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Abstract

The use of antibiotics as growth promoters (AGPs) in the poultry industry raises global
concerns about antimicrobial resistance (AMR). As an alternative, phytogenic feed
additives (PFAs) are gaining interest for their potential to enhance intestinal health and
animal performance without worsening AMR.
The effects of both the AGP and PFA treatment remain unclear.
For this reason, a thorough analysis is needed to understand how these feed additives
impact the poultry microbial community.
In this study, we hypothesized that the poultry microbial microbiome would respond
to the feed additives, leading to a healthier community structure with more efficient
dynamics. To confirm this, we aim to use co-occurrence networks and network anal-
ysis to investigate the effects of antibiotic growth promoters (AGPs) and phytogenic
feed additives (PFAs) on the cecum microbial communities in the chicken gut. This
approach allows us to visualize and quantifies complex interactions among various mi-
crobial taxa, providing a more detailed understanding of the dynamics within the micro-
bial community. To achieve this, first we construct networks with microbiome samples
collected from poultry at different ages, treated with either a common antibiotic growth
promoter, a phytogenic feed additive, or just basal feed as the control group. Based
on that, we conducted detailed topological analyses to identify differences among the
networks to gain deeper insights into the impact of the feed additives on the cecum
microbiome.
Our findings show that AGP treatment significantly reduces network connectivity com-
pared to control samples, confirming the expected impact of antibiotics on microbial
interactions. Besides, AGP-treated networks show enhanced resilience and a more dis-
tinct modular structure, indicating a robust response to disturbances. On the other
hand, PFA treatment results in a moderate reduction in connectivity and robustness,
suggesting a less disruptive effect on the microbial network.
Additionally, we identify a stable core of species within the networks that remain con-
sistent across different treatments, indicating that the fundamental structure of the
chicken gut microbiome is preserved.
Moreover, using Random Forest classification integrated with network analysis, we pin-
point key microbial species that effectively distinguish between the different treatments,
highlighting the specific impacts of AGPs and PFAs on the gut microbiota.
This study provides a comprehensive analysis of the impacts of PFAs and AGPs on the
chicken gut microbiome through co-occurrence network analysis. The results provide us
with new insights that are crucial for finding and developing effective alternatives for
sustainable poultry production.
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1 Introduction
In the last seventy years, the poultry industry has made significant strides in produc-
tion efficiency, largely thanks to intensive breeding programs [1]. A major addition to
these breeding efforts has been the use of sub-therapeutic doses of antibiotics, known
as antibiotic growth promoters (AGPs), incorporated into chicken feed to enhance
productivity [2].

Figure 1. Antibiotics alternatives [3]

Growing global concerns about the cor-
relation between AGPs and antimi-
crobial resistance (AMR) [4–6] have
prompted increasing calls to eliminate
their use. For instance, Europe banned
AGPs in 2003, while recent efforts in
the United States and Canada aim for
their elimination [1]. This ban has re-
sulted in increased infections in Eu-
rope [7] and reduced production effi-
ciency in Canada [8]. For this reason,
the livestock industry [9] is trying to
find alternative strategies (as shown
in Figure[1]) to promote animal health
without aggravating antimicrobial re-
sistance. In this scenario, Phytogenic
feed additives (PFA) have been gaining
considerable interest lately due to their
ability to improve performance by sus-
taining a healthy gut environment [10].
According to European Union legisla-

tion (EC 1831/2003), Phytogenic feed additives (PFA), derived from plants, herbs,
and spices, are utilized to enhance animal performance. They have proven highly ef-
fective due to their beneficial impact on growth, improved immune system, and in-
fluence on caecal microflora composition [9, 11]. Recent findings indicate that PFAs
serve as promising alternatives to AGPs [9, 12, 13]. Overall, PFAs possess the capa-
bility to mitigate microbial threats and support intestinal health, essential for maxi-
mizing bird performance and profitability [9]. The findings indicate that both PFAs
and AGPs contribute to increased body weight and improved feed conversion ratio [9].

In recent years, studies on complex microbial communities have made significant progress
due to methodological improvements, such as high-throughput DNA sequencing tech-
nologies [14]. These technologies provide detailed information on the composition of
microbial communities, thanks to sequence data derived from the segmentation of the
rRNA gene into small subunits [15]. A wide range of techniques can be employed to
analyze this sequence data to describe the composition and diversity of microbial com-
munities, as well as to understand variations spatially, temporally, or in response to
experimental treatments [15]. These techniques are employed to examine the impact
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1 – Introduction

of growth-promoting antibiotics (AGPs) and phytogenic additives (PFAs) on the gut
microbiota of chickens. The use of both these feed additives has shown to enhance the
apparent total tract nutrient digestibility along the small intestine. This enhancement
is facilitated by the increase in villus height, leading to a notable reduction in cecal col-
iform populations while fostering the growth of beneficial bacteria such as Lactobacillus
spp and inhibiting the growth of pathogenic bacterial species such as Clostridium spp.
[9].

Figure 2. Gut of chickens modulate with a co-occurrence network In this
picture the gut of chickens is modulated using a co-occurrence network in which each
node represents a different species, and each arc indicates that these species co-occur.

These findings provide limited insights into the influence of growth-promoting antibi-
otics (AGP) and phytogenic feed additives (PFA) on the gut microbiota of chickens.
Thousands of different microbes coexist in the gut and have complex and dynamic rela-
tionship between each other. Understanding these relationships is crucial to learn the
impact and mechanisms of action of feed additives. However, previous studies have pri-
marily focused on comparing the compositional levels of specific species, overlooking
potential changes in microbial interactions [9, 12, 13]. Using network to model these in-
teractions enhances our understanding, in particular co-occurrence networks are notably
suitable for this analysis because they allow visualization of the relationships among
different microorganisms present in the gut based on their co-occurrence. This approach
enables the identification of patterns and interactions among microorganisms that may
not emerge through other analytical techniques. Unfortunately, only a limited number
of studies [16, 17] have utilized co-occurrence networks to assess the effects of AGPs
and PFAs on the chicken gut. Furthermore, these studies have primarily conducted
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basic measurements, such as calculating the number of connections or assessing mod-
ularity, to evaluate how the network responds to different treatments [18]. Modeling
the chicken gut using networks can provide valuable information on the crucial nodes
for the stability of the network itself, especially in relation to the effects of antibiotic
growth promoters (AGP) and phytogenic feed additives (PFA). These nodes can also
be used to distinguish between different treatments, identifying the species that are
most affected by these treatments, defined as biomarkers, are measurable indicators of
biological, pathological, or physiological processes that can be used to assess an individ-
ual’s health status, diagnose diseases, monitor disease progression, or evaluate treatment
responses [19]. However, so far, this type of analysis has been primarily conducted on
humans [20, 21] and are not widely used to describe how different growth promoter
treatments affect the gut of chickens.

As previously mentioned, the use of co-occurrence networks will visually depict the re-
lationships among microbial species in various experimental contexts. Specifically, the
connections between species in the network will be determined by correlation analy-
sis, which assesses the tendency of species to co-occur across different treatments. Co-
occurrence networks will enable the visualization and quantification of interactions
between diverse microbial species, shedding light on how treatments may influence the
structure and dynamics of the intestinal microbiota. So far, co-occurrence networks
were mainly used to model changes in species interactions in soil, influenced by envi-
ronmental conditions [22–27]. Previous research also applied co-occurrence network
analysis to understand full-scale anaerobic digestion systems, highlighting the impact of
operational factors on the microbial ecosystem [28]. Additionally, these networks were
utilized to examine how they alter their structure in the human intestine by comparing
networks constructed from samples of healthy individuals with those from individuals
with intestinal diseases [3].
In this study, we will investigate how growth-promoting antibiotics (AGPs) and phy-
togenic feed additives (PFAs) affect microbial interactions in the intestines of chick-
ens. Our hypothesis posits that AGP and PFA treatments will alter microbial interac-
tions, leading to changes in the stability and functionality of the intestinal microbiota
in distinct and measurable ways. To test this hypothesis, we will analyze microbial co-
occurrence networks constructed from species present in different treatments. A more
comprehensive network analysis will be conducted, encompassing metrics such as modu-
larity, clustering coefficient, and average degree. These metrics will help us understand
the initial differences between the networks of interactions among microbial species
present in the intestines of chickens treated with AGP and those treated with PFA.
Additionally, we will evaluate if our networks exhibit a modular structure and aim to
identify consistent modules across various treatments. Furthermore, we will examine
the types of species present within these modules to attribute biological significance to
them and endeavor to understand the reasons why they may resist these treatments.
Furthermore, we are interested in identifying "keystone taxa," species fundamental in
supporting the stability of the microbiota, whose presence or absence can have dispro-
portionate effects on the microbial ecosystem. We will aim to verify if these keystone
taxa are useful in distinguishing between different treatments, this method can help to
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gain a deeper understanding of the mechanisms by which AGP and PFA affect intesti-
nal health, providing practical guidance for the application of these additives in poultry
feeding programs. We will use a similar approach employed in two different studies, [29]
and [30]. In the first study, Random Forest analysis highlighted the significant impact
of key microbial taxa on soil microbiota. In the second study, the aim was to identify
species that distinguish samples of monkeys fed high-fat or low-fiber diets, also through
the same classification algorithm.
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2 Releted Works
In this section, we will describe in detail the tools that we will use in our project.

Challengers for construct co-occurrence network

Data preparation for constructing a co-occurrence network poses several challenges that
require careful consideration.
Effectively addressing these obstacles will ensure an accurate and meaningful representa-
tion of species relationships within the studied microbiota:

Varying sequencing depth

When DNA from biological samples undergoes sequencing, we obtain representations
of the DNA fragments present in those samples [31]. However, the number of these
sequences can vary between samples due to factors such as the quantity and quality of
the genetic material extracted, the efficiency of preparation processes, and sequencing
conditions. This variation in sequence numbers across samples does not always reflect
the true biological diversity of the samples. Some samples might have more sequences
simply because they were sequenced more efficiently, not because they contain a greater
diversity of organisms [31].
This phenomenon can create apparent or false correlations between different entities
(such as bacterial species) that are not biologically associated. Consequently, it could
lead to erroneous interpretations in subsequent analyses. Differences in microbial com-
position between samples with varying sequencing depths might be mistakenly inter-
preted as genuine biological variations [31].

Figure 3. Relative Abundance. Graph of species distribution after calculation of
relative abundance
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To address the challenges posed by varying sequencing depths, techniques such as rar-
efaction or normalization can be employed. It is possible to use relative abundance to
tackle the issue of varying sequencing depths. Relative abundance refers to the propor-
tion of a particular species or group of organisms within a community relative to the
total of the community itself.
When calculating relative abundances, data is normalized so that each species is rep-
resented proportionally to the total number of sequences in the sample. This process
ensures that species are evaluated based on their relative abundance compared to oth-
ers, regardless of the total number of sequences in each sample. By using relative abun-
dances, we can more accurately assess the composition of microbial communities, while
also reducing the impact of sequencing depth variations and allowing for a more precise
comparison between different samples.

Rare Taxa

Microbial communities, with their hundreds or thousands of operational taxonomic
units (OTUs), often include a large proportion of rare taxa. This composition can pose
methodological challenges, as demonstrated by simulations highlighting issues in meth-
ods to detect associations between OTUs, which are believed to reflect interactions
among them [31].
A significant portion of sequencing data comprises zeros. In ecological count data, a
zero might indicate either a genuine absence or a presence below the detection thresh-
old, meaning the taxon was present, but its DNA was not included in the count ta-
ble [32].

Figure 4. Rare Taxa [32]. For the construction of our network we only considered
species that exceed a certain threshold, in our case we consider rare taxa the taxa that
have an abundance less of 0.001%.
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To address the problem of composition data, it is possible to apply a filtering and trans-
formation strategy. Firstly, we filtered out taxa whose abundance level was greater
than a certain value, thus eliminating taxa that are only present in minute and rare
quantities. This filtering allows us to focus on the most significant taxa relevant to the
analysis, reducing the impact of taxa with sporadic or irrelevant presence. Subsequently,

Figure 5. Remove Rare Taxa [32]

Once these rare taxa were selected, it is possible to not to consider them and therefore
to remove them from our analysis.

it is possible to apply the Centered Log-Ratio (CLR) to further improve the distribution
of compositional data. The choice of CLR was motivated by the need to handle the
unique structure of compositional data, stabilizing variance and making the data more
linear.
This transformation not only enhanced data quality but also made the interpretation
of relationships between variables easier, resulting in clearer and more understandable
analysis results [33].
The use of logarithmic ratio transformation is valuable in these situations as it takes
into account the presence of zeros in our measurements. Completely ignoring data with
zeros can lead to the loss of important information, while dealing with zeros without
proper transformation can result in spurious or unrealistic associations between vari-
ables. The CLR transformation allowed us to retain significant information from these
zero values, effectively managing their impact on the analysis. This ensured that rela-
tionships between variables were preserved meaningfully, avoiding misleading interpreta-
tions resulting from improper handling of zeros in compositional data [33].
The CLR transformation involves dividing each abundance value by the geometric mean
of its sample and then taking the logarithm of this ratio. The geometric mean is the
n − th root of the product of all values in a sample, where n is the number of species.

Indirect Edge

Indirect edges in a microbial network represent associations that are not direct and do
not indicate a direct interaction between two microbial taxa.
Instead, they are the result of an association that could be mediated by a third factor,
such as an environmental factor or another taxon present in the environment.
These indirect links can complicate the interpretation of microbial networks because
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Figure 6. Indirect Edge [32]. To prevent the formation of indirect edges, we decided
to create a co-occurrence network for each treatment.

they can make it appear that there are direct interactions when in fact they are medi-
ated by other factors. For this reason, it is important to consider the environmental
context and other variables when analyzing microbial networks to distinguish between
direct and indirect interactions between taxa [32].
In this study, to address this challenge, we considered the environmental factor, and we
calculated a separate network for each treatment as shown in Figure[6].

Scoring

In this study, we evaluated how each species relates to all others by calculating correla-
tions. To determine these relationships, we used Spearman’s correlation, a method
that tells us whether two variables are related and how strongly. A correlation coef-
ficient close to 1 indicates that the two variables tend to vary together, a coefficient
close to -1 indicates that they move in opposite directions, while a coefficient close to 0
suggests no relationship.
La formula utilizzata per il calcolo del coefficient di Sperman è la seguente

ρ = 1 − 6
q

d2
i

n(n2 − 1) (1)

Where:
di are the differences in the ranks for each pair of species
n is the total number of samples

Null Model

Microbial networks, which describe interactions within microbiomes, are typically con-
structed from statistically inferred connections. However, they may not always accu-
rately represent genuine ecological interactions. As a result, microbial association net-
works are prone to errors and may not faithfully portray the true community struc-
ture [34].
This means that to give significance to the features obtained from our analyses, we
compare the results derived from the observed networks with those obtained using a
null model. We compare real data with data generated under the null hypothesis that
all associations are random, allowing us to identify non-random patterns in groups of
association networks.
We will compare the results obtained for modularity and cluster coefficient with those
from 100 randomly generated networks, in which edges are exchanged instead of being
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AGP at Day 21 observed network AGP at Day 21 Random Network

Figure 7. Observed Network and Random NetwrokOn the left is the observed
co-occurrence network of species found on day 21 in samples treated with AGP. On the
right is the null model created using the Brain Connectivity tool keeping the number of
nodes, edges, and the node degree distribution the same as an observed network. The
color of the two networks indicates the distribution of node degrees.

removed and added back. For instance, if there are edges (a, b) and (c, d), they become
the new edges (a, c) and (b, d). This ensures that the model maintains the degree distri-
bution observed in the original network, with each node retaining the same degree as in
the initial network [34].
However, certain centralities like betweenness centrality may vary, and we will do the
same with the identification of the core adding a comparison also between the observed
network and a totally random network obtained with edges randomly added until the
total number of edges matches that of the input network [34].
Additionally, to highlight the significant differences, we will conduct a z-test to provide
statistical significance to the obtained results.

Analyze the presence of a Core Association Network (CAN)

Modularity analysis not only unveils how this property adapts to environmental changes
but also provides an opportunity to identify resilient modules (conserved subsets known
as core association networks (CAN) [34]) capable of maintaining their integrity de-
spite surrounding variations. This implies that we can better understand not only how
species interactions change in response to alterations but also which groups of species
maintain relative stability over time.
To identify the core association networks (CAN), we will use the Anuran [34] tool,
which identifies overlapping edges across all networks considering all treatments and

12
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ages. This tool compares the results obtained with 40 random networks, where the dis-
tribution of node degrees is preserved, and with another 40 random networks created
with the same nodes as the original network [34]. This way, we can determine if the as-
sociations identified in the CAN are significantly different from those one would expect
to obtain randomly.

Figure 8. Core Example. Example of a core obtained via Anuran, present in co-
occurrence networks constructed considering the species present in the PFA-treated
samples. The color of the nodes corresponds to the degree within the core.

Anuran

It is possible to find the toolbox at the following link https://github.com/ramellose/
anuran.
This software uses a set-based method to find core association networks (CAN), which
are essential networks of connections. A set is a specific group of links, like the inter-
section set, containing links found in multiple networks. CANs are found by comparing
differences between specific intersection sets. This software detects sets of links present
only in certain network subsets, distinguishing less conserved from more conserved links.
If we are going to consider four networks the tools pipeline is reported in the following
image [34]:
The model uses a Venn diagram to identify intersections and differences between differ-
ent networks [35]. This approach helps understand how the networks overlap and differ
from each other. For example, it can find intersections that represent networks present

13

https://github.com/ramellose/anuran
https://github.com/ramellose/anuran


Contents

Figure 9. Anuran. The pipeline of Anuran tools consist in: A Import multiple
networks, each representing microbial taxa depicted by node colors and interactions
indicated by edge colors (red for negative and green for positive weights). Brandom
networks are generated for each imported network. C The toolbox returns various types
of sets represented by a Venn diagram, illustrating the overlap between specific numbers
of networks. Each color in the diagram corresponds to a set returned by the toolbox.
D We compare the results to the null model to give significance to the results that we
obtain. [34]

under certain conditions, such as 50% of the networks or less.
To calculate the differences between the networks, the model finds the edges (connec-
tions) unique to each network. The difference between the networks is the union of all
sets Di. The formula is:

Difference = Di =
nÛ

i=1
Di

where Di is the set of edges present in Ei but not in the other edge sets. The formula
for Di is:

Di =

x : x ∈ Ei, x /∈
nÛ

j=1,j /=i

Ei


To calculate the k-intersections, the model analyzes which edges are shared among
groups of networks [35]. The k-intersections represent the edges common to groups of k
networks. To find the k-intersections, we calculate the intersections SI of the groups I
of k networks. The size of all possible groups is given by the binomial coefficient:

Pn,k =
A

n

k

B
14
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For example, for 40 networks and k = 4, the formula is:A
40
4

B

For example, if you have three networks you can find the connections unique to each
network and the connections common to all three networks or combinations of two of
them. This model helps to better understand the relationships between networks, dis-
tinguishing between common and less common associations and provides a detailed
analysis of the unique and shared connections among them [35]. The concept of key-
stone taxa (species), initially introduced by Paine in 1969, refers to native species that
exert a significant influence on the stability of their ecosystem [36]. Over time, identify-
ing keystone species has become a crucial component of ecosystem analysis, essential for
comprehending ecosystem vulnerabilities and ensuring sustainability [36]. These species
often play critical roles in maintaining the structure, diversity, and function of their
ecosystems, making their identification and preservation paramount.

Figure 10. Keystone TaxaExample of keystone taxa distribution in a network. In
particular, these species were identified as keystone taxa through a network analysis
of the Co-occurrence network constructed by considering the species present in the
PFA-treated samples at Day 21
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In addition to examining co-occurrence patterns, microbial networks offer a statistical
method for identifying keystone taxa. Microbial networks provide insights into the
complex interactions between different species within a community, allowing researchers
to pinpoint those taxa that have the most significant impact on network stability and
functionality.
Utilizing network analysis provides a robust approach to deducing keystone taxa within
microbial communities [37]. This method involves analyzing various centrality measures
to understand the relative importance of each node (species) in the network. Previous
studies have often relied on high betweenness centrality for the statistical identification
of keystone taxa, recent research suggests that a combination of high mean degree, high
closeness centrality, and low betweenness centrality can accurately identify keystone
taxa with an 85% success rate [38]. This multi-metric approach reflects a more compre-
hensive understanding of network dynamics, considering not only the intermediary role
of species but also their connectivity and influence across the entire network.
By integrating these analytical techniques, researchers can more effectively identify and
target keystone species for conservation and management efforts. This is particularly
important in microbial ecosystems, where keystone taxa can drive critical processes
such as nutrient cycling, pathogen suppression, and ecosystem resilience. Ensuring the
stability and functionality of these ecosystems is vital for broader environmental health
and sustainability.
Random Forest
In our research, we aim to evaluate the significance of the keystone taxa identified via
ecological network analysis. These keystone taxa, vital for the structure and function
of the studied ecosystem, have emerged as critical elements in maintaining balance
and stability in the environment. We aimed to use these keystone taxa to differentiate
between various environmental treatments, referred to as AGP, CTR, and PFA.
To achieve this, we will employ the Random Forest algorithm.
The Random Forest is a powerful classification algorithm in the field of machine learn-
ing. It relies on a group of decision trees known as "random trees". These trees are
trained on random subsets of the data and use a voting principle to make decisions,
reducing the risk of overfitting and improving model generalization through ensemble
learning. This approach makes the Random Forest particularly suitable for analyzing
count data Since each decision tree within the algorithm is trained on a random subset
of the data and uses a random subset of features at each split.
By applying the Random Forest, we selected the species that contribute most to the
classification of treatments, enabling us to identify species that play a significant role in
ecological differentiation among treatments.
The pipeline of our work using the random forest will be as follows:
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Figure 11. Pipeline Random Forest, [39].We will begin by training our Random
Forest model using the keystone abundance species found using the combination of high
degree centrality high closeness centrality and low betweenness centrality, where the
treatment associated with each sample will be our target to predict. Next, we will use
the permutation method to identify the species that are most important in distinguish-
ing between the different treatments. This process involves evaluating the importance of
features by measuring their variation in the model’s results when the features are ran-
domly permuted. The species that have a significant impact on the model’s ability to
distinguish treatments will be identified through this process. These species that emerge
as important for the classification model also have a significant role in the structure and
function of the ecosystem, as identified through network analysis.

What we are going to do is an in-depth analysis of the key species for each treatment
through network analysis.
First, we will calculate the keystone taxa using network analysis, identifying the species
that are fundamental for the stability and robustness of the ecological network for each
treatment.
Next, we will build a Random Forest model using the species abundance matrix, after
a feature selection using mutual information considering the feature that explains the
90% of variance, and apply nested cross-validation to make the model more robust and
reduce the risk of overfitting.
Permutation importance [40,41] measures the importance of a feature by assessing how
much the model’s prediction error increases after permuting that feature. If permut-
ing the values of a feature causes an increase in the model’s error, then that feature is
considered important because the model relied on it to make its predictions. On the
other hand, if permuting the values of a feature does not change the model error, then
that feature is considered not important because the model did not use it to make the
predictions.
Mutual information (MI) serves as an indicator of statistical independence and has two
fundamental characteristics. Firstly, it is capable of assessing different relationships
between random variables, including non-linear associations. Furthermore, MI is unaf-
fected by alterations in the feature space that maintain invertibility and differentiability,
such as translations, rotations, and transformations that maintain the original order of
the elements of the feature vectors [42].
We chose to use mutual information to identify the most relevant features in our dataset.
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This allowed us to select features that accounted for 90% of the variance in the dataset,
thus reducing the dimensionality of our dataset. The aim was to retain only the most
informative features, improving the effectiveness and accuracy of the Random Forest
classification model applied subsequently.
The Random Forest model will be a binary classification model, and our goal is to
identify the species that help us distinguish between different treatments, determin-
ing whether a sample has been treated with AGP (antibiotic growth promoters), PFA
(phytogenic feed additives), or the Control (CTR). To do this, we will rename the treat-
ments in three distinct ways: we will set the AGP treatment to 1 and the PFA treat-
ments to 0, then we will set the PFA treatment to 1 and the CTR treatments to 0, and
finally, we will set the CTR treatment to 1 and the AGP treatments to 0.
The metric selected to assess the effectiveness of classification in the present study,
where the dataset is balanced, is accuracy. This metric represents the fraction of cor-
rect predictions out of the total number of predictions made by the model on a test
dataset. The accuracy is defined as:

Accuracy = TP + TN

TP + TN + FP + F
(2)

where:

• TP (True Positives) represents the number of instances correctly classified as posi-
tive by the model.

• TN (True Negatives) denotes the number of instances correctly classified as nega-
tive by the model.

• FP (False Positives) denotes the number of instances incorrectly classified as posi-
tive by the model.

• FN (False Negatives) denotes the number of instances incorrectly classified as
negative by the model.

Once we have obtained the influential species from each of the three classifications, we
will select the common species among the Random forest classification and the first 100
keystone taxa identified through network analysis for each treatment. These common
species will be those that help us to distinguish between the various treatments.
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Biomarker

The utilization of biomarkers in both basic and clinical research, as well as in clinical
settings, has proliferated to the extent that their inclusion as primary endpoints in
clinical trials is now largely unquestioned [43]. For specific biomarkers that have been
well-characterized and repeatedly shown to accurately predict relevant clinical outcomes
across various treatments and populations, this use is entirely justified and appropri-
ate [43]. The term "biomarker," derived from the combination of the words "biological
marker," refers to a broad category of medical signs. These are objective indications of a
patient’s health state, observable from the outside, and can be measured accurately and
reproducibly. Medical signs are distinct from symptoms, which are subjective percep-
tions of health or illness reported by the patients themselves. In the scientific literature,
there are various specific definitions of biomarkers that, fortunately, largely overlap [43].
In 1998, the National Institutes of Health Biomarkers Definitions Working Group de-
fined a biomarker as "a characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention." A joint initiative on chemical safety, the Inter-
national Programme on Chemical Safety, led by the World Health Organization (WHO)
in collaboration with the United Nations and the International Labour Organization,
defines a biomarker as "any substance, structure, or process that can be measured in
the body or its products and that can influence or predict the incidence of outcomes or
diseases" [43].
An even broader definition considers not only the incidence and outcomes of diseases
but also the effects of treatments, interventions, and unintended environmental ex-
posures, such as those to chemicals or nutrients. In their report on the validity of
biomarkers in environmental risk assessment, the WHO stated that a true definition
of a biomarker includes "almost any measurement reflecting an interaction between a
biological system and a potential hazard, which may be chemical, physical, or biologi-
cal [44]. The measured response can be functional and physiological, biochemical at the
cellular level, or a molecular interaction" [43].
Biomarkers can be identified using features from classification algorithms. This ap-
proach is effective because classification algorithms are designed to identify the most
relevant features that contribute to distinguishing between different classes. These fea-
tures represent crucial indicators and potential biomarkers as they improve the accuracy
of the predictive model.
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3 Material and methods
3.1 Study subjects and sample collection
At the start of the experiment, 96 male broiler chickens [45] were randomly assigned to
twelve pens with eight birds each. These twelve pens were then randomly assigned to
one of three following feeding groups, each with four replicating pens.

• Control (basal diet)

• AGP (basal diet + 150mg/kg feed of ALBAC)

• PFA (basal diet + 150mg/kg feed of Digestarom®)

All birds received the same basal diet until day 3. At day 3 (right before the start of
feed additive administration), day 14, day 21 and day 35, two birds per pen were eutha-
nized as shown in the Figure[12]. Their cecum digesta and mucosa microbiota samples
were taken and pooled as a replicate for metagenomic sequencing.

Figure 12. Chicken’s treatment. The figure describes when the treatment starts.
Before day 3 all the chickens received the same treatment after that they were divided
into three treatment groups and on day 14 microbiota samples were taken for each
treatment group, this process was repeated also for days 21 and 35.
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3.2 Construct co-occurrence network
In this work, the following pipeline was followed for the construction of the co-occurrence
network: preparing the input matrix from taxonomic classification, scoring the inter-
species correlation, assessment of the significance and network visualization. The de-
tailed description of each step can be found below (in the Figure[13]).

Figure 13. Co-occurrence networks pipeline. The pipeline consists of three main
stages: Input: data preprocessing to address challenges (such as Varying sequencing
depth, Rare taxa, and Indirect edges) present after obtaining the abundance matrix;
Scoring: calculation of the correlation matrix; Assessment of significance: filtering
of the data to include only significant relationships (means only significant edges), i.e., if
the p-value is less than 0.05

Input

Data preparation for constructing a co-occurrence network poses several challenges
that require careful consideration. Effectively addressing these obstacles will ensure
an accurate and meaningful representation of species relationships within the studied
microbiota:

• Varying sequencing depth:
Differences in sequencing depth among samples can lead to variations in results. It
is essential to address this challenge to ensure that analyses are consistent and not
influenced by external factors.
To overcome the challenges arising from varying sequencing depths, methods like
rarefaction or normalization can be utilized. In this particular study, we will em-
ploy relative abundance to address the issue of varying sequencing depths. Rela-
tive abundance indicates the proportion of a specific species or group of organisms
within a community in relation to the total community size.

• Rare taxa:
The presence of species with very low relative abundance can be problematic as it
may contribute to noise in the data. Removing these species allows focusing on the
most relevant and representative species within the dataset.
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To address the problem of composition data, we decided to apply a filtering and
transformation strategy. Firstly, we filtered out taxa whose abundance level was
greater than 0.01%, thus eliminating taxa that are only present less quantities.
This filtering allows us to focus on the most significant taxa relevant to the analy-
sis, reducing the impact of taxa with sporadic or irrelevant presence.
Subsequently, we applied the Centered Log-Ratio (CLR) to further improve the
distribution of compositional data. The choice of CLR was motivated by the need
to handle the unique structure of compositional data, stabilizing variance and
making the data more linear.
This transformation not only enhanced data quality but also made the interpreta-
tion of relationships between variables easier, resulting in clearer and more under-
standable analysis results [33].

• Indirect edges:
In addition to direct connections between species, there are also indirect connec-
tions that can complicate network interpretation. Identifying and managing these
indirect connections is crucial for an accurate understanding of species relation-
ships. In this study, to address this challenge, we considered the environmental
factor, we calculated a separate network for each treatment and we added two
extra nodes that represent the different types digesta and mucosa.

Scoring

In this study, we evaluated how each species relates to all others by calculating correla-
tions. To determine these relationships, we used Spearman’s correlation, a method that
tells us whether two variables are related and how strongly. A correlation coefficient
close to 1 indicates that the two variables tend to vary together, a coefficient close to -1
indicates that they move in opposite directions, while a coefficient close to 0 suggests no
relationship.
The formula used for calculating Spearman’s coefficient is as follows:

ρ = 1 − 6
q

d2
i

n(n2 − 1) (3)

Where di are the differences in the ranks for each pair of species and; n is the total
number of samples

Assessment of significance

It is crucial to note that it is necessary to carefully select statistically significant correla-
tions. This selection process is essential to ensure that the resulting network is informa-
tive and truly reflects the ecological dynamics at play.
If we did not only select statistically significant correlations, we would end up with a
fully connected network. This type of network, although rich in connections, could be
uninformative and would not provide the necessary insight into the specific relationships
between species.
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To select the statistically significant connections, or edges, as described in [27] using
Spearman correlation, we performed permutation and bootstrap procedures with 1000
iterations each. Taxon abundances were shuffled for permutations while resampling
from samples with replacements was conducted for bootstrapping. The resulting p-value
was then derived as the probability of the null value under a Gaussian curve fitted to
the mean and standard deviation of the bootstrap distribution. Renormalization was
applied to Spearman correlation permutations to address compositionality bias, followed
by multiple-testing correction using the Benjamini-Hochberg method [46]. Lastly, edges
with an adjusted p-value above 0.05 were excluded.

Network analysis

Topological analysis, including metrics such as modularity, cluster coefficient, number
of nodes, and number of edges, provides us with initial tools to compare our networks
and understand the initial differences or similarities observed among the networks con-
structed from samples treated with AGP and PFA. Our approach will involve com-
paring the results obtained from networks constructed using only samples treated as
Controls (CTR) with those constructed using samples treated with AGP and PFA.
All topological measurements and module calculations were performed using a dedicated
tool Brain Connectivity Tool [47].
For graph visualization, we used Gephi software, widely employed for analyzing and
visually representing networks.

Topological analysis and core identification

We will begin by examining the main differences between the various networks in terms
of clustering coefficient, modularity, and average degree (average degree).
These topological parameters will help us understand how the connectivity and modular
structure of the networks vary following different treatments.
Mean degree This metric employed in network analysis assesses the typical level of

connectivity among nodes within the network. In a co-occurrence network or any other
type of network, a node’s "degree" denotes the number of connections it has with other
nodes. The "mean degree" represents the average degree across all nodes in the network.

Figure 14. Average degree. This measure is calculated computing the average of
the degree of all nodes in the networks
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Mean clustering coefficient The clustering coefficient CC(i) for a specific vertex i
within a network is calculated as follows [48]:

CC(i) = 1
N

Ø
i

number of triangles connected to i

number of possible triangles connected to i
= 1

N

Ø
i

2Ei

ki(ki − 1) (4)

Where Ei is the number of triangles centered in vertex i and ki is the degree of that
vertex, N is the total number of nodes.
The clustering coefficient provides insight into the network’s intricacy, showcasing the
strength of interactions among microorganisms [49]. To prove that these results are
statistically significant, we will perform a z-test between the value obtained from this
computation and the clustering coefficient derived from 100 random networks (com-
puted using Brain Connectivity Tool [47]) that maintain the same degree distribution as
the observed network.

Figure 15. Clustering coefficient. Calculated for each node, considering the species
present in the samples at day 21 and treated with PFA.
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Network modularity The modularity involves grouping network nodes into distinct
categories or subsets based on their connectivity patterns within the graph, rather than
inherent node characteristics. We examined if the microbial co-occurrence networks ex-
hibited modular properties by assessing their community structure through modularity
maximization using a locally greedy algorithm, Louvain’s method [25].

Figure 16. Modularity.Modularity of node clustering at day 21 for species present
in the sample treated with PFA, after applying the Louvain algorithm 100 times and
calculating the consensus partition.

This approach divides nodes into distinct groups without overlap and is based on a
two-step heuristic:

1. To allocate nodes to modules (or communities), a greedy algorithm is employed to
maximize the modularity index Q, which is defined as [25]:

Q = 1
2A

Ø
i

Ø
j

3
Aij − γ

AiAj

2A
∗ δ(Ci, Cj)

4
(5)

Where Aij is the adjacency matrix, Ai is the degree of node i, A is the average of
the degree of the network, Ci is the community to which node i is assigned, and γ
is is a scaling parameter used to adjust the size of the modules.

2. Some networks exhibit numerous local maxima, meaning there are many potential
ways to divide the network with similar but not identical modularity values. This
variability can complicate determining the optimal or most significant division.
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To overcome this obstacle, modularity optimization is iterated multiple times (in
this case, 1000 times). With each iteration, a new division of the network into
communities is generated. The consensus partition is then derived by aggregat-
ing these diverse partitions, highlighting nodes consistently assigned to the same
community across all iterations. This process stabilizes the identified community
structure and mitigates the impact of randomness-induced variability.

We also will compare the modularity of the observed network with that of 100 random
networks, each preserving the same degree distribution as the co-occurrence network
under study by computing a z-test.
To highlight how the distribution of modules changes with different treatments, we will
explore how the specific module assignment of the networks varies in response to differ-
ent treatments, for each age. To achieve this, we will utilize the communities identified
within the Control network as our reference. In other words, we will keep the assign-
ment of nodes to modules of the Control network constant in both AGP and PFA for
each age.
We will exclude the two nodes digesta and mucosa to make the graphs clearer and visu-
alize the various modules obtained after applying the Louvain algorithm. This method
allows us to verify if there are modules that survive changes in the environment, we
define these modules core. To identify a core association network (CAN) that is statis-
tically significant, we will use the Anuran [34] tool, which identifies overlapping edges
across all networks considering all treatments and ages. Then, this tool compares the re-
sults obtained with 40 totally random networks, and with another 40 random networks
created with the same degree distribution as the study networks [34].
To identify a potential common core shared by all networks, we focus on edge intersec-
tion that appearing in at least 80% of the networks and in at least 50% of the samples.
We will also measure their survival rate by calculating the Jaccard similarity. The Jac-
card similarity is defined as the ratio between the number of species common to both
sets (that is, those that survive both before and after treatment) and the total number
of species present in at least one of the two sets (that is, those present before the treat-
ment plus those added or remaining after the treatment). This measure allows us to
quantify how much the composition of the Core modules remains stable or changes as a
result of the applied treatments.
To understand why these species survive under different treatments, we will examine the
scientific literature to explain the role and importance of these species. We will review
previous studies and publications to determine the biological and ecological factors that
contribute to their resilience and stability in various treatment contexts. This approach
will help us better understand the characteristics that enable these species to maintain
their presence and function despite changes in environmental conditions.
To enhance comprehension of the stability and robustness of networks treated with
AGP and PFA compared to the Control group, and to ascertain how these treatments
influence the stability of the gut microbial ecosystem and its response to changes, we
conducted two types of experiments. First, we randomly removed 300 nodes: this helps
us evaluate how well the network performs when random nodes are lost. Secondly, we

26



3 – Material and methods

conducted an experiment to selectively eliminate 300 nodes from the co-occurrence net-
work. These nodes were identified according to specific criteria: high degree centrality,
low betweenness centrality, and high proximity centrality. This criterion aims to identify
nodes considered influential in the ecological framework of the network. To evaluate the
effect of these two experiments, we calculate the network:
Residual global efficency: the global efficiency represents the average of the inverse
of the shortest path lengths between all pairs of nodes in the graph and is inversely
proportional to the characteristic path length. The residual global efficiency is the differ-
ence between the global efficiency before the removal of the nodes and after the removal
of the nodes.
Residual edges will allow us to determine how the network structure withstands per-
turbations. The residual edge is the difference between the number of edges before the
removal of the nodes and after the removal of the nodes.
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3.3 Keystone taxa
In this section, our goal is to distinguish the key species that characterize each network
and that may be crucial for differentiating the various treatments. To do this, we will
identify the species that have the greatest influence within the network by calculating
the so-called keystone taxa [38] as nodes that have a high degree of centrality and close-
ness centrality but low betweenness [38]:
Betweenness centrality measures the importance of a node in facilitating communi-
cation within the network. It is defined as the number of times a node acts as a bridge
along the shortest path between two other nodes.

Figure 17. Between Centrality Calculated for each node, considering the species
present in the samples at day 21 and treated with PFA. Lighter colors indicate a lower
value, while darker values indicate a higher value.

Degree is the number of connections or edges it has with other nodes in the network.
In other words, it represents the number of direct connections a node possesses. It is a
fundamental measure to understand the local connectivity of a node within the network.
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Figure 18. DegreeCalculated for each node, considering the species present in the
samples at day 21 and treated with PFA. Lighter colors indicate a lower value, while
darker values indicate a higher value.

Closeness Centrality measures how close a node is to all other nodes in the network.
It is defined as the inverse of the sum of the shortest path distances from the given
node to all other nodes. A node with high closeness centrality can efficiently spread
information throughout the network, being "close" to all other nodes.
The calculation of the keystone taxa will be performed using these criteria and we will
obtain 9 distinct groups of keystone taxa, one for each combination of treatment and
age group. Subsequently, the keystone taxa from the same treatment will be merged
into a single set, resulting in 3 different groups. This method will allow the identifica-
tion of species fundamental to the stability of the ecological network for each treatment.
Next, a Random Forest model will be constructed using the species identify as key-
stone taxa, after feature selection using mutual information [42]. Features explaining
90% of the variance in the dataset will be considered, reducing the dimensionality of
the dataset. The aim is to retain only the most informative features, thus improving
the effectiveness and accuracy of the Random Forest classification model. Nested cross-
validation will be applied to enhance the model’s robustness and reduce the risk of
overfitting. This will be followed by the use of permutation importance to select the
species, which involves measuring the impact of randomly shuffling each species on the
model’s performance. This method allows us to identify which species have the most sig-
nificant influence on the model’s accuracy. The Random Forest model will be a binary
classification model. Treatments will be renamed in three distinct ways: first, the AGP
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Figure 19. Closeness CentralityCalculated for each node, considering the species
present in the samples at day 21 and treated with PFA. Lighter colors indicate a lower
value, while darker values indicate a higher value.

treatment will be set to 1 and the PFA treatments to 0, then the PFA treatment will
be set to 1 and the CTR treatments to 0, and finally, the CTR treatment will be set to
1 and the AGP treatments to 0. In this way, we will enable the model to identify the
most relevant species for distinguishing between AGP, PFA, and CTR. Accuracy will
be the selected metric to assess the effectiveness of classification in the present study,
where the dataset will be balanced.

4 Results
4.1 Lower connectivity, higher modularity and higher cluster-

ing coefficient with AGP and PFA administration
After obtaining the co-occurrence networks computed for each treatment and age group,
we proceeded to analyze them using topological measures. We discovered significant dif-
ferences in connectivity, modularity and clustering coefficient among the three networks
at different time points.
At all time points, we noted that when comparing with the networks from the Control
group, PFA-treated and AGP-treated co-occurrence networks had significantly fewer
connections and a lower average degree than other groups. In these results, we can also
notice that the AGP-treated co-occurrence network showed more extreme results than
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the one obtained with the PFA-treated network. Although interactions between species
are reduced, the higher modularity observed in AGP- and PFA-treated co-occurrence
shown in the Table[1] networks suggests a clear division into distinct groups of microor-
ganisms, with robust interactions within each module. This is further supported by
the high value of the clustering coefficient, indicating intensified microbial interactions
within these groups.

Age Treatment Nodes Edges Modularity AVG Clustering coefficient AVG Degree
Observed Networks Random Networks Observed Networks Random Networks

14 CTR 503 16798 0.4514
(>0.01)

0.0707
(>0.01) 0.889 0.4535

(0.003) 66.7913

PFA 510 14697 0.6101
(>0.01)

0.0843
(>0.01) 0.907 0.3203

(0.002) 57.6353

AGP 496 13168 0.655
(>0.01)

0.0856
(>0.01) 0.899 0.2601

(0.018) 53.0968

21 CTR 511 32201 0.216
(>0.01)

0.0398
(>0.01) 0.863 0.7729

(>0.01) 126.0313

PFA 513 20337 0.540
(>0.01)

0.0698
(>0.01) 0.9242 0.2470

(>0.01) 79.2865

AGP 520 16657 0.6849
(>0.01)

0.0853
(>0.01) 0.919 0.2470

(>0.01) 64.0654

35 CTR 531 36300 0.2155
(>0.01)

0.0397
(0.0014) 0.871 0.6893

(0.07) 136.7231

PFA 517 22287 0.556
(>0.01)

0.0673
(>0.01) 0.903 0.3662

(>0.01) 86.2166

AGP 520 20523 0.6179
(>0.01)

0.0739
(>0.01) 0.914 0.3097

(0.03) 78.9346

Table 1. Network analysis results from treatment groups across the time. For
each constructed network, the average clustering coefficient (avg clustering coefficient),
modularity, and the number of edges and nodes were listed. For modularity and clus-
tering coefficient, standard deviations are shown in parentheses. Besides, we compared
these observed values to those of random networks with preserved degree distribution to
assess significance.

4.2 Higher robustness of the microbial community with AGP
and PFA administration

Based on the results of modularity and cluster coefficient we wanted to test if these two
values are related to robustness. Figure[20] panel A represents the change in connectiv-
ity (residual edges) and global efficiency of the graph before and after a perturbation, in
this case, the random removal of 300 nodes. From the results, it is clear that the great-
est loss of edges occurs in the graph constructed using Control data. This suggests that
the co-occurrence network based on the Control data is more sensitive to node pertur-
bation than the networks constructed using other data. Furthermore, it is observed that
the lowest loss of edges occurs in the AGP data while an intermediate value is shown in
the PFA data. Similarly, we observe the same trend for the removal of 300 target nodes
in Figure[20] panel B, which includes nodes with a high degree of neighborhood central-
ity but low intermediary centrality. The greatest loss of edges is recorded in the network
built using the Control data, while the lowest loss is observed in the AGP data. Regard-
ing the residual global efficiency, this is consistently higher for Control data, while it is
very similar for AGP and PFA.
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Figure 20. Residual edges and global efficiency after random and selected
node removal. The bar plots illustrate the loss in terms of residual edges and global
efficiency of networks subjected to the removal of 300 random nodes that are important
for the stability of the networks, in panel A while in panel B the bar plots illustrate the
same loss but with selected removal of 300 nodes. The x-axis represents the different
treatments, while the y-axis shows the residual values. The first plot, located at the left,
shows the residual edges after node removal, and the second plot, located at the right,
depicts the residual global efficiency after node removal. The three plots are arranged
side by side showing the results for the three different days (Day 14, Day 21, Day 35).
Each bar represents one of three treatments.

4.3 Modular structure of co-occurrence networks and its change
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The predominant trend of module dispersion is evident from Figure [21] in the various
age groups, the colors of the modules vary according to their modules name, the colors
and names of the modules were assigned randomly. Except for the modules that we
named Core A and Core B, which not only persist across all three figures, meaning
they remain even when we change the treatment and their age, but also show more or
less the same species. We kept their colors and names constant.While other modules,
such as Module 1 at age 14 in the control group, disperse, suggesting that the species
of Module 1 no longer co-occur together in the networks constructed considering the
treated AGP and PFA samples.
We measured the percentage of species surviving in the Core modules at varying treat-
ments using Jaccard similarity.

AGE Core A_PFA Core B_PFA Core_A_AGP Core_B_AGP
14 49% 57% 53% 40%
21 49% 29% 51% 22%
35 60% 46% 56% 38%

Table 2. Jaccard similarity of Core A and Core B. This table displays the per-
centage of shared elements between Core A and Core B within the Control, AGP, and
PFA networks. The first column presents the age data of the samples considered. The
following two columns indicate the percentage of shared elements between Core A
and Core B in the Control network, while the last two columns show the percentage
of shared elements considering Core B in the PFA network and Core A in the AGP
network.

During our examination of persistent modules, we observed that in certain networks,
such as AGP at ages 14 and 21, and PFA at age 35 the Core A, is no longer confined
within a single entity but instead divided into two separate components. Upon incor-
porating nodes digesta and mucosa into our network analysis, we noted that in Control
samples, this module was exclusively present in digestawhile, in AGP (ages 14 and 21)
and PFA (age 35) samples, it also appeared in mucosa, as illustrated in Figure [22]. The
treatments with AGP and PFA seemed to impact this distribution, potentially facili-
tating bacterial colonization of the mucosa. This phenomenon might be attributed to
changes in intestinal morphology or mucosal composition, creating a more conducive
environment for these bacteria.
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(A)

34



4 – Results

(B)
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(C)

Figure 21. Comparison of graph modularity across different treatments on
day 14, 21, 35. Nodes are colored according to the modules of the Control treatment
(CTR) at day 14 in the panel A at day 21 in the panel B and at day 35 in the panel
C, allowing for the assessment of how module structure varies under the influence of
different treatments. This approach highlights the dynamic organization of relationships
among entities within the studied system.
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Figure 22. Distribution Green Module in digesta and mucosa under differ-
ent treatments. The green module shows distinct distribution patterns in different
treatments. In control samples, this module is exclusively present in Digesta. However,
in AGP-treated samples at ages 14 and 21 days, and in PFA-treated samples at age 35
days, the green module splits and is present in both digesta and mucosa. This indicates
that treatments with AGP and PFA alter the distribution, facilitating the colonization
of the mucosa by these bacteria.
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4.4 Statistically significant Core identification

Figure 23. Edge intersection values appearing in at least 80% of the net-
works.Degree Network: Represents the intersection of at least 40 networks whose
degree, nodes, and arcs have the same distribution concerning the observed networks.
Random Network: Represents the intersection of at least 40 completely random
networks maintaining the same nodes and arcs as the observed networks.
The overlap of the observed networks shows a significant difference (P-value < 0.001) to
the intersections obtained in the randomized networks.

The results obtained after applying "Anuran" to our network reveal the presence of a
central core that cannot be attributed to chance. This conclusion is based on the ob-
served edge intersection values between the real networks and the random networks.
We found that the intersection of edges in the real networks is 1684. In comparison,
the intersection in random networks maintaining the degree distribution is 130, while
in completely random networks it is only 4. It is clearly evident that these edge inter-
section values in the observed networks are significantly higher compared to those in
the two types of random networks. Subsequently, we analyzed the species present in
the core, shown in Table[3]. We identified species from various genera, and our anal-
ysis will focus on some of the most well-known genera with familiar functions. These
include Flavonifractor [50], Blautia [50], Eisenbergiella [51], Lachnoclostridium [51],
Fournierella [52], and Mediterraneibacter [53].
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Genus Core species

Flavonifractor
Flavonifractor avistercoris,
Flavonifractor intestinigallinarum,
Flavonifractor sp017811815

Blautia

Blautia merdavium,
Blautia ornithocaccae,
Blautia pullistercoris,
Blautia stercoravium,
Blautia stercorigallinarum,
Blautia_A avistercoris,
Blautia_A excrementigallinarum,
Blautia_A gallistercoris,
Blautia_A intestinipullorum

Eisenbergiella

Eisenbergiella intestinigallinarum,
Eisenbergiella intestinipullorum,
Eisenbergiella merdavium,
Eisenbergiella merdigallinarum,
Eisenbergiella pullistercoris,
Eisenbergiella sp900555195,
Eisenbergiella sp904392525,
Eisenbergiella stercorigallinarum

Lachnoclostridium

Lachnoclostridium_A pullistercoris,
Lachnoclostridium_A stercoripullorum,
Lachnoclostridium_B faecipullorum,
Lachnoclostridium_B phocaeense,
Lachnoclostridium_B stercoravium

Fournierella Fournierella merdipullorum

Mediterraneibacter

Mediterraneibacter cottocaccae,
Mediterraneibacter excrementigallinarum_A,
Mediterraneibacter faecipullorum,
Mediterraneibacter glycyrrhizinilyticus_A,
Mediterraneibacter intestinigallinarum,
Mediterraneibacter sp900541505,
Mediterraneibacter sp900761655,
Mediterraneibacter vanvlietii

Table 3. Core species Species identified in the core identification using the Anuran
tool, categorized by gene. Species are listed in the first column, while various species are
listed in the second column.
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After identifying the core, which includes associations present in 80% of the networks
and at least 50% of the samples, we delve into the significance of these findings. These
core species are pivotal for the gut microbiota’s adaptation throughout the chicken’s
growth stages. Each species within this core plays a distinct role crucial for maintaining
the overall balance and functionality of the gut microbiota.

Figure 24. Core with Modularity colors The core
comprises associations found in 80% of the networks and in
at least 50% of the samples, with the color of the module
names on Day 21 to further emphasize that the two modules
detected during the modularity analysis are indeed cores.

The colors of the nodes in the graph represent the modules of the partition obtained
from the control group at the age of 21. We have maintained this partition to highlight
how the modularity analysis showed that Core A and Core B remain unchanged even
when the treatment is altered. This means that, despite the change in treatment, the
identified modular structures (modules 1 and 3) are stable.
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Figure 25. Names of Core Species. Names of the species identified in the core: the
colors represent their corresponding genes. We have chosen to focus exclusively on those
species whose role in the chicken gut is known.
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4.5 Species that distinguish between different treatments
After the identification for the keystone taxa for each treatment using the combination
of the different nodes property, we finally can train the Random forest.

CTR PFA AGP

Figure 26. Keystone taxa in CTR, PFA, AGP at Day 14

This image shows all the keystone taxa present in the three different treatments, using
network analysis on day 14. Highlighted in blue are the top 100 keystone taxa, identi-
fied based on the topological characteristics of the network.

Firstly, we will select the most meaningful and informative features of our model through
Mutual Information, a method of evaluating relationships between variables. We re-
peated the experiment for the CTR, PFA, and AGP metrics, selecting the features that
are able to describe 90 percent of the variance in the data.

AGP VS PFA PFA VS CTR AGP VS CTR

Figure 27. Cumulative Explained Variance Analysis Using Mutual Informa-
tion This figure presents the cumulative explained variance analysis utilizing Mutual
Information for feature selection. The Mutual Information scores are arranged in
descending order, and the cumulative explained variance is computed based on the
number of features under consideration. Additionally, red lines are utilized to indicate
the number of selected features necessary to achieve 90% cumulative explained variance.
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The results from this training, shown in the Table[4] indicate that the model can ac-
curately distinguish samples in AGP group from the ones in PFA and Control group.
However, there are difficulties in distinguishing between PFA and CTR. Subsequently,
using permutation importance analysis, we identified crucial features for the model in
classification, shown in the Figure[28]. These features, selected from the various species
in the dataset, contribute significantly to its ability to distinguish between different
experimental treatments.

AGP vs PFA AGP vs CTR PFA vs CTR

Mean Accuracy 0.785
( 0.130)

0.847
(0.170)

0.542
(0.140)

Table 4. Random Forest Classification Accuracy for Different Treatments
This table presents the accuracy of Random Forest classification for various treatments.
The classification was conducted three times: initially focusing solely on samples treated
with AGP and PFA (identified as AGP = 1 and PFA = 0), followed by an expanded
analysis including samples with other treatments. Nested cross-validation was per-
formed, repeating the test 32 times. Standard deviations of the test are reported in
brackets.

The reported species are those that are most affected by the change due to the treat-
ment and they could provide important information to better understand the biological
effects and ecological dynamics involved. The classification algorithm used is able to
identify the most significant species, also known as biomarkers. Biomarkers, or biologi-
cal markers, are measurable indicators of some biological state or condition. They can
be molecules, genes, gene products, cells, enzymes, or other substances in the body that
can be measured to indicate a normal or pathological biological process, or a response
to a therapeutic intervention.
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A

B

Figure 28. Important species distinguishing between treatments. This fig-
ure highlights the top 20 species obtained from permutation tests, focusing on AGP
and CTR treatments in the panel A and on PFA and CTR treatments in the panel B.
Species names are represented on the x-axis, while their respective calculated impor-
tance values are shown on the y-axis.

5 Discussion

We conducted a network analysis on samples treated with different treatments (AGP,
PFA, CTR) and of different ages. For each network, we calculated several measures, in-
cluding modularity, clustering coefficient, average degree, and number of edges. We com-
pared the results obtained for the networks constructed with samples from AGP and
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PFA treatments to the control samples (CTR), repeating this comparison for each age
group. From the analysis, we found that networks constructed with AGP samples have
a lower number of edges and a lower average degree, but show higher values of cluster-
ing coefficient and modularity compared to control networks. Networks constructed
with PFA samples show similar results to those with AGP, but less pronounced. We
also examined how the networks divide into modules using the Louvain algorithm. By
keeping the association between nodes and modules fixed for the control, AGP, and
PFA treatments, we observed how AGP and PFA treatments can influence modularity.
During this analysis, we noticed the presence of a constant module, which remained in-
tact even when considering AGP and PFA. This suggested the presence of a stable core
in our networks, further confirmed by the Anuran tool. Additionally, we used network
analysis to identify species that maintain the stability and robustness of the networks,
known as keystone taxa. We considered keystone taxa to be those species with high
degree centrality, high closeness centrality, and low betweenness centrality. Among these
species, we selected only those that contribute to distinguishing the different treatments,
using a classification algorithm like Random Forest to identify the features that con-
tributed to this classification.
From the topological analysis of the networks, we noticed a reduction in connectivity
in the networks constructed from samples treated with AGP and PFA with respect
to the Control group. This highlights how AGP and PFA influence the structure of
intestinal microbial networks. This result is consistent with previous studies on rumen
microbiomes in cows and pigs [16], [17], where it was highlighted that antibiotics reduce
network connectivity. This suggests that AGPs play a key role in changing microbial
community structure, which has been rarely studied and reported so far because of
the lack of thorough network analysis in previous studies. This may indicate increased
specialization of interactions or a reduction in the complexity of microbial networks [18].
Interestingly, from the topological analysis, PFAs seem to impact the microbiome in
a similar way as AGPs but to a lesser degree: they reduce connectivity, but not as
drastically as antibiotics. This phenomenon is understudied, as there are few studies
that have investigated the effects of PFAs on chicken intestinal microbiota using co-
occurrence network analysis.
Furthermore, significantly high modularity and clustering coefficients were found with
both the AGP and PFA groups, suggesting that the cecum microbiome might be more
stable and robust. The clustering coefficient measures how close a microorganism’s
neighbors are to each other, indicating that with feed additives, microorgnisms tend
to form tightly connected groups. A high clustering coefficient is a sign of a robust
and resilient network [28], as such structures facilitate cooperation and communication
among microorganisms, contributing to the stability of the network itself. Modularity,
on the other hand, indicates the probability that a network will divide into modules, i.e.,
groups of nodes with strong internal interactions and few interactions between different
modules. High modularity suggests that the network is composed of well-defined com-
munities with strong internal connections and weak external connections. This type of
structure can enhance network robustness, as shown in other studies [18, 54–57], since
modules can function relatively independently, reducing the impact of local perturba-
tions on the entire network [55,58].
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To confirm that AGP and PFA improved the stability and robustness of the microbiome
community, we conducted two types of experiments. First, we used random node re-
moval to assess its overall robustness [16]. Secondly, we selectively removed 300 nodes
from the co-occurrence network based on specific criteria: high degree centrality, low
betweenness centrality, and high proximity centrality. As a result, we found that the
network with the greatest losses, and thus the least robust, was the one constructed
using the Control data. On the other hand, the network associated with AGP use was
the most robust, while the network related to PFA use showed intermediate behavior
between the two treatments.This observation suggests that the co-occurrence network
from the AGP-treated sample is more resilient to external factors and disturbances. The
PFA treatment has a less noticeable effect on network strength, but there is still an
improvement compared to the network constructed using Control data.
Furthermore, the consistency of the similar results across different ages (e.g., at 21 and
35 days) indicates that the effects of AGP and PFA are strong and can influence the gut
microbiome at different stages of development.
During our analysis of intestinal microbial co-occurrence networks, we observed an in-
teresting phenomenon related to network modularity. Specifically, we noticed that while
maintaining the Control group (CTR) module distribution, treatments with PFA and
AGP exhibited stable modules, a core that despite variations in treatments and sample
ages. This consistent modular behavior may indicate a certain resistance to external
factors or significant functional importance within the intestinal microbial ecosystem.
The core constitutes a fundamental component of the network that deserves further
investigation to fully understand its role and influence on the dynamics of the intesti-
nal microbiota. Subsequently, using the Anuran tool [34], we confirmed our hypothesis
by finding a statistically significant core in the data, indicating that the co-occurrence
networks do not overlap more than expected by chance.
We then investigated the species that characterize this core and found the presence
of species, including Flavonifractor, Blautia, Eisenbergiella, Lachnoclostridium, and
Mediterraneibacter. Flavonifractor is known to be beneficial in improving feed conver-
sion efficiency and, in the presence of Blautia, may have contributed to the improved
growth performance of broilers [50]. Eisenbergiella and Lachnoclostridium play an im-
portant role in the production of butyrate, which is the preferred energy source for gut
epithelial cells [51]. Fournierella may be involved in the maintenance of intestinal home-
ostasis [52]. Mediterraneibacter could be involved in the fermentation of complex food
substrates, such as polysaccharides and plant fibers present in the diet of chickens. It
might also play a role in sugar metabolism and the balance of the intestinal ecosys-
tem [53].
These species are considered essential for animals, as indicated by other studies. Besides
aiding in food digestion and nutrient production, they play a crucial role in maintaining
intestinal balance, regulating microbial populations, and safeguarding the gut from
harmful pathogens. Their presence serves as a sign of stability, indicating that even
with various treatments, the normal gut development of chickens remains unaffected.
[50,51,53]
Continuing our analysis of how AGPs and PFAs affect the chicken gut microbiota, we
searched for bacterial species that could distinguish between different treatments. To
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achieve this, we followed a similar approach to a study by [30], where they distinguished
between high-fat/low-fiber and low-fat/high-fiber monkey samples using a Random
Forest algorithm on bacterial data. We applied this method to assess if our model could
differentiate between AGP and PFA, AGP and CTR, and PFA and CTR treatments.
From the results obtained comparing the accuracy of the Random Forest model during
the three binary classifications, it is clear the model can effectively distinguish AGP-
treated samples from those with PFA and CTR treatments. However, it struggles more
with PFA-treated samples compared to CTR, though no serious errors are seen.
When a model can distinguish between AGP and PFA or CTR treatments, it suggests
significant differences in the gut microbiota response to each treatment. This implies
bacteria in the gut react differently to AGPs compared to PFAs and Controls.If the
model struggles with distinguishing between PFA and CTR, it could imply that PFA-
induced changes in the gut microbiota are more subtle compared to AGP effects. This
suggests that AGPs and PFAs might exert different impacts on the gut microbiota.
For example, AGPs could lead to significant alterations in bacterial composition, while
PFAs might affect diversity or stability without causing obvious changes. The model’s
difficulty in discerning between PFA and CTR treatments may indicate that PFAs have
more nuanced effects on the gut microbiota. This was confirmed by network analysis,
which consistently showed differential behavior between PFAs and AGPs, suggesting
that AGPs might have more pronounced effects. After using permutation importance
and selecting the top 20 species with the highest importance, as well as choosing only
those that were also identified as keystone taxa in our networks, these species not only
differentiate the effects of the different treatments but also provide insights into gut
stability. Future studies could delve into how these species specifically regulate the
effects of AGPs and PFAs on the chicken gut and their interactions with other bacteria,
thereby influencing gut dynamics.
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5.1 Future work
To deepen the understanding of the impact of AGPs (antimicrobial growth promoters)
and PFAs (plant-based feed additives) on the intestinal microbiota, it would be essen-
tial to examine the functional consequences of changes in the structures of microbial
networks with animal phenotype data. For instance, it is important to evaluate how al-
terations in connectivity and modularity influence intestinal health, nutrient absorption,
and immune responses in chickens.
Exploring the robustness and resilience of microbial networks under various stress con-
ditions, such as pathogenic challenges and environmental stresses, is another crucial
aspect. Understanding how different treatments prepare the intestinal microbiota to
withstand external disturbances will help develop more effective strategies to maintain
the stability and health of the microbiota.
Additionally, including negative correlations in the co-occurrence network analysis can
provide a more comprehensive picture of how relationships between species change in
response to different treatments. In this study, we focused exclusively on positive corre-
lations between species, excluding negative ones. This approach might have reduced the
completeness and accuracy of our analysis by ignoring some important relationships.
We chose to exclude negative correlations mainly because they were rare compared
to positive ones. While negative correlations can indicate competition or antagonism
between species, they are often more difficult to detect and interpret. In our dataset,
these negative correlations were so sparse that including them would have added little
value and complicated the interpretation of the results without providing significant
information. cite people that do not consider negative assosiacition.
Moreover, future work with an increasing number of samples could improve the under-
standing of data patterns and enhance the robustness of the analysis. More samples
would better represent the variability within the intestinal microbiota and could reveal
subtler but significant correlations between species.
Combining these research directions can provide a more complete and accurate view
of how AGPs and PFAs influence the intestinal microbiota, improving the health and
performance of animals.
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6 Conclusion
The experiments described in this study show the significant impact of treatments with
AGP (antimicrobial growth promoters) and PFA (plant-based feed additives) on the
structure and resilience of intestinal microbial networks. Our results show that AGP
treatments greatly reduce connectivity and interactions within the microbial network
while maintaining the number of species. This suggests that interactions between bac-
terial species become simpler and more specialized under the influence of AGPs, in
contrast to some studies that suggest minimal impact of AGPs on the cecal microbiota
of animals.
PFAs show intermediate behavior, reducing connectivity but not as drastically as AGPs.
This new insight, supported by the analysis of modularity and clustering coefficient,
highlights the complex and resilient structure of microbial networks under PFA and
AGP treatments. High values of clustering coefficient and modularity indicate robust
and well-defined microbial communities, improving network stability and resilience.
Further resilience tests through random and targeted node removal confirmed that
AGP-treated networks are the most robust, while PFA-treated networks show inter-
mediate resilience and Control networks are the least robust. This indicates that AGP
treatments promote a more resilient microbial ecosystem against disturbances, while
PFA treatments offer moderate improvements compared to controls.
A key observation is the constant modularity among treatments, suggesting a stable
core of microbial species. This core verified using the Anuran tool, includes beneficial
species like Flavonifractor, Eisenbergiella, Lachnoclostridium, Fournierella, and Mediter-
raneibacter, essential for intestinal stability and homeostasis. The presence of these
species demonstrates that, despite variations in treatment, the normal development of
the chicken’s intestine is not affected.
Using a Random Forest algorithm for bacterial abundance data, we were able to ef-
fectively distinguish between AGP, PFA, and Control treatments. AGP treatments
produced distinct changes in the microbiota, while PFA effects were more subtle. This
aligns with our network analysis, which showed intermediate effects of PFAs compared
to AGPs.
Our results highlight the differential impacts of AGP and PFA treatments on the chicken
gut microbiota, with AGPs inducing more pronounced changes in networks and re-
silience, while PFAs offer moderate and beneficial effects.
Understanding these dynamics is crucial for optimizing gut health and growth perfor-
mance in poultry.
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7 Supplementary
The following tables show the values of connectivity loss and efficiency, derived from
a random node removal process. The experiment was repeated 100 times, showing the
average of both losses along with their respective standard deviations.

Age: 14 AGP PFA CTR

Residual Edges 11141
(158)

12161
(200)

14058
(258)

Residual Global Efficiency 0.3043
(0.0068)

0.2774
(0.0048)

0.3067
(0.0041)

Age:21 AGP PFA CTR

Residual Edge 13695
(196)

16825
(288)

26757
(482)

Residual Global Efficiency 0.3211
(0.0082)

0.3354
(0.0062)

0.4214
(0.0049)

Age:35 AGP PFA CTR

Residual Edge 16935
(228)

18371
(295)

29484
(513)

Residual Global Efficiency 0.3352
(0.0075)

0.3522
(0.0049)

0.4288
(0.0052)

Table 5. Edge and Global Efficiency loss values for age 14, 21, 35 samples,
random nodes This table presents the values of edge and global efficiency loss, as
illustrated in Figure [20]. The data is specific to samples at age 14. For this analysis,
100 repetitions of removing 300 randomly random nodes were performed. The reported
values represent the averages of these 100 repetitions, with the respective standard
deviations shown in parentheses.
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The following tables illustrate the connectivity loss and efficiency values generated by
the removal of nodes with a high degree of centrality in closeness and betweenness mea-
sures. These data provide an overview of the consequences of removing the most influen-
tial nodes within the network:

Age:14 AGP PFA CTR
Residual Edge 12065 13401 15464
Residual Global Efficiency 0.1876 0.1989 0.2406

Age:21 AGP PFA CTR
Residual Edge 14335 17837 30127
Residual Global Efficiency 0.1275 0.0927 0.2242

Age:35 AGP PFA CTR
Residual Edge 18705 19748 34133
Residual Global Efficiency 0.1355 0.1295 0.2732

Table 6. Edge and global efficiency loss values for age 14,21,35 samples,
targeted node This table presents the values of edge and global efficiency loss, as
illustrated in Figure [20], panel B. The data is specific to samples at age 14,21,35. For
this analysis 300 targeted nodes with high degree centrality, high closeness centrality e
low betweenness centrality, were removed.
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In the Results section, we previously presented the diagram of the top 20 most impor-
tant features selected by Permutation Importance after conducting binary classification
by Random Forest. However, we the display to only those features deemed important
for the Random Forest in distinguishing between CTR and PFA, as well as between
CTR and AGP. In this section, the features used to distinguish between AGP and PFA
will also be reported.

Figure 29. Top 20 Species from Permutation Test in AGP and PFA Treat-
ments. This figure displays the top 20 species obtained from the permutation test,
focusing solely on AGP and PFA treatments. Species names are represented on the
x-axis, while their calculated importance values are shown on the y-axis.
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In the following two pictures, we explore how modularity changes in networks derived
from samples treated with PFA and AGP at age 14. As depicted in the image, two core
modules remain consistent (Core a and Core B), even when maintaining fixed mod-
ules identified in the CTR across different ages. While all the other modules disappear
in the other networks. This finding underscores the presence of stable core structures
within our networks, suggesting that the species involved play crucial roles in the base-
line functioning of chicken intestines.

Figure 30. PFA modularity. In this image, it is evident that even while maintain-
ing fixed modules found in PFA at age 14, the previously identified core modules A and
B remain stable even in ages 21 and 35. The colors represent the modules found in PFA
at age 14.
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Figure 31. AGP modularity. In this image, it is evident that even while maintain-
ing fixed modules found in AGP at age 14, the previously identified core modules A
and B remain stable even in ages 21 and 35. The colors represent the modules found in
AGP at age 14."

For the choice of the gamma parameter in the modularity formula (Eq. 5), various tests
were conducted and the following Figure[32]. To ensure an appropriate choice of the
gamma parameter, we decided to examine how the consensus partition of our networks
changed as this parameter, γ, varied. This parameter, in Louvain’s formula, represents
the structural resolution parameter. This parameter governs the size of the modules
detected in the graph modularity analysis. Increasing the value of gamma encourages
the creation of larger modules while decreasing the value of gamma encourages the
division of the graph into smaller modules. Therefore, the appropriate selection of this
parameter is crucial to obtain a meaningful and representative consensus partition of
the graph structure.

In our specific dataset, we observed that the maximum modularity index of the network
is inversely correlated with the resolution of the communities. This means that with
larger and less resolved communities (lower values of γ), the modularity index tends to
be higher, as there is a higher proportion of connections within the communities.

54



7 – Supplementary

Figure 32. Modularity Index (Q) Determination Using the Louvain AlgorithmThe Q
index of network modularity, focusing on species present in samples treated by CTR,
was determined utilizing the local greedy algorithm Louvain. This index varies ac-
cording to the structural resolution parameter, γ. On the y-axis, the values of Q are
depicted, while on the x-axis, the values of γ are represented.

A traditional value for the parameter γ is 1. This value is commonly used as a start-
ing point in many studies. To ensure that the chosen value of γ is appropriate for also
for our dataset, γ after compute the communities for γ equal to 1 and equal to 2, this
values were visualized on an adjacency heat map. From the adjacency matrix heatmap
(with γ set to 2), the red lines delineating the community boundaries lie outside the
yellow squares representing the communities, it suggests a mismatch between the com-
munity delineation and the density of connections within the matrix. Thus, we opted
for γ equal to 1 because it strikes a balance in community resolution, steering clear of
fragmentation or undue generalization.
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γ = 1 γ = 2

Figure 33. Heatmaps of Adjacency Matrix for Different γ Values These
heatmaps display the adjacency matrix (for γ equal to 1 in the first figure and equal
to 2 in the second), with red lines outlining community boundaries outside the yellow
squares representing the communities themselves.
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