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Abstract

Structure from Motion (SfM) is the task of building a 3D reconstruction of the surround-
ing space, extracting information from 2D images. Visual Place Recognition (VPR), on
the other hand, is the task of recognising and matching images depicting the same place,
possibly from different points of view. A crucial step in SfM pipelines, allowing both to
increase efficiency and boost performance, is matching similar images with VPR algo-
rithms before the reconstruction is initialised. This thesis aims at investigating the role of
VPR in the process of building a 3D reconstruction, pointing out the features that a place
recognition method should have to work fine in this task. This is achieved carrying out
numerical experiments over images, sourced from the Internet, of three large scale scenes.
An original evaluation strategy, based on point reprojection on a set of test images, is
proposed and used to compare performances of various VPR methods and strategies in a
Structure from Motion pipeline.
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Chapter 1

Introduction

Recent years have seen an exponential growth of the trend of Artificial Intelligence. To
be clear, this area has been under development for several years now, but recently it has
progressively become part of our everyday life. In general the field of Artificial Intelligence
aims at building an intelligent system capable of receiving information from the world,
processing it and utilizing it to make decisions and interacting again with the world. In
other words its goal is to replicate and enhance human-like intelligence in machines, en-
abling them to perform tasks that were previously thought to require human cognitive
abilities. Clearly such a general definition can be applied to several contexts, such as
healthcare, finance, robotics, natural language processing and many others.

Such a system has to overcome many challenges. For example the knowledge it ac-
quires has to be stored in an efficient way, to allow fast consultation of vast databases.
Then the way the system interacts with the world can be extremely varied, some models
are designed for a specific task, while others are more general purpose ones, and tend to
work at an higher level. But one of the more complex, and in my opinion interesting,
steps of the pipeline is when the system has to attain information from the environment.
Focusing on this point leads us to the non trivial question of how the machine perceives
the world. This is typically done through the usage of sensors that try to emulate in some
way the human senses. But it is important to consider that the information to acquire
can be very heterogeneous, as well as noisy and chaotic.

One of the most important, but maybe also of the most complex, senses that Artificial
Intelligence has to try to replicate is the human vision. Fortunately we live in an era
where there is an abundance of images and videos available, and it is easy and affordable
to acquire new ones. However, as I said, this large amount of data is often chaotic and it
becomes crucial to understand the better way to “feed” the system with visual data. The
branch of Artificial Intelligence that deals with this is called Computer Vision. In this
field two primary technologies are used: a type of machine learning called deep learning
and convolutional neural networks (CNN). Machine learning employs algorithmic models
that enable a computer to autonomously learn the context of visual data. When sufficient
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information is input into these models, the computer “looks at” the data and learns to dis-
tinguish one image from another on its own. These algorithms allow the machine to learn
autonomously, without being explicitly programmed to recognize images. A CNN in this
context is crucial to assist a machine learning or deep learning model in breaking down
images into pixels, which are then assigned tags or labels. These labels are used to perform
convolutions and make predictions based on what is seen. The neural network performs
convolutions and checks the accuracy of its predictions over a series of iterations until the
predictions begin to align. As a result, it can recognize or perceive images similarly to
humans. Similar to how a person distinguishes an image from a distance, a CNN initially
discerns sharp outlines and simple shapes, gradually adding details as it iteratively refines
its predictions. A CNN is utilized for analyzing individual images. Conversely, a recurrent
neural network (RNN) is often employed similarly in video applications to help computers
understand how images across frames in a sequence are interconnected. Obviously such
an approach requires large amount of data. As it is easy to imagine there are countless
computer vision tasks being studied.

Many applications for example require a three-dimensional model of the surrounding
space. It is sufficient to think about robotics or autonomous driving vehicles. This can
be achieved through sensors capable of perceiving the 3D space, but unfortunately these
are often expensive and not so easy to find. Humans perceive a great deal of information
about the three-dimensional structure of the environment by moving around it. When the
observer moves, objects around them move in a different way depending on their distance
from the observer. This principle is known as motion parallax, and from this, depth infor-
mation can be earned and used to generate an accurate 3D mental representation of the
surrounding world. In addition, even if we are not moving, our brain receives images from
two different points of view, since we have two eyes, and this facilitates the creation of a
3D model of the space. A class of Artificial Intelligence technologies that try to replicate
this human capability goes under the name of Structure from Motion (SfM). As we will
further explore in the following chapters, SfM algorithms aim at building a 3D model from
easily accessible 2D images.

To achieve a precise and efficient reconstruction it is often necessary to group the many
various images into similarity clusters. This task is entrusted to Visual Place Recognition
algorithms. Their goal is to estimate the geographical position where a given picture was
taken by comparing it to a large database of images with known locations. In the SfM
context anyway they are used to look for images that are similar in some sense. Indeed
the concept of “similarity” leaves room for different interpretations, and distinct algo-
rithms can give different results. It may even be that models that work better for Visual
Geo-Localization, perform less effectively in a SfM pipeline. The aim of this thesis is to
focus on how this algorithms work and to understand, by means of numerical experiments,
which methods and configurations perform better than others in this context.

The remaining chapters will be structured as follows. Chapter 2 will delve into Visual
Place Recognition in details, with particular attention to the approaches used in the ex-
periments. Chapter 3 will shift its focus to Structure from Motion methods, discussing
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both underlying theoretical principles and a state-of-the-art algorithm called COLMAP.
Chapter 4 will present the problem setting and the numerical outcomes of the experiments.
The results of extensive testing will be shown and discussed, with the aim of understand-

ing what are the best performing configurations of the Visual Place Recognition step in a
SfM pipeline.



Chapter 2

Visual Place Recognition

In this chapter the tasks of Visual Place Recognition (VPR) will be presented, following
this general structure. First of all, there will be a broad discussion on the most relevant
approaches that, over the years, have proven to be more successful. Then a more detailed
analysis will explore some of the current state-of-the-art models, and in particular the ones
used in the numerical experiments: NetVLAD and Cosplace. Many general concepts of
deep learning will be assumed as known and not delved into details, since a full coverage
of this topics would be unfeasible, other than pointless. However, a reference to useful
literature material will be given when they are first mentioned.

2.1 Defining the problem

What is Visual Place Recognition? Bellavia et al. [2024] state that VPR addresses the
question of “given an image of a place, can a human, animal, or robot decide whether
or not this image is of a place it has already seen?”. It is easy to infer that such a ca-
pability is of crucial importance in tasks like localization and navigation, which recently
became ever more important with the advent of Artificial Intelligence in autonomous cars,
mobile robots, and reality augmentation platforms. Such a variety of uses and applica-
tion domains translates to a rich research panorama where VPR is studied by different
communities (computer vision, robotics, machine learning) and with different problem
settings. For instance, in computer vision VPR is often studied as the task of recognizing
the location of a single image. In robotics, VPR algorithms can typically leverage streams
of heterogeneous data (e.g., videos, pointclouds, odometry, etc.) as well as some knowl-
edge of the motion of the robot. Moreover, in robotics there is a stronger emphasis on
computational efficiency and real-time execution. Focusing on a Computer Vision setting,
Visual Place Recognition (VPR), also known as Visual Geo-Localization (VG) or image
localization, can be defined as the task of recognizing the “place” depicted in a given
image by comparing it to a large dataset of images, whose locations are known a priori.
Even the apparently trivial definition of place may change depending on the task: a place
could be denoted by the name of a landmark, a GPS coordinate or even a 6 DoF pose with
respect to a frame of reference. However, as mentioned before, in this work I will focus on
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this task when it is a step of a Structure from Motion pipeline. In this scenario it would
be more appropriate to speak of Image Retrieval. This refers to the general problem of
retrieving relevant images from a large database. VPR is commonly cast as an image
retrieval problem that involves a nearest neighbor search of compact global descriptors or
cross-matching of local descriptors. Figure 2.1, taken from Masone and Caputo [2021],
illustrates how image retrieval works in general. With regards to solving the nearest neigh-
bor search problem, VPR and image-retrieval systems face similar challenges. However,
the underlying goals differ between the two areas. For image retrieval, similarity criteria
could be based on semantic categories such as a product category or an environmental
condition category. However, with the additional context of being a “place”, VPR deviates
from the process of merely retrieving a similar image. The notion of similarity in VPR is
constrained to matching spatial information, where images captured from the same place
would be considered a true match even if environmental conditions are dissimilar (e.g.
day and night images).

Query Retrieval
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Figure 2.1: Visual place recognition is commonly formulated as an image retrieval prob-
lem. The known places are collected in a database and a new image to be localized is
called query. The place retrieval is performed in two logical stages. 1) In the first stage,
vector representations are generated for the query and the database images. 2) The rep-
resentation of the query is compared to those of the database images, to find the most
similar ones (here only the top 3 are shown).

In both formulation, the prior knowledge of the places of interest for the task is rep-
resented as a collection of images (database). Each image in the database is tagged with
an identifier of its location, that could be the name of a landmark or a GPS coordinate,
depending on the final purpose. A deep model (usually a convolutional neural network) is
then used to extract a vector of descriptors from each database image. These contain all
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the information that the network considers relevant in the picture. When a new picture
needs to be localized (query), the model extracts descriptors of the query in the same
way. The place recognition system later searches through the database for images that
are similar to it. At this point the concept of similar images comes down to an high value
of some similarity score computed over the numerical descriptors, that can be as simple as
the euclidean distance or a more complex cosine similarity. If similar pictures are found,
their tagged locations are used to infer the location of the query. In a geo-localization
setting, for each query, the k best scoring images are considered and their coordinates are
used as estimates for the query position. If they are within a fixed error threshold, then
the prediction is considered correct. The most common metric is recall@k, which repre-
sents the percentage of queries for which at least one of the & best estimates is correct.
This metric can be used not only for the evaluation, but also in previous stages for the
training of the network.

The retrieval paradigm is applied in many other fields of deep learning, but in VPR it
faces some unique challenges strictly related to the nature of the task:

1. Complexity of the image: the scenes in which a place appears are complex and there
is not a single, identifying object that can be exploited. In most cases the informa-
tion is scattered across some of the many elements of the image, that could be static
or even dynamic. Some of it may even be hidden behind occlusions and not available
to the model.

Figure 2.2: This picture is an example
of a dynamic obstruction. The bus ob-
scures most of the scene. A retrieval
method would probably match this im-
age with other bus pictures, regardless
of the place they have been taken.

Figure 2.3: Here an example of a con-
struction site covering most of the facade
of the building. Note also the fountain
stream in the foreground, which could
trick VPR algorithms.

2. Point of view: the same scene can be depicted from many different points of view
and the resulting images have different appearances. There is no guarantee that the
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database contains a positive match with the same viewpoint of the query.

Figure 2.4: These two images depict the same building from different points of view.
The change of perspective adds new elements, such as elements of the second facade, and

changes the geometry of the building.

3. Variable conditions: in real world scenarios the scene conditions are extremely dy-
namic and can change rapidly. This happens not only because of natural illumina-
tion variations, such as the day/night cycle, seasons and weather, but also because
of the presence of physical objects, such as temporary construction sites, vehicles

and pedestrians.

Figure 2.5: This picture is an example of
conditions variation due to metereologi-
cal factors. The snow not only changes
colors, but can also hide some distinc-
tive elements and change the shape of
the floor.

Figure 2.6: Here an example of illumi-
nation change. In night pictures some
elements are difficult to distinguish, and
others are highlighted by artificial illu-
mination. In this case, in addition, the
illumination is part of a temporary in-
stallation.
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Figures from 2.2 to 2.6 are taken from Flickr, and in particular from the Turin scene
(see section 4.2).

2.2 History of Visual Place Recognition

Early studies in Visual Place Recognition (VPR) can be found in the field of visual SLAM
(Simultaneous Localization And Mapping), mainly correlated to robotics (Durrant-Whyte
and Bailey [2006]). In the robotics literature, VPR has historically been called loop closure
detection. It gained more prominence in the field as the earlier metric SLAM methods
based on global and local bundle adjustment techniques, which could only handle limited-
size environments, were complemented by topological SLAM techniques based on bag-of-
words approaches (Galvez-Lopez and Tardos [2012]), such as FAB-MAP (Cummins and
Newman [2008]). In addition to its relevance within SLAM pipelines, VPR also remains
a crucial component of localization-only pipelines where a prior map is available. Early
VPR research primarily focused on place recognition under constant or slightly varying
environmental conditions. Addressing appearance changes due to more severe condition
changes, such as day-night cycles or seasonal shifts, emerged in the late 2000s. These
methods usually relied on local feature matching (Valgren and Lilienthal [2010]). A local
feature descriptor analyzes only a patch of the image, highlighting patterns that differ
from its neighborhood. These patches can be densely sampled, but in visual place recog-
nition they are generally originated from a sparse detector that identifies points of interest
(keypoints), such as SIFT (Lowe [1999]) and SURF (Bay et al. [2008]). Two images can
thus be compared by analyzing pairwise correspondences among their respective descrip-
tors, however this approach is not effective and hardly scalable to a database-wide search.
The possible solution is that for searching the database the images should be compared by
analyzing the statistics of their descriptors, rather than matching them on an individual
basis. This idea was pioneered by Sivic and Zisserman [2003] who adopted the Bag-of-
Words (BoW) approach for image retrieval. In this method the descriptors are quantized
in clusters, based on a codebook of visual words, and the image representation is then
obtained as the histogram of the assignment of all image descriptors to visual words,
weighted according to the “term frequency — inverse document frequency” (tf-idf), to give
importance to features appearing many times in the specific image, but not so often over
the database. Following these footsteps, other representations based on the quantization
of local descriptors have been proposed. Jegou and Zisserman [2014] observe that methods
that create a single vector representation from local feature descriptors can be splitted in
an embedding step, that individually maps each vector to a higher-dimensionality space,
and an aggregation step, that generates a single representation from the mapped vectors.
The reason behind the embedding step is to improve the distinctiveness of the individual
features and suppress false positives. Notable examples of such methods are Fisher Vec-
tors (Perronnin et al. [2010]) and VLAD (Jegou et al. [2010], Arandjelovic and Zisserman
[2013]). While the aggregation of local feature descriptors allows to obtain a single vector
representation of an image, this can also be done directly using global feature descriptors,
i.e., descriptors that encode holistic properties of the scene. Since they process the image
as a whole, global descriptors do not require a detection phase, thus being less expensive
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to compute. Examples of global descriptors are HOG (Dalal and Triggs [2005]) and Gist
(Oliva and Torralba [2006]). Compared to the representation from local descriptors, global
descriptors are less robust to viewpoint changes and occlusions. In 2014, the use of deep
learning, and in particular of CNNs, for VPR (Chen et al. [2014]) emerged as a way to han-
dle challenging data and has since proven effective in changing environments. Moreover,
it has been shown that CNNs can learn generic features that are, to some extent, trans-
ferable to other visual tasks. These findings have also inspired the application of deep
learned representations to image retrieval, where they have surpassed the performance
achieved with previous shallow methods. From the early studies, which demonstrated
that the vector of activations of a fully connected (FC) layer of a classification network
could be effectively used for retrieval, it became soon clear that the information extracted
by a fully connected layer of a CNN is akin to a global descriptor: it is not robust to the
presence of distractors or occlusions and lacks invariance to translation and scale. In ad-
dition, fully connected representations are limited by the fixed input size and by requiring
large numbers of parameters. This limitations of FC representations inspired researchers
to investigate the generation of image representations directly from the output of convo-
lutional layers. More specifically, the approach of Babenko et al. [2014] was to take the
H x W x C tensor produced by a convolutional layer of the network, where H is the height
of the tensor, W is its width and C' is the number of channels, and flatten it as a vector.
This vector is then normalized and used as image representation. Despite the interesting
use of the convolutional feature maps, the results achieved with this simple method are
not far off from those obtained with fully connected representations. Intuitively, simply
flattening the feature maps of a convolutional layer does not take full advantage of the
spatial information contained therein. This consideration has guided the development of
the current state-of-the-art representations for place retrieval. Rather than collapsing the
H xW x C features extracted from a convolutional layer to a vector, they can be considered
as a H x W grid of C-dimensional feature descriptors, each one having a limited receptive
field over the image. Namely, the output of a convolutional layer can be assimilated to a
set of densely extracted local descriptors. These dense descriptors can then be aggregated
in a single vector representation and then compared using a similarity function. Several
studies demonstrated the applicability of classic encodings to these dense convolutional
descriptors, e.g., VLAD (Paulin et al. [2015]) and BoW (Mohedano et al. [2016]). Mov-
ing further, researchers have proposed aggregation modules that can be plugged on top
of a CNN and allow end-to-end learning. In Arandjelovic et al. [2018] it is introduced
NetVLAD, a layer that implements the VLAD embedding and aggregation with differen-
tiable operations, that will be deeper discussed in 2.4. Other researchers have shown that
convolutional features from mid or late layers, unlike shallow non-learned features, can
be successfully aggregated and compared without embedding. Babenko and Lempitsky
[2015] show that for shallow hand-crafted features like SIFT, the embedding step is fun-
damental to improve their discriminativity. However, they argue that raw convolutional
features have a higher discriminative capability and therefore they can be pooled together
with simpler schemes, thus providing not only a leaner pipeline and, in many cases, more
compact representations, but also improving performance. Namely, an image representa-
tion can be generated by summarizing the statistics of the convolutional features through
a pooling approach. Some examples of simple pooling strategies are max-pooling and
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sum-pooling. The authors of Babenko and Lempitsky [2015] observe that max-pooling is
more invariant to scale changes, whereas sum-pooling is less sensitive to distractors in the
feature maps. The current state-of-the-art pooling methods are R-MAC (Radenovié et al.
[2019]) and GeM (Schubert et al. [2021]). In the former a max pooling is applied to a
number of patches randomly sampled from the feature maps generated by the convolu-
tional network. The results can be seen as regional descriptors, and are finally summed
and L2-normalized, in order to keep their dimensionality low. The latter, instead, imple-
ments the generalized mean operator, which is differentiable, hence the mean parameter
can be learned during training. Lately, in addition to images and image descriptors, VPR
research has also explored the use of additional information, such as sequences, intra-
set similarities, weak GPS signals, or odometry, to improve performance (Schubert et al.
[2021]), but I will not focus on these methods in this thesis.

2.3 A generic pipeline

This section outlines a generic pipeline for Visual Place Recognition, using a modern
deep learning approach. Let it be clear that the following steps do not refer to a specific
method, but represent a general backbone that can be extended or modified in each specific
pipeline. This section is intended to give an idea of how these algorithms work and to set
a proper notation.

1. Inputs: Two sets of images serve as the input in a VPR pipeline: the database set
DB and the query set ). The DB set represents a map of known places through
images with known location. The query set @), on the other hand, is the “live
view”, often recorded by a different platform than DB or after DB. Both sets
will have a geographical overlap and share some or all seen places. The pipeline
produces matching decisions, meaning that for each query image I; € (), one or
more database images I; € DB can be associated. There are different VPR problem
categories: using just a query set () (single-session VPR) or using both the DB
and @ sets (multi-session VPR). Also, the image sets can either be specified before
processing (batch VPR) or grow during an online run (online VPR).

2. Image-wise descriptor computation: Image descriptors are abstractions of im-
ages that extract information from raw pixels in order to be more robust against
changes in appearance and viewpoint. As already stated, there exist two primary
types of image descriptors:

o Global descriptors represent an image I, € DB, () with a single vector d; €
R?. This allows for efficient pairwise descriptor comparisons with low runtimes.
Note that when exhaustive k-nearest neighbor search (kNN) is used to obtain
the nearest neighbors for a candidate selection of similar database descriptors,
the execution time scales linearly with both the descriptor dimension and the
number of images contained in the database.

o Local descriptors encode an image I; with a set D; = {di|k = 1, ..., K'} of vectors
di € R? at K regions of interest. They often provide better performance than
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holistic descriptors, but require computationally expensive methods for local
feature matching. Therefore, local descriptors are typically used in a hierarchi-
cal pipeline, where first the holistic descriptors are used to retrieve the top-k
matches, which are then re-ranked using local descriptor matching.

As the descriptor computation is one of the first steps in a pipeline for VPR, it
has a significant impact on the performance of subsequent steps and the overall
performance of the VPR system. The algorithm used to obtain the descriptors
determine how well the descriptors are suited for a specific task. Moreover, the
specific training data of deep-learned descriptors affect the performance in different
environments.

. Descriptor similarity between two images: To compare the image descriptors
of two images, a measure of similarity or distance must be calculated. This process
compares the descriptors d; and d; (global) or D; and D; (local) of images ¢ and
Jj. Note that similarity s;; and distance dist;; can be related through inversely
proportional functions such as

. 1
Sij = -dlStij or Sij = m
Holistic descriptors can be compared more efficiently than local descriptors, as they
only require simple and computationally efficient metrics like the cosine similarity
or the negative Euclidean distance. On the contrary, comparing local descriptors
requires more complex and computationally expensive algorithmic approaches, as
previously mentioned.

. The pairwise similarity matrix: The pairwise descriptor similarity matrix S con-
tains all calculated similarities s;; between the descriptors of images in the database
and query sets. S has dimensions |[DB| x |Q| (supposing a multi-session VPR). De-
pending on the approach used, S may be dense or sparse. The overall appearance
of S is influenced by potentially regular camera’s trajectories during acquisition of
@ and DB. The pattern of high similarities within S can have a significant impact
on the performance of the pipeline.

. Matching decisions: The output of a VPR system is a set of matching decisions
m; € M with M € BIPBIXIQl that indicate whether the i-th database image and
the j-th query image show the same place or not. Existing techniques for matching
range from choosing the best match per query or a simple thresholding of the pairwise
descriptor similarities to a geometric verification spatial feasibility, using for example
the epipolar constraint.

When ground truth is available, these matching decisions need to be evaluated. One of the
most common evaluation metrics is the yet mentioned recall@k. For each query image,
given the K database images with the K highest similarities s;;, the recall@K measures
the rate of query images with at least one actually matching database image.
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In a deep learning based method, at the training stage, a contrastive or a triplet loss are
nowadays usually preferred for the optimization step, over the initially used classification
loss.

2.4 Tested methods

In this section I will delve a little bit deeper into two image retrieval methods: NetVLAD
(Arandjelovi¢ et al. [2016]) and Cosplace (Berton et al. [2022]). The reason is that these
are the two methods tested in the numerical experiments, as I will show in chapter 4.
The aim is to address in general terms how they work and their differences. The cited
publications are recommended if a more detailed and technical discussion is needed.

NetVLAD The authors proposed to learn the descriptor fp(I) of an image I in an end-
to-end manner, directly optimized for the task of place recognition. The representation
is parametrized with a set of parameters 6, and thus also the euclidean distance depends
on the same parameters. The problem is posed as to search for the explicit feature map
fo which works well under the chosen euclidean distance. In NetVLAD a CNN is cropped
at the last convolutional layer, so that it can be viewed as a dense descriptor extractor.
Namely, the output of the last convolutional layer is a H x W x D map which can be
considered as a set of D-dimensional descriptors extracted at H x W spatial locations.
Besides that there is a pooling layer inspired by the Vector of Locally Aggregated De-
scriptors (VLAD) (Jegou et al. [2010]) that pools extracted descriptors into a fixed image
representation and its parameters are learnable via back-propagation. VLAD is a pooling
method that captures information about the statistics of local descriptors aggregated over
the image. Whereas bag-of-visual-words aggregation keeps counts of visual words, VLAD
stores the sum of residuals (difference vector between the descriptor and its corresponding
cluster centre) for each visual word. Formally, given N D-dimensional local image de-
scriptors x; as input, and K cluster centres (“visual words”) ¢, as VLAD parameters, the
output VLAD image representation V' is (K x D)-dimensional. This matrix is converted
into a vector and, after normalization, used as the image representation. The novelty of
NetVLAD lies on the fact that the VLAD layer is differentiable with respect to all its
parameters and the input, and so trainable via back-propagation. This is achieved by
replacing the VLAD hard assignment of descriptors to a cluster, with a soft assignment
to multiple clusters. The result is a powerful image representation trainable end-to-end
on the target task.

The loss used for the training is a weakly supervised triplet ranking loss. Being ¢ the
query image, {p!} a set of potential positives, and {ng} a set of definite negatives, the
loss assumes the form:

J

where [ is the hinge loss [(x) = maz(z,0), m is a constant parameter giving the mar-
gin, and dy is the euclidean distance. The weakly supervised ranking loss opens up the
possibility of end-to-end learning for other ranking tasks where large amounts of weakly
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Figure 2.7: CNN architecture with the NetVLAD layer. The layer can be implemented
using standard CNN layers (convolutions, softmax, L2-normalization) and one easy-to-
implement aggregation layer to perform aggregation. Image from Arandjelovic et al.

2018].

labelled data are available, for example, images described with natural language.

Cosplace The idea behind Cosplace is to treat VPR as a classification task, which is not
straightforward given the continuity of the space where the images have been captured.
The dataset needs thus to be split into classes, but a naive division into square geographical
cells would lead to misclassification of nearly identical images due to quantization errors.
To overcome this limitation, the authors proposed not to train the model using all the
classes at once, but just groups of nonadjacent classes, called Cosplace groups (see Figure
2.8).

| a ! M | & | | o |
e T
(o] (o] o]
S
& :n"' o
(2] (2] o]

Figure 2.8: Visual representation of Cosplace groups. The orange triangles represent one
of the N x N x L different groups, while the purple triangles represent another group.
Each triangle represents one class, which contains all images within the respective cell
with the proper orientation. Image from Berton et al. [2022].

Intuitively, these groups, are akin to separate datasets and the proposed training pro-
cedure iterates over them, one at a time. Groups are generated by fixing the minimum
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spatial separation that two classes of the same group should have, either in terms of trans-
lation or orientation. With this partitioning of the dataset, a Large Margin Cosine Loss
(LCML)(Wang et al. [2018]) is sequentially performed over each Cosplace group and iter-
ates over the many groups. The remarkable advantage of this procedure with respect to
the methods based on contrastive losses, is that no mining nor caching is required, making
it a much more scalable option. At validation and test time, the model is used not to
classify the query, but rather to extract image descriptors as for a classic retrieval over
the database. This allows for the model to be used also on other datasets from unseen
geographical areas.
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Chapter 3

Structure from Motion

The main subject of this work is Structure from Motion, which is, as already hinted, the
problem of recovering the three-dimensional structure of a stationary scene from a set of
projective measurements, represented as a collection of two-dimensional images, via esti-
mation of motion of the cameras corresponding to these images. A particularly effective
approach to 3D reconstruction involves the use of many images of a stationary scene, that
is commonly referred to as multiview structure from motion. SfM techniques find applica-
tions in many fields, such as robotics, geosciences and culturale heritage maintenance. In
this chapter, a brief introduction to the history of this class of algorithms will be followed
by a more general and theoretical discussion of their functioning. Finally, replicating the
structure of the previous chapter, I will focus on the SfM method used for the numerical
experiments: COLMARP.

3.1 History of SfM

Longuet-Higgins [1981] introduced the first linear method based on point correspondences,
later named the eight point algorithm, to solve the SfM problem for a pair of cameras.
Specifically, for a pair of cameras, this method aims at estimating the relative camera
motion, i.e. relative rotation and translation, and the 3D coordinates of the scene points
captured by these cameras, involving a simple pinhole camera model. However Longuet-
Higgins does not provide any algorithm for solving this problem. Another early work in
the literature that introduced the factorization method for SfM is Tomasi and Kanade
[1992]. To model the SfM problem for objects that are relatively distant compared to
their sizes, the authors assume an orthographic camera model, in which the 3D points are
measured via parallel projections onto the image plane (consequently ignoring the camera
translation along the optical axis).

Modern methods usually solve the multi-view SfM problem using bundle adjustment tech-
niques, which aim to optimize a cost function known as the total reprojection error. With
this cost function, given n images of a stationary scene, the objective is to simultaneously
determine the structure (3D coordinates of scene points) and the calibration parameters
of each of the n cameras that minimize the discrepancy between image measurements and
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their predictive model. The camera location estimation methods is based on correspond-
ing point estimates between pairs of images. In most cases they use the corresponding
point estimates to make relative motion measurements between pairs of images, which
can be decomposed into pairwise rotational and translational measurements. The generic
approach for these methods is to separately estimate the camera orientations based on the
pairwise rotational measurements and to use these camera orientation estimates together
with the pairwise translational measurements in order to solve for the camera locations.
Once the cameras locations and orientations are estimated, these information are used,
together with the camera’s intrinsic parameters which can be known a priori or estimated
as well, to project the points of the images into the three-dimensional space.

Snavely et al. [2006] presented a sequential pipeline for SfM, demonstrating that it can
produce accurate reconstructions in practical scenarios where hundreds, or even thousands
of independently captured photographs are provided, generating a huge interest in the de-
velopment of efficient SfM techniques for large, unordered images sets. A notable work
in this sense is described in the paper Building Rome in a Day (Agarwal et al. [2009]),
where the authors pioneered city-scale reconstruction not using images from a structured
source, but chaotic and noisy photos from the Internet. One of the current state-of-the-art
algorithms is called COLMAP (Schonberger and Frahm [2016]), and will be discussed in
more details in 3.3.

3.2 Theoretical background

The feasibility of the task is granted by Ullman’s theorem (Ullman [1979a]), from which
the name “structure from motion” itself comes from:

Theorem 3.1. Given three distinct orthographic views of four non-collinear points in a
rigid configuration, the structure and motion compatible with the three views are uniquely
determined.

The proof, based on an ideal experiment with two coaxial cylinders is here omitted,
but can be found in Ullman [1979b].
I will focus on incremental SfM, a sequential processing pipeline with an iterative recon-
struction component commonly used in recent methods. The iterativeness allows to first
initialize the stereo view as a two-view geometry. Figure 3.1, from Schonberger and Frahm
[2016], shows a generic incremental SfM strategy.

Correspondence Search Incremental Reconstruction Reconstruction

"’[ B Initialization = m——————— -+ i
1 1 |

¢ o]

Image Registration Qutlier Filtering >

Matching

Geometric Verification Triangulation Bundle Adjustment

B g =

Figure 3.1: A generic incremental Structure from Motion pipeline. Each step will be
discussed in detail in the following pages.
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Let us represent the i-th camera using its orientation R; € SO(3) and its location
t; € R® by (R;,t;). Considering that we can always fix the intrinsic coordinate system
of one of the two cameras to be the global coordinate system (i.e., we can set R; = 7
and t; = (0,0,0), since an absolute coordinate system cannot be determined from point
correspondences), solving for the relative motion for a cameras pair, and for the scene
points based on the computed motion, then corresponds to actually solving the SfM
problem for the pair. A scene point X = (X!, X2 X3)T € R? is represented in the i-th
image plane by x; € R3. Formally, we obtain x; by first representing X in the i-th
camera’s coordinate system, as X; = RI (X —t;) = (X}, X2, X})T and then projecting it
to the i-th image plane by P
7

= Xif
where R; € SO(3), t; € R3 and f; € Rt denote the orientation, the location of the focal
point and the focal length of the i-th camera respectively. Note that, in general, the focal
length is defined as the distance between the focal point (here the position of the camera)

and the image plane. For a pair of cameras ¢ and j we can restate the coplanarity of the
points X, t; and ?;

X; (3.1)

ZL;

(X —t:) x (X =) (t —t;) = 0 (32)

in terms of the observable corresponding point measurements x;, ; and the camera
parameters as the epipolar constraint:

$¢T<[R¢T(tj — ;)] x Rij>mj =z Ejjz; =0 (3.3)

where E;; = RI(t; — t;) x RI'R; is the essential matriz for the cameras i and j.

Figure 3.2: Epipolar constraints on two cameras view.

Also let T;; = [RT (t;—t;)]x, where [M] is the skew matrix corresponding to the vector
product with M, and R;; = RZTRJ-, yielding F;; = T;; R;;. Among the various equivalent
restatements of the coplanarity of X, ¢; and ¢;, the useful property of (3.3) is that it
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provides a basis for the estimation of the specially structured essential matrices in terms
of the observable corresponding points. In other words, by fixing the undetermined scale
for the entries of E;; (e.g., ||Eij||r = 1 or ||t; —t;|| = 1), we can solve for E;; € R3*3 from
eight (linearly independent) epipolar constraints (3.3) corresponding to eight 3D points.
The usual approach in the literature is simply to minimize the sum of squared errors in
the epipolar constraints subject to the scale constraint, which is equivalent to finding the
singular vector of the resulting data matrix corresponding to its smallest singular value.
After estimating E;; (up to a sign to be determined later), one can solve for T;; (up to
another sign, again, to be determined later) by eliminating R;; using EijEZ» = ﬂjTg, and
then for R;;, based on its orthogonality, and for the scene points using simple algebraic
equations. Lastly, the undetermined signs of F;; and Tj; are fixed by requiring the scene
points to lie in front of both of the cameras.
The essential matrix estimates, computed for example using the epipolar constraints, in
the presence of a sufficient number of corresponding scene points (and the knowledge of
the intrinsic camera parameters), can be uniquely factorized into relative rotational and
translational parts. In general, the relative rotational parts are used for the estimation
of camera orientations R;. In order to estimate the camera locations, the estimated
orientations can be used directly with the translational parts to obtain estimates of the
pairwise directions

Vi = (b —t5) /[t — 1] (3-4)
A crucial point to note about the estimates of the pairwise directions 7;; is that they
lack any scale information pertaining to the distance ||t; — t;|| between camera pairs.
The difficulties arising from this homogeneity can be regarded as the most important
contributor to the diversity of the camera location estimation methods in the literature.
A relatively direct approach for location estimation from pairwise directions is based on
the homogeneous system of equations

(I =i (ti — ;) =0 (3.5)
which encapsulates the fact that the difference vectors ¢; — t; are parallel to the pairwise
directions 7;;. The locations can be estimated by minimizing the sum of squared errors in
the system obtained by replacing 7;; in (3.5) with their estimates and using constraints

to fix the global scale and translation, given respectively by >, ||t;||> = 1 and 3, ¢; = 0,
to prevent the trivial solution of t; = t.

Once the transformation and orientation matrix between adjacent cameras are calcu-
lated and each pair of points’ 2D coordinates are known, a triangulation method is used
to obtain the spatial coordinates of 3D points. A new scene point can be triangulated
and added to the point cloud as soon as at least one more image, also covering the new
scene part but from a different viewpoint, is registered. Triangulation is a crucial step
in SfM, as it increases the stability of the existing model through redundancy, but often
these methods suffer from limited robustness or high computational cost. Thereafter, new
images in the remaining multiple-view set can be added to the 3D model scene iteratively
by solving the Perspective-n-Point (PnP) problem (Figure 3.3).

Since the problem is typically outlier-contamined, robust solvers, such as RANSAC
(Lepetit V. [2009]) are usually employed. For uncalibrated cameras, various minimal
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coresponding
feature points

Figure 3.3: PnP problem in reconstruction process.

solvers can be used to estimate the camera intrinsics as well.

Uncertainties in the camera pose propagate to triangulated points and vice versa, and
additional triangulations may improve the initial camera pose through increased redun-
dancy. Without further refinement, SfM usually drifts quickly to a non-recoverable state.
Bundle Adjustment (BA) (Triggs et al. [2000]) is the joint non-linear refinement of camera
parameters C;, which includes both extrinsic parameters like orientation and position and
intrinsic ones, and 3D points parameters X that minimizes the reprojection error:

B =Y o (|Ir(C1. X) - au3) (3.6)
h

using a function 7 that projects scene points to image space and a loss function pp to
potentially down-weight outliers and enhance robustness. Levenberg-Marquardt method
is a common choice for solving BA problems.

In conclusion let me pose some more attention on the initial stages of the pipeline. It
should be clear now that the points selection is crucial, and this suggests that the points
should not be sampled randomly over an image, but it should be a representative point,
in some sense. For this aim, the first step of every SfM algorithm requires a local features
extractor, whose outputs are, as I mentioned in 2, collections of keypoints of the image.
The features should be invariant under radiometric and geometric changes so that SfM can
uniquely recognize them in multiple images. SIFT (Lowe [1999]), its derivatives (Tuyte-
laars and Mikolajczyk [2008]), and more recently deep learned features extractors such as
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DISK (Tyszkiewicz et al. [2020]) or SuperPoint (DeTone et al. [2018]) are common choices.

Thereafter, SfM discovers images that see the same scene part by leveraging the local
features as an appearance description of the images. The naive approach tests every im-
age pair for scene overlap. It searches for keypoints correspondences by finding the most
similar features across the two images, using a similarity metric comparing the points
appearance. This approach has computational complexity O(N2M?), if N is the number
of images and M is the number of keypoints extracted per image, and is prohibitive for
large image collections. The output is a set of potentially overlapping image pairs and
their associated feature correspondences. There exist many matchers, in some cases even
deep learned, that try to do this operation in an efficient way. However an upstream
possible solution is to input to the matcher only some pre-selected pairs. This task is
perfect for a VPR method, which can compare images based on global descriptors instead
of local ones, improving efficiency. Usually in this type of approach, each image is paired
with its £ most similar ones in the database by a retrieval method, where k& can be tuned
depending on the type and number of images in the collection. Then the pairs are passed
to the matcher to compare local features as well. The retrieval step, as I will show with
numerical examples in chapter 4, not only avoid useless local features comparisons speed-
ing up the process, but also reduce the number of points erroneously matched, improving
the reconstruction performance.

Since matching is based solely on appearance, it is not guaranteed that corresponding
features actually map to the same scene point. Therefore, SfM verifies the matches by
trying to estimate a transformation that maps feature points between images using pro-
jective geometry. If a valid transformation maps a sufficient number of keypoints between
the images, they are considered geometrically verified. Since the correspondences from
matching are often outlier-contaminated, robust estimation techniques, such as RANSAC,
are required. The verified matches and respective keypoints are finally processed by the
incremental mapper as described above.

3.3 COLMAP

While many algorithms previous to COLMAP (Schonberger and Frahm [2016]) could
handle the diverse and complex distribution of images in large-scale Internet photo collec-
tions, they frequently failed to produce fully satisfactory results in terms of completeness
and robustness. Oftentimes, the systems failed to register a large fraction of images that
empirically should be registrable, or the systems produced broken models due to mis-
registrations or drift. First, this might be caused by correspondence search producing an
incomplete scene graph, second, by the reconstruction stage failing to register images due
to missing or inaccurate scene structure, since image registration and triangulation have a
symbiotic relationship in which images can only be registered to existing scene structure
and scene structure can only be triangulated from registered images.

COLMAP addresses these challenges proposing the following contributions:
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a geometric verification strategy that augments the scene graph with information
about the type of transformation connecting two images and detects images with
watermarks;

e a next best image selection maximizing the robustness and accuracy of the incre-
mental reconstruction process;

¢ arobust triangulation method that produces significantly more complete scene struc-
ture than the previous state-of-the-art at reduced computational cost;

o an iterative BA strategy, incorporating re-triangulation and outlier filtering that
significantly improves completeness and accuracy;

a more efficient BA parameterization for dense photo collections through redundant
view mining.

The general pipeline previously presented outputs what is called a sparse reconstruc-
tion, where the structure is estimated from a sparse set of features. COLMAP allows
to achieve dense reconstructions as well, where the structure is estimated from a dense
region of pixels. However, even if this second type of reconstruction is usually more aes-
thetically pleasing, it requires in input calibrated cameras. Hence, when cameras intrinsic
parameters are unknown, a sparse reconstruction has to be performed formerly, and the
estimated camera intrinsics are used as an input for the dense reconstruction. In this
work I will discuss only sparse reconstructions, both in this section and in the numerical
experiments. This choice is made mainly for computational time reasons and because
sparse methods are sufficient for the aim of this thesis.

Firstly, COLMAP estimates a fundamental matrix, which is similar to the essential
matrix, with the difference that the fundamental matrix does not need the camera in-
trinsics, and is thus used for uncalibrated images. If at least Np inliers are found, the
image pair is considered as geometrically verified. Next, the transformation is classified by
determining the number of homography inliers Ny for the same image pair, to distinguish
between pure rotation and planar scenes. Furthermore, a frequent problem in Internet
photos are watermarks, timestamps, and frames (WTFs) that incorrectly link images of
different landmarks. COLMAP detects such image pairs by estimating a similarity trans-
formation with Ng inliers at the image borders. Any image pair with Ng/Np > egp is
considered a WTF and not inserted to the scene graph. For valid pairs, it labels the scene
graph with the model type (general, panoramic, planar) alongside the inliers of the model
with maximum support. The model type is leveraged to seed the reconstruction only from
non-panoramic and preferably calibrated image pairs. An already augmented scene graph
enables to efficiently find an optimal initialization for a robust reconstruction process. In
addition, it does not triangulate from panoramic image pairs to avoid degenerate points
and thereby improve robustness of triangulation and subsequent image registrations.

Thereafter, COLMAP propose an efficient next best image strategy following an un-
certainty driven approach that maximizes reconstruction robustness. Choosing the next
best view is critical, as every decision impacts the remaining reconstruction. A single bad
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decision may lead to a cascade of camera mis-registrations and faulty triangulations. In
addition, choosing the next best view greatly impacts both the quality of pose estimates
and the completeness and accuracy of triangulation. A popular strategy is to choose the
image that sees most triangulated points with the aim of minimizing the uncertainty in
camera resection. For Internet photos, the standard PnP problem is extended to the es-
timation of intrinsic parameters in the case of missing or inaccurate prior calibration. A
large number of 2D-3D correspondences provides this estimation with redundancy, while
a uniform distribution of points avoids bad configurations and enables reliable estima-
tion of intrinsics. The used approach approximates the intuition of Haner and Heyden
[2012] of an uncertainty driven approach using an efficient multi-resolution analysis. It
simultaneously keeps track of the number of visible points and their distribution in each
candidate image. More visible points and a more uniform distribution of these points
should result in a higher score, such that images with a better-conditioned configuration
of visible points are registered first.

Especially for sparsely matched image collections, exploiting transitive correspondences
boosts triangulation completeness and accuracy, and hence improves subsequent image
registrations. Approximate matching techniques usually favor image pairs similar in ap-
pearance, and as a result two-view correspondences often stem from image pairs with a
small baseline. Leveraging transitivity establishes correspondences between images with
larger baselines and thus enables more accurate triangulation. Hence, feature tracks are
formed by concatenating two-view correspondences. Unfortunately feature tracks often
contain a large number of outliers due to erroneous two-view verification of ambiguous
matches along the epipolar line. A single mismatch merges the tracks of two or more
independent points. Hence COLMAP’s authors propose a recursive triangulation scheme
to recover the potentially multiple points of a feature track from a faulty merge, combined
with the formulation of the problem of multi-view triangulation using RANSAC, to handle
arbitrary levels of outlier contamination.

To mitigate accumulated errors, BA is performed after image registration and triangu-
lation. Usually, there is no need to perform global BA after each step, since incremental
StM only affects the model locally. Hence, local BA is performed on the set of most-
connected images after each image registration. Global BA is executed only after growing
the model by a certain percentage, resulting in an amortized linear run-time of SfM.
To account for potential outliers, COLMAP employs the Cauchy function as the robust
loss function p; in local BA. For problems up to a few hundred cameras, a sparse direct
solver is used, and for larger problems PCG. For unordered Internet photos, it relies on
a simple camera model with one radial distortion parameter, as the estimation relies on
pure self-calibration. After BA, observations with large reprojection errors are filtered.
After global BA, degenerate cameras are also filtered, e.g. those caused by panoramas or
artificially enhanced images. re-triangulation is performed both before and after global
BA, to account for drifts effects and improve the completeness of the reconstruction. BA,
re-triangulation, and filtering are executed in an iterative optimization until the number
of filtered observations and post-BA re-triangulation points diminishes. In most cases,
after the second iteration results improve dramatically and the optimization converges.
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BA is a major performance bottleneck in SfM. Hence COLMAP lastly proposes a
method that exploits the proper characteristics of incremental SfM and dense photo col-
lections for a more efficient parameterization of BA by clustering redundant cameras into
groups of high scene overlap. Internet photo collections usually have a highly non-uniform
visibility pattern due to varying popularity of points of interest. Moreover, unordered col-
lections are usually clustered into fragments of points that are covisible in many images.
The proposed approach exploits this facts to improve the efficiency of BA. The problem
is partitioned into submaps, whose internal parameters are factored out. The scene is
partitioned into many small, highly overlapping camera groups. The cameras within each
group are collapsed into a single camera, thereby reducing the cost of solving the reduced
camera system. I will not go any further on this contribution, since it prescinds the focus
of this thesis, but technical details can be found in Schénberger and Frahm [2016].
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Chapter 4

Conducted experiments

In this chapter I will investigate the importance of image retrieval in a SfM pipeline by
means of numerical experiments. In particular, in section 4.1 I will briefly talk about some
of the early tests on some various image sets. These experiments do not represent the
main focus of the thesis, but they paved the way for the setting of the main experimental
scenario. In section 4.2 I will focus on the image sets choice. In section 4.3 I will discuss the
problem of evaluating a 3D reconstruction and introduce the proposed evaluation strategy.
Finally, in section 4.4 the numerical experiments and their results will be reported and
discussed.

4.1 Early Tests

Conducting the first experiments I was not aware of what would have been the point of
this thesis. I knew I wanted to study the role of image retrieval in a 3D reconstruction
scenario, but I did not know exactly what turn this work would take. This premise ex-
plains why these tests are quite disconnected one from another, to explore some various
scenarios to understand where to focus later. Although the results are not very interesting
from a research point of view, I believe they have been useful as a first approach to this
field and guided me to the setting of the experiments that will be discussed in next sections.

The basic idea was to apply a SfM pipeline, concerning an image retrieval step, on
some scenes and evaluate the reconstruction obtained with COLMAP, a state-of-the-art
method described in section 3.3. Since the focus was directed towards image retrieval, in
the sense of matching similar images to enhance the performance of an SfM pipeline, I
first posed my attention on 2023 Image Matching Challenge (Chow et al. [2023]). This
is a competition where participants have to reconstruct a 3D model of some scenes. The
2023 edition however was mainly based on scenes of limited size. Most of the solutions
proposed by participants either did not use image retrieval, or tested it but stated it was
useless. I wandered why and I conducted some tests on the 7 scenes provided as training
sets. The problem was that most of the sets were a small collection of images depicting a
single object of modest scale, e.g. a bike or a fountain. The only scene that was larger in
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the number of images contained 174 images of the ruins of a temple, located in Sicily. Here
the issue was that many images depicted small particulars of the buildings, making the
retrieval method match pictures of different areas but looking globally similar. The last
scene contained instead photos taken around a building, the Kyiv Puppet Theatre. Here
the images were more varied, but given the small cardinality of the set (only 27 images),
VPR yield no big enhancement to the reconstruction, neither in terms of accuracy nor of
time.

Consequently I moved to a dataset for which image retrieval could have more weight.
The choice went on the new edition of the same challenge. In 2024 edition (Bellavia et al.
[2024]) the goal was the same as the previous year, but the image scene provided were
more varied. However in this case the focus was set on pathological image matching cases.
As an example, some scene contained small sets of glass objects, others strongly symmet-
ric and repetitive buildings, others as well low resolution images of a park. The result is
that, after some tests, image retrieval showed up to be, again, quite useless.

This made me think that for this type of investigation, I needed a large number of
images, possibly covering a quite large scene. In this scenario, many images would not
share a covisibility area, and would be wrongly matched without a first matching based
on global descriptors. I moved to a well known dataset in computer vision, named San
Francisco XL (Berton et al. [2022]). This is a large scale dateset that covers the whole
city of San Francisco with images taken from Google Street View between 2009 and 2021.
In particular, the authors collected 3.41 millions of 360° panoramas and extracted 12
horizontal crops for each. The total number of images available for training amounts to
41.2 millions, all paired with GPS and heading labels. Obviously I made tests on a subset
of this very large set, choosing a 10000 m? square randomly picked on the map of San
Francisco. This resulted in 1375 images. The first reconstruction obtained were highly
confused and a structure of the street was hard to identify. The problem, this time, was
the source of the photos. As previously stated, these images are crops of 360° panoramas.
This gave them an intrinsic distortion that, even if it could seem a secondary aspect
from a human perspective, made it almost impossible to perform the reconstruction and
obtain a satisfying result. Indeed, the distortion changes the distance between points
in the image space, causing issues to the geometric verification, triangulation and pose
estimation discussed in 3.2. Fortunately, knowing the camera intrinsic parameters, it was
no big deal to undistort the images, as shown in the example in Figure 4.1.

The new reconstruction, with undistorted images, finally gave appreciable results. The
1375 images, all registered into the 3D model, returned the recognisable shape of the street,
and the estimated camera poses looked compatible with the Google Street View source of
the images, as shown in Figure 4.2.

Different retrieval approaches, anyway, resulted in similar reconstructions, hence I tried
to enlarge the scene, to make the image matching more relevant.

The new experiments, on a 1000000 m? square were unsatisfactory. The high number of
images, above 360000, made unfeasible a systematic experimentation on the computation
devices available, where a single test took more than 10 days. In addition the images were
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(b)

Figure 4.1: Example of a distorted image coming from the cropping of a 360° view from
Google Street-View car in (a). The picture is from SF-XL dataset. The result of the
applied undistortion is shown in (b).

Figure 4.2: One of the reconstructions obtained on the 10000 m? square on SF-XL dataset.
The red rectangles are the cameras pose estimations, mostly compatible with the Google
Street View source of the images.

heavily redundant, since the set contained pictures of the same places from many different
years. A possible solution could be a downsampling, but the images were not uniformly
distributed over the map. This means that taking, for example, only the images from a
single year, covered only a little section of the 1000000 m? square.

The same issue appeared with a random sampling: same areas were covered with re-
dundant images while others were not covered at all. I achieved an almost full coverage
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Figure 4.3: Image coverage on the 1000000 m? square selected from SF-XL dataset. (a)
shows the positions of all the images in the dataset. (b) shows only the images taken
in 2009, which is the year with the higher number of pictures. Even if it contains more
than 20000 images, there are some uncovered spots, that represent a challenge for the
reconstruction process.

selecting the images from the three years with higher cardinality, resulting in approxi-
mately 60000 images. Beyond the still long time needed, the result was very poor and
unsatisfactory. Different streets were overlapping in the 3D model and reconstructed at
different planes on the vertical axis. Probably the fact that all the images were taken
from the same point of view (the Google Street View car) did not help the SfM algorithm,
that in most cases could only reconstruct the low part of a building facade. One thing I
noted right away, is that the values of the only evaluation metric provided by COLMAP
(the mean reprojection error, yet presented in 3.3) were quite low, even better than in
the experiments on the smaller square. This was clearly in contrast with the awful re-
constructions obtained. This suggested that the mean reprojection error is not a reliable
and informative metric for the type of experimentation I needed. I will discuss better
this issue and my proposed solution in 4.3. Thereafter I decided to abandon this dataset
and move to something more aligned with the aim of the thesis, as I will describe in 4.2.
These tests led me to seek a large-scale scene, with images from different points of view,
an high covisibility but not too much redundancy.

4.2 The Datasets

The scenes chosen for the experiments are made of pictures taken from Flickr.com.
Flickr is an image and video hosting service, as well as an online community, founded
in Canada in 2004. For uploading images only a free account is needed, and this re-
sults in the fact that a lot of images can be found on the platform, both professional
and amateur. Especially in touristic sites, the amount of photos is quite large, and their
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variety in terms of cameras, points of view, editing and environmental conditions, makes
them well suited for the aim of this thesis. On the other hand, it must be remembered
that these data represent a big challenge for the SfM task. Hence, it should be no won-
der if the reconstructions will not be as good as other ones that can be found, maybe
relying on more structured inputs. The same tests conducted could be obviously done
on indoor scenes as well, but I used only outdoor ones for larger image availability reasons.

Flickr images can be easily downloaded with an API. Selecting pictures by the search
of one or more words in the image titles is not a good choice, since the titles often do
not depict the real content of the image and this would drastically reduce the pool of
available photos. A search on the tags can give better results. Anyway not all users use
tags on their pictures, and this strategy can mainly be used to find photos of famous
landmarks. I did not want to have this constraint and at the same time to get too many
images that would make unfeasible a wide testing, so I took an alternative path. Some
images on Flickr are uploaded together with some metadata, among which there could
be the geographical coordinates of where the photo has been taken. This is often done
automatically if the camera used is the one of a smartphone, thus this information can
be found on many pictures. My approach consists in setting four coordinates, which are
respectively minimum and maximum latitude, and minimum and maximum longitude,
and downloading all the images taken in the rectangle area within these bounds.

To choose the scenes, I oriented myself towards squares rather than single buildings
or monuments, to have a 360° view to reconstruct, and increase further the benefits from
the use of image retrieval. I did not choose too extended scenes, such as a district, since
in these cases usually many sub-models are reconstructed and then merged together, but
for this work this would be a useless effort. I looked for distinctive scenes, to make a
first evaluation “by eye” easier, but not too famous ones, to keep the number of images
limited, and so the time needed for a reconstruction.

I selected four scenes: three for wide testing and one for a particular experiment that
will be better introduced later. The following are the chosen sets:

o Torino - Piazza Castello: in this scene I selected a slightly larger area to include
the totality of the square, but, as an adverse effect, also some of the adjacent streets.
The square has an irregular shape, with a tower on one side and a building, with
two round towers, in the centre. It is mainly pedestrian area, but there are tramway
lines going through it. Many of the pictures turned out to not be actually depict-
ing the square, thus more than a half of them will be discarded in almost all the
reconstructions. The set contains 11752 images (Figure 4.4).

e Barcelona - Placa d’Espanya: this square has a round shape, so some surround-
ings spots have to be taken necessarily since I am selecting a rectangular area. It
is essentially a big roundabout with a fountain in the centre. On the sides, notable
buildings are the two Venetian towers, the bullring and a conspicuous building at
the end of a street starting from the square. Also in this case many images will
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Figure 4.4: Heatmap of images’ locations in the Turin scene.

be discarded, for example because many of them have been taken inside one of the
museums in that area. The set has a similar size to the previous one, as it contains
11577 pictures (Figure 4.5).

Venezia - Piazza San Marco: this square has an almost rectangular shape. No-
table elements are the San Marco bell-tower and the basilica. It is a pedestrian area,
but the large number of tourists present in the majority of the pictures, make image
matching a tough job. I wanted to conduct some experiments on scene of a different
scale, so I randomly sampled 4100 images, out of the almost 15000 found in the area
(Figure 4.6).

New York - Statue of Liberty: this scene will not be used in many experiment
as the previous ones, but only in one comparison. I wanted to prove numerically the
usefulness of image retrieval in a SfM pipeline. As I already told in the introduction,
image retrieval allows both to reduce reconstruction time and increase accuracy of
the model. The first point is quite obvious, since it reduces the number of image
pairs to be geometrically matched, but the second one is a bit more counter-intuitive.
Hence I wanted to conduct a test without using image retrieval, thus pairing each
picture exhaustively with the others, and compare the result with another experiment
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Figure 4.5: Heatmap of images’ locations in the Barcelona scene.

exploiting VPR. To do this I needed a very small scene, so that the reconstruction
without retrieval would still be performed in an acceptable time. After all, it is not
the aspect of a model that I am interested in, but the comparison between different
strategies. For this test I selected the approximately 7000 images taken on Liberty
Island and I sampled 500 of them. In this case I did not choose a square but a
single monument because, with such a limited number of photos, a small subject will
probably be easier to reconstruct.

The main issues with this datasets are due to the poor accuracy of the geo-tagging
in some images, whose consequence is that many images of different spots of the cities,
were wrongly localized in those squares. In addition, sometimes the geo-tagging is not
automatically added by the smartphone, but is inserted manually by the user. In this
cases, an image can be consciously located in the wrong place. Another problem are the
indoor images, maybe taken in some building of the selected area, but clearly useless for
the reconstruction. Then, many photos are taken in particular moments, such as events,
festivals, protests, or simply with one or few people in the foreground, and a out-of-focus
background. These pictures are obviously hard to match to other ones and may lead to
mistakes. Lastly, as already hinted, a rectangular selection region not always allows to
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Figure 4.6: Heatmap of images’ locations in the Venice scene.

cover precisely the area of the square, introducing images of different places taken in the
surrounding streets or buildings.

4.3 The Evaluation Method

As hinted in the previous section, one of the biggest challenges has been finding a way
to evaluate a 3D reconstruction. Sometimes it is easy to say if a reconstruction is better
or worse than another one by eye, but to make a valuable comparison between different
methods and setting, an objective evaluation strategy is needed. The COLMAP imple-
mentation gives, as an output, some information, such as the number of images registered,

32



Conducted experiments

the number of points in the 3D point cloud and the mean track length. The only eval-
uation metric is the yet cited mean reprojection error, that is used during the bundle
adjustment as well. This measure is the mean of the reprojection error of each point in
the reconstruction, intended as the euclidean distance between the projection of the point
over the 2D image and the corresponding keypoint originally extracted. This metric is
expressed in pixels. This strategy has two main issues:

o Firstly it strongly depends on the images registered in the reconstruction. Thus it is
fair to use this metric for the optimization step, during the bundle adjustment. But it
is not an optimal choice if the aim is to compare two or more different reconstructions.
Indeed the models may have registered different images, with different keypoints, and
the metric, even if it is a mean, is affected by this variation. Similarly also the use
of a different local descriptor extractor may lead to different keypoints. Particularly
important is the number of points in the model because, if it has few points, the
high reprojection error computed over the outlier has a big influence on the mean
reprojection error. On the other hand, a model with the same number of outlier but
more points, will have a lower error.

» Secondly, since this metric is expressed in pixels, it is also affected by the size of the
images. In a dataset of images all with the same resolution it could work fairly, but
if the dataset is strongly heterogeneous, a large distance on a picture with very low
resolution, would give erroneously a small error in terms of pixels. And, again, if
the set of images changes, the mean reprojection error would not be a meaningful
measure anymore.

As a result, in the early tests, some clearly wrong reconstructions had a lower error than
discrete ones. Hence I needed an other metric, allowing to compare different reconstruc-
tions in a consistent way.

A measure that is often used to evaluate sparse reconstruction is the error of the cam-
era pose estimates, in terms of position and orientation. In the 2023 Image Matching
Challenge for example, the evaluation metric is a mean average accuracy, that involves
computing the relative error with respect to the ground truth of the estimated translation
vector and rotation matrix. Then each of this error pairs is thresholded over ten pairs of
thresholds. The percentage of accurate samples is computed at every thresholding level,
and the results are averaged over all thresholds. This strategy, and similar ones, are cer-
tainly effective, but they require the ground truth of the camera poses. Thus they can
be used only on strongly structured data, essentially built specifically for this task. The
approach that I will now present, on the other hand, can be used on every set of images.

The problem with the mean reprojection error is his behaviour when images and key-
points change. The idea is thus to have a fixed test set on which to calculate the reprojec-
tion error. The test set images are initially not passed to COLMAP to perform the recon-
struction to evaluate. When the reconstruction is complete these images can be added to
the existing reconstruction by means of the COLMAP function image registrator. This is
necessary because registering all the images at the same time, the positions and intrinsic
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parameters of the set images would be affected by the position of the other images, for the
own nature on bundle adjustment phase. Adding them at a second time instead allows to
have genuine estimates, based only on the points already registered in the reconstruction.
COLMAP usually suggest to perform a bundle adjustment using the dedicated command
after registering new images, to refine their position. However in this case this is not
executed because having accurate positions of the test images is not the point of the ex-
periments.

COLMAP, to run a reconstruction, creates a SQL database, containing all the images,
keypoints and matches. The function image_registrator takes as an input the database
and an existing 3D model and tries to add to the reconstruction all the images in the
database not already registered. Actually not all the images are registered, since some
of them may not have enough matches with images in the model. Just adding the test
images to the database is not enough, since COLMAP would also register some of the
images discarded in the first reconstruction, but not part of the test set. And, again, the
set of registered images would change from a test to another, making all the efforts futile.
The database has to be previously cleaned up from all the images not registered in the
first reconstruction, and all the keypoints and matches related to them. This way the only
pictures COLMAP will try to register in the second phase are the ones in the test set. One
problem could be that not all the images in the test set are registered, especially when
working with very heterogeneous and noisy datasets. Nevertheless, this is not a big deal.
Indeed the number of registered images in different reconstructions is similar. Usually
the discarded images are the worst ones, which are discarded from all the reconstructions.
Few variations in the set of registered images are mitigated choosing a sufficiently big test
set, so that the error on a single point has little influence on the global mean. The set
at the same time must not be too large with respect to the total number of pictures, or
many of the test images would not share enough matches and would not be registered.
For the used scenes I chose a test set of 100 images.

After this all the points in the 3D model seen by at least one of the test images, are
reprojected on the corresponding 2D test image. The distance between the original key-
point and its new reprojection is computed with the euclidean metric. The overall error
measure is the mean of all these distances.

The last point to discuss is how to reproject a point from the point cloud to an im-
age. The COLMAP’s incremental _mapper does this automatically to compute the mean
reprojection error but, wanting to consider only the points seen by test images, this has
to be done manually. One of the output files of the reconstruction process, images.tzt,
contains for each image all the keypoints, and in particular their 2D coordinates and their
distinctive #d in the point cloud. For each image also the position vector, the quaternion
giving the orientation and the id of the camera associated to the picture can be found
in this file. Filtering to only the images of the test set, the 3D coordinates of the points
registered in the model can be found, in the other file points3D.txt, together with some
other information not useful for my objective. For the point projection the camera intrin-
sic parameters are also needed. They can be found in the third output file cameras.tzt.
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COLMAP supports 11 different camera models. The one suggested when the intrinsics are
unknown and every image has a different camera calibration, e.g., in the case of Internet
photos, is the simple radial. This only models radial distortion, shown in Figure 4.7, with
one parameter.

Figure 4.7: Example of radial distortion in image (b). Image (a) is the same image but
undistorted.

The other parameters are the focal length, already introduced in section 3.2, and the
principal point, i.e. the intersection of the optical axis and the image plane. An even
simpler model is the simple pinhole model (Figure 4.8). This is similar to the previous
one but it does not take into account a possible distortion.

Figure 4.8: Example of the simple pinhole camera model. The used simple radial model
is similar to this, but in addition it takes into account a possible radial distortion.
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I made the decision to use the simple radial model even if, looking at the images taken
from flickr, very few of them present a distortion. As intuitive, the reprojection error on
the strongly distorted images, such as fisheye ones, is very high. However this is not a big
deal because first of all these images are statistically a narrow subset, as already told, and
then because the problem occurs in every reconstruction. A distorted image will either
not be registered, and so it will not influence the error, or it will have an high error in
all the reconstructions, raising the average error but not compromising the comparison of
models. Anyway, considering a radial distortion parameter does not solve this problem,
since wide-angle lenses would need more complex models, requiring the knowledge of cam-
era intrinsics. Some of the images from flickr have these information in their metadata,
but only a little portion of them. Thus I preferred to consider a general case in which
nothing about the camera is known a priori.

Focusing on the simple radial camera, its intrinsic matrix is parameterized by Hartley
and Zisserman [2004] as:

fx S T
K=10 fy Yo
0O 0 1

Here f;, f, is the focal length, defined as the distance between the pinhole and the
image plane, measured in pixels. In a true pinhole camera it should be f, = f,, but in
some pathological cases or with calibration errors, they can assume different values. In
this case, the resulting image would have non-square pixels. Since COLMAP simple ra-
dial camera model estimates only one focal length value, I will assume f, = f, = f. The
camera’s principal axis is the line perpendicular to the image plane that passes through
the pinhole. Its itersection with the image plane is referred to as the principal point,
whose coordinates with respect to the image plane origin, conventionally chosen, are xq
and 9. The axis skew, s, causes shear distortion in the projected image. The result
of a non null value of s, would be parallelogram-shaped pixels, with non-right angles.
Since every parameter is estimated, and thus brings some error in itself, I will consider
the simple case in which s = 0. I made this decision also to reduce the time needed for
the reconstruction, and it is justified by the fact that, in some tests in which I estimated
the skew parameter too, it was very close to 0 in almost all the images. Finally, also in
this case, this simplification may affect a little bit the error computation, but this will
occur in every tested model since I am using the same set of images. So the performance
comparison would still be meaningful, at least on the same scene. The information in the
intrinsic matrix is completed by the extrinsic matrix [R|¢], which is the concatenation of
the rotation matrix and the translation vector. The projection matrix M € R34 is given
by the product M = K[R|t]

From a theoretical point of view, let us refer to Figure 4.9 for the notation. The camera
center is located in O, the image plane is at a distance f (focal length) from O towards
the Z axis. The projection of a point P = (z,y, z) onto the image plane is P’ = (', ¢/, f).
The goal is to find the coordinates of P’. For the sake of simplicity I will firstly consider
this simple case where the extrinsic matrix is useless. Indeed, with the origin and axes
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positioning of Figure 4.9:

Image Plane

Figure 4.9: Example of point projection setting.

The fundamental observation is that the triangles OH P and OO’ P’ are similar trian-
gles. Thus, 2'/x = y'/y = f/z, from which

z

These are coordinates in the reference system of the “3D world” X — Y axes. To express
them in the reference system of the image plane, the principal point coordinates xg and
1o must be summed to the previous expressions of 2’ and 3’ respectively, giving:

xi + Zo
v
yi + Yo
z

This system can be expressed as a matrix multiplication:

¥ ; F 0 2 0
yl=M =10 f v O
w 1 0O 0 1 0
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where the 1 is added in P to have homogeneous coordinates, and M has this simple form
because we are in the trivial case of R and ¢ and we are assuming s = 0. The same logic
can be extended to the case of a generic extrinsic matrix.

Now, to convert from homogeneous coordinates to euclidean ones, it is sufficient to divide
by the last element and then discard it:

x /
x w a
y/ _ y/ ~ W <u>
A e N U
1 w

Hence, summing up, in the specific experimental setting, it is sufficient to construct
the intrinsic matrix K with the parameters estimated by COLMAP and the extrinsinc
matrix concatenating the translation vector to the rotation matrix, obtained with simple
calculations from the quaternions. The result is the projection matrix M. This matrix is
then multiplied to a vector containing the point 3D coordinates and a forth unit coordi-
nate. The first and second values of the resulting vector are divided by the third one, and
they are then the coordinates of the point reprojection on the image plane. As already
told, the distance of this projection from the keypoint originally extracted is calculated
and averaged over all the points seen by test images.

The obtained metric seems to be quite reliable, in the sense that a visibly good re-
construction, usually has a lower error than a worse one, regardless of the number of
images in the model. However, it must be remembered that there is some randomness
in the reconstruction evaluation, depending on the order in which images are registered.
Thus, a difference of few thousandths or even hundredths of pixel must not be considered
significant.

4.4 'The Numerical Results

First of all let us go through the pipeline used in the following experiments:

1. As already discussed the images are downloaded from Flickr, being selected based on
their geo-localization. A test set of 100 photos is randomly sampled and set aside.
I will refer to the rest of the images as “train set” for simplicity, even if there is no
proper training to be executed on them.

2. The train images are processed for the local feature extraction. COLMAP, by default,
uses SIFT (Lowe [1999]) as an extractor, and pretrained weights vocabularies for the
matching. Since I wanted to have the possibility to choose different extractors,
I relied on the tools provided by hloc (Sarlin et al. [2019]), a toolbox for image
hierarchical localization, compatible with the python implementation of COLMAP:
pycolmap. In the majority of tests, the local features extraction has been entrusted
to SuperPoint (DeTone et al. [2018]).
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Figure 4.10: Example of keypoints extracted by SuperPoint. The picture is from Turin
scene train set.

A convolutional neural network (CNN) is used to produce a keypoint heatmap,
highlighting the locations of keypoints with high confidence. Once the keypoints are
detected, the descriptor extraction component generates a descriptor for each key-
point. The descriptors are high-dimensional vectors encoding the local appearance
around each keypoint. SuperPoint employs a self-supervised learning paradigm. It
leverages a synthetic dataset generated through a homographic adaptation process
to train the model. This process involves applying random homographies to images
to create synthetic correspondences, which are used as supervision signals during
training. The joint optimization of keypoint detection and descriptor extraction
leads to high-accuracy feature matching, together with efficiency and robustness to
changes in viewpoint, illumination, and other variations. The used version of Super-
Point has been previously trained on the dataset Aachen Day-Night (Sattler et al.
[2018]), making it particularly suitable for outdoor urban scenes. Some tests, only
on the Venice dataset, have been carried out with features extracted with SIFT, to
see if the results are robust to keypoints changes. SIFT is a quite old, but still well
performing, algorithm which focuses on extracting keypoints that are discriminative
and both scale and rotation invariant.

3. For the retrieval phase, global descriptors are extracted from the train images, and
saved in a database. As already told, the extractors tested in the experiments are
NetVLAD and Cosplace. Thereafter for each image the similarity with all the others
is computed, based on the descriptors just extracted. The top matches are saved, as
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a pair, in a txt file. The parameters that can be set for this pair selection are:

o N: the number of images to pair. For example, if N = 20, each image is paired
with the 20 most similar ones in the dataset. Obviously, self-matching and
mutual-matching are handled and properly discarded.

o k: the number of top matches to discard. For example, if N = 20 and k = 5,
not the top 20 matches are selected, but the ones from 6-th to 25-th position,
in a list ranked on the similarity score.

e min_ score: is the minimum similarity score to be accepted. If some of the top
N results have a score (which should be a number between 0 and 1) lower than
this value, these pairs are discarded.

4. For each pair selected, the local keypoints of the two images are then matched. The
matching is entrusted, in the majority of tests, to SuperGlue (Sarlin et al. [2020]), a
robust method that takes advantage of a graph neural network to learn the matching
process directly from data, and to consider the context of all keypoints in an image
pair simultaneously. An attention mechanism helps the network focus on the most
relevant keypoints and their context, improving the robustness of the matches. For
the experiments using SIFT, the matching relies on a simple Nearest Neighbours
algorithm.

Figure 4.11: Example of keypoints extracted by SuperPoint and matched by SuperGlue.
The pictures are from Turin scene train set. in the figure only 150 of the 1077 matches
are showed, to have a more readable image.

5. Images, local features and matches are imported into the COLMAP database and
the incremental mapper is called. There are some parameters of the mapper that
can be tuned to find a tradeoff between performance and runtime. They include:

o ba__global images ratio: the growth rate in the number of images after which
to perform global bundle adjustment.

o ba__global points ratio: the growth rate in the number of points after which to
perform global bundle adjustment.
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10.

e ba__global _max_num_iterations: the maximum number of global bundle ad-
justment iterations.

Some different values of these parameters have been tested, as will be shown in
subsection 4.4.2. A bunch of other parameters can be fine tuned to improve the
accuracy of the reconstruction, but I did not carry out many experiments because the
focus of this thesis is on the retrieval step. By default during the bundle adjustment
the focal length and the skew parameter are refined, while the principal point position
is not. Since, as explained in 4.3, I will not use the skew for the point reprojection,
I did not perform a refinement of this value, but I did it for the principal point
instead. If not every image in the set shares covisibility areas with the others,
connected components in the image matching graph can be created. In this case
COLMAP reconstruct many sub-models, theoretically depicting different scenes, for
a maximum of 50, by default. For the evaluation I used only the largest model, that
usually covered almost the totality of the images. Hence, I set the multiple_models
parameter to 0, so that only the biggest connected component is reconstructed, and
the required time is reduced.

Once the reconstruction is done, images that have not been registered are deleted
from the global descriptor database and from COLMAP database, as well as key-
points and matching related to them.

The 100 test images are processed as previously the training ones: global and local
descriptors are extracted with the same methods used in the previous phases 2
and 3. Then pairs between test images and already registered ones are selected.
Although the used method is the same, the parameters are set to N = 20, k = 0
and min__score = 0 for every experiment. This is done to pick a sufficient number
of pairs, so that as many images as possible are registered. The matching over these
pairs is done with the same method used previously, in step 4.

Test images, their keypoints, and their matches are imported into COLMAP database,
and the function image_registrator is called.

The output binary files of the newly updated reconstruction are converted to txt
format, to be more easily consulted successively.

Points seen by test images are projected on the photos as discussed in 4.3 and the
error is computed.

4.4.1 The importance of image retrieval

Let me show in this first test, the importance of using image retrieval in a SfM pipeline.
It is obviously useful to reduce reconstruction time, as images are not paired exhaustively,
but just a smaller number of significant pairs is taken into account. What I would like
to emphasize is that it also improves the accuracy of the model. This tests are made on
the Statue of Liberty scene, because the small number of images in it allows to carry out
experiments without the use of retrieval in a reasonable time. The scene contains 400
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train images and 100 test images. Both the retrieval results have been made with the
setting NV = 40, k = 0 and min__score = 0, thus each image is paired with the 40 images
more similar to it.

Pairing method Reconstruction Test set

Retrieval Pairs | Images | Time | Images | MRE
No retrieval | 79800 207 2:06 | 77/100 | 4.886
NetVLAD | 16000 231 1:02 | 76/100 | 3.734

Cosplace | 16000 220 0:57 | 74/100 | 3.739

Table 4.1: Results on the Statue of Liberty scene, with N = 40, k = 0 and min__score =0
for the two tests with retrieval. The time is expressed in hours and minutes, and refers
only to the time required for the main reconstruction. The time for registering test images
and for the evaluation is not included in this value. MRE is the Mean Reprojection Error
over the test images.

The time is more than halved using a retrieval method. The error is significantly lower
with both the tests with retrieval, which achieve almost the same result. The number
of test images registered is comparable in all the three experiments, so the MRE can be
considered reliable for a comparison. There is instead a difference in the number of train
images registered, which is lower in the test with exhaustive matching. This fact is quite
counter-intuitive, since one can think that matching each picture with all the others, they
may have higher probability to be registered. But the numerical results give another point
towards using image retrieval. The lower error is probably caused by the fact that with
an exhaustive pairing, SuperGlue is asked to match keypoints over images which do not
share any covisibility area. Sometimes it could find similar points and mistakenly match
them. The wrong matches may trick COLMAP, especially in small scenes like this one,
where there is not much point redundancy. Obviously all the times showed may vary if
the pipeline is run on a different hardware. They are informative only if considered with
respect to times of other experiments.

4.4.2 Mapper options

Among the many parameters of COLMAP’s incremental_mapper, the ones I set with a
value different from the default one are:

o multiple_models = 0
e ba_refine_principal__point =1
e ba_refine_extra_params =0

This setting holds for all the following tests on all the scenes. Then I made some ex-
perimentation on different values of global bundle adjustment parameters, in particular
ba__global__images_ ratio, ba__global__points__ratio and ba__global_max_ num__iterations
to see the best fitting configuration for this work. The result are presented in Table 4.2.
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Figure 4.12: Reconstruction of the Statue of Liberty scene. This one is obtained from the
model with NetVLAD and N = 40. The red rectangles are the cameras’ pose estimation.

Mapper global BA options Reconstruction Test set
Images ratio | Points ratio | Max iters | Images | Time | Images | MRE
1.1 1.1 25 1661 52:09 | 41/100 | 5.168
1.1 1.1 15 1649 | 24:52 | 40/100 | 5.193
1.2 1.2 25 1621 | 26:38 | 40/100 | 5.156
1.2 1.2 15 1633 20:12 | 41/100 | 5.194
1.3 1.3 25 1651 16:14 | 41/100 | 5.207

Table 4.2: Results of different values of global bundle adjustment parameters on Venice
scene, containing 4000 train images and 100 test ones. All the tests are made using
Cosplace for the retrieval, with N = 20, k = 0 and min__score = 0.

These tests have been carried out on Venice scene for time reasons, this being the
smallest set apart from the Statue of Liberty one. The image pairs are the same, selected as
the 20 most similar images, based on Cosplace descriptors. The number of registered test
images is quite low, but similar in all the tests. This could be caused by the small size of the
dataset, together with the high noise and variety in Flickr photos. Low values of images
and point ratios, make COLMAP perform global bundle adjustment more frequently. The
expected result is a higher runtime and a lower error. The reconstruction time follows
these expectations. The high mean reprojection error in the test with lowest ratios is quite
odd, and probably can be due to the higher number of registered train images. Reducing
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the maximum number of iterations allows a significant reduction of the time, at the cost
of a little worsening of the accuracy. Obviously these are just some sparse experiments,
but these parameters could be fine tuned to find the best configuration for each specific
experimentation needs. To achieve good results in an acceptable time, I chose the happy
medium with both the ratios equal to 1.2 and the maximum number of iterations to 25.
This configuration will be the only one used in all the following experiments.

4.4.3 Torino - Piazza Castello

The scene contains 11652 train images and 100 test ones. It is evident from a first look at
the pictures that several of them do not come from “Piazza Castello” square, or even have
been taken in indoor places. This will represent quite of a challenge for the reconstruction
pipeline. Let us first compare the results of NetVLAD and Cosplace with different values
of N.

Retrieval Reconstruction Test set
Extractor | N | Images | Time | Images | MRE
NetVLAD | 10 | 2627 | 23:25 | 76/100 | 4.198
NetVLAD | 20 | 5040 | 40:49 | 76/100 | 3.876
NetVLAD | 30 | 5591 | 61:12 | 75/100 | 3.897

Cosplace | 10 | 4719 | 32:58 | 87/100 | 4.237
Cosplace | 20 | 5151 | 43:20 | 86/100 | 4.144
Cosplace | 30 | 5187 | 50:34 | 87/100 | 4.224

Table 4.3: Results of different global feature extractors and different values of N on the
Turin scene. In all the tests £ = 0 and min_ score = 0.

From Table 4.3 it is clear the effect of N on the time required. It seems not true
anyway that an higher value of pairs leads to more accurate results, probably because
a lower value of N allows to a priori discard wrong matches that would only challenge
COLMAP’s mapper. However if its value is too low, as in the case of N = 10, not only
the error increases, but the number of registered images drops. This is another value
to strongly take into account. Indeed most people would not say that a reconstruction
with only a dozen of points perfectly triangulated is a good reconstruction, even if the
error is almost zero. In these experiments NetVLAD seems to achieve better results than
Cosplace in similar times.

Since filtering wrong matches is crucial, as shown above, I realized that choosing the
N best matches for each image is not always a good idea. If a picture is taken indoor for
example, it would still be paired with N images, but all these matches would be useless
and probably mistakes. Hence I thought about filtering the pairs with a low retrieval
score. To do this it is useful to see the distribution of scores over the pairs selected in the
experiments in Table 4.3. The relative plots are shown in Figures 4.13 and 4.14.

What can be observed is that Cosplace has higher score values, but this only depend
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Figure 4.13: Distribution of retrieval scores based on NetVLAD over the selected pairs on
Turin scene. (a) refers to the experiment with N = 10, where the mean score is 0.28. (b)
to the one with N = 20 where the mean score is 0.26. (c) to the one with N = 30 where
the mean score is 0.24. In all the three cases k¥ = 0 and min_ score = 0.

Retrieval score distribution Retrieval score distribution Retrieval score distribution

2 1500
g

02 03 04 05 06 07 08 03 10
score

(a)

Figure 4.14: Distribution of retrieval scores based on Cosplace over the selected pairs on
Turin scene. (a) refers to the experiment with N = 10, where the mean score is 0.63. (b)
to the one with N = 20 where the mean score is 0.60. (c) to the one with N = 30 where
the mean score is 0.58. In all the three cases kK = 0 and min_ score = 0.

on the different strategy to extract numerical descriptors and will not affect the recon-
struction. The scores have almost a normal distribution between 0 and 1 and, obviously,
for higher values of N the mean score is lower. To discard the pairs on the lower queue
of the curve, I tried to select, from the N best matches, only the ones with a score higher
than min_ score. 1 tested some values of this parameters, as shown in Table 4.4. A more
extensive testing of min_ score values can be found in subsection 4.4.5 on the Venice
scene.

The result on NetVLAD with min_ score = 0.4 must be discarded, since the low num-
ber of both train and test images makes it not comparable with other models. Clearly a
too high value of this threshold leads to a loss of information and models like this are the
result. With NetVLAD this strategy does not seem to help the reconstruction, while with
Cosplace and min_ score = 0.5, accuracy and time are improved. With a 0.25 threshold
on NetVLAD, the number of registered images drops and becomes similar to the test with
N = 10. Probably 0.25 is a too high value and, indeed, the number of pairs in the two
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Retrieval Reconstruction Test set
Extractor | N | min_score | Images | Time | Images | MRE
NetVLAD | 10 0.25 2627 | 22:02 | 68/100 | 3.972
NetVLAD | 20 0.25 2613 | 34:33 | 72/100 | 3.994
NetVLAD | 20 0.4 55 0:31 | 14/100 | 4.550

Cosplace | 20 0.25 5235 | 47:14 | 88/100 | 4.283
Cosplace | 20 0.5 4080 | 32:57 | 84/100 | 4.079

Table 4.4: Results of different min__ score values on Turin dataset. In all tests £ = 0.

models is similar (116520 with N = 10, 107185 with N = 20 and min__score = 0.25).

I wondered if, discarding images which are not connected to the registered ones, the
results would just improve or if some different images could help in some way. To discover
this, I choose the model with NetVLAD, N = 20 and min_ score = 0.25, and I ran a
reconstruction with only the 2613 registered images as input. The test set instead is still
the same. The results are shown in Table 4.5.

Retrieval Reconstruction Test set
Extractor | N | min_score | Images | Time | Images | MRE
NetVLAD | 20 0.25 2535 | 27:03 | 71/100 | 4.023

Table 4.5: Reconstruction run over the only 2613 images registered in the experiment with
NetVLAD, N = 20 and min_ score = 0.25. The score is here thresholded again because
otherwise it would select pairs that were not in the previous model, with very low scores.
This way, 83.6% of the pairs selected here, had already been selected in the old model.

The result is not as good as I expected. It achieves a significant time reduction, but the
error is even higher. This seems to suggest that some wrong matches, and some images
to be discarded, help COLMAP with the reconstruction. Hence I looked for a filtering to
be performed on the pairs and not on the images.

Figure 4.15 shows the average number of matches for each of the 20 pairs selected
for each image, in the model with NetVLAD, N = 20 and min_ score = 0. Here, with
“matches” T refer to the keypoints matches, performed by SuperGlue, and not to the
pictures pairs.

What is interesting here is the gap between the mean number of matches in registered
images and in discarded ones. Filtering pairs based on the number of matches, would
be similar to selecting only (or mainly) the registered images, which is an information
otherwise achievable only running a previous reconstruction. I discarded from the pairs
file all the images for which, the higher number of matches among the 20 pairs was lower
than 500. Different values of the thresholds have been tested and 500, that preserves
97600 pairs, achieved the best results.
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Figure 4.15: Average number of point matches for each of the V = 20 selected pairs. The
blue columns only refer to images that have been registered in the reconstruction, while
the orange ones are from discarded images. This data are relative to the experiment on
Turin scene with NetVLAD global descriptors, k = 0, min_ score = 0 and SuperPoint
keypoints matched with SuperGlue.

Retrieval Reconstruction Test set
Extractor | N | min_score | Images | Time | Images | MRE
NetVLAD | 20 0 3974 | 28:36 | 71/100 | 3.915

Table 4.6: Reconstruction run over filtered pairs. The images for which the best retrieval
pair had less than 500 matches have been discarded.

The results are good both in terms of number of registered images and of mean repro-
jection error. It is essentially comparable to the simple model with NetVLAD, N = 20
and min_ score = 0, but saving approximately 12 hours.

Lastly I considered the possibility of “skipping” the pairs with the highest score. The
idea behind this is that, if two images have the same view of the same place, the will
have a very high retrieval score, but the will not give much information for the point
triangulation. The parameter k allows to discard the k pairs with highest score for each
image.

Skipping the pairs with higher scores brings an improvement when NetVLAD descrip-
tors are used. That is not the case instead with Cosplace descriptors. The required time
has a slight increase but this is understandable since, choosing pairs with lower scores
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Retrieval Reconstruction Test set

Extractor | N | k | Images | Time | Images | MRE

NetVLAD | 15 | 3 | 4929 | 44:10 | 77/100 | 3.817

NetVLAD | 20 | 5 | 4960 | 42:25 | 74/100 | 3.925
3

Cosplace | 15 4854 | 31:46 | 84/100 | 4.195

Table 4.7: Results of reconstructions skipping the top k pairs for each image on Turin
scene. In all the tests min_score = 0.

may imply less accurate matches and more difficulties during triangulation and bundle
adjustment.

Figure 4.16: Reconstruction of the Turin Piazza Castello scene. This one is obtained from
the model with NetVLAD descriptors, N = 20, k = 0 and min_score = 0. The red
rectangles are the cameras’ pose estimation.

4.4.4 Barcelona - Placa d’Espanya

This scene contains 11477 train images and 100 test ones. Here I carried out similar
experiments to the ones on the previous scene.
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Retrieval Reconstruction Test set
Extractor | N | Images | Time | Images | MRE
NetVLAD | 10 | 4371 | 39:46 | 78/100 | 4.135
NetVLAD | 20 | 4534 | 44:40 | 79/100 | 4.050
NetVLAD | 30 | 4616 | 67:33 | 78/100 | 4.127

Cosplace | 10 | 4430 | 38:10 | 75/100 | 3.893
Cosplace | 20 | 4563 | 51:52 | 75/100 | 3.980
Cosplace | 30 | 4513 | 68:59 | 76/100 | 4.277

Table 4.8: Results of different global feature extractors and different values of N on the
Barcelona scene. In all the tests K = 0 and min_score = 0.

In this case Cosplace seems to work slightly better than NetVLAD. The number of
registered images here grows with IV, as expected, and the time does the same. An inter-
esting trend is that the mean reprojection error, passing from N = 10 to N = 20, decreases
with NetVLAD but increases with Cosplace. Someone could speculate that the first pairs
(the ones with an higher score) are more useful with Cosplace but not with NetVLAD.
This idea will be also suggested by other results in the following. Another possible ex-
planation is the fact, observable in Figure 4.18, that some of the Cosplace pairs have a
value close to 1. These pairs, which are obviously always selected, are made of almost
identical photos, which give poor contribution to the reconstruction process, as already
stated. But this issue appears in Net VLAD scores as well, so this is probably not the cause.

Figure 4.17: Distribution of retrieval scores based on NetVLAD over the selected pairs on
Barcelona scene. (a) refers to the experiment with N = 10, where the mean score is 0.28.
(b) to the one with N = 20 where the mean score is 0.28. (c) to the one with N = 30
where the mean score is 0.24. In all the three cases & = 0 and min_ score = 0.

Table 4.9 shows the results of using thresholds on the retrieval score. The results of
similar experiments without thresholds are also reported as a reference.

In both cases the threshold allows to reduce the reconstruction time. On the other
hand, the registered images are also reduced, but Cosplace can register approximately
500 images more than NetVLAD. However its MRE is higher, while with NetVLAD is
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Figure 4.18: Distribution of retrieval scores based on Cosplace over the selected pairs on
Barcelona scene. (a) refers to the experiment with N = 10, where the mean score is 0.61.
(b) to the one with N = 20 where the mean score is 0.57. (c) to the one with N = 30
where the mean score is 0.55. In all the three cases £ = 0 and min__score = 0.

Retrieval Reconstruction Test set
Extractor | N | min_score | Images | Time | Images | MRE
NetVLAD | 20 0 4534 | 44:40 | 79/100 | 4.050
NetVLAD | 20 0.25 3370 | 41:17 | 72/100 | 4.028
Cosplace | 20 0 4563 | 51:52 | 75/100 | 3.893
Cosplace | 20 0.6 3877 | 48:58 | 72/100 | 3.977

Table 4.9: Results of different min_ score values on Barcelona dataset. In all tests k = 0.

essentially the same. Someone could argue that the thresholds are different and so the
tests are not comparable. Actually these values have been chosen to discard almost the
same fraction of pairs. Indeed, 54.6% of NetVLAD pairs have a score lower than 0.25,
while 51.7% of Cosplace ones are under 0.6.

Finally Table 4.10 shows the results obtained varying the value of k.

Here NetVLAD, skipping the 5 best matches achieves a significant decrease in the
reprojection error, which can be considered an improvement even if the number of regis-
tered images is slightly lower. On the other hand Cosplace, that reached the best results
in the basic test, is essentially not able to perform the reconstruction if the first 5 pairs
are skipped. Indeed its model has only 8 images and could not register any test image.
This suggests, again, that the top matches selected with Cosplace are very important and
informative, while the one based on NetVLAD are not. Discarding them and considering
pairs with a lower score can downright increase performance.

4.4.5 Venezia - Piazza S. Marco

This scene contains 4000 train images and 100 test ones. Being the smallest scene, the
time needed for an average experiment is significantly lower. For this reason, some more
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Retrieval Reconstruction Test set

Cosplace | 10
Cosplace | 10

4430 | 38:10 | 75/100 | 3.893
8 8:37 | 0/100 0

Extractor | N | k | Images | Time | Images | MRE
NetVLAD | 10 | 0 | 4371 | 39:46 | 78/100 | 4.135
NetVLAD | 10 | 5 | 4294 | 40:30 | 75/100 | 3.929
NetVLAD | 15 | 3 | 4424 | 41:09 | 76/100 | 3.967
0
5

Table 4.10: Results of reconstructions skipping the top k pairs for each image on Barcelona
scene. In all the tests min_ score = 0.

Figure 4.19: Reconstruction of the Barcelona Plaga d’Espanya scene. This one is obtained
from the model with NetVLAD descriptors, N = 20, k = 0 and min_ score = 0. The red
rectangles are the cameras’ pose estimation.

tests have been conducted on this dataset, especially regarding the retrieval score thresh-
old. The noise in the images is approximately the same as in the previous two scene, and
indeed the registered images are on average around the 40% of the input ones. Since this
scene is smaller however, the number of registered test images is quite low. The mean
reprojection error can still be used as an informative metric, because all the tests have a
similar number of test images, but probably it would be a good idea to enlarge the test
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set or to change the retrieval strategy for the test images registration, to avoid giving too
much weight to a single photo.

As in the previous scenes, let us begin with a comparison of some basic strategies, in

Table 4.11.

Retrieval Reconstruction Test set
Extractor | N | Images | Time | Images | MRE
NetVLAD | 10 | 1573 | 23:26 | 38/100 | 5.392
NetVLAD | 20 | 1652 | 30:47 | 40/100 | 5.291
NetVLAD | 30 | 1685 | 34:22 | 41/100 | 5.197

Cosplace | 10 | 1588 | 25:52 | 40/100 | 5.315
Cosplace | 20 | 1621 | 26:38 | 38/100 | 5.156
Cosplace | 30 | 1641 | 33:32 | 40/100 | 5.485

Table 4.11: Results of different global feature extractors and different values of NV on the
Venice scene. In all the tests £ = 0 and min_ score = 0.

The trend of reconstruction time and of registered images against the variations of N
is aligned to the expectations. NetVLAD and Cosplace achieve similar results, with no
one outperforming the other in general. What is interesting to observe is that NetVLAD
reaches its best with N = 30, while Cosplace with NV = 20. This fact seems to suggest
another time that NetVLAD needs some pairs with lower score, while for Cosplace the
top scored are the most important ones. The fact that the errors are higher than in the
other scenes should not concern, because, as I told in the previous sections, the MRE is
consistent if used to compare tests with the same test images and the same keypoints.
Otherwise, it becomes not much informative as COLMAP’s mean reprojection error.

Figures 4.20 and 4.21 show the distribution of the retrieval scores of the selected pairs
for NetVLAD and Cosplace descriptors, with different values of V.

A more extensive experimentation on the minimum score threshold have been carried
out on this scene. The results will be presented in two separated tables, Tables 4.12 and
4.13, for the seek of clarity.

With NetVLAD descriptors, the thresholds 0.25 and 0.30 should be discarded since
they register few images and have a very high MRE. As min_ score increases, the error
decreases, has its minimum in min_ score = 0.15, and then rises again. The minimum
value can be considered the same as the model with min_ score = 0, even if here it is
slightly lower, but it should still be preferred since it requires only half the time.

With Cosplace descriptors there is less degeneration of the error with high thresh-
olds. The time required decreases more slowly than with NetVLAD. The trend of the
errors is the same as with the other descriptors: it increases, then reaches its minimum
in min__score = 0.45, and rises again. These results are consistent, as the fraction of
discarded pairs is similar in both cases. With NetVLAD, the best threshold (among the
tested ones) is min__score = 0.15, which is higher than 14.6% of the pairs’ scores. With
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Figure 4.20: Distribution of retrieval scores based on NetVLAD over the selected pairs on
Venice scene. (a) refers to the experiment with N = 10, where the mean score is 0.26. (b)
to the one with N = 20 where the mean score is 0.24. (c) to the one with N = 30 where
the mean score is 0.23. In all the three cases k = 0 and min__score = 0.
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Figure 4.21: Distribution of retrieval scores based on Cosplace over the selected pairs on
Venice scene. (a) refers to the experiment with N = 10, where the mean score is 0.62. (b)

to the one with N = 20 where the mean score is 0.59. (c) to the one with N = 30 where
the mean score is 0.57. In all the three cases k = 0 and min_ score = 0.

Cosplace, the value min_ score = 0.45 is higher than 17.5% of the pairs’ scores. But
not all the possible values have been tested and, in this range, even a little variation has
a quite big influence on the number of selected pairs. For example, values of 0.16 for
NetVLAD and of 0.435 for Cosplace would discard exactly the same fraction of pairs.
One can infer that the minimum MRE is obtained discarding approximately 16% of pairs.

Lastly Table 4.14 shows some experiments with & = 5, that is skipping the 5 pairs
with the higher retrieval score.

From these results it is clear how, also in this case, the top pairs are more important
for Cosplace but not for NetVLAD. With the former extractor, skipping 5 pairs rises the
error and leads to less registered images. With the latter, a higher reconstruction time is
rewarded with a significant reduction of the MRE. It is also interesting to compare this
result with the experiment using NetVLAD, N = 20 and k& = 0, shown in Table 4.11.
Here the pairs from the 1-st to the 20-th are selected, while with N = 15 and k = 5 the
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Retrieval Reconstruction Test set
N | man_score | Images | Time | Images | MRE
20 0 1652 30:47 | 40/100 | 5.291
20 0.10 1657 28:43 | 39/100 | 5.323
20 0.15 1642 14:10 | 41/100 | 5.268
20 0.20 1553 13:38 | 40/100 | 5.298
20 0.25 146 3:34 | 20/100 | 9.084
20 0.30 124 2:29 | 15/100 | 12.018

Table 4.12: Results of different min score values on Venice dataset with NetVLAD
descriptors. In all tests k = 0.

Retrieval Reconstruction Test set
N | min_score | Images | Time | Images | MRE
20 0 1621 26:38 | 40/100 | 5.156
20 0.30 1673 22:20 | 40/100 | 5.306
20 0.40 1627 23:56 | 41/100 | 5.344
20 0.45 1619 22:51 | 39/100 | 5.153
20 0.50 1566 21:53 | 40/100 | 5.203
20 0.60 1344 18:44 | 38/100 | 5.857
20 0.70 995 13:11 | 38/100 | 5.751

Table 4.13: Results of different min_ score values on Venice dataset with Cosplace de-
scriptors. In all tests £ = 0.

ones from the 6-th to the 20-th. Surprisingly, matching fewer pairs, even if the discarded
ones are the best ones according to NetVLAD, allows to register approximately the same
number of images in the same time, but resulting in an error decrease from 5.291 to 5.150.

Just to make a brief discussion about the time, as already told the reported values
refer only to the reconstruction process, that is to the steps from 2 to 5 of Section 4.4.
The evaluation process on average requires approximately 15 minutes. This is almost the
same for all the experiments because the test set contains always 100 images, and the
retrieval parameters are always set to N = 20, £ = 0 and min__score = 0, so the number
of pairs is always 2000. Of the reconstruction time, about the 15-20% is needed for feature
extraction and matching. The remaining major fraction is required by the COLMAP’s
mapper. As shown in Figure 4.23, the growth of the time is very fast when there are few
pairs. Then it slows down somewhat for a number of pairs between 60000 and 130000,
and afterwards it rises more than linearly.

4.4.6 Robustness to keypoints changes

In this last subsection I would like to present some experiments where the local descriptors
have been extracted with SIFT and matched with a Nearest Neighbour algorithm. The
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Retrieval Reconstruction Test set

1601 | 26:23 | 40/100 | 5.279
1584 | 17:45 | 38/100 | 5.396

Cosplace | 15
Cosplace | 15

Extractor | N | k | Images | Time | Images | MRE
NetVLAD | 15 | 0 | 1630 | 25:16 | 40/100 | 5.350
NetVLAD | 15 | 5| 1631 | 31:01 | 40/100 | 5.150
0
5

Table 4.14: Results of reconstructions skipping the top k pairs for each image on Venice
scene. In all the tests min_score = 0. The tests with N = 15 and £ = 0 have been
evaluated for a more consistent comparison.

Figure 4.22: Reconstruction of the Venice Piazza San Marco scene. This one is obtained
from the model with NetVLAD descriptors, N = 20, k = 0 and min_ score = 0. The red
rectangles are the cameras’ pose estimation.

idea is not to compare models with different keypoints, as this would be unfeasible with
this evaluation strategy. Indeed, as I told previously, the mean reprojection error is a
consistent metric as long as the experiments to compare share the same keypoints and the
same test images. The aim of this test is to see if the most interesting observations made
on the previous results, with SuperPoint descriptors, are also valid with other keypoints.
The experiments shown in Table 4.15 are chosen to highlight some of the facts observed
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Figure 4.23: Plot of the required reconstruction times against the number of retrieval pairs
considered. The red dots are experimental observations from all the scenes and different
values of N. The blue line is just an interpolation line for readability. Experiments where
k # 0 or min_ score # 0 have not been selected for this plot because only discarding the
best or the worst pairs has a different effect on the time than just reducing the number of
pairs. The worst pairs usually require more time for the triangulation and more iterations
of the bundle adjustment.

in the previous subsections. All of them are conducted on the Venice scene.

Retrieval Reconstruction Test set

Extractor | N | k | min_score | Images | Time | Images | MRE
NetVLAD | 10 | 0 0 4 0:59 | 0/100 0

NetVLAD | 15 | 0 5 900 28:30 | 25/100 | 4.744
NetVLAD | 20 | 0 0 966 21:43 | 25/100 | 5.466
NetVLAD | 20 | 0 0.15 994 14:59 | 26/100 | 4.950
Cosplace | 10 | 0 0 844 19:37 | 23/100 | 4.737
Cosplace |20 | 0 0 1013 | 21:59 | 25/100 | 4.633

Table 4.15: Results of various retrieval strategies on the Venice scene. The local descriptors
are extracted by SIFT and matched with a Nearest Neighbour algorithm.

In the above results there are 3 interesting behaviours to be observed. The first one
is that the threshold min score = 0.15 on the test with NetVLAD and N = 20 reduces
both the runtime and the error. A similar observation was made with SuperPoint local
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descriptors, even if there the decrease in the MRE was mild, while here is remarkable. In
addition Cosplace improves the accuracy result as N increases from 10 to 20. The same
behaviour was observed with the other keypoints. Lastly, skipping the 5 top scored pairs
and taking the following 15 is better, in terms of MRE, than taking the top 20 matches,
when using NetVLAD descriptors. This fact was true on SuperPoint descriptors as well,
and confirms the intuition that the first pairs are not much informative with NetVLAD.
The experiment with NetVLAD and NV = 10 failed, probably because the dataset is quite
small, SIFT extracts less keypoints than SuperPoint, and only the first 10 pairs are not
sufficient, since, again, the top ones are not very useful with NetVLAD.

Hence, in general, the observation made on SuperPoint descriptors are true also on
SIFT ones. Thus these behaviours can be considered robust to keypoints chances.
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Chapter 5

Conclusions

This chapter will contain the final remarks regarding this thesis, including a discussion on
the results, limitations and insights for future works.

The main goal was to explore the contribution of Visual Place Recognition on a Struc-
ture from Motion pipeline. The evaluation strategy used to this aim turned out to be
consistent through experiments. Between the two tested global descriptors extractors,
there is not one which significantly outperformed the other, but with no doubt the use
of some retrieval strategy reduces both reconstruction time and mean reprojection error.
The number of retrieval matches to be taken into consideration should be tuned on the
number of images in the dataset, but, working on strongly noisy scenes as the ones used
in this work, the top 20 matches are usually sufficient. A lower number would run the risk
of not being able to perform a reconstruction with a decent number of registered images.
A higher one would bring too much noise among the matches, affecting the accuracy of
the model and slowing down the process.

The threshold on the retrieval score can be useful to reduce the required time. A value
which can discard approximately the 15-16% of the pairs with the lower scores, is able
to achieve results that are comparable with the ones obtained without using a threshold,
but even halving the reconstruction time. A fine tuning of this parameter may allow to
speed up the reconstruction process without loosing accuracy.

The skipping of the best scored pairs may allow a reduction in the reprojection error.
This can be observed mainly when using NetVLAD descriptors, while with Cosplace ones
this is usually not true. This highlights a difference in the pair ranking of these two ex-
tractors. NetVLAD requires to “go deeper” in the scores list. The matches with a high
score result to be less informative for the reconstruction. This fact furthermore is con-
firmed by other experiments, such as the ones on the number N of pairs to be considered.
With Cosplace descriptors, this observation does not hold true. In this case the pairs
with higher score are the most important ones, and skipping them leads to an increase in
the error. This difference could be explained by the different approach used by the two
methods. NetVLAD is based on a positive mining strategy, which gives importance to the
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picture pose. On the other hand, Cosplace is designed to reward images taken in the same
place, even if their poses, i.e. orientation and position, are different. The result is that
the top matches based on NetVLAD are share almost all the image area of covisibility,
while this is not necessarily true with Cosplace. A Structure from Motion pipeline clearly
needs covisibility across pictures, but it also needs different points of view, to perform an
effective triangulation of points. Hence, too similar images may not cause mistakes, but
neither do they help the reconstruction.

The combination of a (not too aggressive) score threshold and of a top pairs skipping
strategy on NetVLAD descriptors, may increase the accuracy of the reconstruction, al-
lowing to keep limited the runtime.

The observations made seem to be robust to changes in the keypoints and in their
matching, at least when these tasks are entrusted to SIFT and a Nearest Neighbour algo-
rithm. It would be interesting to run some experiments on indoor scenes too, but datasets
of this type are usually very small or strongly structured, and thus do not fully exploit
the benefits from retrieval.

Many experiments have been conducted, but many more would have been interesting
to carry out. The time constraints force me to end here the experimentation, but with
a more extensive testing, maybe on different scene, probably other interesting aspects
could be discovered. It would be also interesting to test other global descriptor extrac-
tors for the retrieval step. NetVLAD and Cosplace are well known and well performing
algorithms, but some experimentation on more recent state-of-the-art extractors, such as
SALAD (Izquierdo and Civera [2024]), would be surely interesting to do. Not only it
may outperform the two older methods, but from the results some other aspects of the
behaviour of SfM algorithms may be inferred.

The paved way is the one that leads to a custom-designed retrieval method, which
exploits the main benefits of each existing algorithm to outperform them in this specific
field. This is possible because Visual Place Recognition is applied to a wide variety of
contexts and tasks. For this reason, a general purpose algorithm must aim to achieve
decent results in almost every application, making adaptability its strength. However an
algorithm that works optimally for visual geo-localization, may have poor performance
is such a specific task as SfM. A method suited for this task could bring significant
improvements in the scene reconstruction. For a work of this type though, a dataset
with known ground truth would be necessary. If the reconstruction evaluation can be
done even without known camera poses, following the strategy used in this thesis, the
knowledge of the exact position and orientation of each photo would be crucial to train a
custom retrieval method. The lack of city-scale datasets with these information, but still
with heterogeneous images in terms of viewpoints, is maybe the main limitation towards
this goal.
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