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Abstract

The use of Machine Learning (ML) algorithms in decision-making processes has signif-
icantly increased in recent years, providing alternatives to human decisions, which are
frequently affected by bias. However, ML algorithms can also exhibit bias, leading to
discrimination against individuals or groups based on sensitive attributes such as gender
or race. This bias often arises from the imbalanced representation of demographic groups
in the training data. Mitigating representation bias during the training phase is crucial
to ensure fair application of the ML models in decision-making processes.

This thesis presents a pre-processing framework designed to address representation
bias by oversampling minority groups, thereby creating a balanced and fair dataset for
model training. The proposed framework identifies subgroups with lower imbalance ratios
and employs the DBSCAN clustering algorithm to classify points as core, border, or
noise. Subsequently, the SMOTE-NC oversampling algorithm generates synthetic samples
through interpolation between border points and border/core points until each group
attains the highest balance ratio. The performance and fairness of the proposed method
are evaluated using standard performance and fairness measures. Experimental results
indicate that the framework significantly improves fairness while maintaining a minimal
loss in predictive performance compared to other existing methods.
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Chapter 1

Introduction

In recent years, Machine Learning (ML) algorithms have become increasingly important,
permeating various aspects of everyday life. For instance, these algorithms provide per-
sonal recommendations for movies and songs and influence critical decisions, such as credit
loan approvals, candidate selection in hiring processes, and determining the freedom of
defendants in the criminal justice system [52]. ML algorithms are particularly valuable in
decision-making processes because they can offer objective decisions. Unlike humans, who
may have prejudices against specific groups leading to biased decisions, ML algorithms
are designed to be free from opinions or prejudices, ideally producing unbiased outcomes.
However, this is not always the case. ML algorithms can also produce biased decisions if
they are trained on biased datasets—a concept encapsulated by the phrase "bias in, bias
out" [51].

One prominent example is the recruiting engine used by Amazon in 2014 to review job
applicants [18]. By 2015, it became evident that the algorithm was biased against female
applicants, resulting in the exclusion of many women candidates. This bias arose because
the algorithm was trained on historical resumes submitted to the company, which were
predominantly from male candidates. Consequently, the algorithm learned to favor male-
associated attributes, effectively encoding the gender bias present in the training data.
Another example is the COMPAS tool used in the United States criminal justice system
[58]. This software is employed to decide whether a defendant should be released on bail or
kept in custody before trial, based on a risk score indicating the likelihood of reoffending.
Analyzing the dataset used to train COMPAS revealed that African-American males were
more likely to be classified as high risk, leading the algorithm to predict higher chances
of reoffending for this group compared to others.
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Introduction

1.1 Motivation
As machine learning algorithms increasingly influence decision-making, it is crucial to
eliminate the factors leading to biased outcomes. While achieving fair predictions re-
mains a primary goal for researchers, an ultimate method has yet to be found due to
varying definitions and measurements of fairness. The impossibility theorem [45] high-
lighted this challenge by proving the incompatibility of certain fairness measures, leading
to the difficulty of defining a single method for mitigating ML bias.

Most existing bias mitigation methods focus on datasets with a single sensitive attribute,
dividing the population into privileged and unprivileged groups. However, this approach
often fails to capture the complexity of real-world scenarios, where individuals are char-
acterized by multiple intersecting sensitive attributes, resulting in diverse groups. Ad-
ditionally, many methods attempt to mitigate bias by oversampling to achieve an equal
number of samples in each group. This strategy can be problematic, as highly imbalanced
datasets often lead to the creation of a large number of synthetic samples, resulting in
overly artificial datasets and potential overfitting [64].

Motivated by these challenges, this work aims to mitigate representation bias arising
from unbalanced datasets, where some groups are underrepresented. The focus is on con-
sidering all possible subgroups defined by multiple sensitive attributes and reducing the
ratio between the number of positive and negative examples to ensure that each subgroup
has an equal likelihood of receiving a positive prediction from the classifier. The goal is
to achieve a uniform ratio of positive to negative instances across all subgroups, thereby
promoting fairness in ML outcomes.

1.2 Glossary
This section introduces the most important terms and definitions used throughout the
thesis, which will frequently appear in the later chapters.

• Fairness: The absence of prejudice or favoritism towards an individual or a group
based on their intrinsic or acquired traits [52].

• Bias: Systematic and unfair discrimination against an individual or a group of
individuals in favor of others [28].

• Protected/Sensitive Attributes: Attributes of an individual that should be irrel-
evant in decision-making processes. According to Article 21 of the European Union’s
Agency for Fundamental Rights [1], these include sex, race, religion, ethnic or social
origin, age, among others.

• Groups and Subgroups: Groups in a dataset are defined by all possible combi-
nations of sensitive attributes. Subgroups further divide each group into two, based
on the label (positive/negative).
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1.3 – Thesis outline

• Imbalance Ratio (IR): Computed for each group, this is the number of instances
with positive label divided by the number of instances with negative label. It repre-
sents the acceptance rate for each group.

• Privileged Group: The group with the highest IR among all the defined groups.

• Unprivileged Group: The group with the lowest IR among all the defined groups.

• Skewed Groups: Groups where the distribution of positive and negative instances
is significantly imbalanced.

1.3 Thesis outline
The rest of this work is structured as follows. Chapter 2 reviews related works, exploring
the sources of bias, the methods for measuring it, and various techniques proposed in the
literature for its mitigation. Chapter 3 provides the theoretical background, presenting
the problem formally and explaining the methods used. Chapter 4 introduces the pro-
posed framework to address representation bias. In Chapter 5, we evaluate the proposed
framework by comparing its effectiveness against other techniques aimed at reducing bias.
Finally, Chapter 6 concludes our work and present the limitations and the future work
directions.
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Chapter 2

Related work

This chapter presents the related work that have contributed to the theoretical and prac-
tical foundations of achieving fairness in machine learning. First, it explores the possible
sources of bias in machine learning, distinguishing between bias originating from the data
and bias arising from the algorithms. Next, it introduces various metrics for quantifying
bias, including group fairness measures, individual fairness measures, and subgroup fair-
ness measures, along with discussions on the impossibility theorem and the concept of
discrimination. Finally, the chapter summarizes methods for mitigating bias, categoriz-
ing them based on the stage at which they are applied: pre-processing (before training),
in-processing (during training), and post-processing (after training).

2.1 Sources of Bias in Machine Learning
To effectively mitigate bias in a dataset, it is crucial to understand its origins. This
necessitates an exploration of the different types of bias in machine learning. According
to Friedman et al. [28], bias in computer systems is defined as systematic and unfair
discrimination against an individual or a group of individuals in favor of others, thus
serving as a source of unfairness. In this context, bias in machine learning can broadly be
categorized into two main types: bias originating from the data and bias originating from
the algorithms. Data bias arises during the data collection process and is often context-
dependent, making it difficult to completely eliminate. On the other hand, algorithmic
bias results from the decisions made by users when handling and processing this data [6].

2.1.1 Bias from Data
Data bias emerges during the data collection process. It is important to carefully select
the dataset used to train a classifier because if the dataset contains bias, this will be
reflected in biased predictions. Mayson et al. [51] summarize this phenomenon with the
phrase "bias in, bias out" exemplifying that if the outcome to be predicted, such as an
arrest, happens more often to black individuals than white individuals in the training
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dataset, future decisions are likely to reflect this trend as well.

Historical bias falls into this category. It occurs when the dataset projects a type of
unfairness that existed in the past but no longer reflects current reality [62]. The dataset
could be well-constructed, with appropriate feature selection and perfect sampling, yet
still contain bias from past decisions [52]. An example of historical bias is found in word
embeddings used in natural language processing. A recent study [30] showed that an em-
bedding model trained on data from a specific decade reflects the reality of that decade,
which might now be considered biased. For instance, words representing job occupations
such as "nurse" or "engineer" are more correlated with female and male genders, respec-
tively. Using a dataset affected by historical bias to train a model can lead to unfair
predictions because it reflects stereotypes that, although once accurate, are now consid-
ered unfair.

Another type of data bias is Representation Bias, which occurs when some subgroups
are not well-represented in the dataset, causing the data to fail to represent the entire
population [62, 6]. This bias arises from the sampling process during data collection [52].
Representation Bias can occur when the population used for training differs from the pop-
ulation for which the model will be used. For instance, a model trained with individuals
from Boston may not perform well when analyzing individuals from Rome [62]. Repre-
sentation Bias also arises when one or more subgroups are underrepresented, meaning
the amount of data representing these minorities is insufficient compared to the major-
ity subgroups. Consequently, the model does not have enough data to learn about the
underrepresented subgroups, leading to unfair predictions. An example is the ImageNet
dataset [19], which contains 1.2 million labeled images. Around 45% of the images were
taken in the United States, while only about 3% were taken in India and China, causing
the model to perform poorly on images from these countries [62].

Measurement bias arises from how the features that constitute the dataset are chosen,
computed, and measured [52]. This bias can occur if different measurement methods are
applied across different subgroups. For example, in a factory setting, if some locations
are monitored more frequently than others, the locations with increased monitoring will
appear to have more errors, not because they actually do, but due to the higher level of
scrutiny [62]. Measurement bias can also arise from using attributes that are proxies for
sensitive attributes, leading to unfair decisions towards specific subgroups. Alternatively,
proxy attributes may oversimplify a concept, such as using GPA to represent a "successful
student," which does not account for the social differences between individuals [62].

2.1.2 Bias from Algorithms

Algorithmic bias occurs when an algorithm introduces bias that was not present in the
input data [52]. It results from the decisions made by developers and users when process-
ing and handling data, such as the choice of features, model selection, and the tuning of
hyperparameters [46]. Algorithmic bias can amplify existing data bias or introduce new
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bias, leading to unfair outcomes even if the data itself is unbiased [57]. Additionally, al-
gorithmic outputs can influence user behavior, creating a feedback loop that perpetuates
and even increases bias over time [15].

Aggregation bias occurs when a single model is applied across the entire dataset, fail-
ing to account for the diverse characteristics of different subgroups [62]. This approach
assumes homogeneity within the population, not taking into account the unique features
and patterns that could characterize the subgroups. Consequently, the model’s predictions
may be accurate for the majority group but significantly biased for minority or underrep-
resented groups. In some cases, the model may not accurately represent any group within
the dataset [62].

While aggregation bias arises from the use of a single model that is expected to fit the
entire population, ignoring subgroup differences, Learning bias emerges from the algorith-
mic design choices that shape the model, such as the selection of a learning function or
regularization techniques [7]. For instance, if the objective function optimized by the al-
gorithm during training is not carefully selected, it can unintentionally amplify differences
between subgroups. For example, an objective function that prioritizes accuracy as the
primary measure may enhance this measure at the expense of other fairness measures,
such as disparate impact [62]. This occurs due to the trade-off between fairness and ac-
curacy, where improving one often leads to a reduction in the other [57].

Algorithmic bias can also arise from feedback loops. These occur when decisions made
using a trained machine learning model influence the subsequent data collected for future
training iterations, potentially reinforcing and amplifying any existing bias [15]. In the
work of Baeza-Yates [4], this is referred to as Bias on User Interaction, which is influenced
by presentation bias and ranking bias. For instance, in web searches, users are more likely
to click on the pages they see on the screen and tend to prefer the top-ranked results [4].
This behavior creates a feedback loop, where top-ranked pages receive more clicks, further
increasing their popularity and reinforcing their high rankings.
Another example of feedback loops, introduced by bias in user interaction beyond the web
field, is examined in the work of Lum et al. [49]. In this study, arrest data were used
to train a predictive policing model aimed at preventing crime before it occurs. These
systems predict potential crime hotspots based on historical arrest records. Consequently,
areas with higher crime rates receive more police attention. However, because arrests are
more likely in areas with a heavy police presence, this creates a feedback loop. The model
continually predicts higher crime rates in these over-policed areas, leading to increased
police deployment and further arrests, perpetuating a cycle of bias and over-policing [15].

2.2 Fairness Measures
To mitigate bias in datasets and achieve fairness in machine learning, it is crucial to first
define what fairness means and how it can be measured. However, there is no universally
accepted definition [60]. While people often have an intuitive sense of what is fair, these
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intuitions can vary significantly across different situations and individuals.
According to [52], fairness in decision-making can be defined as the lack of prejudice or fa-
voritism towards an individual or a group based on their intrinsic or acquired traits. This
notion of fairness implies that decisions should be free from bias related to an individual’s
sensitive attributes—those characteristics that are irrelevant in specific decision-making
contexts. Article 21 of the European Union’s Agency for Fundamental Rights [1] explicitly
prohibits discrimination based on protected attributes such as sex, race, religion, ethnic
or social origin, age, among others.
The challenge of defining fairness is further complicated by the recent formulation of the
impossibility theorem [45], which suggests that it is generally impossible to meet all fair-
ness criteria at the same time.
As a result, various fairness measures have been proposed in the computer science lit-
erature to address different aspects of bias and discrimination. These measures will be
explained in more details in the following subsections.

2.2.1 Group Fairness Measures
The goal of group fairness is to ensure that machine learning algorithms treat different
demographic groups equitably, particularly those defined by sensitive attributes such as
race, gender, or age. Once these protected groups are identified, group fairness measures
aim to achieve parity in certain statistical metrics across these groups [15]. However, this
parity does not need to be perfect: imposing strict parity can actually reduce an algo-
rithm’s accuracy [9].

In the literature, many group fairness measures have been proposed, each one of them
trying to define a different statistical metric to be equalized between groups. In the book
of Barocas et al. [5], the authors divide these fairness measures based on three criteria,
that can be generalized to score functions using simple (conditional) independence state-
ments. The first criterion introduced in the book is Independence, and it requires the
prediction of an outcome to be statistically independent of the sensitive attributes. This
means that an individual’s membership in a specific demographic group should not influ-
ence their chances of receiving a favorable outcome [11]. An example of the measures in
this category is the demographic parity measure, also known as statistical parity measure.
A classification algorithm satisfies this fairness measure if the probability of a positive
(or negative) prediction is independent of the sensitive attribute, therefore is the same
across groups [21]. However, demographic parity is not sufficient on its own because it
only ensures equal outcomes across groups, without considering the underlying reasons or
individual circumstances that might influence those outcomes. For instance, in one ex-
ample reported in [21], statistical parity allows for the selection of unqualified individuals
from the unprivileged group merely to meet parity requirements.
To address these shortcomings in demographic parity, the conditional statistical parity
measure has been introduced. This fairness measure refines demographic parity by condi-
tioning on a set of relevant non-sensitive attributes, therefore permitting a set of legitimate
attributes to affect the outcome [16].
Another fairness measure that fall into the Independence criterion is disparate impact
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[23]. This measure is defined as the ratio of the probability of a positive outcome for the
unprivileged group over the probability of a positive outcome for the privileged group.
According to the 80% rule, a dataset exhibits disparate impact if this ratio is less than
0.8 [27].

The second criterion introduced in the book by Barocas et al. [5] is Separation, which
focuses on equalizing error rates across demographic groups. Separation is a fairness cri-
terion that requires the prediction of an outcome to be statistically independent of the
sensitive attributes, conditional on the true outcome. This means that within each stra-
tum defined by the true target variable, the prediction should not depend on the sensitive
attributes. Therefore, Separation ensures that error rates (both false positive and false
negative rates) are equal across different demographic groups. In binary classification,
the true positive rate is defined as the probability of predicting a positive outcome when
the actual outcome is positive, while the false positive rate is defined as the probability
of predicting a positive outcome when the actual outcome is negative. The false negative
rate is one minus the true positive rate.
Measures fall into this category include the equalized odds measure, which is a fairness
measure that requires both the false positive rate and the false negative rate (and con-
sequently the true positive rate) to be equal across different demographic groups. This
ensures that individuals with positive and negative target labels receive similar prediction
outcomes, regardless of their membership in a privileged or unprivileged group [34].
A possible relaxation of equalized odds is to consider only one of the two error rate equal-
ities, rather than both. Equal Opportunity, also known as Equality of Opportunities,
focuses on ensuring equal false negative rates across different demographic groups. This
means that the probability of assigning a positive outcome to individuals in the positive
class should be the same for both privileged and unprivileged groups[52]. On the other
hand, Predictive Equality aims to equalize the false positive rates across demographic
groups. This measure ensures that the likelihood of incorrectly predicting a positive out-
come (when the true outcome is negative) is the same for all groups, regardless of their
sensitive attributes [16].

The third and last criterion introduced in the book by Barocas et al. [5] is Sufficiency,
which requires that individuals receiving the same decision from the model have equal
probabilities of the actual outcome, regardless of their sensitive attributes. This criterion
ensures parity in the likelihood of the true outcome for people with the same prediction.
Predictive parity, also known as test fairness, is a fairness measure that aligns with the
Sufficiency criterion by ensuring equal positive predictive values (PPV) across different
demographic groups. This means that the ratio of correctly predicted positive outcomes
(true positives) to all predicted positive outcomes is equal for both privileged and unpriv-
ileged groups [14].

This subsection has covered several key group fairness measures. These measures aim
to ensure fair outcomes across different demographic groups and are crucial in mitigating
bias in machine learning models. While other fairness measures exist, the ones discussed
here are the most relevant for this thesis and are widely used in practice.
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It is important to note that, as will be discussed in subsection 2.2.4, an impossibility
theorem has been formulated, which states that not all three fairness criteria — Indepen-
dence, Separation, and Sufficiency — can be satisfied simultaneously. This highlights the
inherent trade-offs and complexities involved in achieving fairness in machine learning.
The next subsection will explore individual fairness measures, focusing on ensuring fair
treatment at the individual level rather than across groups.

2.2.2 Individual Fairness Measures
While group fairness measures focus on achieving statistical parity between demographic
groups, the main idea behind individual fairness measures is to ensure that similar in-
dividuals are treated similarly. This concept was first introduced by Dwork et al. [21],
who formalized this principle using a Lipschitz condition on the classifier. Specifically, the
authors defined a classifier as a mapping from individuals to distributions over outcomes.
They then framed this as an optimization problem, introducing a utility loss function that
the classifier aims to minimize to be considered fair.
Dwork et al. defined a distance metric among individuals and used the Lipschitz condition
as a constraint in the optimization problem. This constraint ensures that the distance
between two individuals in the decision space does not exceed their distance in the input
space. One shortcoming of this approach is the challenge of defining a distance metric
that accurately reflects the concept of similarity between individuals in the input space.
Zemel et al. [66] proposed the concept of Consistency to compute the similarity between
individuals. Specifically, Consistency is computed by comparing the predicted label of
each individual with those of its nearest neighbors, based on the idea that close individu-
als should receive similar predictions.

In the work of Kusner et al. [47], the concept of individual fairness is defined as coun-
terfactual fairness. According to this definition, the outcome of a classifier should remain
unchanged when comparing two individuals with identical features but different sensitive
attributes. This notion is sometimes referred to as Fairness Through Unawareness or
blindness in the literature. Under this framework, a classifier is considered fair if it does
not explicitly use protected attributes in the decision-making process [63].
However, a significant drawback of this approach is that it fails to account for the presence
of proxy attributes, which are variables correlated with the sensitive attributes. Conse-
quently, even if protected attributes are not explicitly included in the training or decision
process, other attributes that are closely related to them may still introduce bias. For
example, a zip code can act as a proxy for race, as certain areas may be predominantly
inhabited by specific racial groups. This means that decisions based on zip code can in-
advertently lead to racial discrimination.

At this point, one might consider developing a method that excludes both sensitive at-
tributes and their proxy attributes from the decision-making process. This concept has
been explored by Kamiran et al. [40] and is known as suppression. In this approach, the
authors aim to identify attributes that are highly correlated with protected attributes and
exclude both these and the protected attributes from the training of the classifier.
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However, this raises questions about defining "highly correlated" attributes, determining
appropriate thresholds for exclusion, and recognizing the potential loss of valuable infor-
mation when many features are removed from the input space.
Another approach, introduced by Zemel et al. [66], aims to address the problem of infor-
mation loss that occurs when certain features are deleted. The authors propose finding an
intermediate representation of the data that retains as much information from the origi-
nal features as possible while simultaneously obfuscating any information related to the
protected attributes. This "cleaned" representation of the data is then used to train a clas-
sifier, ensuring that the model remains fair by not being influenced by sensitive attributes.

Joseph et al. [38] proposed an individual fairness measure using the contextual multi-
armed bandit framework. Their method ensures that less qualified individuals are not
favored over more qualified ones, regardless of sensitive attributes. Each demographic
group, defined by sensitive attributes like race, is represented as an arm in the bandit
problem. Pulling a lever, in this context, means choosing an individual from a given
group. The key idea is that the algorithm should maximize the cumulative reward ob-
tained after each lever pull, thus ensuring fair treatment among individuals based on their
qualifications rather than protected attributes. One drawback of this method is that it
does not account for the societal structures that may cause certain individuals to be less
qualified due to insufficient resources.

In this subsection, the most important and well-known notions of individual fairness mea-
sures have been presented along with their drawbacks. Despite their promise, a significant
limitation is determining what it means for two individuals to be similar. This involves
defining a suitable distance metric, which is inherently subjective and context-dependent.
Consequently, while valuable, individual fairness measures must be applied cautiously,
considering their inherent challenges.

2.2.3 Subgroup Fairness Measures

The third category of fairness measures is known as Subgroup Fairness Measures, which
can be seen as an intermediate approach between group fairness and individual fairness.
As explained in the previous subsections, group fairness typically considers a fixed num-
ber of demographic groups, often based on a single sensitive attribute, while individual
fairness focuses on ensuring fairness at the individual level. Subgroup fairness measures
aim to ensure statistical parity across numerous subgroups, defined by a structured class
of functions over the protected attributes [44]. This approach seeks to balance the broader
reach of group fairness with the granularity of individual fairness, providing a more nu-
anced method for addressing fairness across diverse and overlapping subgroups.

The concept of subgroup fairness was first introduced by Kearns et al. [44], who high-
lighted the issue of fairness gerrymandering. This occurs when statistical measures are
balanced across high-level, pre-defined groups, but the classifier remains unfair when con-
sidering subgroups formed by intersections of sensitive attributes. For instance, they
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provide an example of a classifier that gives positive predictions only to individuals iden-
tified as Black Men or White Women. While the classifier appears fair when considering
only the gender attribute, with men and women receiving positive predictions 50% of
the time, it becomes clear that it is unfair when examining the intersection of gender and
race. To achieve subgroup fairness, Kearns et al. propose selecting a statistical constraint,
such as the false negative rate, and ensuring that this constraint is equalized across the
numerous subgroups within the dataset. One drawback of the gerrymandering approach
of fairness is its scalability. With numerous protected attributes, the number of potential
subgroups grows combinatorially, posing significant computational challenges and making
it difficult to enforce fairness constraints efficiently across all intersections.

Another work similar to [44] is presented by Hébert-Johnson et al. [69], where the authors
introduce the concept of multicalibration. This measure of algorithmic fairness ensures
accurate predictions for all subpopulations, which are defined by a specified class of com-
putations. Multicalibration effectively addresses bias that emerge during the learning
process, ensuring that predictions remain fair across various overlapping subgroups.

2.2.4 Impossibility Theorem
The impossibility theorem in fairness states that it is impossible to simultaneously satisfy
the three group fairness criteria - Independence, Separation, Sufficiency - except in highly
constrained special cases [45]. This theorem emphasizes the inherent trade-offs involved
in algorithmic fairness. Each of these criteria has distinct definitions and implications,
leading to conflicts when attempting to achieve all three at once.

Kleinberg et al. [45] presented the Impossibility Theorem as a resolution to the debate
on defining fairness in algorithmic classification. They argue that fairness definitions are
context-dependent, with no single correct definition, and that all are valid yet incompat-
ible. Furthermore, the authors introduce two special cases in which the three fairness
criteria can be simultaneously satisfied.
The first case is perfect prediction, where individuals’ labels are known with certainty.
In this scenario, the prediction is independent of the sensitive attribute (Independence)
because it perfectly matches the true class label, which is not influenced by the sensitive
attribute. Both the true positive rate (TPR) and false positive rate (FPR) are consis-
tently 1 and 0, respectively, for all groups, ensuring equalized odds (Separation). Since the
predictions are perfectly accurate, the positive predictive value (PPV) is 1 for all groups,
meeting the sufficiency criterion. Thus, perfect prediction achieves all three fairness mea-
sures without conflict.
The second case is equal base rates. When the two groups have the same proportion of
members in the positive class (i.e., the base rate is the same for both groups), the pre-
dictions align with these base rates for each group. This ensures that predictions are
independent of the sensitive attribute, satisfying Independence. Additionally, the true
positive rate (TPR) and false positive rate (FPR) are equal across groups, meeting the
criteria for equalized odds (Separation). Finally, since the predictions reflect the actual
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base rates, the positive predictive value (PPV) remains consistent across groups, satis-
fying Sufficiency. Therefore, equal base rates allow all three fairness criteria to be met
simultaneously.
Kleinberg et al. [45] also proved that these are the only two cases in which the criteria
can be satisfied concurrently. In all other scenarios, a trade-off between the three criteria
is necessary, as shown by Barocas et al. [5]. In their book, the authors provide a mathe-
matical proof that the criteria are mutually exclusive.

The Impossibility Theorem was also introduced in the work of Chouldechova et al. [14].
The authors proved the incompatibility of the three criteria in two steps. First, they
examined how predictive parity (PPV) conflicts with error rates (such as false positive
rate (FPR) and false negative rate (FNR)) when base rates differ between groups. They
illustrated this through a specific equation connecting PPV, base rate, FPR, and FNR,
showing that different base rates prevent equal FPR and FNR across groups, even if predic-
tive parity is satisfied. Second, Chouldechova et al. [14] demonstrated the incompatibility
between disparate impact and error rates (FPR, FNR). They showed that differences in
false positive and false negative rates can lead to disparate impact, particularly when
high-risk assessments result in more severe consequences. By examining the expected dif-
ferences in penalties across groups under a simple risk-based policy, they highlighted how
such policies can cause unequal treatment, thus proving that fairness in error rates and
disparate impact cannot be achieved simultaneously.

2.2.5 Discrimination

Having established the basic definitions of fairness in machine learning, it is important
to explore the concepts of explainable and unexplainable discrimination. According to
Mehrabi et al. [52], discrimination arises from human prejudice and stereotypes asso-
ciated with sensitive attributes. However, there are situations where considering these
protected attributes in decision-making is necessary. For instance, in the medical field,
treating men and women differently based on their gender is essential due to biological
differences; treating them identically could be harmful.

Kamiran et al. [41] introduced the concept of explainable discrimination, which acknowl-
edges that differentiating between subgroups is sometimes justified through relevant at-
tributes and therefore considered legal. Discrimination is deemed justifiable when the
differences between subgroups can be logically explained. The authors illustrate this with
the Adult dataset, where women, on average, have lower annual incomes than men because
they tend to work fewer hours per week. If this explainable difference is not accounted
for, a classifier trained on the dataset might incorrectly predict lower salaries for men to
balance the perceived disparity. This could ultimately harm men and result in reverse
discrimination.

On the other hand, unexplainable discrimination occurs when the different treatment
between subgroups cannot be justified by relevant attributes and is therefore considered
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illegal. This type of discrimination is often based on bias, prejudice, or systemic inequal-
ities. Zhang et al. [68] divide unexplainable discrimination into two categories based on
whether the protected attributes are considered explicitly or not.
As the authors report, direct discrimination, also known as disparate treatment [59], oc-
curs when an individual is treated less favorably explicitly because of their protected
attributes. This type of discrimination is overt and intentional. For example, rejecting
a female candidate for a job in favor of a less qualified male candidate simply because
of her gender is direct discrimination. Indirect discrimination, also known as disparate
impact [59], occurs when sensitive attributes are not explicitly used in decision-making,
but the outcome still results in unfair treatment of the unprivileged groups [68]. This
type of discrimination is often unintentional and harder to detect, typically arising from
the use of proxies for sensitive attributes. For instance, using an individual’s zip code to
make decisions such as granting a loan could lead to indirect discrimination if the zip code
correlates with race.

2.3 Bias Mitigation Algorithms
Having explored the different sources of bias in machine learning and their measurement,
it is essential to discuss how these bias can be mitigated to achieve fairer outcomes. Bias
mitigation algorithms are techniques designed to reduce or eliminate bias in machine learn-
ing models. These techniques can be broadly categorized into three types: pre-processing,
in-processing, and post-processing methods.

2.3.1 Pre-processing
Pre-processing methods aim to modify the data before training a model to minimize bias
and ensure that the feature space is not influenced by sensitive attributes [5]. One of
the benefits of these techniques is that they are implemented early in the development
process, making them independent of the used ML model, as they are applied before the
model is trained [61].
Several techniques can be used to modify the data prior to training. One such technique
is fairness through unawareness, which involves excluding protected attributes from the
prediction process [29]. However, this method is insufficient to ensure fairness, as it does
not account for the potential presence of proxy attributes that could still reflect charac-
teristics of the sensitive attributes [57]. Consequently, while fairness through unawareness
may remove direct bias, it may not fully eliminate indirect bias that can be inferred from
other features.

Another approach, known as Relabelling, aims to modify the ground truth labels in the
training set to ensure the dataset satisfies specific fairness criteria [20]. Within this ap-
proach, one pre-processing technique is Massaging the dataset, which involves changing
some labels in the data to remove dependencies between the class label and the sensitive
attributes [10].
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Calders and Kamiran [10] explain the Massaging method in their paper. To achieve inde-
pendence between the class label and the sensitive attributes, certain data point labels are
modified: in the privileged group, some positive class labels are changed to negative (de-
motion candidates), and in the unprivileged group, some negative class labels are changed
to positive (promotion candidates). The modified instances are not chosen randomly but
are selected using a ranker algorithm. This algorithm ranks instances based on their
probability of belonging to the positive (desired) class; the higher an instance is ranked,
the more likely it is to be classified as positive. Using this ranker, promotion candidates
are sorted in descending order, while demotion candidates are sorted in ascending order.
The top-ranked instances from each list are then chosen for label changes, ensuring the
modifications promote fairness in the dataset. As the authors themselves noted, the Mas-
saging method is quite intrusive since it changes the ground truth labels of the dataset [10].

Another category of pre-processing methods to mitigate bias is known as Resampling.
Resampling methods adjust the composition of the training data by either removing or
duplicating specific samples. This process involves increasing the representation of un-
derrepresented samples or decreasing the representation of overrepresented ones, thereby
balancing the dataset to mitigate bias [20].
One method within this category is Preferential Sampling [39], introduced by Calders
and Kamiran, to address the drawbacks of the Massaging technique. The main idea be-
hind Preferential Sampling is to select data objects that are the best possible choices
for eliminating discrimination in the dataset, specifically focusing on those near the de-
cision boundary. For the unprivileged group, boundary samples with positive label are
duplicated, while those with negative label are removed. Conversely, for the privileged
group, boundary samples with positive label are removed, and those with negative label
are duplicated. A ranking algorithm, similar to the one used in the Massaging method,
is employed to identify these borderline objects, ensuring that the dataset is adjusted to
promote fairness effectively.
A less sophisticated resampling method is Uniform Sampling [40], which operates similarly
to Preferential Sampling. However, instead of focusing on borderline samples, Uniform
Sampling randomly selects samples from the dataset to be removed or duplicated.

Undersampling and Oversampling are two specific subcategories of Resampling. Under-
sampling involves removing certain samples from the majority class to reduce its preva-
lence, while Oversampling involves generating new synthetic samples for the minority class
to increase its representation. Both methods aim to balance the dataset and mitigate bias
[53]. One basic form of oversampling involves randomly duplicating instances from the
minority class. However, this simple duplication can lead to overfitting because the model
might learn specific details from the repeated samples rather than general patterns. Ad-
ditionally, more replication does not effectively shift the decision boundary to address
bias [13]. To overcome these drawbacks in our research, SMOTE (Synthetic Minority
Over-sampling Technique), introduced by Chawla et al. [13], is used. SMOTE creates
synthetic samples by interpolating between existing minority instances, producing more
diverse and generalized data points rather than merely replicating the existing ones.
Other versions of SMOTE have been proposed, such as Borderline-SMOTE [33]. In this
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method, the authors oversample the minority class using the same interpolation technique
as SMOTE, but they specifically focus on borderline samples—those with more than half
of their nearest neighbors belonging to the majority class. Another advanced version of
SMOTE is ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning)
[35]. ADASYN generates synthetic samples through interpolation but adapts the process
based on the density of minority samples. This technique focuses on instances that are
harder to learn, i.e., those with fewer similar neighbors, effectively oversampling more
where the density of minority samples is lower.

To mitigate bias, the authors of the Massaging technique introduced another pre-processing
method known as Reweighting [10]. This approach aims to be less intrusive than Mas-
saging and Sampling, as it does not involve changing labels, or removing or duplicating
instances from the dataset. Instead, it assigns a weight to each instance. Specifically,
higher weights are assigned to samples from the unprivileged group with positive labels
and from the privileged group with negative labels.

2.3.2 In-processing
In-processing methods involve modifying the learning algorithm itself to enforce fairness
during the training process [52]. These techniques depend on the used classification al-
gorithm and include approaches such as using ensembles, developing novel or adjusted
algorithms, or adding a regularization term to the loss function to mitigate bias [20]. For
a comprehensive understanding, the categorization of in-processing methods introduced
by Hort et al. [37] will be used throughout this subsection, as it effectively encompasses
a wide range of in-processing algorithms.

The first two categories introduced by Hort et al. are called Regularization and Con-
straints, both of which involve modifying the loss function of the classification algorithm.
The Regularization category adds a term to the loss function to penalize certain types of
discrimination, while the Constraints category imposes constrains on the loss function to
ensure that specific fairness measures are met [37].
For instance, Kamiran et al. [42] proposed a regularization approach for Decision Tree
models. Traditional Decision Tree loss functions focus solely on accuracy, optimizing splits
to improve overall model accuracy. Kamiran et al. introduced a regularization term to
the loss function that accounts for discrimination. This term ensures that leaf splits are
allowed only when they minimize discrimination, effectively transforming the decision tree
into a discrimination-aware classifier.
An example of a constraints-based in-processing method is the work of Zafar et al. [65],
where the authors address the challenge of maximizing model accuracy while adhering to
boundary constraints that act as proxies for the disparate impact fairness measure. They
apply this approach to both logistic regression and support vector machine models. The
key proxy measure introduced is called decision boundary covariance, which quantifies
the relationship between sensitive attributes and the classifier’s decision boundary. By
incorporating this measure into the training process, they adjust the model to reduce
unfairness while maintaining as much accuracy as possible.
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The third category of in-processing methods is known as Adversarial Learning, which
involves the use of two competing classification algorithms. Specifically, the primary clas-
sification model is trained to predict the ground truth labels, while the adversarial model
is trained to predict the sensitive attribute based on the classifier’s predictions. The
competition between the two models aims to ensure that the adversarial model cannot
accurately determine the sensitive attribute, thereby promoting fairness by reducing the
dependency of the classifier’s predictions on sensitive attributes [20].
An example of the Adversarial Learning method is demonstrated in the work by Zhang
et al. [67], where a prediction model is trained to predict the label while simultaneously
preventing an adversarial model from predicting a protected attribute. This approach
considers three fairness metrics: Demographic Parity, Equality of Odds, and Equality of
Opportunity. Notably, this method is model agnostic and can be applied to any gradient-
based learning model, making it versatile for various regression and classification tasks.

The fourth category of in-processing methods is known as Compositional approaches,
which address bias by training multiple classification models. These methods either use
one model for each population group (e.g., privileged and unprivileged) or employ an
ensemble technique where the final prediction is made by aggregating the votes from the
different classifiers [37].
In their paper, Dwork et al. [22] propose the use of decoupled classifiers, training a dif-
ferent classifier for each population group defined by sensitive attributes. The goal is to
minimize a joint loss function that considers all classifiers collectively. For instance, using
different classifiers for majority and minority group, the approach seeks to optimize these
classifiers together to minimize the overall loss. This method ensures that the combined
model provides fair and accurate predictions across all groups by effectively finding the
global optimum of the joint loss function, provided the loss function is weakly monotone.

The last category of in-processing methods is Adjusted Learning, which achieves fair-
ness by modifying the learning procedures of standard machine learning algorithms [20].
An example of this approach is demonstrated in the work by Noriega-Campero et al. [55],
where the authors propose an active learning framework to train decision trees. Initially,
the model is trained using only a subset of features, and then the algorithm iteratively
collects additional information about individuals within a predefined information budget.
This process ensures that more features are gathered for groups or individuals that are
harder to classify. By incorporating an adaptive, iterative feature acquisition strategy,
this framework modifies the traditional learning process of decision trees, dynamically
adjusting the features collected to improve both accuracy and fairness in predictions.

2.3.3 Post-processing
Post-processing methods adjust the predictions or decision rules after the model has been
trained to correct any bias that may exist [37]. These methods are particularly useful when
the learned model is treated as a black box, making it impossible to modify the train-
ing data or the learning algorithm [52]. By altering the model’s outputs, post-processing
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techniques aim to achieve fairness without interfering with the underlying model structure
or training process. These methods can be categorized into Input correction, Classifier
correction and Output correction [37].

The Input correction approaches modify the testing data by adding a pre-processing layer
to an already trained algorithm [20]. An example of this method is demonstrated in the
work by Adler et al. [2], where the authors audit black-box models to study the indirect
influence of sensitive attributes on the output. They achieve this by training the black-box
model and then applying a pre-processing step to the test set, which involves obscuring
the influence of certain features by finding the minimal perturbation necessary to achieve
fairer classifications.

Classifier correction approaches involve taking a trained classifier and deriving a related,
fairer classifier from it [20]. An example of this method is introduced in the work by
Hardt et al. [34], where the authors aim to develop a classifier that is fair with respect to
Equalized Odds and Equal Opportunity, starting from a potentially unfair trained classi-
fier. They accomplish this by defining an optimization problem in which a loss function,
dependent on both the original and the desired fair classifier, is minimized subject to
constraints representing the fairness measures. This approach allows for the derivation of
a new, fairer classifier without the need for retraining.

The last category of post-processing methods is Output Correction, which focuses on
correcting the predicted labels [37]. Kamiran et al. [43] propose a framework that adjusts
the prediction labels near the decision boundary, where the classifier is most likely to make
biased decisions. They define the critical region as the area where labels are assigned with
a probability close to 0.5. To reduce discrimination, instances within this critical region
are relabeled: positive for those belonging to the unprivileged group and negative for those
in the privileged group, while keeping the labels outside the critical region unchanged.

2.4 Addressing Limitations in Bias Mitigation Tech-
niques

Existing bias mitigation methods often use excessive oversampling to match group sizes,
leading to artificial datasets and overfitting. The proposed framework addresses these
issues by equalizing the Imbalance Ratio (IR) of unprivileged groups to that of the most
privileged group, thus reducing the need for excessive oversampling. It employs SMOTE-
NC to generate diverse synthetic instances, mitigating overfitting risks.

An innovative aspect of this framework is the use of DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) to select critical points for oversampling. This
approach targets crucial areas for sample generation and automates parameter selection,
enhancing both the efficiency and effectiveness of the process.
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Chapter 3

Theoretical Background

This chapter formally formulates the problem by defining the dataset’s composition and
the measures used to evaluate the fairness and performance of the model. It begins with
a theoretical and graphical introduction to the thesis’s aim of mitigating representation
bias through oversampling. Following this, the theoretical components of the framework
are introduced to explain their functionalities. These components include the DBSCAN
algorithm, which is used to select points for oversampling, performed using the SMOTE-
NC algorithm. Gower’s distance is employed as a precomputed metric for DBSCAN
to handle both numerical and categorical attributes. Finally, the Logistic Regression
classifier is introduced as the chosen classification algorithm due to its inherent capability
to represent a decision boundary. In this work, we aim at shifting the decision boundary
to reduce bias.

3.1 Problem Statement
The purpose of this thesis is to develop a pre-processing framework to address represen-
tation bias, which arises when groups within a population, defined by sensitive attributes
(such as race and gender), are unbalanced. This work assumes that the original labels in
the dataset are accurate, thus there is no need to alter them.
Representation bias often results from the sampling process during data collection [52],
leading to datasets where some groups are skewed or have have less number of instances
compared to others. These skewed groups are more likely to receive unfair predictions
from the model. For example, in a hiring process, if the dataset that is used to train
the classifier is skewed such that female applicants receive, in proportion to their number,
less favorable outcomes compared to male applicants, the classifier will likely learn this
pattern. Consequently, male applicants would have a higher likelihood of being hired than
female applicants.
The aim of this work is to mitigate the effect that representation bias in the training
dataset has on the predictions of the classification model. This will be achieved by defin-
ing a pre-processing algorithm to oversample the skewed groups, thereby creating a more
balanced and fair dataset for training the model.
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Next, the problem will be formalized. The dataset used for training is defined as D =
{X, S, Y }, where X represents the set of non-sensitive attributes, S represents the set of
sensitive attributes, and Y represents the actual labels of the samples. For simplicity, one
binary sensitive attribute will be considered in the theoretical part (e.g. gender), but the
approach can be easily extended to multiple sensitive attributes. Furthermore, this anal-
ysis will focus on binary classification problems, where Y ∈ {0, 1}, with label 0 indicating
an unfavorable outcome and label 1 indicating a favorable outcome.
To train the classification model, the dataset D is divided into a training set Dtrain and
a testing set Dtest. The training set Dtrain is used to train the classifier, while the testing
set Dtest is used to evaluate its performance. In particular, the trained model will take
Dtest as input, and produce the predicted labels Ŷ ∈ {0, 1}.

Before training the classifier, a pre-processing step is performed, which consists of identi-
fying the privileged group and oversampling the other groups accordingly.
The binary sensitive attribute S ∈ {0, 1} splits the dataset D into two groups: the privi-
leged one (S = 1) denoted as priv, and the unprivileged one (S = 0) denoted as unpriv.
To determine which group is privileged and which is unprivileged, the Imbalance Ratio
(IR) is computed. For each group Gi, i ∈ {0,1} with cardinality |Gi|, the Imbalance Ratio
is defined as the number of samples with positive label |G+

i |, divided by the number of
samples with negative label |G−

i |:

IRi = |G
+
i |

|G−
i |.

The privileged group is defined as the one with the highest Imbalance Ratio Gpriv =
Gk s.t. IRk > IRj , j ∈ {0, 1} since we consider a single binary sensitive attribute. If we
have n subgroups, then Gpriv = Gk s.t. IRk > IRj , j ∈ {0, 1, . . . , n}. The IR is then
used to set the oversampling target for all other groups. Specifically, each group will
be oversampled to match the IR of the privileged group. This ensures a balanced data
distribution across different categories, addressing the issue of skewed representation. For
instance, in the hiring example, the training dataset will be resampled so that female and
male candidates have the same IR, which effectively makes it appear that both groups
have the same likelihood of being hired.

To evaluate the performance of the trained classifier in terms of both fairness and accu-
racy, various performance measures A = {Am1 , Am2 , Am3 , ..., Amn} and fairness measures
F = {Fm1 , Fm2 , Fm3 , ..., Fmn} are used. performance measures assess the accuracy of the
classifier’s predictions; in this work, Accuracy, Balanced Accuracy, and F1-Score will be
utilized. Fairness measures, on the other hand, evaluate the fairness of the classifier based
on specific fairness definitions. In this work, Disparate Impact, Equalized Odds, Equal
Opportunity, and Consistency are employed.

As a summary, this thesis will address the following issues:

• Quantifying how representation bias in datasets leads to unfair decisions.
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• Mitigating representation bias using synthetic data generated through a proposed
pre-processing method.

• Evaluate the proposed framework against existing bias mitigation techniques.

• Assessing the proposed framework’s in terms of fairness and performance.

3.2 Performance and Fairness Measures
This section presents the performance and fairness measures previously mentioned, which
are used to assess classifier’s outcomes. To provide a foundation for understanding these
metrics, it is useful to first introduce the concepts of true positives, true negatives, false
positives, and false negatives.
In binary classification, each instance in the dataset has a ground truth label Y ∈ {0, 1}
that the classifier aims to predict as Ŷ ∈ {0, 1}. In this setting, four types of outcome
are possible [25]. When the classifier correctly predicts a positive instance as positive
(Y = 1 and Ŷ = 1), this is counted as a true positive (TP). Conversely, when the classifier
correctly predicts a negative instance as negative (Y = 0 and Ŷ = 0), this is counted as
a true negative (TN). When the classifier’s prediction is incorrect, two scenarios arise: if
the true label is positive but predicted as negative (Y = 1 and Ŷ = 0), it is counted as
a false negative (FN); if the true label is negative but predicted as positive (Y = 0 and
Ŷ = 1), it is counted as a false positive (FP). These definitions will be used to define the
measures.

3.2.1 Performance Measures
Performance measures are used to evaluate how accuracy are the classifier’s predictions.
This work utilizes three such measures: Accuracy, Balanced Accuracy, and F1-Score.

• Accuracy: this performance measure is defined as the ratio of correctly classified
instances (the sum of true positives and true negatives) to the total number of
instances in the dataset:

Accuracy = TP + TN

TP + TN + FP + FN

The desired score for accuracy is one, indicating perfect accuracy where all samples
are classified correctly. Accuracy provides an overall measure of how well the model
is predicting across the entire dataset, without distinguishing between instances from
privileged or unprivileged groups [32]. However, accuracy can be a misleading evalu-
ation measure, particularly in the case of highly imbalanced datasets. For example,
consider a fraud detection dataset consisting of 10,000 transactions, with only 200
being fraudulent. If a classifier trained on this dataset labels every transaction as
non-fraudulent, it will achieve an Accuracy of 98% (9800/10000 = 0.98), which is
very close to the desired score. Despite this high accuracy, the classifier fails to
identify any fraudulent transactions, demonstrating poor performance in detecting
the minority class.
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• Balanced Accuracy: This evaluation metric is particularly useful for imbalanced
datasets, addressing the limitations of Accuracy. The ideal Balanced Accuracy score
is one, indicating perfect performance. The metric is defined as the arithmetic
mean of Recall and Specificity, which consider both the correctly classified posi-
tive instances and the correctly classified negative instances. Recall is calculated
as the number of correctly predicted positive instances out of all positive instances:
Recall = T P

T P +F N , and Specificity is calculated as the number of correctly predicted
negative instances out of all negative instances: Specificity = T N

T N+F P . Therefore,
Balanced accuracy is defined as:

Balanced Accuracy = Recall + Specificity
2

Continuing with the example of fraud detection, where a classifier labels all 10,000
transactions as non-fraudulent, the classifier results in TP = 0, FP = 0, FN =
200, and TN = 9,800. Despite a high overall accuracy, this classifier achieves a
Balanced Accuracy of 50%, highlighting its poor performance in detecting fraudulent
transactions.

• F1-Score: The F1-Score is a performance measure defined as the harmonic mean
of Precision and Recall. Recall, as defined previously, measures the proportion of
correctly predicted positive instances out of all actual positive instances. Precision
is defined as the number of correctly predicted positive instances out of all predicted
positive instances: Precision = T P

T P +F P .
The F1 Score uses the harmonic mean to balance the trade-off between Precision and
Recall [32], ensuring that both metrics are given equal weight. The desired value is
1, and it is calculated as follows:

F1-Score = 2
Precision−1 + Recall−1 = 2TP

2TP + FP + FN

3.2.2 Fairness measures
Fairness measures are used to evaluate the fairness of a classifier’s predictions. This
subsection introduces three group fairness measures—Disparate Impact, Equalized Odds,
and Equal Opportunity—along with an individual fairness measure, Consistency.

• Disparate Impact: This fairness measure is defined as the ratio of the positive
prediction rate for the unprivileged group to the positive prediction rate for the
privileged group:

Disparate Impact = P [Ŷ = 1|S = 0]
P [Ŷ = 1|S = 1]

The desired score for Disparate Impact (DI) is one, indicating equal acceptance rates
across groups. However, the "80 percent rule" relaxes this requirement, stating that
predictions can be considered free of disparate impact if the ratio falls between 0.80
and 1.25 (= 1/0.80) [27]. A DI less than 1 indicates that the privileged group is more
likely to receive positive predictions compared to the unprivileged group, whereas a
DI greater than 1 indicates the opposite.

28



3.2 – Performance and Fairness Measures

• Equalized Odds: Equalized Odds, introduced by Hardt et al. [34], is a fairness
measure ensuring that groups within a population have the same false positive rates
(FPR) and false negative rates (FNR). This metric guarantees that individuals re-
ceive similar prediction outcomes regardless of their membership in a privileged or
unprivileged group. The formal definition of Equalized Odds is as follows:

P [Ŷ = 1|S = 1, Y = 0] = P [Ŷ = 1|S = 0, Y = 0]

P [Ŷ = 1|S = 1, Y = 1] = P [Ŷ = 1|S = 0, Y = 1]

The first equation ensures equality of the FPR across groups, while the second equa-
tion ensures equality of the true positive rate (TPR) across groups. Consequently,
since FNR = 1− TPR, it also ensures equality of the FNR.
In this work, the Average Odds Difference (AOD) is used to compute the Equalized
Odds value. AOD is defined as the arithmetic mean of the differences in TPR and
FPR between the privileged and unprivileged groups. The desired value for AOD is
zero, and it is calculated as follows:

AOD = (FPRunpriv − FPRpriv) + (TPRunpriv − TPRpriv)
2

• Equal Opportunity: This fairness measure, also introduced by Hardt et al. [34],
is a relaxation of Equalized Odds. While Equalized Odds requires both the false
positive rate (FPR) and the true positive rate (TPR) to be equal across groups,
Equal Opportunity focuses solely on the equality of TPR for both privileged and
unprivileged groups. The formal definition is:

P [Ŷ = 1|S = 1, Y = 1] = P [Ŷ = 1|S = 0, Y = 1]

In this work, the Equal Opportunity Difference (EOD) is used to compute this
fairness measure. The goal is to achieve an EOD value of zero. The EOD is defined
as:

EOD = TPRunpriv − TPRpriv

• Consistency: This individual fairness measure, introduced by Zemel et al. [66],
emphasizes that two individuals similar with respect to a specific task should be
treated similarly. Consistency is calculated by comparing the predicted labels for an
individual with those of its nearest neighbors. The formula for Consistency is:

Consistency = 1− 1
n

nØ
i=1
|ŷi −

1
n_neighbors

Ø
j∈Nn_neighbors(xi)

ŷj |

In this formula, n represents the total number of instances in the dataset, n_neighbors
is the number of nearest neighbors considered (default is 5), and ŷi is the model’s
prediction for instance xi. The desired value for consistency is one, indicating that
similar individuals are treated similarly.

29



Theoretical Background

3.3 Improving Fairness Theoretically
This section aims to discuss how fairness can be theoretically improved by considering the
Equal Opportunity Difference (EOD). Specifically, it seeks to provide a theoretical proof
that oversampling the unprivileged group to achieve the same imbalance ratio across pop-
ulation groups can mitigate representation bias. This mitigation leads to a shift in the
decision boundary, resulting in an increase in positive predicted values for the unprivileged
group and a decrease for the privileged group, thereby reducing the EOD (i.e., making
the True Positive Rates similar across groups). Additionally, this section aims to establish
theoretical boundaries for the changes in positive predicted values for both groups.

First, let’s recall the definition of Equal Opportunity Difference (EOD). EOD is a measure
of fairness that evaluates the difference in True Positive Rates (TPR) between privileged
and unprivileged groups. The closer this difference is to zero, the better, as it indicates
reduced bias and more equitable acceptance rates across groups. In this section, the ab-
solute value of the difference will be considered, as the primary interest is in differences
that do not deviate significantly from zero.
The absolute value of EOD is defined as:

EOD = |TPRpriv − TPRunpriv| < ξ (3.1)

where ξ is a value close to zero (e.g., 0.3). The True Positive Rate for the privileged group
is given by:

TPRpriv = TPpriv

TPpriv + FNpriv
(3.2)

and the True Positive Rate for the unprivileged group is:

TPRunpriv = TPunpriv

TPunpriv + FNunpriv
(3.3)

To ensure fairness, the goal is to decrease the value of EOD by a quantity 0 < δ < ξ such
that:

EOD < ξ − δ (3.4)

3.3.1 Graphical Illustration
To illustrate the problem, consider a synthetic dataset with privileged and unprivileged
groups, each having two non-protected attributes and one binary protected attribute,
where a binary prediction is made (S ∈ {0, 1}, Y ∈ {0, 1}). Assume TPRpriv > TPRunpriv
and focus on decreasing the EOD by increasing TPRunpriv. Increasing TPRunpriv is prefer-
able to reducing TPRpriv, as the latter would result in some privileged individuals receiving
a negative label despite deserving a positive one, which is unethical.
By increasing TPRunpriv, the number of false negatives (FNunpriv) will decrease by the
same amount, as the sum of True Positives (TP) and False Negatives (FN) equals the
total number of actual positives (Y = 1), which remains constant.
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To achieve the increase in TPRunpriv, the decision boundary of the classifier needs to
be shifted in favor of the unprivileged group. This can be accomplished by oversampling
the positive unprivileged instances so that both groups achieve the same Imbalance Ratio.

Figure 3.1 illustrates the synthetic training dataset before oversampling (left) and af-
ter oversampling (right). In these figures, blue and yellow dots represent the negative and
positive instances of the privileged group, respectively, while red and green dots repre-
sent the negative and positive instances of the unprivileged group, respectively. The line
between the two shaded areas indicates the decision boundary learned by the classifier
from the training data. The red area represents the predicted negative zone, while the
blue area represents the predicted positive zone. These images show how the decision
boundary shifts after the oversampling of the positive unprivileged samples (green dots).

Figure 3.1: Comparison of decision boundaries before (left) and after (right) oversampling the
training set.

In Figure 3.2, the same test set used to evaluate the classifier’s performance is shown
alongside the decision boundaries. The image on the left displays the decision boundary
for the test dataset before oversampling, while the image on the right shows the decision
boundary for the test dataset after oversampling. Initially, the Disparate Impact was 0.625
and the Equal Opportunity Difference was 0.0664. After oversampling, the DI decreased
to 0.594, and the EOD decreased to 0.043, moving closer to zero. It is evident that, after
oversampling, more positive unprivileged instances (green dots) fall within the predicted
positive area (blue area). Note the decrease in DI and the increase in EOD when shifting
the decision boundaries.
With a visual understanding of this process, the theory behind it can now be introduced
and complemented with a numerical example.
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Figure 3.2: Comparison of decision boundaries before (left) and after (right) oversampling the
test set.

3.3.2 Theoretically decreasing the EOD
To study this problem theoretically, consider decreasing the Equal Opportunity Difference
(EOD) by an amount δ. This requires reducing the distance between the True Positive
Rates (TPR) of the privileged and unprivileged groups, and it can be achieved either
by decreasing the True Positives of the privileged group or by increasing the TP of the
unprivileged group. Starting from the definition of EOD in equation (3.1), and the defi-
nitions of TPR for the privileged (equation (3.2)) and unprivileged (equation (3.3)), the
problem of decreasing EOD can be rewritten as follows (denoting the privileged group as
p, and the unprivileged group as u):

−(ξ − δ) <
TPp − λ

TPp + FNp
− TPu + ϵ

TPu + FNu
< ξ − δ

This can be studied through three theoretical cases:

Case 1: λ = 0, ϵ /= 0:
In this scenario, only the number of True Positives for the unprivileged group is increased,
while the values for the privileged group remain unchanged. Under this hypothesis, the
upper and lower bounds for ϵ can be derived as follows:I

ϵ > (TPu + FNu)(TPRp − TPRu − ξ + δ)
ϵ < (TPu + FNu)(TPRp − TPRu + ξ − δ)

(3.5)

Case 2: ϵ = 0, λ /= 0:
In this scenario, only the True Positives for the privileged group are decreased, while the
values for the unprivileged group remain unchanged. Under this hypothesis, the lower

32



3.3 – Improving Fairness Theoretically

and upper bounds for λ can be derived as follows:I
λ > (TPp + FNp)(TPRp − TPRu − ξ + δ)
λ < (TPp + FNp)(TPRp − TPRu + ξ − δ)

(3.6)

Case 3: ϵ /= 0, λ /= 0:
In this case, both a decrease in the number of True Positives for the privileged group and
an increase in the number of TP for the unprivileged group are considered. Assuming
that the only unknowns in these inequalities are λ and ϵ, the inequalities can be rewritten
with λ as a dependent variable of the independent variable ϵ:λ > (TPp + FNp)

1
TPRp − ξ + δ − TPRu − ϵ

TPu+FNu

2
λ < (TPp + FNp)

1
TPRp + ξ − δ − TPRu − ϵ

TPu+FNu

2 (3.7)

Since all values except λ and ϵ are known, λ is constrained by two linear functions of ϵ.

Identifying the upper and lower bounds for these adjustment factors is crucial to avoid
adverse effects. For instance, an excessively large shift in the decision boundary could re-
sult in one group having a disproportionately high TPR compared to the other, creating
an inverted fairness issue.

3.3.3 Numerical Example
Consider the initial values for the True Positives and False Negatives of both privileged
and unprivileged groups:

TPp = 80, FNp = 20
TPu = 50, FNu = 50

The initial True Positive Rates are calculated as follows:

TPRp = 80
80 + 20 = 0.8

TPRu = 50
50 + 50 = 0.5

The initial Equal Opportunity Difference is:

EOD = 0.8− 0.5 = 0.3 (3.8)

Thus, ξ = 0.3. To decrease the EOD by at least δ = 0.1, consider Case 1 where λ = 0
(only increasing the TP for the unprivileged group). The following bounds are obtained:I

ϵ > (50 + 50)(0.8− 0.5− 0.3 + 0.1) = 10
ϵ < (50 + 50)(0.8− 0.5 + 0.3− 0.1) = 50

(3.9)
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Analyzing values of ϵ outside these boundaries:

• For ϵ = 5 : EOD = |0.8− (50+5)
(50+50) | = 0.25

EOD does not decrease by δ = 0.1;

• For ϵ = 55 : EOD = |0.8− (50+55)
(50+50) | = 0.25

Again, EOD does not decrease by the desired amount;

• For ϵ = 40 : EOD = |0.8− (50+40)
(50+50) | = 0.1

EOD decreases by more than δ = 0.1.

Similar considerations apply for Case 2, where ϵ = 0 and only λ changes (decreasing the
TP for the privileged group):I

λ > (80 + 20)(0.8− 0.5− 0.3 + 0.1) = 10
λ < (80 + 20)(0.8− 0.5 + 0.3− 0.1) = 50

(3.10)

In Case 3, where both ϵ /= 0 and λ /= 0, the system of inequalities (3.7) becomes:I
λ > (80 + 20)(0.8− 0.3 + 0.1− 0.5− ϵ

50+50)
λ < (80 + 20)(0.8 + 0.3− 0.1− 0.5− ϵ

50+50)
(3.11)

Simplifying further: I
λ + ϵ > 10
λ + ϵ < 50

(3.12)

By adjusting these parameters within the given limits, the EOD can be effectively reduced
without overcompensating for either group. This ensures a balanced approach to fairness,
preventing a scenario where one group’s TPR becomes disproportionately high relative to
the other, thereby maintaining a more equitable decision boundary.

3.4 DBSCAN Algorithm
As discussed in the previous section, oversampling is employed to shift the decision bound-
ary of the classifier in favor of the unprivileged group. A crucial step in this process is
determining which points to select for oversampling. This section discusses the DBSCAN
algorithm, which is used to identify the instances to be oversampled, as will be explained
in more detail in the next chapter.
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a clustering
algorithm first introduced by Ester et al. [24]. Its uniqueness lies in its ability to create
clusters of arbitrary shape based on the notion of density. Additionally, DBSCAN does
not require prior knowledge of the number of clusters, as it automatically determines them
based on the density of points.
Since clusters are defined as regions with higher point density, a distance function is re-
quired to measure the distance between points, allowing for the identification of these
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dense regions. As noted by Ester et al. [24], the algorithm works with any distance func-
tion. In this work, Gower’s distance is employed [31] (Section 3.5) because it can handle
samples with both numerical and categorical features.
Once the notion of distance is defined, the DBSCAN algorithm requires two parameters
from the user:

• eps: This is the radius used to determine the eps-neighborhood of a point. For a
point p in a dataset D, all points within a distance less than or equal to eps from p
are considered neighbors of p, i.e., Neps(p) = {q ∈ D|d(q, p) ≤ eps}.

• MinPts: This is the minimum number of eps-neighbors (including the point itself)
a point must have to be considered a core point [56].

With these two parameters, points can be categorized into three types:

• Core Points: Points with a number of neighbors greater than or equal to MinPts.
These points form the central part of the clusters.

• Border Points: Points with fewer neighbors than MinPts but within the neighbor-
hood of a core point. These points lie on the edges of clusters.

• Noise Points: Points with fewer neighbors than MinPts and not within the neigh-
borhood of a core point. These points are considered outliers and lie outside clusters.

The classification of points into these categories depends on the chosen values for eps and
MinPts. For instance, smaller eps values lead to more isolated clusters.
Figure 3.3 illustrates how DBSCAN categorizes the points in the dataset into these three
types. In this example, there is only one cluster. The green points are core points, each
having at least MinPts = 3 points (including itself) within its neighborhood, represented
by the circle around it. The blue point is a border point, with less than MinPts neighbors
(including itself) but within the neighborhood of a core point. The red point is a noise
point, having no other points within its neighborhood, thus being an outlier. It is impor-
tant to note that a point can be classified as noise even if it has border points within its
neighborhood.

3.5 Gower’s Distance
In this work, Gower’s distance is utilized as a precomputed distance measure in the DB-
SCAN algorithm. This enables DBSCAN to effectively cluster data that includes both
numerical and categorical features.
Gower’s distance, introduced by J. C. Gower [31], is a metric designed to quantify the
distance between two individuals. It is particulary significant for its ability to handle
datasets comprising both numerical and categorical attributes, unlike more traditional
metrics such as Euclidean or Manhattan distance, which typically only handle numerical
attributes.
In his paper, Gower introduces a similarity matrix in which each entry represents the
similarity between two individuals, with values ranging from 0 (very dissimilar) to 1 (very
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Figure 3.3: DBSCAN classification with MinPts = 3 and eps = 0.38. Green points are core
points with at least three neighbors. The blue point is a border point, within the neighborhood
of a core point. The red point is a noise point, with no neighbors, thus classified as an outlier.

similar).
Given two individuals in a population defined by m features (both categorical and numer-
ical) xi = xi1, xi2, ..., xim and xj = xj1, xj2, ..., xjm, the entry in the matrix representing
their similarity is defined as:

SGower(xi, xj) = 1
m

mØ
k=1

sijk

where the values sijk are the Gower similarity scores, computed differently based on the
nature of the feature. Specifically:

• For numerical features, the Manhattan distance is used. The similarity score is
defined as:

sijk = 1− |xik − xjk|
Rk

where Rk is the range of the numerical feature, i.e., the maximum value minus the
minimum value.

• For categorical features, the similarity score is 1 if the two features have the same
value, and 0 otherwise:

sijk =
I

1 xik = xjk

0 xik /= xjk

The Gower’s distance matrix is derived from the similarity matrix as follows:

dGower = 1− SGower
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where values of dGower close to zero represent similar individuals, while values close to one
represent individuals that are dissimilar.

To better understand the computation of the Gower’s distance matrix, consider the fol-
lowing example:
Given three individuals in a population, defined by m = 4 features (two numerical and
two categorical):

x1 = [10, 9, Male, White]
x2 = [5, 20, Female, White]
x3 = [2, 5, Female, Black]

The distance between individuals x1 and x2 is computed as follows:

dGower(x1, x2) = 1− 1
4

53
1− |10− 5|

10− 2

4
+

3
1− |9− 20|

20− 5

4
+ 0 + 1

6
≈ 0.59

3.6 Oversampling with SMOTE-NC
After identifying the core, border, and noise points for each subgroup using DBSCAN,
the next step is to create new synthetic samples between the border points and the bor-
der/core points. For this purpose, SMOTE-NC will be used to perform the oversampling.
Oversampling is one of the pre-processing bias mitigation techniques introduced in Section
2.3. It plays a crucial role in this work as it is used to create synthetic samples to address
the representation bias present in the original dataset.
SMOTE (Synthetic Minority Over-sampling Technique) is an oversampling algorithm in-
troduced by Chawla et al. [13]. SMOTE was developed to overcome the limitations of
classical resampling strategies, which often duplicate minority points already present in
the dataset, potentially leading to overfitting. Instead, Chawla et al. proposed an innova-
tive approach that interpolates between existing minority points to generate new synthetic
samples, thereby enriching the dataset without simply replicating existing data.

The details of how SMOTE works are as follows. Consider a numerical dataset com-
posed of a majority group and a minority group. SMOTE begins by determining the
number of new points that need to be added to the minority group, typically to equalize
the number of points with those in the majority group. For each minority sample xi,
the algorithm identifies the 5 nearest neighbors within the minority group and randomly
selects one of these neighbors, xj . A new synthetic sample is then created by interpolating
between the original minority point and the selected neighbor.
Consider the two points xi = xi1, xi2, ..., xim and xj = xj1, xj2, ..., xjm consisting of m nu-
merical features. The k-th feature of the new synthetic point is defined as an interpolation
between the k-th feature of the selected point, xik, and the k-th feature of the neighbor,
xjk, as follows:

xsyn,k = xik + α(xjk − xik) (3.13)

where α is a random number between 0 and 1. Thus, the new synthetic point lies on the
line segment connecting the two points, at a position determined by the randomly chosen
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α. Figure 3.4 illustrates the process of creating a new synthetic point using SMOTE.
The black point represents the selected minority point. Its 5 nearest neighbors, also from
the minority group, are connected to this main point with dashed lines. One of these
neighbors is then chosen, and the blue synthetic point is created along the line segment
connecting the selected minority point and the chosen neighbor.

Figure 3.4: Application of the SMOTE algorithm on a dataset with a majority group (green
points) and a minority group (red points). A minority point is selected (black point), and a new
synthetic point (blue point) is created through interpolation.

When the dataset contains both numerical and categorical attributes, the SMOTE-NC
algorithm, proposed by Chawla et al. [13], is employed to handle both types of attributes.
This algorithm is utilized in this work to perform oversampling. Numerical features are
interpolated in the same manner as in SMOTE. For categorical attributes, the value as-
signed is the one that occurs most frequently among the 5-nearest neighbors. For example,
if the categorical attribute is ’Gender’ and the 5-nearest neighbors have values ’M’, ’M’,
’F’, ’M’, and ’F’, then the synthetic point will have ’M’ for the ’Gender’ attribute, as it is
the most frequent value.

3.7 Logistic Regression
Once the training dataset is oversampled, it can be used to train a classification algorithm.
This allows for the computation of fairness measures and evaluation metrics by testing
the classifier’s performance on the test set. Logistic Regression is selected for this study
because it inherently represents the concept of a decision boundary, which this work aims
to shift.
Logistic Regression, first introduced by D. R. Cox [17], is a classification algorithm used
to analyze the dependency of a binary response variable on one or more explanatory
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variables. Cox’s work specifically examined how different values of explanatory variables
lead to different binary responses.
Let Y be the binary response variable, and x = x1, x2, ..., xk the explanatory variables.
Cox proposed the logistic law to link the probability of the response being one, π(x) =
P [Y = 1|x], to the values of the explanatory variables as follows:

logit(π(x)) = ln
3

π(x)
1− π(x)

4
= β0 + β1x1 + β2x2 + ... + βkxk

where βj , j = 0, ..., k are the regression coefficients for the explanatory variables. Specif-
ically, βj quantifies the change in the log odds for a one-unit change in xj , keeping all
other explanatory variables constant, and assuming x0 = 1.
The above formula can be rewritten in terms of probabilities as follows:

π(x) = eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk

1− π(x) = 1
1 + eβ0+β1x1+β2x2+...+βkxk

The regression coefficients are estimated by maximizing the likelihood function, which rep-
resents the plausibility of the model. Consider a dataset with n independent observations
(xi, Yi), i = 1, ..., n, each composed of the vector of explanatory variables and the binary
response. Since the binary response can only take two values based on the explanatory
variables, it follows a Bernoulli distribution Yi ∼ Bernoulli((π(xi))) [26]. The likelihood
function is expressed as:

L(β|x) =
nÙ

i=1
π(xi)Yi (1− π(xi))1−Yi =

nÙ
i=1

π(xi)
1− π(xi)

Yi

(1− π(xi))

Using the definitions of π(xi) and 1−π(xi), and the vector representation β = [β0, β1, ..., βk]
and xi = [x0, x1, ..., xk]′, the likelihood function can be written as:

L(β|x) =
nÙ

i=1

1
eβxi

2Yi
3 1

1 + eβxi

4

To simplify the optimization, the log-likelihood function is considered because logarithms
are strictly increasing monotonic functions. The log-likelihood function is then:

L(β|x) = ln L(β|x) =
nØ

i=1
Yiβxi −

nØ
i=1

ln
1
1 + eβxi

2
The derivative of the log-likelihood function with respect to a regression coefficient βj is
computed and set to zero to find the maximum likelihood estimates:

∂L(β|x)
∂βj

=
nØ

i=1
[Yi − π(xi)] xij = 0 j = 1, ..., k
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Since these equations are typically infeasible to solve analytically, approximation methods
such as the Newton-Raphson Iterative Algorithm are used to find acceptable values for
each βj . This algorithm iteratively updates the regression coefficients until convergence
is reached [26].

The linear combination of the explanatory variables and their corresponding coefficients,
βx, represents the decision boundary in the feature space. This decision boundary is what
the model uses to separate the classes, and adjusting it is crucial for addressing repre-
sentation bias. Once the regression coefficients are defined, the probability of an event
x can be computed, and a response value assigned. In general, when the probability is
greater than a certain threshold (typically 0.5), a positive response (Y = 1) is assigned;
otherwise, a negative response (Y = 0) is assigned.
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Chapter 4

Proposed Framework for
Mitigating Representation
Bias

This chapter presents a comprehensive framework designed to mitigate representation bias
in datasets. The framework comprises several key steps, beginning with data preparation
to ensure the dataset is standardized and ready for analysis. This initial step involves the
selection and refinement of attributes and rows, followed by standardization and encoding
to facilitate accurate analysis.
Next, the framework considers all possible combinations of binary sensitive attributes and
binary label to define subgroups within the dataset. These subgroups are used to strat-
ify the dataset into training and testing sets, ensuring proportional representation. The
imbalance ratios (IR) of these groups are then computed to identify the most privileged
group, defined by the highest IR. Subsequently, oversampling is performed on all other
groups to achieve the same IR as the most privileged group.
To execute the oversampling process, the DBSCAN algorithm is applied to each subgroup
with positive label to identify core, border, and noise points. Following this, the SMOTE-
NC algorithm generates new synthetic points by interpolating between border points and
their neighboring core or border points. These new synthetic samples are then integrated
into the training dataset, which is subsequently used to train a classifier. The perfor-
mance of this classifier, quantified through both evaluation metrics and fairness measures,
is compared to the performance of a classifier trained on the original dataset (prior to
oversampling).
This proposed framework is visually represented in the flowchart in Figure 4.1, illustrating
the sequential steps from data preparation to the final evaluation.
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Figure 4.1: Flowchart of the proposed framework

4.1 Data Preparation and Imbalance Ratio Compu-
tation

The original dataset is prepared and refined through a comprehensive data preparation
process to ensure it is ready for further analysis. This step involves several key tasks
aimed at adjusting the dataset.

• Attribute and Row Selection: During data preparation, a careful selection of
attributes and rows is performed. Attributes that are redundant or highly correlated
with others are removed, as they do not provide extra value. Additionally, rows with
missing values are excluded to ensure the integrity of the dataset.

• Standardization and Encoding: To standardize the dataset, categorical at-
tributes are encoded, and numerical attributes are subjected to Z-score normal-
ization. This ensures that all data is on a common scale, facilitating more accurate
analysis.

• Binary Sensitive Attributes and Binary Labels: The set of sensitive attributes
(e.g., Gender, Race) and a binary label (e.g., hired: Y/N) must be provided. This
study focuses on binary sensitive attributes. If a protected attribute has more than
two values, the dataset is either filtered to include only the two most common groups
or modified to combine categories. For example, if ’Race’ includes ’Caucasian’,
’African-American’, and ’Hispanic’, the dataset might be filtered to only ’Caucasian’
and ’African-American’, or combined into ’Caucasian’ and ’Non-Caucasian’.

• Group and Subgroup Identification: With binary sensitive attributes and binary
labels, distinct groups and subgroups within the dataset can be identified. Groups
are defined by all possible combinations of the sensitive attributes. If there are n
binary sensitive attributes, this results in 2n different groups. For instance, with
two sensitive attributes such as Gender (M/F) and Race (W/B), there are 22 = 4
groups: (M, W), (M, B), (F, W), and (F, B).
Subgroups are then formed by splitting each group based on the binary label, re-
sulting in 2n+1 subgroups. In the previous example, considering a binary label with
values 1 (favorable outcome) and 0 (unfavorable outcome), this yields 22+1 = 8 sub-
groups: (M, W, 1), (M, W, 0), (M, B, 1), (M, B, 0), (F, W, 1), (F, W, 0), (F, B, 1),
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and (F, B, 0).

• Splitting into Training and Test Sets: The prepared dataset, now standard-
ized and without missing values, is split into 70% train and 30% test sets with
stratification based on the identified subgroups. This ensures that each subgroup is
proportionally represented in both sets.

• Imbalance Ratio (IR) Computation: To determine the most privileged group,
the Imbalance Ratio (IR) is calculated for each group. The IR is the ratio of the
subgroup with positive label to the subgroup with negative label. For example, the
IR for the (M, W) group is computed as:

IR(M,W) = |(M, W, 1)|
|(M, W, 0)|

The group with the highest IR is considered the most privileged, and its imbal-
ance ratio (IRmax) serves as the target for oversampling other groups. For each
unprivileged group, defined as a pair of subgroups (PU, NU) with the same sensitive
attributes but opposite labels, the oversampling target is calculated as:

oversampling_target = (IRmax ∗ |NU|)− |PU|

This ensures that after oversampling, each group achieves the same imbalance ratio
as the most privileged group.

4.2 Identifying Border Points for Oversampling Us-
ing DBSCAN

With the training dataset prepared, subgroups identified, and the most privileged group
determined, the next step involves performing oversampling. The objective is to adjust
the dataset so that each group ultimately achieves the same Imbalance Ratio (IR) equal to
IRmax. For each group, defined as a pair of subgroups (PU, NU), the aim is to oversample
points from PU (those with positive label) to increase the IR of the group. DBSCAN is
applied within each subgroup PU to identify the points for oversampling.

As discussed in Section 3.4, DBSCAN is a density-based clustering algorithm requir-
ing a distance metric to define density, an eps value to determine the neighborhood of a
point, and a MinPts value to define core points. In this work, for each subgroup PU, the
Gower’s distance matrix (Section 3.5) is calculated and used as a precomputed metric for
the DBSCAN algorithm. This approach takes both numerical and categorical attributes
into account in the distance calculations.
For the MinPts parameter, the natural logarithm of the total number of samples in the
subgroup is used. This choice adapts automatically to the size of the subgroup, effectively
filtering out noise points while remaining robust and sensitive to the subgroup’s specific
characteristics.
The eps value is selected to allow for the formation of a unique cluster with some noise
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points. This eps value is calibrated so that a slight decrease would result in the formation
of multiple clusters, as shown in Figure 4.2. The primary idea is to treat each subgroup
as a single cluster while identifying core, border, and noise points within that cluster.
This approach facilitates the selection of border points for oversampling, based on the
rationale that border points are more likely to be misclassified. Specifically, oversampling
border points helps shift the classifier’s decision boundary in favor of the unprivileged
group under analysis.

Figure 4.2: Comparison of clusters created by DBSCAN with the same MinPts but different
epsilon values. Using eps = 0.13 (left) results in the formation of a single cluster with some noise
points, while a slight decrease to eps = 0.12 (right) leads to the formation of multiple clusters.

To determine the eps value that allows for the creation of a single cluster but leads to
multiple clusters if decreased, a binary search is implemented. The procedure is detailed
in Algorithm 1. Specifically, the optimal eps value is searched within a specified inter-
val between epsmin and epsmax. In each iteration, the midpoint epsmid of the interval is
computed and used to create clusters with the DBSCAN algorithm (using the same dis-
tance matrix and MinPts, varying only eps). Based on the number of clusters created
and their characteristics, the interval is adjusted by either increasing epsmin or decreasing
epsmax, until the difference between them is less than the specified step.

At the end of this procedure, each subgroup PU is represented by a single cluster, within
which points are classified as core, border, or noise points. The border points and their
nearest neighbors will then be selected for the oversampling process.
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4.3 Oversampling Border Points with SMOTE-NC
After using the DBSCAN algorithm to identify core, border, and noise points for each
subgroup PU, the next step is to perform the oversampling process. New synthetic points
are created for each unprivileged subgroup PU to ensure that, by the end of the oversam-
pling, each group achieves the same Imbalance Ratio (IR) as the most privileged group.
This approach aims to mitigate representation bias, resulting in a dataset where each
group has an equal acceptance rate.

For each subgroup PU, the oversampling process continues until the number of new syn-
thetic samples exceeds the oversampling target, defined as:

oversampling_target = (IRmax ∗ |NU|)− |PU|

The new points are then added to the training dataset to increase the number of samples
with positive labels for each unprivileged group.

The creation of new synthetic points is executed using the SMOTE-NC algorithm (as
detailed in Section 3.6), which interpolates between border points and their neighboring
border/core points. Specifically, for each subgroup PU, a border point is selected, and its
5 nearest neighbors are identified, excluding noise points to retain only core and border
points. The choice of 5 nearest neighbors follows the methodology established by Chawla
et al. [13], the authors of SMOTE and SMOTE-NC. If valid neighbors are present, one
is randomly selected. A new synthetic point is then generated using SMOTE-NC in-
terpolation: categorical attributes are assigned the most frequent value among the valid
neighbors, and numerical attributes are determined through linear interpolation between
the selected border point and its chosen neighbor.
The oversampling procedure is detailed in Algorithm 2.

After the oversampling process, the new synthetic samples are integrated into the training
dataset, ensuring that each group achieves the same IR. This balanced dataset will then
be used to train a classifier. The test dataset is subsequently used to evaluate the trained
classifier by comparing the predicted labels with the actual labels.
The performance of this classifier will be assessed against that of a classifier trained on
the original dataset (before oversampling), using both evaluation metrics and fairness
measures.
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Proposed Framework for Mitigating Representation Bias

Algorithm 1 Find Optimal Epsilon
Input: PU, categorical attributes cat_attr, MinPts min_samples, distance_matrix,
eps_step, epsmin, epsmax
Output: optimal epsilon value

function FIND_EPS(PU, cat_attr, min_samples, distance_matrix, eps_step,
epsmin, epsmax)

function CLUSTER_COUNT(eps)
dbscan ← DBSCAN(eps, min_samples, ’precomputed’)
clusters ← dbscan.fit_predict(distance_matrix)
return #clusters, label of clusters ▷ Label -1 indicates noise points

end function
while epsmax - epsmin > eps_step do

epsmid ← 1
2(epsmin + epsmax)

n_clusters_mid, labels_mid ← CLUSTER_COUNT(epsmid)
if n_clusters_mid == 1 then

if -1 in labels_mid then
epsmin ← epsmid ▷ Only noise points, increase epsmin

else
epsmax ← epsmid ▷ Only core points, decrease epsmax

end if
else if n_clusters_mid > 2 then

epsmin ← epsmid ▷ More than two clusters, increase epsmin

else
epsmax ← epsmid ▷ Exactly two clusters, fine-tune further

end if
end while
return epsmax

end function
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4.3 – Oversampling Border Points with SMOTE-NC

Algorithm 2 SMOTE-DBSCAN Framework
Input: train dataset Dtrain, categorical attributes cat_attr, imbalance ratio IRmax,
sensitive attributes S, label Y
Output: new synthetic samples for Dtrain

function OVERSAMPLE_GROUPS(Dtrain, cat_attr, IRmax, S, Y)
synthetic_samples ← []
subgroups ← each combination of S and Y in Dtrain
paired_subgroups ← pairs of subgroups with same S and opposite Y
for each pair (PU, NU) in paired_subgroups do

IR ← |P U |
|NU |

synthetic_points ← CUSTOM_SMOTE_DBSCAN(IR, IRmax, PU, NU)
synthetic_samples ← synthetic_samples ∪ synthetic_points

end for
return synthetic_samples

end function

function CUSTOM_SMOTE_DBSCAN(IR, IRmax, PU, NU)
oversampling_target ← (IRmax × |NU|) - |PU|
distance_matrix ← gower_matrix(PU, cat_attr)
min_samples ← ln(|PU|)
eps ← FIND_EPS(PU, cat_attr, min_samples, distance_matrix)
dbscan ← DBSCAN(eps, min_samples, ’precomputed’)
clusters ← dbscan.fit_predict(distance_matrix)
core_points, border_points, noise_points ← DBSCAN results
synthetic_points ← []
current_index ← 0
while |synthetic_points| < oversampling_target do

point_A ← border_points[current_index]
neighbors_A ← 5 nearest neighbors of point_A from distance_matrix
valid_neighbors_A ← neighbors_A not noise_points
if valid_neighbors_A is not empty then

point_B ← random select from valid_neighbors_A
synthetic_point ← []
for each attribute col in PU do

if col is in cat_attr then
synthetic_point[col]←most frequent value in valid_neighbors_A[col]

else
α ← random number between 0 and 1
synthetic_point[col]← point_A[col] + α(point_B[col] - point_A[col])

end if
end for
synthetic_points ← synthetic_points ∪ synthetic_point

end if
increment current_index

end while
return synthetic_points

end function
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Chapter 5

Evaluation

This chapter presents a comprehensive evaluation of the proposed DBSCAN-SMOTE
framework for mitigating representation bias. The evaluation is structured into several
sections to ensure a thorough analysis. Initially, the datasets used in the experiments
are described, detailing their characteristics and the distribution of sensitive attributes.
Following this, the evaluation metrics and fairness measures are reiterated to provide clar-
ity on the assessment criteria. The core of the chapter then focuses on the experiments
conducted to determine the framework’s performance, comparing it with alternative ap-
proaches and existing bias mitigation algorithms.

5.1 Datasets
The proposed framework addresses the representation bias present in the original datasets
by performing oversampling to enhance fairness. The resulting oversampled dataset is then
used to train a classification model, whose performance is evaluated and compared to that
of a classifier trained on the original dataset.
This section describes the three datasets used to perform the analysis. Each dataset
meets the requirements of this work, specifically containing binary sensitive attributes
and a binary label. The characteristics of each dataset, such as the number of samples,
features, and the distribution of sensitive attributes, are detailed. The three well-known
datasets used are the German Credit dataset [36], the COMPAS Recidivism dataset [58],
and the Adult dataset [8].

• German Credit dataset:
The German Credit dataset comprises 1,000 samples, each representing an individual
who has taken a credit from a bank [36]. Individuals are classified as good or bad
credit risks based on attributes such as job status, credit history, and age, among
others. Each individual in the dataset is described by 20 features of both categorical
and numerical types.
The binary sensitive attributes in this dataset are ’Gender’ and ’Age’. The ’Gender’
attribute is categorized as Male and Female. The ’Age’ attribute is binarized by
classifying individuals aged 25 years and older as Adults, and those younger than
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25 years as Young. The label indicates the binary classification of good versus bad
credit risks.
Considering all possible combinations of sensitive attributes and the binary label,
the dataset consists of 4 groups, further divided into 8 subgroups: (Male, Adult,
good), (Male, Adult, bad), (Male, Young, good), (Male, Young, bad), (Female,
Adult, good), (Female, Adult, bad), (Female, Young, good), and (Female, Young,
bad).
The Imbalance Ratio (IR) for each of the 4 groups is as follows:

Group IR
(Male, Adult) 2.767
(Male, Young) 1.556

(Female, Adult) 2.098
(Female, Young) 1.360

It is observed that the (Male, Adult) group is the most privileged, as it has the
highest IR, while the (Female, Young) group is the most unprivileged, with the
lowest IR. The objective of the proposed framework is to oversample each group of
the German dataset so that, ultimately, each imbalance ratio approximates 2.767.

• COMPAS Recidivism dataset:
The COMPAS Recidivism dataset contains criminal records of defendants from
Broward County from 2013 and 2014 [58]. The original dataset includes 7,214 sam-
ples, detailing past crimes, types of offenses, and time spent in jail. Following the
feature selection reported in the AI Fairness 360 documentation [3], the dataset is
reduced to 9 attributes (5 categorical, 4 numerical) and a binary label.
The binary label indicates the likelihood of recidivism, with 1 representing non-
recidivism and 0 representing recidivism. The binary sensitive attributes are ’Race’
and ’Sex’. The ’Race’ attribute is filtered to include only ’Caucasian’ and ’African-
American’, resulting in 6,150 samples
The dataset is divided into 4 groups based on combinations of sensitive attributes and
binary labels, further divided into 8 subgroups: (Caucasian, Female, 1), (Caucasian,
Female, 0), (Caucasian, Male, 1), (Caucasian, Male, 0), (African-American, Fe-
male, 1), (African-American, Female, 0), (African-American, Male, 1), and (African-
American, Male, 0). The Imbalance Ratios (IR) for each group are:

Group IR
(Caucasian, Female) 1.842
(Caucasian, Male) 1.464

(African-American, Female) 1.655
(African-American, Male) 0.838

The most privileged group is (Caucasian, Female), with the highest IR, while the
most unprivileged group is (African-American, Male), with the lowest IR. This in-
dicates that African-American males are more likely to be predicted as recidivists
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Group IR
(White, Male) 0.479

(White, Female) 0.140
(Black, Male) 0.235

(Black, Female) 0.064

compared to Caucasian females. The goal of the proposed framework is to equalize
the IR across all groups to match that of the most privileged group.

• Adult dataset:
The Adult dataset is the largest dataset used in this work, containing 48,842 samples.
Each row describes an individual using 14 attributes, such as educational status, oc-
cupation, and native country, to predict their annual income.
The sensitive attributes are ’Race’, which is binarized by selecting instances with
values either ’White’ or ’Black’, and ’Sex’, which takes values ’Male’ or ’Female’.
The label predicts whether a person’s annual income exceeds $50K (favorable out-
come) or is less than $50K (unfavorable outcome).
As with the other datasets, this dataset is divided into 8 subgroups based on combi-
nations of sensitive attributes and the binary label: (White, Male, > 50K), (White,
Male, ≤ 50K), (White, Female, > 50K), (White, Female, ≤ 50K), (Black, Male,
> 50K), (Black, Male, ≤ 50K), (Black, Female, > 50K), and (Black, Female,
≤ 50K). The Imbalance Ratios (IR) for each group are:
The IR is particularly low for all groups in this dataset. The most privileged group is
(White, Male), while the most unprivileged group is (Black, Female), indicating that
black females are less likely to be predicted an income higher than $50K compared
to white males. The objective of the bias mitigation method is to oversample such
that each group achieves an IR approximately equal to 0.479, the IR of the most
privileged group.

Table 5.1 summarizes the main characteristics of the three selected datasets.

Characteristics German Credit COMPAS Recidivism Adult
Number of Rows 1,000 6,150 48,842
Number of Features 20 9 14
Sensitive Attributes Gender, Age Race, Sex Race, Sex
Favorable Outcome Good Credit Risk Did Not Recidivate Income > $50K
Unfavorable Outcome Bad Credit Risk Recidivated Income ≤ $50K
Most Privileged Group (Male, Adult) (Caucasian, Female) (White, Male)
Most Unprivileged Group (Female, Young) (African-American, Male) (Black, Female)
Max IR 2.767 1.842 0.479

Table 5.1: Summary of characteristics for the German Credit, COMPAS Recidivism, and
Adult datasets. The table includes the number of rows, number of features, sensitive attributes,
definitions of favorable and unfavorable outcomes, and the most privileged and unprivileged
groups for each dataset. It also lists the maximum Imbalance Ratio observed.
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5.2 Evaluation Metrics and Fairness Measures
To recall the steps of the proposed framework, once a dataset has been selected, it un-
dergoes a Data Preparation phase, as detailed in Section 4.1. Subsequently, for each
unprivileged group, border points are identified using the DBSCAN algorithm and then
oversampled using SMOTE, as detailed in Sections 4.2 and 4.3, respectively, until the
Imbalance Ratio (IR) of the most privileged group is achieved.
The new oversampled training dataset is utilized to train a classification model. This
model is subsequently evaluated on the test dataset, where the predicted labels are com-
pared to the ground truth labels to assess the classifier’s performance.
The evaluation metrics and fairness measures employed to assess the quality of the pre-
dictions were introduced in Section 3.2 and are briefly summarized here to formalize their
application in this evaluation part.

The evaluation metrics used in this work include:

• Accuracy: This metric quantifies the proportion of correctly predicted labels out
of the total predictions, regardless of the subgroup. It simply compares all predicted
labels to the original labels, providing a score based on the number of correct pre-
dictions. However, accuracy can be misleading for highly imbalanced datasets, as it
relies heavily on the true positive rate.

• Balanced Accuracy: Unlike plain accuracy, balanced accuracy considers both true
positive and true negative rates, making it more suitable for imbalanced datasets.
It averages the recall obtained on each class.

• F1-Score: The F1-score is the harmonic mean of precision and recall, providing a
balance between the two metrics. It is particularly useful for imbalanced datasets as
it considers both false positives and false negatives.

The group fairness measures introduced in Section 3.2 were based on the consideration of
a single binary sensitive attribute, resulting in one privileged group and one unprivileged
group. These measures compared the outcome probabilities between these two groups.
However, in this work, we are considering multiple binary sensitive attributes, which lead
to the formation of multiple groups rather than just two. By computing the Imbalance
Ratio (IR), it is possible to identify the most privileged group among these multiple groups.
Consequently, we can apply the group fairness measures to various combinations of these
groups, thereby extending the analysis beyond the binary privileged and unprivileged
classification.
The group fairness measures used in this work are:

• Disparate Impact Ratio (DI Ratio): This measure computes the ratio of the
rate of favorable outcomes for the unprivileged group to that of the privileged group.
A DI Ratio close to 1 is preferable, indicating fairness.

• Average Odds Difference (AOD): AOD is the arithmetic mean of the differences
in true positive rate (TPR) and false positive rate (FPR) between the privileged and
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unprivileged groups. It encapsulates the concept of Equalized Odds, suggesting that
different groups should have similar error rates.

• Equal Opportunity Difference (EOD): This measure focuses on equalizing the
true positive rate among groups. It is a relaxation of AOD, only considering the true
positive rates.

Lastly, the individual fairness measure Consistency is recalled as:

• Consistency: This individual fairness measure evaluates whether similar individ-
uals receive similar predictions, considering all labels (not just those of specified
groups).

5.3 Experiments
This section presents the experiments conducted to evaluate the proposed DBSCAN-
SMOTE method.
First, the effectiveness of using the Imbalance Ratio as the oversampling target is verified,
showing that it yields better results compared to the widely-used approach of oversam-
pling to achieve equal sample sizes for each group. This justifies the choice of the IR-based
method. Next, the proposed framework is compared with two other frameworks developed
during the thesis writing process, demonstrating why DBSCAN-SMOTE was selected over
the alternatives. Following this, the proposed framework is benchmarked against existing
methods in the literature, showing competitive results in terms of fairness measures and
evaluation metrics. Finally, the DBSCAN-SMOTE framework’s ability to mitigate bias
across all groups within the dataset is illustrated.
The results reported in the tables are the averages of 10 runs. Each run splits the original
dataset into 70% for training and 30% for testing, using the same test set for each method.
The datasets used for these experiments are the German, COMPAS, and Adult datasets,
each split using stratification based on the subgroups within the datasets.
The group fairness measures—DI Ratio, AOD, and EOD—are computed by comparing
the most privileged group against the most unprivileged group, except in the final exper-
iment, where each pairwise comparison is evaluated.

5.3.1 Computing the Number of Examples for Oversampling
To validate the effectiveness of using the highest Imbalance Ratio (IRmax) as the oversam-
pling target, this experiment compares the results obtained with the proposed framework
based on the IR against those obtained by oversampling to equalize the sample sizes
for positive and negative subgroups. This comparison aims to determine whether target-
ing the IR leads to better results than simply equalizing the sample sizes across subgroups.

In more detail, the DBSCAN-SMOTE method is applied in both scenarios. For each sub-
group, border points are selected as explained in the previous chapter, and new synthetic
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points are generated following the previously outlined steps. The key difference between
the two cases lies in the oversampling target. In the IR-based approach, the most privi-
leged group, identified as the one with the highest IR, serves as the oversampling target for
the other groups. Conversely, in the equal size-based approach, the most numerous group
is identified, and all other groups are oversampled to match this group’s size. Specifically,
each positive-labeled subgroup (PU) is adjusted to have the same number of samples as
the positive subgroup of the most numerous group, and each negative-labeled subgroup
(NU) is adjusted to have the same number of samples as the negative subgroup of the
most numerous group.

In the German Credit dataset, the group with the highest Imbalance Ratio coincides
with the most numerous group. Therefore, in both oversampling scenarios, every group
will achieve a ratio of positive to negative samples approximately equal to 2.767, but with
different sample sizes in the two different experiments.
The sensitive attributes and the label are encoded such that the favorable values are rep-
resented as 1 and the unfavorable values as 0. Specifically, Male = 1 and Female = 0,
Adult = 1 and Young = 0, and Good Credit Risk = 1 and Bad Credit Risk = 0. For
example, (Male, Young, Good Credit Risk) is encoded as (1, 0, 1).
Table 5.2 summarizes the counts and the ratios of positive to negative instances for each
group in the original training dataset (first column), in the training dataset after over-
sampling to equalize sample sizes (second column), and in the training dataset after
oversampling based on the IR (third column).

Group Orig.
Count Ratio

Equal
Size

Count
Ratio IR

Count Ratio

(1,1,1) 321 2.767 321 2.767 321 2.767
(1,1,0) 116 116 116
(1,0,1) 28 1.556 321 2.767 50 2.778
(1,0,0) 18 116 18
(0,1,1) 107 2.098 321 2.767 142 2.784
(0,1,0) 51 116 51
(0,0,1) 34 1.360 321 2.767 70 2.800
(0,0,0) 25 116 25

Table 5.2: Comparison of counts and positive-to-negative instance ratios for each group in the
German dataset. The table presents the original training dataset (first column), the dataset
after oversampling to equalize sample sizes (second column), and the dataset after oversampling
based on the Imbalance Ratio (IR) (third column).

The three datasets—the original dataset, the dataset oversampled to equalize sample
sizes, and the dataset oversampled based on the IR—were each used to train a Logistic
Regression model. These three trained classifiers were then tested on the same test set,
and the results are presented in Table 5.3.
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From these results, it can be noticed that the Disparate Impact Ratio (DI Ratio) and
the Equal Opportunity Difference (EOD) are more favorable for the IR-based method
compared to the equal size-based method. Although the Average Odds Difference (AOD)
is slightly better for the equal size-based model, all the values are very close to each other.
The values for Accuracy, Balanced Accuracy, and F1 Score are lower than those of the
original dataset, as expected, since the classifier is being adjusted to improve fairness,
which can lead to some misclassifications. However, the metrics for the IR-based method
are higher than those for the equal size-based method, indicating that the IR-based method
has a better fairness-accuracy trade-off. This means that the IR-based method improves
fairness without losing too much accuracy, even compared to the original dataset.

Approach DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.695 -0.202 -0.136 0.857 0.771 0.693 0.844

Equal Size 0.962 0.032 -0.028 0.843 0.729 0.654 0.813
IR 0.998 0.065 -0.007 0.873 0.757 0.660 0.839

Table 5.3: Comparison of Logistic Regression models trained on the original dataset, the
dataset oversampled to equalize sample sizes, and the dataset oversampled based on Imbalance
Ratio (IR) for the German dataset.

In the Adult dataset, the group with the highest imbalance ratio coincides with the
most numerous group. Consequently, both oversampling strategies result in groups having
the same ratio of positive samples to negative samples, but with different sample sizes.
The sensitive attributes and the label are encoded with the same convention as before,
where 1 represents a favorable outcome and 0 represents an unfavorable outcome. Specif-
ically, White = 1 and Black = 0, Male = 1 and Female = 0, Income > $50K = 1 and
Income ≤ $50K = 0.
Table 5.4 reports the counts and ratios for the original dataset and the oversampled
datasets. The three datasets are then used to train three Logistic Regression classifiers,
which are subsequently tested on the same test dataset. The results are reported in Table
5.5.
The results show that the fairness measures are better for the IR-based method compared
to the equal size-based method. Accuracy is nearly identical between the two oversam-
pling methods, while Balanced Accuracy and F1 Score are slightly better for the equal
size-based method.

In the COMPAS dataset, the group with the highest Imbalance Ratio does not coincide
with the most numerous group. In fact, in this dataset, the most numerous group is the
one considered the most unprivileged by the IR. Therefore, when oversampling using the
IR-based method, the groups will ultimately have the IR of the most privileged group.
In contrast, when oversampling using the equal size-based method, all the groups will
have the same number of samples as the most unprivileged group, maintaining its ratio
of positive to negative samples.
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Group Orig.
Count Ratio

Equal
Size

Count
Ratio IR

Count Ratio

(1,1,1) 6126 0.479 6126 0.479 6126 0.479
(1,1,0) 12787 12787 12787
(1,0,1) 1019 0.140 6126 0.479 3497 0.479
(1,0,0) 7299 12787 7299
(0,1,1) 286 0.235 6126 0.479 583 0.480
(0,1,0) 1215 12787 1215
(0,0,1) 88 0.064 6126 0.479 657 0.479
(0,0,0) 1371 12787 1371

Table 5.4: Comparison of counts and positive-to-negative instance ratios for each group in the
Adult dataset. The table presents the original training dataset (first column), the dataset after
oversampling to equalize sample sizes (second column), and the dataset after oversampling based
on the Imbalance Ratio (IR) (third column).

Approach DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.081 -0.119 -0.162 0.952 0.794 0.644 0.455

Equal Size 0.387 -0.056 -0.065 0.927 0.773 0.641 0.454
IR 0.430 -0.029 -0.029 0.933 0.778 0.637 0.444

Table 5.5: Comparison of Logistic Regression models trained on the original dataset, the
dataset oversampled to equalize sample sizes, and the dataset oversampled based on Imbalance
Ratio (IR) for the Adult dataset.

The sensitive attributes and the label are encoded such that the favorable values are
represented as 1 and the unfavorable values as 0. Specifically, Caucasian = 1 and African-
American = 0, Female = 1 and Male = 0, did not recidivate = 1 and did recidivate = 0.
For example, (Caucasian, Male, did not recidivate) is encoded as (1, 0, 1).
Table 5.6 summarizes the counts and the ratios of positive to negative instances for each
group. Note how the ratios differ between the equal size-based oversampling and the IR-
based oversampling, reflecting the different group choices for defining the oversampling
target in each case.
A Logistic Regression model was trained using each of the three datasets: the original
dataset, the dataset oversampled to equalize sample sizes, and the dataset oversampled
based on the IR. These trained classifiers were subsequently tested on the same test set,
with the results presented in Table 5.7.
From these results, it is evident that the fairness measures are significantly better for the
IR-based oversampling method compared to the equal size-based method. Although both
methods result in groups having equal imbalance ratios, there are key differences that
justify the superior fairness of the IR-based method.
Firstly, the IR-based method focuses on aligning all groups to the imbalance ratio of the
most privileged group, which inherently has a more favorable distribution of positive to
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Group Orig.
Count Ratio

Equal
Size

Count
Ratio IR

Count Ratio

(1,1,1) 256 1.842 969 0.838 256 1.842
(1,1,0) 139 1156 139
(1,0,1) 782 1.464 969 0.838 984 1.843
(1,0,0) 534 1156 534
(0,1,1) 283 1.655 969 0.838 315 1.842
(0,1,0) 171 1156 171
(0,0,1) 969 0.838 969 0.838 2130 1.843
(0,0,0) 1156 1156 1156

Table 5.6: Comparison of counts and positive-to-negative instance ratios for each group in the
COMPAS dataset. The table presents the original training dataset (first column), the dataset
after oversampling to equalize sample sizes (second column), and the dataset after oversampling
based on the Imbalance Ratio (IR) (third column).

Approach DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.555 -0.389 -0.295 0.883 0.655 0.643 0.718

Equal Size 0.620 -0.271 -0.204 0.861 0.647 0.640 0.692
IR 0.963 -0.028 -0.018 0.975 0.558 0.527 0.704

Table 5.7: Comparison of Logistic Regression models trained on the original dataset, the
dataset oversampled to equalize sample sizes, and the dataset oversampled based on Imbalance
Ratio (IR) for the COMPAS dataset.

negative samples. This approach ensures that acceptance rates across different groups are
more similar to those of the privileged group, directly addressing disparities in treatment
between privileged and unprivileged groups.
Additionally, the high amount of oversampling required for the equal size-based method
can introduce noise and reduce the classifier’s ability to generalize, potentially leading to
higher false positive or false negative rates. In contrast, the IR-based method’s targeted
approach of adjusting the imbalance ratio to match the most privileged group ensures
that the classifier learns to treat all groups more equitably.
In conclusion, from this experiment, it can be stated that the IR-based method is preferred
because it requires less oversampling while effectively equalizing the acceptance rates
across all groups to match those of the most privileged group. This approach improves
fairness more efficiently and results in superior fairness metrics, making it a more effective
strategy for mitigating bias.
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5.3.2 Finding Border Points for Oversampling

During the development of the proposed DBSCAN-SMOTE framework, two alternative
methods based on the Imbalance Ratio (IR) were created and tested. Each of these meth-
ods aimed to achieve the same IR as the most privileged group by focusing on oversampling
in challenging areas, such as border points or regions with lower density. This subsection
compares the results obtained from the three proposed bias mitigation methods.

The first alternative method is inspired by the labeling technique introduced by Napierala
et al. [54]. In their work, samples are labeled based on the number of neighbors from
the same group. Specifically, considering the 5 nearest neighbors, a sample is labeled as
Safe if 4 or 5 neighbors belong to the same group, Borderline if 2 or 3 neighbors belong
to the same group, Rare if only 1 neighbor belongs to the same group and this neighbor
has either 0 or 1 neighbors from the same group (otherwise it is counted as Borderline),
and Outlier if it has no neighbors from the same group.
In this alternative, Gower’s distance is used to compute the 5 nearest neighbors for each
sample, which are then labeled according to Napierala et al.’s method.
The most privileged group is identified by its IR, and other groups are oversampled to
match this IR. For each subgroup requiring oversampling, a randomly selected Borderline
sample and one of its nearest neighbors are used to generate a new synthetic sample,
following the DBSCAN-SMOTE method detailed in Section 4.3. Ultimately, each group
achieves the same IR as the most privileged group, with new synthetic points created at
the borders of each subgroup.

The second alternative method focuses on oversampling in less dense areas to achieve
the same IR for each group, equal to that of the most privileged group. First, the dataset
is clustered using k-means clustering [50], excluding the sensitive attributes and the label
from the clustering process to find the natural groupings.
For each group, the required number of synthetic samples is calculated to ensure that each
group reaches the same IR. New synthetic samples are generated based on the density
within each cluster: the average distance between samples in each cluster is computed for
each subgroup, and more samples are added in clusters with greater average distances,
thus targeting areas where the data are less dense. This ensures that new synthetic sam-
ples are created in regions where the existing samples are more sparsely distributed.

The results obtained with the three oversampled datasets are compared, along with the
results obtained using the original dataset for the training. Table 5.8 summarizes the
results obtained using the German dataset, Table 5.9 summarizes the results obtained
using the COMPAS dataset, while Table 5.10 summarizes the results obtained using the
Adult dataset.
As shown in the tables, the selected framework (DBSCAN-SMOTE) generally performs
better in terms of both evaluation metrics and fairness measures. Specifically, DBSCAN-
SMOTE shows improved DI Ratio, AOD, EOD, and Consistency across the datasets
compared to the other methods. It also maintains a competitive accuracy, balanced ac-
curacy, and F1 score, indicating that it effectively balances fairness and classification
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performance.
These results highlight the advantages of DBSCAN-SMOTE, which motivated its selection
as the preferred framework for bias mitigation in this research. The DBSCAN-SMOTE
method not only equalizes the IR across groups but also strategically creates synthetic
samples in challenging border areas, resulting in fairer and more accurate outcomes.

Method DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.675 -0.234 -0.110 0.863 0.764 0.681 0.840

k-means 1.014 0.063 0.050 0.882 0.751 0.645 0.837
Labeling 1.033 0.077 0.054 0.889 0.745 0.631 0.834

DBSCAN-SMOTE 1.005 0.053 0.037 0.882 0.748 0.640 0.835

Table 5.8: Performance comparison of Logistic Regression models trained using the original
dataset, k-means-based oversampling, labeling-based oversampling, and DBSCAN-SMOTE for
the German dataset.

Method DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.551 -0.390 -0.300 0.880 0.652 0.640 0.714

k-means 0.886 -0.077 -0.055 0.928 0.604 0.581 0.713
Labeling 0.882 -0.081 -0.059 0.928 0.604 0.581 0.713

DBSCAN-SMOTE 0.969 -0.023 -0.016 0.977 0.554 0.523 0.702

Table 5.9: Performance comparison of Logistic Regression models trained using the original
dataset, k-means based oversampling, labeling-based oversampling, and DBSCAN-SMOTE for
the COMPAS dataset.

Method DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score
Orig. 0.089 -0.111 -0.147 0.953 0.794 0.640 0.457

k-means 0.543 0.027 0.075 0.929 0.769 0.630 0.432
Labeling 0.537 0.006 0.025 0.933 0.775 0.638 0.447

DBSCAN-SMOTE 0.468 -0.005 0.017 0.933 0.778 0.639 0.448

Table 5.10: Performance comparison of Logistic Regression models trained using the original
dataset, k-means based oversampling, labeling-based oversampling, and DBSCAN-SMOTE for
the Adult dataset.

5.3.3 Comparison with Existing Bias Mitigation Algorithms
To evaluate the effectiveness of the proposed DBSCAN-SMOTE framework, its perfor-
mance is benchmarked against several established bias mitigation methods from the liter-
ature. The selected methods for comparison include Fair-SMOTE, Reweighing, and Rem-
edy, each employing distinct approaches to addressing bias in imbalanced datasets. This
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subsection provides a comparative analysis of the results obtained using the DBSCAN-
SMOTE framework and these existing techniques.

Fair-SMOTE [12] is a pre-processing bias mitigation technique designed to address bias
arising from imbalanced datasets and improper data labeling. The process begins by
dividing the training dataset into subgroups based on sensitive attributes and label. It
then identifies the largest subgroup and uses SMOTE to oversample the other subgroups,
ensuring that each subgroup ultimately has an equal amount of data, matching the size of
the largest subgroup. Fair-SMOTE tackles biased data labels through a technique called
"situation testing," which involves flipping the values of sensitive attributes for each sam-
ple and checking if the prediction changes. By the end of this process, the oversampled
training dataset has the same number of samples in each subgroup, ensuring each group
has an equal number of positive and negative labels (i.e., an imbalance ratio of 1 for each
group). However, Fair-SMOTE requires substantial oversampling in cases of highly im-
balanced datasets, potentially leading to a significant increase in synthetic data and not
accounting for the original data distribution, which can result in an artificial dataset.

Reweighing [10] is a pre-processing bias mitigation technique that adjusts the impor-
tance of each instance in the dataset by assigning weights, rather than generating synthetic
data. This method assigns higher weights to positive instances from unprivileged groups
and negative instances from privileged groups. The process starts by defining privileged
and unprivileged groups based on sensitive attributes. Each instance is then assigned a
weight based on its group membership and label, ensuring that the learning algorithm ap-
propriately considers the less represented groups. By incorporating these weights during
model training, Reweighing mitigates bias without altering the original data distribution.
This approach avoids the drawbacks of oversampling, such as the creation of numerous
synthetic samples, and preserves the integrity of the original dataset.

Remedy, a recently developed technique introduced by Lin et al. and published in the
2024 IEEE 40th International Conference on Data Engineering (ICDE) [48], is considered
for comparison because it closely aligns with the scope of the proposed DBSCAN-SMOTE
framework. Remedy views the dataset as a hierarchical structure based on sensitive at-
tributes and introduces the concept of an "Implicit Biased Set (IBS)", defined as regions
where the imbalance ratio is significantly lower than that of neighboring regions. The
neighborhood for these regions is determined using a specified distance metric. Rem-
edy aims to mitigate bias within the IBS, employing strategies such as oversampling. In
this work, Remedy is considered with bias mitigation performed via oversampling: after
identifying the IBS, oversampling is applied based on the imbalance ratio to balance the
representation within these biased regions.

The results of the comparison between the proposed DBSCAN-SMOTE framework and
the bias mitigation methods from the literature, using the three datasets and logistic
regression as the classification model, are reported in Table 5.11. This analysis demon-
strates that the DBSCAN-SMOTE method achieves competitive outcomes in terms of
fairness measures compared to other established methods, while maintaining reasonable
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Dataset Method DI
Ratio AOD EOD Consi. Acc. Bal.

Acc.
F1

Score

German

Orig. 0.736 -0.178 -0.087 0.861 0.762 0.677 0.840
Fair-SMOTE 1.109 0.148 0.063 0.831 0.717 0.658 0.799
Reweighing 0.946 0.017 0.012 0.864 0.756 0.672 0.835

Remedy 1.038 0.100 0.062 0.861 0.755 0.674 0.834
DBSCAN-SMOTE 1.035 0.082 0.053 0.884 0.751 0.641 0.837

COMPAS

Orig. 0.544 -0.400 -0.312 0.876 0.651 0.639 0.712
Fair-SMOTE 0.708 -0.234 -0.182 0.900 0.634 0.618 0.713
Reweighing 0.812 -0.125 -0.096 0.898 0.631 0.614 0.715

Remedy 1.401 0.255 0.239 0.866 0.609 0.594 0.689
DBSCAN-SMOTE 0.962 -0.032 -0.022 0.975 0.553 0.521 0.701

Adult

Orig. 0.086 -0.113 -0.151 0.952 0.795 0.636 0.438
Fair-SMOTE 0.159 -0.076 -0.064 0.940 0.778 0.625 0.418
Reweighing 0.244 -0.013 -0.001 0.959 0.794 0.623 0.402

Remedy 0.292 0.018 0.039 0.974 0.793 0.592 0.317
DBSCAN-SMOTE 0.454 0.001 0.029 0.934 0.780 0.634 0.437

Table 5.11: Comparison of Logistic Regression results using Fair-SMOTE, Reweighting, Rem-
edy and DBSCAN-SMOTE methods for the German, COMPAS, and Adult datasets.

performance levels.
Specifically, the Disparate Impact (DI) Ratio values obtained using the DBSCAN-SMOTE
framework are consistently the closest to one across all datasets evaluated. This indicates
a strong performance in terms of fairness. For the German dataset, although the DI Ratio
values obtained with all four bias mitigation methods are very close to one, DBSCAN-
SMOTE still achieves the best value. For the Adult dataset, none of the proposed bias
mitigation techniques surpass the 80% threshold necessary to be considered fair (DI Ratio
> 0.80). However, the DI Ratio value achieved by DBSCAN-SMOTE is still the highest
and significantly improved compared to the original dataset’s near-zero value, demonstrat-
ing the positive impact of the oversampling strategy.
In addition to DI Ratio, DBSCAN-SMOTE also shows favorable outcomes in other fair-
ness measures, such as Average Odds Difference (AOD), Equal Opportunity Difference
(EOD), and Consistency. These improvements highlight the method’s effectiveness in in-
creasing fairness.
However, these gains in fairness often result in a slight decrease in performance met-
rics, such as Accuracy, Balanced Accuracy, and F1 Score, when compared to the original
dataset. This performance trade-off occurs because the oversampling process forces the
classifier to adjust the decision boundary in favor of unprivileged groups, which can lead
to some misclassifications. Despite this, the decrease in performance metrics is generally
within acceptable limits.
Overall, the DBSCAN-SMOTE framework demonstrates its capability to mitigate repre-
sentation bias effectively, achieving comparable results to other bias mitigation techniques,
while the performance loss remains within a tolerable range.
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5.3.4 Ensuring Fairness Among the Different Subgroups
In previous experiments, the group fairness measures—DI Ratio, AOD, and EOD—were
computed by comparing the most privileged group against the most unprivileged group,
defined by the original Imbalance Ratio (IR). While this approach highlights fairness im-
provements in the most extreme cases, it is also essential to evaluate fairness across all
groups within the datasets.
In this experiment, the DI Ratio, AOD, and EOD are calculated for every possible pair-
wise comparison between groups. Each dataset comprises four distinct groups, resulting
in a total of six pairwise comparisons per dataset.
This comprehensive evaluation assesses the effectiveness of the proposed framework in
mitigating bias across all group interactions, not just between the most and least privi-
leged groups.

The pairwise comparison results obtained with the DBSCAN-SMOTE framework using
the German dataset are presented in Table 5.12. Each group is denoted in the format
(Gender, Age), where Male = 1 and Female = 0, Adult = 1, and Young = 0. In each
comparison, the first group listed is more privileged than the second group, meaning it
has a higher Imbalance Ratio and is considered the privileged group for the computation
of the fairness measures.

Comparison DI
Ratio AOD EOD

(1, 1) vs (0, 0) 1.035 0.082 0.053
(0, 1) vs (0, 0) 1.139 0.147 0.089
(0, 1) vs (1, 0) 1.156 0.146 0.076
(1, 1) vs (0, 1) 0.919 -0.064 -0.036
(1, 1) vs (1, 0) 1.050 0.082 0.040
(1, 0) vs (0, 0) 0.993 0.001 0.013

Table 5.12: Pairwise comparison results using the DBSCAN-SMOTE framework for the Ger-
man dataset.

For the COMPAS dataset, the pairwise comparison results obtained with the proposed
framework are presented in Table 5.13. As before, the first group listed is more privileged
than the second. The groups are denoted in the format (Race, Sex), where Caucasian =
1 and African-American = 0, Female = 1, and Male = 0.
The results for the pairwise comparison using the Adult dataset are presented in Table
5.14. In each comparison, the first group listed is more privileged than the second. The
groups are denoted in the format (Race, Sex), where White = 1 and Black = 0, Male =
1, and Female = 0.
Tables 5.12, 5.13 and 5.14 demonstrate that the proposed framework effectively miti-
gates bias across different groups within each dataset. This is achieved by equalizing the
Imbalance Ratio (IR) across all groups, ensuring that each group has the same rate of
acceptance regardless of its sensitive attributes.
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Comparison DI
Ratio AOD EOD

(1, 1) vs (0, 0) 0.962 -0.032 -0.022
(0, 1) vs (0, 0) 0.962 -0.032 -0.025
(0, 1) vs (1, 0) 0.994 -0.005 -0.002
(1, 1) vs (0, 1) 1.000 -0.000 0.003
(1, 1) vs (1, 0) 0.994 -0.006 0.000
(1, 0) vs (0, 0) 0.967 -0.026 -0.023

Table 5.13: Pairwise comparison results using the DBSCAN-SMOTE framework for the COM-
PAS dataset.

Comparison DI
Ratio AOD EOD

(1, 1) vs (0, 0) 0.454 0.000 0.029
(0, 1) vs (0, 0) 0.713 0.013 0.020
(0, 1) vs (1, 0) 0.951 -0.009 -0.040
(1, 0) vs (0, 0) 0.753 0.023 0.060
(1, 1) vs (0, 1) 0.645 -0.013 0.009
(1, 1) vs (1, 0) 0.602 -0.022 -0.032

Table 5.14: Pairwise comparison results using the DBSCAN-SMOTE framework for the Adult
dataset.

Specifically, the DI Ratio values are all close to one for the German and COMPAS datasets
and show significant improvement for the Adult dataset, even exceeding the 80% threshold
in one comparison. Additionally, the AOD and EOD values are close to zero in every com-
parison across the three datasets, highlighting the effectiveness of the proposed framework
in promoting fairness.
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Chapter 6

Conclusions

6.1 Summary

This work proposed a framework to mitigate representation bias, which arises when cer-
tain groups in a dataset are imbalanced or skewed compared to others. A key assumption
throughout this work is that the original labels in the dataset are unbiased; hence, the
fairness of the assigned labels for individuals is not questioned. Focusing solely on repre-
sentation bias, the objective was to create new synthetic instances for underrepresented
groups so that each group achieves the same Imbalance Ratio, thereby ensuring an equal
acceptance rate.
Unlike previous bias mitigation techniques, the proposed framework considers all com-
binations of sensitive attributes to define the groups within the dataset. Each group is
further divided into subgroups based on their binary labels (positive or negative). By
oversampling each group to reach the maximum Imbalance Ratio, the decision boundary
of the classifier is shifted in favor of underrepresented groups, ensuring that each group
has the same likelihood of receiving a positive prediction.

The framework comprises several stages. First, a data preparation process standardizes
the data, followed by a 70%-30% split into training and testing sets. Next, each subgroup
with positive labels undergoes the DBSCAN algorithm to identify core, border, and noise
points within a single cluster. Oversampling is then performed using the SMOTE-NC
method, interpolating between a border point and its neighboring border/core point. By
the end of the oversampling process, each group achieves an Imbalance Ratio equal to the
highest one in the dataset.
The proposed framework was evaluated by comparing it to itself with a different over-
sampling target and to other bias mitigation algorithms. The results demonstrate that
this model performed better overall. By considering other bias mitigation techniques from
the literature, the effectiveness of the method was proven, achieving competitive results
in terms of fairness measures with minimal loss in evaluation metrics. Additionally, the
efficacy of oversampling each group was shown by computing fairness measures in pairwise
comparisons, demonstrating that the framework mitigates bias across all groups in the
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dataset, not just the most extreme cases.

6.2 Limitations
Despite its strengths, this work has several limitations. One major assumption made
throughout this thesis is that the original labels in the dataset are unbiased. Consequently,
these labels were assumed to be accurate and were not altered. This is a significant as-
sumption because it overlooks the fact that labeled datasets often originate from historical
data where decisions were made by individuals. There is no guarantee that these labels
were fair, as they may reflect human bias.
Another limitation is the requirement for the dataset to have binary sensitive attributes.
This restricts the framework’s applicability, as it may not handle multi-valued or more
complex protected attributes effectively. Addressing this limitation would be essential for
broader applicability in real-world scenarios where attributes are not always binary.
Additionally, the proposed framework heavily relies on the DBSCAN clustering algorithm,
which depends on the chosen distance metric and two critical parameters: epsilon (eps)
and minimum points (MinPts). Changes in these parameters or the distance metric can
lead to different results, potentially affecting the robustness and consistency of the frame-
work. The distance metric also influences the computation of the five nearest neighbors
in the oversampling step, which is crucial for generating synthetic samples.

6.3 Possible Future Work Directions
Starting from on the observed limitations, several directions for future work can be pro-
posed. One significant area for future research is the analysis of the original labels to
assess whether they present bias. This approach would involve evaluating and correcting
bias arising from historical data collections, ensuring the training data itself is fair.
Another important direction is to consider multi-valued sensitive attributes instead of
relying solely on binary sensitive attributes. Developing techniques to handle more com-
plex sensitive attributes would enhance the framework’s applicability and effectiveness in
real-world scenarios.
Additionally, the dependency on the DBSCAN clustering algorithm and the choice of
distance metric represent areas for potential improvement. Exploring more sophisticated
distance metrics, such as the Heterogeneous Value Difference Metric (HVDM), could be
beneficial. HVDM, for instance, computes distances between categorical attributes in a
more nuanced manner than simply considering them as 1 if equal and 0 otherwise. This
metric could improve the quality of the generated clusters and the computation of the five
nearest neighbors for the oversampling step.
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[41] F. Kamiran and I. Žliobaitė. Explainable and non-explainable discrimination in clas-
sification. 3:155–170, 2013.

[42] F. Kamiran, T. Calders, and M. Pechenizkiy. Discrimination aware decision tree
learning. In 2010 IEEE international conference on data mining, pages 869–874.
IEEE, 2010. doi: 10.1109/ICDM.2010.50.

[43] F. Kamiran, A. Karim, and X. Zhang. Decision theory for discrimination-aware
classification. In 2012 IEEE 12th international conference on data mining, pages
924–929. IEEE, 2012. doi: 10.1109/ICDM.2012.45.

[44] M. Kearns, S. Neel, A. Roth, and Z. S. Wu. Preventing fairness gerrymandering: Au-
diting and learning for subgroup fairness. In J. Dy and A. Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2564–2572. PMLR, 10–15 Jul 2018.

[45] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv.org, 2016. ISSN 2331-8422.

[46] N. Kordzadeh and M. Ghasemaghaei. Algorithmic bias: Review, synthesis, and future
research directions. European Journal of Information Systems, 31(3):388–409, 2022.
doi: 10.1080/0960085X.2021.1927212.

[47] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva. Counterfactual fairness.
arXiv.org, 2018. ISSN 2331-8422.

[48] Y. Lin, S. Gupta, and H. V. Jagadish. Mitigating subgroup unfairness in machine
learning classifiers: A data-driven approach. In Proceedings of the 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 2024.

[49] K. Lum and W. Isaac. To predict and serve? Significance, 13(5):14–19, 2016. doi:
10.1111/j.1740-9713.2016.00960.x.

70



BIBLIOGRAPHY

[50] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. University of California Press, 1967.

[51] S. G. Mayson. Bias in, bias out. Yale Law Journal, 128(8):2218–2473, 2019.

[52] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on
bias and fairness in machine learning. ACM Computing Surveys, 54(6):1–35, 2021.
ISSN 0360-0300.

[53] R. Mohammed, J. Rawashdeh, and M. Abdullah. Machine learning with oversampling
and undersampling techniques: Overview study and experimental results. In 2020
11th international conference on information and communication systems (ICICS),
pages 243–248. IEEE, 2020.

[54] K. Napierala and J. Stefanowski. Types of minority class examples and their influence
on learning classifiers from imbalanced data. Journal of Intelligent Information Sys-
tems, 46(3):563–597, June 2016. ISSN 1573-7675. doi: 10.1007/s10844-015-0368-1.

[55] A. Noriega-Campero, M. A. Bakker, B. Garcia-Bulle, and A. S. Pentland. Active
fairness in algorithmic decision making. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society (AIES ’19), pages 77–83, New York, NY,
USA, 2019. Association for Computing Machinery. doi: 10.1145/3306618.3314277.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[57] D. Pessach and E. Shmueli. A review on fairness in machine learning. ACM Com-
puting Surveys, 55(3):51:1–51:44, 2022. ISSN 0360-0300. doi: 10.1145/3494672.

[58] ProPublica. Compas recidivism risk score data and analysis. ProPublica, 2016. Re-
trieved from https://www.propublica.org/datastore/dataset/compas-recidivism-risk-
score-data-and-analysis.

[59] A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. The
Knowledge Engineering Review, 29(5):582–638, 2014.

[60] N. A. Saxena. Perceptions of fairness. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’19, page 537–538, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450363242. doi:
10.1145/3306618.3314314. URL https://doi.org/10.1145/3306618.3314314.

[61] M. H. Shahrezaei, R. Loughran, and K. M. Daid. Pre-processing techniques to miti-
gate against algorithmic bias. In 2023 31st Irish Conference on Artificial Intelligence
and Cognitive Science (AICS), pages 1–4. IEEE, 2023. ISBN 9798350360219.

71

https://doi.org/10.1145/3306618.3314314


BIBLIOGRAPHY

[62] H. Suresh and J. Guttag. A framework for understanding sources of harm throughout
the machine learning life cycle. In Proceedings of the 1st ACM Conference on Equity
and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), pages 1–9.
Association for Computing Machinery (ACM), 2021. doi: 10.1145/3465416.3483305.

[63] S. Verma and J. Rubin. Fairness definitions explained. In 2018 IEEE/ACM Interna-
tional Workshop on Software Fairness (FairWare), pages 1–7, New York, NY, USA,
2018. ACM. ISBN 9781450357463.

[64] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong, Z. Khairudin, and N. N. Ab-
dullah. An application of oversampling, undersampling, bagging and boosting in
handling imbalanced datasets. In T. Herawan, M. M. Deris, and J. Abawajy, editors,
Proceedings of the First International Conference on Advanced Data and Information
Engineering (DaEng-2013), pages 13–22, Singapore, 2014. Springer Singapore. ISBN
978-981-4585-18-7.

[65] M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness constraints:
Mechanisms for fair classification. In Artificial intelligence and statistics, pages 962–
970. PMLR, 2017.

[66] R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair rep-
resentations. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 325–333, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[67] B. H. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with adver-
sarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, pages 335–340, 2018.

[68] L. Zhang, Y. Wu, and X. Wu. A causal framework for discovering and removing
direct and indirect discrimination. arXiv.org, 2016. ISSN 2331-8422.

[69] Úrsula Hébert-Johnson, M. P. Kim, O. Reingold, and G. N. Rothblum. Calibration
for the (computationally-identifiable) masses. arXiv.org, 2018. ISSN 2331-8422.

72


	Abstract
	Introduction
	Motivation
	Glossary
	Thesis outline

	Related work
	Sources of Bias in Machine Learning
	Bias from Data
	Bias from Algorithms

	Fairness Measures
	Group Fairness Measures
	Individual Fairness Measures
	Subgroup Fairness Measures
	Impossibility Theorem
	Discrimination

	Bias Mitigation Algorithms
	Pre-processing
	In-processing
	Post-processing

	Addressing Limitations in Bias Mitigation Techniques

	Theoretical Background
	Problem Statement
	Performance and Fairness Measures
	Performance Measures
	Fairness measures

	Improving Fairness Theoretically
	Graphical Illustration
	Theoretically decreasing the EOD
	Numerical Example

	DBSCAN Algorithm
	Gower's Distance
	Oversampling with SMOTE-NC
	Logistic Regression

	Proposed Framework for Mitigating Representation Bias
	Data Preparation and Imbalance Ratio Computation
	Identifying Border Points for Oversampling Using DBSCAN
	Oversampling Border Points with SMOTE-NC

	Evaluation
	Datasets
	Evaluation Metrics and Fairness Measures
	Experiments
	Computing the Number of Examples for Oversampling
	Finding Border Points for Oversampling
	Comparison with Existing Bias Mitigation Algorithms
	Ensuring Fairness Among the Different Subgroups


	Conclusions
	Summary
	Limitations
	Possible Future Work Directions


