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Summary

The active response of cells to mechanical cues has been extensively studied over the past
two decades. Initially, research focused on the mechanical behavior of cells cultured on flat
substrates and subjected to periodic stretching. Several theoretical models were proposed
to account for various physical factors influencing cellular response. However, only in the
last decade there has been a growing interest in how geometrical cues, such as substrate
curvature, affect cell behavior. This increased interest stems from experimental findings
highlighting the importance of curvature in cell mechanical response due to the interplay
between cellular contractility and substrate geometry. This Master’s Thesis investigates
the mechanical response of cells on curved substrates using a theoretical framework. It
analyzes the effect of substrate curvature on the active reorganization of a cell’s internal
structure, which is critical for understanding processes such as tissue engineering.

The study begins with a comprehensive biological introduction, outlining the signifi-
cance of mechanical factors in cellular behavior. Historical context is provided, tracing
back to the late 1980s when studies first demonstrated that cells respond to mechanical
as well as chemical signals. Numerous experiments have shown that cells reorganize their
internal structure when subjected to external periodic deformation, as observed in blood
vessels and airways. Academic research has predominantly focused on phenomenological
observations of cells on two-dimensional flat substrates. Advances in imaging techniques
and measuring tools have enhanced our understanding of how cells respond to mechanical
stimuli in these settings. Key findings include the alignment and reorientation of cells in
response to cyclic stretching, with reorientation angles depending on factors such as cell
type, substrate stiffness, and the amplitude and frequency of applied deformation. Exper-
imental results indicate that cells exhibit markedly different responses on curved surfaces
compared to flat ones. Specifically, cells tend to align their stress fibers (SFs) in distinct
patterns depending on the substrate curvature. For example, on cylindrical substrates,
muscle cells, with long SFs, align with the direction of least curvature, while epithelial cells
orient their SFs toward the maximal curvature direction. This counterintuitive result is
explained by the interplay between cellular contractility and substrate curvature, causing
the SFs to bend.

Firstly, the theoretical setup adopted in this work builds on the mathematical model
by Biton and Safran, which explains some experimental results on curved substrates.
This model hypothesizes a competition between cellular contractility and the bending
of the internal structure due to substrate curvature. Expanding on Biton and Safran’s
work, a more structured mathematical model is developed to explain the reorientation
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process while considering recent findings in cell modeling. The combination of bending
and contractility forces creates a complex energy landscape governing cell stability and
configuration. Stability analysis, conducted through bifurcation analysis, reveals critical
configurations where cells undergo significant morphological changes. These configurations
result from the competition between bending energies and contractile forces, leading to
stable and unstable equilibrium states. It is shown that the stable configuration depends
on a parameter containing both contractility and curvature information. Comparisons
with Biton and Safran’s results demonstrate that a limiting case of the general model
aligns with their findings.

Further, inspired by biological contexts, the Thesis examines cell reorientation on in-
flated cylindrical substrates, considering both isotropic and anisotropic mechanical re-
sponses. This study explores the kinematics of cylinder inflation and the resulting cellular
behavior, highlighting how the deformed radius influences cell orientation. It is shown that
in a controlled deformation setup, only a few experimental results are accurately predicted
by this model, suggesting the need for expansion by considering cellular-level interactions.
Hence, in the final sections, the analysis is extended to materials with initial stress, using
hyperelastic theory to describe residual stresses in orthotropic materials. The impact of
residual stress on cylinder inflation and subsequent cellular reorientation is investigated,
providing a more comprehensive understanding of the mechanical environment that cells
experience in vivo. This analysis includes a detailed theoretical discussion of the strain
energy function and the role of residual stress in modulating cellular responses.

This work combines experimental observations with rigorous mathematical modeling
to elucidate the mechanical principles governing cell behavior on curved substrates. The
findings have broad implications for biomedical applications, emphasizing the importance
of understanding the mechanical environment of cells to design effective therapies and
biomaterials.

In detail, the thesis is organized as follows.
Chapter 1 provides an overview of how cell behavior is influenced by mechanical factors

and geometrical cues, in addition to chemical signals. It starts with historical studies that
demonstrated cell alignment along stretched substrates. The Chapter discusses the role of
the cytoskeleton, particularly actin stress fibers (SFs), in cellular responses to mechanical
stimuli. It also highlights the importance of geometrical cues such as curvature, which
significantly affect cellular behavior. Experimental findings on cellular reorientation on
curved substrates are reviewed, demonstrating the role of active contractility and the
delicate balance between SF bending and contractility in cellular organization.

Chapter 2 delves into the mechanical modeling of cells on curved substrates, particu-
larly focusing on the linear theory of elastic plates bent over a cylinder. It covers kinematic
assumptions, the linear solution of a plate bending over a cylinder, and the stored elastic
energy after bending. The Chapter explores the contribution of active contractility to cell
behavior and the stability of different cellular configurations on curved surfaces. Bifurca-
tion analysis is used to understand critical configurations and their stability, considering
the competition between bending and active contractility.

Chapter 3 focuses on how cells reorient in response to the inflation of cylindrical sub-
strates. The Chapter begins by defining the kinematics of cylinder inflation. Then, an
overview of the main theoretical models is presented, with particular attention to the
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impact of the chosen strain energy function. Finally, the Chapter investigates the me-
chanical response of a material with orthogonal families of fibers within the cylindrical
structure, in accordance with the mathematical models for cell reorientation available in
the literature. Particular attention is paid to the remodeling in response to controlled
inflation, aiming to identify optimal configurations that minimize system energy states.

Chapter 4 examines how pre-existing residual stresses in materials affect cellular re-
orientation. It begins with the hyperelastic theory of residual stress, covering preliminary
considerations and the strain energy function for residually stressed orthotropic materials.
The Chapter then discusses residual stress effects in cylinder inflation, including bifurca-
tion analysis and the impact of curvature and active contractility due to prestrain. It
also explores different scenarios, such as specific cases where residual stress configurations
significantly influence cellular behavior.

Chapter 5 concludes the Thesis by summarizing the key findings from the previous
Chapters. It discusses the broader implications of these findings for biomedical applica-
tions, such as tissue engineering and the design of biomaterials. The chapter also suggests
directions for future research, emphasizing the importance of understanding the mechan-
ical environment of cells to develop effective therapies and innovative biomaterials.
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Chapter 1

Biological introduction

During the late 1980s, groundbreaking studies in cardiovascular pathophysiology demon-
strated for the first time that cell behavior is influenced not only by chemical signals but
also by mechanical factors. Buck was the first to observe this phenomenon, prompted
by the alignment of cells along the aortic wall [3]. He then performed an experiment
where cells were planted on a cyclically stretched substrate [4], noting that almost all cells
aligned themselves at roughly 45/90 degrees relative to the primary direction of stretch.
Captivated by these observations, various researchers explored the reactions of different
cell types to cyclic stretching [5–7]. Most of these investigations indicated an orientation
angle, implying an active cellular response to the applied stretch. The sole study to report
contrary findings was by Matsumoto et al. [8], who experimented with macrophages. This
indicated that the cytoskeleton plays a crucial role in cell behavior. In particular, the cy-
toskeleton includes a network of filaments, with actin stress fibers (SFs) being crucial for
contractility. These fibers are composed of actin filament bundles that are interconnected
by myosin or other proteins, arranged either parallel or at certain angles, as shown in
Figure 1.1.

At the ends of SFs, a complex called focal adhesion (FAs) connects the cytoskeleton to
the external environment, enabling cells to detect changes, such as mechanical or chemical
ones, and react accordingly. Indeed, SF reorientation is strongly associated with cell
reorientation. This relationship was demonstrated by White et al. [10] and Wong et al. [11],
who studied the correlation between periodic stretches and cytoskeletal deformation.

Furthermore, cellular behavior under in vivo conditions is significantly influenced by
geometrical cues, such as curvature, which are ubiquitous throughout the human body.
Indeed, the response of cells to curved substrates has attracted a significant amount
of interest in the past decade. Several studies [12–14] have investigated cell reorienta-
tion when cultivated on curved, often cylindrical, substrates. These investigations have
demonstrated that cytoskeletal reorientation varies widely depending on the curvature
of the substrate. Experimental findings have revealed that long stress fibers (SFs) align
themselves with the direction of lesser curvature (in the case of a cylinder, the direction
of the generator), while short, thick basal SFs align with the maximal curvature direction,
which is a counterintuitive result. Indeed, these studies have substantiated how active
contractility plays a pivotal role in the reorientation of SFs, as suggested by Biton and
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Biological introduction

Figure 1.1. Sketch of the inner structure of a typical cell and of its
adhesion to the substrate [9]

Safran [15]. According to this hypothesis, the organization of the cytoskeletal cells subject
to curvature is determined by a delicate balance between the active contractility exerted
by the SFs and the bending of the SFs. However, recent work [16] has demonstrated that
within the same cell, the behavior of SFs splits into two subpopulations, suggesting a more
nuanced understanding is required.

The subsequent sections of this study focus on cellular responses to mechanical cues
on flat substrates and under curvature. Section 1 outlines the main findings regarding
cellular reorientation under stretch on planar substrates. In contrast, Section 2 investigates
the impact of curvature on cell behavior, focusing primarily on cytoskeletal organization.
Section 3 briefly explains the statistical methods used to compute the experimental results.
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Biological introduction

1.1 Phenomenological Observation of Cells on Two-
Dimensional Flat Substrates

Numerous attempts have been made to elucidate the mechanisms underlying cell align-
ment and reorientation. Advances in technology, including imaging techniques and sophis-
ticated measuring tools, have provided a more precise understanding of cellular responses
to mechanical stimuli. These advances have revealed additional features of cellular behav-
ior in response to mechanical cues. The following summarizes the main aspects achieved
over the years, with a more detailed review available in Giverso et al. [9].

Typically, two-dimensional settings are adopted to investigate cell behavior under
stretch. These settings often involve a silicone and/or polydimethylsiloxane (PDMS) sub-
strate [5–7], coated with collagen or other substances to promote cell attachment. Cells
are then seeded onto the substrate and, upon attachment, the substrate is stretched along
one or two perpendicular directions. In most experiments, a unidirectional cyclic stretch
is applied, as it mimics many in vivo biological situations.

An important quantity introduced in the literature, both from experimental and math-
ematical perspectives, is the biaxiality ratio:

r = −maxt∈T ϵyy(t)
maxt∈T ϵxx(t) ,

where ϵxx is the strain in the main stretching direction, and ϵyy is the strain in the
perpendicular direction. If the deformation is uniaxial without constraints on the edges,
then r corresponds to the Poisson ratio of the elastic material that makes up the substrate.
However, uniaxial settings do not provide complete control over deformation along the
vertical axis. Therefore, biaxial tests, which control both vertical and horizontal strains,
are adopted for broader and more controlled experiments.

As mentioned above, most experiments focus on periodic deformation applied to the
substrate to simulate biomechanical stimuli. Sinusoidal [17], triangular, or trapezoidal
waveforms are commonly used to describe the strain. Generally, the mechanical properties
of the substrate dictate the response to such a periodic deformation. Subcellular contact
guidance introduced by anisotropic substrates, such as microgrooved surfaces, introduces a
mechanical cue that alters reorientation behavior, as demonstrated by Tamiello et al. [18].

The cell cytoskeleton plays a fundamental role in sensing external stimuli and reorga-
nizing its structure. One of the first works to highlight the relevance of the cytoskeleton
in the realignment process is by Hayakawa et al. [19], who studied the relationship be-
tween cytoskeletal rearrangement and cytoplasm reorientation. They showed a significant
time difference between the reorientation of stress fibers (SFs) and the reorientation of
the cell body. Subsequent experiments focused on the role of SF subtypes. Roshanzadeh
et al. [20] demonstrated that the cytoplasm, whose reorientation is driven by peripheral
SFs, oriented at 76◦, while the nucleus, guided by the perinuclear cap fibers, exhibited
different dynamics.

However, immune cells do not appear to respond to the stretch-avoidance mechanism,
as shown by Matsumoto et al. [8]. This behavior is likely due to the lack of a robust
cytoskeleton in immune cells, preventing them from generating sufficient traction force
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Biological introduction

necessary for cell reorientation.
Some experiments have been conducted with a frequency set to 1Hz [21], correspond-

ing to the physiological value of a normal heartbeat. Jungbauer et al. conducted one of
the most detailed studies concerning the effects of amplitude and frequency [22]. They
found that a cell type-dependent minimal threshold frequency is required to induce sig-
nificant cellular reorientation. Moreover, there exists an upper threshold frequency beyond
which the reorientation time saturates. This cell-type-dependent frequency threshold is
crucial and is supported by several experimental reports. There is a similar dependence
with respect to amplitude, where a minimum amplitude threshold is necessary to trigger
reorientation, while an upper threshold is naturally imposed to prevent cell damage [17].
Mathematically, this behavior cannot be described by an elastic medium alone. The
dependence on frequency and waveform selection affects cell behavior, necessitating the
introduction of characteristic times or viscous dynamic processes, as demonstrated in [23].

Lastly, the dependence of this process on the stiffness of the substrate is worth analyz-
ing. In most experiments, the elastic modulus of the substrate material is close to 1MPa,
making them quite stiff and nearly impossible to deform by cellular traction forces. How-
ever, some experiments have highlighted the effect of soft substrates on cell reorientation.
It is suggested that, due to the low substrate stiffness, externally applied strain is not fully
transferred to the cells attached to its surface. Faust et al. [24] demonstrated that cells
seeded on very soft substrates (1 − 3kPa) did not show a statistically significant response
to periodic stretching. Other studies, such as [25], showed that cells tend to orient parallel
to the principal stretching direction on softer, thick collagen gels.

1.2 The Influence of Curvature on Cellular Behavior
The intricate morphologies observed in biological systems, such as the undulating contours
of leaf surfaces or the convoluted arrangements of circulatory networks, frequently mani-
fest as curved geometries. This phenomenon incites inquiries into the mechanobiological
significance of curvature. Recent advancements in imaging and analytical methodologies
have illuminated these effects across diverse scales, ranging from molecular interactions at
lipid membranes to the developmental processes shaping epithelial tissues and the emer-
gence of cortical features on mammalian brain surfaces.

Nevertheless, elucidating the singular influence of curvature on cellular behavior poses
a formidable challenge, primarily due to the technical limitations associated with in vivo
three-dimensional imaging within living organisms. To avoid this constraint, experiments
are conducted within controlled artificial environments, facilitating the manipulation of
curvature parameters in isolation. Figure 1.2 visually encapsulates some of the effects
observed across varying magnitudes of scale.

For instance, the deliberate imposition of controlled curvature on cellular and tis-
sue substrates has yielded insights into the underlying mechanisms governing curvature-
dependent guidance and sensory responses. For a comprehensive examination of these
phenomena, the interested reader is directed to recent reviews [26, 27]. While the explo-
ration of curvature effects across various scales presents an intriguing material of study, our
focus herein centers specifically on experiments and discoveries about the reorganization
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Biological introduction

Figure 1.2. Illustration depicting curvature effects across scales [26]

of the cytoskeletal’s stucture in cells in reaction to curved substrates.

1.2.1 Experimental Results
Although geometrical cues, such as nano- and microtopographical features of substrates,
are well-documented to influence cytoskeletal organization, much remains unknown about
how larger geometrical cues, on the order of the cell scale, impact cellular behaviors.
Nevertheless, significant efforts have been made in the last decade to shed light on this
subject. Below, we present a detailed overview of key experiments and findings. To
capture curvature effects, these experiments are carried out on artificially built substrates
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Biological introduction

with controlled curvature, such as cylindrical channels of convex and concave curvature
[13,14,28], or wires [12,16] with varying radii.

A study by Nathan D. Bade et al. [16] focused on the impact of macroscale curvature on
the cytoskeletal organization of various cell types. Specifically, the researchers examined
the responses of human vascular smooth muscle cells (hVSMCs) and mouse embryonic
fibroblasts (MEFs) cultured on wires of varying radii.

For wires with large radii, no discernible preferential configuration was evident for
either cell type. However, as the radii decreased, a striking axial alignment emerged. In
particular, around a critical radius (Rc = 40µm), isolated hVSMCs exhibited a weaker
alignment compared to MEFs (see Figure 1.3), possibly attributable to lower levels of
F-actin in the former. Consequently, hVSMCs might incur a lower energy penalty for
orienting in alternate directions.

Furthermore, employing novel imaging techniques, the study unveiled two different
subpopulations of stress fibers (SFs), apical and basal, each exhibiting distinct alignment
patterns directly influenced by curvature. Both cell types demonstrated a tendency for
basal SFs to align circumferentially, particularly pronounced in smaller cylinders where
basal SFs approached orthogonality to the apical ones. Further investigation revealed an
increase in the average angle between basal and apical SFs with cylinder curvature.

Interestingly, activation of the Rho protein in both MEFs and hVSMC resulted in the
formation of thicker, densely packed stress fibers predominantly aligned in the circumfer-
ential direction for Rc = 125µm, mimicking the patterns observed in vivo vessels. The
thickness of SFs typically correlates with the measure of contractile strength, suggesting
that the activation of the Rho protein may induce a transition from a bending-dominant
regime to a contractility-dominant one. This transition underscores the dynamic interac-
tion between biochemical signaling and mechanical cues in cellular responses to curvature.

However, the reorientation behavior is cell-type dependent. Indeed, Hannah G. et
al. [12] cultured a monolayer of epithelial cells on artificially manufactured wires, which
were subsequently fixed and imaged after 48 hours of growth. Alongside uncovering in-
triguing migratory behaviors on these wires, we focus only on the alterations in cytoskeletal
organization in response to variations in the wire’s radius (R).

Specifically, the researchers observed that cells exhibited a random orientation of fibers
on relatively large radii, whereas actin fibers became highly oriented perpendicular to the
longitudinal axis of the wire at radii below approximately 40µm, even in cases where a
single cell wrapped around the wire. This behavior is starkly in contrast to observations
of fibroblast cells, which tend to align with the direction of the wires. Additionally, an
increase in focal adhesion (FA) density was observed, with multiple FAs found along a
single fiber, in contrast to the typically flat distribution, where only two FAs are present
at the extremities. These studies underscore the significance of curvature effects even at
the cellular level, while also affirming a cell-type-dependent response.

Moreover, it is essential to understand how the sign of curvature, i.e., the convexity
or concavity, of the substratum impacts the behavior of cells. A recent study by Yang
Jin et al. [28] focused on analyzing the effects of curvature on airway smooth muscle
cells (ASMCs). These effects are particularly noteworthy because these cells wrap around
tissues with significant curvature in vivo. The researchers cultured cells on a 3D-printed
substrate featuring cylindrical channels, both concave and convex.
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Figure 1.3. Mouse embryonic fibroblasts (MEFs) cultured on a cylinder with
a radius of Rc = 40µm. The comparison is drawn between an isolated cell and
a confluent monolayer. [16]

It is important to note that the computed angles are considered biased because they are
compared with results from a flat substrate. For a radius of R = 100µm, the experiments
revealed a perpendicular alignment of ASMCs on concave surfaces, with a biased angle
of 95◦, while the angle was close to 30◦ for convex surfaces, as illustrated in Figure 1.4.
Decreasing the radius, thus increasing the curvature of the surface from 100µm to 50µm,
resulted in an increase from 95◦ to 115◦ for concave surfaces, and a decrease from 30◦ to
15◦ for convex surfaces. This trend aligns with the hypothesis that muscle cells tend to
reorient towards the cylinder axis for higher curvature values.

As depicted in Figure 1.4 (B, D), the orientation of stress fibers forms a helical structure
in a three-dimensional space, mirroring observations in vivo. Additionally, Figure 1.4 (C)
illustrates that for concave surfaces, SFs are suspended between two anchor points, whereas
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Figure 1.4. Curvature induced stress fibers (SFs) helical arrangement of ASMCs [28]

they are closely attached to the substrate for convex surfaces. The behavior exhibited on
concave surfaces was also observed for different surfaces when the substrate exhibited
concave curvature [29].

Finally, the researchers analyzed the differences in gene expression of ASMCs between
flat and curved substrates. The results revealed that cells on concave surfaces exhibited
lower levels of the contractile phenotype α-SMA and displayed a diffusion-like state on
convex surfaces, while the proliferation phenotype was higher. These findings underscore
the significant role of substrate curvature in regulating gene expression in cells.

Another study [13] explored experiments involving human tubular cells (HK-2) and
canine distal tubule cells (MDCK), representing two types of renal epithelial cells. The
investigation focused on a curved stiff substrate with both convex and concave curvature,
mimicking canal shapes within a multiparametric analysis. The range of analysis radii
extended from R = 44µm, akin to in vivo human proximal tubules, to R = 908µm.

Consistent with previous findings, on substrates with larger curvatures, stress fiber
alignment was observed perpendicular to the axis of the channel. In contrast, on concave
substrates, the F-actin structure was oriented parallel to that direction, suggesting that

15



Biological introduction

the sign of curvature also influences the reorientation phenomenon in epithelium-type
cells. In particular, both types of cells exhibited a similar alignment tendency, albeit with
minor differences in magnitude. Interestingly, neither HK-2 nor MDCK cells demonstrated
a significant alignment difference between the basal and apical subpopulations.

Furthermore, the relationship with the myosin contractility intensity of the fibers was
investigated. Specifically, MDCK cells were treated with a Rho kinase inhibitor, reducing
cell stiffness, leading to a greater orientation towards the perpendicular direction. This
finding adds another dimension to the importance of myosin-activated cell contractility
factors in the reorientation process.

Regarding the differences in cell families, these experiments showed that for both con-
cave or convex curvature, muscle-type cells and epithelium-type cells exhibit an opposite
response to curvature: while the former align along the axis of the cylinder when exposed
to convex curvature and perpendicular to it for concave ones, the latter spontaneously
orient toward the transverse one for convex curvature and longitudinally when exposed to
concave. Nevertheless, although [16] showed the existence of two subpopulations of SFs,
the apical and the basal, with different behavior for both hVSMC and MEF, Yu and his
collaborators [13] proved that MDCK and HK-2 do not exhibit such behavior.

A notable study is the one conducted by Rougerie et al. [14] that involved MDCK cells.
Unlike previous experiments, this study explored a broader range of curvature, ranging
from a maximum curvature radius of R = 44.4µm to a minimum radius of R = 2µm. Fur-
ther validation of previous findings was achieved, with a specific focus on understanding
how curvature influences epithelial growth and elongation. The researchers experimented
with five distinct substrates featuring varying degrees of grooves and ridges, each charac-
terized by a progressive smoothing of the junctions between the ridges and grooves.

The findings of this study highlighted the significant impact of the most convex regions
on the distribution of stress fibers. Specifically, upon imaging of the SFs in proximity to
the regions adjacent to the most convex points, the researchers observed the presence
of thick F-actin bundles aligned parallel to the axis of the groove without intersecting
the convexity. Notably, despite the typical orientation of SFs towards the direction of
maximum curvature expected in epithelial cells like MDCK, the cells exhibited a longitu-
dinal reorientation response when subjected to extreme curvature values. Moreover, they
proved a linear relationship between the cells monolayer and the maximum curvature of
the topography.

As a final cue, another paper by Werner et al. [30] carried out a study investigating the
impact of cell-scale curvature and nanogeometric cues on the migratory behavior of human
bone marrow stromal cells (hBMSCs). They revealed the presence of a transition point
where meso-scale curvature supersedes nano-scale contact guidance. Interestingly, for
this cell type, the transition point was pinpointed at a cylinder diameter of approximately
1000µm, which exceeds the size of hBMSCs approximately tenfold. In particular, previous
experiments used radii smaller than this critical value. While this behavior is unquestion-
ably contingent on cell type, it is conceivable that prior experiments were unaffected by
nanoscale substrate imperfections, thus underscoring the pivotal role of curvature alone.

These experiments provide valuable insight into the cellular response to curvature.
Besides the clear cell-type dependency seen in most experiments, even within the same
cell-type family, the existence of two different SFs subpopulations with differing behavior is
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highlighted. This behavior alone supports the hypothesis of Biton and Safran [15], where
the cell cytoskeletal orientation is determined by a competition between the contractility
of the stress fibers and their bending. Moreover, this hypothesis is also supported by the
experiments of enhancing or inhibiting Rho protein [13, 16], confirming the relationship
between curvature and the myosin-activated contractility of the cells. Finally, it seems
that curvature also affects gene expression of cells and the contribution of contact guidance
in cellular development.

These collective findings underscore the intricate interplay between curvature and cel-
lular responses, revealing nuanced mechanisms underlying cytoskeletal organization and
gene expression modulation in various cell types.

1.3 Statistical Description of the Results
In most experiments, the orientation angle θ plays a crucial role, necessitating a brief
discussion of the main techniques employed to compute these angles. For experiments
involving cell alignment under stretch, a common approach is to measure the angle θ
between the stress fibers of the cell and the primary stretching direction. However, it has
been demonstrated that cell reorientation exhibits symmetries regarding angle alignments.
Specifically, there is no inherent preference for a configuration with an angle θ over a
configuration with an angle π − θ. Furthermore, the context of reorientation remains
unaffected by cell polarity, implying that angles θ and π + θ, as well as −θ and π − θ,
represent equivalent configurations.

Similar considerations apply to cells subjected to curvature. In the case of experiments
conducted in artificially constructed environments, where one direction typically exhibits
zero curvature, this direction is often referred to as the axial direction because of the
prevalent wire or cylindrical channel shapes. Consequently, the angle of reorientation θ is
related to the angle between the stress fibers and the axial direction.

Data are typically presented using a histogram depicting the distribution of angles
within the interval [0, π

2 ], or by directly computing the average angle θ̄ over that inter-
val. In particular, when cells are analyzed on curved substrates, the cell cytoskeleton is
examined slice by slice along the cell thickness, forming a stack of layers. Consequently,
the mean orientation angle θ is calculated by initially averaging the orientation within a
stack of a single cell, followed by calculating the mean throughout the population [14,28].
These imaging techniques also facilitate the study of different behaviors exhibited by SFs
subpopulations, as highlighted previously [16].

However, due to potential limitations associated with the mean reorientation angle,
alternative parameters have been employed. One such parameter, commonly used for
both flat and curved substrates [12,13], is the order parameter defined as:

S :=
Ú π

0
g(θ) cos(2θ)dθ = ⟨cos(2θ)⟩

Here, g(θ) represents the empirical distribution function of cell angles. Consequently,
a random orientation corresponds to S = 0, a fully parallel orientation to S = 1, and a
perpendicular orientation to S = −1. However, it is important to note that this parameter
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does not precisely quantify the orientation angle unless it corresponds to either a parallel
or perpendicular orientation.
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Chapter 2

Cell over curved substrata

Numerous studies have demonstrated that cells can detect and react to both mechan-
ical and chemical signals. A variety of mathematical frameworks have been developed
to explain the reorganization of the cell’s cytoskeleton, from models focusing on strain
avoidance to those emphasizing minimal energy configurations [9]. Yet, there have been
limited efforts to simulate how cells respond to mechanical stimuli related to curvature.

An early theoretical approach to model the reorientation in cylindrical bending was
proposed by YY Biton and S A Safran [15]. Specifically, they posited that the reorientation
angle θ, which is the angle between the stress fibers and the cylinder’s axis, is influenced
by a balance between the shear stress due to the active contractility of the fibers and
their own bending. This theory effectively accounts for the differing behaviors observed
in elongated cells, such as fibroblasts, compared to discoid cells like epithelial cells.

Another model was introduced by Sanz-Herrera et al. [31]. This model, based on a
multiscale analysis of the stress fibers, assumes that curvature diminishes cell contractility
and also induces a pre-deformed state. Although the former assumption is supported by
experimental evidence [26], the model’s predictions do not align with experimental results.
Contrary to the model’s predictions, cell behavior on flat surfaces should differ from that
on cylindrical substrates, contradicting experimental observations.

Despite its restrictive assumptions, the model by Biton and Safran is highly regarded
within the scientific community, particularly for its hypothesis that cell cytoskeletal be-
havior involves a compromise. This Chapter will analyze these results within a more
structured context than that presented in the original article.

The Chapter is structured as follows. Section 1 introduces the theoretical framework
for the bending of a transversely isotropic plate bent over a cylinder. Section 2 discusses
the active contractility effects due to myosin-activated SFs. Section 3 analyzes the optimal
configurations and the bifurcation diagram, starting from the elastic energy stored after
the superposition of bending and contractility effects. Conclusions are then drawn.
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2.1 Linear theory of elastic plates: bending over a
cylinder

In an article by Biton and Safran, the authors presume that a cell can be approximated
as a thin plate, with the thickness h being significantly smaller than the other dimensions
L. Although this hypothesis might seem excessive, it has been validated by numerous ex-
periments, which show that cells exhibit a relatively small h after adhering to a substrate.

2.1.1 Kinematic assumptions
To derive the governing equations of a plate, one can use an expansion of the leading order
equations with respect to a small parameter ϵ = h

L ≪ 1 and then take the leading order.
This approach is supported by extensive literature on asymptotic methods and Gamma
convergence theory [32].

Our goal here is to employ plate theory to explain some of the observed cell behavior
in experiments. To achieve this, we utilize a linear plate theory that provides analytically
tractable results and can still capture the main features observed in cells [33]. By "linear,"
we mean that strains and displacements are considered to be small quantities. Addition-
ally, we employ a linear constitutive equation to describe the material’s elastic response,
which is characterized by a Hookean response function.

The assumptions underlying our analysis are as follows:

• The thickness h is much smaller than the other dimensions of the plate L.

• The strains ∂ui

∂xj
≪ 1, and thus a good approximation of the strain tensor is eij =

1
2( ∂ui

∂xj
+ ∂uj

∂xi
).

• The displacements are small, and the vertical displacement ξ is much smaller than
the thickness h.

• The material is described by a Hooke constitutive equation.

Let the plate be described in the form Ω = Sn × [0, h], where Sn is a closed subset
of R2, hence we are assuming that the reference configuration is flat. Let the coordinate
z ∈ [0, h] be the transverse coordinate.

The theory of plates dictates that the strain and stress fields are determined by the
displacements of a particular cross section of the plate. To elucidate this concept, let’s
consider an isotropic plate that undergoes bending deformation. One portion of the plate
experiences compression, while the other portion experiences stretching. On the con-
vex side, the points undergo extension, which decreases as we move through the plate’s
thickness, becomes zero, and then experiences compression. Consequently, there exists a
surface, referred to as the neutral surface, that is free of both compression and stretching
- which is why we defined the domain as Sn. This surface clearly lies in the middle of
the plate. The governing equations of the system depend on the unknowns, such as the
vertical displacement of the neutral surface (known as "transverse displacement") and the
in-plane displacement of the surface, which are completely decoupled from each other.
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However, this is a relatively straightforward scenario. In more complex cases involving
higher order theories and anisotropic materials, the neutral surface may not be present,
while still accurately describing the fields based on the plate’s displacements. Specifically,
while the in-plane displacements were previously decoupled from the transverse ones, this
is no longer the case. These quantities are now coupled within the governing equations of
the body. Nonetheless, we will assume that the material anisotropy is symmetric respects
the neutral surface, meaning that the anisotropy is confined within the in-plane domain.
Consequently, we can decouple the two terms once again, resulting in a system that is
structurally identical to the isotropic case [34].

The energy in a bent plate arises from two sources: the stretching energy, which results
from the in-plane deformation of the neutral surface, and the bending energy, which is
due to the displacement in the transverse direction of the neutral surface. Primarily, the
stretching energy significantly outweighs the bending energy, which can be disregarded.
Nonetheless, if the neutral surface is deformed without any in-plane stretching, the stretch-
ing energy becomes negligible, leaving bending as the sole contributor to the total energy.
This illustrates the interplay between geometry and elastic deformation; the plate tends
to minimize stretching as much as possible [35]. Typically, if possible, the neutral surface
shifts into a developable surface, which maintains an isomorphic relationship with the
plane. According to the Gauss egregium theorem, such surfaces exhibit zero curvature,
indicating an absence of stretching deformation.

2.1.2 Linear solution of a plate bent over a cylinder

In this chapter, we model the cell as a flat plate deformed into a cylinder with radius
R, as shown in Figure 2.1. The reference frame used is the Cartesian system, where x
and y represent the coordinates on the domain Sn, hereafter referred to as the in-plane
coordinates, and z ∈ [0, h] represents the transverse direction coordinate. Additionally,
given the slight bending of the plate within this linear model, it is assumed that the surface
normal does not change during deformation, leading to the specific boundary conditions:

σxz(x, y, z) = σyz(x, y, z) = σzz(x, y, z) = 0 for z ∈ {0, h}

where σij are the components of Cauchy stress tensor. Moreover, since the thickness h is
very small, this quantities must be small through the plate and, since they are zero at the
boundary, we can assume that

σxz(x, y, z) = σyz(x, y, z) = σzz(x, y, z) = 0 ∀(x, y, z) ∈ Ω. (2.1)

To proceed, it is necessary to choose a constitutive law that describes the material. In
order to account for the bending of stress fibers and the aforementioned considerations,
we assume a Hooke’s response function for a transversely isotropic material. In Voigt
notation, the strain-stress relationship is given by:
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[ϵ] =



1
Ep

−νzp

Ez
−νvp

Ep
0 0 0

−νpz

Ep

1
Ez

−νpz

Ep
0 0 0

− νp

Ep
−νzp

Ez

1
Ep

0 0 0
0 0 0 1

2Gzp
0 0

0 0 0 0 (1+νp)
Ep

0
0 0 0 0 0 1

2Gzp


[σ] (2.2)

where νpz

Ep
= νzp

Ez
is maintained to ensure tensor symmetry. This response function ac-

counts for anisotropic behavior in the y direction, with there are no preferred directions
in every plane orthogonal to it. Additionally, this elasticity tensor does not depend on the
coordinate of a point, which implicitly implies that the symmetry group of the material
is the same at every point in the body. This constitutive law comprises five independent
coefficients: Ep, νp, Ez, νzp, Gzp.

The stress-strain relationship is computed directly by inverting the elasticity tensor in
(2.2), thus implying

[σ] =



1−νpzνzp

EpEz∆
νzp+νpνzp

EpEz∆
νp+νzpνpz

EpEz∆ 0 0 0
νpz+νpνpz

E2
p∆

1−ν2
p

E2
p∆

νpz+νpνpz

E2
p∆ 0 0 0

νp+νzpνpz

EpEz∆
νzp+νpνzp

EpEz∆
1−νpzνzp

EpEz∆ 0 0 0
0 0 0 2Gzp 0 0
0 0 0 0 Ep

1+νp
0

0 0 0 0 0 2Gzp


[ϵ] (2.3)

where

∆ = (1 + νp)(1 − νp − 2νpzνzp)
E2

pEz
. (2.4)

Hence, we can describe (2.1) in terms of strains

0 = σxz = Ep

1 + νp
ϵxz = Ep

1 + νp
ϵyz = σyz = 0,

0 = σzz = 1
EpEz∆

!
(1 − νpzνzp)ϵzz + (νp + νzpνpz)ϵxx + (νzp + νpνzp)ϵyy

"
.

The first set of equations has a straightforward interpretation. Given the geometric
meaning of ϵxz and ϵyz, the condition ϵxz = ϵyz = 0 implies that every material curve
perpendicular to the neutral surface remains perpendicular to the deformed neutral surface
after deformation. This condition, as previously mentioned, is known as the Kirchhoff
hypothesis.

Therefore, by using the linear strain approximation and then integrating, we conclude
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that

ux(x, y, z) = u
h
2
x (x, y) −

Ú z

h
2

∂uz

∂x
(x, y, t)dt,

uy(x, y, z) = u
h
2
y (x, y) −

Ú z

h
2

∂uz

∂y
(x, y, t)dt,

ϵzz = − 1
1 − νpzνzp

!
(νp + νzpνpz)ϵxx + (νzp + νpνzp)ϵyy

"
.

(2.5)

where u
h
2
i are the displacements of the neutral surface. In a linear framework, a good

approximation of the transverse displacement uz is the one of the neutral surface. In
particular, the bending over a cylinder is described by the function

u
h
2
x = 0 u

h
2
y = 0 u

h
2
z = ξ(x, y) (2.6)

and

ξ(x, y) = ξ(x) = −(R + h

2 ) + (R + h

2 ) cos
A

x

R + h
2

B
=

= 1
k1

− 1
k1

cos(−k1x)
(2.7)

where k1 = − 1
R+ h

2
is the principal curvature of the cylinder in the angular direction. Note

that we assume that the y axis is parallel to the cylinder’s axis, where no deformation
occurs.

However, the form can be easily adjusted by introducing a component dependent on
a different curvature, specifically the one of the curve formed by the intersection of the
cylinder with a plane orthogonal to the cylinder and parallel to z (or x). In fact, such
curvature is given by kθ = k1 sin2(θ).

Therefore, by substitution of uz with ξ above in (2.5) and the application of the
condition in (2.6), we getI

ux(x, y, z) = −(z − h
2 ) ∂ξ

∂x = (z − h
2 ) sin(−k1x)

uy(x, y, z) = −(z − h
2 ) ∂ξ

∂y = 0
(2.8)

thus the displacements in the whole domain are a linear function of the transverse coordi-
nate. Therefore, in the case that the direction of the fibers - here y - is parallel to the axis
of the cylinder, the strain tensor field of the pure bending deformation ϵbij is computed
directly as

[ϵbij ] =
3
z − h

2

4−k1 cos(−k1x) 0 0
0 0 0
0 0 k1

νp+νpzνzp

1−νzpνpz
cos(−k1x)

 . (2.9)

Note that, since the displacement ξ is much smaller than the thickness h, we can make
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Figure 2.1. A two dimensional schematic of a cell of thickness h bent over a
cylinder of radius R.

the approximation cos(−k1x) ≈ 1, which will be used from now on.
However, in order to study the optimal configuration of the stress fibers hence describ-

ing the remodelling, it is useful to choose as reference the configuration where the y axis
is fixed on the stress fibers and forms an angle θ with the cylinder’s axis direction. Thus,
we introduce a change of reference frameI

x′ = cos(θ)x− sin(θ)y
y′ = sin(θ)x+ cos(θ)y

. (2.10)

Thus, the strain in the reference system (x′, y′, z′ = z) is given by:

ϵ′ij = ∂x′
i

∂xl

∂x′
j

∂xm
ϵlm.

In matrix notation:

[ϵ′ij ] = (z−h

2 )

−k1 cos2(θ) k1
sin(2θ)

2 0
k1

sin(2θ)
2 −k1 sin2(θ) 0

0 0 k1
1−νzpνpz

[(νp + νpzνzp) cos2(θ) + νzp(1 + νp) sin2(θ)]

 .
(2.11)

The interpretation of the physical result is simple: for values greater than the neutral
surface (z > h

2 ), the points are stretched, while for values below the neutral surface, the
points are compressed. It’s important to note that the strain in the transverse direction
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does not contribute to the elastic energy since we assumed that the transverse strain σzz

is zero in equation (2.1).

2.1.3 Stored elastic energy after bending

The knowledge of the strains and the choice of the constitutive response functions allow
us to compute the stress field of the bent plate. By plugging (2.11) in (2.3), we get

σxx(x, y, z) = (z − h

2 ) Ep

1 − νzpνpz
(−k1)(cos2(θ) + νzp sin2 θ),

σyy(x, y, z) = (z − h

2 ) Ez

1 − νzpνpz
(−k1)(νpz cos2(θ) + sin2(θ)),

σxy(x, y, z) = (z − h

2 )k1Gzp sin(2θ),

(2.12)

where, the last three equation of (2.12) refers as the effective constitutive relations for a
plate computed on the strain above.

Finally, we are able to compute the bending energy density of the plate as

F b(x, y, z) = 1
2σijϵij =

= 1
2(z − h

2 )2
5
Gzpk

2
1 sin2(2θ)+

+ k2
1 cos2(θ) Ep

1 − νzpνpz

!
cos2(θ) + νzp sin2 θ

"
+ k2

1 sin2(θ) Ez

1 − νzpνpz

!
νpz cos2(θ) + sin2(θ)

"6

Thus, considering the symmetry condition νpz = Ep

Ez
νzp, the expression becomes:

F b(x, y, z) = (z − h

2 )2 k2
1

2(1 − νpzνzp)
#
(1 − νpzνzp)Gzp sin2(2θ) + Ep cos4(θ) + Ez sin4(θ)+

+ Epνzp
sin2(2θ)

4 + Ezνpz
sin2(2θ)

4
$

= (z − h

2 )2 k2
1

2(1 − νpzνzp)
#
(1 − νpzνzp)Gzp sin2(2θ) + Ep cos4(θ) + Ez sin4(θ)+

+ Epνzp
sin2(2θ)

2
$

= (z − h

2 )2 k2
1

2(1 − νpzνzp)
#
Ep cos4(θ) +

!
(1 − νzpνpz)Gzp + 1

2Epνzp

"
sin2(2θ) + Ez sin4(θ)

$
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concluding that

F b = (z− h

2 )2 k2
1

2(1 − νpzνzp)
#
Ep cos4(θ)+

!
(1−νzpνpz)Gzp + 1

2Epνzp

"
sin2(2θ)+Ez sin4(θ)

$
.

(2.13)
The bending energy (2.13) is a quadratic form evaluated in the variables (cos(θ), sin(θ)).

The angle θ∗ that minimizes the bending energy depends on the ratios of the material
anisotropy coefficients. If the elastic coefficient Ez is much larger than Ep, which describes
a scenario where the stress fibers are difficult to bend compared to the rest of the body,
the optimal angle θ∗ tends to be as close to θ∗ = 0 as possible, i.e., the case where the
fibers are parallel to the cylinder’s axis.

Moreover, it can be show that this result is a generalization of the one achieved by
Biton and Safran. In fact, if we assume

(1 − νzpνpz)Gzp + 1
2Epνzp = 1

2Ep

Ez = Ep + Ẽz where Ẽz > 0
(2.14)

it follows that

F b(x, y, z) = (z − h

2 )2 k2
1

2(1 − νpzνzp)
#
Ep(cos2 + sin2)2 + Ẽzsin

4(θ)
$

=

= (z − h

2 )2 k2
1

2(1 − νpzνzp)
#
Ep + Ẽzsin

4(θ)
$
,

thus the energy is described by an isotropic part, namely proportional to Ep, and the
anisotropic part proportional to Ez. It is clear that the energy is minimized for θ∗ = 0
given that Ez is positive. Moreover, it is noted that the energy penalty due to fiber
bending is proportional to sin4(θ). Biton and Safran account for this term separately,
postulating that fibers behave as elastic rods:

F sf ∝ Kk2
1 sin4(θ)

where K represents the bending modulus of the rod.

2.1.4 Relationship between I4 and F b

In earlier sections, we developed a model by selecting a response function for the stress.
Typically, within the context of anisotropy, an alternative approach is to define an elastic
energy function. For the transversely isotropic case, this function is denoted by U (E) =
U (I1, I2, I3, I4, I5) [23], incorporating the isotropic invariants I1, I2, and I3, as well as the
anisotropic invariants I4 and I5, which account for the anisotropic behavior. Specifically,
given a fiber direction N, the tensor A = N × N represents the material’s structure
tensor. In this constitutive framework, stress is computed directly from the elastic energy
through its derivative with respect to the deformation tensor F. Elastic materials for which
properties are characterized by a strain-energy function W are referred as hyperelastic.
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In our scenario, the fibers are oriented at an angle θ with the y-axis, hence N =
(cos(θ), sin(θ), 0). Therefore, the material’s structure tensor A is given by:

A = (cos(θ), sin(θ), 0) ⊗ (cos(θ), sin(θ), 0) =

 cos2(θ) sin(2θ)/2 0
sin(2θ)/2 sin2(θ) 0

0 0 0

 . (2.15)

Using the bending strain (2.12), we can calculate I4 as:

I4 = E : A = −(z − h

2 )k1 cos2(θ).

The bending energy (2.13) can be expressed as:

U b =(z − h

2 )2 k2
1

2(1 − νpzνzp)
è
Ep cos4(θ) + G̃ sin2(2θ) + Ez sin4(θ)

é
=

=(z − h

2 )2 k2
1

2(1 − νpzνzp)
è
(Ep − 4G̃+ Ez) cos4(θ) + (4G̃− 2Ez) cos2(θ) + Ez

é (2.16)

where G̃ = (1 − νzpνpz)Gzp + 1
2Epνzp.

The following observations regarding this term are relevant:

• It depends on (z − h
2 )2 (i.e., it’s proportional to h3 upon integration).

• It depends on k2
1.

• It has a linear dependence on cos2(θ), hence there should be a linear dependence on
I4.

It is evident that the only combination of invariants that satisfies these observations
is given by I4 and I1 = tr(E). Indeed, the other isotropic invariants are proportional
to higher powers of k1 and h. Therefore, we can express the elastic energy as follows,
referring to [23]:

U b = Uan(I4) + Umix(I1I4) + Uiso(I1) = K44I
2
4 + 2K14I1I4 +K11I

2
1 =

= (z − h

2 )2k2
1

1
K44 cos4(θ) + 2K14Ĩ1 cos2(θ) +K11Ĩ1

22 (2.17)

Finally, by substituting the value

Ĩ1 = −tr(E) = 1 − νp − 2νpzνzp

1 − νpzνzp
(2.18)
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and comparing it with equation (2.16), the equality holds by choosing

K44 = Ep − 4G̃+ Ez

1 − νzpνpz
,

K14 = 2G̃− Ez

1 − νp − 2νzpνpz
,

K11 = 1 − νpzνzp

(1 − νpzνzp)2 .

(2.19)

We suggest that to describe the system in the hyperelastic neo-Hookean constitutive
framework, it is necessary to introduce a mixed term coupling the first invariant I1 with
the anisotropic invariant I4. Moreover, since we are working within linear elasticity, the
contribution from I4 cannot be distinguished from that of I5, hence it is unnecessary to
add I5 as a parameter in the model.

We conclude that the linear model adopted in the preceding section can be described
in the hyperelastic context with the introduction of the mixed term mentioned above.

2.2 Contribution of Active Contractility
Stress fibers play a pivotal role in cellular contractility. These fibers consist of a bipolar
array of actin filaments and display a periodic pattern of α-actinin and myosin localization,
akin to muscle myofibrils [36,37]. This similarity suggests that contractility is significant
in the total energy stored within the cell.

To describe the energy from contractility, we assume that cell adhesion to the sub-
strate is stronger than the forces generated by active contractility. This is supported by
observations of cells on rubber substrates, which show wrinkles without detaching, indi-
cating that shear stress from fibers is insufficient to disrupt adhesion sites. Furthermore,
experiments show that active contractility can enhance cellular adhesion [38,39].

This assumption allows us to consider that there are no displacements at the cell-
substrate interface due to contractility alone, expressed as:

uc
x(x, y,0) = uc

y(x, y,0) = uc
z(x, y,0) = 0. (2.20)

Thus, we permit cell deformation on the basal surface due to bending, but not due to
stress fiber contractility.

Biton and Safran [15] introduced a model where the active contractility of the fibers
yields a compressive strain. Hence, since the attached surface cannot deform, it results in
significant displacements of the upper surface relative to the lower one, indeed resulting
in a shear stress. Therefore, the displacement of a material point is proportional to both
the distance from the plate’s center and the height.

This suggests a shear stress of the form:

σyz = τ
y

r
, σxz = 0 (2.21)
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y

z yx

Figure 2.2. Schematic of the deformation induced by the active contractility of the stress
fibers. Notice that the y direction is parallel to the stress fibers direction

where τ represents the contractile force, and r is the (immaterial) radius of the cell. Using
the anisotropic constitutive relations (2.3), the shear strains are given by:

ϵyz = 1
2Gzp

τ
y

r
, ϵxz = 0. (2.22)

Here, τ is negative, representing the compression induced by the SFs. The shear strain
field is negative throughout the body, starting from zero at the basal surface and linearly
decreasing to its minimum at the upper surface, as shown in Figure 2.2. Since y is the
direction of the cell fibers, the lack of shear stress in the other direction is due to assumed
transverse anisotropy. However, this assumption can be modified to include an orthotropic
description of the cell, adding a contractility term in the other direction.

In the absence of external forces, the transverse equilibrium equation implies:

∂σzz

∂z
= −∂σyz

∂y
= −τ

r
.

Integrating over the thickness and using the stress-free condition at the apical surface
gives:

σzz(z) = (1 − z

h
)h
r
τ. (2.23)

Thus, σzz is a linear function of z. The other normal stresses σxx and σyy are also functions
of z only:

σxx = σxx(z), σyy = σyy(z), σzz(z) = (1 − z

h
)h
r
τ. (2.24)

This shows that the trace of the stress tensor is an affine function of z only. Therefore,
the trace of the strain is also a function of z only:

ϵxx = ϵxx(z), ϵyy = ϵyy(z), ϵzz = ϵzz(z).

This implies that uz is only a function of z, i.e., uz = uz(z). Using this, we can solve
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for the displacement due to active contractility. The in-plane displacement follows:

∂uy

∂z
= 1
Gzp

τ
y

r
− ∂uz

∂y
= 1
Gzp

τ
y

r
,

∂ux

∂z
= 0

(2.25)

which, upon integration and using the boundary condition, gives:

uy(y, z) = 1
Gzp

τ
yz

r
,

ux(x, z) = 0.
(2.26)

Finally, the expression for uz can be computed from the constitutive law (2.3):

∂uz

∂z
= ϵzz = − νp

Ep
σxx − νzp

Ez
σyy + 1

Ep
σzz. (2.27)

To solve the system, the in-plane stresses are expressed in terms of ϵzz using the
constitutive equations (2.3):

σxx = 1
EpEz∆ [(1 − νpzνzp)ϵxx + (νzp + νpνzp)ϵyy + (νp + νzpνpz)ϵzz] =

= 1
EpEz∆

C
(νp + νzpνpz)ϵzz + νzp(1 + νp)

Gzp
τ
z

r

D (2.28)

and

σyy = 1
E2

p∆
è
νpz(1 + νp)ϵxx + (1 − ν2

p)ϵyy + νpz(1 + νp)ϵzz

é
=

= 1
E2

p∆

C
νpz(1 + νp)ϵzz +

(1 − ν2
p)

Gzp
τ
z

r

D
.

(2.29)

By substituting (2.28) and (2.29) into (2.27), we isolate the transverse strain ϵzz:

ϵzz = − νp

Ep
σxx − νzp

Ez
σyy + 1

Ep
σzz =

= − νp

E2
pEz∆

C
(νp + νzpνpz)ϵzz + νzp(1 + νp)

Gzp
τ
z

r

D
+

− νzp

E2
pEz∆

C
νpz(1 + νp)ϵzz +

(1 − ν2
p)

Gzp
τ
z

r

D

+ 1
Ep

(1 − z

h
)h
r
τ.
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Thus, C
1 + 1

E2
pEz∆(ν2

p + 2νpνzpνpz + νzpνpz)
D
ϵzz = 1

Ep
(1 − z

h
)h
r
τ−

− 1
GzpE2

pEz∆
è
νpνzp(1 + νp) + νzp(1 − ν2

p)
é
τ
z

r
.

(2.30)

Simplifying with the definition of ∆ in (2.4) yields:

1 − νpzνzp

(1 + νp)(1 − νp − 2νpzνzp)ϵzz = 1
Ep

(1 − z

h
)h
r
τ − νzp

Gzp(1 − νp − 2νpzνzp)τ
z

r
.

Thus,

∂uz

∂z
= ϵzz = (1 + νp)(1 − νp − 2νpzνzp)

Ep(1 − νpzνzp) (1 − z

h
)τ h
r

− νzp(1 + νp)
Gzp(1 − νpzνzp)τ

z

r
. (2.31)

Finally, integrating over z and applying the boundary condition (2.20), we obtain:

uz(z) = (1 + νp)
EpGzp(1 − νpzνzp)

τ

r

5
Gzp(1 − νp − 2νzpνpz)h− [Gzp(1 − νp − 2νzpνpz) + Epνzp] z2

6
z

(2.32)
In summary, we computed the strains and the stresses induced by the contractility of

the stress fibers. We shall highlight some properties of the computed quantities. First of
all, note that, since the contractility is generated by the fibers, in a reference frame that
rotates accordingly to the fibers (i.e., solidal to the cell), there is no role played by the
angle θ. Therefore, on a flat substrate, the energy contribution of the contractility will be
the same independent of the orientation angle θ. Nonetheless, whenever the plate is bent,
the cell energy exhibits a mixed term that arises from both contractility and deformation;
this term will play a crucial role in the remodeling process, as we will discuss later.

Moreover, it is worth noting that both the contractile strains and the bending strains
are affine functions of the transverse coordinate z. Thus, the expression of the shear stress
introduced in [15] was not random; indeed, it ensures that the energy contribution of the
contractility has the same order of magnitude (in terms of the parameter h) as the pure
bending energy, hence ensuring the competition between these terms.

2.3 Stability of θ-Configurations

The elastic energy of a cell subjected to bending and active contractility forces of stress
fibers depends on the total gradient of deformation F = FbFc, where Fb describes the
bending deformation and Fc accounts for contractility. In the small strains regime, the
following approximation holds:

F = FbFc ≈ (I + ∇ub)(I + ∇uc) ≈ I + ∇ub + ∇uc.
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This allows the effects of bending and active contractility to be separated, leading to
the following additive decomposition:

[ϵij ] = [ϵbij ] + [ϵcij ],
[σij ] = [σb

ij ] + [σc
ij ].

(2.33)

Thus, the total elastic energy of the system is split into three terms:

F = 1
2(σb

ijϵ
b
ij + σb

ijϵ
c
ij + σc

ijϵ
b
ij + σc

ijϵ
c
ij) = F b + Fm + F c, (2.34)

where F b represents the energy due to the bending of the plate, Fm = 1
2(σb

ijϵ
c
ij +σc

ijϵ
b
ij)

is the energy due to the interaction of active contractility with the bending deformation,
and F c is the energy due to pure active contractility. Notably, F c does not depend on the
angle θ and is thus neglected in the stability computation of θ-configurations.

Due to the linear constitutive equations and the symmetry of the elasticity tensor, it can
be shown that σb

ijϵ
c
ij = σc

ijϵ
b
ij , thus the mixed energy term can be written as Fm = σb

ijϵ
c
ij .

We can compute it directly using the stresses and contractility strains:

Fm = σb
ijϵ

c
ij = σb

xxϵ
c
xx + σb

yyϵ
c
yy + σb

zzϵ
c
zz + σb

xyϵ
c
xy + 2σb

xzϵ
c
xz + 2σb

yzϵ
c
yz = σb

yyϵ
c
yy.

Therefore, the total energy can be explicitly written by substituting (2.13) and (2.3):

F = (z − h

2 )2 k2
1

2(1 − νpzνzp)

5
Ep cos4(θ) +

3
(1 − νzpνpz)Gzp + 1

2Epνzp

4
sin2(2θ) + Ez sin4(θ)

6
−(z − h

2 )z
r
τ

Ez

Gzp(1 − νzpνpz)k1(νpz cos2(θ) + sin2(θ)) + F c.

(2.35)

The different components of the total energy reveal some interesting features:

• Each term is proportional to y2, indicating the same order in the thickness h.

• The mixed energy Fm scales as k1, while the bending energy scales as k2
1, reflecting

a balance between bending energy and contractility.

• The power of trigonometric functions in Fm is lower than that in F b, implying a
linear relation with the anisotropic invariant I4.

The bending of the cell over the cylinder results in extension above the neutral surface
and compression below it. Conversely, active contractility induces a compression strain
field increasing towards the upper surface of the cell, partially relieving the extension
due to bending and thereby reducing stored internal energy. This interplay explains the
superposition of these deformations, as illustrated in Figure 2.3.
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Figure 2.3. A schematic description of the deformation due to bending and active con-
tractility of SFs. Notice that contractility deformation reduces the extension due to
bending. The color code indicates the strains in the x direction.

The goal is to analyze the optimal orientation angle minimizing the stored energy of
the cell. Assuming smooth functions in the variable θ, we determine stationary angles and
their stability by computing the first and second derivatives of the energy with respect to
θ.

The total elastic energy, after integrating across the cell volume, is expressed as:

U = Ah3

24(1 − νpzνzp)k
2
1

è
Ep cos4(θ) + G̃ sin2(2θ) + Ez sin4(θ)

é
− Ah3Ez

12Gzp(1 − νpzνzp)
τ

r
k1
1
νpz cos2(θ) + sin2(θ)

2
= Ah3

24(1 − νpzνzp) [k2
1

1
Ep cos4(θ) + G̃ sin2(2θ) + Ez sin4(θ)

2
−2k1Ezα

1
νpz cos2(θ) + sin2(θ)

2
]

(2.36)

where α = 1
Gzp

τ
r < 0 and A is the area of the neutral surface.
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2.3.1 Critical Configuration and Stability: Active Contractility
Contribution

First, we examine the contribution from active contractility alone. The stationary config-
urations of this term are solutions to:

0 = ∂U c

∂θ
= − h3Ez

12(1 − νpzνzp)k1α(1 − νpz) sin(2θ). (2.37)

Thus, the only stationary configurations are θ0 = 0 and θ1 = π
2 . The stability is

determined by the convexity:

∂2U c

∂θ2 = − h3Ez

6(1 − νpzνzp)k1α(1 − νpz) cos(2θ). (2.38)

Since (1 − νpz)α < 0, we have:

• ∂2U c

∂θ2 (θ0) < 0, hence θ0 = 0 is unstable.

• ∂2U c

∂θ2 (θ1) > 0, hence θ1 = π
2 is a stable configuration.

This result aligns with findings by Biton and Safran [15], where active contractility
also aligns SFs along the maximal curvature direction. For large values of Ez, the bending
of the plate aligns the fibers towards the axis of the cylinder, creating a trade-off between
bending and contractility effects, as demonstrated next.

2.3.2 Critical Configuration and Stability: Competition Between
Bending and Active Contractility

Now, we study the stationary configurations of the total energy U , which includes all
the energy terms mentioned above, except for the pure contractility energy term. After
derivation, we have that

0 = ∂U

∂θ
= h3

12(1 − νzpνpz)

5
k2

1
!
2G̃ cos(2θ)+Ez sin2(θ)−Ep cos2(θ)

"
−k1Ezα(1−νpz)

6
sin(2θ).

(2.39)
Therefore, besides the trivial ones given by θ0 = 0 and θ1 = π

2 , there may exist an
oblique angle configuration θ∗ given by:

k2
1
!
2G̃ cos(2θ∗) + Ez sin2(θ∗) − Ep cos2(θ∗)

"
− k1Ezα(1 − νpz) = 0. (2.40)

This is satisfied if and only if

cos2(θ∗) = k1(2G̃− Ez) + α(Ez − Epνzp)
k1(4G̃− Ez − Ep)

. (2.41)

Therefore, there exists a third stationary configuration θ∗ if and only if
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k1(2G̃− Ez) + α(Ez − Epνzp)
k1(4G̃− Ez − Ep)

> 0,

k1(2G̃− Ep) − α(Ez − Epνzp)
k1(4G̃− Ez − Ep)

> 0.
(2.42)

The stability of these configurations is given by the signs of the second derivative
computed in the configurations. In particular, the second derivative is given by

∂2U

∂θ2 = B(νzp, νpz)
5
k2

1
!

− 4G̃ sin(2θ) + Ez2 sin(θ) cos(θ) + Ep2 sin(θ) cos(θ)
"

sin(2θ)+

+
!
k2

1(2G̃ cos(2θ) + Ez sin2(θ) − Ep cos2(θ)) − k1α(Ez − Epνzp)
"
2 cos(2θ)

6
= B(νzp, νpz)

5
4k2

1G̃(cos2(2θ) − sin2(2θ)) + k2
1(Ez + Ep) sin2(2θ)

+ 2k2
1(Ez sin2(θ) − Ep cos2(θ)) cos(2θ) − 2k1α(Ez − Epνzp) cos(2θ)

6
.

(2.43)

where B(νzp, νpz) = h3

12(1−νzpνpz) . The stability of the trivial configuration follows:

θ0 = 0 stable ⇐⇒ k1(2G̃− Ep) − α(Ez − Epνzp) < 0,

θ1 = π

2 stable ⇐⇒ k1(2G̃− Ez) + α(Ez − Epνzp) < 0.
(2.44)

Moreover, if it exists, θ∗ is a stable configuration if

∂2U

∂θ2 (θ∗) = B(νzp, νpz)k2
1(Ez + Ep − 4G̃) sin2(2θ∗) > 0 (2.45)

which holds if and only if (4G̃− Ep − Ez) < 0.
In conclusion, there are multiple cases to consider, depending on the constitutive coef-

ficients of (2.3) and on the ratio of α and k1. In particular, suppose that θ∗ does not exist.
The existence above implies that one between θ0 and θ1 is necessarily unstable. This may
be seen directly, for example, in the case that θ1 = π

2 is stable and θ0 = 0 is unstable it
must hold

k1(2G̃− Ep) − α(Ez − Epνzp) > 0
k1(2G̃− Ez) + α(Ez − Epνzp) < 0

(2.46)

hence surely one of the existence conditions (2.41) is not satisfied. The same argument
can be made if we assume that θ1 is unstable and θ2 is stable.
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On the other hand, let’s assume that θ∗ exists. Thus, if we also suppose that it is stable,
i.e. (4G̃ − Ep − Ez) < 0, then from (2.44) the trivial configurations are automatically
unstable and vice versa. Indeed, this may be concluded from the fact that, if we assume
that θ∗ exists, then it holds either:

k1(2G̃− Ep) − α(Ez − Epνzp) > 0
k1(2G̃− Ez) + α(Ez − Epνzp) > 0

(2.47)

or

k1(2G̃− Ep) − α(Ez − Epνzp) < 0
k1(2G̃− Ez) + α(Ez − Epνzp) < 0

(2.48)

depending on the sign of the denominator. In summary, the following cases are admis-
sible:

• θ∗ does not exist

– θ0 = 0 stable and θ1 = 0 unstable.
– θ1 = π

2 stable and θ0 = 0 unstable.

• θ∗ exists

– θ∗ stable ⇐⇒ (4G̃− Ez − Ep) < 0 ( ⇐⇒ θ0, θ1 unstable)
– θ∗ unstable ⇐⇒ (4G̃− Ez − Ep) > 0 ( ⇐⇒ θ0, θ1 stable)

Notice that these results hold only if the curvature k1 is negative, hence they cannot
explain the case of the cell bending over a concave surface.

2.3.3 Bifurcation analysis
In the following, we discuss the bifurcation analysis of the optimal configuration. For
clarity, we will use the ratio Λ = α

k1
= 1

Gzp

τ
k1r as the bifurcation parameter, which describes

the competition between contractility effects and bending ones. This parameter choice is
directly suggested by (2.41). Indeed, we observe that

cos2(θ∗) = k1(2G̃− Ez) + α(Ez − Epνzp)
k1(4G̃− Ez − Ep)

= 2G̃− Ez

4G̃− Ez − Ep

+ (Ez − Epνzp)
4G̃− Ez − Ep

α

k1

= 2G̃− Ez

K
+ (Ez − Epνzp)

K
Λ

(2.49)

where in the last step we defined K := 4G̃ − Ez − Ep. Hence, cos2(θ∗) is an affine
function of the ratio Λ with a slope given by Ez−Epνzp

K . Moreover, note that there exist
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two distinct critical values of the parameter Λ that depend on the material parameters
only and describe the bifurcation points. These values are computed directly by equating
to zero the inequalities in (2.44):

(2G̃− Ep) − α

k1
(Ez − Epνzp) = 0

(2G̃− Ez) + α

k1
(Ez − Epνzp) = 0

(2.50)

which implies the two bifurcation points:

Λ∥ = (2G̃− Ep)
(Ez − Epνzp) , Λ⊥ = − (2G̃− Ez)

(Ez − Epνzp) . (2.51)

These two points can be used to visualize (2.49) more effectively. Indeed, it can be
shown directly that:

cos2(θ∗) = − Λ⊥

Λ⊥ − Λ∥
+ 1

Λ⊥ − Λ∥
Λ. (2.52)

Notice that the bifurcation points in (2.51) are related to each other depending on the
sign of K = 4G̃ − Ez − Ep, which, as stated above, describes the stability of the oblique
configuration θ∗. In particular, it is straightforward to show that

K < 0 =⇒ Λ∥ < Λ⊥

K > 0 =⇒ Λ⊥ < Λ∥
(2.53)

hence we will discuss these cases separately.
Firstly, assume that K = 4G̃ − Ez − Ep < 0. From the previous consideration, we

know that, if it exists, θ∗ is stable. The stability of the stationary configurations is then
summarized as follows:

θ = 0 stable ⇐⇒ Λ < Λ∥ = (2G̃− Ep)
(Ez − Epνzp)

θ = π

2 stable ⇐⇒ Λ > Λ⊥ = − (2G̃− Ez)
(Ez − Epνzp)

θ = θ∗ stable ⇐⇒ Λ⊥ > Λ > Λ∥.

(2.54)

Nonetheless, there are two relevant cases to discuss, depending on whether Λ∥ < 0
or Λ∥ > 0. This distinction is necessary since the ratio Λ = α

k1
assumes only positive

values as both arguments are negative. Therefore, if the critical point Λ∥ < 0, the parallel
configuration is always unstable, implying that there exist only two stable configurations,
whose stability depends on the value of Λ. This behavior is the one observed in Biton
and Safran [15], where the parallel configuration θ0 = 0 is never stable. We will address
this later. On the other hand, if Λ∥ > 0, there are three possible stable configurations,
depending, for a fixed value of the parameter α, on the value of the curvature k1. In
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particular, as shown in Figure 2.4, if the curvature is low enough compared to the con-
tractility parameter α, i.e., Λ is large, the orthogonal configuration θ = π

2 is preferred.
Nonetheless, when the curvature is sufficiently high, the bending effect causes the angle
to reorient to an oblique configuration θ∗.

//
1

45
2.5

/k
1

0

1/2

1

co
s

2
(

)

K<0

Figure 2.4. The cos2(θ) function depending on the ratio Λ = α
k1

for values K < 0.
The solid line (red) describes a stable configuration, while the dashed red line
describes an unstable one. The solid black line depicts the case with a bifurcation
parameter Λ∥ ≤ 0, as in [15].

Similar considerations follow for the case K > 0. It holds that

θ = 0 stable ⇐⇒ Λ < Λ∥ = (2G̃− Ep)
(Ez − Epνzp)

θ = π

2 stable ⇐⇒ Λ > Λ⊥ = − (2G̃− Ez)
(Ez − Epνzp)

θ = θ∗ stable ⇐⇒ Λ∥ > Λ > Λ⊥.

(2.55)

The condition K > 0 implies that the oblique configuration is always unstable. There-
fore, the only possible configurations are the trivial ones. This result is shown in Figure
2.5.

It is interesting to compare these results with those obtained by Biton and Safran. In
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Figure 2.5. The cos2(θ) function depending on the ratio Λ = α
k1

for K > 0. The solid
line (red) describes a stable configuration, while the dashed red line describes an unstable
one. The black line depicts the case when Λ⊥ < 0. Notice that this behavior is the
opposite of the one observed for K < 0 in Figure 2.4.

order to do so, we assume again that (2.14) holds, i.e.,

(1 − νzpνpz)Gzp + 1
2Epνzp = 1

2Ep,

Ez = Ep + Ẽz where Ẽz > 0.

Notice that the first condition implies that the bifurcation configuration Λ∥ = 0. Moreover,
the second hypothesis is a more general one and states that the material is reinforced in
the fibers’ directions.

4G̃− Ep − Ez = 2Ep − 2Ep − Ẽz = −Ẽz < 0,
k1(2G̃− Ep) − αEZ(1 − νpz) = −αEz(1 − νpz) > 0,
k1(2G̃− Ez) + αEz(1 − νpz) = −k1Ẽz + α(Ẽz + Ep(1 − νzp)).

(2.56)

Therefore, from the second inequality, we show that θ0 = 0 is always unstable. This
is indeed the case described by the black line in figure 2.4 since it holds that Λ∥ < 0.
Moreover, there are two other admissible cases to analyze, which depend on the sign of
−k1Ẽz + α(1 − νpz). Thus,

• −k1Ẽz + α(1 − νpz) > 0 =⇒ θ∗ exists and is stable, while θ1 is unstable.
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• −k1Ẽz + α(1 − νpz) < 0 =⇒ θ∗ does not exist, while θ1 = π
2 is stable.

We conclude that there is a change of configuration when

−k1Ẽz + α(Ẽz + Ep(1 − νzp)) = 0, (2.57)

i.e., there exists a set of material parameters combined with values of k1 and α that
satisfy this equality, which can be classified as a set of critical values. A similar result is
achieved in the Biton and Safran article, where it also appears that θ0 is always unstable.
Indeed, as concluded in their article, this configuration is reached only in the limit of large
curvature. Moreover, the remaining possible configurations, i.e., the oblique one θ∗ and
the perpendicular one θ1, and their stability depend on a similar set of parameters. This
proves that the above framework is a generalization of the results achieved in [15].

2.3.4 Discussion
The model developed above, despite its limitations due to the kinematic hypotheses, intu-
itively describes some of the results discussed in Chapter 1. This model clearly indicates
that there exists a competition between the contractility forces developed by the myosin-
activated fibers of the cell and the mechanical stresses due to the bending over a curved
substrate.

As highlighted previously in Chapter 1, the reorientation angle is cell-type dependent.
This is accounted for in this model by the fact that the bifurcation points depend directly
on the material coefficients. Indeed, we may state that fibroblasts show a much thicker
network of stress fibers, hence resulting in a larger penalty to bending, which intuitively
shifts the angle towards the direction of the axis of the cylinder. Our model predicts
this behavior, as depicted in Figure 2.6. Indeed, for a fixed value of the ratio Λ = α

k1
,

the angle shifts towards the configuration θ = 0 with the increasing elastic modulus Ez,
hence explaining the orientation angles observed in [16]. As pointed out before with the
comparison with results in [15], this parameter is correlated with the bending of the fibers.

On the other hand, epithelial cells might show a thinner network of fibers, hence
lowering the penalty energy due to bending. This results in an orientation towards the
orthogonal configuration, as experimentally observed in [12]. In fact, the bending of the
cell cytoskeleton and fibers lowers the compression of the cell due to contractility.

However, this model works only for negative values of the curvature k1. Besides the
mathematical reasons for why this is true, it makes no physical sense that the same
competition holds for positive values of k1. In fact, this implies that the upper surface
of the cell is compressed, while the lower one is stretched. Thus, the contractility of the
cell will worsen the compression of the upper part of the cell, resulting in an increase
in the stored elastic energy. This suggests that the optimal configuration is always the
one oriented in the axial direction, but this is not true. Indeed, the study conducted
by [28] showed that airway smooth muscle cells reorient along the maximum curvature
direction on surfaces with positive k1 values. Therefore, there are other contributions to
cell mechanics to consider in order to explain these results, hence we will not even try to
use this model in the latter case.
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Figure 2.6. The cos2(θ) function depending on the ratio Λ = α
k1

for K < 0 and Λ∥ < 0.
The figure shows that both the slope and the bifurcation point Λ⊥ increase as Ez increases.
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Chapter 3

Reorientation on an inflated
cylinder

In this chapter, we examine the phenomenon of cellular reorientation in response to me-
chanical deformation, focusing specifically on the inflation of a cylindrical substrate. Un-
derstanding this behavior is crucial for applications in biomedical engineering, such as
designing vascular grafts and other tubular constructs where cells encounter curved ge-
ometries. The first section defines the kinematics of cylinder inflation, which involves
understanding how cylindrical substrates deform under various internal pressures. This
section covers the fundamental principles of cylinder inflation, including the assumptions
of material incompressibility and the derivation of the principal stretches in radial, az-
imuthal, and axial directions. These equations form the backbone of our theoretical
framework, allowing us to predict how substrate deformation influences cellular orienta-
tion. Following the foundational kinematics, Sections 2 and 3 explore the cellular response
to isotropic and anisotropic mechanical environments, respectively. Building on the theo-
retical framework and the findings of Ogden and Holzapfel [1,2], these sections investigate
how different mechanical setups and the choice of the strain-energy function influence the
mechanical response of the inflated tube, examining both theoretical models and experi-
mental observations [40]. Additionally, beyond existing literature results, the orthotropic
model is investigated in accordance with research on cell structure [23]. Finally, Section
4 is dedicated to analyzing orthogonal families of fibers within the cylindrical structure
and their remodeling in response to varying internal pressures. This analysis provides
insights into the optimal configurations that minimize the energy states of the system.
By understanding these configurations, we can better predict and control how cells adapt
their orientation in response to mechanical cues.
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3.1 Kynematics of cylinder inflation

Consider a thick-walled circular cylindrical tube. In a reference configuration B0, in
cylindrical coordinates a point (R,Θ, Z) of this geometry is described by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L

where A, B, and L are positive constants describing the inner radius, the outer radius,
and the length of the tube, respectively.

In the following, we will assume that the shape of the tube is maintained and that the
material composing the tube is incompressible. Therefore, we are allowed to write

r = r(R), θ = Θ, z = λlZ

where (r, θ, z) are the deformed coordinates in the actual configuration C . In particular,
the assumption that the shape of the tube is maintained implies that r depends only on
the coordinate R, θ remains unchanged, and z is stretched along its direction by a factor
of λl.

The principal stretches λ1, λ2, λ3 along the radial, azimuthal, and the axial direction
are written as:

λ1(R) = dr

dR
(R), λ2(R) = r(R)

R
, λ3 = λl.

The incompressibility constraint reads as

detF = λ1λ2λ3 = dr

dR
(R)r(R)

R
λl = 1 (3.1)

Therefore, let a = r(A) and b = r(B) be respectively the inner and outer radius of the
tube after the deformation. An integration of the incompressibility constraint leads to

r(R)2 − a2 = λ−1
3 (R2 − A2), θ = Θ, z = λlZ. (3.2)

Notice that Equation (3.2) may be seen as a relationship between the deformed outer
radius b = r(B) and the deformation a and λl. In a more fascinating way, if we define
λb = b

B and λa = a
A as the stretch of the inner and outer radius, an evaluation of the

earlier equation for R = B leads to

b2 = r(B)2 = a2 + λ−1
l (B2 − A2) =⇒ λlλ

2
b − 1 = A2

B2 (λlλ
2
a − 1). (3.3)

Thus, for given λl and a given ratio A
B , it follows that λb depends on λa. Moreover,

introducing λ = λ2 = r
R , the same argument leads to

λlλ
2
b − 1 = A2

R2 (λlλ
2 − 1) = A2

B2 (λlλ
2
a − 1) (3.4)
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Figure 3.1. Schematic representation of the case of inflation of a cylinder.

Therefore, for a fixed value of λl, during the inflation of the tube it holds

λ2λl ≥ 1, λa ≥ λ ≥ λb

with equality if and only if the deformation is isochoric, i.e. λ = λ
− 1

2
l for A ≤ R ≤ B.

The strain energy density may be described as a function of the independent stretches
λ2 = λ and λ3 = λl so that

Ŵ (λ, λl) = W (λ−1λ−1
l , λ, λl)

where the radial stretch depends on λl and λ due to the incompressibility constraint.
Therefore, the response functions associated with the strain energy W are given by

σi = λi
∂W

∂λi
− p

where σi are the principal Cauchy stresses and p is an unknown pressure introduced as
the Lagrange multiplier relative to the incompressibility of the material. By means of the
chain rule of differentiation, it follows directly from the strain energy equation that

∂Ŵ

∂λ
= −∂W

∂λ1
λ1λ

−1 + ∂W

∂λ
,

∂Ŵ

∂λl
= −∂W

∂λ1
λ1λ

−1
l + ∂W

∂λl
.

Therefore, the pressure p can be eliminated from the principal Cauchy stress equations,
leading to the pair of equations:

σ2 − σ1 = λ
∂Ŵ

∂λ
, σ3 − σ1 = λl

∂Ŵ

∂λl
. (3.5)
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In order to close the system, we need to introduce the equilibrium equations of the
body. When there is no time dependence and no external forces, the equilibrium equations
reduce to

divσ = 0

which, for our particular geometrical choice and the dependence only on the independent
coordinate R, reduces the equilibrium in the longitudinal direction to the single scalar
equation in cylindrical coordinates:

dσrr

dr
+ 1
r

(σrr − σθθ) = 0

where σrr = σ1 and σθθ = σ2. This is solved in conjunction with the boundary conditions:

σrr =
I

−P for R = A

0 for R = B

This boundary condition corresponds to the application of an internal pressure P ≥ 0 and
zero traction outside.

The relationship between the stretch of the inner radius λa and the internal pressure P
can be computed directly by an integration of the equilibrium equation over the thickness
of the deformed tube. This process may be carried out by a change of the independent
variable from r to λ by means of the earlier relationships. Indeed, it holds that

R(r) =
ñ
λl(r2 − a2) + A2, λ(r) = r

R(r) ,
∂λ

∂r
(r) = R(r)2 − λlr

2

R(r)3 .

Therefore, the integration of the equilibrium equation upon a change of variable leads to

P =
Ú λa

λb

(λ2λl − 1)−1∂Ŵ

∂λ
(λ, λl) dλ. (3.6)

This equation provides the pressure P as a function of the inner stretch λa for given
values of the ratio B

A and axial stretch λl, given that λb depends on λa. Notice that, to
maintain a fixed stretch, an axial load N must be applied, its expression can be computed
analytically from the axial equilibrium and is given by

N

πA2 = (λ2
aλz − 1)

Ú λa

λb

(λ2λl − 1)−2
A

2λl
∂Ŵ

∂λl
− λ

∂Ŵ

∂λ

B
λ dλ+ Pλ2

a (3.7)

where we assumed that the tube ends are closed so that the pressure contributes to the
axial load. In order to separate the contribution of the pressure, we are able to define the
reduced force F applied at the end of the tube as

F

πA2 = N

πA2 − Pλ2 = (λ2
aλz − 1)

Ú λa

λb

(λ2λl − 1)−2
A

2λl
∂Ŵ

∂λl
− λ

∂Ŵ

∂λ

B
λ dλ. (3.8)
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The expressions of the reduced force F (3.8) and of the pressure P (3.6) allow us to
reproduce the experimental setup in [40] for different given initial axial stretch λl

3.2 Isotropic response
In the following, we will assume that the material is isotropic. In particular, we will use
the classical Neo-Hookean constitutive law for the strain-energy function in the case of
incompressible material:

W (F) = µ

2
1
tr(FTF) − 3

2
which, in our case, is simplified to

Ŵ (λ, λl) = µ

2
1
λ2 + λ2

l + λ−2λ−2
l − 3

2
(3.9)

Notice that this is a special case of the class of energy functions used in Ogden [1]:

Ŵ (λ, λl) = 2µ
n2
!
λn + λn

l + λ−nλ−n
l

"
(3.10)

where the Neo-Hookean strain-energy function is recovered for n = 2.
The pressure P thus follows

P ∗ = P

µ
=
Ú λa

λb

(λ2λl − 1)−1
1
λ− λ−2

l λ−3
2
dλ.

The nondimensional relationship between P ∗ = P/µ and λa is shown in Figure 3.2. The
function P ∗ is depicted for a set of values of the wall thickness, specifically choosing
A2

B2 ∈ {0.4, 0.63, 0.77, 0.85}. The axial stretch is fixed to λz = 1.2. The main feature
to highlight is the increasing stiffness of the material associated with increasing wall
thickness. This result is in contrast with typical rubber-like materials, where there exists a
non-unique relation between P ∗ and λa because the function is non-monotonic. Moreover,
notice that the classical Neo-Hookean relation leads to a concave pressure function, as
shown in Figure 3.2 (a), in contrast with the one chosen in [1] for n = 24 shown in
Figure 3.2(b). In particular, the latter fits better the in-vitro experimental results, where
the internal pressure P behaves as if it approaches infinity for λa = 1.2 rather than the
result in Figure 3.2(a). Nonetheless, the model presented here qualitatively explains the
stiffening with the wall thickness and axial load, some of the relevant features of soft
tissues.

3.3 Anisotropic Response

3.3.1 Mechanical Setup [1]
The deformation analyzed in Section 3.1 is locally a purely homogeneous strain. Therefore,
the results can be extended to the anisotropic case by introducing the anisotropic material
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Figure 3.2. Plot of the dimensionless pressure P ∗ as a function of λa for different values
of wall thickness and constant axial stretch λl = 1.2. (a) classical Neo-Hookean material
(b) Incompressible strain energy function for n = 24 (3.10).
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properties characterized by the fiber directions N and N⊥ locally in the tangent plane
(Θ, Z), where N⊥ is locally orthogonal to N. Consequently, the principal directions of
strain align with the axes of the cylindrical coordinate system. The energy-strain function
Ŵ will directly depend on the angle φ describing both fiber directions.

To simulate some results, we use the general Neo-Hookean strain-energy function for
orthotropic materials:

W (F) = µ

2 (tr(C) − 3) + α1

4 (C : A − 1)2 + α2

4 (C : A⊥ − 1)2 (3.11)

where A = N ⊗ N and A⊥ = N⊥ ⊗ N⊥ are the structural tensors describing the ma-
terial anisotropy. Notice that this particular choice of the strain-energy function is an
approximation of the one used in Holzapfel et al. [2], which is written in exponential form
resembling a Fung-type strain energy:

W (I1, I2, I4, I6) = c1

2 (I1 − 3) + c2

2 (I2 − 3)

+ k1

2k2

1
exp[k2(I4 − 1)2] − 1

2
+ k1

2k2

1
exp[k2(I6 − 1)2] − 1

2 (3.12)

where I4 = C : A and I6 = C : A⊥ are the anisotropic invariants related to the directions
N and N⊥. Observe that the second-order approximation of this strain energy coincides,
apart from some adjustment of the notation, with the strain-energy used here.

The equation of the internal pressure P is formally the same, with the exception that
the strain-energy function now depends on the angle φ:

P =
Ú λb

λa

(λ2λl − 1)−1∂Ŵ

∂λ
(λ, λl, φ) dλ.

To illustrate some results, Ogden [1] employs a generalization of the isotropic Neo-
Hookean strain-energy function and energy-strain function:

Ŵ (λ, λl, φ) = 1
n

[µ1(φ)(λn − 1 − n ln(λ)) + µ2(φ)(λn
l − 1 − n ln(λl))

+µ3(λ−nλ−2
l − 1 + n ln(λλl))

é (3.13)

where µ3 is a material constant and µ1(φ) and µ2(φ) are material parameters depending
on the angle φ. This strain-energy function accounts for anisotropy only through the
material coefficients µ1 and µ2, while the one employed in [2] and adopted in this work
explicitly depends on the relation between the deformation and the structure tensors of
the material A and A⊥.

The analysis of the isotropic response in Section 3.2 showed that the qualitative behav-
ior of the material does not depend on the wall thickness. Therefore, the analysis can be
reduced to the membrane approximation. This can be achieved by using ϵ = H

A = B−A
A as

an expansion parameter, where the thickness in the reference configuration is H = B−A.
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Indeed, it can be shown that

λa − λb = [λa − λ−1
l λ−1

a ]ϵ+ o(ϵ) for ϵ → 0

which implies, by means of the mean value theorem for integrals, that:

P = ϵλ−1λ−1
l

∂Ŵ

∂λ
(λ, λl, φ) (3.14)

where λ is any value of the azimuthal stretch through the wall. This simplified expression
for P allows us to derive the analytical form given the energy strain function Ŵ . Figure 3.3
shows the dimensionless pressure P ∗ against the azimuthal stretch λ for different material
parameters for (a) the energy function of type (3.11) and (b) the energy function of type
(3.13). Notice that the graph intersects the pressure axis P ∗ = 0 at different values of the
stretch λ depending on the material coefficients. As observed in the isotropic case, the
only difference between the two types of response is observed in the sign of the second
derivative of the function. Moreover, here we again assumed that the axial stretch λl is
maintained constant during inflation, i.e., there should be an axial load to achieve that.
In particular, the membrane counterpart of the axial load equation (3.7) is given by:

F

πA2 = N

πA2 − Pλ2 = ϵ

C
2∂Ŵ
∂λl

(λ, λl, φ) − λλ−1
l

∂Ŵ

∂λ
(λ, λl, φ)

D
(3.15)

where F can be interpreted as a reduced force applied to the end of the tube. This
mechanical framework, however, does not account for some other interesting features due
to the fact that λz is fixed to a value. Another approach is the one adopted in Holzapfel
et al. [2], which we discuss next.

3.3.2 Mechanical Setup in [2]
To highlight other interesting features characterizing the inflation of a cylindrical tube, it
is useful to consider a slightly different experimental setup. Specifically, we assume that
the reduced force F (3.15) at the end of the tube is zero [2], implying that

N = πa2P,

C
2∂Ŵ
∂λl

(λ, λl, φ) − λλ−1
l

∂Ŵ

∂λ
(λ, λl, φ)

D
= 0. (3.16)

Thus, N = πa2P is the sole contribution to the axial load. Notice that the axial load N
does not directly depend on the axial stretch λl as in (3.7), so λl is not fixed. The 2D
approximation is described by two geometrical features of the problem: the middle radius
R = (A + B)/2 and the thickness of the tube H = B − A. The equilibrium equations in
the axial and circumferential directions are formulated as:

σ3 − N

2πrh = σ3 − a2

2hrP = 0

σ2 − N

πah
= σ2 − a

h
P = 0

(3.17)
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Figure 3.3. Plot of the dimensionless pressure P ∗ as a function of the azimuthal stretch
λ in the membrane limit. (a) Neo-Hookian anisotropic material described by the energy
function for different values of the material coefficients α1 and α2. (b) Incompressible
strain energy function for n = 10 and µ∗

1 = µ1
µ3

= 0.5, 1, 2.

where r, a, h are the deformed middle radius, inner radius, and thickness, respectively.
These are computed as
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h = λ1H = λ−1λ−1
l H, r = λR, a = r − h

2 = λR − H

2λλl
. (3.18)

Finally, these identities and equations (3.5) allow us to explicitly write the equilibrium
equations (3.17) as

λ
∂Ŵ

∂λ
(λ, λl, φ) −

A
λ2λlR

H
− 1

2

B
P = 0

λl
∂Ŵ

∂λl
(λ, λl, φ) − λl(λR − λ−1λ−1

l H/2)2

2HR P = 0
(3.19)

where Ŵ depends on the strain energy function used. Notice that this system of equations
is equivalent to the solution derived from the pair of equations (3.14) and (3.15). Indeed,
the equilibrium in the circumferential direction (3.5) may also be formulated as, for ϵ =
H/R,

P = ϵ

3
λ2λl − ϵ

2

42
λ
∂Ŵ

∂λ

= ϵλ−1λ−1
l

3
1 + λ−2λ−1

l

ϵ

2 + o(ϵ2)
4
∂Ŵ

∂λ

= ϵλ−1λ−1
l

∂Ŵ

∂λ
+ o(ϵ) for ϵ → 0

(3.20)

which is equivalent to the membrane approximation used by Ogden [1]. Moreover, the
axial equilibrium (3.5) may also be formulated as

λl

2

C
2∂Ŵ
∂λl

− 1
ϵ
(λ− 1

2λ
−1
l λ−1ϵ)2P

D
= 0

2∂Ŵ
∂λl

− 1
ϵ
(λ2 +O(ϵ))P = 0

2∂Ŵ
∂λl

− λλ−1
l

∂Ŵ

∂λ
= 0

(3.21)

which coincides with the condition of zero reduced force (3.16). This underlines that the
only difference between these setups lies in the choice of the constitutive relations and the
absence of reduced load.
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Figure 3.4. Fiber-reinforced orthotropic tube with double-helically arranged fibers [2].

The authors describe the anisotropy of the tube using two families of fibers N and N⊥

such that both families form an angle φ with the longitudinal direction (angle-ply type,
see Figure 3.4). This setup is modeled by using the two families of fibers

N =

 0
cos(φ)
sin(φ)

 , N⊥ =

 0
− cos(φ)
sin(φ)

 (3.22)

where θ is the angle between the fibers and the azimuthal direction eθ. Thus, the stretches
along both families’ directions are the same, hence

I4 = C : A = C : A⊥ = I6. (3.23)

For our purposes, the expression of Ŵ may be computed directly from the strain-energy
function (3.11):

Ŵ (λ, λl, φ) = W (F) = µ

2 (λ2 + λ2
l + λ−2λ−2

l )+

+ α1 + α2

4 (λ2 cos(φ)2 + λ2
l sin(φ)2 − 1)2.

(3.24)

The membrane solution of the system (3.19) is depicted in Figures 3.5 and 3.6 for
different values of the pressure P . These results are computed by choosing the geometrical
parameters R = 109 mm and H = 1.8 mm, and the material parameters µ = 260.4 kPa,
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Figure 3.5. Inflation of a cylinder tube with fiber angles θ between 30◦ and 40◦.
Membrane solution of λ for different values of the internal pressure P .

α1 = α2 = 23.1×103 kPa, mechanically equivalent to the parameters used in [2], and angle
θ between 30◦ and 40◦. The results are formally equivalent to those achieved using the
exponential energy-function type (3.12). It is evident that the response strongly depends
on the orientation angle θ of the fiber families. Even though the variation of the fiber
angle is only 10◦, the mechanical behavior is remarkably different. Fiber angles higher
than θ ≈ 34◦ show a decrease in the axial stretch λl in the lower pressure domain, leading
to a shortening of the tube since λl < 1. Then, there exists a turning point where the
stretch becomes monotonically increasing with the pressure P . This effect, called the
inversion effect, reflects the actual inversion seen in experiments for the pressure-axial
stretch function, as in [41]. This inversion effect may also appear for the pressure-λ
relation, whereas for angles lower than θ ≈ 32◦, confirming the results in [2]. However,
this effect is not validated by experimental results on arteries, where the azimuthal stretch
λ behaves as a monotonic function of the internal pressure P .

3.3.3 Orthogonal Families of Fibers
The symmetrical arrangement of fibers, known as angle-ply, is commonly used to describe
the response of the collagen structure in inflated arteries during experiments in academic
research. Nonetheless, here we want to analyze also the case where the two families of
fibers are related by orthogonality. A confluent monolayer of cells on a convex cylindrical
surface tends to align the fibers in a preferred direction, forming an angle φ with the
circumferential direction of the cylinder. Therefore, if we follow the common model of cell
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Figure 3.6. Inflation of a cylinder tube with fiber angles θ between 30◦ and 40◦. Mem-
brane solution of λl for different values of the internal pressure P .

as an orthotropic material with two mutually orthogonal families of fibers, the response
of the monolayer can be assumed orthotropic locally, hence with the fibers arranged as
follows:

N =

 0
cos(φ)
sin(φ)

 , N⊥ =

 0
− sin(φ)
cos(φ)


In this setup, different fibers experience different stretches depending on the angle φ,

unlike in the balanced angle-ply setup where the deformation was the same for both fiber
families. Assuming a strain-energy function of the type given in (3.11), we have:

Ŵ (λ, λl, φ) = W (F) = µ

2 (λ2 + λ2
l + λ−2λ−2

l )+

+ α1

4 (λ2 cos(φ)2 + λ2
l sin(φ)2 − 1)2+

+ α2

4 (λ2 sin(φ)2 + λ2
l cos(φ)2 − 1)2

(3.25)

The solution of the system (3.5) is depicted in Figure 3.7 for λ and Figure 3.8 for λl,
for angles φ between 0◦ and 40◦, using the same set of material parameters µ, α1, α2. As
before, the mechanical response varies significantly for different angles φ. The range of
values reached by the principal stretch is slightly different from the previous case using
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Figure 3.7. Inflation of a cylindrical tube with fiber angles φ between 0◦ and 40◦.
Membrane solution for λ at different internal pressures P .

(3.12). However, the main difference lies in the inversion effect. Figure 3.7 shows that
λ does not exhibit this property for any values of φ, unlike in the balanced angle-ply
setup. Instead, a limiting function is achieved for small angles φ. On the other hand, the
pressure-axial stretch relation still exhibits the inversion effect for angles φ greater than
a certain value. This difference in behavior may be significant because experimental data
on arteries exhibit the inversion effect only in the axial stretch-pressure relation, while the
circumferential stretch λ only stiffens.

In conclusion, these results validate the strain-energy function (3.11) as a candidate
for describing the inflation of a tube made of biological tissue. Both the isotropic and
anisotropic responses exhibit similar behaviors to those proposed in [1] and [2], showing
qualitatively the same main features. Both the stiffening with the axial stretch, as de-
picted in Figure 3.2, and the inversion effect in Figure 3.6 are predicted by the membrane
approximation of the problem. Moreover, in the context of remodeling, the stability anal-
ysis of an exponential energy-strain function (3.12) is formally identical to the polynomial
form (3.11) chosen here. Thus, in the following, we will analyze the optimal arrangement
of fibers that minimize the stored elastic energy in both the case of incremental pressure
and the case of controlled deformation.
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Figure 3.8. Inflation of a cylindrical tube with fiber angles φ between 0◦ and 40◦.
Membrane solution for λl at different internal pressures P .

3.4 Remodeling on an Inflated Cylinder

Several studies have shown that cells reorganize their cytoskeletal structure under stretch-
ing along two directions. This phenomenon was first observed by Buck in his studies on
blood vessels [3,4], where cells are periodically stretched due to internal variations in blood
pressure. This has been extensively studied in the literature, with several theoretical ex-
planations proposed in recent years [9]. The most successful approach is based on elastic
energy, where cells reorient their stress fibers to minimize the strain-energy function. A
theoretical model that successfully explains the main features of SF reorganization under
large strains was proposed by Lucci and Preziosi [23]. They used a strain-energy function
of the general polynomial form:

U (I) = 1
2I · KI + V , (3.26)

where I := (Î4, Î5, Î6, Î7, I8), K is the symmetric matrix of coefficients, and V is the purely
isotropic part of the elastic energy. The anisotropic invariants I are:

Î4 = C : A − 1, Î5 = C2 : A − 1,
Î6 = C : A′ − 1, Î7 = C2 : A′ − 1,
I8 = N′ · (CN),

(3.27)

56



Reorientation on an inflated cylinder

where N and N′ are the directions of the two families of fibers, while A = N × N and
A′ = N′ × N′ are the structural tensors associated with the fiber directions.

In a controlled deformation framework, where the principal stretches λ and λl are
controlled externally, the analysis by Lucci and Preziosi [23] holds locally. Therefore, we
can analyze the optimal configuration of the SFs for different values of the deformed radius
r (i.e., for different values of λ) and draw conclusions. Additionally, it might be interesting
to analyze the minimal energy configuration for different values of internal pressure P in
the cases studied before, as the mechanical setup is quite different.

3.4.1 Optimal Configurations in Controlled Deformation Setup
The mechanical framework used previously, although qualitatively explaining some main
features of the inflation of biological tissue, does not allow for an analytical study of the
optimal configurations of the stress fibers. Therefore, we will assume complete control over
the principal stretches λ and λl. Notice that, even though we are working in a cylindrical
coordinate system, the analysis by Lucci and Preziosi [23] continues to hold locally.

In the following, we assume that the two families of fibers are locally orthogonal on
the tube, as done in Section 3.3.3, where φ is the angle between N and the principal
stretching direction. This constraint on the fiber families is chosen for two main reasons.
Firstly, the possible scenarios regarding the stability of a configuration are broader than
in the balanced angle-ply setup. The angle-ply setup allows us to factorize the anisotropy
coefficient αi into one coefficient, reducing the different scenarios in the bifurcation anal-
ysis. Secondly, the fiber families model the SFs cytoskeletal structure of the cell, which is
usually modeled in this framework.

The analysis by Lucci and Preziosi [23] also holds for this setup, where the principal
stretches are λ2 = r2

R2 and λ2
l in the circumferential and axial directions, respectively. We

will assume there is no contribution from C2 terms, neglecting the contributions from the
invariants Î5 and Î7 by setting their associated parameters in the coefficient matrix K
to zero. As noted by Lucci and Preziosi [23] and thoroughly examined by Merodio and
Ogden [42], these terms are not necessary to characterize the behavior of an orthotropic
material. Indeed, they can be expressed as a linear combination of the other invariants [42],
so their contribution can be disregarded.

The analysis depends not only on the usual material parameters in W (3.26), but also
on the direction of the main stretching direction. Therefore, we will separately analyze
the case where λl > λ and the symmetrical case λ > λl, drawing some conclusions.

Maximum (Main) Strain Direction along the axis

Let the axial direction be the main stretching direction, thus λl > λ and λl > 1. The
optimal configuration characterized by an angle φ falls into three possible cases: φ = 0 or
φ = π

2 are the trivial ones, while, if it exists, an oblique configuration φ∗ is the solution
of [23]:

cos2(φ∗) = 1
2 + k44 − k66

k44 + k66 − 2k46 − k88

A
1
2 − λ2

l − 1
λ2

l − λ2

B
. (3.28)
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Their stability depends, in general, on the material coefficients of K. Notice that cos2(φ)
is in a linear relationship with the parameter:

Λ := λ2
l − 1

λ2
l − λ2 , (3.29)

where the slope of the line is given by

α = k44 + k66 − 2k46 − k88

k44 − k66
. (3.30)

We highlight the fact that Λ = 1 corresponds to maintaining the circumferential stretch
λ = 1 fixed, while Λ > 1 corresponds to stretching in the circumferential direction while
still maintaining λ < λl.

In this section, we analyze how the optimal configuration changes concerning a con-
trolled deformed radius r, working directly with the circumferential stretch λ = r

R . The
reorientation behavior will depend on the sign of λ− 1, as we will work with either Λ < 1
or Λ > 1 cases. To underline the dependence of Λ on the deformed radius r, we observe
that:

Λ = λ2
l − 1

λ2
l − λ2 = R2(λ2

l − 1)
R2λ2

l − r2 , (3.31)

where R is the undeformed radius in the reference configuration. Clearly, as the deformed
radius r increases until it reaches the limit value λlR, the parameter Λ increases.

Figure 3.9 describes the angle φ against the deformed radius r for different values of
α ∈ {0.4, 0.6, 0.8, 1.2, 1.5, 2}. The computation is done by maintaining the axial stretch
λl = 1.3 fixed and with an undeformed radius R = 10mm. Clearly, as the deformed
radius increases, the angle tends to orient orthogonally to the axis of the cylinder. For
smaller radii, however, the optimal angle shifts towards a stable oblique configuration.
The parameter α, which only depends on the material coefficients, shifts the range of
stability of the oblique configuration as it increases, while also increasing the optimal
configuration angle for small deformed radii r.

This behavior is similar to what is observed for cells on curved substrata, where increas-
ing the radius (and thus decreasing the curvature of the cylinder) results in configurations
more aligned toward the circumferential direction, as highlighted in Chapter 1. However,
this model does not account for any trade-off between curvature and contractility effects,
as described in Chapter 2, since the orientation depends only on the material parameters
of the tube. Indeed, this model does not consider cell-level interactions, as evidenced
by the fact that reorientation is primarily characterized by the circumferential stretch λ,
which omits information regarding the magnitudes of the undeformed and deformed radii
R and r. To address this feature, it is necessary to introduce these effects in an alternative
manner, as we will do in Chapter 4.

Main Strain Direction along the circumference

Contrary to the previous part, let the circumferential direction be the main stretching
direction, thus λ > λl. Again, the optimal configuration is described by an angle φ, which
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Figure 3.9. Bifurcation diagram of equilibrium angle in terms of deformed radius r for
different α ∈ {0.4, 0.6, 0.8, 1.2, 1.5, 2}. The values of the axial stretch and undeformed
radius are set to λl = 1.3 and R = 10 mm, respectively. The solid lines describe stable
configurations, while the dashed lines describe unstable configurations.

now describes the angle between the circumferential direction and the fiber direction N.
Hence, if it exists, the oblique configuration φ∗ satisfies [23]:

cos2(φ∗) = 1
2 + k44 − k66

k44 + k66 − 2k46 − k88

A
1
2 − λ2 − 1

λ2 − λ2
l

B
. (3.32)

Their stability depends, in general, on the material coefficients of K. The same consider-
ations as above follow, except that now the angle φ is with respect to the azimuthal axis
and the main stretch is such that the deformed radius must satisfy r > Rλl.

To underline the dependence of Λ on the deformed radius r, we observe that:

Λ = λ2 − 1
λ2 − λ2

l

= r2 −R2

r2 −R2λ2
l

, (3.33)

where R is the undeformed radius in the reference configuration. The parameter Λ is very
large for radii r approaching the boundary value Rλl, while it approaches 1 for very large
undeformed radii.

Figure 3.10 describes the angle φ against the deformed radius r for different values of
α ∈ {0.8, 1.2, 1.5, 2, 3}. The computation is done by maintaining the axial stretch λl = 0.8
fixed and an undeformed radius R = 10mm. The figure shows that as the deformed radius
increases, the optimal configuration angle φ shifts towards the direction of the cylinder
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axis. Notice that, for values α < 1 (yellow line), the orthogonal configuration becomes
stable for sufficiently high radii, while it is reached only in the limit for small radii. The
situation is opposite if λl > 1, as shown in Figure 3.10b, where λl = 1.3. In this case,
for values α < 1, the stable configuration is always the orthogonal one, hence the axial
direction. This changes for values of α > 1, where the optimal angle stabilizes on an
oblique configuration that shifts very slowly towards 45◦ with respect to the circumferen-
tial direction. Notice that the deformed radius is limited below by the condition λ > λl.
Therefore, we are unable to understand the behavior for smaller radii, and consequently,
for very high curvature. Nonetheless, Figure 3.10a does not explain the reorientation
observed in experiments, contrary to the case where the main direction was axial. As
discussed earlier, we expect that as the radius increases—i.e., as curvature decreases—the
optimal configuration angle should shift toward the circumferential direction, as observed
in numerous experiments cited in Chapter 1 [14,16].

3.4.2 Optimal Configurations for Different Values of Internal
Pressure P

Although qualitatively understanding the reorientation process may be useful, the ex-
perimentally controlled setup does not fully describe the coupled deformation process
described by (3.19) for a given internal pressure P . The internal pressure P controls the
principal stretches λ and λl through the nonlinear system of equations (3.5). Therefore,
for fixed values of P , the elastic energy reduces to a function of the configuration angle φ
only, allowing us to analyze the minimal energy configuration through numerical solutions
over the range of angle φ ∈ [0, π

2 ]. In the following, we will show solutions for different
types of constitutive strain-energy choices.

Consider the setup with two families of symmetrically arranged fibers studied by
Holzapfel et al. [2]—i.e., the balanced angle-ply setup described by the strain-energy
function (3.24). Figure 3.11(a) shows the normalized strain energy function against the
geometrical angle θ for different values of internal pressure P . Notice that below a certain
threshold value of P , there exists an unstable oblique configuration while both parallel
and orthogonal configurations are locally stable, as depicted by the blue and red solid
lines. As the pressure increases, the oblique configuration disappears, and the only stable
configuration is given by θ = 0, hence parallel to the circumferential direction. Nonethe-
less, as observed before, the geometrical constraint between the two families of fibers
highly influences the response of the tube. Indeed, the behavior for different angles for
the strain-energy function (3.25) is depicted in Figure 3.11(b). Contrary to the angle-ply
setup, we observe a remarkably unstable oblique configuration, while both the parallel
and orthogonal configurations are stable.

Finally, it is worth noting that the introduction of additional energy contributions, as
described generally by (3.26), might completely change the optimal configuration. Figure
3.12 shows that the stable configuration changes completely for different values of the ma-
terial coefficient k46. Indeed, Figure 3.12(a) depicts only two equilibrium configurations,
θ = 0 stable and θ = π

2 unstable. On the other hand, Figure 3.12(b) shows that for higher
values of k46, the parallel configuration θ = 0 becomes unstable, while a stable oblique
configuration θ = 30◦ − 40◦ emerges.
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Figure 3.10. Bifurcation diagram of equilibrium angle in terms of deformed radius r
for different α ∈ {0.8, 1.2, 1.5, 2, 3} and undeformed radius R = 10 mm. Solid lines
describe stable configurations, while dashed lines describe unstable configurations. The
axial stretches are set to (a) λl = 0.8 and (b) λl = 1.2.
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Figure 3.11. Normalized strain-energy function W against the angle θ for differ-
ent values of internal pressure P . The material parameter used are µ = 260KPa,
α1 = α2 = 23 · 103KPa for (a) balanced angle-ply (3.24) (b) orthogonal (3.25).
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Chapter 4

Reorientation in initially
stressed materials

Initially stressed materials are a class of materials that possess pre-existing stress dis-
tributions before any external loads are applied. The nature of such pre-stresses relies
on internal forces that develop within a material due to a wide range of factors, such as
the manufacturing process, thermal effects, mechanical treatments, and, in the case of
biological tissue, growth or remodeling.

A peculiar example is observed directly from biology. When an artery is dissected from
the body, it contracts in length, reaching an unloaded configuration. However, the artery
remains stressed throughout its volume. A radial cut along the artery partially releases
the internal stress, relaxing the ring to form an open sector, as discussed in [40]. This
phenomenon cannot occur if the unloaded configuration were unstressed, as there would
be no change after the radial cut. In general, even the opened ring configuration is not
stress-free since the opening angle of different layers is not the same.

The theory of residual stressed bodies has been widely investigated since the 1990s.
From a mathematical perspective, some fundamental aspects of the influence of residual
stress on the constitutive laws have been extensively studied by Hoger and co-workers
[43–45]. This remains an intriguing research topic, attracting continued interest from
researchers, such as Gower and co-workers [46–48]. Nonetheless, there are still questions
regarding the validity of some relevant results, as detailed in [49].

Although residual stress is usually developed by inelastic processes, as highlighted
above, there are cases where initial stress is produced by elastic deformation. For instance,
turning a spherical cap upside down may result in residual stress, or when a body is
elastically deformed from a stress-free configuration, and the deformed state is considered
the unloaded one. A theoretical framework to treat elastically pre-stressed material was
first developed by Johnson and Hoger [45] and has been used and improved in recent
years [50].

The aim of this Chapter is to analyze the effect caused by substrate curvature discussed
in Chapter 2, within the wider context of tube inflation. The idea is that the elastic pre-
stress due to the substrate curvature of a single cell might alter the bifurcation analysis of a
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monolayer of cells on an inflated cylinder. This aims to fully understand the reorganization
of the cell structure to include the present model in the simulation of the cell part of
the arterial wall. In particular, Section 1 sets up the theoretical framework of the pre-
stress theory, focusing on the orthotropic material and its consequences on the strain
energy function. Section 2 discusses the properties that residual stress must satisfy in the
special case of cylinder inflation. Lastly, Section 3 introduces residual strain based on the
considerations from Chapter 2 and analyzes the effects of residual strain on the possible
configurations.

4.1 Hyperelastic Theory of Residual Stress
Let us assume that the reference configuration Br is not stress-free. Let T(r) be the
residual Cauchy stress field in the reference configuration Br. In general, the residual
stress field cannot be computed directly by exploiting the strain-energy, as one can infer
from the causes mentioned above. Nonetheless, it might be included inside a constitutive
theory by means of the multiplicative decomposition theory, as we will discuss later.

Therefore, if there is a residual stress in the reference configuration, the equations of
equilibrium impose that

div T(r) = 0 in Br B.C. T(r)T n = 0 on ∂Br, (4.1)

where the boundary is load-free and n̂ is a unit vector field orthogonal to the boundary
∂Br. One should note that there is no distinction between the Piola tensor field relative
to the residual stress S(r) and the Cauchy stress T(r) in the reference configuration Br. It
follows, upon application of the divergence theorem, thatÚ

∂Br

S(r) dS = 0. (4.2)

Thus, the residual stress cannot be uniform. In other words, the residual stress
distribution across the domain is necessarily inhomogeneous and, therefore, geometry-
dependent [1, 43]. Consequently, the constitutive law will necessarily be dependent on
the geometry since it will inherit this dependence directly from the residual stress. In
general, the process to develop a constitutive theory that includes initial stress follows
these steps [43]:

• The strain-energy function W is written as a function of the new set of invariants
referring to the deformation and the initial stress.

• The constitutive law of the stress - the response function - is derived directly from
the derivative of the strain-energy.

• Other properties of the body, such as the shape and the material symmetries, may
be integrated to simplify the final expression.

In general, the residual stress places restrictions on the material symmetry in the
considered material body, thus it may vary from point to point. The constitutive laws
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resulting from this restriction might be very complex, so we will not consider this issue
here. Nonetheless, we will make some observations on the restrictions imposed on the
residual stress S(r) by the material symmetry.

4.1.1 Preliminary Considerations
Let Fe be the deformation gradient associated with the deformation map ϕe(X) = x, i.e.,
Fe = ∂ϕe

∂X . Given a constitutive elastic energy W , if we assume that the deformation is
purely elastic, the constitutive law for the Cauchy stress field T may be written in terms of a
response function T̂ such that T(X) = T̂ (Fe(X),X) relative to the unloaded configuration
Br. The objectivity constitutive axiom imposes the condition on the response function

T̂ (QFe) = QT̂ (Fe)QT ∀Fe ∈ Lin,Q ∈ Orth. (4.3)

In terms of the Piola-Kirchhoff tensor field S = det(Fe)TF−T
e =: Ŝ(Fe), the objectivity

implies that
Ŝ(QFe) = QŜ(Fe) ∀Fe ∈ Lin,Q ∈ Orth. (4.4)

Moreover, if GX denotes the symmetry group of the material at the material point X,
then

T̂ (Fe(X)Q,X) = T̂ (Fe(X),X) ∀Q ∈ GX. (4.5)

Therefore, the combination of objectivity and material symmetry implies that

T̂ (QFeQT ) = QT̂ (Fe)QT , Ŝ(QFeQT ) = QŜ(Fe)QT ∀Q ∈ GX. (4.6)

This implies that, evaluating equation (4.6) for Fe = I, given that T(r) = T̂ (I),

QT(r) = T(r)Q ∀Q ∈ GX, (4.7)

thus, the initial stress field T(r) necessarily commutes with every element of the material
symmetry group GX at the material point X. Equation (4.7) places a restriction on the
expression of the material stress that may be very limiting. For example, if the material
is isotropic, i.e., the symmetry group is the set of orthogonal transformations GX = Orth,
then it can be proven that

T(r)(X) = α(X)I. (4.8)

Therefore, the equilibrium equations and the load-free boundary conditions imply that
the scalar field α(X) = 0 within the material body Br [44]. We conclude that an isotropic
body cannot sustain any residual stress T(r).

4.1.2 Residually Stressed Orthotropic Material
A material with three mutually perpendicular planes of symmetry is called orthotropic.
Mathematically, the symmetry group consist of rotation through π about each ki, together
with the reversal of each ki, where k1,k2, and k3 are three mutually orthogonal vector
fields (in the sense that they are functions of the material point) that define the three
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planes of symmetry. The restriction (4.7) implies that the residual stress T(r) must have
the form

T(r) = t1(X)k1(X) ⊗ k1(X) + t2(X)k2(X) ⊗ k2(X) + t3(X)k3(X) ⊗ k3(X) (4.9)

where t1, t2, and t3 are scalar fields, and k1,k2, and k3 are vector fields that depend on
the material position in Br. Notice that, due to the orthogonality, this expression is
equivalent to

T(r) = t̂1(X)I + t̂2(X)k2(X) ⊗ k2(X) + t̂3(X)k3(X) ⊗ k3(X) (4.10)

To write the equilibrium equations, observe that, for a general scalar field α and vector
field k, it holds

Div(α(x)k(x) ⊗ k(x))j = kjki
∂α

∂xi
+ α

∂kj

∂xi
ki + α

∂ki

∂xi
kj =

= [k(x) ⊗ k(x)]∇α(x) + α(x)[(∇k)k(x) + (∇ · k)k(x)]j
(4.11)

where Einstein notation is used for the index i - i.e., it sums over i = 1, 2, 3. Hence,

Div(α(x)k(x) ⊗ k(x)) = [k(x) ⊗ k(x)]∇α(x) + α(x)[(∇k)k(x) + (∇ · k)k(x)]. (4.12)

Therefore, the equilibrium equation for the residual stress in the form (4.9) reads as

[ki(X) ⊗ ki(X)]∇ti(x) + ti(X)[(∇ki)ki(x) + (∇ · ki)ki(X)] = 0 (4.13)

and the boundary condition becomes

ti(ki · n)ki = 0. (4.14)

The dependence of the residual stress tensor field T(r) on the position may significantly
simplify the complexity of the problem. In particular, our goal is to study the deformation
of an inflated tube, which we will analyze in detail later.

4.1.3 Strain Energy Function

An original approach [45–47] consists in taking advantage of the existence of a virtual
stress-free state described by the configuration B0. Let B0 be a virtual stress-free config-
uration, while Br and B are the unloaded and current configurations, respectively. The
idea is to prescribe a constitutive law in the reference configuration Br with an initial
stress field T(r) starting from a hyperelastic strain-energy function defined in the stress-
free configuration. Let us assume that the material is orthotropic in B0, described by the
two families of fibers N and N⊥, and thus, the elastic energy function will depend on the
set of invariants:
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Figure 4.1. Visualization of the multiplicative decomposition technique.
For more details, see [51].

I1 = trC, I2 = 1
2(tr(C2) − (tr(C))2), I3 = detC,

I4 = C : A, I5 = C2 : A,
I6 = C : A⊥, I7 = C2 : A⊥,

I8 = N⊥ · (CN)

(4.15)

where A = N ⊗ N, A⊥ = N⊥ ⊗ N⊥ are the structural tensors associated with the
two families of fibers, and : denotes the double contraction operation. There are several
possible choices of elastic strain energy; for our purposes, we will choose an energy strain
function for incompressible material of the form [23]:

W (C,A,A⊥) = 1
2I · KI + V (I1) (4.16)

where I = (Î4, Î5, Î6, Î7, I8), with Îj = Ij − 1. If we neglect the dependence on C2 terms,
i.e., on I5 and I7, for the same reasons highlighted in Chapter 3, Section 4, the strain
energy function expanded may be written as:
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W (C,A,A⊥) =µ

2 (I1 − 3)

+ k44

2 (I4 − 1)2 + k66

2 (I6 − 1)2

+ k46(I4 − 1)(I6 − 1) + k88

2 I2
8

(4.17)

Now, let us describe the total deformation gradient F by means of the multiplicative
decomposition F = FeFr, where, in particular, Fr describes an elastic deformation from
the virtual configuration B0 to the locally unloaded reference configuration Br which,
therefore, generates an elastic residual stress in that configuration, while Fe describes
a deformation from the unloaded configuration Br to the current configuration B, as
depicted in Figure 4.1. The physical meaning is that the total deformation F is decomposed
into deformations Fe and Fr, where we imagine first applying the deformation described
by Fr and then deforming the body in the unloaded configuration with Fe. Therefore, by
plugging in F = FeFr inside the hyperelastic energy, we have:

W (FT
r CeFr,A,A⊥) =µ

2 (Br : Ce − 3)

+ k44

2 (Ce : Ar − 1)2 + k66

2 (Ce : A⊥
r − 1)2

+ k46(Ce : Ar − 1)(Ce : A⊥
r − 1) + k88

2 (N⊥
r · (CrNr))2

(4.18)

where we defined Ar = FrAFT
r and A⊥

r = FrA⊥FT
r , Nr = FrN, N⊥

r = FrN⊥ and the
trivial ones Ce = FT

e Fe and Br = FrFT
r .

The Cauchy stress may be computed directly from the constitutive elastic energy as:

σ = 2F∂W
∂C

FT − pI (4.19)

where p is the Lagrange multiplier associated with the non-compressible constraint. There-
fore, the differentiation of the elastic energy (4.17) gives:

σ = µB − pI + 2[k44(C : A − 1) + k46(C : A⊥ − 1)]FAFT

+ 2[k66(C : A⊥ − 1) + k46(C : A − 1)]FA⊥FT + k88(N⊥ · (CN))FDFT

(4.20)

where we defined D = 1
2(N ⊗ N⊥ + N⊥ ⊗ N).

The goal is to write the elastic energy in the reference configuration Br in a manner that
does not depend on the initial elastic deformation Fr as in (4.17), but rather as a function
of the residual stress T(r) resulting from such deformation. Firstly, note that changing
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reference configurations alters the expression of the strain energy as follows [49,52]:

W̃ (Fe;Fr) = J−1
r W (FFr) ∀Fe,Fr ∈ Lin, (4.21)

where Jr = det (Fr). In the context of incompressibility, Jr = 1, allowing us to drop the
·̃ notation from here on. Additionally, we can express terms that depend on the initial
deformation as a function of the residual stress T(r) using the compatibility condition of the
Cauchy stress in the reference configuration Br. This condition states that the residual
stress generated by the deformation gradient Fr must equal the response function (4.20)
for F = Fr. Thus, by setting F = FeFr = Fr, for Fe = I it holds that σ = T(r), thus:

T(r) = µBr − prI + [2k44(I : Ar − 1) + k46(I : A⊥
r − 1)]Ar

+ 2[k66(I : A⊥
r − 1) + k46(I : Ar − 1)]A⊥

r + k88(I : Dr)Dr.
(4.22)

Notice that, in order to write the strain energy (4.17) for a given set of material parameters
µ, k44, k66, k46, k88 and the two structural tensors Ar and A⊥

r , we must explicitly write the
invariant Ir1 = BrCe and the pressure pr = p(Fr) as functions of the initial stress field.
By multiplying (4.22) by Ce on the right and taking the trace, we have:

T(r) : Ce = µBr : Ce + 2[k44(I : Ar − 1) + k46(I : A⊥
r − 1)]Ce : Ar

+ 2[k66(I : A⊥
r − 1) + k46(I : Ar − 1)]Ce : A⊥

r + k88(I : Dr)(Ce : Dr) − pr trCe

(4.23)

which allows us to write the invariant I1r = tr(FrCeFT
e ) as a function of the other terms

defined in the reference configuration Br. Finally, it remains to compute the Lagrange
multiplier associated with the elastic deformation Fr. Since the material is not compress-
ible in the virtual stress-free configuration B0, we can exploit the fact that det(Fr) = 1,
leading to, by taking the determinant of (4.22),

det(T(r) + prI) = det(Fr) det(µI + Sr) det(Fr) (4.24)

where the tensor Sr is defined as:

Sr = [2k44(I : Ar−1)+k46(I : A⊥
r −1)]A+[2k66(I : A⊥

r −1)+k46(I : Ar−1)]A⊥+2k88(I : Dr)D.
(4.25)
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Therefore, by plugging in these results, the elastic energy is written as

W (Ce,T(r)) =1
2(T(r) : Ce + pr tr(Ce) − 3µ)

+ k44

2 (Ce : Ar − 1)2 − 2k44(trAr − 1) + k46(trA⊥
r − 1)

2 Ce : Ar

+ k66

2 (Ce : A⊥
r − 1)2 − 2k66(trA⊥

r − 1) + k46(trAr − 1)
2 Ce : A⊥

r

+ k46(Ce : Ar − 1)(Ce : A⊥
r − 1)

+ k88

2 (N⊥
r · (CeNr))2 − k88(I : Dr)(Ce : Dr)

(4.26)

where pr is the positive root of

p3
r + I

T
(r)
1
p2

r + I
T

(r)
2
pr + I

T
(r)
3

= µ3 + IS1µ
2 + IS2µ+ IS3 = 0 (4.27)

where IT(r)
j

,ISj denote the first three invariants of the tensors T(r) and S, respectively.
Notice that, if there is no residual stress T(r) ≡ 0, i.e. the elastic deformation tensor
Fr = I, the solution of (4.27) reduces to pr = µ and, moreover, trAr = trA = 1 and
trA⊥

r = trA⊥ = 1, the strain energy W returns in the initial form (4.17), as expected.

After a bit of algebraic manipulation, the strain energy function may be written as:

W (Ce,T(r)) =1
2(T(r) : Ce + prtr(Ce) − 3µ)

+ k44

2 ((Ce − I) : Ar)2

+ k66

2 ((Ce − I) : A⊥
r )2

+ k46((Ce − I) : Ar)((Ce − I) : A⊥
r )

+ k88

2 (N⊥
r · (CeNr))2 − k88(I : Dr)(Ce : Dr)

− 1
2(k44 tr(Ar)2 + k46tr(Ar) tr(A⊥

r ) + k66tr(A⊥
r )2).

(4.28)

This form allows us to distinguish the energy contribution given by the initial stress
since, for Ce = I most of the contributions disappear leading to

W (I,T(r)) =1
2(trT(r) + 3(pr − µ))

− 1
2(k44tr(Ar)2 + k46tr(Ar)tr(A⊥

r ) + k66tr(A⊥
r )2).

(4.29)
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4.2 Residual Stress in Cylinder Inflation

The kinematics of deformation of the tube is the same as defined in Chapter 2, Section
1. Specifically, we assume an elastic deformation that maintains cylindrical symmetry,
meaning the deformation fields depend only on the radial coordinate R of the material
point X = (R,Θ, Z) in the unloaded configuration Br. This geometric choice allows us
to make further observations on the residual stress field T(r) within the body. For clarity,
we report the equilibrium equation (4.1) in cylindrical coordinates:

∂T
(r)
RR

∂R
+ 1
R

∂T
(r)
RΘ

∂Θ + ∂T
(r)
RZ

∂Z
+ 1
R

(T (r)
RR − T

(r)
ΘΘ) = 0,

∂T
(r)
RΘ

∂R
+ 1
R

∂T
(r)
ΘΘ

∂Θ + ∂T
(r)
ΘZ

∂Z
+ 2
R
T

(r)
RΘ = 0,

∂T
(r)
RZ

∂R
+ 1
R

∂T
(r)
ΘZ

∂Θ + ∂T
(r)
ZZ

∂Z
+ 1
R
T

(r)
RZ = 0.

(4.30)

These equations are simplified if we make some assumptions about the form of the
residual stress T(r) in (4.10). For instance, let k3 be independent of the position. There-
fore, the equilibrium equation of the residual stress T(r) implies that t3 is independent
of the scalar coordinate associated with the vector k3. If, in addition, we identify the
direction k3 with the axis of the cylinder, applying the boundary conditions on the ends
of the tube implies that t3 = 0 [1]. Thus, the residual stress T(r) does not depend on the
direction k3. In polar coordinates, the remaining equations read as [53]:

∂

∂R
(R2T

(r)
ΘR) +R

∂T
(r)
ΘΘ

∂Θ = 0,

∂

∂R
(RT (r)

RR) + ∂T
(r)
RΘ

∂Θ − T
(r)
ΘΘ = 0,

(4.31)

where T (r)
RR, T

(r)
RΘ, and T

(r)
ΘΘ are the components of T(r). Moreover, if the field does not

depend on Θ by assumption, the boundary condition (4.14) on the cylindrical surface
implies that T (r)

RΘ ≡ 0. Therefore, we have T (r)
RR = t1 and T

(r)
ΘΘ = t2. Thus, the system of

equations (4.31) collapses into a single differential equation:

dt1
dR

+ t1 − t2
R

= 0, (4.32)

coupled with the pair of equations (3.5) and the boundary condition on the surface of the
tube:

t1 = 0 on R = A,B. (4.33)

Even though this is just a simple case, it is clear how much the geometry and material
symmetry influence the shape of the residual stress T(r).

In general, the system of equations (4.31) coupled with the boundary condition may
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be solved using an Airy potential ψ = ψ(R,Θ) [53], i.e., defining the residual stress as:

T
(r)
RR = 1

R

∂ψ

∂R
+ 1
R2

∂2ψ

∂Θ2 ,

T
(r)
RΘ = 1

R2
∂ψ

∂Θ − 1
R

∂2ψ

∂R∂Θ ,

T
(r)
ΘΘ = ∂2ψ

∂R2 .

(4.34)

By exploiting the Airy potential ψ, this set of equations allows us to easily define the
initial stress field T(r) by only prescribing the function ψ(R,Θ). Notice that, when we
assume there is no dependence on Θ as previously done, the residual stress component
T

(r)
RΘ ≡ 0, thus the initial stress will be diagonal with components:

T
(r)
RR = t1 = 1

R
f(R), T

(r)
ΘΘ = t2 = f ′(R), (4.35)

where f(R) = ψ′(R) with f(A) = f(B) = 0. Therefore, if we allow the system to be
independent of the material coordinate Θ, the analysis is simplified and the residual stress
may be defined by the introduction of a function f(R), regarded as a stress potential [53].

However, this reasoning holds under the assumption that k3 is parallel to the axis of
the cylinder. In general, we want to describe a body with two families of fibers mutually
orthogonal on the plane (Θ, Z) to model the anisotropic response of the cell given by the
stress fibers network. Let us assume that the two structural tensors A = N ⊗ N and
A⊥ = N⊥ ⊗ N⊥ are given by:

A =

0 0 0
0 cos2(φ) sin(2φ)

2
0 sin(2φ)

2 sin2(φ)

 , A⊥ =

0 0 0
0 sin2(φ) − sin(2φ)

2
0 − sin(2φ)

2 cos2(φ)

 , (4.36)

where φ is the angle between the circumferential direction and the vector N. In general,
φ may depend on the position X if the directions N and N⊥ vary within the body. Here
we assume that it is constant for simplicity. It follows from the general form of the
residual stress (4.9) that T (r)

RΘ = T
(r)
RZ = 0 and T

(r)
RR = t1(X). Notice that we implicitly

assumed that k1 coincides with the radial direction in the cylindrical coordinate system.
If, moreover, we assume that the scalar fields tj do not depend on the coordinates Θ and
Z, the equilibrium equation system (4.30) collapses into the radial equilibrium:

∂t1
∂R

+ 1
R

(t1 − t2 cos2(φ) − t3 sin2(φ)) = 0, (4.37)

with boundary conditions t1(A) = t2(B) = 0 on the inner (R = A) and outer (R = B)
cylindrical surfaces. The remaining components must satisfy the boundary conditions
at the ends of the tube. As pointed out by Ogden [1] in the analysis of residual stress
developed by the well-known opening angle method, the zero axial load condition is not
generally compatible with the deformation from the virtual stress-free configuration B0
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to the reference configuration Br. This problem also arises in our cases. In fact, if we
assume free axial load at the ends of the tube, it must hold

0 = T
(r)
ΘZ = (t2(R) − t3(R))sin(2φ)

2 ,

0 = T
(r)
ZZ = t2(R) sin2(φ) + t3(R) cos2(φ).

(4.38)

The trivial case t2 = t3 ≡ 0 is not considered since there would not be any residual
stress supported. Similarly, if t2(R) = t3(R), the boundary conditions would imply that
t1 = t2 = 0, hence collapsing again into the trivial case. Finally, we observe that:

t3(R) = −t2(R) tan2(φ) =⇒ t2
1
1 + tan2(φ)

2 sin(2φ)
2 = 0, (4.39)

which, for a fixed φ /= 0, π/2, holds if and only if t3 = t2 = 0. To resolve this issue, one
may imagine that there is an axial load that controls the deformation. Thus, if W0 is the
strain energy function with respect to the stress-free configuration and λz0 is the fixed
uniform axial stretch, then the residual axial stretch may be computed from the equation
in Chapter 3, Section 1 (3.5):

t3 − t1 = λz0
∂Ŵ0

∂λz0
, (4.40)

where t1 is computed by some other procedure. If the axial stretch λz0 is not assumed
uniform, the deformation becomes more complex, but we will not consider this problem.
This framework is particularly useful because we can proceed by prescribing the form of
T

(r)
RR and T (r)

ΘΘ using some of the arguments described above, and then computing the axial
residual stress T (r)

ZZ from the boundary condition for a fixed axial stretch, as done, for
instance, in the recent paper by Mukherjee and colleagues [48].

4.2.1 Bifurcation analysis

The stationary configuration angles φ are given by setting to zero the derivative of (4.26)
with respect to φ. Thus,

∂W

∂φ
= 1

2
∂T(r)

∂φ
: Ce + ∂pr

∂φ
tr(Ce)+

+ k44(Ce : Ar − 1)Ce : ∂Ar

∂φ
− ∂k̂44

∂φ
Ce : Ar − k̂44Ce : ∂Ar

∂φ
+

+ k66(Ce : A⊥
r − 1)Ce : ∂A

⊥
r

∂φ
− ∂k̂66

∂φ
Ce : A⊥

r − k̂66Ce : ∂A
⊥
r

∂φ
+

+ k46
#
(Ce : Ar − 1)Ce : ∂A

⊥
r

∂φ
+ (Ce : A⊥

r − 1)Ce : ∂Ar

∂φ

$
+

+ k88

2
∂[(N⊥

r · (CeNr))2]
∂φ

− k88
∂[(I : Dr)(Ce : Dr)]

∂φ
,

(4.41)
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where

k̂44 = k44(trAr − 1) + k46(trA⊥
r − 1),

k̂66 = k66(tr,A⊥
r − 1) + k46(trAr − 1).

(4.42)

Then, by plugging in (4.42) and factorizing, we obtain:

∂W

∂φ
= 1

2
∂T(r)

∂φ
: Ce + ∂pr

∂φ
tr(Ce)+

+ 1
2

5
[2k44(tr(CeAr) − tr(Ar)) + k46(tr(CeA⊥

r ) − tr(A⊥
r ))]Ce

− [2k44 tr(CeAr) + k46 tr(CeA⊥
r )]I

6
: ∂Ar

∂φ

+ 1
2

5
[2k66(tr(CeA⊥

r ) − tr(A⊥
r )) + k46(tr(CeAr) − tr(Ar))]Ce

− [2k66 tr(CeA⊥
r ) + k46 tr(CeAr)]I

6
: ∂A

⊥
r

∂φ
+

+ k88

2
∂[(N⊥

r · (CeNr))2]
∂φ

− k88
∂[(I : Dr)(Ce : Dr)]

∂φ
.

(4.43)

In order to proceed, let us assume that Ce is given by the deformation of a pure tube
inflation, hence

Ce = diag(λ−2λ−2
l , λ2, λ2

l ) (4.44)

where the notation is coherent to Chapter 3, Section 1. Therefore, the tensors in-
side the parenthesis are diagonal. In order to simplify the computations, notice that
if B = diag(b1, b2, b3) is a diagonal tensor, then the contraction with the derivative of the
structural tensors (4.36) gives:

B : ∂A
∂φ

= (b3 − b2) sin(2φ), B : ∂A
⊥

∂φ
= (b2 − b3) sin(2φ). (4.45)

In the following we will assume that the initial deformation Fr does not change the
direction of the fiber families, hence we will have Ar = Λ1A and A⊥

r = Λ2A⊥, where Λ1
and Λ2 are measures of the extension along the stress fibers. This setup well describes an
initial deformation that purely contracts the fibers along themselves, as in the case of the
active contraction. Moreover, regarding the I8 term, it follows that

Nr · N⊥
r = 0,

∂(N⊥
r · (CeNr)2)
∂φ

= (λ2
l − λ2)2Λ1Λ2

sin(2φ)
2 (2 cos2(φ) − 1).

(4.46)

Finally, after pluggin in the residual stress in the general form (4.14), it can be proven
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that the strain-energy assumes the form

∂W

∂φ
(λ, λl, t1, t2) = sin(2φ)

2 (λ2 − λ2
l )
5
(λ2

l − λ2)(Λ2
1k44 + Λ2

2k66 − 2k46Λ2Λ1 − k88Λ1Λ2) cos2(φ)

+ (k44Λ2
1 − k46Λ1Λ2)(λ2

l − 1) + (Λ1Λ2k46 − Λ2
2k66)(λ2 − 1)

− Λ1Λ2
k88

2 (λ2
l − λ2) + (Λ2t3 − Λ1t2)

6
,

(4.47)

where we neglected the contribution of the term ∂pr

∂φ . Indeed, it can be proven that the
invariants of T(r) and S in (4.25) do not depend on the angle φ. Notice that the trivial
configurations φ = 0 and φ = π

2 are stationary points of the systems. Moreover, an
additional oblique configuration φ∗ satisfies

cos2(φ∗) = 1
2 + k44Λ2

1 − k66Λ2
2

k44Λ2
1 + k66Λ2

2 − 2k46Λ1Λ2 − k88Λ1Λ2

31
2 − λ2

l − 1
λ2

l − λ2

+ 1
k44Λ2

1 − k66Λ2
2

Λ2t3 − Λ1t2
λ2

l − λ2

4
.

(4.48)

Notice that, upon redefining k̃44 = Λ2
1k44, k̃66 = Λ2

2k66, k̃46 = Λ1Λ2k46, k̃88 = Λ1Λ2k88,
expression (4.48) assumes the more familiar form

cos2(φ∗) = 1
2 + k̃44 − k̃66

k̃44 + k̃66 − 2k̃46 − k̃88

31
2 − λ2

l − 1
λ2

l − λ2

+ 1
k̃44 − k̃66

Λ2t3 − Λ1t2
λ2

l − λ2

4 (4.49)

which, besides the term associated with the residual stress dependent on t3 and t2, re-
sembles the expression found by Lucci and Preziosi [23]. The stability of the stationary
configurations depends on the sign of the second derivative of the energy with respect
to φ. In particular, the analysis carries out the same way as Chapter 2 Section 3, it is
straightforward to prove that:

• φ = 0 stable if and only if

− Λ1t3 − Λ2t2

(λ2
l − λ2)(k̃44 − k̃66)

+ λ2
l − 1

λ2
l − λ2 >

α̃ + 1
2 ; (4.50)

• φ = π
2 stable if and only if

− Λ1t3 − Λ2t2

(λ2
l − λ2)(k̃44 − k̃66)

+ λ2
l − 1

λ2
l − λ2 <

α̃− 1
2 ; (4.51)
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• if there exists, φ = φ∗ stable if and only if

(λ2 − λ2
l )2 sin2(2φ)(k̃44 + k̃66 − 2k̃46 − k̃88) > 0. (4.52)

4.3 Curvature and Active Contractility Effects In-
serted by Prestrain

The purpose of this Section is to introduce the contributions of curvature and active con-
tractility at the cellular level. To achieve this, it is necessary to introduce an appropriate
gradient of deformation, Fr, from the virtual stress-free configuration B0 to the reference
configuration Br in order to compute the optimal configuration directly from (4.18).

Based on the results obtained in Chapter 2, Section 2, and as observed above, active
contractility shortens the fibers, maintaining their initial direction N. Therefore, we
propose the following gradient of deformation for the active contractility component:

Fc = I + C1A + C2A⊥, (4.53)

where A and A⊥ are the structure tensors of the material, and C1 and C2 are scalar fields
measuring the compression due to contractility. Indeed, we observe that

FcN = N + C1AN + C2A⊥N =
= N + C1(N · N)N + C2(N⊥ · N)N⊥ = (1 + C1)N

(4.54)

and analogously,
FcN⊥ = (1 + C2)N⊥. (4.55)

Hence, since we are describing a compression, to ensure the invertibility of the deforma-
tion tensor Fc, the scalar fields C1 and C2 must return values between −1 < C1, C2 < 0.
Indeed, based on the considerations in Chapter 2, Section 2, these measures may be
described by a linear function in the thickness of the tube, hence in the form:

C1 = α(R −Ra), C2 = β(R −Ra), (4.56)

where Ra is the undeformed radius in the reference configuration Br, and α, β < 0 describe
the contraction measure, consistent with the analysis of cell bending. Since we assume the
cell is polarized in the direction described by the angle φ, it is physically justified to assume
that |α| > |β| since we expect most fibers to be oriented towards the polarized direction.
The hypothesis that the fields C1 and C2 are linear functions in the thickness of the tube
derives, as observed in Chapter 2, from the assumption that there is no deformation due
to contractility at the basal surface. Therefore, the contractility deformation is described
by:

Fc = I + α(R −Ra)A + β(R −Ra)A⊥. (4.57)

Regarding the bending part, we observe that the fibers are compressed only along the
maximum curvature direction, i.e., the circumferential direction eθ. Hence, based on the
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equation from Chapter 2, Section 1, we may assume the deformation gradient in the form:

Fb =

1 +B1 0 0
0 1 − k1(R − Rb−Ra

2 ) 0
0 0 1

 (4.58)

where k1 = k1(R) = − 1
R is a scalar field that depends on the undeformed radius of the

reference configuration Br. Notice that, as we did assume in Chapter 2, the curvature
assumes only negative values. Indeed, as highlighted before, this assumption is necessary
from a physics point of view, since the model proposed is not able to explain the behaviour
for concave cylinder, as highlighted in the discussion of Section 2.3

The component in the radial direction depends on the other components by means of
the limit of small thickness, as observed in Chapter 2. Indeed, observe that:

Eb = 1
2(Cb − I) ≈

B1 0 0
0 −k1(R − Rb−Ra

2 ) 0
0 0 0

 (4.59)

which coincides with Chapter 2 upon an orthogonal transformation of the axis. Notice
that we neglected the terms of higher order in the thickness of the tube because of the
small thickness hypothesis. Now we can compute the tensors Ar,A⊥

r ,Br appearing inside
equation (4.18), and then proceed with the bifurcation analysis. Keeping in mind that we
neglect terms of higher order than linear in the thickness:

Ar = FbFcAFT
c FT

b =
= (1 + 2α(R −Ra))FbAFb ≈

≈ (1 + 2α(R −Ra))A − 2k1(R − Rb −Ra

2 )

0 0 0
0 cos2(φ) sin(2φ)/2
0 sin(2φ)/2 0

 (4.60)

and, with the same reasoning,

A⊥
r ≈ (1 + 2β(R−Ra))A⊥ − 2k1(R− Rb −Ra

2 )

0 0 0
0 sin2(φ) − sin(2φ)/2
0 − sin(2φ)/2 0

 . (4.61)

It remains to compute the tensor Br:

Br = FbFcFT
c FT

b ≈
≈ Fb(I + 2α(R −Ra)A + 2β(R −Ra)A⊥)Fb

≈ FbF⊥
b + 2α(R −Ra)A + 2β(R −Ra)A⊥.

(4.62)

Notice that the trace of the tensor B does not depend on the angle φ. Therefore, for
Ce = I, there will not be any dependence on the reorientation angle given by the isotropic
part.
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The stationary configuration can be computed by setting the derivative of (4.18) with
respect to the angle φ (which describes the direction of the fibers) to zero. This yields:

∂W

∂φ
(Ce) = µ

2
∂Br

∂φ
: Ce +

#
k44(Ce : Ar − 1) + k46(Ce : A⊥

r − 1)
$
Ce : ∂Ar

∂φ
+

+
#
k66(Ce : A⊥

r − 1) + k46(Ce : Ar − 1)
$
Ce : ∂A

⊥
r

∂φ
+

+ k88(N⊥
r · (CeNr))∂(N⊥

r · (CeNr))
∂φ

(4.63)

The quantities involved can be computed directly using the forms of Ar, A⊥
r , and Br

given in equations (4.60), (4.61), and (4.62) respectively. To keep the notation simple, let
us define:

α̃ = α(R −Ra), β̃ = β(R −Ra), k̃1 = k1(R − Rb −Ra

2 ) (4.64)

It is straightforward to show that:

Ce : ∂Ar

∂φ
= [(1 + 2α̃)(λ2

l − λ2) + 2k̃1λ
2] sin(2φ),

Ce : ∂A
⊥
r

∂φ
= [(1 + 2β̃)(λ2 − λ2

l ) − 2k̃1λ
2] sin(2φ),

(4.65)

and

Ce : Ar − 1 = (1 + 2α̃)(λ2 cos2(φ) + λ2
l sin2(φ)) − 2k̃1λ

2 cos2(φ) − 1 =
= (1 + 2α̃)[(λ2 − λ2

l ) cos2(φ) + λ2
l ] − 1 − 2k̃1λ

2 cos2(φ),
Ce : A⊥

r − 1 = (1 + 2β̃)(λ2 sin2(φ) + λ2
l cos2(φ)) − 2k̃1λ

2 sin2(φ) − 1 =
= (1 + 2β̃)[(λ2

l − λ2) cos2(φ) + λ2] − 1 − 2k̃1λ
2 sin2(φ).

(4.66)

Finally, regarding the term proportional to k88, we observe that:

N⊥
r · (CeNr) = sin(2φ)

2
#
λ2(1 + α̃− k̃1)(−(1 + β̃ + k̃1)) + λ2

l (1 + α̃)(1 + β̃)
$

= sin(2φ)
2

#
(λ2

l − λ2)(1 + α̃ + β̃ + α̃β̃) + λ2k̃1(2 + α̃ + β̃ − k̃1)
$
.

(4.67)

Hence,
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k88(N⊥
r · (CeNr))∂(N⊥

r · (CeNr))
∂φ

= k88

2 sin(2φ) cos(2φ)
5
(λ2

l − λ2)(1 + α̃ + β̃ + α̃β̃)

+ λ2k̃1(2 + α̃ + β̃ − k̃1)
62

≈ k88

2 sin(2φ)(2 cos2(φ) − 1)
5
(λ2

l − λ2)(1 + α̃ + β̃)2

+ 4λ4k̃2
1 + 2λ2(λ2

l − λ2)k̃1(2 + 3α̃ + 3β̃ − k̃1)
6
,

(4.68)

where we neglected the terms of higher order than R2. Notice that sin(2φ) can be fac-
tored from each component that appears inside the derivative of the elastic energy (4.63).
Therefore, the configurations with angles φ0 = 0 and φ1 = π

2 are two trivial stationary
points, consistent with theoretical results, as in Lucci and Preziosi [23]. Furthermore, the
existence of a third oblique configuration generally depends on the material coefficients
kii and, additionally due to the prestrain, on the coefficients α̃, β̃, and particularly the
curvature of the tube in the undeformed configuration k̃1. Before analyzing the effects
of these additional terms for a given Ce deformation in general, it is useful to examine
the case Ce = I to highlight the competition between curvature and active contractility
effects.

4.3.1 Case Ce = I
Assuming that the tube is not deformed from the reference configuration Br, i.e., Ce = I,
most of the components of equations (4.65)-(4.68) vanish. Therefore, the derivative of the
strain energy function (4.63) can be written explicitly as:

∂W

∂φ
= sin 2φ

#
− cos2(φ)(k44 + k66 − 2k46 − k88)

+ 4k̃1(α̃(k44 − k46) + β̃(k46 − k66)) + 4k̃2
1(k66 − k46 − k88

2 )
$
.

(4.69)

Therefore, if an oblique stationary configuration φ∗ exists, it satisfies:

cos2(φ∗) =
α̃
k̃1

(k44 − k46) + β̃

k̃1
(k46 − k66) + k66 − k46 − k88

2

k44 + k66 − 2k46 − k88
(4.70)

Thus, similar to a cell bent over a cylinder, the oblique configuration φ∗ here also
depends on the ratios α̃

k̃1
and β̃

k̃1
, as well as the material coefficients. Plots of the oblique

angle φ∗ against the curvature k1 are shown in Figures 4.2 and 4.3. Notice that the
main feature observed in Chapter 2, Section 4, is maintained. Indeed, since φ is the angle
between the direction N and the circumferential direction, Figure 4.2 shows that increasing
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Figure 4.2. Oblique angle φ∗ against the curvature k1 for different k44. The simulation
parameter used are k46 = k66 = 0.1, k88 = 0.0614, 4β = α = −2e4

the stiffness of the fibers (i.e., k44) results in an oblique angle φ∗ that is more inclined
towards the axial direction. On the other hand, increasing the strength of contractility
shifts the stability range of the parallel configuration, thereby aligning the fibers towards
the circumferential direction.

4.3.2 General Case

When the tube is inflated, the equilibrium expression will include all the terms present
in equations (4.65) to (4.68). After some calculations, it can be shown that, if an oblique
configuration exists, it takes the form:

cos2(φ∗) =
k44 − k46 − k88

2 + A2 − (k44 − k66 +B2)Λ
k44 + k66 − 2k46 − k88 + A1

(4.71)
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Figure 4.3. Oblique angle φ∗ against the curvature k1 for increasing contractility measure
α. The simulation parameter used are k44 = 0.4, k46 = k66 = 0.1, k88 = 0.0614

where Λ = λ2
l −1

λ2
l
−λ2 , and A1, A2, and B2 are scalar fields that depend on the deformation

through λ2 and λ2
l . Specifically, they are given by:

A1 = 4α̃(1 + α̃k44) + 4β̃(1 + β̃k66) − 4(α̃ + β̃ + α̃β̃)
− k88[(1 + α̃ + β̃)2 − 1]

− 2k46k̃1
λ2

λ2 − λ2
l

+ 2k88k̃1
λ2

λ2 − λ2
l

(2 + 3α̃ + 3β̃ − k̃1)

+ 4k̃2
1

A
λ

λ2 − λ2
l

B2

(k44 + k66 − 2k46 − k88),

(4.72)
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A2 =2(k46 − k66)k̃1
λ2

λ2
l − λ2 + 2α̃k44 − 2β̃k46

− α

λ2
l − λ2

C
2k̃1

λ2

λ2
l − λ2 (k44 − k46) + (1 + 2α̃)k44 − (1 + 2β̃)k46

D

+ 2
A

1 − 1
λ2

l − λ2

B
(2β̃ − 2k̃1)

C
k̃1

λ2

λ2
l − λ2 + (1 + 2α̃)k46 − (1 + 2β̃)k66

D

− k88

2

C
[(1 + α̃ + β̃)2 − 1] + 2k̃1

λ2

λ2 − λ2
l

(2 + 3α̃ + 3β̃ − k̃1) − 4k̃2
1( λ2

λ2 − λ2
l

)2
D
,

(4.73)

B2 =2k̃1
λ2

λ2
l − λ2 (k44 − k66) + 2α̃(k44 + k46) − 2β̃(k66 + k46)

+ 2α̃
C
2k̃1

λ2

λ2
l − λ2 (k44 − k46) + (1 + 2α̃)k44 − (1 + 2β̃)k46

D

+ 2(β̃ − k̃1)
C
2k̃1

λ2

λ2
l − λ2 (k46 − k66) + (1 + 2β̃)k46 − (1 + 2α̃)k66

D
.

(4.74)

Each term inside A1, A2, and B2 depends only on the coefficients α̃, β̃, and k̃1, all of
which are proportional to the tube’s thickness h. Therefore, these terms become significant
only if the curvature k1 and/or the contractility measures α and β are strong enough to
overcome the small value of the thickness. Thus, if α and β are small enough, as expected
at the cellular level, these additional terms become relevant only for sufficiently large
curvatures k1, corresponding to a very small undeformed radius R.

If this is not the case, we should observe the usual linear relationship between cos2(φ∗)
and the deformation measure Λ defined above. This is indeed observed in Figure 4.4, where
it can be seen that higher curvature shifts the angle towards the orthogonal configuration
φ1 = π

2 , i.e., towards the axial direction. The material parameters used in the simulation
are k44 = 0.4, k46 = k66 = 0.1, k88 = 0.0614, while the contractility measures are chosen
as 4β = α = −102. The thickness is chosen as h = 0.1 mm, in accord with the simulation
in Chapter 3. The contractility measure in the orthogonal direction, β, is chosen lower
than α to account for the polarity of the cell, as we expect a large number of fibers in
the principal direction, hence a large contraction. The material parameters are in accord
with those adopted by Lucci and Preziosi [23], based on the experimental studies of Faust
et al. [24] and Livne et al. [54]. The parameter Λ changes with the axial stretch λl.
Notice that, in the large curvature limit (k1 = −104, blue line), the oblique angle φ∗ tends
to always align towards the axial direction, as indicated by the low values of cos2(φ).
Additionally, the parameter Λ, which describes the inflation, does not significantly alter
this behavior due to the high curvature. In contrast, a more significant dependence may
be observed for lower curvature magnitudes, as the deformation effects become stronger.

A similar behavior is observed for a fixed λ2
l = 1.2 and varying λ2, as shown in Figure

4.5. As before, the main stretching direction is the axial one, but this time the parameter

83



Reorientation in initially stressed materials

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

s
2
(

* )

k
1

= 1 10
4

k
1

= 0.3 10
4

k
1

= 0.2 10
4

k
1

= 1 103

k
1

= 1 10
2

k
1

Figure 4.4. Plot of cos2(φ) against Λ. The simulation is made by choosing k44 = 0.4,
k46 = k66 = 0.1, k88 = 0.0614, and 4β = α = −102. The circumferential stretch is fixed
λ = 0.8, while the axial one λl > 1.

Λ changes as λ varies, contrary to the previous case. Indeed, the results for sufficiently
large curvature (green line) correspond to those observed for the inflation of a cylinder
in Chapter 3, Section 4. However, the introduction of prestrain allows us to capture the
competition between bending and contractility observed at the cellular scale for sufficiently
large curvatures (as shown by the blue line). This behavior was not described by the
simpler model in Chapter 3, since, as already highlighted in that chapter, the undeformed
radius scale did not affect the final results, whereas this model succeeds in doing so.
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Chapter 5

Conclusions

This thesis has delved into the responses of cells to mechanical and geometrical cues,
with a particular emphasis on the influence of substrate curvature on cellular behavior.
Building on the foundational work of Biton and Safran, this study has extended their
theoretical model by integrating recent empirical findings to offer a more comprehensive
understanding of the phenomenon.

The investigation into the mechanical response of cells on curved substrates has re-
vealed that cells exhibit distinct reorientation behaviors compared to those on flat surfaces.
Specifically, cells align their stress fibers (SFs) in response to the substrate curvature, with
varying patterns observed among different cell types. For instance, at high curvatures,
muscle cells tend to align with the direction of lesser curvature, while epithelial cells align
with the direction of maximal curvature. This recent experimental finding underscores
the significant impact of substrate geometry on cellular orientation.

A key component of this research involved the development of a structured mathemati-
cal model to elucidate the reorientation process using a Continuum Mechanics framework.
Based on the experimental findings, the hypothesis that garnered more success states that
there is a trade-off between the active contractility of the cell and bending due to sub-
strate curvature, as assumed by Biton and Safran [15]. The stability analysis, conducted
through bifurcation theory, identified critical configurations wherein cells undergo notable
morphological changes. These changes are driven by the energy landscape shaped by the
competing forces of bending and contractility, providing a deeper insight into the cel-
lular behavior on curved substrates. The results achieved generalize those obtained by
Biton and Safran, demonstrating that for a particular choice of parameters, their model’s
predictions are realized.

The study further explored the reorientation of cells on inflated cylindrical substrates,
inspired by the biological example of blood vessels. The kinematics of cylinder inflation
and its effect on cellular orientation demonstrated that the deformed radius plays a cru-
cial role in influencing cell behavior. While the model accurately predicted a limited set
of experimental results, it highlighted the necessity of considering cellular-level interac-
tions for a more precise understanding of the observed phenomena. Therefore, the impact
of residual stress on cellular orientation was examined by extending the analysis to ma-
terials with initial stress, employing hyperelastic theory to describe residual stresses in
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orthotropic materials. The findings indicated that residual stress significantly affects cel-
lular reorientation for sufficiently small radii while returning to the classical limit for larger
radii, offering valuable insights into the mechanical environment that cells encounter.

The implications of these findings for biomedical applications are profound, particularly
in the realms of tissue engineering and biomaterial design. A thorough understanding of
how cells respond to mechanical and geometrical cues is essential for developing innovative
materials. In tissue engineering, the design of scaffolds with appropriate curvature can
guide cell growth and organization, thereby enhancing tissue regeneration and repair.

Looking ahead, this research opens several promising avenues for future investigation.
One critical area is the development of a model that qualitatively explains the experimen-
tal findings for positive curvature values, such as those occurring on the internal surface
of a blood vessel. As pointed out earlier, our model does not address positive curvature
from a physical perspective. Hence, it may be necessary to consider other factors, such
as the buckling of the stress fibers, which may reduce contractility strength, or include
specific interactions between the SFs and the substrate shape. Moreover, from a mathe-
matical point of view, the linear model of cell bending proposed here is based on a set of
assumptions that do not hold in all contexts; therefore, the development of a non-linear
theory should be pursued, for example, by adopting the Föppl-von Kármán plate equa-
tions or higher-order theories. Finally, the pre-stress framework allows us to account for
additional factors that may influence cell reorientation, such as growth. Further investi-
gation should explore the results of such pre-strain at the cellular level, and a comparison
with well-established methods, such as the opening-angle method, may reveal interesting
features.

Additionally, experimental validation of the theoretical models developed in this thesis
is essential. Conducting more extensive experimental studies, particularly focusing on
different cell types and substrate curvatures, will be crucial for confirming the accuracy
of these models. Expanding the models to include detailed cellular-level interactions will
provide a more comprehensive understanding of how individual cells contribute to the
overall behavior observed on curved substrates.

In conclusion, this thesis has made contributions to our understanding of cellular re-
sponses to mechanical and geometrical cues. Through a combination of experimental
observations and mathematical modeling, it has provided a detailed analysis of the me-
chanical principles governing cell behavior on curved substrates.
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