
POLITECNICO DI TORINO

Master’s Degree Course in Mathematical Engineering
Academic year 2023/2024

Graduation session July 2024

Neural Network-Based Calibration of
6D Force-Torque Sensors in Humanoid Robots

Supervisors Candidate
Prof. Luigi Preziosi (PoliTo) Filippo Passerini
Prof. Marta Zoppello (PoliTo)
Ph.D. Daniele Pucci (IIT)
Ph.D. Giulio Romualdi (IIT)

Abstract

Precise force-torque sensing plays a fundamental role in humanoid robot control,
impacting tasks from manipulation to movement. A conventional technique for cali-
brating 6D force-torque sensors linear regression, which in some cases could not give
good results, especially in the field of robotics. The goal of this thesis is to improve
the accuracy and efficiency of 6D force-torque sensor calibration in humanoid robotics
by introducing a neural network-based method for in-situ calibration. We employ
machine learning methods, particularly neural networks, to simulate the cross-axis
coupling effects and nonlinearities present in the sensors. As part of the process,
data are collected during in-situ experiments, meaning that the robot has the sensor
installed already. Such data are used to train a neural network to predict the real
wrench (i.e. a 6D vector containing the components of force and torque) from the
raw sensor readings and also other quantities.

The performance of the proposed neural network calibration method is evaluated
against traditional calibration techniques. Results indicate a significant improvement
in sensor accuracy.

This thesis contributes to the advancement of humanoid robotics by providing
an efficient and accurate method for force-torque sensor calibration. The integration
of neural networks not only simplifies the calibration process but also paves the way
for more intelligent and autonomous robotic systems capable of complex interactions
with their surroundings.

Contents

List of Figures iii

List of Tables vi

Prologue 1

I Background 4

1 Force-torque sensors 5
1.1 Force Sensing Technologies . 6
1.2 Piezoresistive Strain Gauges . 8
1.3 Wheatstone bridge . 11
1.4 Conclusions . 12

2 Neural Networks 15
2.1 Introduction to Neural Networks . 15
2.2 Training of a NN through supervised learning 19

2.2.1 Forward pass . 19
2.2.2 Loss computation . 20
2.2.3 Backward Pass . 21
2.2.4 Weight Update . 22

2.3 Theoretical Foundations . 25
2.3.1 Universal Approximation Theorems 25

2.4 Conclusions . 26

3 Basics of rigid multibody dynamics 27
3.1 Some mathematical definitions . 27
3.2 Points and frames . 30

i

3.3 Velocities . 30
3.4 Accelerations . 33
3.5 Forces and Torques . 33
3.6 Equations of dynamics . 34
3.7 Multibody equations of dynamics . 35

3.7.1 Introduction to multibody systems 35
3.7.2 Position and velocity of the joints 37
3.7.3 Link pose . 37
3.7.4 Link velocity . 38
3.7.5 Dynamics . 39

3.8 Conclusions . 40

II Contribution 42

4 Data collection and postprocessing 43
4.1 Collection of the data in-situ . 43
4.2 Postprocessing of the data . 46
4.3 Conclusions . 47

5 Neural Networks for FT modelling 48
5.1 Datasets used . 49
5.2 Framework and libraries used for development of NN models 49
5.3 Inputs of the NNs . 49
5.4 Definition of the loss functions . 50

5.4.1 Loss function for the FTs on the legs 51
5.4.2 Loss function for the FTs on the feet 51

5.5 Models for FT on right leg . 54
5.5.1 Architecture of the model . 54
5.5.2 Results for model with 13 inputs 55
5.5.3 Results for model with 7 inputs 55
5.5.4 Comparison with the results obtained by using polynomial

models . 61
5.6 Models for FT on left leg . 63

5.6.1 Architecture of the model . 63
5.6.2 Results for model with 13 inputs 64
5.6.3 Results for model with 7 inputs 64
5.6.4 Comparison with the results obtained by using polynomial

models . 68

ii

5.7 Models for FTs on right foot . 72
5.7.1 Architecture of the models . 72
5.7.2 Results for model with 13 inputs 73
5.7.3 Results for model with 7 inputs 73

5.8 Models for FTs on left foot . 82
5.8.1 Architecture of the models . 83
5.8.2 Results for model with 13 inputs 85
5.8.3 Results for model with 7 inputs 85

5.9 Conclusions . 94

6 Deployment and tests of the models on real robot 96
6.1 Test A . 97
6.2 Test B . 97
6.3 Test C . 102
6.4 Conclusions . 103

7 Conclusions and future perspectives 107

iii

List of Figures

1.1 Components of 6D strain gauge force-torque sensor 6
1.2 Block diagram of sensing module. Credits to [28] 7
1.3 Wire strain gauge (credits to [3]) . 8
1.4 Foil strain gauge . 9
1.5 Base configuration of Wheatstone bridge. Credits to [5] 11
1.6 From left to right: full bridge, half bridge, quarter bridge. Credits to

[5] . 12
1.7 Design of the strain gauge 6D FT sensor discussed in this work . . . 13

2.1 The synaptic connections between neurons. Credits to [9] 16
2.2 Example of Neural Network. Credits to [27] 16
2.3 Sigmoid and Tanh activation functions 17
2.4 ReLU and Leaky ReLU activation functions 18
2.5 Step and Sign activation functions . 18

4.1 The ErgoCub robot . 44
4.2 Feet of ErgoCub robot. 46

5.1 Visualization of frames r_foot_front_ft, r_foot_rear_ft, r_sole . 53
5.2 Loss function during training of NN for right leg FT 55
5.3 Comparison of wrenches predicted by NN with expected wrenches and

raw values for right leg FT test phase (13 inputs) 56
5.4 Residual obtained in test phase for right leg FT (13 inputs) 57
5.5 Loss function during training of NN for right leg FT 59
5.6 Comparison of wrenches predicted by NN (with 7 inputs) with ex-

pected wrenches and raw values for right leg FT test phase 60
5.7 Residual obtained in test phase for right leg FT (7 inputs) 61
5.8 Test phase for right leg FT with polynomial models 63
5.9 Loss function during training of NN for left leg FT 65

iv

5.10 Comparison of wrenches predicted by NN with expected wrenches and
raw values for left leg FT test phase (13 inputs) 66

5.11 Residual obtained in test phase for left leg FT (13 inputs) 67
5.12 Loss function during training of NN for left leg FT 67
5.13 Comparison of wrenches predicted by NN (with 7 inputs) with ex-

pected wrenches and raw values for left leg FT test phase 69
5.14 Residual obtained in test phase for left leg FT (7 inputs) 70
5.15 Test phase for left leg FT with polynomial models 70
5.16 Train and validation loss functions during training of NN for right foot

FTs (13 inputs) . 74
5.17 Wrenches on right foot on part of dataset related to pole experiment

(13 inputs) . 75
5.18 Comparison of the sum of wrenches predicted by the neural network

(NN) with the expected and raw values during the right foot FTs test
phase (13 inputs) . 76

5.19 Residual obtained in test phase for right foot FT (13 inputs) 77
5.20 Train and validation loss functions during training of NN for right foot

FTs . 78
5.21 Wrenches on right foot on part of dataset related to pole experiment

(7 inputs) . 80
5.22 Comparison of the sum of wrenches predicted by the neural network

(NN) with the expected and raw values during the right foot FTs test
phase (7 inputs) . 81

5.23 Residual obtained in test phase for right foot FTs (7 inputs) 83
5.24 Train and validation loss functions during training of NN for left foot

FTs (13 inputs) . 86
5.25 Wrenches on left foot on part of dataset related to pole experiment

(13 inputs) . 87
5.26 Comparison of the sum of wrenches predicted by the neural network

(NN) with the expected and raw values during the left foot FTs test
phase (13 inputs) . 88

5.27 Residual obtained in test phase for left foot FTs (13 inputs) 89
5.28 Train and validation loss functions during training of NN for left foot

FTs (7 inputs) . 90
5.29 Wrenches on left foot on part of dataset related to pole experiment (7

inputs) . 92

v

5.30 Comparison of the sum of wrenches predicted by the neural network
(NN) with the expected and raw values during the left foot FTs test
phase (7 inputs) . 93

5.31 Residual obtained in test phase for left foot FTs (7 inputs) 94

6.1 Comparison between fz on left leg FT (without secondary calibration)
and right leg FT (with secondary NN calibration) 98

6.2 Angular velocity and linear acceleration of r_leg_ft along x axis . 99
6.3 Wrench on legs FTs predicted by NN vs labels (walking experiment) . 100
6.4 Tracking of torque and position on l_hip_pitch 105
6.5 Tracking of torque and position on r_hip_pitch 106

vi

List of Tables

5.1 Right leg FT: Mean Squared Error (MSE) for Neural Network (NN)
and raw data (13 inputs) . 57

5.2 Right leg FT: Mean Absolute Error (MAE) for Neural Network (NN)
and raw data (13 inputs) . 58

5.3 Right leg FT: Root Mean Squared Error (RMSE) for Neural Network
(NN) and raw data (13 inputs) . 58

5.4 Right leg FT with 7 inputs: Mean Squared Error (MSE) for Neural
Network (NN) and raw data . 59

5.5 loss functionRight leg FT with 7 inputss: Mean Absolute Error (MAE)
for Neural Network (NN) and raw data 61

5.6 loss functionRight leg FT with 7 inputss: Root Mean Squared Error
(RMSE) for Neural Network (NN) and raw data 62

5.7 Left leg FT: Mean Squared Error (MSE) for Neural Network (NN)
and raw data (13 inputs) . 65

5.8 Left leg FT: Mean Absolute Error (MAE) for Neural Network (NN)
and raw data (13 inputs) . 68

5.9 Left leg FT: Root Mean Squared Error (RMSE) for Neural Network
(NN) and raw data (13 inputs) . 68

5.10 Left leg FT 7 inputs: Mean Squared Error (MSE) for Neural Network
(NN) and raw data . 71

5.11 Left leg FT 7 inputs: Mean Absolute Error (MAE) for Neural Network
(NN) and raw data . 71

5.12 Left leg FT 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data . 72

5.13 Sum of wrenches on right foot: Mean Squared Error (MSE) for Neural
Network (NN) and raw data (13 inputs) 79

5.14 Sum of wrenches on right foot: Mean Absolute Error (MAE) for Neu-
ral Network (NN) and raw data (13 inputs) 79

vii

5.15 Sum of wrenches on right foot: Root Mean Squared Error (RMSE)
for Neural Network (NN) and raw data (13 inputs) 82

5.16 Right foot FTs 7 inputs: Mean Squared Error (MSE) for Neural Net-
work (NN) and raw data . 82

5.17 Right foot FTs 7 inputs: Mean Absolute Error (MAE) for Neural
Network (NN) and raw data . 83

5.18 Right foot FTs 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data . 84

5.19 Sum of wrenches on left foot: Mean Squared Error (MSE) for Neural
Network (NN) and raw data (13 inputs) 85

5.20 Sum of wrenches on left foot: Mean Absolute Error (MAE) for Neural
Network (NN) and raw data (13 inputs) 89

5.21 Sum of wrenches on left foot: Root Mean Squared Error (RMSE) for
Neural Network (NN) and raw data (13 inputs) 91

5.22 Left foot FTs 7 inputs: Mean Squared Error (MSE) for Neural Net-
work (NN) and raw data . 91

5.23 Left foot FTs 7 inputs: Mean Absolute Error (MAE) for Neural Net-
work (NN) and raw data . 94

5.24 Left foot FTs 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data . 95

6.1 Mean Squared Error (MSE) for right leg FT (with secondary NN cal-
ibration, 7 inputs) and left leg FT (without secondary calibration) . . 101

6.2 Mean Absolute Error (MAE) for right leg FT (with secondary NN
calibration, 7 inputs) and left leg FT (without secondary calibration) 101

6.3 Root Mean Squared Error (RMSE) for right leg FT (with secondary
NN calibration, 7 inputs) and left leg FT (without secondary calibration)101

viii

Prologue

The calibration of a force-moment strain gauge sensor plays a crucial role in humanoid
robotics. As will be illustrated later, this type of sensors gives as output six electrical
potential differences. The calibration process of this sensor consists in finding a
relation f : R6 → R6 which relates the potential differences at the output of a sensor
and the wrench applied to it. To find this relationship, two steps are necessary: data
collection and search for the calibration function f .
As regards the first step, one of the most used methods consists in applying certain
known weights to the sensor and recording the output potential differences (collection
of data ex-situ, i.e. with the sensor not mounted on the robot).
As regards the second step, one of the most used techniques is the linear regression
through least squares method. However, such linear models are sometimes too simple,
leading to poor results. For this reason, polynomial models of generic order [1] have
also been proposed. Furthermore, with the advancement of artificial intelligence,
calibration models based on neural networks [15], [16] have also been proposed.
However, the output of these sensors is also influenced by other factors, such as
temperature. For this reason, it may be useful to also consider temperature in the
sensor calibration process [1]. Furthermore, if the data collection and calibration
of the sensor takes place ex-situ, there is the risk of a deterioration in performance
when it is then mounted on the robot, due for example to the tightening force of the
screws [5].
For the reasons stated above, it might be convenient to develop a calibration process
in which the data is collected in-situ (i.e. with the sensor mounted on the robot),
and considering variables such as linear acceleration in the calibration model and
angular velocity of the sensor. This thesis develops in this context. The objective of
the present work is to develop neural network models for the in-situ calibration of
6D force-moment sensors. This will be a secondary calibration, i.e. the network will
not take as input the electrical potential differences directly output from the sensor,
but the raw wrench output from a linear calibration already implemented on the
ErgoCub robot. Furthermore, as mentioned above, these neural network models will

1

have other variables as input: temperature, angular velocity and linear acceleration
of the sensor.

This thesis is divided into two main parts.
In Part I, all the theoretical knowledge necessary to carry out the work will be

presented:

• In Chapter 1, the physical and technological principles on which 6D force-
torque (FT) sensors are based will be presented.

• In Chapter 2, the basics of artificial neural networks will be illustrated; this
knowledge will allow us to develop the necessary understanding to build cali-
bration models for FTs.

• Finally, in Chapter 3, some basic knowledge of multibody dynamics will be
exposed; these theoretical bases will be useful especially when neural network
models are developed, in particular to define the loss function.

Part II will contain the development of the original contribution of this work:

• Chapter 4 will deal with the collection and postprocessing of the data necessary
for the training of neural networks (NN).

• Chapter 5 will discuss the development of the NN models and the results ob-
tained, comparing them with the performance of the models currently present
on the robot.

• In Chapter 6, the deployment of the models developed in the previous chapter
on the real robot will be carried out. Some tests will be conducted to certify
the performance improvement of the FT sensors through the NN models.

• Finally, in Chapter 7, the results obtained and possible future developments
will be discussed.

2

3

Part I

Background

4

Chapter 1

Force-torque sensors

A 6D force-torque (FT) sensor is a device designed to measure the forces and torques
acting on an object in a three-dimensional space. Specifically, it can measure:

• Fx: Force along the x-axis.

• Fy: Force along the y-axis.

• Fz: Force along the z-axis.

• τx: Torque around the x-axis.

• τy: Torque around the y-axis.

• τz: Torque around the z-axis.

6D force-torque sensors are used in various applications, like for example robotics,
automotive, aerospace, and manufacturing, where precise force and torque measure-
ments are critical for control, testing, and analysis purposes.

One of the most common types of force-torque sensors is the one based on strain
gauges: this particular type of sensor is solicited by a wrench (i.e. the 6D vector
containing the components of force and torque), and gives an electrical signal as an
output. Of great importance is the calibration of the sensor, i.e. finding the map
between the output potential difference and the applied wrench.

This chapter is structured in the following way. In section 1.1 we will briefly
present several approaches to measure force and torques. In section 1.2 we will focus
on piezoresistive strain gauges, which are the founding technology of many modern
sensors. In section 1.3 we will discuss about Wheatstone bridge, an electrical circuits
that transforms a variation of electrical resistance in a difference of potential. Finally,
in section 1.4 we will resume what discussed in this chapter.

5

Figure 1.1: Components of 6D strain gauge force-torque sensor

1.1 Force Sensing Technologies
According to [2], one of the following methods can be used to measure an unknown
force:

1. Directly or via a system of levers, balancing it against the known gravitational
force on a standard mass.

2. Calculating the acceleration caused by an unknown force applied to a body
with known mass.

3. Weighing it against the magnetic force that results from a magnet and a
current-carrying coil interacting.

4. Converting the force to a fluid pressure, which is then measured.

5. Applying force to an elastic component and calculating the deflection that
results.

6. Determining the variation in gyroscope precession brought on by an applied
torque connected to the force being measured.

7. Determining how much a force-tensioned wire’s inherent frequency changes.

6

Figure 1.2: Block diagram of sensing module. Credits to [28]

The most popular method is the fifth one [3]; often, by using this method, the
sensor transduces the wrench in an electrical signal. By the way, before this trans-
duction, more actions are typically needed. A displacement sensor that transforms
displacement into an electrical output paired with a force-to-displacement transducer
makes up a standard force sensor. Stated otherwise, a standard force sensor com-
prises an elastic element (such as a silicon cantilever, polymer lattice, spring, etc.)
and a gauge that measures the element’s degree of compression or strain in order to
transform it into an electrical output signal. In contemporary sensor design, integrat-
ing sensing elements with signal conditioning, conversion, and transmission circuits is
a growing trend [3]. This combination is referred to as a sensing module. The output
signals of a typical sensing element are low-level analog signals; before they can be
digitalized, they must be amplified, filtered, impedance matched, and perhaps level
shifted. Signal conditioners handle all of these duties. An analog-to-digital converter
(ADC) is used to transform the signal from digital data after conditioning. The
elastic element and the displacement sensor are given more attention in this thesis,
even though every element of the sensing module is significant. With the addition of
an elastic element, strain gauges become the primary means of force-torque sensing
in robotics due to its capacity to measure dynamic loads and the potential of a high
measurement bandwidth.

7

1.2 Piezoresistive Strain Gauges
The predominant technique for force measurement employs resistive sensing. Resis-
tive sensors are favored due to their dependability, straightforward design, customiz-
able resolution, and maintenance-free nature [4]. Additionally, electrical resistance
is the most straightforward electrical property to measure accurately across a broad
spectrum and at a reasonable cost. These significant attributes frequently position
resistive sensors as the preferred option in sensor design. One of the most important
technologies based on electrical resistances is strain gauges. Strain gauges use the
piezoresistive capabilities of elastic materials, such as metals, alloys, semiconductors,
or cermets, to measure resistance changes under strain. The operating principle is
rather simple: a metallic material subjected to stress varies its electrical resistance.

There are two main types of strain gauges: wire strain gauges and foil strain
gauge.

Wire strain gauges
A wire strain gauge comprises a resistor affixed to a flexible backing, which is then
attached to the object under stress or force measurement. To achieve optimal sensi-
tivity, the sensor design emphasizes long longitudinal and short transverse segments,
minimizing transverse sensitivity to only a few percent of the longitudinal sensitivity.
The main advantage of the architecture in figure 1.3 is its robustness. Conversely,
the main drawbacks are:

• Limited variety in strain gauge design options.

• Reduced ability to dissipate heat produced by the Joule effect, which decreases
sensitivity.

Figure 1.3: Wire strain gauge (credits to [3])

8

Foil strain gauges
Foil strain gauges are characterized by high versatility as the grid can be designed
more freely. Furthermore, heat is dissipated more easily than with wire strain gauges.
Another advantage is the ability to allow the passage of a greater current, and there-
fore greater sensitivity is obtained.

Figure 1.4: Foil strain gauge

The variation of the electrical resistance can be produced by modifying any of
the three parameters from the relation:

R = ρ
L

A
, (1.1)

where ρ is resistivity, L the conductor length, and A the cross section area. For
wire strain gauges, we have A = πD2

4 (with D diameter of the wire). In that case,
differentiating 1.1, we have

dR = ∂R

∂ρ
dρ + ∂R

∂A
dA + ∂R

∂L
dL

= L

A
dρ− ρL

A2 dA + ρ

A
dL

= R

ρ
dρ− R

πD2

4
dD

πD

2 + R

L
dL,

which leads to
dR

R
= dρ

ρ
− 2dD

D
+ dL

L
. (1.2)

9

Considering dρ
ρ

negligible and moving on to finite differences, we obtain

∆R
R

∆L
L

= 1−
2∆D

D
∆L
L

.

We can notice that ϵL = ∆L
L

is the longitudinal unitary deformation and ϵT = −∆D
D

is the transversal unitary deformation. Moreover, knowing that ν = − ϵT

ϵL
, it follows

∆R
R

∆L
L

= 1− 2ν = F = const,

∆R

R
= FϵL = Fϵ. (1.3)

The constant F is the so called gauge factor, which depends on the material of the
strain gauge and temperature. Usually, F assumes values between 1.9 and 4.

Observation 1.2.1. The relation (1.3) does not depend on the section A.

The ideal material for a strain gauge should have the following characteristics:

• same ∆R
R

in traction and compression

• high gauge factor F

• high Young Modulus E

• high ρ for having small grid dimensions

• high fatigue resistance

• dilatation coefficient similar to the material on which it is applied

• not ferromagnetic material (to avoid spurious EMFs (Electromotive Forces))

Some good materials are for example constantan, isoelastic, karma alloys.
Strain gauges can be configured in different arrangements to measure strains

along various axes, often integrated into Wheatstone bridge circuits. Notably, semi-
conductive strain gauges exhibit high sensitivity to temperature changes, necessi-
tating temperature-compensating networks in interface circuits or within the gauges
themselves.

10

Figure 1.5: Base configuration of Wheatstone bridge. Credits to [5]

1.3 Wheatstone bridge
The Wheatstone Bridge aims to measure the variation of the electrical resistance.

The Wheatstone Bridge (figure 1.5) is an electrical circuit given by the combina-
tion of four resistances. The input tension Ei can be either direct or alternating. If
R1
R2

= R3
R4

, we have an output voltage E0 = 0. When one of the resistances changes
value, the bridge becomes unbalanced, and E0 , 0. Such output tension can be
measured and used to determine the variation of the resistance. We can express the
ratio between E0 and Ei as:

EO

EI

= R1

R1 + R2
− R4

R3 + R4
= R1R3 −R2R4

(R1 + R2)(R3 + R4)
, (1.4)

where Ri(Ω) is the value of resistance at the i-th position. Based on the number of
variable resistances or strain gauges, it can be classified as a full bridge (all variable
resistances), half bridge, or quarter bridge (1.6). In our particular case, the force-
torque (FT) sensor used by the Artificial and Mechanical Intelligence group belongs
to the second type.

This arrangement of resistances is well-suited for measuring small changes in
resistance, making it ideal for detecting resistance variations in a strain gauge. Ad-
ditionally, the Wheatstone Bridge can be configured to compensate for interference
effects such as temperature, pressure, humidity, magnetic fields, radiation, etc. [6].

11

Accurate temperature compensation in the Wheatstone Bridge is achieved only
if certain conditions are strictly met:

• Symmetry of the bridge.

• Identical temperature coefficients for all materials used.

• Identical resistances of all parts in the bridge arms that are combined for com-
pensation.

• Identical temperatures on all compensating elements in the bridge circuit.

• Identical active grid areas.

Figure 1.6: From left to right: full bridge, half bridge, quarter bridge. Credits to [5]

1.4 Conclusions
In this chapter we presented 6D force-torque sensors. Among the different sens-
ing technologies, piezoresistive strain gauges are widely used due to their reliability
and sensitivity. These sensors, integrated into Wheatstone bridge circuits, effec-
tively convert mechanical strain into electrical signals. Key to their operation is the
gauge factor, which links resistance changes to mechanical strain. Ensuring accu-
rate measurements involves addressing factors like temperature compensation and
circuit symmetry. As technology advances, the integration of sensing elements with
signal conditioning and digital conversion is becoming more prevalent, enhancing
the overall performance and applicability of these sensors. The insights presented
in this chapter highlight the fundamental principles and operational intricacies of

12

Figure 1.7: Design of the strain gauge 6D FT sensor discussed in this work

force-torque sensing, laying the groundwork for their effective application in robotics
and other fields.

The sensor on which we will work in this thesis arises in this context. In particular,
in our sensor there are 3 cantilevers (in the case of a sensor produced by AMI) in
which strain gauges are glued. Totally, there are 12 strain gauges, which combine to
form a total of 6 Wheatstone half-bridges; each of these half bridges therefore contains
two constant resistances and two variable resistances (the strain gauges). Each of
these half bridges produces a potential difference in output: in total, therefore, a
vector v ∈ R6 of potential differences is obtained.

For this reason, it is necessary to calibrate the sensor, i.e. identify a map f : R6 →
R6 which, taking as input the vector potential difference v, returns the vector wrench
f. However, the identification of this function is far from trivial. Models typically
used for this purpose can be, for example, linear or, more generally, polynomial,
capable of interpolating the available data. Unfortunately, the calibration of an FT-
sensor is very sensitive to the conditions under which it takes place, such as sensor
orientation and temperature. It is therefore difficult to find an analytical model
capable of taking into account all these non-linearities. In light of this, in recent
years the literature has proposed the use of neural networks to calibrate FT-sensors

13

[15], [16]; in this way, one avoids having to define a closed-form model describing the
relationship between potential difference v and wrench f. In this work, we would like
to calibrate the force-torque sensor with a neural network approach, considering not
only the raw values of the FT, but also other inputs, like for example the temperature
of the sensor. Moreover, unlike [15] and [16], in this thesis we will perform an in-situ
calibration, meaning that we will collect data with the sensor already mounted on
the robot.

14

Chapter 2

Neural Networks

In this chapter we will present the theoretical basis of artificial neural networks
(ANNs); this will be useful for the implementation of neural networks (NNs) for the
calibration of the force-torque (FT) sensors introduced in the chapter 1.

2.1 Introduction to Neural Networks
Artificial neural networks are a subset of machine learning which try to simulate the
human cell behavior. This is made through cells (neurons) connected to each other
with axons and dendrites. Such connections areas are called synapses. Through
these connections, electrical stimuli are propagated from one neuron to another.

Similar to biological neural networks, ANNs are composed of units (artificial
neurons) connected to other units. Again, each neuron processes information and
transmits the output to other neurons.

A Neural Network is mathematically described as a graph G = (V , E , W), a
structure defined by

• A set of nodes V , which represents the units participating in the network;

• A set of links E ⊆ V × V ;

• Weights Wij associated to each link. The matrix W is usually called adjacency
matrix.

It consists in at least an input layer and an output layer. Moreover, there could
be also one or more hidden layers. Every layer consists in a certain number of nodes

15

(a) Biological neural network (b) Artificial neural network

Figure 2.1: The synaptic connections between neurons. Credits to [9]

Figure 2.2: Example of Neural Network. Credits to [27]

(neurons). Every node contains a variable y, which is the result of the following
operation:

y = Φ(wT x + b), (2.1)

where x are the values contained in the neurons of the previous layer, b the bias
and w is a vector of weights. w is nothing but a column of the adjacency matrix

16

W mentioned above. Φ is called activation function. Activation functions are really
important because can introduce non-linearity into the network, enabling it to learn
complex patterns. Some example of common activation functions are:

• Sigmoid:
σ(x) = 1

1 + e−x
.

Outputs values between 0 and 1, making it suitable for binary classification
tasks.

(a) Sigmoid (b) Tanh

Figure 2.3: Sigmoid and Tanh activation functions

• Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x).

Widely used in deep networks.

• Step:

step(x) =
0 if x < 0,

1 if x ≥ 0.

As we will see later, the use of non-linear functions within neural networks gives
the model great capabilities to approximate functions.

17

(a) ReLU (b) Leaky ReLU

Figure 2.4: ReLU and Leaky ReLU activation functions

(a) Step (b) Sign

Figure 2.5: Step and Sign activation functions

18

2.2 Training of a NN through supervised learning
Training neural networks consists of optimizing their parameters (weights and biases)
to minimize a loss function that quantifies the network’s prediction error. One of
the most common approacheas is supervised learning, where the network learns from
labeled examples provided in a training dataset. Basically, calling x the input, y the
label, the NN tries to learn a function f such that y = f(x). In order to do that, we
have to solve an optimization problem

min
w∈RB

L(w), (2.2)

where w is a vector containing all the trainable weights of the NN and L : RB → R+

is a function that could have many local minima. To solve the problem (2.2), is
often used a gradient-based method. The idea of this kind of methods is to move
repeatadly in the opposite direction of the gradient of the cost function with respect
to the optimization variables. The gradient tells us the direction of the steepest
ascent, and by moving in the opposite direction, we can find the direction of the
steepest descent. We’ll see further details in 2.2.4. Usually, the resolution of the
problem (2.2) involves four main steps:

1. Forward Pass: Compute the output of the network.

2. Loss Computation: Evaluate discrepancy between output of the Neural Net-
work y and the label ŷ using a loss function.

3. Backward Pass: Compute gradients of the loss with respect to each weight
(and bias) of the NN.

4. Weight Update: Adjust weights using gradient descent.

This procedure is repeated until a good solution for the (2.2) problem is reached.

2.2.1 Forward pass
In section 2.1 we already discussed the main idea of the computations in a NN. For
simplicity, let’s consider a NN with the input layer, the output layer and an hidden
layer. Let input vector be x ∈ Rn, weights between input layer and hidden layer
be W (1) ∈ Rm×n, weights between hidden layer and output layer be W (2) ∈ Rk×m,
biases for hidden layer be b(1) ∈ Rm, and biases for the output layer be b(2) ∈ Rk.

19

Activation functions for the hidden layer and the output layer are denoted as Φ(1)

and Φ(2) respectively.
The forward pass is computed as follows:

z(1) = W (1)x + b(1),

a(1) = Φ(1)(z(1)),
z(2) = W (2)a(1) + b(2),

y = Φ(2)(z(2)).
Here, z(1) and z(2) are the linear combinations of inputs and weights for the hidden
and output layers respectively, while a(1) is the vector of variables saved in the hidden
layer, and y is the final output of the network.

2.2.2 Loss computation
After the forward computation of the Neural Network, we need an error metric to
quantify the discrepancy between the exact ŷ and the output of the NN y. In order
to do that, we need to choose a loss function. Below, some of the most used loss
functions:

• Mean Squared Error (MSE)

MSE = 1
n

nØ
i=1

(ŷi − yi)2.

Used commonly for regression problems where ŷi represents the label and yi

represents the predicted value by the model.

• Binary Cross-Entropy Loss (Log Loss)

Binary Cross-Entropy = − 1
n

nØ
i=1

[ŷi log(yi) + (1− ŷi) log(1− yi)] .

Used for binary classification tasks where the output is a probability between
0 and 1.

• Categorical Cross-Entropy Loss

Categorical Cross-Entropy = − 1
n

nØ
i=1

CØ
j=1

ŷij log(yij).

20

Used for multi-class classification tasks where C is the number of classes, ŷij

is 1 if the observation i is in class j and 0 otherwise, and yij is the predicted
probability of observation i belonging to class j.

• Hinge Loss
Hinge Loss = max(0, 1− ŷi · yi).

Commonly used for training classifiers in Support Vector Machines (SVMs)
and also for margin-based classifiers in neural networks.

• Huber Loss

Lδ(a) =


1
2a2 for |a| ≤ δ,

δ(|a| − 1
2δ) for |a| > δ,

where a = ŷi − yi. It is used in regression tasks and is less sensitive to outliers
than the squared error loss.

• Kullback-Leibler Divergence

KL Divergence =
Ø

i

ŷi log
A

ŷi

yi

B
.

Measures how one probability distribution diverges from a second, expected
probability distribution. Often used in probabilistic models and for training
variational autoencoders.

2.2.3 Backward Pass
Now, we need to compute the gradients of the function with respect to the weights
of the Neural Network. The algorithm to do that is called backpropagation. Such
algorithm was mostly used in the field of control theory, and has begun to be used
for NN trainings in [12].

The backward pass involves computing the gradients of the loss function with
respect to each weight in the network. This is done using the chain rule for differen-
tiation, propagating the error backward through the network from the output layer
to the input layer.

Gradients for Output Layer
First, we compute the gradient of the loss with respect to the output of the network
∂L
∂y

.

21

Next, we compute the gradient of the loss with respect to the pre-activation
output z(2) using the activation function derivative Φ(2)′:

∂L

∂z(2) = ∂L

∂y
⊙ Φ(2)′(z(2)),

where ⊙ denotes the element-wise product.
The gradients with respect to the weights W (2) and biases b(2) are then:

∂L

∂W (2) = ∂L

∂z(2) a(1)T ,

∂L

∂b(2) = ∂L

∂z(2) .

Gradients for Hidden Layer
For the hidden layer, we first propagate the error backward from the output layer:

∂L

∂a(1) = W (2)T ∂L

∂z(2) .

Next, we compute the gradient of the loss with respect to the pre-activation input
z(1) using the activation function derivative Φ(1)′:

∂L

∂z(1) = ∂L

∂a(1) ⊙ Φ(1)′(z(1)).

The gradients with respect to the weights W (1) and biases b(1) are:

∂L

∂W (1) = ∂L

∂z(1) xT ,

∂L

∂b(1) = ∂L

∂z(1) .

2.2.4 Weight Update
Once the gradients are computed, the weights and biases are updated using gradient
descent. The update rule for gradient descent is:

W (l) ← W (l) − η
∂L

∂W (l) ,

22

b(l) ← b(l) − η
∂L

∂b(l) .

where η is the learning rate and l denotes the layer index. This process is repeated
for each layer in the network. It is worth underlining the importance of η: it is one of
the fundamental parameters in the construction of a neural network, as it quantifies
the tendency of the network weights to be updated during the training phase.

This classical gradient descent method is affected by several issues, like for ex-
ample:

• vanishing or exploding gradients, especially in Recurrent Neural Networks [10];

• presence of saddle points, which slows down the training [11];

• possibility of getting trapped in local minima.
To remedy these problems, some modifications have been introduced to this algo-
rithm:

• Stochastic Gradient Descent. While in the classic gradient descent, all the
samples of the dataset are used at a single time, in this variation only a sample
is stochastically chosen in each iteration. Main advantages are convergence
speed and efficiency from a memory point of view. The main disadvantage is
related to the single sample approach. In fact, a single sample could be an
outlier or, more generally, contain an error;

• Mini-Batch Stochastic Gradient Descent. Similiar to the method discussed
above, but considering a group of samples (batch) rather than a single sam-
ple during each iteration; in this way, it fixes the disadvantage of the classic
stochastic gradient descent method.

• Adagrad (Adaptive Gradient Algorithm). Throughout the optimization pro-
cess, this technique records the total squared magnitude of the partial derivative
with respect to each parameter. In order to do that, we consider the aggregate
value for the i-th parameter, Ai; during each iteration, we update such quantity
in the following way:

Ai ← Ai +
A

∂L

∂wi

B2

∀i . (2.3)

The update for the i-th parameter wi is as follows:

wi ← wi −
η√
Ai

A
∂L

∂wi

B
∀i . (2.4)

The main problem of this method is the slowness.

23

• RMSprop (Root Mean Square Propagation). This method is similiar to the
previous one, but moreover we have also an exponential averaging in the up-
dating of Ai. For the averaged value of the i-th parameter wi, we have the
following way of updating Ai:

Ai ← ρAi + (1− ρ)
A

∂L

∂wi

B2

∀i , (2.5)

with ρ ∈ (0, 1). Then, we update η as follows:

wi ← wi −
η√
Ai

A
∂L

∂wi

B
∀i . (2.6)

Advantages with respect to Adagrad: faster and the importance of old gradients
decays exponentially in time.

• Adam (Adaptive Moment Estimation). Similiarly to RMSProp, we have for
the updating of Ai:

Ai ← ρAi + (1− ρ)
A

∂L

∂wi

B2

∀i , (2.7)

with ρ ∈ (0, 1). Then we compute Fi, a smoothed version of the gradient:

Fi ← ρfFi + (1− ρf)
A

∂L

∂wi

B
∀i . (2.8)

where ρf ∈ (0, 1) is another decay parameter. Finally, we have for the weights:

wi ← wi −
ηt√
Ai

Fi ∀i . (2.9)

ηt is a modification of η, computed in the following way:

ηt = η

A √
1− ρt

1− ρt
f

B
, (2.10)

where t is the iteration index. Adam combines the advantages of other algo-
rithms [13]; for that reason, it is one of the most popular algorithm in NN
field.

24

2.3 Theoretical Foundations

2.3.1 Universal Approximation Theorems
In this section we are going to enunciate the main theorems about the capability
of representation of Neural Networks. Such theorems state that, for a sufficiently
large network with non-linear activation functions, neural networks can approximate
any continuous function to an arbitrary degree of accuracy [7], [8]. In the follow-
ing theorems, we will indicate with C0 the space of continuous functions and with
∥f∥∞,K = maxf∈K |f | the infinity norm of the function f .

Theorem 2.3.1 (Fixed depth, variable witdth). Let’s condider a function f̄

f̄ : K ⊂ Rn → Rm Kcompact, f̄ ∈ C0(K,Rm),

the NN function f

f : K → Rm,

and the function Φ : R→ R.
If and only if Φ is not a polynomial, then

∀n ∈ N,∀m ∈ N,∀Kcompact ⊂ Rn,∀f̄ ∈ C0(K,Rm),∃k ∈ N, W 1 ∈ Rk×n, w0 ∈ Rk, W 2 ∈ Rm×k

such that, setting

y = f(x) = W 2(Φ(W 1x + w0)),

one has

∥f̄ − f∥∞,K < ϵ.

Theorem 2.3.2 (Fixed width, variable depth). Assume Φ is continuous, not affine,
continuously differentiable on at least one x̄ ∈ R, where Φ′(x̄) , 0. Then

∀n ∈ N,∀m ∈ N,∀Kcompact ⊂ Rn,∀f̄ ∈ C0(L,Rm),∀ϵ > 0,∃L > 0

and exists a NN with L layers, each one of width = n + m + 2, such that

∥f̄ − f∥∞,K < ϵ.

25

Theorem 2.3.3 (Fixed depth, fixed width). ∀[a, b] ∈ R,∀n ∈ N, ∀f̄ ∈ C0([a, b]n,R)
∃Φ : R → R continuous and computable (for example, sigmoid function) and exists
a NN with 2 hidden layers (L = 3), with n neurons in the first layer, 2n + 2 neurons
in the second layer such that

∥f̄ − f∥∞,[a,b]n < ϵ.

The theorems just exposed lay the theoretical foundations for the NNs that we
will use to find a sufficiently accurate calibration map for force-torque sensors.

2.4 Conclusions
This chapter covered neural networks, a key component of contemporary machine
learning that draws inspiration from the neurons found in the human brain. We be-
gan by understanding how weights and associated nodes in artificial neural networks
imitate organic neurons. These networks are graph-structured, with nodes stand-
ing in for units and edges for connections that have weights assigned to them. The
activation functions, such as the sigmoid or ReLU, are essential to neural networks
because they introduce non-linearities, which are necessary for learning intricate pat-
terns. We covered the training of neural networks using supervised learning, wherein
methods such as gradient descent are used to modify weights in order to decrease
prediction errors. Different optimization techniques were described, each with a spe-
cial advantage for improving training efficiency, like for example stochastic gradient
descent and Adam. We also talked about the Universal Approximation Theorems,
which state that neural networks can approximate any continuous function with suf-
ficient complexity. Overall, this chapter covers fundamental understanding about
neural networks, their training methods, and theoretical possibilities. Such basis will
be useful for the construction of Neural Networks for force-torque sensors calibration.

26

Chapter 3

Basics of rigid multibody dynamics

Rigid body dynamics is a fundamental aspect of mechanics that deals with the mo-
tion of solid bodies without deformation. This chapter delves into the mathematical
foundation necessary to understand and analyze the dynamics of rigid bodies, par-
ticularly within the context of humanoid robotics. The study of rigid body dynamics
enables us to model, simulate, and control the motion of robots, providing critical
insights into their behavior and interactions with the environment. We will explore
essential mathematical definitions and concepts, frame kinematics, velocity, acceler-
ations, and the forces and torques acting on rigid bodies.

In the subsequent sections, we will introduce the mathematical structures and
operations fundamental to rigid body dynamics, such as vectors, matrices, and groups
like SO(3) and SE(3) (section 3.1). These tools allow us to describe and manipulate
the orientation and position of rigid bodies (section 3.2). Afterwards, rigid body
velocities (section 3.3) and accelerations (section 3.4) will be presented. Then, after
discussed force-torques (section 3.5), we will finally write the dynamics equations
for a rigid body (section 3.6). After doing that, we will finally present the basis of
dynamics of rigid multibody systems (section 3.7).

In the present work, the theory developed in this chapter will be useful to define
the loss function of neural networks for the calibration of 6D force-torque sensors.

The main references for this chapter are [17], [18], [19] and [20].

3.1 Some mathematical definitions
• The set of real numbers is denoted by R. Let u and v be two n-dimensional col-

umn vectors of real numbers, i.e. u, v ∈ Rn. Their inner product is represented
as uT v, where T indicates the transpose operator.

27

• The identity matrix of size n is denoted as In ∈ Rn×n; the zero column vector
of size n is denoted as 0n ∈ Rn; the zero matrix of size n × m is denoted as
0n×m ∈ Rn×m.

• The special orthogonal group SO(3) is the set of 3×3 orthogonal matrices with
a determinant equal to one, defined as

SO(3) := {R ∈ R3×3 | RT R = I3, det(R) = 1}. (3.1)

Such set is called group under the matrix multiplication operator because, given
A, B ∈ SO(3) we have the following properties:

– closure: AB ∈ SO(3)
– associativity: (AB)C = A(BC)
– identity element existence: there exists an element I ∈ SO(3) (the identity

matrix for SO(3)) such that AI = IA = A

– inverse element existence: there exists an element A−1 in the group such
that AA−1 = A−1A = I.

• The set so(3), consists of 3× 3 skew-symmetric matrices,

so(3) := {S ∈ R3×3 | ST = −S}. (3.2)

• The special Euclidean group SE(3) is defined as

SE(3) :=
; C

R p
01×3 1

D
∈ R4×4 | R ∈ SO(3), p ∈ R3

<
. (3.3)

This group is also known as group of rigid-body motions or homogeneous trans-
formation matrices in R3.

• The set se(3) is defined as

se(3) :=
;C Ω v

01×3 0

D
∈ R4×4 | Ω ∈ so(3), v ∈ R3

<
. (3.4)

• For the vector w = (x, y, z) ∈ R3, we define w∧ (read "w hat") as the 3 × 3
skew-symmetric matrix

w∧ =

x
y
z


∧

:=

 0 −z y
z 0 −x
−y x 0

 ∈ so(3). (3.5)

28

• For the skew-symmetric matrix W = w∧, we define W ∨ ∈ R3 (read "W vee")
as

W ∨ =

 0 −z y
z 0 −x
−y x 0


∨

:=

x
y
z

 ∈ R3. (3.6)

Clearly, the vee operator is the inverse of the hat operator.

• For a vector v = (v, ω) ∈ R6, where v and ω are in R3, we define

v∧ =
C
v
ω

D∧

:=
C

ω∧ v
01×3 0

D
∈ se(3). (3.7)

• For a vector v = (v, ω) ∈ R6, where v and ω are in R3, we define

v× :=
C

ω∧ v∧

03×3 ω∧

D
∈ R6×6. (3.8)

• For a vector v = (v, ω) ∈ R6, where v and ω are in R3, we define

v×̄∗ :=
C
ω∧ 03×3
v∧ ω∧

D
∈ R6×6. (3.9)

• The vee operator is defined as the inverse of the hat operator, such thatC
ω∧ v

01×3 0

D∨

:=
C
v
ω

D
= v ∈ R6. (3.10)

• For A ∈ Rn×m and B ∈ Rp×q, we denote the Kronecker product as A ⊗ B ∈
Rnp×mq.

• Given X ∈ Rm×p, vec(X) ∈ Rmp represents the column vector obtained by
stacking the columns of the matrix X. According to this definition of vec(·),
we have

vec(AXB) = (BT ⊗ A)vec(X). (3.11)

29

3.2 Points and frames
In the field of humanoid robotics, the rigid body assumption is really useful in order
to study the dynamics of the system. With the aim of describing the kinematics
of a rigid body, the concept of frame is fundamental, which is identified by a point
called origin (a vector in R3) and an orientation frame (a matrix in SO(3)). We will
express the frame A = (oA, [A]), where oA is the origin of the frame and [A] is its
orientation. In this way, given a point p, we can express its coordinates with respect
to the frame A as

Ap :=


→
r oA,p ·

→
xA

→
r oA,p ·

→
y A

→
r oA,p ·

→
z A

 ∈ R3, (3.12)

where · is the scalar product and →
xA, →

y A, →
z A are the versors which define [A]. Given

two frames A, B, we can define the rotation between such frames as

ARB ∈ SO(3).

This transformation depends only on the relative orientation of the frames, not on
the relative position of the origins. In order to consider also the distances between
the origin of the frames A, B, we can use the homogeneous transformation:

AHB :=
C

ARB
AoB

01×3 1

D
. (3.13)

Moreover, given a point p, AHB can be also useful to map the representation Bp in
Ap. In order to do that, we have to consider a modified version of Bp in Ap, namely
Ap̄ := (Ap; 1), B p̄ := (Bp; 1) ∈ R4. In this way, we can easily write

Ap̄ = AHB
B p̄. (3.14)

3.3 Velocities
In the following, given a point p and a frame A, we define

Aṗ := d

dt

1
Ap
2

. (3.15)

30

In particular, when p is the origin of a frame, e.g., p = oB, we have

AȯB = d

dt

1
AoB

2
.

Similarly to (3.15), we also define

AṘB := d

dt

1
ARB

2
, (3.16)

and

AḢB := d

dt

1
AHB

2
=
C

AṘB
AȯB

01×3 0

D
. (3.17)

The relative velocity between a frame B with respect to a frame A can be represented
by the time derivative of the homogenous matrix AHB ∈ SE(3). We can obtain also
a more compact form of AḢB, by multiplying it with the inverse of AHB on the left
or on the right. By multiplying on the left, we obtain

AH−1
B

AḢB =
C

ART
B −ART

B
AoB

01×3 1

D C
AṘB

AȯB

01×3 0

D

=
C

ART
B

AṘB
ART

B
AȯB

01×3 0

D
∈ se(3). (3.18)

By introducing
BvA,B := ART

B
AȯB, (3.19)

Bω∧
A,B := ART

B
AṘB, (3.20)

we can define the left trivialized velocity of frame B with respect to frame A:

BvA,B :=
C

BvA,B
BωA,B

D
∈ R6. (3.21)

By construction (equation (3.18)), we have:

Bv∧
A,B = AH−1

B
AḢB. (3.22)

Similarly to what was done in equation (3.18), if instead of multiplying by H−1
B

on the left, we multiply on the right, we obtain

31

AḢB
AH−1

B =
C

AṘB
AȯB

01×3 0

D C
ART

B −ART
B

AoB

01×3 1

D

=
C

AṘB
ART

B
AȯB − AṘB

ART
B

AoB

01×3 0

D
∈ se(3). (3.23)

Define AvA,B and AωA,B ∈ R3 as
AvA,B, := AȯB − AṘB

ART
B

AoB, (3.24)
Aω∧

A,B := AṘB
ART

B. (3.25)

The right trivialized velocity of B with respect to A is then defined as

AvA,B :=
C

AvA,B
AωA,B

D
∈ R6. (3.26)

By construction,
Av∧

A,B = AḢB
AH−1

B . (3.27)

By combining the definitions (3.22) and (3.27), we obtain the mapping between right
and left trivialized velocities:

Av∧
A,B = AHB

Bv∧
A,B

AH−1
B .

We can also write the 6D vector shape of the relation above as
AvA,B = AXB

BvA,B.

where
AXB =

C
ARB

Ao∧
B

ARB

03×3
ARB.

D
∈ R6×6. (3.28)

AXB is usually called adjoint matrix. By the way, in some situations we would like
to express the 6D velocity of a frame with just the time derivatives AȯB and AωA,B.
In order to do that, it’s convenient to introduce the frame B[A] = (oB, [A]), which
has the same origin of B and the orientation of A. We have then:

B[A]HB =
C

ARB 03×1
01×3 1

D
, (3.29)

and by expressing the velocity vA,B in B[A], we get:

B[A]vA,B = B[A]XB
BvA,B =

C
ARB 0
0 ARB

D C
BRA

AȯB
BωA,B

D
=
C

AȯB
AωA,B

D
. (3.30)

32

3.4 Accelerations
Equation (3.22) can be rewritten as

AḢB = AHB
Bv∧

A,B. (3.31)

Differentiating (3.28) with respect to time, we have

AẊB =
C

AṘB
Aȯ∧

B
ARB + Ao∧

B
AṘB

03×3
AṘB

D
. (3.32)

As v∧ ∈ so(3), we have:
Aȯ∧

B
ARB = ARB

Bv∧
A,B. (3.33)

So, remembering the relation (3.20), we can rewrite (3.34) as
AẊB = AXB

BvA,B × . (3.34)

3.5 Forces and Torques
Let’s consider a 6D vector in which the first three elements are the sum of all the
contact forces, while the last three components are the sum of the moments with
respect to a given point in space. Similarly to the 6D velocity case, also the 6D
force-torque can be represented in different frames, in which the origin of the frame
is the point with respect to which the moment is taken and the orientation is the
one in which the forces and moments are expressed. In particular, we indicate the
coordinates of a 6D force f with respect to frame B with

Bf :=
C

Bf

Bτ

D
∈ R6. (3.35)

Similarly to what we did for a 6D velocities, we can define a linear map to change
the coordinates of a 6D force from a frame B to another frame A. This coordinate
transformation is indicated with AXB and written as

Af = AXB
Bf. (3.36)

The mapping AXB is strictly related to the transformation of 6D velocities; more
precisely, we have

AXB := BXT
A =

C
ARB 03×3

Ao∧
B

ARB
ARB.

D
∈ R6×6. (3.37)

33

Observation 3.5.1. Given the definition (3.37), the following identity of power
holds: e

Bf, BvA,B

f
=
e

Af, AvA,B

f
, (3.38)

where the symbol ⟨·, ·⟩ denotes the scalar product.

Similiarly to what we have done in (3.34), we can compute the time derivative of
the transformation of 6D wrenches between frames:

AẊB = AXBBvA,B×̄∗ (3.39)

where the dual cross product ×̄∗ is defined by

BvA,B×̄∗ =
C

Bω∧
A,B 03×3

Bv∧
A,B

Bω∧
A,B

D
. (3.40)

3.6 Equations of dynamics

In this section, we are going to use a simplified notation: r := Bp, In order to obtain
the equations of the dynamics of a rigid body, one could use the Lagrangian dynamics
approach. In order to do that, let’s introduce the following functions

L(H, Ḣ) =K(H, Ḣ)− U(H), (3.41)

K(H, Ḣ) =1
2

$
R3

ρ(r)
---Ṙr + ȯ

---2 dr, (3.42)

U(H) =
$

R3
ρ(r)gT (Rr + o) dr, (3.43)

where ρ is the density of the body. Such functions are called, respectively, Lagrangian,
kinetic energy and potential energy. We can obtain a simplified expression if we write
the left-trivialized Lagrangian:

l(H, v) =k(v)− U(H), (3.44)

k(v) =1
2vTMv, (3.45)

U(H) =
è
gT 0

é
H

C
mc
m

D
, (3.46)

34

where m ∈ R is the total mass of the body, c ∈ R3 is the center of mass of the
body, I ∈ R3×3 is the 3D inertia matrix of the body, and M ∈ R6×6 is the 6D inertia
matrix of the body, defined as:

M =
 #R3 ρ(r)dr13 −

1#
R3 rρ(r)dr

2∧1#
R3 rρ(r)dr

2∧
−
#

R3 ρ(r)(r∧)2dr

 =
C

m13 −(mc)∧

(mc)∧ I

D
. (3.47)

In (3.47), 13 is the 3× 3 identity matrix.
Now, let’s consider a time interval [0, T] and write the functional action:

S[H(·)] =
Ú T

0
L(H(t), Ḣ(t))dt. (3.48)

Theorem 3.6.1 (Principle of Least Action). The Principle of Least Action states
that the trajectory of the system in the interval t ∈ [0, T] is the stationary point that
minimises the system’s action functional [H(·)].

Thanks to theorem 3.6.1, we can obtain the left-trivialized equations of motion
(see [17] for details):

Ḣ =Hv∧, (3.49)

Mv̇ + v×̄∗Mv =M
C
RT g
03×1

D
. (3.50)

Moreover, if we consider also the sum of the external wrenches Bfx, we can get:

Mv̇ + v×̄∗Mv = M
C
RT g
03×1

D
+ Bfx. (3.51)

3.7 Multibody equations of dynamics

3.7.1 Introduction to multibody systems
A multibody system is made by:

• nj joints, which describe the kinematics of a robot. They connect two links,
namely a parent link and a child link. Joints can vary in type, affecting their
number of degrees of freedom (dof). In this chapter we will consider the case
in which each joint has only 1 degree of freedom; therefore, we will have nj =
ndof = n.

35

• nL links, which describe the mass properties of a robot through an inertia
matrix.

Links and joints are described in the Universal Robot Description Format (URDF),
an XML file which describes the kinematics, inertial properties and geometry of the
robot.
A multibody system can be mathematically described as a graph G = (L,J ,W);
such graph has the following properties:

• each node of the graph is a link; we assume that at least one frame is attached
to each link;

• each arc represents a joint;

• there exists one node which is called base of the system; such link has a frame
called B;

• the graph is undirected, so the adjacency matrix of the graph is symmetric;

• the graph is connected, i.e., there exists at least one path between any two
nodes.

If the base of the multi-body system does not have a predetermined fixed position
relative to an inertial frame W it is referred to as a floating base.

Definition 3.7.1 (Path). The path πB(E) = {B, . . . , E} between link B and link E
is the ordered sequence of links part of the kinematic graph that connects B to E.

Definition 3.7.2 (Parent link). For each link L ∈ L, if B is the base link, the parent
function λB : L/B → L maps each link to its parent, with the exclusion of the base
link since it is the graph’s root. In contexts where B is clearly specified, we omit the
subscript.

Given two links P , C connected by a joint characterized by it position θ ∈ R and
velocity θ̇ ∈ R, we can express the relative velocity as:

XvP,C = XSP,C(θ)θ̇ ∈ R6, (3.52)

36

where we introduced the joint motion subspace vector XSP,C(θ) ∈ R6. X is a place-
holder that selects any of the velocity representations; such quantity is defined as:

CSP,C(θ) =
C

CHP (θ)dP HC(θ)
dθ

D∨

,

P SP,C(θ) =
C

dP HC(θ)
dθ

CHP (θ)
D∨

,

C[P]SP,C(θ) =
 dP oC(θ)

dθè
dP RC(θ)

dθ
CRP (θ)

é∨
∨

.

(3.53)

3.7.2 Position and velocity of the joints
We denote respecitvely with s, ṡ ∈ Rn the position (also called shape) and velocity of
all the joints of the system. The configuration of a free-floating mechanical system
can be described by the pose of a base link and the generalised joints positions s. In
this way, we can describe the kinematics of the floating-base multibody system as:q =

1
W HB, s

2
∈ Q = SE(3)× Rn,

q̇ =
1

W ḢB, ṡ
2
∈ V = SE(3)× Rn.

(3.54)

As in the previous sections, we can express the velocity of a rigid body (in this case,
a link) as column vector, thanks to left/right/mixed representations:

Xν =
C

XvW,B

ṡ

D
∈ R6+n, (3.55)

where XvW,B is the velocity of the base link, ṡ ∈ Rn are the joint velocities, and the
generic frame X is a placeholder to select one among the body representation X = B,
inertial representation X = W , or mixed X = B[W] representations.

3.7.3 Link pose
Now, let’s write the pose of a link E with respect to the world frame:

W HE(q) = W HB
BHE(s) =

C
W RB

W oB

01×3 1

D
BHE(s). (3.56)

37

3.7.4 Link velocity
Now we want to write the velocity lsEvW,B as the sum of the base velocity and the
velocity between the base B and the link E:

EvW,E = EvW,B + EvB,E.

We can express vB,E as the sum of the velocities between adjacent links in the link
path πB(E) between link B and E:

EvW,E = EvW,B +
Ø

Li∈{πB(E)/B}

Evλ(Li),Li

= EvW,B +
Ø

Li∈{πB(E)/B}

EXLi

Livλ(Li),Li

= EvW,B +
Ø

Li∈{πB(E)/B}

EXLi

LiSλ(Li),Li
(si)ṡi,

where we used the expression of the relative velocity between two adjacent links
Lvλ(L),L introduced in Equation (3.52).

Expressing the obtained relation in matrix form, we obtain:

EvW,E =
è

EXX
ESB,E(s)

é CXvW,B

ṡ

D
= EJW,E/X

Xν, (3.57)

where X is a placeholder that depends on the representation of the system’s velocity.
Moreover, we introduced the matrix SB,E(s) ∈ R6×n for the joint part, where its i-th
column is defined as:

ESB,E(:, i) =
EXL

LSλ(L),L(s) if L ∈ {πB(E)/B},
06×1 otherwise.

Moreover, introducing the floating-base Jacobian of link E

EJW,E/X =
è

EXX
ESB,E(s)

é
, (3.58)

we can rewrite the equation (3.59) as follows:

EvW,E = EJW,E/X
Xν. (3.59)

38

3.7.5 Dynamics
Similiarly to what we have done in section 3.6, we can write the Lagrangian function
for a multibody system:

l(q, ν) =k(q, ν)− U(q), (3.60)
k(q, ν) =

Ø
L∈L

LvT
A,LML

LvA,L, (3.61)

U(q) =−
Ø
L∈L

è
AgT 0

é
AHL(q)

C
mL

LcL

mL

D
. (3.62)

We can express the functions above in a more compact way with the left-trivialization:

k(q, ν) =1
2νT M(s)ν, (3.63)

U(q) =−
è

AgT 0
é

AHB

C
mBc(s)

m

D
, (3.64)

where M(s) ∈ Rn+6×n+6 is the system’s mass matrix, defined as:

M(s) =
Ø
L∈

JT
L (s)LMLJL(s), (3.65)

m is the total mass of the multibody system

m :=
Ø
L

mL, (3.66)

and Bc(s) is the total center of mass of the multibody system, defined as:C
Bc(s)

1

D
:= 1

m

Ø
L

BHL(s)
C
mL

LcL

mL

D
. (3.67)

Using again the theorem 3.6.1, we obtain the equations of motion of a multibody
system (see [17] for details):

M(s)ν̇ + C(q, ν)ν + G(q) =
C
06×1

τ

D
+
Ø
L∈L

JT
L Lfx, (3.68)

39

where we have:

M(s) =
Ø
L

JT
L LMLJL, (3.69)

C(q, ν) =
Ø
L

JT
L

è1
vL×̄∗

LML + LMLvL×
2

JL + LMLJ̇L

é
, (3.70)

G(q) =−M(s)


ART

B
Ag

03×1
0n×1

 . (3.71)

The matrix C(q, ν) is called Coriolis matrix.

3.8 Conclusions
In this chapter, we have established the mathematical groundwork necessary for
studying rigid body dynamics, focusing on key concepts such as vectors, matrices, and
transformations. By understanding these fundamentals, we can accurately describe
the position and orientation of rigid bodies, crucial for analyzing and controlling
their motion.

We began with essential mathematical definitions, including vector spaces, inner
products, and special orthogonal groups. These concepts laid the foundation for ex-
ploring frame kinematics, where we discussed the representation of points and frames,
and how transformations between different frames are performed using homogeneous
matrices.

We then introduced the study of velocities and accelerations in the context of rigid
body dynamics. We introduced the notions of left and right trivialized velocities,
and demonstrated how to compute these velocities using the time derivatives of
transformation matrices. Additionally, we explored the relationship between different
representations of velocities and their transformations.

Finally, we examined the concepts of forces and torques, and their representation
in various frames. This understanding is critical for analyzing the interaction of rigid
bodies with their environment, particularly in applications like humanoid robotics,
where precise control of motion is essential.

As already said at the beginning of the chapter, the knowledge acquired will be
important in defining the loss function of the Neural Networks for the calibration of
the force-torque sensors.

40

41

Part II

Contribution

42

Chapter 4

Data collection and postprocessing

In the previous chapters, we have laid the theoretical foundations necessary for the
development of this thesis, i.e. the fundamental notions regarding 6D strain gauge
force torque sensors, artificial neural networks and dynamics of rigid multibody sys-
tems. Now that we have all the necessary tools, we will delve into the core of the
present work.

This chapter is dedicated to the crucial step in the development of a neural
network model: the construction of the dataset. We will first discuss the process
of data collection in-situ, presenting the methodologies and some details about the
data in section 4.1. Instead, in section 4.2 the post processing necessary to make the
data usable for training the Neural Networks (NN) will be explained.

4.1 Collection of the data in-situ
In order to collect the datasets for the NNs’ trainings, we mainly had two possibilities:

• Collect datasets with the sensor removed from the robot, i.e. ex-situ, applying
known weights.

• Collect datasets with the sensor mounted on the robot, i.e. in-situ. How the
ground truth will be obtained will be discussed later.

In our case, we opted for the second method. This choice is due to the fact that,
as noted in past years, calibrating Force-Torque (FT) sensors with datasets collected
ex-situ is not the best choice, as the real output of such sensors is influenced by many
hidden variables, even including the tightening force of the screws [5].

43

Figure 4.1: The ErgoCub robot

The experiments were conducted on the ErgoCub robot, developed by the Italian
Institute of Technology (figure 4.1).

4 types of experiments were conducted:

• Walking;

• Balancing on one foot;

• Balancing on half foot;

• Moving a leg while the robot was on the pole.

This robot has different sensors to collect various types of data, including:

• 6D force-torque sensors, to measure the wrenchs f ∈ R6; the first 3 components
(forces) are measured in N , while the other 3 (torques) are measured in Nm;

• accelerometers on the FTs, to measure accelerations a ∈ R3; the unit of mea-
surement is m

s2 ;

44

• gyroscopes on the FTs, to measure angular velocities ω ∈ R3; the unit of
measurement is rad

s
;

• thermometers on the FTs, to measure temperatures T ∈ R; the unit of mea-
surement is ◦C;

• encoders on the FTs, to measure the joints’ positions s ∈ Rndof ; the unit of
measurement is rad;

In particular, the robot ErgoCub has 8 force-torque sensors:

• 2 per foot; the foot of the robot is composed by two parts, front part and rear
part. On each part, there is an FT sensor;

• 1 per upper leg;

• 1 per arm.

The presence of two FTs per foot must be taken into consideration when calculat-
ing the expected wrenches. The reason is that, when the entire foot, for example
the right one, is in contact with the ground, the individual expected wrenches on
r_foot_front_ft and r_foot_rear_ft cannot be calculated exactly because the
structure is hyperstatic; let’s see it with an example. In figure 4.2a we can see a
scheme of the foot of the robot, with the links foot_front and foot_rear in con-
tact with the ground. The small vertical rectangles represent the two force-torque
sensors, each of which is positioned on a fixed joint. Above the FTs, there is the
remaining part of the robot.

The statics equations of this subsystem can be written as:


F FT_rear + F FT_front + F up = 0,

F ext_front + F FT_front = 0,

F ext_rear + F FT_rear = 0.

Assuming known F up, the system has four unknowns and three equations, so it is
undetermined. At most, only the sum of F FT_front and F FT_rear can be precisely
determined. The concept extends to FTs on the upper legs when both feet are in
contact with the ground. For this reason, it’s important to understand in which
timestamps the robot is in contact with the ground through:

• a link (for example r_foot_front or root_link);

45

(a) Simplified scheme of ErgoCub foot

(b) The feet of the robot in
transparency with FT sensors

highlighted in green. Credits to [23].

Figure 4.2: Feet of ErgoCub robot.

• two links (an entire foot);

• more than two links (both feet);

The timestamps of the last type will be thrown away, while those of the first two
types will be treated with switches (as we will see in section 5.4).

4.2 Postprocessing of the data
As anticipated in section 4.1, with the collection of data in-situ, one does not have
the ground truth for the wrenches that should be measured on the force-torque sen-
sors. Therefore, to obtain the expected values of such wrenches, we needed to use
a library for multibody dynamics, iDynTree [21]. Such library is written in C++,
but it has also Python and Matlab bindings. One of the algorithms in this library
allows to calculate, after knowing the kinematics and the URDF model of the robot,
the expected wrenches on the FTs. In order to do that, basically iDynTree divides
the robot model in smaller submodels and, using the equation (3.68) for each sub-
model, it calculates the forces transmitted between one submodel and another. The

46

kinematics is basically given by the knowledge of position (s), velocity (ṡ) and accel-
eration (s̈) of the joints. Such data can be collected during the experiments discussed
above.
However, the data for ṡ and s̈ is quite noisy, which could adversely affect the calcula-
tion of expected wrenches using iDynTree. For this reason, it was chosen not to use
the ṡ and s̈ data collected in the experiment, but rather to calculate these quantities
starting from the s data collected. For this purpose, a Savitzky-Golay filter has been
used [22].

After having done this, iDynTree was used to calculate the expected wrenches,
i.e. the values that will be the labels for training the NNs. Furthermore, with
iDynTree other quantities useful for training purposes were also calculated, i.e. the
homogeneous transformations needed to express wrenches in different frames.

4.3 Conclusions
In this chapter, we covered the essential steps of building the dataset for our neural
network models. We chose to collect data in situ using the ErgoCub robot, con-
ducting various types of experiments. We also explained the techniques used for
postprocessing, i.e. the techniques for smoothing data with a Savitzky–Golay filter
and computation of expected wrenches using iDynTree.

In the next chapter, we will use the datasets obtained in this chapter to train the
Neural Network models for the calibration of the force-torque sensors.

47

Chapter 5

Neural Networks for FT modelling

While in the last chapter the procedure for collecting and processing data was pre-
sented, this chapter is dedicated to the presentation of the Neural Network (NN)
models to calibrate the force-torque (FT) sensors of the upper legs and feet and the
results obtained with such models.

First of all, in section 5.1, the training and testing datasets necessary for the
development of NN models will be discussed. In section 5.2 the frameworks used
for the development of the NN models will be examined. In section 5.3 the topic
will be the inputs of the Neural Network models. In section 5.4, the loss functions
used for the training of the models will be presented. Then, we will enter in the
main contribution of this work: in sections 5.5, 5.6, 5.7, 5.8 will be presented the
architectures and results of the models for the calibration of FTs for right leg, left leg,
right foot and left foot respectively. More specifically, for each force-torque sensors
will be developed two models with the same architecture, but with different inputs:

• raw wrench (i.e. the 6D vector containing force and torque measured by the
sensor), linear acceleration of the sensor (a 3D vector), angular velocity of the
sensor (a 3D vector) and temperature of the sensor (a scalar); so, totally, this
model takes as input a 13D vector;

• raw wrench and temperature of the sensor; so, totally, this model takes as input
a 7D vector.

Moreover, in sections 5.5, 5.6 a comparison of the results with polynomial models [1]
will be carried out.

48

5.1 Datasets used
The collection and postprocessing of datasets have been presented in chapter 4. Many
experiments on the robot have been carried out to collect datasets. We can basically
distinguish four types of experiments: balancing on a whole foot, balancing on half a
foot, robot on the pole while moving a leg with weights attached to the foot, walking.
In section 4.1 we have already showed that the label for the supervised training are
not always available, according to the number of robot links in contact with ground.
In order to consider that, some switches will be used (as we will see in section 5.4).

For each model we develop in this chapter, we will need a training dataset and
a testing dataset. Both datasets will contain data related to balancing, pole and
walking experiments.

5.2 Framework and libraries used for development
of NN models

In this work, Neural Network models are developed in the Pytorch framework [24].
The architecture of a NN is described by some hyperparameters, such as the number
of layers, the number of neurons, the batch size for training, etc. For this reason, it
is of fundamental importance to try different possible configurations to have better
results in the testing phase. To accelerate this hyperparameter search, an automatic
hyperparameter optimization software framework has been used, Optuna [25].

5.3 Inputs of the NNs
Currently, linear models are used in the real robot to calibrate the force-torque
sensors. These models essentially represent functions of the type:

f : R6 → R6 (5.1)

In practice, these models take as input the potential differences returned by the
Wheatstone bridge circuit (after amplification etc., see chapter 1 for details) and
return as output the wrench applied on the sensor. In this project, we will perform a
secondary calibration using the wrenches obtained from the primary linear calibration
already applied to the real robot. Furthermore, other inputs will also be considered,

49

to try to exploit all possible information that could influence the calibration output.
Below, the complete list of neural network inputs that we will develop for each sensor:

• the wrench f ∈ R6 on the FT, output of the primary linear calibration; it will
be often called raw wrench in this work;

• the linear acceleration a ∈ R3 of the FT;

• the angular velocity ω ∈ R3 of the FT;

• the temperature T ∈ R of the FT.

So, totally, we are looking for functions of the type:

f : R13 → R6 (5.2)

Furthermore, we will also train other models using fewer inputs, specifically:

• the wrench f ∈ R6 on the FT, output of the primary linear calibration;

• the temperature T ∈ R of the FT.

This is done mainly for two reasons:

• while the influence of temperature on the sensor is physically clear (temperature
alters deformation of straing gauge), theoretically there shouldn’t be a physical
influence of linear acceleration and angular velocity on the measurement of FT;

• the data of linear acceleration and angular velocity could be noisy.

So, in this second case, we will be looking for a function f such that:

f : R7 → R6 (5.3)

The functions (5.2) and (5.3) will be identified through the training process discussed
in section 2.2. In order to do that, we have to decide the loss functions to minimize
during the training of each model; this will be the topic of next section.

5.4 Definition of the loss functions
As already discussed in chapter 2, a fundamental component for training a NN is the
definition of its loss function.

Depending on which sensor we will consider (for example the one on the right
leg), we will use different loss function components.

50

5.4.1 Loss function for the FTs on the legs
Below, the loss function used for the trainings of the NN for the FTs on the legs:

LLeg = αExpectedF ootF rontλexpectedLExpectedW renchLeg, (5.4)

where

• LExpectedW renchLeg = mse(f expected − fNN);
here, mse stands for Mean Squared error, the loss function discussed in sub-
section 2.2.2, while f expected and fNN are respectively the ground truth and the
output of the Neural Network;

• αExpectedLeg is a switch such that, denoting the timestamp as t:

αExpectedLeg =
1 if exact groundtruth is available,

0 otherwise.
(5.5)

This switch allows to discriminate the timestamps as discussed in section 4.1.
Basically, in the case of FTs on the legs, the groundtruth is always available
except when the robot is in contact with the ground through both feet.

• λexpected is a weight that can be freely chosen.

5.4.2 Loss function for the FTs on the feet
As said before, on each foot there are two sensors: one on the front part of the foot,
one on the rear. So, totally, there are 2 FTs on the right foot and 2 on the left foot.
Below, the loss function used for the trainings of the NN for the FTs on the feet:

LF ootF ront = αExpectedF ootF rontλExpectedF ootF rontLExpectedW renchF ootF ront

+ αExpectedF ootSumλExpectedF ootSumLExpectedW renchF ootSum (5.6)

LF ootRear = αExpectedF ootRearλExpectedF ootRearLExpectedW renchF ootRear

+ αExpectedF ootSumλExpectedF ootSumLExpectedW renchF ootSum (5.7)

where

51

• LF ootF ront and LF ootRear are analogous to the loss function component discussed
in (5.4) for the legs FTs;

• LExpectedW renchF ootSum is the component of loss function related to the discrep-
ancy between the sum of wrenches expected vs the sum of wrenches output of
the NNs; it’s worth noticing that, in order to compute the sum of two wrenches,
they have to be expressed in the same frame. The single wrenches, both the
expected and the output of the NNs, are expressed in the proper sensor frame:
for example, the wrench on the right foot front FT sensor is expressed with
respect to the frame l_foot_front_ft. As seen in section 3.5, we need the
homogeneous transformation discussed in equation (3.36) to express a wrench
in a different frame (see figure 5.1 to visualize the frames r_foot_front_ft,
r_foot_rear_ft, r_sole). In this case, we want to express the wrenches on
the front and of the rear parts with respect to the frame r_sole (in the case
of right foot) or the frame l_sole (in the case of left foot). For that reason,
this loss function component is expressed as follows:

LExpectedW renchF ootSum = mse(solef
expected
foot − solef

NNfoot), (5.8)
f expected

foot = soleX
front

frontf
expected
front + soleX

rear
rearf

expected
rear , (5.9)

fNN
foot = soleX

front
frontf

NN
front + soleX

rear
rearf

NN
rear. (5.10)

• αExpectedF ootF ront and αExpectedF ootRear are switches that could be equal to 0 or
1; namely:

αExpectedF ootP art =
1 if exact groundtruth is available for the single wrench,

0 otherwise.
(5.11)

These switches allow to discriminate the timestamps as discussed in section 4.1.
Basically, in the case of FTs on feet, the groundtruth for individual wrenches
is only available in experiments where the robot performs balancing on half a
foot or is on the pole (on which it is fixed via the root link).

• αExpectedF ootSum is a switch such that:

αExpectedF ootSum =
0 if exact groundtruth is available for the single wrench,

1 otherwise.
(5.12)

52

(a) Front view (b) Side view

Figure 5.1: Visualization of frames r_foot_front_ft, r_foot_rear_ft, r_sole

This switch allows to discriminate the timestamps as discussed in section 4.1.
Instead, in the moments in which the robot is in contact with the ground
through a single full foot, the groundtruth for the sum of the wrenches is
available; however it should be noted that this sum must be made by expressing
the two wrenches with respect to the same frame. In this work, we will express
such wrenches with respect to the frame r_sole in the case of right foot,
compared to the frame l_sole in the case of left foot.

• λExpectedF ootF ront, λExpectedF ootRear and λExpectedF ootSum are weights that can be
freely chosen. For training models on feet, such fixed weights can be important
to ensure that the various components of the loss function have approximately
the same orders of magnitude.

53

5.5 Models for FT on right leg
In this section, we will first present the architecture of the NN models (with both 13
and 7 inputs) for the FT on the right leg. Subsequently, we will present the obtained
results and compare them with the current calibration on the robot and with the
polynomial models proposed by [1].

5.5.1 Architecture of the model
In this section, the main characteristics of the model will be presented:

• Batch size: 1000

• Number of epochs: 8

• Normalization: max normalization (i.e., each component of the input is di-
vided by its maximum value in the training dataset)

• Number of layers: 2 (plus the output layer)

• Number of neurons per layer: 100

• Dropout probabilities: [0.0, 0.0]

• Activation functions: [LeakyReLU, ReLU]

• Optimizer: Adam (weight_decay=0)

• Learning rate: 0.0094023971181947206

• Learning rate scheduler: ExponentialLR, γ = 0.99, applied only when
training loss reaches the threshold 0.005 (this threshold is not reached during
this training)

• Initialization of the weights of the neural network: xavier_uniform
[26]

• λexpected = 407.3938302752665

54

Figure 5.2: Loss function during training of NN for right leg FT

5.5.2 Results for model with 13 inputs
In figure 5.2 the loss function during training is reported. Instead, in figure 5.3 is
reported the wrench predicted by the Neural Network in the test phase. In such
plots, the prediction is compared with the raw wrench (i.e. the output of the ac-
tual calibration on the robot) and the expected wrench (i.e. the label). In figure
5.4 is reported the discrepancy between the NN prediction and the label, and the
discrepancy between the raw wrench and the label. In tables 5.1, 5.2 and 5.3 are re-
ported respectively the MSE, MAE and RMSE committed by the NN and the actual
calibration (raw value) with respect to the labels.

5.5.3 Results for model with 7 inputs
The architecture is the same of the model with 13 inputs presented in section 5.5.1.
For that reason, we will present directly the results obtained.

In figure 5.2 the loss function during training is reported. Instead, in figure
5.6 is reported the wrench predicted by the Neural Network in the test phase. In
such plots, the prediction is compared with the raw wrench (i.e. the output of the
actual calibration on the robot) and the expected wrench (i.e. the label). In figure
5.7 is reported the discrepancy between the NN prediction and the label, and the

55

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.3: Comparison of wrenches predicted by NN with expected wrenches and raw
values for right leg FT test phase (13 inputs)

56

Figure 5.4: Residual obtained in test phase for right leg FT (13 inputs)

MSE NN raw

MSE global 3.12 1034.85
MSE force 5.84 2066.15
MSE torque 0.39 3.55
MSE fx 3.37 1334.77
MSE fy 3.26 2198.65
MSE fz 10.90 2665.04
MSE tx 0.56 2.28
MSE ty 0.52 7.60
MSE tz 0.10 0.77

Table 5.1: Right leg FT: Mean Squared Error (MSE) for Neural Network (NN) and raw
data (13 inputs)

57

MAE NN raw

MAE global 1.01 21.13
MAE force 1.58 40.82
MAE torque 0.44 1.45
MAE fx 1.30 28.68
MAE fy 1.17 42.68
MAE fz 2.25 51.09
MAE tx 0.58 1.07
MAE ty 0.52 2.54
MAE tz 0.23 0.73

Table 5.2: Right leg FT: Mean Absolute Error (MAE) for Neural Network (NN) and
raw data (13 inputs)

RMSE NN raw

RMSE global 1.77 32.17
RMSE force 2.42 45.45
RMSE torque 0.63 1.88
RMSE fx 1.83 36.53
RMSE fy 1.80 46.89
RMSE fz 3.30 51.62
RMSE tx 0.75 1.51
RMSE ty 0.72 2.76
RMSE tz 0.31 0.88

Table 5.3: Right leg FT: Root Mean Squared Error (RMSE) for Neural Network (NN)
and raw data (13 inputs)

58

Figure 5.5: Loss function during training of NN for right leg FT

discrepancy between the raw wrench and the label. In tables 5.4, 5.5 and 5.6 are
reported respectively the MSE, MAE and RMSE committed by the Neural Network
and the actual calibration (raw value) with respect to the labels.

MSE NN raw

MSE global 8.34 1034.85
MSE force 16.02 2066.15
MSE torque 0.67 3.55
MSE fx 8.73 1334.77
MSE fy 7.01 2198.65
MSE fz 32.31 2665.04
MSE tx 0.80 2.28
MSE ty 1.00 7.60
MSE tz 0.19 0.77

Table 5.4: Right leg FT with 7 inputs: Mean Squared Error (MSE) for Neural Network
(NN) and raw data

59

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.6: Comparison of wrenches predicted by NN (with 7 inputs) with expected
wrenches and raw values for right leg FT test phase

60

Figure 5.7: Residual obtained in test phase for right leg FT (7 inputs)

MAE NN raw

MAE global 1.73 21.13
MAE force 2.92 40.82
MAE torque 0.54 1.45
MAE fx 2.25 28.68
MAE fy 1.85 42.68
MAE fz 4.66 51.09
MAE tx 0.63 1.07
MAE ty 0.67 2.54
MAE tz 0.31 0.73

Table 5.5: loss functionRight leg FT with 7 inputss: Mean Absolute Error (MAE) for
Neural Network (NN) and raw data

5.5.4 Comparison with the results obtained by using poly-
nomial models

In this subsection, we are going to compare the results obtained with our Neural
Network model with the one obtained with polynomials models developed by [1]. Of

61

RMSE NN raw

RMSE global 2.89 32.17
RMSE force 4.00 45.45
RMSE torque 0.82 1.88
RMSE fx 2.95 36.53
RMSE fy 2.65 46.89
RMSE fz 5.68 51.62
RMSE tx 0.90 1.51
RMSE ty 1.00 2.76
RMSE tz 0.44 0.88

Table 5.6: loss functionRight leg FT with 7 inputss: Root Mean Squared Error (RMSE)
for Neural Network (NN) and raw data

course, the training and testing datasets are the same used for the NN model. Below,
the parameters which describe the polynomial model:

• np: the order of the polynomial;

• ny: number of outputs. In this case, it is set to 6, which is the dimension of
expected F/T forces and torques y;

• nu: number of inputs. In this work, it is set to 7, which is the dimension of ac-
tual F/T measurements, in addition to the internal temperature measurement;

• na: number of delayed samples of the output. It captures the degree of the
dynamics in the model;

• nb: number of delayed samples of the input.

Here, the software developed by [1] will be used to calculate the parameters and
therefore build the polynomial models from order np = 1 up to np = 4. Moreover,
the case na = nb = 0 will be considered.

Below the plot of the wrenches during the test phase. For each component of
the wrench, the RMSEs committed by each model (from degree 1 to 4) and by the
workbench (i.e. the raw data, the output measurements from the current calibration
on the robot) are reported.

Comparing the RMSEs in figure 5.8 with the ones obtained for Neural Network
models (model with 13 inputs in table 5.3 and model with 7 inputs in table 5.6), we

62

Figure 5.8: Test phase for right leg FT with polynomial models

can see that the NN is able to perform better than the polynomial model in every
component of the wrench.

5.6 Models for FT on left leg
In this section, we will first present the architecture of the NN models (with both 13
and 7 inputs) for the FT on the left leg. Subsequently, we will present the obtained
results and compare them with the current calibration on the robot and with the
polynomial models proposed by [1].

5.6.1 Architecture of the model
In this section, the main characteristics of the model will be presented:

• Batch size: 4096

• Number of epochs: 100

63

• Normalization: max normalization (i.e., each component is divided by its
maximum value in the dataset)

• Number of layers: 2 (plus the output layer)

• Number of neurons per layer: 64

• Dropout probabilities: [0.0, 0.0]

• Bias in the linear transformations in each layer: true

• Activation functions: [LeakyReLU, ReLU]

• Optimizer: Adam (weight_decay=0)

• Learning rate: 0.00054023971181947206

• Learning rate scheduler: ExponentialLR, γ = 0.99, applied only when
training loss reaches the threshold 0.005 (this threshold is not reached during
this training)

• Initialization of the weights of the neural network: xavier_uniform

• λexpected = 407.3938302752665

5.6.2 Results for model with 13 inputs
In figure 5.9 the loss function during training is reported. Instead, in figure 5.10
is reported the wrench predicted by the Neural Network in the test phase. In such
plots, the prediction is compared with the raw wrench (i.e. the output of the ac-
tual calibration on the robot) and the expected wrench (i.e. the label). In figure
5.11 is reported the discrepancy between the NN prediction and the label, and the
discrepancy between the raw wrench and the label. In tables 5.7, 5.8 and 5.9 are re-
ported respectively the MSE, MAE and RMSE committed by the NN and the actual
calibration (raw value) with respect to the labels.

5.6.3 Results for model with 7 inputs
The architecture is the same of the model with 13 inputs presented in section 5.6.1.
For that reason, we will present directly the results obtained.

In figure 5.12 the loss function during training is reported. Instead, in figure

64

Figure 5.9: Loss function during training of NN for left leg FT

MSE NN raw

MSE global 26.81 661.69
MSE force 52.05 1304.93
MSE torque 1.56 18.45
MSE fx 29.25 1768.69
MSE fy 79.31 1014.31
MSE fz 47.60 1131.80
MSE tx 2.05 11.86
MSE ty 2.17 40.96
MSE tz 0.46 2.55

Table 5.7: Left leg FT: Mean Squared Error (MSE) for Neural Network (NN) and raw
data (13 inputs)

5.13 is reported the wrench predicted by the Neural Network in the test phase. In
such plots, the prediction is compared with the raw wrench (i.e. the output of the
actual calibration on the robot) and the expected wrench (i.e. the label). In figure
5.14 is reported the discrepancy between the NN prediction and the label, and the
discrepancy between the raw wrench and the label. In tables 5.10, 5.11 and 5.12

65

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.10: Comparison of wrenches predicted by NN with expected wrenches and raw
values for left leg FT test phase (13 inputs)

66

Figure 5.11: Residual obtained in test phase for left leg FT (13 inputs)

Figure 5.12: Loss function during training of NN for left leg FT

67

MAE NN raw

MAE global 3.28 17.37
MAE force 5.66 31.32
MAE torque 0.91 3.41
MAE fx 4.07 37.72
MAE fy 7.42 27.46
MAE fz 5.49 28.79
MAE tx 1.12 3.02
MAE ty 1.09 5.95
MAE tz 0.51 1.25

Table 5.8: Left leg FT: Mean Absolute Error (MAE) for Neural Network (NN) and raw
data (13 inputs)

RMSE NN raw

RMSE global 5.18 25.72
RMSE force 7.21 36.12
RMSE torque 1.25 4.30
RMSE fx 5.41 42.06
RMSE fy 8.91 31.85
RMSE fz 6.90 33.64
RMSE tx 1.43 3.44
RMSE ty 1.47 6.40
RMSE tz 0.68 1.60

Table 5.9: Left leg FT: Root Mean Squared Error (RMSE) for Neural Network (NN)
and raw data (13 inputs)

are reported respectively the MSE, MAE and RMSE committed by the NN and the
actual calibration (raw value) with respect to the labels.

5.6.4 Comparison with the results obtained by using poly-
nomial models

Below the plot of the wrenches during the test phase, with the RMSE between
predicted and expected values for each component of the wrench.

68

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.13: Comparison of wrenches predicted by NN (with 7 inputs) with expected
wrenches and raw values for left leg FT test phase

69

Figure 5.14: Residual obtained in test phase for left leg FT (7 inputs)

Figure 5.15: Test phase for left leg FT with polynomial models

70

MSE NN raw

MSE global 24.17 661.69
MSE force 46.09 1304.93
MSE torque 2.26 18.45
MSE fx 58.14 1768.69
MSE fy 36.50 1014.31
MSE fz 43.64 1131.80
MSE tx 2.93 11.86
MSE ty 2.94 40.96
MSE tz 0.91 2.55

Table 5.10: Left leg FT 7 inputs: Mean Squared Error (MSE) for Neural Network (NN)
and raw data

MAE NN raw

MAE global 3.28 17.37
MAE force 5.39 31.32
MAE torque 1.17 3.41
MAE fx 6.16 37.72
MAE fy 4.89 27.46
MAE fz 5.11 28.79
MAE tx 1.39 3.02
MAE ty 1.34 5.95
MAE tz 0.79 1.25

Table 5.11: Left leg FT 7 inputs: Mean Absolute Error (MAE) for Neural Network
(NN) and raw data

Comparing the RMSEs in Figure 5.15 with those obtained for NN models (specif-
ically, the model with 13 inputs as shown in Table 5.9 and the model with 7 inputs as
shown in Table 5.12), it becomes evident that the neural networks generally perform
better the polynomial model across most components of the wrench. The exceptions
to this trend are observed in fy, where the polynomial models np1 and np2 perform
better the NN model with 13 inputs, and in the component τz, where the polynomial
model np1 performs better the NN model with 7 inputs.

71

RMSE NN raw

RMSE global 4.92 25.72
RMSE force 6.79 36.12
RMSE torque 1.50 4.30
RMSE fx 7.62 42.06
RMSE fy 6.04 31.85
RMSE fz 6.61 33.64
RMSE tx 1.71 3.44
RMSE ty 1.71 6.40
RMSE tz 0.96 1.60

Table 5.12: Left leg FT 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data

5.7 Models for FTs on right foot
In this section, we will first present the architecture of the NN models (with both
13 and 7 inputs) for the FT on the right foot. Subsequently, we will present the
obtained results and compare them with the current calibration on the robot.

5.7.1 Architecture of the models
The architecture is the same both for the r_foot_front_ft and r_foot_rear_ft:

• Batch size: 1024

• Number of epochs: 8

• Normalization: batch standard normalization

• Number of layers: 2 (plus the output layer)

• Number of neurons per layer: 100

• Dropout probabilities: [0.0, 0.0]

• Bias in the linear transformations in each layer: true

• Activation functions: [LeakyReLU, ReLU]

72

• Optimizer: Adam (weight_decay=0)

• Learning rate: 0.005

• Learning rate scheduler: ExponentialLR, γ = 0.99, applied only when
training loss reaches the threshold 0.005 (this threshold is not reached during
this training)

• Initialization of the weights of the neural network: xavier_uniform

• λExpectedRightFootFront = 1.0

• λExpectedRightFootRear = 1.0

• λExpectedRightFootSum = 1.0

5.7.2 Results for model with 13 inputs
In figure 5.16 the loss functions during training are reported. In figure 5.17 are
reported the wrenches predicted by the Neural Networks in the test phase, but only
in the part of dataset related to pole experiment, in which we have available labels.
Then, in figure 5.18 is reported the sum of the wrenches predicted by the Neural
Network, both expressed with respect to r_sole frame. In such plots, the prediction
is compared with the raw sum of wrenches (i.e. the output of the actual calibration
on the robot) and the sum of expected wrenches (i.e. the label). In figure 5.19 is
reported the discrepancy between the sum of wrenches predicted by NN and the label,
and the discrepancy between the sum of raw wrenches and the label. In tables 5.13,
5.14 and 5.15 are reported respectively the MSE, MAE and RMSE committed by
the NN and the actual calibration (raw value) with respect to the labels (considering
the sum of the wrenches, not the single wrenches).

5.7.3 Results for model with 7 inputs
The architecture is the same of the model with 13 inputs presented in section 5.8.1.
For that reason, we will present directly the results obtained.

In figure 5.20 the loss functions during training are reported. In figure 5.21 are
reported the wrenches predicted by the Neural Networks in the test phase, but only
in the part of dataset related to pole experiment, in which we have available labels.
Then, in figure 5.22 is reported the sum of the wrenches predicted by the NN, both
expressed with respect to r_sole frame. In such plots, the prediction is compared

73

(a) Loss function during training of NN for right foot front FT

(b) Loss function during training of NN for right foot rear FT

Figure 5.16: Train and validation loss functions during training of NN for right foot
FTs (13 inputs)

74

(a) Wrench on right foot front FT

(b) Wrench on right foot rear FT

Figure 5.17: Wrenches on right foot on part of dataset related to pole experiment (13
inputs)

75

(a) Zoom on part of dataset related to pole
experiment

(b) Zoom on part of dataset related to balancing
experiment

(c) Zoom on part of dataset related to walking
experiment

Figure 5.18: Comparison of the sum of wrenches predicted by the neural network (NN)
with the expected and raw values during the right foot FTs test phase (13 inputs)

76

Figure 5.19: Residual obtained in test phase for right foot FT (13 inputs)

77

(a) Loss function during training of NN for right foot front FT

(b) Loss function during training of NN for right foot rear FT

Figure 5.20: Train and validation loss functions during training of NN for right foot FTs

78

MSE NN raw

MSE global 43.85 3184.05
MSE force 83.91 6364.29
MSE torque 3.79 3.80
MSE fx 7.37 6567.89
MSE fy 16.08 10473.16
MSE fz 228.27 2051.82
MSE tx 5.28 4.91
MSE ty 5.97 5.81
MSE tz 0.13 0.69

Table 5.13: Sum of wrenches on right foot: Mean Squared Error (MSE) for Neural
Network (NN) and raw data (13 inputs)

MAE NN raw

MAE global 1.93 38.27
MAE force 3.15 75.44
MAE torque 0.70 1.11
MAE fx 1.76 79.77
MAE fy 2.66 102.17
MAE fz 5.02 44.37
MAE tx 0.92 0.52
MAE ty 0.92 2.13
MAE tz 0.28 0.66

Table 5.14: Sum of wrenches on right foot: Mean Absolute Error (MAE) for Neural
Network (NN) and raw data (13 inputs)

with the raw sum of wrenches (i.e. the output of the actual calibration on the robot)
and the sum of expected wrenches (i.e. the label). In figure 5.23 is reported the
discrepancy between the sum of wrenches predicted by NN and the label, and the
discrepancy between the sum of raw wrenches and the label. In tables 5.16, 5.17 and
5.18 are reported respectively the MSE, MAE and RMSE committed by the NN and
the actual calibration (raw value) with respect to the labels (considering the sum of
the wrenches, not the single wrenches).

79

(a) Wrench on right foot front FT

(b) Wrench on right foot rear FT

Figure 5.21: Wrenches on right foot on part of dataset related to pole experiment (7
inputs)

80

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.22: Comparison of the sum of wrenches predicted by the neural network (NN)
with the expected and raw values during the right foot FTs test phase (7 inputs)

81

RMSE NN raw

RMSE global 6.62 56.43
RMSE force 9.16 79.78
RMSE torque 1.95 1.95
RMSE fx 2.72 81.04
RMSE fy 4.01 102.34
RMSE fz 15.11 45.30
RMSE tx 2.30 2.22
RMSE ty 2.44 2.41
RMSE tz 0.36 0.83

Table 5.15: Sum of wrenches on right foot: Root Mean Squared Error (RMSE) for
Neural Network (NN) and raw data (13 inputs)

MSE NN raw

MSE global 83.84 3184.05
MSE force 165.42 6364.29
MSE torque 2.26 3.80
MSE fx 5.60 6567.89
MSE fy 15.30 10473.16
MSE fz 475.36 2051.82
MSE tx 2.95 4.91
MSE ty 3.61 5.81
MSE tz 0.22 0.69

Table 5.16: Right foot FTs 7 inputs: Mean Squared Error (MSE) for Neural Network
(NN) and raw data

5.8 Models for FTs on left foot
In this section, we will first present the architecture of the NN models (with both 13
and 7 inputs) for the FT on the left foot. Subsequently, we will present the obtained
results and compare them with the current calibration on the robot.

82

Figure 5.23: Residual obtained in test phase for right foot FTs (7 inputs)

MAE NN raw

MAE global 2.02 38.27
MAE force 3.37 75.44
MAE torque 0.67 1.11
MAE fx 1.59 79.77
MAE fy 2.69 102.17
MAE fz 5.84 44.37
MAE tx 0.69 0.52
MAE ty 0.95 2.13
MAE tz 0.37 0.66

Table 5.17: Right foot FTs 7 inputs: Mean Absolute Error (MAE) for Neural Network
(NN) and raw data

5.8.1 Architecture of the models
The architecture is the same both for the l_foot_front_ft and l_foot_rear_ft:

• Batch size: 1024

83

RMSE NN raw

RMSE global 9.16 56.43
RMSE force 12.86 79.78
RMSE torque 1.50 1.95
RMSE fx 2.37 81.04
RMSE fy 3.91 102.34
RMSE fz 21.80 45.30
RMSE tx 1.72 2.22
RMSE ty 1.90 2.41
RMSE tz 0.47 0.83

Table 5.18: Right foot FTs 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data

• Number of epochs: 8

• Normalization: batch standard normalization

• Number of layers: 2 (plus the output layer)

• Number of neurons per layer: 100

• Dropout probabilities: [0.0, 0.0]

• Bias in the linear transformations in each layer: true

• Activation functions: [LeakyReLU, ReLU]

• Optimizer: Adam (weight_decay=0)

• Learning rate: 0.005

• Learning rate scheduler: ExponentialLR, γ = 0.99, applied only when
training loss reaches the threshold 0.005 (this threshold is not reached during
this training)

• Initialization of the weights of the neural network: xavier_uniform

• λExpectedLeftFootFront = 100.0

• λExpectedLeftFootRear = 10000.0

• λExpectedLeftFootSum = 1.0

84

5.8.2 Results for model with 13 inputs
In figure 5.24 the loss functions during training are reported. In figure 5.25 are
reported the wrenches predicted by the Neural Networks in the test phase, but only
in the part of dataset related to pole experiment, in which we have available labels.
Then, in figure 5.26 is reported the sum of the wrenches predicted by the NN, both
expressed with respect to l_sole frame. In such plots, the prediction is compared
with the raw sum of wrenches (i.e. the output of the actual calibration on the robot)
and the sum of expected wrenches (i.e. the label). In figure 5.27 is reported the
discrepancy between the sum of wrenches predicted by NN and the label, and the
discrepancy between the sum of raw wrenches and the label. In tables 5.19, 5.20 and
5.21 are reported respectively the MSE, MAE and RMSE committed by the NN and
the actual calibration (raw value) with respect to the labels (considering the sum of
the wrenches, not the single wrenches).

MSE NN raw

MSE global 14.96 5404.08
MSE force 26.83 10802.94
MSE torque 3.10 5.21
MSE fx 11.70 14521.71
MSE fy 23.40 17364.00
MSE fz 45.38 523.12
MSE tx 4.16 10.16
MSE ty 4.99 4.37
MSE tz 0.14 1.11

Table 5.19: Sum of wrenches on left foot: Mean Squared Error (MSE) for Neural
Network (NN) and raw data (13 inputs)

5.8.3 Results for model with 7 inputs
The architecture is the same of the model with 13 inputs presented in section 5.8.1.
For that reason, we will present directly the results obtained. In figure 5.28 the
loss functions during training are reported. In figure 5.29 are reported the wrenches
predicted by the Neural Networks in the test phase, but only in the part of dataset
related to pole experiment, in which we have available labels. Then, in figure 5.30 is
reported the sum of the wrenches predicted by the NN, both expressed with respect to

85

(a) Loss function during training of NN for left foot front FT

(b) Loss function during training of NN for left foot rear FT

Figure 5.24: Train and validation loss functions during training of NN for left foot FTs
(13 inputs)

86

(a) Wrench on left foot front FT

(b) Wrench on left foot rear FT

Figure 5.25: Wrenches on left foot on part of dataset related to pole experiment (13
inputs)

87

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.26: Comparison of the sum of wrenches predicted by the neural network (NN)
with the expected and raw values during the left foot FTs test phase (13 inputs)

88

Figure 5.27: Residual obtained in test phase for left foot FTs (13 inputs)

MAE NN raw

MAE global 1.93 45.47
MAE force 3.09 89.84
MAE torque 0.77 1.10
MAE fx 2.13 120.30
MAE fy 3.65 131.50
MAE fz 3.49 17.71
MAE tx 0.96 1.41
MAE ty 1.12 1.07
MAE tz 0.23 0.81

Table 5.20: Sum of wrenches on left foot: Mean Absolute Error (MAE) for Neural
Network (NN) and raw data (13 inputs)

l_sole frame. In such plots, the prediction is compared with the raw sum of wrenches
(i.e. the output of the actual calibration on the robot) and the sum of expected
wrenches (i.e. the label). In figure 5.31 is reported the discrepancy between the sum
of wrenches predicted by NN and the label, and the discrepancy between the sum of
raw wrenches and the label. In tables 5.22, 5.23 and 5.24 are reported respectively

89

(a) Loss function during training of NN for left foot front FT

(b) Loss function during training of NN for left foot rear FT

Figure 5.28: Train and validation loss functions during training of NN for left foot FTs
(7 inputs)

90

RMSE NN raw

RMSE global 3.87 73.51
RMSE force 5.18 103.94
RMSE torque 1.76 2.28
RMSE fx 3.42 120.51
RMSE fy 4.84 131.77
RMSE fz 6.74 22.87
RMSE tx 2.04 3.19
RMSE ty 2.23 2.09
RMSE tz 0.37 1.06

Table 5.21: Sum of wrenches on left foot: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data (13 inputs)

the MSE, MAE and RMSE committed by the NN and the actual calibration (raw
value) with respect to the labels (considering the sum of the wrenches, not the single
wrenches).

MSE NN raw

MSE global 15.81 5404.08
MSE force 28.18 10802.94
MSE torque 3.44 5.21
MSE fx 16.94 14521.71
MSE fy 24.96 17364.00
MSE fz 42.63 523.12
MSE tx 5.05 10.16
MSE ty 4.87 4.37
MSE tz 0.39 1.11

Table 5.22: Left foot FTs 7 inputs: Mean Squared Error (MSE) for Neural Network
(NN) and raw data

91

(a) Wrench on left foot front FT

(b) Wrench on left foot rear FT

Figure 5.29: Wrenches on left foot on part of dataset related to pole experiment (7
inputs)

92

(a) Zoom on part of dataset related to pole experiment

(b) Zoom on part of dataset related to balancing experiment

(c) Zoom on part of dataset related to walking experiment

Figure 5.30: Comparison of the sum of wrenches predicted by the neural network (NN)
with the expected and raw values during the left foot FTs test phase (7 inputs)

93

Figure 5.31: Residual obtained in test phase for left foot FTs (7 inputs)

MAE NN raw

MAE global 1.94 45.47
MAE force 3.10 89.84
MAE torque 0.78 1.10
MAE fx 2.84 120.30
MAE fy 3.51 131.50
MAE fz 2.97 17.71
MAE tx 1.07 1.41
MAE ty 0.91 1.07
MAE tz 0.38 0.81

Table 5.23: Left foot FTs 7 inputs: Mean Absolute Error (MAE) for Neural Network
(NN) and raw data

5.9 Conclusions
In this chapter we presented the Neural Network models developed for the calibration
of the force-torque sensors on upper legs and feet. Along with these models, we
presented the results obtained in the testing phase, by using MSE, MAE and RMSE

94

RMSE NN raw

RMSE global 3.98 73.51
RMSE force 5.31 103.94
RMSE torque 1.85 2.28
RMSE fx 4.12 120.51
RMSE fy 5.00 131.77
RMSE fz 6.53 22.87
RMSE tx 2.25 3.19
RMSE ty 2.21 2.09
RMSE tz 0.62 1.06

Table 5.24: Left foot FTs 7 inputs: Root Mean Squared Error (RMSE) for Neural
Network (NN) and raw data

as error metrics. These models (both the ones with 13 and 7 inputs), in the testing
phase, manage to outperform the current calibration on each force-torque sensor
taken into consideration. Furthermore, for the force-torque sensors on the legs we
also carried out a comparison with the results obtained by using the polynomial
models developed by [1], highlighting a superiority of the Neural Network models in
almost every component of the wrench.

In the next chapter, the models presented in this chapter will be applied on the
ErgoCub robot.

95

Chapter 6

Deployment and tests of the
models on real robot

In the last chapter, Neural Network (NN) models for calibrating force-torque sensors
on upper legs and feet have been developed and trained. Now, it’s time to apply
these models on the ErgoCub robot, to test its true effectiveness. In this chapter,
we will focus on deploying the secondary calibration model for the force-torque (FT)
sensor only on the right leg. More specifically, in section 6.1 the first test of the
Neural Network model with 13 inputs for the FT of the right leg will be discussed,
and its noisy output will be highlighted. For this reason, we will decide to train
new models, which do not take linear acceleration and angular velocity of the sensor
as input. Therefore, in section 6.2 we move on to the deployment of the models
characterized by having only the raw value of the wrench and the temperature (i.e.
7 inputs) of the FT as inputs; specifically, a walking test will be conducted. At the
end, in section 6.3 another test will be conducted to quantify the goodness of the
secondary calibration via the Neural Network model with 7 inputs; in this test, it
will be highlighted how the torque control on the robot’s legs improves thanks to the
NN model.
Therefore, this chapter will present three tests:

• Test A: The NN model the right leg sensor with 13 inputs is deployed on
the robot. In this experiment, the robot remains stationary, and the sensor’s
output data is analyzed.

• Test B: The NN model the right leg sensor with 7 inputs is deployed on the
robot. In this experiment, the robot is walking, and the sensor’s output data
is analyzed.

96

• Test C: The NN model the right leg sensor with 7 inputs is deployed on the
robot. In this experiment, the robot is controlled using a PD (Proportional
and Derivative) + gravity compensation torque controller. We will perform
this test twice: once by controlling the right leg (specifically, the r_hip_pitch
joint) and applying an external force to it, and once by controlling the left
leg (l_hip_pitch joint) and applying an external force to it. This experiment
serves as an indirect measurement of the sensor calibration quality, as the
estimated torque on the controlled joint is closely linked to the force-torque
sensor measurements. By observing in which of the two cases the robot better
maintains torque and position tracking, we can determine which force-torque
sensor provides more reliable measurements: the right leg with secondary NN
calibration or the left leg without secondary calibration.

6.1 Test A
In this first experiment, the robot is standing still. The figure 6.1 shows the plot
of the force fz on the sensor FT on right leg (the one with secondary NN calibra-
tion), compared with fz on left leg FT (the one without any secondary calibration);
theoretically the values of fz on the two sensors should be similar, as the robot is
balanced on its legs. However, as we can clearly see from the image, the FT output
of the right leg is much noisier than the left leg.

To understand the origin of the noise present in the output of the neural network,
the input data of this model in this experiment have been analyzed. In particular,
as we can see in images 6.2, the angular velocity and linear acceleration (e.g. along
the x-axis) of the force-torque sensor on the right leg are very noisy.

For this reason, it was decided to try to train new neural network models that
took as input only the raw wrench of the sensor (i.e. the output of the primary
calibration) and its temperature, without considering angular velocity and linear
acceleration. The results will be shown in the next sections.

6.2 Test B
As shown in the previous section, the application of the neural network model for
the force torque sensor of the right leg did not give the desired results; in fact, the
output of the Neural Network seems very noisy, especially when considered with the
output of the sensor on the left leg (in which there is no secondary calibration).
For this reason, we decided to deploy the model with 7 inputs (raw wrench and

97

Figure 6.1: Comparison between fz on left leg FT (without secondary calibration) and
right leg FT (with secondary NN calibration)

98

(a) Angular velocity of r_leg_ft along x axis

(b) Linear acceleration of r_leg_ft along x axis

Figure 6.2: Angular velocity and linear acceleration of r_leg_ft along x axis

99

(a) Wrench on right leg FT predicted by NN vs label

(b) Wrench on left leg FT predicted by NN vs labels

Figure 6.3: Wrench on legs FTs predicted by NN vs labels (walking experiment)

temperature). Subsequently, a test was conducted while the robot was walking.
As in the previous section, there is secondary calibration only on the FT of the
right leg. Once the dataset was collected, iDynTree has been used to calculate the
expected wrenches (the labels) and compare them to the measurements obtained on
the legs sensors (figure 6.3). Looking at the tables 6.1, 6.2 and 6.3, it is clear that
the error committed by the FT on the right leg (with secondary NN calibration)
is much smaller than the error made by the FT on the left leg (without secondary
calibration).

In the next section we will perform another test to verify the effectiveness of the
secondary NN calibration.

100

MSE Right leg Left leg

MSE global 65.76 1336.98
MSE fx 79.22 1172.43
MSE fy 69.82 404.28
MSE fz 233.93 6390.51
MSE tx 4.82 30.66
MSE ty 5.90 19.08
MSE tz 0.87 4.93

Table 6.1: Mean Squared Error (MSE) for right leg FT (with secondary NN calibration,
7 inputs) and left leg FT (without secondary calibration)

MAE Right leg Left leg

MAE global 4.93 21.32
MAE fx 6.60 25.95
MAE fy 5.83 14.75
MAE fz 12.98 78.18
MAE tx 1.77 4.04
MAE ty 1.82 3.37
MAE tz 0.60 1.64

Table 6.2: Mean Absolute Error (MAE) for right leg FT (with secondary NN
calibration, 7 inputs) and left leg FT (without secondary calibration)

RMSE Right leg Left leg

RMSE global 8.11 36.56
RMSE fx 8.90 34.24
RMSE fy 8.36 20.11
RMSE fz 15.29 79.94
RMSE tx 2.19 5.54
RMSE ty 2.43 4.37
RMSE tz 0.93 2.22

Table 6.3: Root Mean Squared Error (RMSE) for right leg FT (with secondary NN
calibration, 7 inputs) and left leg FT (without secondary calibration)

101

6.3 Test C
Another possible way to test the effectiveness of the secondary NN calibration on the
right leg is to try torque control on the robot. Specifically, we could try to control the
robot with a PD (Proportional and Derivative) + gravity compensation controller.
This controller can be mathematically expressed as:

τ d = Kp(qd − q) + Kd(q̇d − q̇) + G(q), (6.1)

where:

• τ d is the desired torque;

• q is the vector collecting the position values of the joints, while qd is the vector
collecting the desired values;

• q̇ is the vector collecting the velocity values of the joints, while q̇d is the vector
collecting the desired values;

• Kp and Kd are respectively the proportional and derivative gains;

• G(q) is the gravity term of the dynamics equations of the system.

In our specific case, we would like to try this type of control twice:

• once by controlling only the l_hip_pitch joint, moving the left leg of the robot
externally while the root link remains fixed on the pole;

• once by controlling only the r_hip_pitch joint, moving the right leg of the
robot externally while the root link remains fixed on the pole.

Similarly to the previous tests, a secondary calibration NN (with 7 inputs) acts on
the force-torque sensor of the right leg, while on the FT of the left leg there is no
secondary calibration. The estimate of the torque acting on the joint l_hip_pitch
largely depends on the measurements of l_leg_ft. This dependency is similar for
r_hip_pitch and r_leg_ft. Therefore, the robot’s performance in tracking the
desired torque can serve as a reliable indicator of the measurement accuracy of the
force-torque sensors. The purpose of this test is to determine which of the two cases
yields better results in tracking the torque exerted on the controlled joint and its
position. Consequently, it aims to evaluate how much the NN secondary calibration
improves the measurement accuracy of the FT sensor on the right leg. In this kind of

102

test, the robot has the root link fixed on the pole, and the controller is only working
on l_hip_pitch (in the test on the left leg) or r_hip_pitch (in the test on the right
leg). The controller’s task is to maintain the torque acting on the joint and therefore
its position. Once the controller is activated, an external force is applied to the left
leg to assess the robot’s capability of maintaining joint tracking.

In the case of the left leg test, the robot begins to vibrate after being subjected to
an external force on the left leg and is unable to correctly track torque and position
(see Figure 6.4).

In contrast, when performing this test on the right leg (noting that the r_leg_ft
sensor has secondary calibration with the NN model using 7 inputs), the robot is
able to execute the task correctly. Figure 6.5 shows the corresponding tracking of
torque and position for the r_hip_pitch joint. The maximum absolute error in
torque tracking is 11.06Nm, while the absolute error in position tracking (after the
transient phase) is approximately 0.23 degrees.

6.4 Conclusions
This chapter discussed the deployment of the models developed in Chapter 5 on
the real robot and the subsequent tests conducted. We considered Neural Network
models for calibrating the force-torque sensor on the right leg. In the first test
(section 6.1), we deployed the NN model with 13 inputs; the output of this was very
noisy. Such noise was probably due to noisy inputs, namely the linear acceleration
and angular velocity of the sensor. Therefore, we opted to deploy the model for the
right leg, which uses only the raw wrench (i.e., the output of the primary calibration)
and the sensor temperature as inputs, for a total of 7 inputs. The tests conducted
with these models turned out to be quite positive.

In section 6.2 the data obtained during a walking experiment were analyzed, and
the ability of the NN model on the right leg to outperform the primary calibration
of the left leg was highlighted (in which instead there was no secondary calibration).

Finally, in section 6.3, another type of test has been conducted, in which the
robot was controlled via a PD (Proportional and Derivative) + gravity compensa-
tion torque control. Specifically, this control was tested twice: once in which only the
l_hip_pitch joint was controlled, and another one in which only the r_hip_pitch
joint was controlled . Since the torque measured on these joints depends significantly
on the measurement of the force-torque sensor present in the related leg, this was
a way to evaluate the accuracy of the secondary calibration of the sensor via Neu-
ral Network compared to the primary calibration. In fact, in the test in which the

103

l_hip_pitch joint was controlled, the robot was not able to maintain torque and po-
sition tracking on the joint due to the poor precision of the measurement output from
l_leg_ft (in which there was no secondary calibration) following external stresses.
On the contrary, when the same control was carried out on the r_hip_pitch joint,
the robot was able to respond adequately, due to the more accurate measurement of
forces and moments in the sensor r_leg_ft.

104

(a) Tracking of torque on l_hip_pitch

(b) Tracking of position on l_hip_pitch

Figure 6.4: Tracking of torque and position on l_hip_pitch

105

(a) Tracking of torque on r_hip_pitch

(b) Tracking of position on r_hip_pitch

Figure 6.5: Tracking of torque and position on r_hip_pitch

106

Chapter 7

Conclusions and future
perspectives

This chapter concludes the present thesis work. The topic addressed was the calibra-
tion of 6D strain gauge force-torque (FT) sensors integrated into the ErgoCub robot
developed by the Italian Institute of Technology. The calibration of such sensors
involves establishing a relationship between the sensor output (in the case of these
sensors, a potential difference expressed in bits) and the wrench (i.e., the 6D vector
containing forces and torque) applied to the robot. The calibration of these sensors
is crucial in the field of humanoid robotics. Accurate knowledge of the forces and
moments acting on the robot is essential not only for understanding how it inter-
acts with the surrounding environment but also for improving its controllability, for
example, through control over the joint torques of the robot.

A classical method adopted for the calibration of such sensors is linear regression;
this is also the model currently implemented in the FT sensors of the robot. However,
the results of this linear model often prove unsatisfactory primarily because it as-
sumes a simple linear relationship between the sensor output and the applied wrench;
unfortunately, in nature, there are very few phenomena accurately described by a
linear model. For this reason, literature has proposed polynomial models of generic
order [1] or approaches based on Neural Networks [15], [16]. Furthermore, in the
specific case of humanoid robotics, several other disturbance factors affect the mea-
surement, notably the sensor’s temperature. Indeed, these sensors mounted on the
robot are located near electric motors that generate heat, which in turn affects the
FT sensors. This temperature variation causes strain gauges within the sensor to
deform inaccurately due to the applied wrench, thereby altering the measurement.
For this reason, some authors have proposed models that also consider the sensor’s

107

temperature [14], [1]; furthermore, these authors suggest an in-situ calibration, uti-
lizing data obtained from experiments where the sensor is already mounted on the
robot. This in-situ procedure is necessary because if a force-torque sensor is cali-
brated using ex-situ data and then mounted on the robot, a decrease in performance
has been observed, for instance due to the tightening force of screws [5].

Given the existing literature, in this study, we proposed an approach that seeks
to combine the merits of the aforementioned methods. Specifically, in this thesis,
our aim was to perform a secondary calibration, where the model we developed
takes as input the raw wrench output from the primary linear calibration already
implemented on the robot. Our approach is characterized by the following features:

• The model utilized is a Neural Network. Its advantages include a vast number
of parameters that define the model, enabling it to effectively describe nonlinear
phenomena without the need for an explicitly defined formula.

• Calibration is conducted in-situ, using data collected in experiments where the
sensor is already mounted on the robot; this approach is advantageous over
ex-situ calibration, which often suffers from reduced accuracy when the sensor
is mounted on the robot.

• In addition to the raw wrench output from the primary calibration, the model
also receives other inputs. Specifically, we proposed two models: one that
takes as input raw wrench, angular velocity, linear acceleration, and sensor
temperature (resulting in a 13D vector input), and another that takes as input
only wrench and temperature (resulting in a 7D vector input).

To the best of the author’s knowledge, there are no calibration methods in the lit-
erature for 6D force-torque sensors in humanoid robotics that encompass all these
characteristics. The results obtained in the testing phase on several datasets demon-
strate the ability of the models developed in this study to significantly improve
upon the current linear calibration present on the robot and, furthermore, they have
shown superior performance compared to polynomial models developed by [1] using
the same datasets for calibration.

Subsequently, the newly developed NN models were applied to the actual robot.
While the models characterized by 13 inputs reported very noisy measurements
(mostly due to noise in accelerometer and gyroscope data), the models with 7 inputs
yielded good results and notably improved the measurement. This improvement was
observed through a pair of tests (denoted as tests B and C in chapter 6), which pro-
vided both a direct measure of improvement by comparing FT data with expected

108

measurements (test B) and an indirect measure by showing enhanced PD + gravity
compensation control when using secondary calibration via NN (test C).

Below, a concise summary of the content presented in each chapter. Part I
is dedicated to introducing the fundamental theoretical knowledge underlying this
work, specifically:

• Chapter 1 introduces 6D strain gauge force-torque sensors and the physical
principles upon which they are based;

• Chapter 2 presents the main theoretical foundations of neural networks;

• Chapter 3 provides the basics of rigid multibody dynamics, useful for defining
the loss functions required for model training.

Part II, on the other hand, focuses on the contribution this work makes to the state
of the art, specifically:

• Chapter 4 talks about the collection and processing of data required for model
training and testing;

• Chapter 5 describes the development of NN models and the results obtained
in the testing phases; furthermore, a comparison of results with polynomial
models from [1] using the same datasets for calibration is performed;

• Chapter 6 presents the deployment of NN models and the results obtained in
the testing of models with 7 inputs.

Future perspectives
Although the calibration process presented in this thesis demonstrates satisfactory
results both in comparison to the current calibration on the robot and to a benchmark
present in the state of the art [1], there may still be further room for improvement.
One possible avenue for development could be the use of a Physics Informed Neural
Network that somehow considers the variation in the internal dynamics of the sensor
due to temperature; another potential development could be the use of a Recurrent
Neural Network, which could exploit the relationship between the measured wrench
at two close instants of time.

109

Bibliography

[1] Mohamed H.A.O., Nava G., Vanteddu P.R., Braghin F., Pucci D., Nonlinear
In-situ Calibration of Strain-Gauge Force/Torque Sensors for Humanoid Robots.
https://doi.org/10.48550/arXiv.2312.09846 (2023)

[2] Doebelin E. O., Measurement Systems Application and Design, Mc Graw Hill
(2004)

[3] Fraden J., Handbook of Modern Sensors, Fourth Edition, Springer (2010)

[4] Stefănescu D. M., Handbook of Force Transducers: Principles and Components,
Springer (2011)

[5] Andrade Chavez F. J., Force-Torque Sensing in Robotics, PhD Thesis (2018).
https://fjandrad.github.io/PhDThesis/Thesis.pdf

[6] Hoffmann K., Applying the wheatstone bridge circuit, HBM Germany (2009)

[7] Cybenko G., Approximation by Superpositions of a Sigmoidal Function, Mathe-
matics of Control, Signals and Systems (1989)

[8] Hornik K., Stinchcombe M., White H., Multilayer Feedforward Networks are Uni-
versal Approximators, Neural Networks (1989)

[9] Aggarwal C. C., Neural Networks and Deep Learning, Springer Cham, 2nd edi-
tion, (2023). https://doi.org/10.1007/978-3-031-29642-0

[10] Bengio Y., Simard P., Frasconi P.Learning Long-Term Dependencies with Gra-
dient Descent is Difficult. IEEE TRANSACTIONS ON NEURAL NETWORKS,
VOL. 5, NO. 2, MARCH I994

[11] Pascanu R., Dauphin Y.N., Ganguli S., Bengio Y. On the saddle point problem
for non-convex optimization. https://arxiv.org/abs/1405.4604 (2014)

110

[12] Rumelhart D., Hinton G., Williams R. Learning representations by back-
propagating errors, Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

[13] Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR), 2015.

[14] Andrade Chavez F. J., Nava G., Traversaro S., Nori F., Pucci D. Model Based
In Situ Calibration with Temperature compensation of 6 axis Force Torque Sensors
https://arxiv.org/pdf/1812.00650 (2018)

[15] Tien-Fu L., Grier C.I.L., Juan R.H. Neural-Network-Based 3D Force/Torque
Sensor Calibration for Robot Applications, Engineering Applications of Artificial
Intelligence Vol. 10, No. 1, pp. 87-97 (1997)

[16] Hyun S.O., Gitae K., Uikyum K., Joon K.S., Won S.Y. and Hyouk R.C., Force/-
Torque Sensor Calibration Method by Using Deep-Learning, 14th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (2017)

[17] Traversaro S., Modelling, Estimation and Identification of Hu- manoid Robots
Dynamics. PhD thesis. (2017). url: https://github.com/traversaro/ traversaro-
phd-thesis

[18] Romualdi G., Online Control of Humanoid Robot Locomotion. PhD thesis.
(2022). url: https://github.com/GiulioRomualdi/romualdi-phd-thesis

[19] Ferigo D., Simulation Architectures for Reinforcement Learning applied to
Robotics. PhD thesis. (2022). url: https://github.com/diegoferigo/phd-thesis

[20] Lynch K.M., Park F.C., Modern Robotics Mechanics, Planning, and Control

[21] Nori F., Traversaro S., Eljaik J., Romano F., Del Prete A., Pucci D.,
iCub Whole-body Control through Force Regulation on Rigid Noncopla-
nar Contacts. Frontiers in Robotics and AI, volume 2, number 6. url:
http://www.frontiersin.org/humanoid_robotics/10.3389/frobt.2015.00006/abstract
doi: 10.3389/frobt.2015.00006 (2015)

[22] Savitzky A., Golay M. J. E., Smoothing and Differentiation of Data by Simplified
Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. (1964)

[23] Sorrentino I., Romualdi G., Pucci D., UKF-Based Sensor Fusion for
Joint-Torque Sensorless Humanoid Robots., https://arxiv.org/html/2402.18380v1
(2024)

111

[24] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen
T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Köpf A., Yang E., DeVito
Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chin-
tala S., PyTorch: An Imperative Style, High-Performance Deep Learning Library,
https://arxiv.org/abs/1912.01703 (2019)

[25] Akiba T., Sano S., Yanase T., Ohta T., Koyama M., Optuna: A Next-generation
Hyperparameter Optimization Framework, https://arxiv.org/abs/1907.10902
(2019)

[26] Glorot X., Bengio Y., Understanding the difficulty of training deep feedforward
neural networks (2010)

[27] https://it.linkedin.com/pulse/reti-neurali-cosa-sono-come-funzionano-e-le-
applicazioni-bnova-qv1cf

[28] https://www.elprocus.com/smart-sensor/

112

	List of Figures
	List of Tables
	Prologue
	I Background
	Force-torque sensors
	Force Sensing Technologies
	Piezoresistive Strain Gauges
	Wheatstone bridge
	Conclusions

	Neural Networks
	Introduction to Neural Networks
	Training of a NN through supervised learning
	Forward pass
	Loss computation
	Backward Pass
	Weight Update

	Theoretical Foundations
	Universal Approximation Theorems

	Conclusions

	Basics of rigid multibody dynamics
	Some mathematical definitions
	Points and frames
	Velocities
	Accelerations
	Forces and Torques
	Equations of dynamics
	Multibody equations of dynamics
	Introduction to multibody systems
	Position and velocity of the joints
	Link pose
	Link velocity
	Dynamics

	Conclusions

	II Contribution
	Data collection and postprocessing
	Collection of the data in-situ
	Postprocessing of the data
	Conclusions

	Neural Networks for FT modelling
	Datasets used
	Framework and libraries used for development of NN models
	Inputs of the NNs
	Definition of the loss functions
	Loss function for the FTs on the legs
	Loss function for the FTs on the feet

	Models for FT on right leg
	Architecture of the model
	Results for model with 13 inputs
	Results for model with 7 inputs
	Comparison with the results obtained by using polynomial models

	Models for FT on left leg
	Architecture of the model
	Results for model with 13 inputs
	Results for model with 7 inputs
	Comparison with the results obtained by using polynomial models

	Models for FTs on right foot
	Architecture of the models
	Results for model with 13 inputs
	Results for model with 7 inputs

	Models for FTs on left foot
	Architecture of the models
	Results for model with 13 inputs
	Results for model with 7 inputs

	Conclusions

	Deployment and tests of the models on real robot
	Test A
	Test B
	Test C
	Conclusions

	Conclusions and future perspectives

