
POLITECNICO DI TORINO

Department of Mathematical Sciences

Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Adiabatic Quantum Computing for Optimization
Problems with a Case Study on the Maximum

Independent Set Problem

Supervisors:

prof. Bartolomeo MONTRUCCHIO

prof. Federico DELLA CROCE

Candidate:

Ilaria Panuccio

Company Supervisor

Data Reply S.R.L

Dr. Davide Caputo

ACADEMIC YEAR 2023/2024





Acknowledgements
At the end of my journey at Politecnico di Torino, I realize that I have gained new
awareness and achieved goals I never thought I could reach. There were some easy
moments and others that were decidedly more difficult, but I am proud of never
giving up in the face of challenges. This is the greatest advice I can give to anyone
who wishes to undertake this journey in the future.
I have reached the conclusion of this Chapter thanks to the people who stood by
my side and always believed in me. First and foremost, a heartfelt thank you
goes to my entire family, who have never let me lack anything during these years
in Turin. I thank the Politecnico for bringing Giusy, Teresa, Sara, Vittoria, and
Enrico into my life, friends who have always supported me from the moment our
paths crossed. Beyond the University realm, I thank my lifelong friends Carlotta,
Chiara, Irene, Luisa, Tommaso and Matteo, who have always been there for me
and always will be, like siblings. A special thanks to Michele, who has supported
me all these years and on whom I know I can always rely, even though our lives
have taken different ways.
Finally, I thank Blanca and Davide for allowing me to start my experience at Data
Reply, trusting in my potential. Thanks to my colleagues in BU5 who welcomed
me during the internship period and the months of writing the thesis, and with
whom I still share my workdays. A special thanks to Luca and Mirko for their
essential support in carrying out this thesis.

ii





Summary
With the increasing attention and investments drawn to the Quantum Computing
field, a number of different technologies and multiple algorithms have emerged in
an effort to study the capabilities of this innovative computing paradigm. The
thesis covers the study of the Quantum Computing formalism, the peculiarities
characterizing different technologies and the potential use cases that are expected
to benefit from applying Quantum Computing techniques, specifically in Combina-
torial Optimization. The difference between the two main approaches of Quantum
Computing, Digital Quantum Computing and Analog Hamiltonian Simulation,
was studied. While the former performs computation with Quantum Gates and
Circuits, the latter simulates complex quantum systems by replicating their Hamil-
tonian dynamics described by the Schrödinger equation. Among the methodologies
of Analog Hamiltonian Simulation, Adiabatic Quantum Computing solves opti-
mization problems by evolving a quantum system’s Hamiltonian from its initial
state to its final state, following the Adiabatic Theorem, wherein if the Hamil-
tonian changes slowly enough, a quantum system remains in its instantaneous
ground state. In this work, this approach was directly applied to solve a specific
combinatorial optimization problem, the Maximum Independent Set (MIS) prob-
lem, using two quantum annealers. The first, D-Wave, utilizes superconducting
qubits, while the second, QuEra, is an emerging technology that exploits neutral
atoms as computational units. This cutting-edge technology was studied in detail.
In this regard, the neutral atom was defined and its possible states were analyzed,
specifically identifying the Rydberg atom. The constituent components of QuEra’s
hardware were examined, as well as the techniques used for preparing atomic states
and their dynamic evolution over time. Subsequently, the Maximum Independent
Set (MIS) problem was defined, and through examples, various real-world appli-
cations were described, underlining that a graph can have multiple MISs and, for
this reason, the solution to the problem may not be unique. Finally, the context
of the MIS problem applied in this work was outlined, focusing on identifying the
companies with the highest financial risk within a pool, located at the vertices of a
small-sized graph whose edges are defined based on the covariance values between
the companies. The solution to this problem is represented by the Minimum Ver-
tex Cover of the reference graph, which is the complementary set of vertices of the
Maximum Independent Set.
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Sommario
Con l’attenzione crescente e gli investimenti nel campo del Quantum Computing,
sono emerse diverse tecnologie e numerosi algoritmi che tentano di studiare le ca-
pacità di questo paradigma computazionale innovativo. La Tesi copre lo studio del
formalismo del Quantum Computing, le peculiarità che caratterizzano diverse tec-
nologie e i potenziali use cases che si prevede beneficeranno dall’applicazione delle
tecniche del Quantum Computing, in particolare nell’ottimizzazione combinato-
ria. È stata studiata anche il differenza tra i due principali approcci del Quantum
Computing, il Digital Quantum Computing e l’Analog Hamiltonian Simulation.
Mentre il primo processa dati con Quantum Gates e Circuiti, il secondo simula
sistemi quantistici complessi replicando la loro dinamica descritta dall’equazione
di Schrödinger. Tra le metodologie della Simulazione Hamiltoniana Analogica,
l’Adiabatic Quantum Computing risolve problemi di ottimizzazione facendo evol-
vere l’Hamiltoniana di un sistema quantistico dallo stato iniziale a quello finale,
seguendo il Teorema Adiabatico, secondo il quale se l’Hamiltoniana evolve abbas-
tanza lentamente, un sistema quantistico rimane nel suo stato fondamentale istan-
taneo. In questo lavoro, tale approccio è stato applicato per risolvere un problema
specifico di ottimizzazione combinatoria, il problema del Maximum Independent
Set (MIS), utilizzando due annealer quantistici. Il primo, D-Wave, utilizza qubit
superconduttori, mentre il secondo, QuEra, è una tecnologia emergente che sfrutta
atomi neutri come unità computazionali. Questa tecnologia all’avanguardia è stata
studiata nel dettaglio. A tal proposito, l’atomo neutro è stato definito e i suoi
possibili stati sono stati analizzati, identificando l’atomo di Rydberg. Sono stati
esaminati i componenti costitutivi dell’hardware di QuEra, cos̀ı come le tecniche
utilizzate per preparare gli stati atomici e la loro evoluzione dinamica nel tempo.
Successivamente, è stato definito il problema MIS e attraverso esempi sono state
descritte varie applicazioni reali, sottolineando che un grafo può avere più MIS e,
per questo motivo, la soluzione del problema potrebbe non essere unica. Infine,
è stato delineato il contesto del problema del MIS applicato in questo lavoro, che
si concentra sull’identificazione delle aziende con il rischio finanziario più elevato
all’interno di un gruppo, posizionate sui vertici di un grafo i cui archi sono definiti
in base ai valori di covarianza tra le aziende. La soluzione a questo problema è
rappresentata dal Minimum Vertex Cover del grafo di riferimento, che è l’insieme
complementare dei vertici del Maximum Independent Set.
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Chapter 1

Introduction

Quantum Computing represents a relatively new paradigm in which properties
of quantum mechanics, are exploited to accelerate the solution of certain complex
problems. Quantum mechanics is a branch of physics that emerged in the mid-20th
Century. It challenged classical physics by describing both radiation and matter
as having dual wave-particle properties, a concept that stands in great contrast to
classical theories. While the laws of quantum physics find reason in microscopic
reality, the laws of classical physics continue to prevail in the macroscopic world.
The father of Quantum Computing was Richard Faymann, who stated in 1981 at
MIT that classical devices are incapable of simulating quantum systems efficiently
[1]. From this affirmation, the first quantum algorithm capable of solving the prob-
lem presented by Faymann was developed by Shor in 1994. This algorithm was
published in 1997 in [2], explaining how to implement quantum circuits to factorize
large integers in polynomial time exploiting the superposition and the quantum
interference. In the following years, further algorithms were developed, capable of
solving computationally difficult problems, such as Grover’s search, published in
1996 in [3], which was tested in the first 2-qubit quantum computer in 1998 and
which allowed quadratic speedup in database searches.
The difficulty of building quantum hardware capable of solving problems that re-
quire a discrete amount of computational time remains a major challenge. To
exploit the quantum mechanics properties, the main obstacle lies in preventing
the interaction between the Quantum Computing units and the external environ-
ment. If such an event were to occur, the system would be affected by decoherence,
making the quantum information unreliable. For this reason, the goal of market-
leading companies is to design quantum hardware that is completely fault-tolerant
and highly-scalable, capable of producing reliable results even in the presence of
errors during computation and without compromising performance as capacity
increases. A possible solution is to utilize error correction algorithms capable of
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Chapter 1: Introduction

detecting and correcting errors during the computation. These procedures primar-
ily rely on redundancy in the number of physical resources, which, in the presence
of an error in one or more computational units, prevent quantum information from
being lost over time. These techniques face the maximum capacity limit of the
hardware. For these reasons, the current phase of research in Quantum Computing
is referred to as the “Noisy Intermediate-Scale Quantum (NISQ) era”, highlight-
ing the limited capacity and the non-fault tolerance of the current devices, which
may evolve into full-scale and noise-free quantum computers in future. Nowadays,
various types of quantum hardware are built, categorized by the chosen computing
units, such as superconducting qubits, neutral atoms, or ions. Note that the lim-
ited capacity in the current NISQ devices limits the types of algorithms that can be
implemented, and therefore the goal is to demonstrate how Quantum Computing
can solve certain problems with significantly shorter runtime than their classical
counterparts. This context translates into “Quantum Supremacy,” a concept in-
dicating the desire to prove that a quantum computer can solve a task where a
classical supercomputer would not be feasible within a reasonable runtime. It’s im-
portant to emphasize that quantum computers are not aiming to surpass classical
computers but rather to address certain tasks that would require a high number
of classical resources.
A fundamental property of Quantum Computing is the entanglement, for which
two qubits cannot be measured independently of each other but, once the state
of one qubit has been measured, the state of the other qubit is also known in a
deterministic way. This effect does not depend on the distance between the two
entities and it is useful for different applications.
The classical and quantum realities are based on similar but different computa-
tional units. The classical devices are based on bits, while the quantum ones are
based on the concept of quantum bits, or qubits. The main difference is that, while
the bit can be in state 0 or 1 deterministically, the qubit is a quantum-mechanical
object that is in the superposition of both states, a property that can be well
exploited to create complex, multidimensional computational spaces with a con-
sequent improvement in the efficiency and speed of performance. Therefore, the
state of the qubit can only be described in a probabilistic way, since, with a certain
probability, it can be found in the state 1 rather than in the state 0. In order to
know the result, the procedure of measurement is of fundamental importance. In
fact, at the instant the measurement is made, the qubit collapses into one of the
two states with a certain probability and from that moment the knowledge of the
state is deterministic. These concepts, along with the fundamentals of Quantum
Computing, will be discussed in Chapter 2.
Chapter 3 will outline the five criteria that a quantum hardware should have. Fur-
ther exploration will focus on the main differences between the two branches of
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Chapter 1: Introduction

Quantum Computing, i.e. Universal Quantum Computing and Analog Hamilto-
nian Simulation, with a particular emphasis on Adiabatic Quantum Computing.
The latter is a method of quantum computation based on studying the time evo-
lution of a quantum system’s Hamiltonian according to the Adiabatic Theorem.
This method finds application in the field of Combinatorial Optimization, where
the solution is sought in states encoding the minimum energy of the system, de-
fined by the Hamiltonian’s value. The techniques through which two technologies,
QuEra and D-Wave, respectively utilize neutral atoms and superconducting qubits
to develop the Adiabatic Protocol, will be analyzed.
Of particular interest in this work is the neutral atom technology QuEra, analyzed
in detail in Chapter 4. Here, several foundational concepts will be defined, such as
the Rydberg atom, the Rydberg Blockade phenomenon, and the Rydberg Hamil-
tonian, used to implement the Adiabatic Protocol. It will be examined how the
latter allows for the natural encoding of constraints defining the Maximum Inde-
pendent Set problem, a NP-complete problem discussed extensively in Chapter 5.
This Chapter will also provide an overview of some classical approaches, as well
as the Ising/QUBO formulation enabling resolution on D-Wave systems.
In Chapter 6, will be explained the context in which the MIS problem arises in this
work. The objective will be to find the Minimum Vertex Cover of a graph, which is
identified as the complementary set of the MIS and represents the companies with
the highest financial risk within a broader group. The problem is mapped onto
a small-sized graph belonging to the class of Unit Disk Graphs, which naturally
encodes independence constraints in neutral atom technology. The results ob-
tained from the quantum annealers D-Wave and QuEra will be analyzed, further
validated by applying exact solver and classical heuristic, Simulated Annealing,
detailed in Appendix A. It is further emphasized how the solution is not unique,
as multiple feasible Maximum Independent Sets (MIS) and hence multiple feasible
Minimum Vertex Covers (MVC) can exist in a graph. To achieve a unique solu-
tion, further market analysis should be conducted on companies not included in
the set of common solutions, a task that goes beyond the scope of this thesis.
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Chapter 2

Fundamentals of Quantum Com-
puting

In this chapter, we will focus on the main concepts concerning the Quantum Com-
puting, going in depth about its mathematics formulations and defining the most
important notions.

2.1 Quantum Information and Quantum States

To explain quantum information, it is necessary to clearly understand the notion
of information in the classical sense. These two types of information, although
they have some distinct characteristics, are described mathematically in a similar
way.
Suppose we have a system in which certain information is saved in the classical
sense. This system can be defined with a configuration in an unambiguous way, as
it can be observed in one of its possible states. For example, consider a six-sided
die, once rolled, this would result in one of its six possible configurations in the set
{1, 2, 3, 4, 5, 6}; if we think about the unit of computation in classical computing,
the bit, it results in one of the two possible configurations in the set {0, 1}. So, if
an object is considered as a collection of possible informations, this object is surely
in one of its possible states.
Sometimes we can only describe the object’s classical state in a probabilistic way.
Consider the bit once again, assigning certain probabilities based, for example, on
its past history, which determines whether it can be in state 0 or 1. Assuming that
P(bit = 0) = 1

4
, then P(bit = 1) = 3

4
and therefore its state can be denoted with

the vector:

v⃗ =

(
1
4
3
4

)
(2.1)

5



Chapter 2: Fundamentals of Quantum Computing

The convention adopted describes the states of a bit with the ordered set {0, 1},
therefore in (2.1) the probability of the bit being zero is placed at the top and the
probability of being 1 at the bottom. Vectors of the form (2.1) for which the sum
of the entries is 1 are called probability vectors.
Referring to a generic quantum system, the entries of the vector describing the
quantum state are called probability amplitudes and the following properties hold:

• Their values belong to the set of the complex numbers C;

• The sum of their squares must be equal to 1. This property is known as
normalization constraint.

Note that the normalization constraint is equivalent to the condition for which the
Euclidean norm of the vector must be equal to 1, denoting that norm as

||ψ|| =

√√√√ n∑
k=1

|α2
k| (2.2)

where v⃗ = (α1, α2, · · · , αn)T .
Although the difference between the two notations is subtle, Quantum Computing
power comes precisely from these small mathematical changes.
Before delving further into the description of the quantum bit, called qubit, it is
necessary to clarify the notations adopted. When referring to quantum systems it
is common to use the Dirac notation, also known as braket notation, with which
we indicate the column vectors with the ket symbol |·⟩ and the row vectors with
the bra symbol ⟨·|. To be precise, the bra represents the conjugate transpose of
the ket, i.e. ⟨·| = |·⟩†. With this notation, the inner product between the states
|ψ⟩ and |ϕ⟩ can be denoted as ⟨ψ| · |ϕ⟩ = ⟨ψ|ϕ⟩ and the Euclidean norm (2.2) has
the following form:

||ψ|| =
√
⟨ψ|ψ⟩. (2.3)

The outer product is obtained by multiplying a bra on the left and a ket on the
right, i.e. |ψ⟩⟨ϕ|.

2.2 The Qubits and the Computational Basis

A qubit is essentially analogous to a classical bit, which is an object that can take
on values in the set {0, 1}, but it can also exist in a quantum state. Precisely, we
are not certain about the qubit state until we observe (measure) the system. As
soon as this operation is carried out, the quantum system collapses into one of its
possible states, allowing it to be studied in a deterministic way. In general, if a
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Chapter 2: Fundamentals of Quantum Computing

probabilistic vector has 1 in the entry corresponding to the state a and 0 in the
other entries, then that vector will be denoted as |a⟩ and represents a standard
basis vector. Referring to one qubit, the two possible standard basis, known as
computational basis, are the following:(

1
0

)
= |0⟩

(
0
1

)
= |1⟩, (2.4)

representing acceptable quantum state vectors, since |1|2 + |0|2 = 1. Remind
that, before a measurement, the state of the system lives in a superposition of
all possible states and its representation is a linear combination of standard basis
vector with amplitude probabilities as scalar coefficients. Therefore, if a system
described by one qubit is considered, its state is represented with the following
linear combination:

α0|0⟩+ α1|1⟩, (2.5)

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1.
For example, if α0 =

1√
2
and α1 =

1√
2
, the following vector:(

1√
2
1√
2

)
=

1√
2
|0⟩+ 1√

2
|1⟩, (2.6)

is a quantum state vector, since its entries are complex numbers which satisfy the
normalization constraint: ∣∣∣∣ 1√

2

∣∣∣∣2 + ∣∣∣∣ 1√
2

∣∣∣∣2 = 1

2
+

1

2
= 1.

It is important to underline that the square of each probability amplitude repre-
sents precisely the probability of the quantum system of being in the state multi-
plied by it in the linear combination. In the case of the example (2.6), we have that

the quantum state has probability
∣∣∣ 1√

2

∣∣∣2 = 1
2
of being in state 0 and probability∣∣∣ 1√

2

∣∣∣2 = 1
2
of being in state 1.

2.3 State of a Qubit on the Bloch Sphere

In the previous Section, it is studied how to represent a quantum state as a linear
combination, involving the computational basis and the amplitude probabilities.
Consider an amplitude probability α ∈ C, it can be denoted as eiθ|α|, where |α|
is the non-negative real number associated to the magnitude of α and eiθ is the

7
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Figure 2.1: Representation of a qubit state on the Bloch sphere [4].

so called phase factor, with θ the phase value. In particular, the phase factor is
defined as eiθ = α

|α| , its norm is equal to one and it is true that the states |ψ⟩ and
eiθ |ψ⟩ are equivalent (they have the same global phase). On the other hand, two
quantum states with different relative phase, for example, |0⟩+ |1⟩ and |0⟩+eiθ |1⟩,
are physically different from each other.
The state of a qubit can be described in an even more general form as follows:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφsin

(
θ

2

)
|1⟩ (2.7)

where φ ∈ [0, π] and θ ∈ [0, 2π] are real parameters which allows to depict the
state vector as a point on the surface of a 3-dimensional sphere, known as the
Bloch sphere. Precisely, since a point on the surface of a sphere has Cartesian
coordinates (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), a quantum state vector |ψ⟩ is
a Bloch vector v⃗ ∈ R3 pointing from the origin to the surface, as represented in
Figure 2.1.

2.4 Hilbert Spaces

In this Section, the main features of the spaces to which the unit quantum state
belongs, i.e. Hilbert spaces, denoted as H, are analyzed.
To define Hilbert space dimensions, we should refer to the degree of freedom of the
system considered. To describe realistic quantum computational models, we will
focus on systems with finite-dimensional state vectors but it is important to note
that these systems can potentially be infinite-dimensional. In general, a quantum
system with n qubits lies in a Hilbert space with dimension equal to the number of
superposition states in which it can be, i.e. 2n. Furthermore, since a quantum state

8
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vector ha scomplex entries, the reference n-dimensional Hilbert space is precisly
C2n .

Definition 1. Consider a Hilbert space H with dimension 2n. A set of 2n vectors
B = {|bm⟩} ⊆ H is an orthonormal basis for H if:

⟨bn|bm⟩ = δnm ∀bn, bm ∈ B, (2.8)

where δnm is the Kronecker Delta Function, that is equal to 1 when n = m and
0 otherwise [5].

With the above definition, it holds that every state |ψ⟩ ∈ H can be written as

|ψ⟩ =
∑
bn∈B

ψn|bn⟩, (2.9)

with ψn = ⟨bn|ψ⟩ the coefficients of ψ with respect to the basis {|bn⟩} and ∥|ψ⟩∥ =∑
i |αi|2.

The computational basis defined in Section 2.2 is an example of orthonormal basis
defined with a one-qubit system. In fact:

⟨0|1⟩ = (1 0)

(
0
1

)
= 0. (2.10)

In addition to (2.10), there are several orthonormal basis in 2-dimensional Hilbert
space. Among them, the Hadamard basis, denoted by |+⟩ and |−⟩, is of particular
importance:

|+⟩ = 1√
2
(|0⟩+ |1⟩),

|−⟩ = 1√
2
(|0⟩ − |1⟩),

(2.11)

It can be verified the normal constraint:

|||+⟩||2 = ⟨+|+⟩ = 1

2
(⟨0|+ ⟨1|)(|0⟩+ |1⟩) = 1

2
(1 1)

(
1
1

)
= 1 ⇒ |||+⟩|| = 1,

|||−⟩||2 = ⟨−|−⟩ = 1

2
(⟨0| − ⟨1|)(|0⟩ − |1⟩) = 1

2
(1 − 1)

(
1
−1

)
= 1 ⇒ |||−⟩|| = 1,

(2.12)

and the orthogonality:

⟨+|−⟩ = 1

2
(⟨0|+ ⟨1|)(|0⟩+ |1⟩) = 1

2
(1 1)

(
1
−1

)
= 0. (2.13)

9



Chapter 2: Fundamentals of Quantum Computing

In order to best deal with a quantum system, it is appropriate to define the opera-
tors, i.e. functions that linearly map elements of a Hilbert space to other elements
of that same space. These operators can be represented as matrices of size equal
to the Hilbert space dimension in which they operate. In this context, consider O,
|ψ⟩, and |ϕ⟩ as a linear operator and two quantum states existing within the same
Hilbert space. For the O operator, the following properties hold:

1. Linearity : O(α |ψ⟩+ β |ϕ⟩) = αO |ψ⟩+ βO |ϕ⟩, with α, β ∈ R.

2. Banality : if O is the identity operator I, then I |ψ⟩ = |ψ⟩ ∀ |ψ⟩ ∈ H

3. Hermitian conjugate: the conjugate Hermitian operator O† of O is such that
⟨Oψ|ϕ⟩ = ⟨ψ|O†ϕ⟩, where O† = (O)T .

Consider the outer product of a vector with itself, it defines a linear operator
which, if applied to a quantum state vector |γ⟩, acts in the following way:

|ψ⟩⟨ψ||γ⟩ → |ψ⟩⟨ψ|γ⟩ = ⟨ψ|γ⟩|ψ⟩.

Such operator is called orthogonal projector and projects the state |γ⟩ in H to the
1-dimensional subspace of H spanned by |ψ⟩.
The following definition refers to a class of operators useful to describe the Hamil-
tonian and the observables of a quantum system, concepts that we will explore in
the next sections.

Definition 2. An operator O in a Hilbert space H is called Hermitian if:

O† = O

i.e. it is equal to its own Hermitian conjugate.

For an Hermitian operator, the Spectral Decomposition Theorem holds:

H =
∑
i

λi |ψi⟩ ⟨ψi| (2.14)

where λi ∈ R are the eigenvalues and |ψi⟩ are orthonormal eigenvectors. In other
words, the normal operators are always diagonalizable.
For example, consider the X operator, defined as:

X|0⟩ = 1,

X|1⟩ = 0,
(2.15)

with matrix representation:

X =

(
0 1
1 0

)
, (2.16)

10
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and spectrum {−1, 1}, defining the matrix

Λ =

(
1 0
0 −1

)
. (2.17)

The corresponding eigenvectors are, respectively, ( 1√
2

1√
2
)T and ( 1√

2
− 1√

2
)T , for

which it can be associated the matrix:

P =

(
1√
2

1√
2

1√
2
− 1√

2

)
. (2.18)

The diagonalization of X is defined as:

X = P TΛP =

(
1√
2

1√
2

1√
2
− 1√

2

)(
1 0
0 −1

)( 1√
2

1√
2

1√
2
− 1√

2

)
. (2.19)

Using the Dirac notation, we can write:

X = |0⟩⟨1|+ |1⟩⟨0| (2.20)

P = |+⟩⟨0|+ |−⟩⟨1| = |0⟩⟨0| − |1⟩⟨1|
where the eigenvectors are the Hadamard basis defined in (2.11):

|+⟩ ≡ 1√
2
|0⟩+ 1√

2
|1⟩

|−⟩ ≡ 1√
2
|0⟩ − 1√

2
|1⟩.

2.5 Unitary Operators

In this Section, unit operators as operations on quantum states are addressed.
A Unitary Operator U is a complex matrix such that:

UU † = 1

U †U = 1
(2.21)

where 1 is the Identity matrix.
It holds that an N x N matrix is unitary if and only if

∥U |ψ⟩ ∥ = ∥ |ψ⟩ ∥ (2.22)

for every N -dimensional quantum state |ψ⟩. This means that, if U is multiplied
by any vector, its Euclidean norm doesn’t change and it results in an another

11
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quantum state vector. For this reasons, the unitary matrices represent the set of
linear mappings that map quantum state vectors to others quantum state vectors
[6].
We can introduce the most significant Quantum Computing unitary operators with
the following examples.

Example 1. Pauli Operators, identified by the following four matrices:

1 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.23)

These operators are often denoted as X ≡ σx, Y ≡ σy and Z ≡ σz.
By multiplying X on the left to the state vectors |0⟩ and |1⟩, we obtain:

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩,

X|1⟩ =
(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0⟩.

(2.24)

Note that this operation maps the state |0⟩ to the state |1⟩ and vice versa. For
this reason, the X operator is also known as bit flip or NOT operator.
By multiplying Z on the left to the states |0⟩ and |1⟩, we obtain:

Z|0⟩ =
(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0⟩,

Z|1⟩ =
(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= −|1⟩.

(2.25)

Note that Z maps the state |0⟩ to |0⟩ and the state |1⟩ to −|1⟩ and it is also called
Phase Operator.

Example 2. Hadamard Operator described by the matrix:

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
. (2.26)

As done in the previously example, multiplying H on the left to the states |0⟩ and
|1⟩, we obtain:

H|0⟩ =

(
1√
2

1√
2

1√
2
− 1√

2

)(
1
0

)
=

(
1√
2
1√
2

)
= |+⟩,

H|1⟩ =

(
1√
2

1√
2

1√
2
− 1√

2

)(
0
1

)
=

(
1√
2

− 1√
2

)
= |−⟩.

(2.27)

12
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This result shows that the Hadamard operator maps |0⟩ to |+⟩ and |1⟩ to |−⟩.
If we apply H to the left of both |+⟩ and |−⟩ vectors, we obtain:

H|+⟩ =

(
1√
2

1√
2

1√
2
− 1√

2

)(
1√
2
1√
2

)
=

(
1
0

)
= |0⟩,

H|−⟩ =

(
1√
2

1√
2

1√
2
− 1√

2

)(
1√
2

− 1√
2

)
=

(
0
1

)
= |1⟩.

(2.28)

Putting togheter the results obtained in (2.27) and (2.28), we have:

H|0⟩ = |+⟩,
H|1⟩ = |−⟩,
H|+⟩ = |0⟩,
H|−⟩ = |1⟩.

(2.29)

Example 3. Phase operator defined by the following matrix:

Pθ =

(
1 0
0 eiθ

)
, (2.30)

with θ ∈ R. From the set of the phase operators, we have two important examples:

S = Pπ/2 =

(
1 0
0 i

)
,

T = Pπ/4 =

(
1 0
0 1+i√

2

)
.

(2.31)

Applying the T operator to the state |+⟩ and exploiting the linearity of the matrices
multiplication, we have:

T |+⟩ = T

(
1√
2
|0⟩+ 1√

2
|1⟩
)

=
1√
2
T |0⟩+ 1√

2
T |1⟩. (2.32)

Developing the same calculations of previously examples, we obtain:

T |0⟩ = |0⟩,

T |1⟩ = i+ 1√
2
|1⟩.

(2.33)

Finally, substituting in (2.32), we can find:

T |+⟩ = 1√
2
|0⟩+ 1 + i

2
|1⟩ (2.34)

Note that 1 and Z operations defined in (2.23) are, respectively, the phase matrix
P0 and Pπ.

13
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The examples above were only discussed using a single unitary operator. The
computation involving the composition of unitary operators is represented simply
by multiple matrix multiplications, where each matrix corresponds to a unitary
operator.

2.6 Multiple Systems and Tensor Product

In this Section, the handling of quantum information in the context of multiple
systems is explored.
In Section 2.4, it is studied that quantum states live in a 2n-dimensional Hilbert
space, with n the number of qubits needed to describe that state. Consider the
interaction of two Hilbert spacesH1 andH2 with dimensions N = 2n andM = 2m.
A useful tool for representing this combination is the tensor product, denoted by
the symbol ⊗. Therefore, considering two different vector states |ψ⟩ and |ϕ⟩ from,
respectively, H1 and H2, their tensor product |ψ⟩⊗|ϕ⟩ lives in a new Hilbert space
H1 ⊗H2 with dimension NxM . Explicitly:

|ψ⟩ =


ψ1

ψ2

·
·
ψN

 , |ϕ⟩ =


ϕ1

ϕ2

·
·
ϕM

 ,

with their tensor product defined as:

|ψ⟩ ⊗ |ϕ⟩ =



ψ1 ·


ϕ1

ϕ2

·
·
ϕM


·
·
·

ψN ·


ϕ1

ϕ2

·
·
ϕM





=



ψ1ϕ1

ψ1ϕ2

·
ψ1ϕN
ψ2ϕ1

ψ2ϕ2

·
ψ2ϕM
·
·

ψNϕ1

ψNϕ2

·
ψNϕM



. (2.35)

The expression |ψ⟩ ⊗ |ϕ⟩ is usually simplified with the Dirac notation |ψϕ⟩.
To better understand this concept, consider all the possible tensor products of the
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vectors that compose the orthonormal computational basis, i.e. |00⟩, |01⟩, |10⟩,
|11⟩. Given that |0⟩ = (1 0)T and |1⟩ = (0 1)T , it holds:

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 . (2.36)

The tensor product between two quantum state vectors is still a quantum state
vector. This can be seen through the computation of the Euclidean norm:

∥|ψ⟩ ⊗ |ϕ⟩∥ =
√ ∑

(a,b)∈ΣxΓ

|⟨ab|ψ ⊗ ϕ⟩|2 =

=

√∑
a∈Σ

|⟨a|ψ⟩|2
∑
b∈Γ

|⟨b|ϕ⟩|2 =

= ∥|ψ⟩∥2 · ∥|ϕ⟩∥2 = 1.

(2.37)

The last equation holds since |ψ⟩ and |ϕ⟩ are quantum state vectors.
The concept of tensor product can be easily generalized when examining three or
more systems. Consider n different systems X1, .., Xn with classical quantum state
vectors ψ1, .., ψn respectively. The product state of the joint system (X1, .., Xn) is
defined as:

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ (2.38)

It is important to underline that the concepts of product state and that of inde-
pendence are closely related. In fact, when a set of systems X1, X2, .., Xn is in the
product state defined by |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩, the system Xi is in the cor-
responding quantum state |ψi⟩ and the states of the n-dimensional systems have
nothing to do with each other.
While the tensor product reflects the concept of independence between quantum
systems, there are quantum states of multiple systems that cannot be represented
as the tensor product of the involved states. In this case, a characteristic phe-
nomenon of quantum mechanics called entanglement is referred to, which reflects
correlation between systems. In other words, every quantum state vector wich can-
not be represented as a tensor product represents an entangled state. We will cover
the entanglement and its properties in the Section 2.10.
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2.7 Pure and Mixed States and the Density Ma-

trix

Until now, the state of a quantum system has always been represented as a col-
umn vector or as a linear combination of orthogonal quantum state vector, with
the properties defined in Section 2.1. This representation refers to the pure state.
Suppose now to have a qubit which has a probability 1

3
of being in the pure

state |ψ1⟩ = 1√
2
|0⟩ + 1√

2
|1⟩ and a probability 2

3
of being in the pure state |ψ2⟩ =

1√
2
|0⟩− 1√

2
|1⟩. In this way, we can represent the system state putting together the

two possible pure states |ψ1⟩ and |ψ2⟩ with the corresponding probability distri-
bution, forming a mixed state. This definition can be generalized by considering
an arbitrary number of pure states of n qubits. In such case, a mixed state over n
qubits can be represented with the following set:

{(|ψ1⟩, p1), (|ψ2⟩, p2), ..., (|ψk⟩, pk)} , (2.39)

which means that the system is in the pure n-qubits state |ψi⟩ with probability pi,
for i = 1, ..., k. Note that, with this definition, a pure state is a mixed state where
all the probabilities pi are zero except one.
There is an equivalent and more useful representation of mixed state, which in-
volves special kinds of operators on the Hilbert space, called density operators,
represented by density matrices, defined as:

ρ = |ψ⟩⟨ψ|. (2.40)

More general, the density operator for an ensemble of pure states such as (2.39) is
defined as:

ρ =
k∑
i=1

pi|ψk⟩⟨ψk|, (2.41)

i.e. a linear combination of pure state, with the probabilities pi of the system
to be in the pure state |ψi⟩ as scalar coefficients. For example, the pure state
|ψ⟩ = α1|0⟩+ α2|1⟩ with |α1|2 + |α2|2 = 1, has density matrix equal to:

ρ = |ψ⟩⟨ψ| =
(
|α1|2 α1α

∗
2

α∗
1α2 |α2|2

)
, (2.42)

where the symbol ∗ denote the complex conjugation operation. From ρ, some
useful properties of the considered quantum system can be obtained. Indeed, the
diagonal terms indicate the probabilities associated with the system being in the
respective states. Specifically, if |α1|2 > 0 and |α2|2 > 0, then the system is in a
superposition state of |0⟩ and |1⟩. The off-diagonal ρ entries of a pure state are

16



Chapter 2: Fundamentals of Quantum Computing

positive values representing the coherence between the quantum states, a concept
that will be further explored in Chapter 3.
Consider the density matrix of a generic mixed state:

ρmixed = |α1|2|0⟩⟨0|+ |α2|2|1⟩⟨1| =
(
|α1|2 0
0 |α2|2

)
, (2.43)

it can be can see that the off-diagonal entries are zero, indicating the absence of
interference terms. This is due to the fact that the quantum density matrix of a
mixed state is defined as a convex combination of density matrices corresponding
to pure states. Since pure states are orthogonal to each other, the off-diagonal
terms of mixed states density have value equal to zero.
In Section 2.3 it is observed the equivalence between two quantum states that
differ in global phase. Exploiting the density matrix of a quantum state vector
to represent all the states formed by all the equivalent vectors, it holds that two
different vectors |ψ⟩ and |ϕ⟩ define the same density matrix if and only if they
differ in global phase, i.e. |ϕ⟩ = eiθ|ψ⟩.
In Section 2.3, it is also studied how to represent a pure state as a vector pointing
to the surface of the Bloch sphere. Mixed states can also be represented by vectors
within this sphere; in fact, they correspond to points in the interior of the Bloch
sphere. That is, if ρ =

∑k
i=1 pi|ψk⟩⟨ψk| and if the Bloch vector for the pure state

|ψi⟩ is v⃗ = (sin θ cosφ, sin θ sinφ, cosφ) = (αx,i, αy,i, αz,i), then we can represent
the mixed state ρ with the following Bloch vector:

ρ =
∑
i

pi(αx,i, αy,i, αz,i) =

(∑
i

piαx,i
∑
i

piαy,i
∑
i

piαz,i

)
, (2.44)

which is a linear combination of probabilities and elements of the vector represent-
ing the pure state |ψi⟩.
Having discussed mixed states and tensor products, a fundamental principle in
quantummechanics is now introduced: theNo-Cloning Theorem. Precisely, cloning
a pure state |ψ⟩ ∈ Cn is a procedure which results in a separable state |ψ⟩ ⊗ |ψ⟩
[7]. This method starts with the addition of an ancilla system which is not related
to the state being cloned, i.e |ψ⟩ ⊗ |0⟩ and aims to find a unitary operator U such
that:

U(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩ . (2.45)

The above procedure should work for any state in the Hilbert space Cn. Therefore,
considering a different pure state |ϕ⟩ and the inner product with |ψ⟩ together with
|0⟩, we obtain:

⟨0| ⟨ϕ| |ψ⟩ |0⟩ = ⟨0| ⟨ϕ|U†U |ψ⟩ |0⟩ = ⟨ϕ| ⟨ϕ|ψ⟩ |ψ⟩ , (2.46)
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in which it holds that:
⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2, (2.47)

which implies:
⟨ϕ|ψ⟩ = 1 or ⟨ϕ|ψ⟩ = 0.

Therefore, as stated by the No-Cloning Theorem, it is impossible to create an iden-
tical copy of an arbitrary unknown quantum state. This statement has important
consequences in Quantum Computing, since exact copy of data is not possible,
ensuring the security of quantum communication and highlighting the inherent
limitations of quantum operations.

2.8 Measurement of Quantum Systems

In this Section, the quantum systems measurements will be analyzed. Remind
that a quantum system is a physical system which evolves over time, therefore its
state vector is actually a function of time |ψ(t)⟩. Furthermore, we always refer to
closed systems with the ideally condition for which they don’t interact with the
external environment. Assuming these considerations as true, it holds that the
evolution of the state vector of a closed quantum system is linear. That is, if the
operator U maps |ψ⟩ to U|ψ⟩, then:

U
∑
i

αi|ψi⟩ =
∑
i

αiU|ψi⟩ (2.48)

with
∑

i |αi|2 = 1. In Section 2.5 it is outlined that the only operators which
preserve such norm are the unitary operators. This allows to state the Evolution
Postulate.
Evolution Postulate : the time-evolution of the state of a closed quantum system
is described by a unitary operator. That is, for any closed system evolution, there
exists a unitary operator U such that, if the initial system is |ψ1⟩, then, after the
evolution, the state of the system will be

|ψ2⟩ = U|ψ1⟩. (2.49)

Suppose that, after a certain time in which an evolution is taking place, we want
to measure the system in order to know some of its properties. It is important
to underline that when a measurement is taken, the system interact in some ways
with the external environment, violating the conditions of the evolution postulate.
For this reason, it is worth noting that the evolution of a system during a mea-
surement is not unitary, but it is sufficient to consider a measurement postulate
that considers the different aspects.
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Consider an apparatus which provides a classical description of the measurement
outcome, that is, if a state is described by the linear combination

∑
i αi|i⟩, then

the outcome of the measurement is the label i with probability |αi|2. Through this
reasoning, combining the postulate of evolution, the Measurement Postulate can
be stated.
Measurement Postulate : for a given orthonormal basis B = {|bi⟩} of a state
space HA for a system A, it is possible to perform a Von Neumann Measurement
on system HA with respect to the basis B that, given a state:

|ψ⟩ =
∑
i

αi|bi⟩ (2.50)

outputs a label i with probability |αi|2 and leaves the system in state |bi⟩.

The Von Neumann measurement belongs to the set of the so called projective
measurements, i.e. defined by an orthogonal projector P with following properties:

1. Hermitian: P † = P

2. Idenpotent : P 2 = P

This type of measurement projects the input state into an orthogonal subspace,
with probability equal to the squared value of the probability amplitude of the |ψ⟩
component in that subspace. This is true since each identity operator I can be
written as a sum of orthogonal projectors Pi. Therefore, a projective measurement
will result in label i with probability P(i) = ⟨ψ|Pi|ψ⟩ and leaves the rest of the

system in a normalized state, defined as Pi|ψ⟩√
P(i)

.

Another significant insight regarding projective measurements involves certain
Hermitian operators, known as observables, which operate on the space where
the state of the system belongs. Consider an observable M . It, being Hermitian,
admit the following spectral decomposition:

M =
∑
i

miPi (2.51)

where mi are the (real) eigenvalues of M and Pi are orthogonal projectors on the
eigenspace of M . Therefore, measuring an observable is equivalent to carrying
out a projective measurement with respect to the decomposition of the unitary
operator I =

∑
i Pi and the corresponding result will be the real eigenvalue mi.

The Measurement Postulate also confirms the equivalence between two states that
differ in global phase. In fact, by measuring the state eiθ|ψ⟩ =

∑
i αie

iθ|ψi⟩, the
result i will be obtained with probability

p(i) = α∗
i e

−iθαie
iθ = α∗

iαi = |αi|2, (2.52)
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which is equivalent to the probability of obtaining the result i from the state
|ψ⟩ =

∑
i αi|ψi⟩. In other words, measurements of states that differ in global

phase will result in the same statistics.
Let’s see what happens when a measurement is made of a system composed by
multiple states, such as:

|ψ⟩ =
√

5

11
|00⟩+

√
1

11
|01⟩+

√
3

11
|10⟩+

√
2

11
|11⟩. (2.53)

From the Measurement Postulate, the state |00⟩ results with probability 5
11
, state

|01⟩ with probability 1
11
, the state |10⟩ with probability 3

11
and the state |11⟩ with

probability 2
11
. From this, we will have that the probability of obtaining 0 in the

first qubit will be the sum 5
11
+ 1

11
= 6

11
. Consideration could also be given to what

would occur if only the first qubit were measured. In this regard, rewrite the state
(2.53) highlighting the first qubit:

|ψ⟩ =
√

6

11
|0⟩

(√
5

6
|0⟩+

√
1

6
|1⟩

)
+

√
5

11
|1⟩

(√
3

5
|0⟩+

√
2

5
|1⟩

)
. (2.54)

From this, the probability of getting 0 in the first qubit is 6
11

and the state of the

second qubit lives in the superposition
(√

5
6
|0⟩+

√
1
6
|1⟩
)
.

Referring to Example 2 of Section 2.5, consider a qubit prepared in one of the two
states of the Hadamard basis. In this case, once the system has been measured, it
has a 50% probability of being in the state |0⟩ and the other 50% probability of
being in the state |1⟩. In fact,

|+⟩ =

(
1√
2
1√
2

)
=

1√
2
|0⟩+ 1√

2
|1⟩,

|−⟩ =

(
1√
2

− 1√
2

)
=

1√
2
|0⟩ − 1√

2
|1⟩,

(2.55)

with the square values of the amplitude probabilities equals to 1
2
. Therefore, a mea-

surement of the states |+⟩ and |−⟩ provides no information about which of the
two states were originally prepared [6]. If instead we first applied the Hadamard
operation to the states |+⟩ and |−⟩ and then carried out the measurement, we find
the state |0⟩ whenever the qubit was prepared in |+⟩ and the state |1⟩ whenever
the preparation was in |−⟩. For this reason, it is said that the states |+⟩ and |−⟩
can be discriminated perfectly.
Return now to the notion of density matrix described in Section 2.7. Suppose we
want to measure the state with the density operator ρ = |ψ⟩⟨ψ| in the computa-
tional basis. In general, for a state defined as a linear combination of elements in
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the orthogonal basis |ψ⟩ =
∑

i αi|bi⟩, the amplitude probabilities αi can be com-
puted as αi = ⟨bi||ψ⟩ = ⟨bi|ψ⟩, therefore |αi|2 = α∗

iαi = ⟨ψ|bi⟩⟨bi|ψ⟩. In this case,
the probability to obtain the outcome 0 from the measurement can be computed
as:

⟨0|ψ⟩⟨0|ψ⟩ = ⟨0|ρ|0⟩ (2.56)

which results in a real number. Remember that, in general, every number is the
trace of a given 1x1 matrix and therefore the equation (2.56) can be written as
follows:

⟨0|ψ⟩⟨0|ψ⟩ = Tr (⟨0|ψ⟩⟨0|ψ⟩) = Tr (|0⟩⟨0||ψ⟩⟨ψ|) . (2.57)

From these steps, the probability to obtain the outcome |1⟩ is Tr (|1⟩⟨1||ψ⟩⟨ψ|).
Further generalizing this notion to the case of a mixed state described by the
equation (2.41), the probability to have |0⟩ as a measurement result is given by:∑

i

piTr (|0⟩⟨0||ψi⟩⟨ψi|) = Tr

(∑
i

pi (|0⟩⟨0||ψi⟩⟨ψi|)

)

= Tr

(
|0⟩⟨0|

∑
i

pi|ψi⟩⟨ψi|

)
= Tr (|0⟩⟨0|ρ) .

(2.58)

Hence, the essential aspect for quantum system measurements lies solely in the
density operator itself, rather than any decomposition thereof.

2.9 Quantum Gates and Quantum Circuits

In Section 2.5, unitary operators and their properties are defined, using the Pauli,
Hadamard and Phase operators as examples. These operators act on a 2-dimensional
one-qubit system, and are therefore referred to as 1-qubit gates. In general, a quan-
tum logic gate is any transformation induced by some unitary operator acting on
a system composed of one or more qubits. In particular, if the system is composed
of n qubits, the quantum gate will be represented by a unit matrix with dimension
2n x 2n in a 2n-dimensional Hilbert space.
Having defined 1-qubit gates with examples such as the Pauli and Hadamard gates,
two particular 2-qubit gates are now introduced with the following examples.

Example 4. Controlled-U Gate. For any single qubit unitary operation U, a
controlled-U gate is a two-qubit gate, with one control qubit and one target qubit
[8]. Its matrix form is as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.59)
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and acts in this way:

• If the control qubit is |1⟩, U is applied to the target qubit;

• If the control qubit is |0⟩, the target qubit is left alone,

defining the following maps:

|00⟩ → |00⟩ |01⟩ → |01⟩, (2.60)

|10⟩ → |1⟩U|0⟩ |11⟩ → |1⟩U|1⟩.

One of the best known controlled gates is the CNOT -gate in which, taking into
consideration the map (2.60), the U operator is replaced by the NOT operator
(also known as X-gate), which defines the following maps:

|00⟩ → |00⟩ |01⟩ → |01⟩, (2.61)

|10⟩ → |11⟩ |11⟩ → |10⟩.

Example 5. The Swap-gate is defined with the following matrix:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.62)

Its principal feature is that it interchanges the quantum state of two qubits and,
in particular,

√
SWAP :

√
SWAP =


1 0 0 0
0 1+i

2
1−i
2

0
0 1−i

2
1+i
2

0
0 0 0 1

 , (2.63)

is its controlled version in the sense that the swap between the two qubits is
controlled by the state of a third qubit.

In gate-model, the quantum computation is executed through a sequence of gates
organized in structurs known as circuits, into which the fundamental Quantum
Computing units, the qubits, are the inputs. A quantum circuit is represented by
horizontal lines, which represent the wires (as in classical circuits), each of which
is traversed from left to right by a qubit. The gates are represented by rectangles,
which occupy as many wires as the qubits on which it acts. At the end of the
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circuit, a measurement converts the result into a binary sequence of classical bits.
For the controlled-U gates, it is customary to denote with a dark dot the control
qubit in the line along which that qubit flows. An example of a quantum circuit
is the following:

|0⟩2 H

|0⟩1

which represents the application of the Hadamard gate to the first qubit, then a
CNOT operation taking the first qubit as control and the second qubit as target
and the final symbol indicates the measurement of the resulting qubit evolution
in the circuit. The subscripts in the input qubits states indicate the convention
for which, in general, given a state |q1q2⟩, the left qubit q1 is the second qubit and
it takes position at the top of the circuit and the right qubit q2 is the first qubit
placed at the bottom of the circuit. In our example, |00⟩ is the input quantum
state.
Using gates to construct quantum circuits, it is possible to define any quantum
algorithm, and this concept resides in Universal Quantum Computing. The circuit
structure allows computations to be performed on a small set of qubits sequentially,
manipulating them by leveraging the quantum properties of superposition and
interference. Thanks to these properties, it is possible to achieve results that
surpass the capabilities of classical computers. The main issue, as we will see in
the next Chapter, lies in the introduction of decoherence during the computation
process, which could lead to unreliable results.

2.10 Entanglement

The phenomenon of entanglement represents one of the main differences between
classical and quantum systems; it refers to the ability of two qubits to behave as if
they were a single object, exhibiting correlated properties that cannot be explained
by classical physics.
It was studied how a n-qubits system state is defined as the superposition of all 2n

possible states, representing it as the linear combination of them. In particular,
if the qubits are entangled, the system’s state cannot be represented as a tensor
product of the individual qubit states.
For example, consider the two quantum states |ψ⟩ and |ϕ⟩ which live in the space
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spanned by the computational basis {|0⟩ , |1⟩}. We can write the inner product of
|ψ⟩ and |ϕ⟩ as:

|ψϕ⟩ = α1 |00⟩+ α2 |01⟩+ α3 |10⟩+ α4 |11⟩ , (2.64)

with α1, α2, α3α4 ∈ C such that |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. In this case, it
was possible to write the product of the two states as a linear combination of all
22 possible states and for this reason it is not an entangled state.
Considering instead the four Bell states :

|00⟩+ |11⟩√
2

,
|00⟩ − |11⟩√

2
,
|01⟩+ |10⟩√

2
,
|01⟩ − |10⟩√

2
, (2.65)

and try to represent the first of them as the inner product of the state |ψ⟩ =
α1 |0⟩α2 |1⟩ with the state |ϕ⟩ = β1 |0⟩ β2 |1⟩, thus:

|00⟩+ |11⟩√
2

= α1β1 |00⟩+ α1β2 |01⟩+ α2β1 |10⟩α2β2 |11⟩ . (2.66)

Rewriting the right expression of (2.66) as:

(α1 |0⟩+ α2 |1⟩)⊗ (β1 |0⟩+ β2 |1⟩), (2.67)

it can be verified that there do not exist α1, α2, β1, β2 ∈ C which satisfy the equality
with the first Bell state. In the same way, it can be shown that none of the Bell
states (2.65) can be represented as a tensor product of individual qubit states,
thereby forming an orthonormal basis for the space of all states defined by two
entangled qubits.
The real advantage of two entangled qubits comes with the measurement of the
system state. Consider again the first Bell state in (2.65) and investigate what
happens to the state of the second qubit once the state of the first has been
measured. To measure the rightmost qubit in the state |0⟩, applying the projection
matrix

1⊗ |0⟩ ⟨0| =
(
1 0
0 1

)
⊗
(
1 0
0 0

)
=


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (2.68)

to the state |ψ⟩ = |00⟩+|11⟩√
2

, thus:

(1⊗ |0⟩ ⟨0|) |ψ⟩ =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




1√
2

0
0
1√
2

 =
1√
2
|00⟩ . (2.69)
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As a result, the system is in the state |00⟩ with probability | 1√
2
|2 = 1

2
. In particular,

the rightmost qubit can be treated deterministically, as its state collapses into the
pure state |0⟩. From this information, given the entanglement, it can be verified
that also the second qubit has collapsed into a pure state. To achieve this, make
second projection of the leftmost qubit from 1√

2
|00⟩ in the state |0⟩:

(|0⟩ ⟨0| ⊗ 1)
1√
2
|00⟩ = 1√

2

((
1 0
0 0

)
⊗
(
1 0
0 1

))
1
0
0
0

 = (2.70)

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




1√
2

0
0
0

 =
1√
2
|00⟩

obtaining the same result of the rightmost qubit projection in the state |0⟩ in
(2.69). This computation shows a significant property of measuring two entangled
qubits, wherein upon measuring the state of one qubit, the information about the
collapsed state of the other qubit are promptly acquired. Consequently, they can
be regarded as a unified entity. Referring to the Bell state |ψ⟩ defined previously,
the system can be in the state |00⟩ with probability 1

2
and in the state |11⟩ with

the same probability. After a measurement, if one of the two qubits is in the state
|0⟩, then the second one is deterministically in the state |0⟩; if one of the two
qubits is in the state |1⟩, then the other one is deterministically in the state |1⟩.
This property holds for all the other Bell states listed in (2.65) as well as for more
complex entangled qubits systems.

2.11 State Evolution of Closed Quantum Sys-

tems

A quantum system is totally described by its state and its evolution over time.
Therefore, if we denote with |ψ(t1)⟩ and |ψ(t2)⟩ the state of the considered quantum
system at time t1 and t2, it holds that:

|ψ(t2)⟩ = U(t1, t2) |ψ(t1)⟩ (2.71)

where U is a unitary operator which depends only on the time t1 and t2, with the
properties defined in Section 2.5.
In physics, it is stated that a closed quantum mechanical system evolves over time
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according to the Schrödinger equation

iℏ
∂ |ψ(t)⟩
∂t

= H(t) |ψ(t)⟩ (2.72)

where i =
√
−1, ℏ is the Planck’s constant and H(t) is the Hamiltonian operator.

The solution of the Shrödinger equation (2.72) for two fixed time instants t1 and
t2, not considering the Plank’s constant, is the following:

|ψ(t2)⟩ = e−iH(t2−t1) |ψ(t1)⟩ (2.73)

whose form is analogous to the equation (2.71). Indeed, the Hamiltonian H is
a Hermitian operator such that e−iH(t2−t1) is a unitary operator, with which it is
immediate to state that the Evolution Postulate stated in Section 2.8 is a direct
consequence of the Shrödinger equation (2.72).
The Hamiltonian provides the energy value of the associated quantum system and
the study of its eigenvectors and eigenvalues, known as eigenstates, provides im-
portant results exploitable in Quantum Computing. In Section 2.4 it is observed
how the Spectral Decomposition Theorem holds for Hermitian operators. There-
fore, if the Hamiltonian is independent of time, the time-independent Schrödinger
is given by the following equation:

E |ψ⟩ = H |ψ⟩ (2.74)

where E is a (real) eigenvalue of H, denoting the energy of the system. Solving
(2.74) means find the eigenvectors of the Hamiltonian H, also called eigenstates,
which represent the stationary states for the system. Therefore, if we find an
eigenstate ψα of H, the time evolution operator acts in this way:

Hψα = Eαψα → e−iHt |ψα(0)⟩ = eiEαt |ψα(0)⟩ (2.75)

providing the solution to the time-dependent Shrödinger equation (2.72):

|ψ(t)⟩ =
∑
α

cαe
−iEαt |ψα(0)⟩ (2.76)

where UE(t) = e−iEαt is a unitary operator which preserves the l2−norm of the
state, i.e. the normalization constraint of the amplitude probabilities holds at ev-
ery time step and, therefore, the probabilities of the eigenstates doesn’t change [7].
This property has an important consequence in Quantum Computing, since the
study of the quantum system time evolution can be made through the operator
UE(t) which, as unitary operator, can reproduce all the fundamental gates. As a
result, U(t) = e−iHt can be reproduced as a combination of elementary gates.
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The energy study of a quantum system state can be useful not only for gate
model Quantum Computing. In fact, the state of a quantum system with min-
imum energy, called ground state, can represent the solution to many optimiza-
tion problems. This property is particularly exploited by the Adiabatic Quantum
Computing, analyzed in 3.4, which formulates the objective function of a generic
optimization problem as the Hamiltonian of a quantum system, in order to find
the solution by searching for the minimum energy value.

2.12 Information Encoding

In order to exploit the notions of Quantum Computing explained in the previous
Sections, it is necessary to adopt techniques that allow real data to be encoded in
qubits. In this section, a briefly look at some of these techniques will be explored,
detailed explained in [9].

Basis Encoding

This encoding represents the most direct technique for quantum computation be-
cause it represents real numbers as binary numbers and then transforms them into
a quantum state in the computational basis [10]. Specifically, any number x ∈ R
is assumed to be approximable using k decimal places and translatable into binary
form by adding an extra sign bit. Therefore, we can write x as:

x ≈
n∑
i=0

bi2
i +

k∑
i=1

b−i2
−i, (2.77)

with bi, b−i ∈ {0, 1}. By this formulation, the real number is prepared as a quan-
tum state of n+ k − 2 qubits.
Consider a vector v⃗ = (x1, x2, ...xn) ∈ Rn, its basis encoding is computed concate-
nating the approximation of each component as in (2.77). Therefore, if bisb

i
n..b

i
0b
i
−1..b

i
−k

is the binary approximation of the element xi, we have a concatenation vector for
v⃗ of the form (b1sb

1
n, .., b

1
0b

1
−1...b

1
−k...b

n
s b
n
n...b

n
0b
n
−1...b

n
−k) ∈ {0, 1} which can be used to

prepare its quantum state in as follow:∣∣b1sb1n..b10b1−1...b
1
−k...b

n
s b
n
n...b

n
0b
n
−1...b

n
−k
〉
. (2.78)

Once the binary approximation of a real number is computed, the gate Xbi is
applied to the qubit i to define the corresponding circuit which create the quantum
state representing the real number x.
Given a dataset D = {v⃗1, v⃗2, ..., v⃗n} ⊆ Rn, it can be represented by the uniform
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superposition of the binary encoded states of its elements, i.e.

|D⟩ = 1√
m

m∑
i=1

|v⃗i⟩ . (2.79)

For example, consider v⃗1 = (01, 10)T and v⃗2 = (11, 00)T with basis states repre-
sentation, respectively, v⃗1 = |0110⟩ and v⃗2 = |1100⟩. Following the definition in
(2.79), the superposition has the following expression:

D =
1√
2
|0110⟩+ 1√

2
|1100⟩ = 1√

2
|6⟩+ 1√

2
|12⟩ . (2.80)

In this case, the vector:

(0, 0, 0, 0, 0, 0,
1√
2
, 0, 0, 0, 0, 0,

1√
2
, 0, 0, 0)T , (2.81)

represent the amplitude vector in computational basis of D in (2.80).

Amplitude Encoding

This method of information encoding associates classical information with quan-
tum amplitudes. To achieve this, several methods are employed, all aiming to find
the correct combination of probability amplitudes that maps classical information,
such as a vector of real numbers, into an object in a Hilbert space.
In general, the amplitude encoding of a N -dimensional data input point x =
(x1, x1, ..., xN) ∈ C2n is the quantum state defined as follow:

|x⟩ =
N∑
i=1

xi
∥x∥
|i⟩ . (2.82)

In this way, the quantum amplitudes are associated to each element of the vector
x.
However, this approach has significant limitations: the inability to implement a
nonlinear map on the amplitudes in a unitary fashion and the requirement that
only normalized classical vectors can be processed.

Hamiltonian Encoding

This method concerns the encoding of matrices through the association of Hamil-
tonians, inspired by the Schrödinger equation (2.72) which characterizes the evo-
lution of a quantum system.
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This encoding starts with a square matrix A ∈ C2nx2n which represents the ini-
tial data and ends with an Hamiltonian associated matrix HA to represent the
Shrödinger equation in this way:

|ψ(t)⟩ = eiHAt |ψ(0)⟩ . (2.83)

where |ψ(0)⟩ is the initial state and |ψ(t)⟩ is the quantum state that encodes the
Hamiltonian information.
If the starting matrix A is Hermitian, whe can set HA := A. If the last condition
is not true, we can define HA with the augmented matrix:

HA :=

(
0 A
A† 0

)
. (2.84)

The implementation of the evolution (2.83) is named Hamiltonian simulation and
it is the core of the Quantum Adiabatic Computing approach, explored in Section
3.4.1. In particular, the goal of the Hamiltonian simulation is to find a state |ψsim⟩
such that:

∥ |ψsim⟩ − |ψ(t)⟩ ∥ ≤ ϵ (2.85)

where ϵ is a given precision, ∥ · ∥ is a suitable norm and |ψ(t)⟩ is the solution of
the Shrödinger equation (2.83).

2.13 Conclusions

In this Chapter, the fundamentals of Quantum Computing have been illustrated,
including the definition of qubits and quantum states, with a focus on the Bloch
sphere; the definition of computational bases and the relevant Hilbert spaces along
with their properties. Unitary operators and their properties have been introduced,
which are useful in the definition of quantum gates and the measurement phase.
In this regard, the main unitary operators, such as Pauli, Hadamard, and Phase
operators, have been defined. Concerning multiple systems, the tensor product has
been introduced and analyzed, focusing on how to recognize an entangled state
using this object. The notion of pure and mixed states has also been studied, along
with the definition of the density matrix, highlighting the No-Cloning Theorem. A
particular focus has been given to the procedure of measuring a quantum system,
providing the postulate of evolution, which involves properties related to unitary
operators, and the postulate of measurement, defining the Von Neumann measure-
ment and a study on how the spectral decomposition of a Hermitian operator can
be exploited for measurements. The concept of Universal Quantum Computing
has been analyzed with the definitions of the main gates, such as CNOT, SWAP,
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and
√
SWAP . The phenomenon of entanglement has been studied in detail, em-

phasizing how it can be utilized for quantum computation. Finally, we focused on
the time evolution of a closed quantum system, analyzing the Schrödinger equation
and its solution, also mentioning Adiabatic Quantum Computing, an approach to
quantum computation different from Universal Quantum Computing that directly
exploits the time evolution of the Hamiltonian associated with the system.
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Chapter 3

Quantum Hardware and Compu-
tation in the NISQ Era

The term “NISQ,” coined in 2018 by the American theoretical physicist John
Preskill, stands for “Noisy Intermediate-Scale Quantum” and describes the current
state of quantum hardware. Nowadays, although the number of qubits available
on quantum hardware from leading companies is growing every year, many chal-
lenges still need to be addressed, such as error tolerance and the introduction of
decoherence during computation, concepts that will be discussed further.
In this Chapter, we will explore various aspects of quantum hardware, outlining
different technologies. We will also examine key techniques for encoding real-world
data into qubits before focusing on Analog Hamiltonian Simulation, therefore the
Adiabatic Quantum Computing.

3.1 The Five Quantum Hardware Criteria

In the NISQ era, a Quantum Computing technology should embody as much as
possible all the five criteria listed by the American theoretical physicist David Di
Vincenzo in [11], which are the following:

1. A scalable physical system with well characterized qubits.
The addition of one or more qubits to a quantum system should not com-
promise computational efficiency. By “well characterized,” we mean that its
physical parameters should be well defined, including its internal Hamilto-
nian (which determines the energy eigenstates); the presence and coupling
to other states; interactions with other qubits; and the coupling to external
fields that should be exploited for the manipulation of its state.

2. The ability to initialize the state of the qubits to a simple fiducial state, such
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as |00 · · · 0⟩.
Before starting a quantum calculation, it is usual to initialize the qubits with
a certain value, in order to know their initial state. Furthermore, quantum
error correction frequently requires the presence of qubits in a low-entropy
state, such as |0⟩. In this regard, it is important to take into consideration
the speed with which a qubit can be reset. There are two main approaches
for setting the state of a qubit: “cooling” the system when the ground state
of its Hamiltonian is in the state of interest or via projection of the system
into the desired state.

3. Long relevant decoherence times, much longer than the gate operation time.
When a quantum system interact with the external environment, decoher-
ence arises within the system. The “decoherence time”, as will be observed
in 3.2, is the time with which a generic state |ψ⟩ is transformed into a mixed
state. Therefore, the longer the decoherence time, the better the performance
of the quantum hardware.

4. A “universal” set of quantum gates.
Typically, a quantum algorithm is specified by a sequence of unitary oper-
ators U1, U2,..., Un each acting on a small number of qubits. All these can
be translated in physical terms, identifying Hamiltonians which generates
the unitary transformation U1 = eiH1t/ℏ, U2 = eiH2t/ℏ,..., Un = eiHnt/ℏ. It is
important to underline that the implementation of quantum gates can intro-
duce decoherence into the system, due to the presence of some systematic or
random errors in the Hamiltonians definitions.

5. A qubit-specific measurement capability.
When measuring a quantum system, the actual outcomes may differ from
the ideal ones. In fact, in an ideal context, as will be seen in 3.2 we refer
to density matrices with nonzero off-diagonal terms while in a real context
it can be not true due to the decoherence. Therefore, if in an ideal case
we have the 100% quantum efficiency, in the real case we have a certainly
smaller percentage.

3.2 The Principal Limitations of the Quantum

Hardware

In Quantum Computing theory, it is stated that if |ψ1⟩ and |ψ2⟩ are two states of
a quantum system, then α1|ψ1⟩ + α2|ψ2⟩ represents the superposition of the two
states, with α1, α2 ∈ C and |α1|2 + |α2|2 = 1. However, this superposition concept
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is very difficult and sometimes prohibitive to construct [12].
In Section 2.7, the representation of a generic quantum system state as a density
matrix is explored. Remember that the diagonal entries of the density matrix
represent the probabilities of finding the system in the corresponding states, while
the off-diagonal entries indicate the coherence between them. If two quantum
states exhibit coherence, it means that their quantum attributes, such as relative
phase and magnitude, are interconnected and capable of meaningful interaction.
This coherence represents a unique aspect of the wave-like behavior of matter and
serves as the cornerstone for Quantum Computing and technology. However, the
difficulty of quantum computers in recreating closed systems is precisely reflected
in these terms, and for this reason, the concept of decoherence is introduced. In
particular, when a quantum hardware performs computations, it cannot guarantee
that the system remains isolated from the external environment. This behavior
leads to increasingly intense interactions with the environment, resulting in the
decrease of coherence and the progressive vanishing of the off-diagonal terms, ul-
timately transforming the initial quantum state into a mixed state. Therefore, if
theoretically the off-diagonal terms are nonzero, in practice, with the introduction
of decoherence, the density matrix takes the following form:

ρdec =

(
|α1|2 0
0 |α2|2

)
.

In this way, even if a quantum state is prepared in a correct way, it could quickly
become unobservable. The decoherence, which gave birth to the theory of quantum
decoherence, introduced by H.D Zeh in [13], is one of the main problem for the
Quantum Computing because once the coherence of the system dissipates from
its density matrix, we lose the ability to perform computations. Consequently, all
operations must be completed before to the decoherence time, i.e. the time limit
before decoherence enters in the system.
The actual limit of the current quantum computers lies in their inability to per-
form long computations without incurring some error, albeit small. The question
is, what is the maximum number of gates that can be applied before noise is intro-
duced into the system. There is a very important result that demonstrates that, if
the error required to execute each gate remains below a certain constant threshold,
then this limit in the number of gates does not exist. This result is stated more
formally in the following theorem:

Threshold Theorem : a quantum circuit on n qubits and containing p(n) gates
may be simulated with probability of error at most ϵ using, for some constant c,

O(logc(p(n)/ϵ)p(n))
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gates on hardware whose components fail with probability at most p, provided p is
below some constant threshold, p < pth and given reasonable assumptions about
the noise in the underlying hardware.
Note that this theorem is the equivalent Von Neumann’s threshold theorem for
classical computing, with quantum circuits instead of classical ones.
Another major challenge for quantum hardware concerns scalability. This means
that, as the number of qubits in the hardware increases, the level of decoherence
and the number of computational errors should not increase. Nowadays, the lead-
ing Quantum Computing companies aim to build completely fault-tolerant hard-
ware, capable of obtaining reliable results even in the presence of errors during the
quantum computation. All this is made possible thanks to some error correction
algorithms that primarily rely on using groups of multiple physical qubits to define
single logical qubits, which can be used as quantum computational units. In this
way, quantum information is encoded in multiple physical qubits, and if some of
them are affected by errors, the quantum information is not lost. However, this
technique need a large number of qubits, which clashes with the limited capacity
of quantum hardware. At the time of writing, IBM’s transmon-based quantum
processor has the goal of reaching 100,000 qubits by 2033 [14].

3.3 Hardware Outlook

The key component of a quantum hardware is represented by the Quantum Pro-
cess Unit (QPU), a special processor which allows the computation exploting the
quantum properties, such as entanglement and superposition.
As mentioned previously, the decoherence represents the central challenge in build-
ing a quantum device. Quantum hardware must be designed to preserve quantum
information while also providing controllability of the system from external sources.
Therefore, there is a trade-off between coherence in a sense of immutability of infor-
mation and decoherence, i.e. the ability to control the system. In this section, we
will broadly explore the main technologies currently employed in the construction
of quantum hardware.

3.3.1 Superconducting Qubits

Superconducting qubits have been known as the leading technology for building
scalable quantum processor architectures [15]. Nowadays, quantum computers
based on superconducting qubits are developing very rapidly and with them the
number of available qubits is also growing, along with their quality. This allows
the achievement of high fidelity construction of two-qubit gates in 2020 (99.5%),
as reported in [16].
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Figure 3.1: IBM’s quantum computer.

Specifically, superconducting qubits are solid state electrical circuits with some
advantages:

• High designability. It means that it is easy to define different types of qubits
and to adjust the parameters needed.

• Scalability. Utilizing state-of-the-art chip manufacturing technologies enables
the production of high-quality devices, promoting efficiency in manufacturing
and scalability.

• Easy to couple. This is an intrinsic property of the superconducting qubits.

• Esay to control. The operations and measurements of superconducting qubit
circuits can be performed using simple, readily available microwave devices.

However, there is an important disadvantage, that is the short coherence times.
Additionally, they necessitate dilution refrigerators to maintain sufficiently low
temperatures. Significant advancements in the capacity of such cryostats are es-
sential before the construction of a device with millions of qubits can proceed. For
this reason, the building of quantum superconducting hardware with high number
of qubits is still a challenge. The Figure 3.1 shows the IBM’s superconducting
qubits quantum computer.

3.3.2 Trapped Ion qubits

This technology, in general, is based on the arrangement of ions in a lattice by the
means of optical lasers. In particular, neutral-atom quantum technology belongs
to this category, identifying ions as neutral atoms. By the term “neutral” we
refer to atoms that lack an electric charge, thus possessing an equal number of
electrons and protons. QuEra, a pioneering company in the field of nuetral atom
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technology, in [17] explains how, to manipulate the atom, a cooling phase by laser
beams carry the particles at microkelvin temperatures. In particular, QuEra uses
the neutral Rubidium atom (Rb-87), which intrinsically encodes a qubit in its
electronic state. Consequently, Quantum Computing and quantum information
processing is enabled by the manipulation of these atoms by laser pulses. The
neutral atom hardware, called Aquila, is shown in Figure 3.2 and will be described
in more detail in Chapter 4.
The main advantages of a Rydberg atom technology are the following:

• Perfect nature of qubits : they are identical to each other and are simultane-
ously capable of storing and processing quantum information.

• Error resilience: Rydberg atoms interact on demand. When atoms are not
excited, they are robust to errors regardless the total number of qubits in
the system.

• Reconfigurable layouts : the lasers are free to move in the space and the atoms
can be arranged in (almost) any possible geometry.

• High scalability : the compact dimensions and the efficient control mecha-
nisms allow the number of qubits to be significantly increased without the
need of interconnections.

The disadvantages of the neutral atom technology concern the experimental com-
plexity of working with them, as it is necessary to have lasers working with extreme
precision, together with a good cooling system and vacuum cells to guarantee iso-
lation.

3.3.3 Photonic Qubits

In this optics technologies the qubits are represented by photons, which are the
smallest units of the light. The main advantage of the photon is their long coher-
ence time, which allow high-fidelity calculations and for this reason, they represent
a very promising avenue for the realization of quantum technologies. All quantum
applications need a source of single photons and it is not so easy to obtain [18]. For
this reasons many technologies tend to generate a sort of single-photon approx-
imation. In recent years, significant advancements have occurred in enhancing
the characteristics of authentic single-photon emitters. However, their creation
remains challenging and they lack substantial spectral flexibility. For example,
the French company Quandela has recently been focusing on exploring the use of
non-classical light quantum states for Quantum Computing and quantum com-
munication [19]. They can be produced from classical pulses through nonlinear
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Figure 3.2: inside Aquila there is a set of optical elements, lasers and cameras
(bottom right) that focus on a vacuum cell (inserted top left) filled with a dilute
gas of Rubidium atoms. In an area less than three human hairs wide, laser fields
are carefully controlled to manipulate the state of up to 256 qubits to perform
quantum calculations. The image was taken from [17].

processes such as parametric down-conversion or emission from individual quan-
tum emitters.
Finally, it is important to note that the photons can be produces in normal envi-
roment condition, facilitating the hardware construction.

3.4 The Analog Hamiltonian Simulation

Regardless of the technology used by the hardware, there are two paradigms
through which devices can approach Quantum Computing, i.e. analog and digital.
The substantial difference between the two methods lies in the way the calculation
is performed. While digital computing devices encode the problem in a sequence
of gates, each of which acts on one or two qubits, an analog Hamiltonian simulator
exploits a well-controlled system that allows defining time-dependent parameters
with which the Hamiltonian describes the dynamics of the quantum system stud-
ied. In other words, in digital computation, the problem is discretized into smaller
parts, while in analog simulation, the system’s dynamics are controlled through
parameters that are continuous variables over time, allowing a specific physical
law to be simulated. It is important to underline that the gate model is a uni-
versal quantum computation model, as it allows any arbitrary operation to be
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approximated to any desired precision using a finite set of quantum gates. On the
other hand, analog simulation, while being a very powerful Quantum Computing
model for solving specific problems, does not necessarily possess the aforemen-
tioned property of “universality,” limiting its range of applications.
The gate model was discussed in Section 2.9, while the analog simulation will be
explored in the next Section.

Of particular interest in this work is an analog quantum approach that closely
relates to Hamiltonian information encoding, called Adiabatic Quantum Comput-
ing. The hardware that utilizes this approach is referred to as quantum annealers,
and specifically, this work will apply two such technologies. The first is D-Wave,
which uses superconducting qubits, and the second is QuEra, which utilizes neutral
atoms.

3.4.1 Adiabatic Quantum Computing

The Adiabatic Quantum Computing is a quantum approach based on the Adiabatic
Theorem, which states that if a system is initially prepared in the ground state
|g(0)⟩ of a time-dependent Hamiltonian H(t), the time evolution described by the
Schrödinger equation (2.72) will approximately keep the system’s state at time t
in the corresponding ground state |g(t)⟩ of H(t), provided that the evolution is
performed sufficiently slowly [20].
The Hamiltonian of the system can be decomposed into two parts:

H(t) = Hinitial +Htarget. (3.1)

Defining s(t) : [0, tf ]→ [0, 1] as the schedule function, it holds that:

H(s) = (1− s)Hinitial + sHtarget, (3.2)

with the time tf such that the final state represented by H(s) is ϵ close in l2-norm
to the ground state of Htarget. This means that, at the initial instant, the system
is described by the Hamiltonian Hinitial, whose ground state is easily prepared.
Following a sufficiently slow evolution, at the final instant tf , the Hamiltonian
of the system is Htarget, which represents the solution to the problem of interest.
Consequently, Htarget must be defined in such a way as to encode the problem to
be solved.
Since the optimal solution of a combinatorial optimization problem is a combina-
tion that minimizes the objective function, quantum annealing exploits quantum
physics to find a combination of elements such as to obtain states with the lowest
possible energy. For this reason, from a physical point of view, we try to solve
an optimization problem which can be translated into an energy minimization
problem.
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Figure 3.3: Quantum annealing energy steps of a qubit. The process begin with
a qubit in a superposition state, therefore with a single energy valley (a), sub-
sequently a barrier is raised as the quantum annealing process run and we have
the so called double-well potential (b) where there is the 50% of probability that
the qubit collapses in one of the two states. We can control this probability by
applying an external magnetic field (c). The image was taken from the D-wave
documentation available in [21].

Adiabatic Quantum Computing in D-Wave

In the QPU of D-Wave, the computing units are superconducting qubits whose
states are implemented as circulating currents, with corresponding magnetic fields.
The direction of the central magnetic field follows the right-hand rule, so if the
current circulates counterclockwise, the magnetic field will point upwards, while if
the current circulates clockwise, the magnetic field will point downwards. A qubit
whose magnetic field points downward is in the state 0, otherwise it is in the state
1. However, being a quantum object, it lives in the superposition of two states
and at the end of the quantum annealing process, it will collapse into one of the
two states, following the scheme of the Figure 3.3.

It is important to note that we can control the probability with which a qubit
collapses into one state rather than the other through an external magnetic field.
The power of this computation emerges when the phenomenon of entanglement is
achieved by linking multiple qubits using a mechanism called coupler. The biases
and couplings define an energy landscape and the goal is to find the landscape
with the lowest energy level. Consequently, at the end of quantum annealing, the
qubits are in a classical state which minimizes the energy of the problem.
The simulated annealing algorithm, treated in more detail in Appendix A, is the
classical counterpart of the quantum annealing which exploits a particular thermo-
dynamic phenomenon in metallurgic to map solutions of an optimization problem
to atomic configurations [7]. Quantum annealing doesn’t care about the thermo-
dynamic phenomenon and exploits a mechanism called tunneling which doesn’t
have any classical counterpart. The term “tunneling” stems from the idea of a
tunnel within the energy barrier that facilitates the passage of a quantum object,
as reported in Figure 3.4, enabling the exploration of configurations that would not
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be accessible using classical heuristics. In this way, the algorithm avoids getting
trapped in local minima, increasing the probability of finding the global optimum.
It is important to note that the higher the energy barrier, the lower the probability
of quantum particles tunneling through it.
The strong limitation of the quantum annealing is the concept that it is not a uni-
versal Quantum Computing technique and mathematically the superconducting-
qubits systems only support the Ising formulation of the Hamiltonian, whose vari-
ables can assume values in the set {−1, 1}. We will study this formulation in more
detail in Section 5.3.2.

Figure 3.4: Quantum particle tunneling. We can see a spatial range x1 < x < x2
with energy U(x) greater then the blue energy waveform of the particle. After
the tunneling, the particle has the same energy but less amplitude. The image is
reproduced from [7].

Adiabatic Quantum Computing in QuEra

The adiabatic Quantum Computing is exploited by the QuEra’s quantum hardware
(Aquila) QPU. In this technology, a qubit is represented by a neutral Rubidium
atom (Rb-87), which is arranged in a lattice thanks to ultra-precise laser tweezers.
The lattice in which the atoms can be arranged is arbitrary and they are distant
from each other by an amount of the order of a nanometer (µm). Through energetic
manipulations, a neutral atom can assume multiple states and QuEra specifically
harnessing three of them: the ground state |g⟩, in which the atom minimizes its
energy; the Rydberg state |r⟩, reached through the excitation of the atom which
then reaches a high level of energy and the hyperfine state |h⟩. To implement
quantum dynamics, i.e. the passage of a qubit from one state to another, Aquila
uses lasers with different wavelengths, as shown in the Figure 3.5.
Since the transition from the ground state |g⟩ to the Rydberg state |r⟩ is difficult
to generate with a single laser, it is performed in two photonic transitions with λ
wavelengths of 420 nm and 1013 nm. The manipulation of transitions between
various states that allows quantum calculations is determined by time-dependent
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Figure 3.5: The arrows represent the various optical fields used for the transitions
on the various states. The lines represents the various states of the qubits. Specif-
ically, purple lines are the qubit states and green lines are intermediate states
exploited for some manipulations.

parameters that precisely control the optical fields. These parameters are the
following:

• Ω(t): the Rabi drive amplitude. This parameter sets the frequency with
which each atom transitions from the ground state to the Rydberg state,
assuming no other interactions. This parameter is a function of the laser
amplitude.

• ∆(t): the detuning parameter represents the laser resonance offset and de-
termines how close the laser is to the atomic transition.

• Φ(t): the phase of the laser determines the direction in which each qubit
localizes within the lattice.

The analog calculation mode finds itself precisely in the possibility of controlling
these parameters which continuously depend on time. In fact, instead of indicat-
ing a gate sequence as in digital calculation, the user can define the time series of
the Rabi drive amplitude Ω(t), of the detuning ∆(t) and of the laser phase Ψ(t).
Along with these parameters, the user can further set the positions of the atoms
in the lattice and control all of them during the time evolution. The neutral atom
technology is analyzed in more detail in Chapter 4.

We conclude this section by remembering that the gate-model is considered a
universal model for Quantum Computing, while analog computing is not. This
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is due to the fact that any quantum algorithm is able to be implemented with
a certain sequence of quantum gates, while the techniques adopted for analog
computing are not able to simulate any function or algorithm. This does not mean
that the gate-model is better than analog calculation but only that the latter is
better suited to specific tasks, while the former is a universal approach.

3.5 Conclusions

In this Chapter, the term NISQ was initially defined along with Di Vincenzo’s
five criteria pertaining to quantum hardware construction. In this regard, the
main error resources were presented, which still pose challenges in achieving reli-
able quantum hardware. Subsequently, various types of qubits utilized by quantum
technologies were briefly outlined, including superconducting qubits, ions, and pho-
tons. A particular focus was placed on distinguishing between Universal Quantum
Computing and Analog Hamiltonian Simulation, with an emphasis on Adiabatic
Quantum Computing and the statement of the Adiabatic Evolution Theorem out-
lining its properties. Additionally, two quantum annealers, D-Wave and QuEra,
were further explored, whose QPUs utilize Adiabatic Quantum Computing for
solving combinatorial optimization problems.
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Chapter 4

The Neutral-Atom Quantum Tech-
nology

In Chapter 3, the main features of the QuEra’s neutral atom technology, called
Aquila, were briefly explained. In this Chapter, it will be studied how to exploit
neutral atoms for Quantum Computing, with a focus on the methodologies adopted
by QuEra. The field of research is rapidly advancing in applying this approach
to both quantum circuits (digital computing) and the development of many-body
Hamiltonians over time (analog simulation). Although this Chapter also discusses
how quantum gates can be defined using neutral atom technology, at the time of
writing, Aquila doesn’t support the possibility to implement quantum gates and
therefore we will refer to its QPU only from the analog simulation side.

4.1 The Neutral and Rydberg atoms

First of all, it is important to give a definition of neutral and Rydberg atoms.
A neutral atom is an atom with zero electric charge, i.e. the number of electrons
equals the number of protons. The Rydberg atom, named for the Swedish scientist
Johannes Rydberg, is in a highly excited state with one or more electrons that have
been moved to an orbital away from the nucleus. Therefore, a neutral atom can be
manipulated into a Rydberg state by a process called excitation. This procedure
can be induced with various techniques, including the use of lasers which generate
specific wavelength, as seen in Section 3.4.
A technology based on Rydberg atoms exploits the highly energetic states that
can be created by exciting the neutral atoms. Usually, alkaline atoms (such as
Lithium, Potassium or Rubidium) are considered, which in nature have zero elec-
trical charge. Therefore, the Rydberg atom and the neutral atom, although not the
same thing, are concepts that get confused when referring to quantum technology
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that exploits their energy states.

4.2 Rydberg Platform

The first studies concerning trapped neutral atoms as Quantum Computing units
date back to the years 2000 [22] and 2001 [23] and are still a subject of great
interest. The idea behind these studies is to encode quantum information in the
internal states of single atoms or in the collective excitations of sets of atoms,
which interactions are mediated by electronically highly excited Rydberg states
[24]. The platforms that exploit this technology aims to respect both the criteria
for quantum computers by Di Vincenzo [11] listed in Chapter 3, and the criteria for
quantum simulators listed by Cirac and Zoller in [25], making both the definition of
gate-models and analog simulation possible. These criteria are summarized below:

1. Quantum system: the atoms are manipulated thanks to a cooling phase and
then trapped in optical microtraps. The system is composed of atoms ar-
ranged in a lattice, each of which possesses discrete quantum states, exploited
to encode qubits and interactions between them, thus guaranteeing a certain
number of degrees of freedom. The neutral particles can be isolated almost
completely from their environment, promoting system scalability.

2. Inizialization: the atoms that define the qubits are all identical to each
other and have well-defined energy levels, so they can easily be initialized to
a known state through techniques involving dissipative optical pumping.

3. Coherence: the coherence time varies from a few milliseconds to a hundred
milliseconds and depends on the type of atom and the type of states involved.

4. Interactions : atoms can be easily manipulated using laser tweezers, which
can also induce interactions between them. The interactions that are created
are very particular and can define useful states both for defining multi-qubit
gates and in the field of analog simulation.

5. Measurement : the most widely used technique to measure a quantum system
composed of Rydberg atoms is via sensitive single-atom fluorescence imaging
from the fundamental states. Using special techniques, it was demonstrated
that, although a measurement is destructive for a quantum system, it is
possible to have a high-fidelity interpretation.

6. Verification: for a system of a few qubits, verifying the correctness of the
result obtained can be carried out using a technique called tomography. For
larger systems, it is necessary to compare the result with that obtained from
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Figure 4.1: Diagram of how Aquila works. The pink laser is controlled by a spatial
light modulator (SLM) and positions up to 256 atoms in a specified geometry; the
yellow laser dynamically positions the atoms and contributes to their ordering;
the set of red lasers brings the atoms to temperatures of µK; the dark red and
dark blue lasers contribute to the passage of the atoms from the fundamental
states to the Rydberg ones and finally the orange laser and the camera provide
an image of the atoms arrangement thanks to the fluorescence. The image is
reproduced from [24].

a classic high-performance computer. Rydberg atom technology has high
tunability and spatial reconfiguration of the system, thus allowing compari-
son with exact classical numerical methods.

4.2.1 QuEra’s Neutral Atom Hardware

QuEra’s hardware platform, Aquila, is a room-temperature quantum device that
uses Rubidium-87 atoms, which are brought to microkelvin temperatures by laser
beams inside a vacuum cell. The vacuum cell is necessary to isolate the atoms from
the external environment and the low temperatures help the manipulation of the
atoms. The central unit of Aquila is a 2 cm scale glass vacuum cell where atoms
are arranged thanks to lasers into a 2D lattice in an area of width less than 200µm
(the width of about three human hairs). The six different waveforms of laser light
concentrated in the vacuum cell are represented in Figure 4.1, illustrating the
functional block of Aquila.
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Figure 4.2: On the left, the energy function encoding the various possible states
of the atom. We note that the three types of qubits are also distinguished by the
level of energy required with which they can be encoded. These states can be
modified through the use of optical fields. The image was taken from [24].

4.3 Neutral-atom Quantum Computing

This Section will delve into the main aspects of Quantum Computing based on
the Rydberg atoms, focusing on the methodologies adopted by QuEra.

4.3.1 Rydberg States and Qubits

The Rydberg atoms have a well-defined energy level structure, which is exploited
to coherently manipulate their internal states. We have seen that the neutral
atom can mainly represent two possible states, namely the Ground state |g⟩ and
the Rydberg state |r⟩. While the first is naturally encoded by localizing all the
electrons in the orbital closest to the nucleus, the second requires an external
excitation phase that allows one or more electrons to occupy orbitals at a relatively
greater distance from the nucleus. For this reason, the ground state is a stable state
while the Rydberg state is strongly unstable and the atom tends to minimize its
energy.
To bring an atom into the Rydberg state, only one of its electrons needs to move
to the outermost orbital. This electron is called valence electron. The possibility of
coherently and easily manipulating these states also allows the interaction between
valence and classical electrons in the ground state, storing quantum information
and defining three classes of Rydberg qubits, with specific properties. These classes
are distinguished by the number of ground states that compose a qubit and are
illustrated in Figure 4.2.

• Ground-Rydberg qubits (gr). These represent the simplest class of Rydberg
qubits, composed of a valence electron in the strongly-interacting Rydberg
state |r⟩ ≡ |1⟩ and electrons in the weakly-interacting Ground state |g⟩ ≡ |0⟩.
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This type of qubit is short-lived but at the same time allows entanglement,
therefore multi-qubit interaction. The form of qubit coupling gr is:

−C6

R6
|11⟩ ⟨11| (4.1)

where C6 is an interaction constant which depends on the type of atom
chosen and R represents the distance between the atoms in the lattice. These
interactions are always active and this makes difficult to work with the qubits
individually, this is why the gr -qubits represent good candidates for high-
fidelity entangling operations and quantum simulation.
The energy needed to encode this type of qubit depends on the type of atom
chosen. For the Rubidium-87 atom it is necessary to use a laser that reaches
ultraviolet light wavelengths. This process is very exhausting for a single
laser, so two lasers of different wavelengths are combined together, as can be
seen in the Figure 3.5.

• Rydberg-Rydberg qubits (rr). These qubits are encoded using two different
Rydberg states, |r⟩ ≡ |1⟩ and |r′⟩ ≡ |0⟩. This type of qubit allows a high
degree of flexibility for engineering applications including interactions and
long-range bipolar exchange.

• Ground-Ground qubits (gg). This qubit is defined thanks to two hyperfine
sublevels of the electronic ground state |g⟩ ≡ |0⟩ and |g′⟩ ≡ |1⟩, this is why
it is known as hyperfine qubit.

4.3.2 Universal Quantum Computing with Neutral Atoms

Coding via two stable ground states allows to define a qubit with long memory,
offering the best performance in terms of coherence time and switchable interac-
tions. For this reason, the hyperfine qubit turns out to be the best candidate
for the gate-model with neutral atoms. In the QuEra’s quantum computer, the
hyperfine qubit is encoded by two hyperfine ground states which are separated in
energy by a tansition frequency of ≈ 6.8 GHz. The coherence time is relatively
long (∼ 1 s) thanks to the weak interactions of these qubits with other qubits and
with the external environment. Past studies have shown that 2-qubit hyperfine
gates achieve fidelity levels of around 97.4% [26], reaching a level of 99.5% in more
recent studies [27]. The latest result published in [28] concerns the use of hyper-
fine qubits for encoding logical qubits in the context of quantum error correction.
By logical qubit we mean a structure made up of a certain number of hyperfine
physical qubits. The redundancy in the number of physical qubits does not allow
error propagation in the event that one or more physical qubit fails. The results
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obtained in this study open the doors to a new way to approach the Universal
Quantum Computing that involves the use of large-scale logical processors that
allow efficient error correction.

Remind that Aquila currently operates with Ground-Rydberg qubits only, with
which analog simulation is carried out. Nowadays efforts are underway to incor-
porate hyperfine qubits onto the platform, thereby enabling Universal Quantum
Computation with this technology.

4.3.3 The Rydberg Blockade

Understanding the phenomenon of the Rydberg Blockade is crucial for leveraging
the properties of the neutral atoms to solve specific optimization problems, which
will be discussed in the next Chapter. This phenomenon is exploited to create
entanglement since, given an atom in the Rydberg state, we can deterministically
determine in which states the neighboring atoms are configured.
In the previous Sections it is observed that a neutral atom with the valence elec-
tron positioned in the outermost orbit is in a strongly excited state, the Rydberg
state. The phenomenon of the Rydberg Blockade can be explained by taking into
consideration a set of atoms and their mutual distances. If, in this set, there are
zero or only one atom in the Rydberg state, then there is no energy shift and the
system remains unchanged. If, however, two (or more) atoms are simultaneously
in the Rydberg state, there is an energy shift given by a particular intermolecular
force called Van der Waals interaction which depends on the sixth power of the
distance between the atoms

Vij =
C6

|x⃗i − x⃗j|6
(4.2)

where C6 = 5.42 x 10−24 radm
6

s
denotes the interaction constant between two

Rydberg states of two Rubidium-87 atoms; x⃗i and x⃗j are the euclidean coordinates
of the atoms i and j. Since this interaction is inversely proportional to the sixth
power of the distance, it will be enough to bring the atoms involved closer or
further away by a few micrometers to greatly increase or decrease the energy of
the system. For example, a distance of only 4µm induces a very high energy value
(Vij = 1320 rad/µs) which makes the excitation of both atoms unstable, while
with a distance of 16µm the energy value becomes negligible (Vij = 0.32 rad/µs)
and both atoms can be in the Rydberg state. The Rydberg Blockade phenomenon,
shown in Figure 4.3, is based on this concept: within a certain radius, two atoms
cannot be in the Rydberg state at the same time, as if the excitation of one atom
“blocked” the excitation of the neighboring atom.

48



Chapter 4: The Neutral-Atom Quantum Technology

Figure 4.3: Rydberg Blockade mechanism. The atom placed at the origin of the
axes is excited thanks to the ∆ and Ω parameters of the laser field that pilots the
energy passages. We can see that the red circle includes the gray atom positioned
at a distance smaller than the Rydberg radius and for this reason remains in the
ground state, while for the rightmost atom the transition from the |g⟩ state to the
state |r⟩ is possible. The figure was taken from [17].

4.3.4 The Rydberg Hamiltonian

In Section 3.4.1 is was explained how the states of the neutral atoms can be manip-
ulated thanks to the definition of the parameters ∆(t) and Ω(t) which define the
laser fields. Once the parameters are set, the system follows a specific quantum
analog dynamic, considering both the interaction between individual atoms with
the laser and electronic fields that define the Rydberg excited state, and the in-
teraction between neighboring atoms, leading to the phenomenon of the Rydberg
Blockade. The Hamiltonian involving the parameters mentioned, called Rydberg
Hamiltonian, is defined as following:

Hryd(t) =
Ω(t)

2

∑
i

eiΦ(t) |gi⟩ ⟨ri|+ e−iΦ(t) |ri⟩ ⟨gi| −∆(t)
∑
i

n̂i+
∑
i<j

Vijn̂in̂j, (4.3)

where |ri⟩ ≡ |1⟩ is the excited Rydberg state; |gi⟩ ≡ |0⟩ is the Ground state;
n̂i = |ri⟩ ⟨ri| is the number of the Rydberg excitations and Vij is the Van der
Waals interaction (4.2). The meaning of the parameters ∆(t), Ω(t) and Φ(t) is
explained in Section 3.4. As regards x⃗i, these indicate the positions of each atom,
determining the strength of the Rydberg-Rydberg interactions. Note that the last
summation involves the number of Rydberg excitations with the multiplicative
coefficient equal to the Van Der Waals interaction (4.2). When referring to the
Rydberg Hamiltonian (4.3), the term multi-body is used, underlining that the
expression explicitly includes the interactions among all the atoms present in the
studied system.
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The evolution of the state is described by the following unitary operator:

|ψ⟩ = T e−i
∫ T
0 Hryd(t)dt |0⟩ (4.4)

where that Planck’s constant ℏ is equal to 1; the time evolution of the Hamiltonian
starts at t = 0 and ends at t = T and T is the time-ordered evolution operator
which ensures that the operators are applied in the correct chronological order
throughout the evolution.

4.3.5 Measurements

To carry out quantum computation and therefore manipulate atoms, they must be
trapped in cavities forming a lattice or, where technology allows it, an arbitrary
geometry.
QuEra’s technology allows the arrangement of atoms into arbitrary geometries and
bases measurements on the removal of atoms from traps. More specifically, the
lasers that trap the atoms in place during quantum evolution are deactivated to
avoid any external influence. Once the evolution of the dynamics has come to
an end, these optical lasers are reactivated and the wave function collapses into
a particular logical state. Lasers trap atoms in the ground state, while atoms in
the Rydberg state are anti-trapped and pushed out of the lattice cavity. Finally,
thanks to fluorescence, it is possible to visualize the state of the system through
an image: if a cavity is empty, it indicates that the atom is in the Rydberg state,
while if the cavity is occupied, the atom is in the ground state. These steps are
schematized in Figure 4.4.
The basis chosen to interpret the measurement is the Z basis, in which the Z axis
of the Bloch sphere is taken as reference. Therefore, if the cavity is empty, the
measurement will return 0, otherwise it will return 1. It is important to underline
that this type of measurement is destructive, this means that at each measurement
cycle the atoms must be repositioned to their respective places and carry out the
entire cycle again. This step of reloading the atoms is relatively slow compared
to the time required for Quantum Computing (∼ 10µs) but the team of QuEra is
currently working on the possibility of partial charging, in order to speed up this
process.

4.3.6 The Principal Error Sources

Although the technology offers very precise results given the high quality of the
lasers and the nature of the atom, there are sources of decoherence that may drive
to a reduction in state fidelity. These sources are the following:
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Figure 4.4: The internal steps of Aquila processor. The magneto-optical trap
(MOT) is initially loaded and then static traps are filled with atoms from the MOT.
A first image of the random occupation of each trap is acquired and processed to
allow the reordering of the atoms through the optical tweezers according to the
input given by the user. A second image is processed to verify the previous step.
The quantum computation is then performed in a very short time. The laser traps
are reactivated afterward to confine the atoms in the ground state and remove
those in the Rydberg state. Ultimately, the final image is created, interpreted as
a bits string in the Z basis. This cycle starts again, placing the atoms back in the
vacuum cell and proceeding with another cycle. The image was taken from [17].

• State decoherence and scattering. This is the main source of error and is due
to the intrinsic decoherence of the atom as its energy decays. Aquila uses
two sequences of lasers to go from the ground state to the Rydberg state.
Between these two lasers, an intermediate state is created whose energy
decays incoherently.

• Mesaurement. Based on the atom’s exit from the cavities, measurements can
be inaccurate if the procedure has not occurred perfectly.

• Laser Noise. Although Aquila uses very stable lasers, the presence of noise
cannot be ruled out. This causes coherent shot-to-shot variance and time-
dependent noise in the parameters ∆ and Ω.

• Atom motion. Although the atoms are cooled to microkelvin temperatures,
they maintain a minimal level of thermal motion which causes a coherent
shot-to-shot variance in the detuning ∆.

• Inhomogeneity. Due to the imperfect holography of the Rydberg lasers, the
Rabi frequency and detuning may vary slightly along the two-dimensional
array.

4.4 Conclusions

This Chapter has been dedicated to the analysis of the neutral atom quantum
technologies in general, with a focus on QuEra and its hardware, Aquila. First of
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all, clarity was provided on the definitions of neutral and Rydberg atoms, followed
by an analysis on platforms utilizing these atoms as computational units, with a
detailed description of QuEra’s hardware. Subsequently, the three types of qubits
that can be encoded using the energy levels of an atom were defined, focusing on
the potential of the hyperfine state in performing Universal Quantum Comput-
ing. It was also emphasized that Universal Quantum Computing, at the time of
writing, is not implementable on the Aquila platform. The phenomenon of Ryd-
berg Blockade, crucial for implementing the adiabatic protocol, has been analyzed
in detail, defining the Van der Waals interaction and studying how it drastically
varies with the distance between two atoms. Using the Rydberg Hamiltonian, the
function governing the dynamics of the system composed of atoms arranged in a
geometry arbitrarily chosen by the user was defined. Special focus was given to
the cycle through which Aquila performs analog simulation, emphasizing the final
state measurement phase and outlining the main error sources, primarily related
to decoherence and laser noise.
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Chapter 5

The Maximum Independent Set prob-
lem

In this Chapter, the Maximum Independent Set (MIS) problem on graphs will
be addressed, analyzing some of the classical algorithms present in literature and
how this type of problem is naturally encoded in neutral atom technology on a
particular class of graphs, called Unit Disk Graph (UDG). Finally, it will be studied
the binary formulations which allows to solve the MIS problem also in D-Wave’s
superconducting qubit technology.
It is important to emphasize that the literature on this topic is very extensive,
along with the formulation of both exact and approximate classical algorithms
for finding the MIS on large dimension graphs. This work focuses on how to
exploit the neutral atoms technology to exactly solve the MIS problem and how
this formulation can be adapted for optimization problems in different contexts.
Therefore, the goal is not to solve the MIS on large graphs, but rather to study
the quantum approach adopted by the chosen technology.

5.1 Definition of the Problem

Given a set of variables

x = (x1, x2, ..., xn) ∈ Rn

the goal of combinatorial optimization problems is to find the combination of vari-
ables which minimizes or maximazes the objective function F(x1, x2, ..., xn).
This type of problem can be applied to many real-world contexts, such as portfolio
optimization, telecommunications and computer networks, production and logis-
tics management, and much more. Many combinatorial optimization problems
can be mapped on graphs, assigning each variable to a node, with edges added
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whenever a certain relationship or constraint needs to be represented.
The optimization problems can be classified in classes of computational complex-
ity, which is defined based on the dimension of the problem instance, i.e. the
problem parameters with specific assignment. Define f as the time complexity
function associated with an algorithm and g : N → N. The worst case in time
complexity is defined as:

f(n) ∈ O(g(n)) if ∃ n̂, c > 0 s.t. f(n) ≤ c · g(n),∀n ≥ n̂.

With this notation, an algorithm is classified as polinomial (P) if its complexity
class is O(g(n)), with g(n) a polynomial function of n. If g(n) is non-polynomial,
e.g. g(n) = 2n, the algorithm’s complexity is non-polynomial and its application
becomes prohibitive with the increasing of the instance dimension n. It is impor-
tant to underline that the inefficiency of a non-polynomial algorithm with respect
to a polynomial one is showed when n reaches considerable dimensions. If n is
small, the difference between the two classes is negligible.
The Non-Deterministic Polynomial (NP) time-complexity class is defined as the
set of all decision problems solvable in the worst case by a non-deterministic poly-
nomial algorithm. In reference to a decision problem, where the answer is either
“yes” or “no,” one can associate with the answer “yes” a set of data (certificate)
that allows its identification in polynomial time by an algorithm. In this regard,
a non-deterministic algorithm recognizes the “yes” instance in two phases:

1. Hypothesis : assume to have a “yes”-certificate of the problem;

2. Checking phase: verification that the hypothesis is correct.

If the checking phase requires polynomial time, the non-deterministic algorithm is
polynomial.
To proceed with further division of the NP-class, it is necessary to clarify the
concept of reducibility : a problem X ′ reduces to problem X (X ′ ∝ X) if for any
instance of X ′ it is possible to construct in polynomial time an instance X such
that from the solution of X we can derive always in polynomial time the solution
of X ′. The class of problem X such that X ∈ NP and SAT ∝ X is called
NP-complete, with SAT the satisfiability problem, which involves to determine if
there is a way to assign truth values (“yes” or “no”) to variables in a Boolean
formula such that the entire formula evaluates to “yes”. The main feature of the
NP-complete problems is that they are equivalently hard and each NP-complete
problem can be reduced in any other NP- complete problem. Therefore, if it is
possible to demonstrate the existence of a polynomial algorithm capable to solve
a NP-complete problem, then P = NP, which is considered highly improbable.
Finally, a problem X is NP-hard if there is no possible to determine if X ∈ NP ,

54



Chapter 5: The Maximum Independent Set problem

but it holds that:
∃X ′ NP-complete s.t. X ′ ∝ X,

i.e. X is at least difficult as a NP-complete problem.

5.2 Classical Approaches to Solve the MIS Prob-

lem and Related Problems

Given a graph G=(V,E), where V is the vertex set and E is the edge set, an
independent set of G is a subset I ⊂ V for which there is no edge between two
vertices [29]. An independent set of G is maximal if adding vertices to the set
implies the presence of an edge between two vertices. An independent set of G is
maximum if it, compared with all possible independent sets of G, has maximum
cardinality.
Examples of these definitions are in the following graphs:
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where the green set in the left is a Maximal Independent Set, while the blue sets
are Maximum Independent Sets. Note that the MIS in a graph is not unique. In
fact, the sets of vertices {2, 3, 7, 6} and {1, 4, 7, 6} are two valid MISs of the same
graph.
The great interest from the research community in this problem derives from its
multiple real-world applications, as positioning of radio antennas [30], social net-
work analysis [31], VLSI Circuit Design [32], chemistry with graph theory [33],
schedules design [34] and much more.
The MIS problem belongs to the class of NP-complete problems since:

• Given a set of vertices V , it is possible to verify the satisfiability of the
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independence constraints and the maximum dimension of the independence
set of vertices in polynomial time;

• It was demonstrated that many NP-complete problem may be reduced to
the MIS problem in polynomial time [35].

The first condition is true since this verification is directly proportional to the
graph’s dimension. Indeed, given an independent set S ⊂ V , for each pair of ver-
tices (i, j) in S, it is verified that the edge ij /∈ E, involving O(|S|2) checks.
When the graph is small, the MIS problem can be solved with a simple Integer
Linear Programming (ILP) algorithm and implemented in a few seconds using
classical solvers, as Gurobi[36] or CBC[37]. However, if the graph has a consider-
able number of nodes, this formulation becomes infeasible; for this reason, the MIS
problem is the subject of many studies involving both exact algorithms, such as
branch-and-bound and exhaustive search, as well as approximate algorithms and
heuristics [38].
Concerning exact approaches, according to Fomin and Kratsch in [39], the time
complexity of branching algorithms for MIS converges to O(1.2n). In 1986, J.
Robonson in [40] published results from an exact algorithm with a time com-
plexity of O(1.2109n). In 2017, this result was further improved by Xiao and
Nagamochi who achieved a time complexity of O(1.1996n) [41] with an approach
called “Measure and Conquere”. This method consists of four steps:

1. Graph measurement : identification and analysis of graph’s properties in or-
der to simplify the MIS problem;

2. Graph reduction: with the first step’s results, the MIS problem can be re-
duced and simplified in a smaller subproblem;

3. Conquering the subproblem: techniques of MIS solution are applied in the
subproblem;

4. Solution combination: the solution found in the subproblems are combined
together to form a unique solution of the original problem.

Algorithms aiming to approximate the exact optimal solution were also sought
but the MIS problem is very difficult to approximate [29]. The study [40] has
demonstrated that there is no MIS approximation algorithm that guarantees an
approximate solution equal to the exact solution except for a multiplicative con-
stant (known as approximation factor). In addition, J.Hastad in [42] proved that
there is no polynomial approximation algorithm with approximation factor n1−ϵ,
where ϵ ∈ (0, 1), unless the NP class is proven to be in reality the Zero-error
Probabilistic Polynomial time (ZPP) class, which includes the entire category of
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problems that can be solved in polynomial time using a probabilistic algorithm
whose probability of error is zero. From this, we can understand that the equiv-
alence between the NP and ZPP class is highly improbable. Furthermore, the
goodness of the approximate solutions depends on two characteristic factors of the
graph: the number of nodes n and the maximum degree ∆, i.e. the maximum
number of edges connected to a single node. The best approximation ratio, i.e.
the fraction between the approximate solution and the exact optimal one was pub-
lished in [43] and is equal to O(n(log log n)2/(log n)3).
Many studies, such as [44] and [45], instead focus on the efficient computation of
near-optimum independent sets for large-scale graphs. In particular, in [46], an it-
erative approach is applied involving exact/inexact reduction rules until the graph
is empty. Recent studies, such as [29], instead focus on computing MIS in dynamic
graphs, where vertices and edges are dynamically added/removed, mimicking the
real behavior of social networks.
The literature regarding the MIS problem is very extensive, including also prob-
lems directly connected with the MIS, such as the Minimum Vertex Cover and
the Maximum Clique.

The Minimum Vertex Cover Problem

Given an undirected graph G = (V,E), with V the set of vertices and E the set of
edges, the objective of the Minimum Vertex Cover (MVC) problem is to find the
set of vertices with minimum size V ′ such that:

∀ i, j ∈ E : i ∈ V ′ ∨ j ∈ V ′. (5.1)

In other word, the MVC is the set of vertices with minimum cardinality such that
every vertices in the graph is incident with at least one vertex in that set, i.e. the
complementary set of vertices of the MIS [47]. This problem can be adapted in
many real world problems, for example, to solve immunization problems on net-
works [30] or to identify the group of companies with the greatest impact within a
set of financially related firms, application which will be discussed in detail in the
next Chapter.
For small-sized graph, this problem can be solved by applying exact algorithms
as brute force, Integer Linear Programming and branch-and-bound algorithms.
In this regard, the study [48] aims to two novel lower bounds to help prune the
search space. The first one is based on the value of the degrees of vertices and the
second one concerns the MaxSAT reasoning, i.e. maximizing the SAT problem.
The experiment’s results show that this approach is better than previously branch-
and-bound approaches and some heuristics. However, in [49] it is demonstrated
that the MVC problem is NP-complete, since it belongs to the NP complexity
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class and there exists problems in NP that can be reduced to the MVC problem in
polynomial time. Therefore, finding the solution of this problem with large-scale
graph utilizing exact algorithm is infeasible. The study [47], based on past works
concerning Genetic Algorithms (GA) [50] [51], [52], [53], [54], proposed a new hy-
brid approach, called NHGA. In general, a GA is an heuristics which mimics the
behavior of the process of natural selection to approximate the solutions of the
optimization problem. The heuristic proposed in the cited study involves a new
method to generate the initial population, which takes into consideration the de-
gree of each vertex of the graph through the adjacency matrix. The more recent
study [55] concerns an approach able to find optimal or near-optimal solutions in
polynomial time. It is based on the Malatya centrality value algorithm, consisting
on two steps: computing the Malatya centrality values of the nodes as the summa-
tion of the ratio of the node’s degree to the adjacent nodes’ degrees for each node
and selecting the node for the MVC problem solution based on the node with the
maximum Malatya centrality value.

The Maximum Clique Problem

This problem appears in various forms within optimization and graph theory and
has numerous real-world applications. For example, in [30] this set represents the
solution of a portfolio optimization problem; in [56] is described an application on
the gas industry and also biomedical applications are studied in [57][58].
Given a graph G = (V,E) with vertex set V and edge set E ⊆=

(
V
2

)
, the subset of

G induced by a vertex subset S ⊆ V is denoted by G[S] = (S,E ∩
(
S
2

)
). A graph

G is complete if all possible edges are defined, i.e. E =
(
V
2

)
. A subset of vertices S

is a maximum clique if its induced subgraph G[S] is complete and its cardinality
ω(G) is the maximum among all cliques. Note that S is a clique in G if and only
if S is an independent set on Ḡ, i.e. the complementary of G [59].
It was demonstrated that the maximum clique problem is NP-complete [49]. There-
fore, for large-scale graph, the solution of the problem is computationally hard.
Many studies concern the Mixed Integer Program (MIP) formulation, based on the
undesirable properties of the integer programming formulation:

ω(G) = max
∑
i∈V

xi (5.2)

conflicts : xi + xj ≤ 1, ∀i ∈ Ē (5.3)

xi ∈ {0, 1} ∀i ∈ V, (5.4)

where Ē is the complementary set of E. From the independence contraints in
(5.2), solving the MIS problem on the complementary graph Ḡ is equivalent to
find the maximum clique of the original graph G.
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The formulation 5.2 is impractical for large-sized graph due to the weak LP relax-
ation, the quadratic number of constraints and non-zeros coefficients in the con-
straint matrix when applied to sparse graphs and poor guarantees on the number
of branch-and-bound nodes required to solve it. Past studies on MIP formulations
aim to strengthen the LP relaxation of this formulation with the addition of reli-
able inequalities [60][61], adopted by some MIP solvers as CBC [37] and Gurobi
[36]. Other approaches [62][63] concern the aggregation of the conflicts in (5.2)
with the big M constraints:

∑
j∈V \N{i}

xj ≤Mi(1− xi) ∀i ∈ V (5.5)

withMi = n−|N(i)|−1, N(i) the subset of vertices neighboring the vertex i. The
formulation with this constraint involves n2− 2m non-zero elements, with n = |V |
and m = |E|. The recent study [64] provides new MIPs formulation, based on the
cited approaches. The smallest MIP proposed involves only O(n +m) non-zeros,
solved in O(2dn) branch-and-bounds nodes, where d is the graph degeneracy, a
measure of the graph’s sparsity, while the strongest MIP proposed visits O(1.62dn)
nodes. Denoting with g = (d+1)−ω, O(2gn) nodes were visited with a best-bound
node selection strategy. When g is small, only O(n) nodes were visited.
In [59] is analyzed a technique which allows the parallel cliques search, dividing
the problem into smaller ones. Legal coloring of graph nodes serves as a widely
adopted method to establish the upper estimates of clique sizes.
Other studies, as [65] [66], focusing on solving the Maximum Clique Transversal
problem, which aims to find the smallest set T ⊆ V such that every maximum
clique of G contains at least one node from T .

It’s important to emphasize that the optimization problems analyzed have been
and continue to be a significant subject of study. The literature on this topic is
very extensive, Section 5.2 is just a brief overview of the studies concerning these
topics.

5.3 The Quantum Approach to MIS Problem

In the next Sections, it will be studied how two quantum technologies, QuEra and
D-Wave, solve the MIS problem by exploiting, respectively, the manipulation of
the neutral atom and the superconducting qubits.
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Figure 5.1: An example of Unit Disk Graph (UDG) on the left and the correspon-
dent MIS on the right, taken from [67].

5.3.1 The Neutral Atom Approach

In Chapter 4 the details of the neutral atom technology was studied, with a focus
on the Rydberg Blockade phenomenon. In this Section, it will be shown that
the Rydberg Blockade phenomenon naturally encodes the independence constraint
between variables in a specific class of graphs, called Unit Disk Graphs (UDG).
These are defined by a set of vertices positioned in 2-dimensional space and by a
set of arcs that connects each pair of vertices following a precise rule, showed in
Figure 5.1: once a circle of unit radius centered in each node has been drawn, two
vertices share the same arc if and only if they share the same circumference. The
unitary radius used to define UDGs is identified with the Rydberg radius, whose
value will be further discussed later.
Consider a graph in which each node is identified by a neutral atom. Exploiting
the Rydberg Blockade phenomenon, the independence constraint on the resulting
graph will be:

• Violated, if the edge connecting two atoms has a length greater than the
Rydberg radius. In this case, both atoms can configure in the excited state.

• Not violated, if the edge connecting two atoms has a length smaller than the
Rydberg radius. In this case the excitation of both atoms is energetically
unfavorable and therefore only one of them encodes the Rydberg state.

From this rule, shown in Figure 5.1, it is easy to see how the Rydberg Blockade
phenomenon, induced by the excitation of atoms from ground states |0⟩ to excited
states |1⟩, naturally defines the MIS problem on UDG whose circumferences are
defined by the Rydberg radius Rb.
The definition of the MIS problem on UDG is hardware-efficient since, once the
atoms are positioned in the lattice, no further auxiliary atoms (qubits) are required
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to provide the problem solution. This represents a great advantage, especially when
the hardware capacity is limited as in Aquila which has, at the time of writing,
a maximum of 256 atoms. Furthermore, already at first, the Rydberg Blockade
mechanism limits the evolution mainly to the subspace spanned by the states that
obey the independence constraints of the problem graph. The quantum algorithms
that enable the solution of the MIS problem exploit the global excitation of the
atoms through homogeneous laser pulses with a Rabi frequency Ω(t), laser Phase
Φ(t) and Detuning parameter ∆(t) dependent on time. We have seen that these
parameters define the Rydberg Hamiltonian (4.3), which can be decomposed in
two parts as following:

Hryd = Hq +Hcost (5.6)

Hq =
Ω(t)

2

∑
i

eiΦ(t) |gi⟩ ⟨ri|+ e−iΦ(t) |ri⟩ ⟨gi|

Hcost = −∆(t)
∑
i

n̂i +
∑
i<j

Vijn̂in̂j

where Hq stands for quantum driver and Hcost is the cost function. By appro-
priately manipulating Ω(t) and ∆(t) for well-defined time intervals, the transition
from Hq to Hcost and vice versa allows the MIS problem to be naturally formulated
on a UDG with Rydberg radius that varies based on the value of the parameters. In
particular, the solution is encoded in the ground states of the atoms, i.e. with the
lowest energy value. In this way, all the possible independent sets of the UDG are
encoded in the low energy subspace and we can exploit this property by evolving
the system from one ground state to another, visiting all the possible independent
sets and treating them as entangled states. These steps are implemented in the
Adiabatic Protocol.

The Adiabatic Protocol

The goal of this procedure is to prepare low-energy states such that their measure-
ment encodes possible solutions to the combinatorial optimization problem stud-
ied. In this regard, Adiabatic Algorithms represent a well-suited class to carry
out this task, as they allow the slowly changing state of the system following a
time-dependent Hamiltonian which is, in our case, the Rydberg Hamiltonian (4.3).
In the following steps, it is explained how the values of the parameters Ω(t),∆(t)
and Φ(t) can drive the Rydberg Blockade to define the independence constraints
in Unit Disk Graphs. Note that the dependence on the time is omitted, focusing
only on the parameters value.

• Ω = 0, ∆ > 0, Φ = 0. Referring to the expression (5.6), only Hcost is
considered. Suppose that two atoms are R away from each other. If ∆ > Vij,
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it is energetically favorable the double Rydberg excitation state |rr⟩ (note
the negative sign before the parameter ∆ in Hcost). If instead ∆ < Vij,
the excitation of one atom blocks the excitation of the other atom and the
double state in which only one atom is in the Rydberg state is favorable,
thus defining the superposition

1

2
|gr⟩ ± 1

2
|rg⟩

encoded with the static Blockade radius equal to Rb = (C6/∆)1/6.

• Ω > 0, ∆ = 0, Φ = 0. Referring to the expression (5.6), we are considering
only Hq. In this case, if the atoms are at a relatively large distance and Ω >>
Vij, they will oscillate independently from the state |g⟩ to the state |r⟩ with
a time-dependent sinusoidal trend. If instead Ω << Vij, it is energetically
prohibitive for both atoms to be in the Rydberg state at the same time and
therefore the double excitation state |rr⟩ is blocked. The critical distance at
which the energy scale for transitioning atoms from the state |g⟩ to the state
|r⟩ equals the interaction energy (Ω = Vij) is called dynamic Rydberg radius,
and it is given by Rb = (C6/Ω)

1/6.

• Ω > 0, ∆ > 0, Φ = 0. In this case, the Hamiltonian is actually composed of
both Hq and Hcost. The combination of the two effects previously described
define an energy scale encoding the Rydberg radius Rb = (C6/

√
∆2 + Ω2)1/6.

Adiabatic state preparation enables the implementation of the Rydberg Blockade
with a time-dependent Rydberg radius, varying according to the parameters Ω(t)
and ∆(t). Specifically, the Adiabatic Algorithm starts with the definition of the
initial parameters that define the starting Hamiltonian. These parameters follow
a well-defined trend over time, until the target Hamiltonian is reached. If the
evolution follows a slow enough dynamic, then the temporal evolution brings the
ground state of the initial Hamiltonian into the ground state of the target Hamil-
tonian Htarg. The procedure can be represented by waveforms, as shown in Figure
5.2 and it is summarized in the following steps:

• At time t0 = 0, the ground state |0⟩ is encoded in Hcost, with Ω(t0) = 0 and
∆(t0) < 0.

• At time t1 > 0, Ω(t1) and ∆(t1) slowly increase in value, encoding the Ryd-
berg Hamiltonian (4.3).

• At time t2 > 0, Ω(t2) > 0 and ∆(t2) = 0 and the state is described by Hq.
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Figure 5.2: The waveforms representing the steps of an Adiabatic Protocol. From
the left to the right, the evolution of the parameters Ω and ∆ through the time.
The Φ laser phase waveform has been omitted, as it is zero for all time instants.
The image was taken from the QuEra documentation, available in [68].

• The process continues with ∆ > 0 and Ω > 0, until reaching the final instant
tfin > 0, where ∆(tfin) > 0, Ω(tfin) = 0 and Htarg = Hcost.

The steps through which QuEra’s hardware solves the MIS on UDG are summa-
rized in the Figure 5.3.

5.3.2 The Ising/QUBO Formulation

In this section, the method used by the quantum annealear D-Wave for solving
the Maximum Independent Set problem on graphs will be described. Following
the Quantum Anneling principle, explained in Chapter 3, the solution of an opti-
mization problem is encoded in the ground state of a Hamiltonian with the lowest
energy level. In this way, the minimization of the objective function is equivalent
to the minimization of the energy and the optimal solution typically corresponds to
the global minimum. Due to the definition of the states of superconducting qubits
and hardware constraints, D-Wave accepts only Ising and QUBO formulations
which are equivalent under a change of variables.

The Ising Formulation

In this formulation, commonly used in statistical mechanics, the variables can
assume values from the discrete set {−1, 1}. Specifically, the value -1 is associated
to a spin that points downwards, while +1 is associated to the opposite spin. The
couplings, i.e. the relationships between spins, exploited for Quantum Computing,
are correlations and anti-correlations. The objective function of an Ising model
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Figure 5.3: Firstly, the atoms are placed at the vertices of the target graph, which
corresponds to the Unit Disk Graph describing the optimization problem consid-
ered, with radius equal to the Rydberg radius. Subsequently, the system evolves
following the dynamics described by the Hamiltonian which depends on the def-
inition over time of the parameters Ω, ∆ and Φ. Finally, once the evolution is
completed, the state of the system is measured using fluorescence, as described in
Chapter 4. The image was taken from [67].

has the following form:

HIsing(s) =
N∑
i=1

hisi +
N∑
i=1

N∑
j>i

Jijsisj, (5.7)

where the variables s are the spins, the coefficients h represent the biases and the
quadratic coefficients relating the spins are reported in the matrix Jij. The task
of the problem is to minimize the Hamiltonian (5.7).

The QUBO Formulation

The QUBO formulation is typically exploited in computer science, as the vari-
ables take values in the discrete set {0, 1}, which corresponds to the set {FALSE,
TRUE}. The objective function is formulated as follows:

HQUBO(x) =
N∑
i=1

qiixi +
N∑
i<j

qijxixj, (5.8)

where xi are binary variables; qii represents the coefficients of the linear terms and
qij are the coefficients of the quadratic terms. Note that (5.8) can be rewritten
more briefly as follows:

xTQx, (5.9)

where Q is an upper triangular real matrix of size NxN and the goal is to find the
solution which encodes the minimum of (5.8).
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The equivalence between Ising (5.7) and QUBO (5.8) formulations can be high-
lighted by writing the binary variable x as a function of the variable s in the
following way:

x =
s+ 1

2
, (5.10)

hence:
s = −1⇒ x = 0

s = +1⇒ x = 1.

Therefore, it holds that:

min
si∈{−1,1}

Hising(s) ⇐⇒ min
xi∈{0,1}

xTQx. (5.11)

To solve an optimization problem, D-Wave maps the objective function into a
specific graph as follows:

• The variables si for the Ising formulation and xi for the QUBO formulation
are mapped to the graph’s nodes and represent the physical qubits in the
QPU;

• The quadratic coefficients representing the interactions between the vari-
ables, i.e. Jij for the Ising formulation and Qij for the QUBO formulation,
are mapped to the graph’s edges and represent the couplers in the QPU.

The process by which the problem variables are mapped into qubits in the D-
Wave’s QPUs is called minor embedding.

Minor Embedding and D-Wave’s QPUs topology

With minor embedding, the quadratic objective function is mapped into certain
graphs, which represent the topology of the D-Wave’s QPUs. Specifically, there
are three different types of topologies, called Chimera, Pegasus and Zephyr. The
three architecture are made up of structures of qubits connected to each other,
called cells. The connections within the cell are called internal couplers and those
between cells are called external couplers. In Chimera graph, shown on the left
in Figure 5.4, these two types of couplers are the only ones present. In advanced
QPUs, as the one that will be used in this work, the Pegasus topology is utilized.
Qubits are aligned either vertically or horizontally, as in the Chimera topology, but
similarly oriented qubits are also shifted. The couplers are classified as internal,
external and odd. A unit cell of Pegasus is composed of 24 qubits, each connected
with other 12 qubits through internal couplers and 15 different qubits with external
couplers; the odd couplers connect similarly aligned pairs of qubits. An example
of Pegasus with 4x4 unit cells (P4) is shown on the right in Figure 5.4.
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Figure 5.4: On the left, an example of Chimera graph of size 2x2 (2 cells for
each column and 2 cells for each row, highlighted in green). Each cell is further
composed of 9 qubits, which are interconnected with each other and with qubits
from other cells, identifying the external couplers. On the right, Pegasus unit cells
in a P4 graphs; the qubits are the green dots and the couplers are the grey lines.
The images was taken from the D-Wave documentation, available in [69].

With the minor embedding, the logical qubits, i.e. those that represent the objec-
tive function of the problem, are mapped into physical qubits, i.e. the hardware
qubits. It’s important to highlight that a logical qubit can be mapped to multiple
physical qubits, depending on the complexity of interactions described by the ob-
jective function. Despite the complexity of the mentioned topologies, the qubits in
the hardware are not fully connected. Therefore, it may be necessary to introduce
additional qubits to facilitate proper interactions between variables.
To solve the MIS problem using the D-Wave’s QPU, it is necessary to define a
sampler that takes the problem in binary quadratic form as input, performs minor
embedding, and returns the configuration of variables that minimizes the objec-
tive function. Therefore, it is essential to define an appropriate binary quadratic
problem such that one of the possible solutions corresponds to the Maximum In-
dependent Set (MIS). The specific quadratic binary formulation used in D-Wave
is explained in [70] and will be explored in the next Section.

Ising Formulation of MIS Problem

In this Section, the Ising formulation adopted for the MIS problem will be illus-
trated. Remember that the Ising and the QUBO formulations are equivalent up
to a change of variables (5.10).
In this formulation, given a graph G, an edge ij belongs to the set of edge E if
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and only if the subsets of vertices Vi and Vj are such that Vi ∩ Vj ̸= ∅, where Vi
maps to a vertex i ∈ V . A Hamiltonian H is therefore defined as the sum of two
Hamiltonians, HA and HB, defined as follows:

HMIS = HA +HB

HA = A
∑
ij∈E

sisj HB = −B
∑
i

si (5.12)

Note that HA is minimized only when the set of edges is such that the indepen-
dence constraint is not violated and HB takes into account the number of sets that
are included. The real parameters A and B are useful for weighting the constraints
that represent the Hamiltonian. In this case, by setting A > B it will never be
favorable to involve two edges that share the same vertex, thus preserving the
independence constraint of the problem.

5.4 Conclusions

In this Chapter, the Maximum Independent Set problem is studied on a small-sized
UDG. First of all, the definition of a solution to a combinatorial optimization
problem is provided, and the complexity classes of computational problems are
described. Subsequently, maximal and maximum independent sets of a graph
are defined, along with relevant examples. Several real-world applications of the
MIS problem related to other vertex sets connected to it have been presented.
A particular focus has been given to classical exact and approximate algorithms,
emphasizing their extensive presence in literature and associated time complexities.
Given the extensive literature on the subject, some studies concerning algorithms
for the MIS, MVC, and Maximum Clique problem have been cited and briefly
described. Subsequently, the methodologies implemented by QuEra and D-Wave
for solving the MIS problem were presented. Regarding QuEra, a particular class of
graphs called Unit Disk Graphs was studied, and it was analyzed how the Rydberg
Blockade phenomenon naturally encodes the independence constraint on these
graphs. In this context, the adiabatic protocol capable of correctly implementing
the problem definition using changes in laser Detuning and Rabi frequency was
outlined in more detail. Finally, the Ising formulation enabling the solution of the
MIS problem on D-Wave was studied, with emphasis on the topology of its QPUs
and the minor embedding procedure, which allows defining the problem on the
hardware’s QPUs.
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Chapter 6

Application of the MIS Problem
for Finding MVCs on a Specific UDG
Case

In this Chapter, the techniques explained previously will be applied in order to
solve an example of a specific combinatorial optimization problem that finds con-
text in financial fields. The solutions were found through the application of neutral-
atom and superconducting-qubits approaches, emphasizing the steps implemented
for QuEra’s technology.
At the time of writing, it was not possible to implement the algorithm directly on
QuEra’s QPU, therefore it was exploited the local Analog Hamiltonian Simulator,
available on Amazon Braket1 [71], which operates with only about ten atoms, lim-
iting the dimension of the problem, constituting just an example of a MIS problem
on a small-sized graph. For the QUBO formulation of the MIS problem, it was
possible to exploit one of the D-Wave’s QPUs tanks to the free cloud service D-
Wave Leap [72]. Furthermore, when mapping from the mathematical formulation
to the graphical representation, careful attention must be paid to the resulting
graph, which must not violate the UDG constraints explained in Section 5.3.1.

6.1 The Optimization Problem

In Chapter 5 it was observed that the Maximum Independent Set of a graph
is closely related to other sets of vertices, whose properties can be leveraged to
encode solutions to combinatorial optimization problems applicable in real-world

1Amazon Braket is a fully managed Quantum Computing service that allows the user to
interact with some technologies on the market.
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scenarios. Among these, of particular interest in our application is a subset of
vertices called Minimum Vertex Cover (MVC), denoted as mvc.
Given a graph G with a set of vertices V and edges E, the Minimum Vertex Cover
is defined as the smallest possible subset of vertices C ⊆ V such that every edge
ij ∈ E has at least one vertex in C. Identifying the MIS as Mis, it holds that:

mvc = V \Mis (6.1)

i.e. the Minimum Vertex Cover is the complementary set of vertices of the Maxi-
mum Independent Set.
The optimization problem studied in this work is explained as following: given a
pool of companies with correlated assets values trends, identify the minimum set
of companies that have the most significant impact. By “impact”, we mean the
set of companies whose removal from the initial group would minimize the overall
financial risk.
Consider the possibility of defining a graph G = (V,E) in the following way:

• The set of nodes V of the graph corresponds to the set of companies;

• The set of edges E connects the companies according to some rules, which
depend on the problem definition.

Suppose to have a group of companies listed on the Italian stock exchange and
to have access to the historical series of annual trends of their assets. Thanks
to the time series, it is possible to compute the variance and covariance matrix
Σ, which can be a valid candidate as a starting point in defining the relationships
between the companies, i.e. the edges of the graph. In our case, having represented
each company as a node of the graph, we connect with an edge those companies
that have a covariance value both greater than zero and greater than a certain
threshold, denoted by β. In this way, we are representing a set of companies with:

• The same trend from the point of view of the financial risk. In fact, by
defining positive covariance, we are connecting all those companies with a
similar trend and therefore, in the event of a collapse of the first company’s
assets value, the probability of the collapse of the second company’s assets
value is greater than zero.

• Connections deriving from non-negligible relationships. If we did not define
any threshold, the resulting graph would be almost fully connected and there-
fore useless from an application point of view (the MIS should be composed
of only one node). Furthermore, many of the relationships, even if defined
with a covariance value greater than zero, would be negligible compared to
others. In other words, the definition of the threshold β > 0 allows us to
consider only the relatively important correlations.

70



Chapter 6: Application of the MIS Problem for Finding MVCs on a Specific UDG Case

By doing so, the resulting graph identifies a pool of companies with a similar trend
of financial risk and our objective will be to select the minimum set of companies
with the greatest impact in a specific context. This set is represented precisely by
the MVC, whose solution can be represented as the complementary set of vertices
of the MIS.
The problem just described has the following Integer Linear Programming (IP)
formulation:

min
i∈V

∑
i∈V

xi (6.2)

s.t. xi + xj ≥ 1 (6.3)

∀(i, j) ∈ E : Σ[i, j] ≥ β (6.4)

xi ∈ {0, 1} ∀i ∈ V, β > 0 (6.5)

where the objective function (6.2) aims to minimize the vertices included in the
optimal subset; the constraint (6.3) ensures that, for each edge, at least one vertex
is included in the subset (guaranteeing the optimality of the solution) and the
constraint (6.4) ensures that the edges exist if and only if the companies involved
have covariances greater than the value of the threshold β.
Since the neutral-atom technology can only solve the MIS problem, the UDG
describing the problem is first defined. Subsequently, the MIS problem on it is
solved, which can be formulated with the following ILP:

max
i∈V

∑
i∈V

xi (6.6)

s.t xi + xj ≤ 1 (6.7)

xi ∈ {0, 1} ∀i ∈ V. (6.8)

Finally, the sought MVCs are defined as the complement vertex sets of the MISs
in the reference UDG.
In this work, it was considered a dataset of companies and their respective asset
values on the Italian stock exchange for the entire year 2023, available on Google
Finance [73]. After having defined the appropriate time series, the threshold has
been set to the 25% of the maximum covariance value of the resulting matrix Σ,
obtaining the 15-nodes graph shown in Figure 6.1. It is useful to report the map
from the node number to the company label:

0: AutME; 1: Pirelli; 2: Avio; 3: ENI; 4: FINECO; 5: AirFrance;
6: STMMI; 7: PosteIT; 8: Stellantis; 9: MEDIOLANUM; 10: LEONARDO;
11: SNAM; 12: AQUAFIL; 13:AristonHolding; 14: UniCredit.
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Figure 6.1: The graph resulting from the initial dataset of companies and from a
threshold β ≈ 1.385.

6.2 Check the Feasibility of the Graph Obtained

from the Time Series Analysis

As specified in Section 5.3.1, neutral atom quantum technology naturally defines
the MIS problem on Unit Disk Graphs. Therefore, it is first necessary to verify
that the graph encoding the optimization problem (6.6), generated by following
the steps listed in Section 6.1, does not violate the definition of Unit Disk Graph.
Consider a set of vertices V and a list of edges E, defined according to the con-
straint (6.4). The spatial representation of the resulting graph G, therefore the
Euclidean coordinates of the vertices in V , depends on the kind of layout chosen.
For the purpose of this work, it was selected the Kamada Kawai layout2, apply-
ing an optimization algorithm for positioning the graph vertices in the Euclidean
plane. More precisely, this algorithm minimizes a cost function that takes into ac-
count the nodes distances and the differences between the real and the predicted
lengths. This cost function can be formulated as follows:

C =
N∑
i=1

N∑
j=i+1

kij

(
dij − lij
lij

)2

, (6.9)

where N is the number of nodes in the graph; kij is a constant that depends on the
distance between the nodes i and j; dij is the Euclidean distance between i and j at
the current position; lij is the ideal length between i and j. Thanks to this layout,
it was possible to obtain a symmetric and well-balanced graph representation.

2Type of layout defined in NetworkX package in Python library.
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Figure 6.2: The definition of the UDG starting from the vertices of the original
graph represented in Figure 6.1. Defining the circumferences for each nodes with
radius RUDG, all the vertices with distance less than that value are connected.

Once the set of vertices V is arranged in the coordinates optimized by the chosen
layout, it is possible to connect all those vertices that have Euclidean distance less
than a certain radius, called RUDG. To define the value of this radius, it was useful
to reason about the edges lengths of the original graph G. In fact, the limit value
for which we could define a graph as UDG is identified in the maximum length of
its edges. In this way, by imposing the constraint that the union of any two vertices
is less than RUDG, all the edges of the graph G will also be defined in GUDG, as
represented in Figure 6.2. Finally, it was made a comparison between the original
graph and the one obtained with RUDG: only if the list of edges of G and GUDG

coincides, G can be defined as UDG and we can take it as the starting graph to
obtain the MIS problem solution by exploiting the neutral atom technology.

6.3 QuEra’s Solution

In this Section, the steps of the algorithm implemented to exploit the QuEra’s
local analog simulator will be analyzed, summarized in the following list:

1. Map the UDG into atomic coordinates;

2. Definition of the Adiabatic Algorithm;

3. Saving solutions and post-processing;

4. Solution analysis.

The following Sections will be dedicated to an in-depth analysis of the steps men-
tioned above.
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6.3.1 Step 1: map the UDG into atomic coordinates

Once verified that the graph obtained is UDG, it is necessary to move to dimensions
that allow the analog simulator to work. This means that, given the Euclidean
coordinates of the set of vertices V of the graph G ≡ GUDG, we need to define a
new graph Gatom and a new set of vertices Vatom that respects the dimensions and
the spatial constraints of the hardware. In fact, in Section 4.2.1 it is explained
that the atoms must be arranged in an area with a width of less than 200µm in
order to undergo the appropriate laser manipulations. Therefore, it is required to
scale the graph down to micrometer-level coordinates while preserving the original
shape, thus performing a geometric reduction by multiplying each vertex of the
set V by a scale constant a, defined as follows:

a =
Rb

RUDG

. (6.10)

From the set V in the new atomic coordinates, the edges of the graph Gatom will
be generated following the rules defining a UDG with radius equal to the Rydberg
radius Rb. Applying this step, we can see how the structure of G is reflected in
Gatom:

a ∗D(i, j) ≤ Rb ⇒
Rb

RUDG

∗D(i, j) ≤ Rb ⇒ D(i, j) ≤ RUDG, (6.11)

where D is the symmetric matrix of Euclidean distances between the nodes of the
graph G.
Now, the question arises as to what value should be assigned to the parameter Rb

in the ratio (6.10) to ensure the correct encoding of the independence constraint.
In Section 5.3.1, we have observed that the parameters of the adiabatic evolution
define, over time, different type of Rydberg radius, which values define the Block-
ade phenomenon. It is worth underlining that there is no formula that provides
an exact value of Rb for the ratio a. In this work, it was possible to define a value
that gave optimal results tanks to many tests carried out with different UDGs and
considering the approximation illustrated in QuEra’s documentation, available in
[74], that is:

C6

R6
b

∼
√
∆2 + Ω2, (6.12)

with C6 = 5.42x10−24 rad ∗m6/s, ∆ and Ω equal to their maximum value in the
Adiabatic Protocol.
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6.3.2 Step 2: the adiabatic evolution parameters

Once the atoms have been arranged in the vacuum cell, the next step is to define
the parameters ∆(t) and Ω(t) for the Adiabatic Protocol. The Adiabatic Algo-
rithm was implemented following the AWS3 tutorial available in [75] and taking as
reference the study [67] and the paper [17] regarding the values of the parameters.
Remember that the Adiabatic Protocol consists of various changes in the values
of ∆(t) and Ω(t) which can remain constant, increase or decrease for certain time
intervals. Therefore, it was necessary to set sub-intervals of time δti = ti − ti−1

between the initial instant tin and the final instant tf in which the values of ∆ and
Ω change, as illustrated by the adiabatic procedure. Following several tests involv-
ing different parameter values, the algorithm was implemented with the following
components, illustrated as waveforms in Figure 6.3.

• Time intervals. Between the initial instant tin = 0 and the final instant
tfin = 4 µs, the instants t1 = 0.6 µs and t2 = 3.4 µs define three sub-
intervals: δt1 = 0.6 µs, δt2 = 2.8 µs and δtf = 0.6 µs. Note that the length
of this time interval is 4µs which is exactly the estimated time for which the
annealing schedule of Aquila is coherent.

• Rabi frequency. The Adiabatic Algorithm requires the starting value of Ω
equal to zero (Ω(tin) = 0), then grows (Ω(t1) = Ω), remains constant for a
given time interval (Ω(t2) = Ω(t1)) and return to zero at the final instant
(Ω(tf ) = 0). The chosen value for the implementation was Ω = 15 rad/µs.

• Laser detuning. This parameter takes on a negative value in the initial
instant (∆(tin) = −∆), remains constant for the first time interval (∆(t1) =
∆(tin)), and then increases (∆(t2) = ∆) until it remains constant for the
last time interval (∆(t2) = ∆(tf )). In this work, it was considered |∆| = 30
rad/µs.

• Lase phase. The Φ laser phase was set to zero at each time instant, as
required by the Adiabatic Protocol.

6.3.3 Step 3: saving solutions and post processing

Once the values of the parameters have been defined, the analogue quantum sim-
ulator of QuEra is called, which simulates the dynamics described by the Rydberg
Hamiltonian (4.3) with the parameters represented by the waveforms in Figure

3Amazon Web Services (AWS) is a platform owned by Amazon that offers more than 200
cloud computing, content processing and delivery services worldwide.
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Figure 6.3: Ω, ∆, and Φ waveforms for the time interval considered.

6.3. The number of shots or measurements conducted is equal to 1000. In Section
4.3.5, the method used by QuEra to measure the state of the system was explored,
underlining that this process is destructive and therefore, with each new measure-
ment, the atoms must be re-inserted into the lattice. Remember that a solution
is represented by a binary string in which the value 0 represents the atom in the
Rydberg state, while the value 1 represents the atom in the neutral ground state.
In the first case, the atom encodes a vertex in the Maximum Independent Set,
while in the second case it identifies a vertex in the Minimum Vertex Cover set.
In Section 4.3.6 it was observed that errors can occur in measurements, which
reflects into the results of MIS in two possible ways:

1. The string represents a maximal rather than maximum independent set. In
this case, we have a set of vertices that does not violate the independence
constraint but represents a set of vertices with cardinality lower than the
optimal one. This conditions, as reported in [17], can accour with ∼1%
probability.

2. The string represents a set of vertices that violates the independence con-
straint. In this case, the set can identify two vertices that share an edge, thus
violating the independence constraint. Sets with cardinality greater than the
optimal one certainly violate this constraint, but this error can also occur in
sets with optimal or lower cardinality. This conditions, as reported in [17],
can accour with a ∼1% probability.

Therefore, it is necessary to study a method that verify the solutions obtained,
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excluding the incorrect ones. This postprocessing phase was implemented by an-
alyzing the positions of the zeros for each string. It holds that 0 is equivalent to
an atom in the Rydberg state which corresponds to a vertex in the MIS and it
also holds that two zeros cannot be represented by two neighboring nodes in the
graph. Therefore, by checking the neighboring nodes for every 0 placed in each
string, we have that:

• If only one node among a 0’s neighbors is coded as 0, then the solution is
wrong;

• If all nodes that are neighbors of a 0 are coded as 1, then, for that node in
the independent set, the independence constraint is not violated.

Note that the time complexity of this post-process is proportional to the graph
dimension. Therefore, this step can be computed in polynomial time.
A pertinent question arises as to how the cardinality of the MIS can be deter-
mined solely based on the simulation results. The approach involves calculating
the cardinality of the MIS encoded for each string. If the dynamic is correctly im-
plemented, the most frequently occurring cardinality among the solutions is likely
to be the optimal one.

6.3.4 Step 4: result analysis

The last step concerns the analysis of the results obtained after the post-processing.
First of all, through a bar plot, the different cardinalities found in the set of the
solutions can be represented, with the respective probabilities of encountering them
at the end of the simulation. As can be seen from the blue bar plot in Figure 6.4,
the most frequent cardinality among 1000 simulations is 7 vertices (93%), but with
a small percentage are also found sets of 6 and 8 vertices. From this result, it can
be deduced that the MIS is made up of 7 nodes.
At this point, post-processing was carried out, which confirmed the cardinality of
the MIS. In fact, if 7 is the optimal cardinality, then the entire set of 8 vertices is
infeasible and it is therefore eliminated. The green bar plot in Figure 6.4 shown
that the set of feasible solutions is made up only of independent sets of cardinality
6 and 7, confirming the thesis.
Regarding the percentage of infeasible solutions, out of a total of 930 solutions of
cardinality 7, two are infeasible, defining the probability of 0.2% of finding wrong
solutions in the optimal set.
Once the infeasible solutions have been removed from the set of optimal cardinality,
the different types of MIS solutions can be identified. For this graph, 7 different
feasible MISs were found, as shown in Figure 6.5.
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Figure 6.4: Bar plots representing the different cardinalities found in the simula-
tions with respective probabilities. The blue bar plot represents the set of solutions
obtained by the simulator; the green bar plot represents the set of solutions after
the post-processing phase.

Figure 6.5: The different types of MISs found in the set of feasible solutions. The
blue nodes represent the vertices in the MIS, while the yellow vertices are in the
MVC set.

6.3.5 QuEra’s Results Considerations

To find the QuEra’s solution, it was exploited a local Analog Hamiltonian Simu-
lator which simulates the behaviour of the neutral atom hardware to find the MIS
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problem solutions. Typically, this simulator is used to test the algorithm before
the implementation on the QuEra’s QPU, as it simulates the system dynamics
exactly as the hardware would, as shown in [76], where the results obtained from
QuEra match the predictions made by the local simulator. Additionally, Aquila’s
coherence time of annealing schedule has been estimated to be 4 µs, exactly the
duration of the implemented Adiabatic Protocol. This suggests that the results
provided by the QPU should not significantly differ from those obtained by the
simulator. Despite this, the results obtained by the hardware may have some
empty sites due to hardware’s atom preparation imperfections. With a probabil-
ity of approximately 0.7%, the QPU fails to occupy a user-specified filled position,
thereby defining the the set Vatom.
Concerning the time of execution, although the hardware was not used directly,
the documentation states that Aquila can complete up to 10 shots per second [17],
performing a single quantum computation in ∼ 10 µs, while the time spent by the
local simulator to perform 1000 shots and to obtain the solution to the considered
MIS problem is approximately 7 minutes.
The MIS formulation on UDG is hardware-efficient for QuEra, it means that no
additional qubits are required to solve the problem. Therefore, the number of in-
volved qubits it’s exactly 15, the number of nodes of the graph, as shown with the
pink bar in Figure 6.7.

6.4 D-Wave’s Solution

This technology exploits some quantum properties, with the aim of exploring all
the solutions simultaneously. At the end of the annealing process, with a given
probability, only one solution among a set of good solutions is chosen as the out-
put. For this reason, it is useful to carry out the sampling phase several times,
because each iteration can result in a different output. In particular, through the
EmbeddingComposite class, it is possible to map the binary problem into one of
the QPUs topology by performing the minor embedding, explained in Section 5.3.2.
Once the logical qubits are mapped onto the physical ones, the D-Wave sampler4

is called, which performs from low-energy states in models defined by the Ising or
QUBO formulations, illustrated in Section 5.3.2.
For the D-Wave’s results analysis, the same procedures used for the neutral atom
technology were followed. Therefore, the cardinality of the MIS is determined by
identifying the highest frequency among the computed values. As can be seen from
the blue bar plot in Figure 6.6, even for the superconducting quantum annealer,
the MIS has cardinality 7 (98.6%) and a small percentage of sets of 6 and 8 ver-

4The sampler used is DWaveSampler() from the dwave.system package of the D-Wave library.
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Figure 6.6: Bar plots representing the cardinalities and the respective probabilities
of the solutions sets provided by 1000 runs of the D-Wave sampler. The blue bar
plot represents the set of solutions obtained by the sampler; the green bar plot
represents the set of solutions after the post-processing phase.

tices were found. On this set of solutions, the post-process procedure described
in Section 6.3.3 is carried out and the set of totally feasible solutions is shown
with the green bar plot in Figure 6.6. As illustrated, also in this case, all sets of 8
vertices are excluded.
In this results, apart from three different solutions that finds 8 vertices, there are
no others wrong vertex sets. Furthermore, analyzing the different results relating
to the optimal cardinality, we find the same 7 solutions as QuEra, represented in
Figure 6.5.

6.4.1 D-Wave’s Results Considerations

The MIS problem with the superconducting-qubits quantum annealer was imple-
mented in Advantage System 5.4, which is one of the QPUs available in D-Wave
Leap service. This advanced QPU has a maximum capacity of 5614 physical qubits,
with a topology described by the Pegasus graph P16, illustrated in Section 5.3.2.
As explained in Section 5.3.2, to solve an optimization problem, the hardware
maps the logical qubits defining the Ising/QUBO formulation onto physical qubits
in the QPU topology. This procedure, called minor embedding, can involve an
higher number of physical qubits with respect to the logical ones and different
iterations can exploit different numbers of physical qubits. To solve this specific
problem, the number of qubits exploited varying in a range from 15 to 19 qubits
with a higher frequency of 16 and 17 qubits, as shown with magenta bars in Figure
6.7.
Concerning the time of execution, as reported in the documentation of D-Wave
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[77], the time to execute a single Quantum Machine Instruction (QMI) on a QPU
is formed by two parts. The first one concerns the initialization of the program
onto the QPU and the second one regards multiple sampling for the actual execu-
tion on the hardware. Considering also some overheads, the QPU access time can
be estimated with:

T = Tp +∆+ Ts

where Tp is the programming time, ∆ is an initialization time spent in low-level
operations and Ts is the sampling time, which can in turn be defined as:

Ts ≈ Ta + Tr + Td

where Ta is the single-sample annealing time; Tr is the single-sample readout time,
i.e. the time required to read the state of a single quantum sample; Td is the
single-sample delay time, i.e. the duration between consecutive measurements of
a single quantum state on a quantum processor. The solution of this problem
is found with an estimated average QPU time equal to 0.017 seconds per sample,
with an estimated average sampling time equals to 115.12 µs per sample, composed
by Ta ≈ 20 µs, Tr ≈ 74.5µs and Td ≈ 20.6 µs. To compute the energies of the
returned samples, a post-processing phase is performed in an efficient way, which
allows to spent only 1µs per iteration. It is important to underline that the time
to obtain the solution also depends on the access time, which is determined by
how many QMIs are present in the system at a given time.

6.5 Two Technologies Compared

The approaches used by D-Wave and QuEra to solve the MIS problem are very
different, although they refer to the same principle by which the solutions are
encoded in the lowest energy states, identified by the evolution of a dynamics de-
scribed by a time-dependent Hamiltonian. Although QuEra’s results are obtained
from a simulator and not directly from the QPU, a comparison between the solu-
tions from the two approaches remains worthwhile.
An interesting comparison concerns the distribution of frequencies with which the
two technologies find the different feasible MISs. These frequencies are reported as
percentages in table 6.1, with the representation of the two different distributions
in Figure 6.8. From this, it can be seen that QuEra’s solutions strongly dependent
on the arrangement of the atoms in the graph and their mutual distances, leading
to some solutions being reported more frequently than others. D-Wave employs a
different approach, which is completely independent of the problem graph’s topol-
ogy, resulting in a uniform distribution of the solutions found.
Another term to consider concerns the overhead of the number of qubits needed
to solve the MIS problem in the two technologies. The formulation of the MIS
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Figure 6.7: Bar plot representing the frequency of qubit usage by QuEra and D-
Wave’s QPU for solving the MIS problem over 1000 iterations, with the x-axis
showing the number of qubits used and the y-axis showing the number of times
each qubit count was used.

MIS QuEra % D-Wave %
{1, 2, 5, 8, 9, 12, 14} 45.58 % 13.58 %
{1, 2, 5, 6, 8, 12, 14} 26.5 % 14.47 %
{0, 1, 2, 6, 8, 12, 14} 15.09 % 9.71 %
{1, 2, 5, 8, 9, 11, 14} 6.03 % 19.62 %
{1, 2, 5, 6, 8, 11, 14} 3.45 % 16.75 %
{0, 1, 2, 6, 8, 11, 14} 3.02 % 11.20 %
{0, 2, 4, 6, 8, 12, 14} 0.32 % 14.67 %

Table 6.1: Percentages of different MISs configurations in the solution set

on UDG is hardware-efficient in QuEra, this means that the qubits used for the
computation is equal to the number of nodes in the graph, without any overhead.
As regards D-Wave technology, the graphs that make up the different topologies of
its QPUs are not fully connected. This translates into an overload in the number
of physical qubits in order to encode the problem being considered in the most
correct way. A comparison of the number of qubits used by the two technologies
through the iterations is shown in the bar plot 6.7.
It is also important to note that QuEra efficiently solves the MIS problem on
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Figure 6.8: Bar plot representing the frequencies listed in the table 6.1.

UDGs, which constitute a very particular class of graphs, while D-Wave’s technol-
ogy is totally independent from the problem graph’s topology. To overcome this
limitation, the study [78] explain a procedure called gadgetization, which allows
mapping a general graph into a UDG with a node overhead of at most 4N2, given
N the number of vertices of the graph. For the purpose of this work and for the
maximum capacity of the local simulator, it was decided to take into consideration
a graph that can be defined a priori as UDG.

6.5.1 MIS Problem Solutions Benchmarks

In the previous Section, the results obtained from two quantum approaches was
analyzed but the quality of the solutions found remains uncertain. For this reason,
the analyzed problem was also solved by implementing two classical approaches:
the direct formulation of the ILP (6.6) using the software Xpress5, and the Sim-
ulated Annealing heuristic, detailed in Appendix A.
Since the problem size is very small, it has been possible to implement the ILP
formulation (6.6) on the software Xpress to find the correct MISs of the reference
graph 6.1. This implementation took 0.3 seconds, providing the following seven

5Xpress is a mathematical optimization solver developed by FICO (Fair Isaac Corporation).
It is used to solve complex mathematical programming problems, including integer linear pro-
gramming (ILP).
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7-nodes MISs:

{1, 2, 5, 8, 9, 12, 14}
{1, 2, 5, 6, 8, 12, 14}
{0, 2, 4, 6, 8, 12, 14}
{0, 1, 2, 6, 8, 12, 14}
{1, 2, 5, 6, 8, 11, 14}
{0, 1, 2, 6, 8, 11, 14}
{1, 2, 5, 8, 9, 11, 14},

(6.13)

thus confirming the results obtained by the two quantum approaches (6.1).
Simulated Annealing, the classical counterpart of quantum annealing, is frequently
used in the quantum context to obtain benchmarks for evaluating the quality of
the results obtained by quantum annealers, as shown in [67]. The MISs found by
this algorithm exactly match those obtained from the direct formulation (6.13)
and the two quantum annealers (6.1), providing further validation of the solutions
quality.

6.6 Analysis of the results

In the previous Sections, it was explored how the MIS problem can be addressed.
Remember that, although the goal was to find the MIS, the financial problem
solution is represented by its complement, the MVC. Since there are 7 different
types of feasible MISs, there are also 7 feasible MVC sets, represented by the
following sets of companies:

• ENI, PosteIT, LEONARDO, ArisonHolding,AutMe, STMMI, FINECO, SNAM;

• ENI, PosteIT, LEONARDO, ArisonHolding, AutMe, MEDIOLANUM, FINECO, SNAM;

• ENI, PosteIT, LEONARDO, ArisonHolding, MEDIOLANUM, AirFrance, FINECO,
SNAM;

• ENI, PosteIT, LEONARDO, AristonHolding, AutMe, STMMI, FINECO, AQUAFIL;

• ENI, PosteIT, LEONARDO, ArisonHolding, MEDIOLANUM, AutMe, FINECO, AQUAFIL;

• ENI, PosteIT, LEONARDO, AristonHolding, MEDIOLANUM, AirFrance, FINECO,
AQUAFIL;

• ENI, PosteIT, LEONARDO, AristonHolding, MEDIOLANUM, AirFrance, PIRELLI,
SNAM;
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Consequently, the question arises as to which solution among those identified is
the optimal one.
In terms of optimization, all 7 solutions are equivalent to each other, so it cannot
be decided a priori what MVCs are better than others. However, in financial terms,
the solutions would not be equivalent. To find an answer to the question, it can be
choose to evaluate some market indices for each company in the MVCs. Through
these parameters, it is possible to identify which solution is better than others, thus
obtaining a single solution to the optimization problem. As can be seen from Figure
6.5, the companies “ENI”, “PosteIT”, “LEONARDO”, “AristonHolding” appear in
all solutions and it would therefore be useless to consider them in a subsequent
market analysis, as they would not influence the decision of one set being better
than another. The market analysis goes beyond the scope of this work, however,
some useful indices are provided below as examples.

• Leverage ratio. This class of metrics includes different types of ratios that
consider a company’s level of debt relative to equity.

• Liquidity ratio. These metrics evaluate the company’s ability to pay its
short-term debts.

• Profitability ratio. In this case, the company is evaluated based on its ability
to generate profits.

Finally, it is worth to note that there is a way to consider MIS solutions as not
equivalent to each other, therefore preferring one solution rather than another,
without proceeding with the market analysis. In this alternative, called Maximum
Weighted Independent Set (MWIS) problem, the MIS is formulated by assigning
a weight to each vertex of the graph, following a chosen criterion. The optimal
solution, in this case, will be represented by the independent set of maximum
cardinality that also maximizes the sum of the nodes weights. However, in the
absence of the necessary documentation at the time of writing, it was not possible
to implement the MIS problem as a MWIS problem.

6.7 Conclusions

In this Chapter, the algorithm implemented to solve a small-sized example of the
MIS problem using both QuEra and D-Wave technology was analyzed. Initially,
the application context of the chosen problem in the real world was defined, detail-
ing the constraints that allowed for obtaining the reference graph. After providing
a mathematical formulation of the problem, the implementation that allowed for
obtaining a graph as balanced as possible was studied, also focusing on the cho-
sen layout type. Before proceeding with the algorithm, it was necessary to verify
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that the graph could be identified as a UDG for some value of the radius. Subse-
quently, all the steps of the algorithm implemented on QuEra’s analog Hamiltonian
simulator were analyzed. Then, the process that mapped the graph to atomic co-
ordinates was examined; the implemented adiabatic protocol was described, with
the definition of the relevant parameters; the post-processing phase and the anal-
ysis of the obtained solutions were explained. Further considerations were made
regarding the technical details of the hardware, although it was not possible to
use it directly to solve this problem. Subsequently, the focus shifted to solving the
MIS problem with D-Wave, emphasizing the QPU onto which the optimization
problem was mapped. Following the same post-processing procedure, the results
obtained for the superconducting qubit hardware were analyzed, and then con-
siderations regarding the technical details of the QPU were made. The solutions
obtained from the two technologies were compared, focusing particularly on the
distribution of the MISs found in the solutions space, the number of qubits used to
solve the problem, and the constraint regarding the definition of an initial UDG.
This problem was further solved using a direct method and a classical heuristic,
which confirmed the results obtained. Finally, given that there are multiple MISs
equivalent in terms of optimization, to find the best financial solution, it would
be useful to continue with a market analysis of the companies that are not part of
the set common to all MVC solutions.
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Conclusions

The first part of this work focuses on the basics of Quantum Computing, including
the definition of qubits and mathematical components, the algebraic formulation of
quantum states, the definition of computational bases and their properties. Qubit
states can also be represented on the Bloch sphere as vectors extending from the
center to its surface, with orientation determined by the quantum state being rep-
resented. Significant emphasis has been placed on Hilbert spaces, where quantum
states reside, defining fundamental elements for quantum computation such as Her-
mitian and unitary operators, along with their properties. Fundamental unitary
operators for universal quantum computation have been defined through examples,
including Pauli, Hadamard, and Phase operators. The tensor product has been
defined as a useful operation for distinguishing pure and mixed states, involving
the concept of density matrices. Measurement procedures have been further ana-
lyzed, crucial for interpreting results at the conclusion of a quantum computation.
Although not directly applied in this work, quantum gates and circuits have been
defined together with examples of operators defining principal gates like CNOT
and SWAP. One of the distinctive phenomena of Quantum Computing, entangle-
ment, has been examined with the definition of its main properties and an analysis
of its applications. Lastly, an in-depth exploration of the time evolution of a closed
quantum system has been provided, alongside the presentation of the Schrödinger
equation and its analytical solution.
Subsequently, particular focus was given to the definition of NISQ, delving into
the approaches most utilized by various Quantum Computing technologies avail-
able on the market, while exploring current challenges such as decoherence and
the availability of a limited number of qubits. At the same time, it was high-
ligted the potential of Quantum Computing thanks to the Threshold Theorem.
Further introduced were techniques of information encoding allowing the encod-
ing of real data into qubits. The difference between the two main approaches
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of Quantum Computing, Digital Quantum Computing and Analog Hamiltonian
Simulation, was studied. While the former performs computation with Quantum
Gates and Circuits, the latter simulates complex quantum systems by replicating
their Hamiltonian dynamics described by the Schrödinger equation. Among the
methodologies of Analog Hamiltonian Simulation, Adiabatic Quantum Computing
solves optimization problems by evolving a quantum system’s Hamiltonian from
its initial state to its final state, following the Adiabatic Theorem, wherein if the
Hamiltonian changes slowly enough, a quantum system remains in its instanta-
neous ground state. In this work, this approach was directly applied to solve a
specific combinatorial optimization problem using two quantum annealers. The
first, D-Wave, utilizes superconducting qubits, while the second, QuEra, is an
emerging technology that exploits neutral atoms as computational units.
Afterwards, the cutting-edge technology primarily analyzed for this work, QuEra’s
quantum computer named Aquila, was studied in detail. In this regard, the neu-
tral atom was defined and its possible states were analyzed, specifically identifying
the Rydberg atom. The constituent components of Aquila were examined, as well
as the techniques used for preparing atomic states and their dynamic evolution
over time. Subsequently, the technique applied for measuring the final state was
analyzed. A special focus was given to the Rydberg Blockade phenomenon, crucial
for the chosen problem. In understanding the evolution of the system dynamics,
the Rydberg Hamiltonian was defined along with its parameters, such as Rabi
frequency, Detuning, and laser Phase. Finally, an explanation was provided re-
garding the potential error sources to which this technology may be susceptible.
Subsequently, the Maximum Independent Set (MIS) problem was defined, and
through examples, various real-world applications were described, underlining that
a graph can have multiple MIS and, for this reason, the solution to the MIS prob-
lem may not be unique. Some classical approaches were mentioned, covering both
approximate and exact algorithms, emphasizing their theoretical advancements.
Following this, the quantum approach used by QuEra to solve the MIS problem
was described, highlighting how this technology naturally encodes the problem
through the Rydberg Blockade phenomenon on a specific class of graphs known as
Unit Disk Graphs. The Rydberg Blockade was described in terms of parameters
defining the Rydberg Hamiltonian following the Adiabatic Protocol. Subsequently,
formulations for solving the MIS problem on D-Wave’s superconducting qubit tech-
nology were provided, including Ising and QUBO formulations. A special focus
was given to the minor embedding, a procedure that facilitates the transition from
the Ising/QUBO formulation to D-Wave’s QPUs.
Finally, the context of the MIS problem applied in this work was outlined, focus-
ing on identifying the group of companies with the highest financial risk within a
large pool of related companies. The solution to this problem is represented by the
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Minimum Vertex Cover of the reference graph, which connects to the Maximum
Independent Set as it is exactly its complementary set of vertices. It is impor-
tant to note that, at the time of writing, it was not possible to directly solve the
problem using QuEra’s QPU. Instead, a local Analog Hamiltonian simulator was
used, which operates with only about ten atoms and thus limits the problem size.
The parameters of the problem defining the reference Unit Disk Graph were then
defined, followed by focusing on all the steps that allowed the implementation of
the algorithm: verifying that the initial graph is a Unit Disk Graph; mapping the
graph onto atomic coordinates to enable solution by the simulator; defining the
Adiabatic Algorithm, and setting the parameters such as detuning, Rabi frequency,
and laser phase. The solution was saved, followed by post-processing and analy-
sis of the results. This problem was then solved using D-Wave’s QPU, enabling
a comparison between results obtained from two technologies based on the same
resolution principle but using different approaches. The solutions obtained from
both technologies show all possible feasible MISs of the reference graph, which were
further compared with MISs obtained from the application of a classical heuristic,
the simulated annealing. After evaluating the quality of the results, companies
common to all solutions were identified, highlighting the need to conduct market
analysis on non-included companies to determine the most advantageous financial
solution.
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Appendix A

Simulated Annealing

The Simulated annealing (SA) is a metaheuristic optimization technique presented
for the first time in 1983 by Kirkpatrick et.al in [79] which is inspired by the anneal-
ing process exploited in metallurgy, with which a metal at a high temperature is
slowly cooled. The peculiarity of this process is reflected in the microscopic world
of particles where atoms in metals move rapidly at high temperatures and subse-
quently adopt a more ordered state as they cool. Following this scheme, simulated
annealing tries to recreate this procedure by starting from a highly energetic state
and then slowly moving to a minimum energy state, which codifies the solution of
the optimization problem considered. The strength of this heuristic is the ability
to not fall to local minima and therefore to provide the solution corresponding to
the global optimum.
At each step, based on the current state of the system x, the SA decides probabilis-
tically whether or not it is better to move to a state x∗ being in the neighborhood
of x. Since the objective is to obtain a solution with the lowest possible energy,
it is appropriate to consider a probability distribution as a function of the sys-
tem temperature. Unlike other procedures, this metaheuristic does not always
accept better solutions and this prevents the algorithm from getting stuck in a
local optimum.

A.1 The SA algorithm’s steps

The procedure adopted by simulated annealing can be divided into the following
different steps:

1. Problem definition

2. Exploration of the solution space
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3. Acceptance criterion

4. Temperature schedule

which are analyzed in the next Sections.

A.1.1 Problem definition

First of all, it is necessary to define the Hamiltonian of the optimization problem
Hproblem, which represents the system’s energy. After that, the algorithm proceeds
with the definition of the initial temperature Tmax and the initial solution, typically
random. A high value of Tmax allows the algorithm to explore a wide range of
solutions, but at the same time, too high a value can make the convergence of
the method hard. In our case the parameter β that controls the temperature is
calibrated based on the bias values associated with the nodes of the optimization
problem under consideration. Remember that, in an Ising formulation, biases are
represented by the term h applied to each spin s ∈ {−1, 1}. The objective is to
define a range of values for β that optimally explores the solution space.

A.1.2 Exploration of the solutions space

In this step, the algorithm explores the solution space by examining the neighbor-
hood of the reference solution. Thus, considering a solution x, small perturbations
yield a new solution x∗ within the neighborhood of x.

A.1.3 Acceptance criterion

Considering a solution x and a solution into its neighborhood x∗, their energies
are computed using the Hamiltonian of the problem:

E(x) = Hproblem(x) (A.1)

from which it can result that E(x) > E(x∗) or E(x) < E(x∗). At this point, the
temperature T comes into play, defining the probability distribution P(x, x∗, T ) by
which one solution is chosen over another. The probability distribution considered
is known as the Boltzmann Probability Distribution function:

P(x, x∗, T ) = e−∆E/kT (A.2)

where k is the Boltzmann constant and T is the temperature of the system in
Kelvin. This function describes the probabilty of a system in thermal equilibrium
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at temperature T to have energy E.
Defining

∆E = E(x∗)− E(x) (A.3)

as the difference between the new solution’s and the reference solution’s energy,
the following acceptance criterion holds:{

P(x, x∗, T ) = 1 if ∆E < 0

P(x, x∗, T ) = e−∆E/kT otherwise
(A.4)

i.e. if the new solution has lower energy, it is accepted with probability 1; otherwise,
it is accepted according to the Boltzmann probability distribution.
Note how, with this rule, solutions with higher energy are not discarded outright,
allowing the algorithm to avoid getting stuck in local minima. This approach is
known as Metropolis-Hastings criterion.

A.1.4 Temperature schedule

As mentioned earlier, an initial temperature Tmax is initialized so that the solu-
tion space can be explored as widely as possible. At each step, this temperature
decreases gradually to a minimum value Tmin, following a scheduling that allows
the algorithm to achieve convergence.
Initially, the algorithm accepts solutions that may be even worse than the cur-
rent ones, but as the temperature decreases it becomes more selective, moving
towards better solutions with higher probability. This procedure should guarantee
the achievement of the global optimum.

The SA algorithm is carried out repeatedly following all the steps starting from a
value β0 = 1/kTmax until reaching a target βtarg = 1/kTmin. The pseudocode that
summarizes the previously listed steps is reported below.
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Algorithm 1 Simulated Annealing pseudocode

Input: β0, βtarg
Output: Solution with minimal energy x

1: β ← β0 = 1/kTmax
2: x← initial solution
3: E(x)← initial solution energy
4: while β < βtarg do
5: x∗ ← new candidate solution
6: E(x∗)← new candidate energy
7: ∆← E = E∗ − E
8: if Accept (∆E, β) then
9: x← x∗

10: E(x)← E(x∗)
11: end if
12: β ← update β value
13: end while
14: return x
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[50] S. Khuri and T. Bäck. “Evolution strategies: An alternative evolutionary
algorithm”. In: Lecture Notes in Computer Science 1063 (1995). doi: https:
//doi.org/10.1007/3-540-61108-8_27.

[51] Martin Pelikan, Rajiv Kalapala, and Alexander K. Hartmann. “Hybrid evo-
lutionary algorithms on minimum vertex cover for random graphs”. In: Pro-
ceedings of the 9th annual conference on Genetic and evolutionary compu-
tation (2007), pp. 547–554. doi: https://doi.org/10.1145/1276958.
1277073.

99



BIBLIOGRAPHY
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