through the ope ra t i on s in the b u f f e r o f the ac tua l
machine

11 f o r op in s e l f . env . b u f f e r s [ s e l f . env . actual_machine ] :
12 job_id = op [ ’ job_id ’ ]
13 ope ra t i on s = s e l f . env . a l l_ope ra t i on s [ job_id ]
14 f i n i sh ed_ope ra t i on s = s e l f . env .

n_finished_operat ions_per_job [ job_id ]
15 process ing_time = op [ ’ process ing_time ’ ]
16 buf fer_start_t ime = op [ ’ bu f f e r_star t ing_t ime ’ ]
17

18 # Calcu la te the remaining p ro c e s s i ng time
19 remaining_process ing_time = sum( op [ ’ process ing_time ’ ] f o r

op in s e l f . env . a l l_ope ra t i on s [ job_id ] [ f i n i sh ed_ope ra t i on s : ] )
20

21 # Calcu la te s l a c k time
22 s lack_time = s e l f . env . a l l_ job s [ job_id ] [ ’ due_date ’ ] − s e l f

. env . next_event . timestamp − sum( op [ ’ process ing_time ’ ] f o r op in
ope ra t i on s [ f i n i sh ed_ope ra t i on s : ] )

23

24 # Determine the next machine
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25 next_machine = ope ra t i on s [ f i n i sh ed_ope ra t i on s + 1 ] [ ’
machine ’ ] i f f i n i sh ed_ope ra t i on s + 1 < s e l f . env . max_operations [
job_id ] e l s e None

26

27 i f next_machine i s not None :
28 # Sum the p ro c e s s i ng t imes f o r ope ra t i on s in the next

machine ’ s b u f f e r
29 sum_time_next_machine = sum( op [ ’ process ing_time ’ ] f o r

op in s e l f . env . b u f f e r s [ next_machine ] )
30

31 # Find the cur rent opera t i on in the next machine ’ s
s chedu le

32 next_machine_current_op = s e l f . env . current_schedule [
33 ( s e l f . env . current_schedule [ ’ machine ’ ] ==

next_machine ) &
34 ( s e l f . env . current_schedule [ ’ t_star t ’ ] <= s e l f . env

. next_event . timestamp ) &
35 ( s e l f . env . current_schedule [ ’ t_end ’ ] > s e l f . env .

next_event . timestamp )
36 ]
37

38 # Calcu la te the a v a i l a b l e time f o r the next machine
39 i f not next_machine_current_op . empty :
40 available_time_next_machine =

sum_time_next_machine + ( next_machine_current_op [ ’ t_end ’ ] . va lue s
[ 0 ] − s e l f . env . next_event . timestamp )

41 e l s e :
42 available_time_next_machine =

sum_time_next_machine
43 e l s e :
44 available_time_next_machine = 0
45

46 # Calcu la te the cur rent queue time
47 current_queue_time = s e l f . env . next_event . timestamp −

buf fer_start_t ime
48

49 # Get the weight ( t a r d i n e s s pena l ty ) o f the job
50 weight = s e l f . env . a l l_ job s [ job_id ] [ ’ ta rd ine s s_pena l ty ’ ]
51

52 # Append the c a l c u l a t e d f e a t u r e s o f the operat i on to the
bu f f e r_opera t i on s l i s t

53 bu f f e r_opera t i on s . append ( [ process ing_time ,
remaining_processing_time , slack_time , available_time_next_machine
, current_queue_time , weight ] )

54

55 # Copy the b u f f e r ope ra t i on s to p roce s s them
56 buffer_copy = buf f e r_opera t i ons [ : ]
57 s t a t e _ l i s t = [ ]
58
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59 # Find the opera t i on with the minimum value f o r the s e l e c t e d
a t t r i b u t e s

60 f o r i in range (4 ) :
61 min_l i s t = min ( buffer_copy , key=lambda x : x [ i ] )
62 s t a t e _ l i s t . append ( min_l i s t ) # Save the l i s t
63 buffer_copy . remove ( min_l i s t )
64

65 # Check i f a l l ope ra t i on s have been proce s sed
66 i f not buffer_copy :
67 buffer_copy = buf f e r_opera t i ons [ : ]
68

69 # Return the s t a t e as a numpy array
70 re turn np . array ( s t a t e _ l i s t , dtype=np . f l o a t 3 2 )

A.2 Reward computation
As extensively explained in the Reward section, the computation of the latter is
done asynchronously. At each step the queueing time and slack time corresponding
to the job chosen in the action is saved, then every tot steps (depends on the
training algorithm, the best number so far seems to be 100) the reward on the last
100 actions is computed. Since we want to punish only tardy jobs we can consider
only the actions that correspond to completed jobs or that are not completed but
already have a negative slack time (since slack time is a never-increasing function,
at most it can stay the same, if the slack time at some point becomes negative it
means that certainly the job will be tardy). So of the actions taken in the last 100
steps we must discard the null actions (no jobs in the queue) and the actions of
jobs whose tardiness we are not yet certain of.

This is the function to update queueing times and slack times

1 de f update_reward_list ( s e l f , a c t i on ) :
2 # Update the queueing tab l e based on the ac t i on taken .
3 i f a c t i on :
4 # Extract nece s sa ry va lue s to avoid repeated lookups
5 job_id = act i on [ ’ job_id ’ ]
6 current_timestamp = s e l f . env . next_event . timestamp
7 buf f e r_star t ing_t ime = act i on [ ’ bu f f e r_star t ing_t ime ’ ]
8 job_info = s e l f . env . a l l_ job s [ job_id ]
9 job_due_date = job_info [ ’ due_date ’ ]

10

11 # Calcu la te remaining p ro c e s s i ng time
12 f i n i sh ed_ope ra t i on s = s e l f . env . n_finished_operat ions_per_job [

job_id ]
13 remaining_operat ions = s e l f . env . a l l_ope ra t i on s [ job_id ] [

f i n i sh ed_ope ra t i on s : ]
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14 remaining_process ing_time = sum( op [ ’ process ing_time ’ ] f o r op
in remaining_operat ions )

15

16 # Calcu la te queueing and s l a c k t imes
17 queueing_time = current_timestamp − buf f e r_star t ing_t ime
18 s lack_time = job_due_date − current_timestamp −

remaining_process ing_time
19

20 # Create a new row as a d i c t i o n a r y
21 new_row = {
22 ’ job_id ’ : job_id ,
23 ’ queueing_time ’ : queueing_time ,
24 ’ s lack_time ’ : s lack_time ,
25 ’ i s_tardy ’ : True ,
26 ’ i s_completed ’ : Fa l se
27 }
28 s e l f . queue ing_l i s t . append (new_row) # Accumulate the new row
29

30 # Check i f a l l ope ra t i on s f o r t h i s job are f i n i s h e d
31 i f f i n i sh ed_ope ra t i on s == s e l f . env . max_operations [ job_id ] −1:
32 #pr in t ( ’ job completed ’ , job_id )
33 # Calcu la te t a r d i n e s s
34 t a r d i n e s s = current_timestamp + act i on [ ’ process ing_time ’ ]

− job_due_date
35 f o r row in s e l f . queue ing_l i s t :
36 i f row [ ’ job_id ’ ] == job_id :
37 row [ ’ is_completed ’ ] = True
38 i f t a r d i n e s s <= 0 :
39 row [ ’ i s_tardy ’ ] = Fal se
40 e l s e :
41 new_row = {
42 ’ job_id ’ : None ,
43 ’ queueing_time ’ : None ,
44 ’ s lack_time ’ : None ,
45 ’ i s_tardy ’ : None ,
46 ’ i s_completed ’ : None
47 }
48 s e l f . queue ing_l i s t . append (new_row)

This is the function used to compute the final rewards

1 de f compute_final_reward ( s e l f , queue ing_l i s t ) :
2 params = {
3 ’ a lpha ’ : 0 . 8 ,
4 ’ d e l t a ’ : 150 ,
5 ’ phi ’ : 50 ,
6 }
7 s e l f . set_params ( params )
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8 # Compute the f i n a l reward a f t e r the ep i sode i s done . to
understand where to put t h i s method

9 queueing_df=pd . DataFrame ( queue ing_l i s t )
10 #clean the queue ing_l i s t
11 s e l f . c l ean_reward_l i s t ( )
12 # s e t job_id =−1 when there are no jobs in b u f f e r so the ac t i on

i s None and the reward should not be cons ide r ed
13 queueing_df [ ’ job_id ’ ]= queueing_df [ ’ job_id ’ ] . f i l l n a (−1)
14 queueing_df . f i l l n a (0 , i n p l a c e=True )
15

16 # Compute the queueing time o f the next operat i on o f the job
17 queueing_df [ ’ next_queueing_time ’ ] = queueing_df . groupby ( ’ job_id ’ )

[ ’ queueing_time ’ ] . s h i f t (−1)
18

19 # F i l l NaN va lue s in next_queueing_time with 0 ( or any d e f a u l t
va lue as per your requirement )

20 queueing_df [ ’ next_queueing_time ’ ] = queueing_df [ ’
next_queueing_time ’ ] . f i l l n a (0 )

21

22 # Compute queueing_time_composed
23 queueing_df [ ’ queueing_time_composed ’ ] = queueing_df [ ’

queueing_time ’ ] ∗ s e l f . params [ ’ alpha ’ ] + queueing_df [ ’
next_queueing_time ’ ] ∗ (1− s e l f . params [ ’ alpha ’ ] )

24

25 # Drop the temporary column
26 queueing_df . drop ( columns=[ ’ next_queueing_time ’ ] , i n p l a c e=True )
27

28 # Compute the c r i t i c a l i t y f a c t o r
29 queueing_df [ ’ c r i t i c a l i t y _ f a c t o r ’ ] = 1 − ( queueing_df [ ’ s lack_time ’

] / ( abs ( queueing_df [ ’ s lack_time ’ ] ) + s e l f . params [ ’ d e l t a ’ ] ) )
30

31 #compute the weight f a c t o r
32 queueing_df [ ’ we ight_factor ’ ] = 1 + queueing_df [ ’ job_id ’ ] . map(
33 lambda job_id : s e l f . env . a l l_ job s [ job_id ] [ ’ ta rd ine s s_pena l ty ’ ]

i f job_id != −1 e l s e 0)
34

35 # Compute the f i n a l reward
36 queueing_df [ ’ reward ’ ] = −(queueing_df [ ’ queueing_time_composed ’ ] ∗

queueing_df [ ’ c r i t i c a l i t y _ f a c t o r ’ ] ∗
37 queueing_df [ ’ we ight_factor ’ ] / s e l f

. params [ ’ phi ’ ] ) ∗∗2
38

39 queueing_df [ ’ reward ’ ] = queueing_df [ ’ reward ’ ] . c l i p (−1 , 0) # Clip
the reward to [ −1 , 1 ]

40

41 # I n i t i a l i z e the is_good column to True
42 queueing_df [ ’ is_good ’ ] = True
43
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44 # compute the is_completed=True f o r the jobs that are not −1 and
have the s l a c k time o f the l a s t opera t i on negat ive

45 # F i l t e r the dataframe based on the c o n d i t i o n s
46 f i l t e r e d _ d f = queueing_df [ ( queueing_df [ ’ job_id ’ ] != −1) & (

queueing_df [ ’ is_completed ’ ] == False ) ]
47

48 # S e l e c t the job_ids o f the l a s t rows o f each job with negat ive
s l a c k time

49 r e s u l t _ f i l t e r e d = f i l t e r e d _ d f [ f i l t e r e d _ d f [ ’ s lack_time ’ ] < 0 ] .
groupby ( ’ job_id ’ ) . l a s t ( ) . reset_index ( )

50

51 # s e l e c t the job i d s that are tardy a l s o i f they are not
completed yet

52 early_tardy_job_ids = r e s u l t _ f i l t e r e d [ ’ job_id ’ ] . t o l i s t ( )
53

54 # Set is_completed=True f o r the jobs that are tardy a l s o i f they
are not completed yet

55 queueing_df . l o c [ queueing_df [ ’ job_id ’ ] . i s i n ( early_tardy_job_ids ) ,
’ is_completed ’ ] = True

56

57 queueing_df . l o c [ queueing_df [ ’ job_id ’ ] == −1, ’ is_good ’ ] = False
58 queueing_df . l o c [ queueing_df [ ’ is_completed ’ ] == False , ’ is_good ’ ]

= Fal se
59

60 # s e t to 0 the reward o f the non−tardy jobs
61 queueing_df . l o c [ queueing_df [ ’ i s_tardy ’ ] == False , ’ reward ’ ] = 0
62

63 re turn queueing_df

A.3 Environment implementation
A.3.1 Init Function

1 de f __init__( s e l f , instance_name ) :
2 super ( ) . __init__ ( )
3

4 main_folder = os . path . j o i n (
5 ’ . ’ , ’ data ’ ,
6 instance_name
7 )
8

9 # read the in s t ance s e t t i n g s , s t a t i c i n s t anc e and dynamic
in s t anc e

10 # the dataframe va r i a n t s ( ’ df_ ’ ) o f some o f the data are used
only f o r s o l v i n g the s t a t i c i n s t anc e
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11 s e l f . n_machines , s e l f . n_sku , s e l f . n_static_jobs , s e l f .
n_dynamic_jobs , s e l f . setup , df_setup = read_ins tance_set t ings (
main_folder )

12 s e l f . s t a t i c_jobs , d f_stat ic_jobs , s e l f . s t a t i c_ope ra t i on s , s e l f .
mach ine s_ in i t i a l_s ta t e = read_instance_stat i c_jobs ( main_folder )

13 subfolder_name = ’ subte s t ’
14 s e l f . dynamic_jobs , df_dynamic_jobs , s e l f . dynamic_operations =

read_instance_dynamic_jobs ( main_folder , subfolder_name )
15

16 s e l f . s e t t i n g s= {
17 ’ n_machines ’ : s e l f . n_machines ,
18 ’ n_sku ’ : s e l f . n_sku ,
19 ’ n_stat ic_jobs ’ : s e l f . n_stat ic_jobs ,
20 }
21 #read t r a i n / eva lua t i on s e t t i n g s in case o f t r a i n i g / eva lua t i on
22 with open ( ’ da ta_ in t e r f a c e s / dynamic_jobs_tra in ing_sett ings . j son ’ ,

’ r ’ ) as f i l e :
23 s e l f . dynamic_jobs_training_sett ing = json . load ( f i l e )
24 with open ( ’ da ta_ in t e r f a c e s / dynamic_jobs_evaluate_sett ings . j son ’ ,

’ r ’ ) as f i l e :
25 s e l f . dynamic_jobs_evaluate_sett ing = json . load ( f i l e )
26

27 # c r e a t e a unique s e t o f a l l j obs ( both s t a t i c and dynamic )
28 s e l f . a l l_ job s = {∗∗ s e l f . s t a t i c_jobs ,∗∗ s e l f . dynamic_jobs}
29 s e l f . a l l_ope ra t i on s = s e l f . s t a t i c _ o p e r a t i o n s+s e l f .

dynamic_operations
30

31 # c r e a t e s an in s t anc e o f the s t a t i c data to s o l v e the i n i t i a l
problem

32 s e l f . i n s t = InstanceJobShopSetUp ( s e l f . n_static_jobs , s e l f .
n_machines , s e l f . mach ines_in i t i a l_state , d f_stat ic_jobs , df_setup ,

s e l f . s t a t i c _ o p e r a t i o n s )
33

34 s o l v e r = SolveJITJSSST ( s e l f . i n s t )
35 s o l v e r . s o l v e (
36 verbose = True ,
37 t ime_l imit = 40 ,
38 )
39 _, s e l f . s ta t i c_schedu l e , s e l f . setups , _ = s o l v e r . ge t_so lut ion ( )
40 s e l f . current_schedule = s e l f . s t a t i c_schedu l e
41

42 # i n s t a n t i a t e the EventManager
43 s e l f . envmanager = SingleEnvManager ( s e l f )
44 s e l f . t iming = SingleTiming ( s e l f )
45 s e l f . reward_function = TardinessReward ( )
46

47 s e l f . act ion_space = gym . spaces . D i s c r e t e (4 ) # 4 p o s s i b l e a c t i o n s
48 s e l f . observat ion_space = gym . spaces . Box( low=−np . in f , high=np . in f ,

shape =(4 , 6) , dtype=np . f l o a t 3 2 ) # s t a t e shape 4x6
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A.3.2 Step Function

1 de f s tep ( s e l f , a c t i on ) :
2 # the ac t i on d e f i n e s the new cur rent schedu le
3

4 s e l f . current_schedule = s e l f . t iming . t iming_schedule ( ac t i on )
5

6 reward_value = s e l f . reward_function . compute ( ac t i on )
7

8 # move forward the time us ing envmanager . next
9 # in order to have the same s i gna tu r e o f the next func t i on i

upload a l l the env v a r i a b l e s i n s i d e next
10 obs=s e l f . envmanager . next ( ac t i on )
11

12 #reward_value = 0
13 #done = len ( s e l f . events ) == 0
14 done = s e l f . n_finished_operat ions_per_job == s e l f . max_operations
15

16 i n f o = {}
17 re turn obs , reward_value , done , i n f o

single timing function

1 de f t iming_schedule ( s e l f , a c t i on ) :
2 # Returns the t iming schedu le o f the ope ra t i on s chosen by the

agent when the agent choses a s i n g l e ac t i on .
3 # Support v a r i a b l e
4 act ion_df = pd . DataFrame ( )
5

6 i f a c t i on i s not None :
7 #f o r opera t i on in ac t i on :
8 # c r e a t e the new row o f the schedu le with the operat i on

chosen
9 machine=ac t i on [ ’ machine ’ ]

10 job=act i on [ ’ job_id ’ ]
11 op=( s e l f . env . n_finished_operat ions_per_job [ a c t i on [ ’ job_id ’ ] ] ,

a c t i on [ ’ job_id ’ ] )
12 t_star t=s e l f . env . next_event . timestamp
13 t_end=t_star t+ac t i on [ ’ process ing_time ’ ]
14 new_op_schedule = pd . DataFrame ({ ’ machine ’ : [ machine ] , ’ o rder ’

: [ op [ 1 ] ] , ’ op ’ : [ op ] , ’ t_star t ’ : [ t_star t ] , ’ t_end ’ : [ t_end ] , ’
e a r l i n e s s ’ : 0 , ’ t a r d i n e s s ’ : 0})

15 act ion_df=pd . concat ( [ action_df , new_op_schedule ] )
16 e l s e :
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17 timed_action=s e l f . env . current_schedule
18 re turn timed_action
19

20

21 # i f the act ion_df i s not empty i n s e r t the new row in the
schedu le that w i l l be the f i n a l a c t i on o f the agent

22 timed_action=pd . concat ( [ s e l f . env . current_schedule , act ion_df ] ) .
sor t_va lues ( [ ’ machine ’ , ’ t_star t ’ ] ) #TODO: there i s f o r sure a bes t
way in s t ead o f append+s o r t

23

24 re turn timed_action

single next function

1 de f next ( s e l f , a c t i on ) :
2 ’ ’ ’ Process the next event based on the g iven ac t i on . ’ ’ ’
3

4 # Create the end machine event f o r the ac t i on i f provided
5 i f a c t i on :
6 s e l f . env . events . append ( Event ( ac t i on [ ’ job_id ’ ] , s e l f . env .

next_event . timestamp + act i on [ ’ process ing_time ’ ] , ’
machine_end_operation ’ ) )

7 s e l f . env . events . s o r t ( )
8 #pr in t ( s e l f . env . events )
9

10 # Handle the next a v a i l a b l e machine or p roce s s the next event
11 i f s e l f . env . free_machines_with_buffer :
12 s e l f . env . actual_machine = s e l f . env . free_machines_with_buffer .

pop (0 )
13 e l s e :
14 # Process a l l events with the same timestamp
15 i f s e l f . env . events :
16 f i rst_event_timestamp = s e l f . env . events [ 0 ] . timestamp
17

18 whi le s e l f . env . events and s e l f . env . events [ 0 ] . timestamp ==
first_event_timestamp :

19 s e l f . env . next_event = s e l f . env . events . pop (0 )
20

21 i f s e l f . env . next_event . type == ’ machine_end_operation
’ :

22 s e l f . _handle_machine_end_operation ( )
23 e l i f s e l f . env . next_event . type == ’ j ob_ar r i va l ’ :
24 s e l f . _handle_job_arrival ( )
25

26 s e l f . _buffer_next_operation ( )
27
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28 # Update the l i s t o f f r e e machines with b u f f e r
29 s e l f . _update_free_machines ( )
30

31 i f s e l f . env . free_machines_with_buffer :
32 s e l f . env . actual_machine = s e l f . env .

free_machines_with_buffer . pop (0 )
33 e l s e :
34 s e l f . env . actual_machine = None
35

36 next_state=s e l f . get_state ( )
37 re turn next_state
38

39

40 de f _handle_machine_end_operation ( s e l f ) :
41 job_id = s e l f . env . next_event . job_id
42 machine_ended = s e l f . env . a l l_ope ra t i on s [ job_id ] [ s e l f . env .

n_finished_operat ions_per_job [ job_id ] ] [ ’ machine ’ ]
43

44 # Remove the completed operat ion from the machine ’ s b u f f e r
45 s e l f . env . b u f f e r s [ machine_ended ] = [ op f o r op in s e l f . env . b u f f e r s [

machine_ended ] i f op [ ’ job_id ’ ] != job_id ]
46

47 # Update the counter o f f i n i s h e d ope ra t i on s
48 s e l f . env . n_finished_operat ions_per_job [ job_id ] += 1
49

50 # Set the machine as f r e e
51 # s e l f . env . free_machines_with_buffer . append ( machine_ended ) #

Uncomment i f r equ i r ed to mark the machine as f r e e
52

53 de f _handle_job_arrival ( s e l f ) :
54 s e l f . env . id_next_job += 1
55 s e l f . env . n_finished_operat ions_per_job [ s e l f . env . next_event . job_id

] = 0
56

57 de f _buffer_next_operation ( s e l f ) :
58 job_id = s e l f . env . next_event . job_id
59 ope ra t i on s = s e l f . env . a l l_ope ra t i on s [ job_id ]
60 f i n i sh ed_ope ra t i on s = s e l f . env . n_finished_operat ions_per_job [

job_id ]
61

62 i f f i n i sh ed_ope ra t i on s < len ( ope ra t i on s ) :
63 next_operat ion = ope ra t i on s [ f i n i sh ed_ope ra t i on s ]
64

65 # Prepare the next opera t i on d e t a i l s
66 ope ra t i on_de ta i l s = {
67 ∗∗ next_operation ,
68 ’ job_id ’ : job_id ,
69 ’ bu f f e r_star t ing_t ime ’ : s e l f . env . next_event . timestamp ,
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70 ’ remaining_process ing_time ’ : sum( op [ ’ process ing_time ’ ]
f o r op in ope ra t i on s [ f i n i sh ed_ope ra t i on s : ] ) ,

71 # ’ slack_time ’ : s e l f . env . a l l_ job s [ job_id ] [ ’ due_date ’ ] −
s e l f . env . next_event . timestamp − sum( op [ ’ process ing_time ’ ] f o r op
in ope ra t i on s [ f i n i sh ed_ope ra t i on s : ] ) ,

72 # ’ work_in_queue ’ : sum( op [ ’ process ing_time ’ ] f o r op in
s e l f . env . b u f f e r s [ s e l f . env . a l l_ope ra t i on s [ job_id ] [
f i n i sh ed_ope ra t i on s +1 ] [ ’ machine ’ ] ] )

73 }
74

75 # Add the operat i on to the b u f f e r o f the r e s p e c t i v e machine
76 machine = next_operat ion [ ’ machine ’ ]
77 s e l f . env . b u f f e r s [ machine ] . append ( ope ra t i on_de ta i l s )
78

79 de f _update_free_machines ( s e l f ) :
80 # Update the l i s t o f f r e e machines with b u f f e r
81 working_machines = np . unique ( s e l f . env . current_schedule [
82 ( s e l f . env . current_schedule [ ’ t_star t ’ ] <= s e l f . env . next_event .

timestamp ) &
83 ( s e l f . env . current_schedule [ ’ t_end ’ ] > s e l f . env . next_event .

timestamp )
84 ] [ ’ machine ’ ] )
85 free_machines = l i s t (np . s e t d i f f 1 d (np . arange ( s e l f . env . n_machines ) ,

working_machines ) )
86 s e l f . env . free_machines_with_buffer = [ machine f o r machine in

free_machines i f s e l f . env . b u f f e r s [ machine ] ]

A.3.3 Reset Function

1 de f r e s e t ( s e l f , seed=None , mode=None ) :
2 # i f mode i s t r a i n i n g each r e s e t c r e a t e s a new in s t ance o f

the dynamic problem , keeping the same s t a t i c i n s t anc e
3

4 i f mode == ’ t r a i n ’ :
5

6 s e l f . dynamic_jobs , df_dynamic_jobs , s e l f .
dynamic_operations = simulate_instance_dynamic_jobs_no_save ( s e l f .
dynamic_jobs_training_sett ing , s e l f . s e t t i n g s )

7 s e l f . a l l_ job s = {∗∗ s e l f . s t a t i c_jobs ,∗∗ s e l f . dynamic_jobs}
8 s e l f . a l l_ope ra t i on s = s e l f . s t a t i c _ o p e r a t i o n s+s e l f .

dynamic_operations
9

10 e l i f mode == ’ eva luate ’ :
11 s e l f . dynamic_jobs , df_dynamic_jobs , s e l f .

dynamic_operations = simulate_instance_dynamic_jobs_no_save ( s e l f .
dynamic_jobs_evaluate_sett ing , s e l f . s e t t i n g s )
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12 s e l f . a l l_ job s = {∗∗ s e l f . s t a t i c_jobs ,∗∗ s e l f . dynamic_jobs}
13 s e l f . a l l_ope ra t i on s = s e l f . s t a t i c _ o p e r a t i o n s+s e l f .

dynamic_operations
14

15 # d i c t i o n a r y : f o r every key ( machine id ) , s p e c i f i e s the l i s t
o f ope ra t i on s in the queue

16 s e l f . queues = {}
17

18 # d i c t i o n a r y : f o r every key ( job id ) , s p e c i f i e s the number o f
ope ra t i on s a l r eady completed

19 s e l f . n_finished_operat ions_per_job = {}
20

21 # l i s t o f events happening in the fu tu r e ( every event i s an
ob j e c t o f c l a s s Event )

22 s e l f . events = [ ]
23

24 # d e f i n e the b u f f e r s o f the machines : f o r every machine , the
l i s t o f ope ra t i on s that are wa i t ing in the b u f f e r

25 s e l f . b u f f e r s = {machine : [ ] f o r machine in range ( s e l f .
n_machines ) }

26

27 # f o r every job in the s t a t i c i n s t anc e s e t the f i n i s h e d
ope ra t i on s to 0

28 f o r job_id in s e l f . s t a t i c _ j o b s :
29 s e l f . n_finished_operat ions_per_job [ job_id ] = 0
30

31 s e l f . reward_function . i n i t i a l i z e ( s e l f )
32

33 # id o f next job a r r i v i n g
34 s e l f . id_next_job = len ( s e l f . s t a t i c _ j o b s ) + 1
35

36 f o r job_id in s e l f . dynamic_jobs :
37 # f o r every job in the dynamic in s t anc e i t d e f i n e s the

event o f i t s f u tu r e a r r i v a l
38 s e l f . events . append ( Event ( job_id , s e l f . dynamic_jobs [ job_id

] [ ’ a r r i va l_date ’ ] , ’ j ob_ar r i va l ’ ) )
39 # s o r t s event based on t h e i r order o f happening
40 s e l f . events . s o r t ( )
41

42 s e l f . next_event = s e l f . events . pop (0 ) #the f i r s t event i s
always a job a r r i v a l

43

44 #add the counter o f f i n i s h e d ope ra t i on s equal to 0 f o r the
new job

45 s e l f . n_finished_operat ions_per_job [ s e l f . next_event . job_id ] =
0

46

47 s e l f . current_schedule = s e l f . s t a t i c_schedu l e
48
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49 # s e t the cur rent schedu le as the schedu le be f o r e the f i r s t
event

50 s e l f . current_schedule = s e l f . current_schedule [ s e l f .
current_schedule [ ’ t_star t ’ ]< s e l f . next_event . timestamp ]

51

52 #s e t the i n t i a l f i n i s h e d ope ra t i on s i n d i c e s f o r every job
53 f o r job_id in s e l f . n_finished_operat ions_per_job :
54 s e l f . n_finished_operat ions_per_job [ job_id ] = s e l f .

current_schedule [ ( s e l f . current_schedule [ ’ t_end ’ ] <= s e l f .
next_event . timestamp ) & ( s e l f . current_schedule [ ’ o rder ’ ]==job_id ) ] [
’ op ’ ] . count ( )

55

56 i f s e l f . n_finished_operat ions_per_job [ job_id ] < len ( s e l f .
a l l_ope ra t i on s [ job_id ] ) :

57

58 ope ra t i on s = s e l f . a l l_ope ra t i on s [ job_id ]
59 f i n i sh ed_ope ra t i on s = s e l f .

n_finished_operat ions_per_job [ job_id ]
60

61 next_operat ion = ope ra t i on s [ f i n i sh ed_ope ra t i on s ]
62

63 # Prepare the next opera t i on d e t a i l s
64 ope ra t i on_de ta i l s = {
65 ∗∗ next_operation ,
66 ’ job_id ’ : job_id ,
67 ’ bu f f e r_star t ing_t ime ’ : s e l f . next_event . timestamp

,
68 ’ remaining_process ing_time ’ : sum( op [ ’

process ing_time ’ ] f o r op in ope ra t i on s [ f i n i sh ed_ope ra t i on s : ] ) ,
69 }
70

71 # Add the operat i on to the b u f f e r o f the r e s p e c t i v e
machine

72 machine = next_operat ion [ ’ machine ’ ]
73 s e l f . b u f f e r s [ machine ] . append ( ope ra t i on_de ta i l s )
74

75 #s e t f r e e machines in the f i r s t time i n s t a n t
76 working_machines = np . unique ( s e l f . current_schedule [ ( s e l f .

current_schedule [ ’ t_star t ’ ] <= s e l f . next_event . timestamp )
77 & ( s e l f .

current_schedule [ ’ t_end ’ ] > s e l f . next_event . timestamp ) ] [ ’ machine ’
] )

78 free_machines = l i s t (np . s e t d i f f 1 d (np . arange ( s e l f . n_machines ) ,
working_machines ) )

79

80 s e l f . free_machines_with_buffer = [ machine f o r machine in
free_machines i f s e l f . b u f f e r s [ machine ] ]

81
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82 # i f the re are f r e e machines with bu f f e r , s e t the ac tua l
machine as the f i r s t f r e e machine with b u f f e r

83 i f s e l f . free_machines_with_buffer :
84 s e l f . actual_machine = s e l f . free_machines_with_buffer . pop

(0 )
85 e l s e :
86 s e l f . actual_machine = None
87

88 #c r e a t e i n i t i a l machine_end opera t i on events f o r the machines
working at f i r s t time i n s t a n t

89 f o r machine in working_machines :
90 working_operation=s e l f . current_schedule [ ( s e l f .

current_schedule [ ’ machine ’ ]==machine ) & ( s e l f . current_schedule [ ’
t_end ’ ] > s e l f . next_event . timestamp ) ]

91 s e l f . events . append ( Event ( working_operation [ ’ order ’ ] .
va lue s [ 0 ] , working_operation [ ’ t_end ’ ] . va lue s [ 0 ] , ’
machine_end_operation ’ ) )

92

93 # t h i s s topping c r i t e r i a j u s t takes the max number o f
ope ra t i on s f o r every job and checks i f the number o f f i n i s h e d
ope ra t i on s i s equal to that

94 s e l f . max_operations ={}
95 f o r i in s e l f . a l l_ j ob s :
96 s e l f . max_operations [ i ] = l en ( s e l f . a l l_ope ra t i on s [ i ] )
97

98 obs=s e l f . envmanager . get_state ( )
99

100 re turn obs

A.4 DDQN Training script

1

2 dev i c e = torch . dev i c e ( " cuda : 0 " i f torch . cuda . i s _ a v a i l a b l e ( ) e l s e " cpu
" )

3

4 c l a s s QNetwork (nn . Module ) :
5 de f __init__( s e l f , input_size , output_size ) :
6 super (QNetwork , s e l f ) . __init__ ( )
7

8 s e l f . input_s ize = input_s ize
9 s e l f . output_size = output_size

10 s e l f . f l a t t ened_input_s i z e = torch . t enso r ( s e l f . input_s ize ) .
prod ( )

11 layer_1 = 64
12 layer_2 = 48
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13 layer_3 = 48
14 layer_4 = 36
15 layer_5 = 24
16 layer_6 = 12
17 #TODO: mett i q u e s t i parametr i come input
18

19 s e l f . norm_layer = nn . Sequent i a l (
20 nn . LayerNorm ( s e l f . input_s ize ) ,
21 nn . F lat ten ( )
22 )
23

24 s e l f . FC_layers = nn . Sequent i a l (
25 nn . Linear ( s e l f . f l a t tened_input_s ize , layer_1 ) ,
26 nn . Tanh ( ) ,
27 nn . Linear ( layer_1 , layer_2 ) ,
28 nn . Tanh ( ) ,
29 nn . Linear ( layer_2 , layer_3 ) ,
30 nn . Tanh ( ) ,
31 nn . Linear ( layer_3 , layer_4 ) ,
32 nn . Tanh ( ) ,
33 nn . Linear ( layer_4 , layer_5 ) ,
34 nn . Tanh ( ) ,
35 nn . Linear ( layer_5 , layer_6 ) ,
36 nn . Tanh ( ) ,
37 nn . Linear ( layer_6 , output_size )
38 )
39

40 s e l f . network = nn . ModuleList ( [ s e l f . norm_layer , s e l f . FC_layers
] )

41

42 de f forward ( s e l f , inp ) :
43 x1 = s e l f . norm_layer ( inp )
44 x1 = s e l f . FC_layers ( x1 )
45 re turn x1
46

47 c l a s s Memory :
48 de f __init__( s e l f , memory_len ) :
49 s e l f . rewards = c o l l e c t i o n s . deque ( maxlen=memory_len )
50 s e l f . s t a t e = c o l l e c t i o n s . deque ( maxlen=memory_len )
51 s e l f . a c t i on = c o l l e c t i o n s . deque ( maxlen=memory_len )
52 s e l f . is_done = c o l l e c t i o n s . deque ( maxlen=memory_len )
53 # Temporary s to rage f o r s ta te , a c t i on u n t i l reward i s

a v a i l a b l e
54 s e l f . temp_state = [ ]
55 s e l f . temp_action = [ ]
56 s e l f . temp_is_done = [ ]
57 #s e l f . temp_reward = [ ]
58

59 de f append_temp ( s e l f , s ta te , act ion , reward , done , r ea l_act i on ) :
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60 # Append state , act ion , done f l a g to temporary s to rage
61

62 # the s t a t e should be appended as a t enso r 1x4x6 f o r l a t e r
computation

63 s e l f . temp_state . append ( torch . t enso r ( s t a t e ) . unsqueeze (0 ) )
64

65 # act i on and i s done are appended to l i s t s
66 s e l f . temp_action . append ( ac t i on )
67 s e l f . temp_is_done . append ( done )
68

69 # s i n c e in t h i s p r o j e c t the reward i s asyncronous to the
s ta te −act ion , i cannot append the reward at each step as i do

70 # with the s tate , act ion , done f l a g . The reward v a r i a b l e here
i s a l i s t o f rewards that i s updated at each step

71 s e l f . temp_reward = reward
72 de f update ( s e l f , f inal_reward_df ) :
73

74 # get the indexes o f good state −ac t i on p a i r s us ing the
f inal_reward_df

75 # the good indexes are the indexes o f the s tate −ac t i on p a i r s
where the ac t i on i s not None ( no job a v a i l a b l e to be chosen )

76 # and the reward can be computed s i n c e we know i f the job i s
tardy or not

77 good_indexes = final_reward_df [ f inal_reward_df [ ’ is_good ’ ] ==
True ] . index

78

79 # extend state , act ion , done f l a g l i s t s with temporary
storage , pay a t t e n t i on that temp_state i s a l i s t o f t e n s o r s

80 good_action =[ s e l f . temp_action [ i ] f o r i in good_indexes ]
81 good_state =[ s e l f . temp_state [ i ] f o r i in good_indexes ]
82 good_is_done=[ s e l f . temp_is_done [ i ] f o r i in good_indexes ]
83

84 s e l f . s t a t e . extend ( good_state )
85 s e l f . a c t i on . extend ( good_action )
86 s e l f . is_done . extend ( good_is_done )
87

88 # append the f i n a l reward to the rewards l i s t
89 temp_reward=final_reward_df . l o c [ good_indexes ] [ ’ reward ’ ] .

t o l i s t ( )
90 s e l f . rewards . extend ( temp_reward )
91

92 #c l e a r temporary s to rage
93 s e l f . temp_state = [ ]
94 s e l f . temp_action = [ ]
95 s e l f . temp_is_done = [ ]
96

97

98 de f sample ( s e l f , batch_size ) :
99
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100 # s t o r e the l enght o f the rep lay memory in n
101 n = len ( s e l f . is_done )
102

103 # s e l e c t a number o f random indexes equal to the batch s i z e
from the rep lay memory

104 idx = random . sample ( range (0 , n−1) , batch_size )
105

106 #sampled_states i s a t enso r batch_size x 4 x 6 ( s t a t e
dimension i s 4x6 )

107 sampled_states = torch . cat ( [ s e l f . s t a t e [ i ] f o r i in idx ] , dim
=0) . to ( dev i c e )

108

109 #next_states i s a t enso r batch_size x 4 x 6 ( s t a t e dimension
i s 4x6 )

110 next_states = torch . cat ( [ s e l f . s t a t e [ i +1] f o r i in idx ] , dim
=0) . to ( dev i c e )

111

112 #a c t i o n s i s a t enso r batch_size x 1
113 a c t i o n s = torch . LongTensor ( [ s e l f . a c t i on [ i ] f o r i in idx ] ) . to (

dev i c e )
114

115 #rewards i s a t enso r batch_size x 1
116 rewards = torch . Tensor ( [ s e l f . rewards [ i ] f o r i in idx ] ) . to (

dev i c e )
117

118 #dones i s a t enso r batch_size x 1
119 dones = torch . Tensor ( [ s e l f . is_done [ i ] f o r i in idx ] ) . to (

dev i c e )
120

121 re turn sampled_states , ac t i ons , next_states , rewards , dones
122

123 de f r e s e t ( s e l f ) :
124 s e l f . rewards . c l e a r ( )
125 s e l f . s t a t e . c l e a r ( )
126 s e l f . a c t i on . c l e a r ( )
127 s e l f . is_done . c l e a r ( )
128 s e l f . temp_state = [ ]
129 s e l f . temp_action = [ ]
130 s e l f . temp_is_done = [ ]
131

132

133 de f get_act ion ( model , env , s ta te , eps ) :
134

135 # This func t i on i s c a l l e d in the forward proce s s to c o l l e c t an
ac t i on given the s t a t e

136 # the s t a t e has to be a tenso r 1x4x6
137 s t a t e = torch . t enso r ( s ta te , dtype=torch . f l o a t ) . unsqueeze (0 ) . to (

dev i ce )
138
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139 # the ac tua l machine i s the machine where we are going to take
the ac t i on . I f the machine i s None , i t

140 # means a new job has a r r i v ed on a busy machine
141 i f ( env . actual_machine i s not None ) :
142 machine_buffer=env . b u f f e r s [ env . actual_machine ]
143

144 # i f the machine b u f f e r i s not empty , we can take an ac t i on
145 i f ( l en ( machine_buffer ) > 0) :
146 with torch . no_grad ( ) :
147 va lue s = model ( s t a t e )
148 i f random . random ( ) <= eps :
149 ac t i on = np . random . rand int (0 , env . act ion_space . n )
150 e l s e :
151 ac t i on = np . argmax ( va lue s . cpu ( ) . numpy( ) )
152 #convert ac t i on index to r e a l a c t i on
153 chosen_op = convert_rea l_act ion ( s tate , act ion ,

machine_buffer )
154 e l s e :
155 ac t i on=None
156 chosen_op = None
157 e l s e :
158 ac t i on=None
159 chosen_op = None
160 # the func t i on r e tu rn s ac t i on ( t enso r needed f o r a lgor i thm

t r a i n i n g )
161 # and rea l_act i on ( conver s i on o f the ab s t r a c t ac t i on in to r e a l

data that are used by the env to evo lve )
162 re turn act ion , chosen_op
163

164

165 de f get_random_action ( env , s t a t e ) :
166

167 # This func t i on i s c a l l e d in the warm−up proce s s to c o l l e c t a
random act i on given the s t a t e

168

169 s t a t e = torch . t enso r ( s ta te , dtype=torch . f l o a t ) . unsqueeze (0 ) . to (
dev i ce )

170

171 i f ( env . actual_machine i s not None ) :
172 machine_buffer=env . b u f f e r s [ env . actual_machine ]
173 i f ( l en ( machine_buffer ) > 0) :
174 ac t i on = np . random . rand int (0 , env . act ion_space . n )
175 #convert ac t i on index to r e l a c t i on
176 chosen_op = convert_rea l_act ion ( s tate , act ion ,

machine_buffer )
177 e l s e :
178 ac t i on=None
179 chosen_op = None
180 e l s e :
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181 ac t i on=None
182 chosen_op = None
183 re turn act ion , chosen_op
184

185

186 de f convert_rea l_act ion ( s tate , act ion , machine_buffer ) :
187 # This func t i on i s c a l l e d to convert the ac t i on index to the

r e a l a c t i on data ( job_id , operat ion_id , machine_id , . . . )
188 # in order to be used in the environment step func t i on
189

190 # Extract the c r i t e r i a va lue s from the tenso r
191 proce s s i ng_t ime_cr i t e r i a = s t a t e . squeeze (0 ) [ a c t i on ] [ 0 ] . item ( )
192 remain ing_process ing_t ime_cr i te r ia = s t a t e . squeeze (0 ) [ a c t i on

] [ 1 ] . item ( )
193

194 # Find the matching d i c t i o n a r y
195 matching_dict = None
196 f o r job in machine_buffer :
197 i f job [ ’ process ing_time ’ ] == proce s s i ng_t ime_cr i t e r i a and

job [ ’ remaining_process ing_time ’ ] ==
remain ing_process ing_t ime_cr i te r ia :

198 matching_dict = job
199 re turn matching_dict
200

201 de f t r a i n ( batch_size , current , target , optim , memory , gamma) :
202

203 # Sample a batch o f expe r i en c e s from the rep lay memory with
dimensions s p e c i f i e d in sample func t i on

204 s t a t e s , ac t i ons , next_states , rewards , is_done = memory . sample (
batch_size )

205

206 #q_values o f the batch o f s t a t e s −a c t i o n s so the output i s a
t enso r batch_size x act ion_space (64 x4 )

207 q_values = current ( s t a t e s )
208

209 #next_q_values o f the batch o f next_states so the output i s a
t enso r batch_size x act ion_space (64 x4 )

210 next_q_values = current ( next_states )
211

212 #next_q_state_values o f the batch o f next_states so the output i s
a t enso r batch_size x act ion_space (64 x4 )

213 next_q_state_values = t a rg e t ( next_states )
214

215 # q_value o f each s t a t e when you choose the ac t i on taken from the
rep lay memory f o r each s t a t e so the output i s a t enso r batch_size
(64)

216 q_value = q_values . gather (1 , a c t i o n s . unsqueeze (1 ) ) . squeeze (1 )
217
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218 # next_q_value o f each s t a t e when you choose the ac t i on that
maximizes the q_value o f the next s t a t e so the output i s a t enso r
batch_size (64)

219 next_q_value = next_q_state_values . gather (1 , torch . max(
next_q_values , 1) [ 1 ] . unsqueeze (1 ) ) . squeeze (1 )

220

221 # expected_q_value i s the t a r g e t va lue f o r the q_value so the
output i s a t enso r batch_size (64)

222 expected_q_value = rewards + gamma ∗ next_q_value ∗ (1 − is_done )
223

224 # Compute the l o s s between q_value and expected_q_value and
update the Q−network

225 l o s s = F. mse_loss ( q_value , expected_q_value . detach ( ) )
226 optim . zero_grad ( )
227 l o s s . backward ( )
228 optim . s tep ( )
229

230 re turn l o s s . item ( )
231

232 de f eva luate (Qmodel , env , r epea t s ) :
233 #implemented func t i on to eva luate per formances during t r a i n i n g

proce s s
234

235 de f update_parameters ( current_model , target_model ) :
236 target_model . load_state_dict ( current_model . s t a t e_d i c t ( ) )
237

238 de f save_data ( . . . ) :
239 #implemented func t i on to save r e s u l t s
240

241 de f main (gamma=0.95 , l r =0.005 , eps =0.4 , eps_decay =0.95 , eps_min =0.1 ,
update_step =500 , batch_size =64, update_eps_steps =5000 ,

242 t ra in_step =4, memory_step_update=100 , num_episodes=2, seed
=100 , max_memory_size=1024 , lr_gamma=0.9 , l r_step =5000 , eva luate=
True , measure_step =3000 ,

243 measure_repeats =10, warmup_steps=3600 , pr int_step =50,
checkpoint_dir=’ save_re su l t s / checkpoints_8 ’ , f ina l_save_di r=’
save_re su l t s /save_8 ’ ,

244 save=True , save_checkpoint=True , ) :
245 " " "
246 Main func t i on f o r t r a i n i n g a DQN agent on the s p e c i f i e d

environment .
247 " " "
248

249 # Create checkpo int d i r e c t o r y to save in te rmed ia t e r e s u l t s
250 i f not os . path . e x i s t s ( checkpoint_dir ) :
251 os . makedirs ( checkpoint_dir )
252

253 # I n i t i a l i z e environment and s e t s eeds f o r r e p r o d u c i b i l i t y
254 #env = gym . make(env_name)
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255 env=DynamicPlant ( " t e s t_ ins tance5 " )
256 evaluation_env = DynamicPlant ( " t e s t_ ins tance5 " )
257 #torch . manual_seed ( seed )
258 #env . seed ( seed )
259

260 # I n i t i a l i z e Q−networks
261 Q_1 = QNetwork ( input_s ize=env . observat ion_space . shape ,

output_size=env . act ion_space . n) . to ( dev i c e )
262 Q_2 = QNetwork ( input_s ize=env . observat ion_space . shape ,

output_size=env . act ion_space . n) . to ( dev i c e )
263

264 # Copy parameters from Q_1 to Q_2 and f r e e z e Q_2 parameters
265 update_parameters (Q_1, Q_2)
266 f o r param in Q_2. parameters ( ) :
267 param . requi res_grad = False
268

269 # I n i t i a l i z e opt imize r and l e a r n i n g ra t e s chedu l e r
270 opt imize r = optim .SGD(Q_1. parameters ( ) , l r=l r , momentum=0.9)
271 s chedu l e r = StepLR ( opt imizer , s t ep_s i z e=lr_step , gamma=lr_gamma)
272

273 # I n i t i a l i z e r ep lay memory
274 memory = Memory(max_memory_size )
275

276 # L i s t to s t o r e performance measurements
277 performance = [ ]
278

279 l o s s _ t r a j e c t o r i e s = {}
280

281 step_count_across_episodes = 0
282

283 # Main t r a i n i n g loop
284 f o r ep i sode in range (1 , num_episodes+1) :
285 #Measure performance with an eva lua t i on a f t e r each ep i sode (

measure_step=1) , s i n c e we use long ep i s ode s
286

287 # I n i t i a l i z e s t a t e
288 #here s t a t e i s a numpy array 4x6
289 s t a t e = env . r e s e t (mode=’ t r a i n ’ )
290 pr in t ( ’ r e s e t ’ )
291 memory . r e s e t ( )
292

293 ’ ’ ’ append state , act ion , done to temporary memory −
294 l a t e r to be updated in the rep lay memory s i n c e the reward i s

asyncronous to the s tate , act ion , done .
295 you cannot update the rep lay memory with the reward u n t i l the

reward i s a v a i l a b l e . ’ ’ ’
296

297 done = False

63



Code Implementation

298 # I n i t i a l i z e s tep count to 1 ( not 0) beacuse l a t e r we w i l l
c a l l step_count % memory_step_update == 0 and i don ’ t want i t to
be t rue at the f i r s t s tep

299 step_count = 1
300

301 ep i s ode_ lo s s e s = [ ]
302

303 # Run ep i sode
304 whi le not done :
305

306 # in order to f i l l the rep lay memory with an i n i t i a l s e t
o f s ta te −ac t i on pa i r s , we s e l e c t random a c t i o n s f o r the f i r s t
warmup_steps

307 i f ep i sode==1 and step_count < warmup_steps :
308 act ion , r ea l_act i on = get_random_action ( env , s t a t e ) #

S e l e c t random act i on during warm−up per iod
309 e l s e :
310 #pr in t ( ’warmup f i n i s h e d ’ )
311 act ion , r ea l_act i on = get_act ion (Q_2, env , s ta te , eps )

# S e l e c t ac t i on us ing eps i l on −greedy po l i cy , r ea l_act i on i s the
conver s i on o f the ac t i on index to the r e a l a c t i on

312 next_state , reward , done , _ = env . s tep ( r ea l_act i on ) #
Take ac t i on in the environment

313

314 # Update memory
315 memory . append_temp ( s tate , act ion , reward , done ,

r ea l_act i on )
316

317 s t a t e = next_state
318

319 # Update rep lay memory each memory_step_update s t ep s
320 i f step_count % memory_step_update == 0 :
321 f inal_reward_df = env . reward_function .

compute_final_reward (memory . temp_reward )
322

323 memory . update ( f inal_reward_df )
324

325 # Train Q−networks each 5 s t ep s
326 i f step_count % tra in_step == 0 and step_count >

warmup_steps :
327 #pr in t ( ’ t ra in ing_step ’ )
328 l o s s=t r a i n ( batch_size , Q_1, Q_2, opt imizer , memory ,

gamma)
329 ep i s ode_ lo s s e s . append ( l o s s )
330

331 # pr in t l o s s each pr int_step s t ep s
332 i f step_count % pr int_step == 0 and step_count >

warmup_steps :
333 pr in t ( " Step : " , step_count )
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334 pr in t ( " Loss : " , l o s s )
335

336 # Update Q_2 with Q_1 parameters each 250 s t ep s
337 i f step_count % update_step == 0 :
338 update_parameters (Q_1, Q_2)
339

340 step_count += 1
341 step_count_across_episodes += 1
342

343 # Update l e a r n i n g ra t e and e p s i l o n each ep i sode
344 i f step_count > warmup_steps :
345 s chedu l e r . s tep ( )
346 i f ( step_count_across_episodes +1) % update_eps_steps

== 0 :
347 eps = max( eps ∗ eps_decay , eps_min )
348 pr in t ( f " Updated l e a r n i n g ra t e to { s chedu l e r .

ge t_las t_l r ( ) [ 0 ] } and e p s i l o n to { eps } at s tep {
step_count_across_episodes } " )

349

350 # Measure performance
351 i f ( step_count % measure_step == 0) : #and ep i sode >=

min_episodes :
352 #measure performances
353

354 # Save the l o s s t r a j e c t o r y f o r the cur rent ep i sode
355 l o s s _ t r a j e c t o r i e s [ ep i sode ] = ep i s ode_ lo s s e s
356

357 # # Update l e a r n i n g ra t e and e p s i l o n
358 # schedu l e r . s tep ( )
359 # eps = max( eps ∗ eps_decay , eps_min )
360

361 # Save checkpoint at the end o f each ep i sode
362 i f save_checkpoint : . . .
363

364

365 # Save model parameters , performance data , and l o s s t r a j e c t o r i e s
366 i f save : . . .
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