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Summary

A significant rise in traffic fatalities linked to aggressive driving behaviors has been
noted, accentuating the imperative need for research in this domain. Hence, the de-
tection of aggressive driving is increasingly advocated as a strategy not only to alert
drivers about their perilous behaviors but also to potentially diminish the incidence
of accidents. In addition, driving style significantly affects the fuel efficiency of
traditional internal combustion engine vehicles, and modifying driving behavior can
effectively improve fuel economy. Compared to traditional vehicles, driving style
has a greater impact on the range of electric vehicles. In parallel, the widespread
adoption of driving simulators in the automotive sector has unveiled their profound
advantages, especially in terms of repeatability in a controlled environment, helping
researchers significantly reduce the time and cost of development. Furthermore,
driving simulators also provide a safe platform for testing new technologies and
evaluating driver behavior in various scenarios.

This thesis presents a method for identifying aggressive driving by analyzing
electric vehicle dynamics data (such as speed, acceleration, and steering angle)
collected from simulation scenarios using the software SCANeR™Studio.

The algorithm uses iterative density-based spatial clustering of noise applications
(an unsupervised learning technique) to cluster aggressive driving maneuvers and
sub-classify driving behaviors based on comfort, safety, and efficiency. In addition,
these labeled data are used to train Bayesian optimization-based long short-term
memory neural network and a random forest model. The research results demon-
strate that excels in accurately identifying energy-efficient driving behaviors and
aggressive driving behavior, with a F-score 0.992 and 0.869, showing great potential
in enhancing road safety as well as promoting vehicle energy conservation and
sustainable driving practices.
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Chapter 1

Introduction

Referring to the most recent "Global Status Report on Road Safety 2023" released
by the World Health Organization, despite a yearly decrease of 5% in the number
of deaths from road traffic accidents since 2010, the figure has declined to 1.19
million per year by 2023. However, more than 2 people still lose their lives every
minute, and over 3,200 people die each day, a staggering statistic. What is addi-
tionally concerning is that road traffic accidents remain a leading cause of death
for individuals aged 5 to 29. Hence, road traffic accidents continue to represent an
ongoing global health crisis [1].

According to the NHTSA’s 2020 statistics, 66% of traffic fatalities in nation-
wide collisions were attributed to aggressive driving. More than 78% of U.S. drivers
reported having engaged in at least one aggressive driving behavior at least once
in the past year [2]. Based on research by the AAA, aggressive driving is typically
defined by several driving behaviors [3]:

⃝ Speeding in heavy traffic

⃝ Tailgating

⃝ Cutting in front of another driver and then slowing down

⃝ Running red lights

⃝ Weaving in and out of traffic

⃝ Changing lanes without signaling

⃝ Blocking cars attempting to pass or change lanes

In addition, driving style significantly affects the fuel efficiency of traditional
ICE vehicles, and modifying driving behavior can effectively improve fuel economy
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Introduction

[4]. Compared to traditional vehicles, driving style has a greater impact on the
range of electric vehicles [5, 6].

1.1 Application of Driving Simulator
Identifying potential driving behaviors aids in predicting when drivers might engage
in such actions. This alerts drivers to their behavior, promoting responsible and
cautious driving habits. Consequently, it reduces individual drivers’ risky behaviors,
significantly lowering the chance of accidents.

However, When conducting research on actual roads, there are many obstacles,
including time constraints, material costs, and safety issues. To address these
challenges, the use of driving simulators in automotive research has become in-
creasingly common in recent years. Driving simulators are devices that simulate
real driving environments, typically consisting of a vehicle cockpit, steering wheel,
pedals, display screens, and control and monitoring systems related to vehicle
operation. By using driving simulators, researchers can simulate various road and
traffic conditions in a controlled environment for tasks such as vehicle performance
testing, driver behavior studies, and the development of intelligent driving systems.
The use of these simulators offers numerous advantages. For instance:

• Time and Cost Efficiency: Driving simulators allow researchers to conduct
a large number of tests in a shorter amount of time without the extensive time
and resource investment required for real-world testing.

• Safety: Testing in a simulator eliminates the safety risks associated with
driving on actual roads, protecting both researchers and test equipment.

• Environmental Control: Researchers can precisely control various road
conditions, weather conditions, and traffic situations in the simulator to better
understand vehicle performance and driver behavior in different scenarios.

• Data Recording and Analysis: Driving simulators typically feature data
recording and analysis capabilities, allowing for accurate recording and analysis
of driver behavior, vehicle performance, and system responses to support
research with reliable data.

• Repeatability: Tests conducted through simulators can be easily repeated
to ensure the reliability and consistency of research results.

By using driving simulators, researchers can simulate various road and traffic
conditions in a controlled environment for tasks such as vehicle performance testing,
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Introduction

driver behavior studies, and the development of intelligent driving systems. For
instance, to study the influence of adaptive cruise control on human behavior [7]
and the eye movements under various time periods and weather conditions [8] by
using driving simulator. In addition, the driving simulator is also used carry out
experiments by deploying machine learning algorithms to reduce traffic congestion
[9].

1.2 State of the art
1.2.1 machine learning methods
By nature, the recognition of driving behavior is a complex and challenging task.
A single data element may not provide sufficient information to accurately judge
driving behavior. By utilizing multidimensional data, such as vehicle speed, accel-
eration, steering angle, and environmental information around the vehicle, a more
comprehensive understanding of the driver’s behavior can be achieved.

Machine learning techniques play a significant role in this area. By analyzing
and training on large amounts of driving data, machine learning algorithms can
learn the patterns and features of driving behaviors, thereby enabling the automatic
recognition and classification of driving actions. For example, supervised learning
algorithms can be used to train models that predict the driver’s actions, such as
accelerating, decelerating, and turning, based on the input multidimensional data.
The use of sensor data such as vehicle and engine speed are used to train a support
vector machine (SVM) classifier to identify aggressive driving behaviour yielding a
detection rate of 93.1% [10]. An emotion detection method based on convolutional
neural network (CNN) to identify driving behaviour is proposed in [11]. A random
forest (RF) model-based analysis of time to lane crossing (TLC) in real-world
scenarios was proposed, successfully identifying aggressive driving behavior on
horizontal curves with an accuracy of 95.34% [12]. The extreme learning machine
(Elman) neural network and electric vehicle motor efficiency were used to construct
an economic evaluation model to explore the impact of driving behavior on energy
consumption [13]. The ecoSituational Model (eSiM) prediction model uses digital
map data, sensor data, and V2X communication information to predict vehicle
speed distribution and optimize driving behavior through adaptive cruise control
(ACC) systems, thereby reducing vehicle fuel consumption [14].

A detailed comparative analysis was performed on several state-of-the-art aggressive
driving event detection algorithms (SVM, RF) across AD2 (Aggressive Driving
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Detection) datasets encompassing diverse devices, vehicles, and locations [15]. Two
deep learning models; convolutional neural network and recurrent neural network
were deployed to categorize driving behavior into two classes: normal driving and
aggressive driving [16]. A Long Short-Term Memory (LSTM) neural network opti-
mized using Bayesian techniques was applied to 3,855 samples obtained from the
NGSIM (Next Generation Simulation Project). This model yielded commendably
high performance in predicting aggressive driving behavior [17]. A study improved
the control performance of electric vehicle energy management by 27% compared to
existing models by using an artificial neural network called nonlinear autoregressive
model with eXogenous inputs (NARX) to model and predict driving behavior in
the next 30 seconds [18]. On the other hand, research were carried to improve the
comfort, safety and traffic efficiency using machine learning approach [19, 20] and
control strategies to avoid collision [21].

By continuous advancements in machine learning technology and the accumu-
lation of data, driving behavior recognition technology will become increasingly
accurate and reliable, providing significant support for improving traffic safety and
driving experience.

1.2.2 Other methods

Not only machine learning methods, but also threshold-based and anomaly detection
methods are used to identify aggressive driving. The thresholds in longitudinal
acceleration and deceleration, lateral acceleration and yaw rate for aggressive driving
behavior is set in [22]. The method of recognizing race car driving skills based on
wavelet transform and Lipschitz singularity detection theory is demonstrated in [23].
Authors in [24] proposed a method to describe the relationship between lateral,
longitudinal acceleration and speed and provided a good direction for studying the
classification of car driver behavior. Work in [25] analyzed time to collision (TTC)
and speed reduction time (SRT) of drivers in the event of an emergency collision
using a Generalized Linear Mixed Model and a Weibull Accelerated Failure Time
model, respectively. It is reported that the TTC and SRT of aggressive drivers
decreased by 82% and 38%, respectively when compared with normal drivers. The
study on analyzing driving behaviors and identifying aggressive driving behaviors
has been consistently followed and pushed forward by various scholars. Together,
these methods provide effective tools for understanding and improving driving
safety.
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1.3 Energy consumption, safety, and comfort dur-
ing driving

Existing studies have primarily focused on identifying aggressive driving; however, a
comprehensive analysis of the impact of driving behavior on passenger comfort, and
fuel/energy efficiency remains insufficient. Therefore, it is particularly important
to further investigate the specific effects of aggressive driving on vehicle energy
consumption and driving experience. Prior studies have demonstrated that modifi-
cations in driver behavior can substantially increase vehicle fuel/energy efficiency
by as much as 30% [26]. Additionally, according to references [27, 28], vibrations
transmitted to passengers and the probability of motion sickness have been used
to optimize passenger comfort. The 100-kilometer power consumption calculated
through the voltage, current, and sampling time of the vehicle motor was used to
explore the impact of driving behavior on energy economic [13].

1.4 Contribution
In the literature, driver behavior analysis is performed on a dataset with few fea-
tures and often overlooks information such as pedal position. To overcome this, we
use a driving simulator (see Fig. 1.1) to gather all relevant features for predicting
driving behavior. In this research work, we employ Iterative Density Based Spatial
Clustering of Applications with Noise (I-DBSCAN), an unsupervised learning
technique for classification of aggressive behaviors. Subsequently, a threshold based
on Jerk and TTC is used to further categorize driving behaviors into normal,
aggressive, discomfort, and risky driving behaviors. This classification is used to
train a recognition model called the "discomfort and risk driving recognition model".

Another recognition model, the "efficiency and aggressive driving recognition
model", is trained by using a classification based on motor efficiency thresholds. It
includes three classes: high-efficiency, low-efficiency, and aggressive driving behavior.
Finally, a labeled dataset is fed into a Bayesian optimization-based LSTM neural
network and an RF to predict driving behavior. The performance of the proposed
models is evaluated using the F-score as the key performance indicator.

1.5 Outline
The rest of the thesis is organized as follows:

Chapter 2 provides a detailed overview of the driving simulator and software
environment used for driving behavior data collection and analysis. By utilizing a
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driving simulator in conjunction with SCANeR™Studio, the study can accurately
replicate real-world driving conditions and collect extensive data on various driving
behaviors.

Chapter 3 elaborates on the data collection process, where data is gathered
from a simulator equipped with sensors capable of capturing speed, steering angle,
and other relevant metrics. The data is then preprocessed to remove noise and
inconsistencies and segmented into elementary driving behaviors (EDB). K-means
clustering is used to classify these EDB. The I-DBSCAN algorithm is used to
label aggressive behaviors, Then further classify aggressive behaviors based on
jerk and TTC thresholds into discomfort, risky, and aggressive driving behavior
which do not influence comfort and safety for training the "Discomfort and Risk
Driving Recognition model". Normal driving is classified based on motor efficiency
thresholds into low-efficiency and high-efficiency driving behaviors for training the
"Efficiency and Aggressive Driving Recognition model". Bayesian optimization
LSTM neural network, and RF. These models are evaluated based on their perfor-
mance in detecting driving behaviors.

Chapter 4 shows the training results of the "Discomfort and Risk Driving Recog-
nition model" and the "Efficiency and Aggressive Driving Recognition model". The
results indicate that both the LSTM neural network and the RF exhibit high
performance, with the LSTM neural network excelling in the Discomfort and
Risk Driving Recognition model, while the RF outperforms in the Efficiency and
Aggressive Driving Recognition model, achieving high F-scores across all behavior
labels. This confirms the feasibility of AI-driven methods in detecting driving
behaviors, highlighting the potential of these technologies to enhance traffic safety
and improve the driving experience through real-time monitoring and feedback.
This research contributes to the evolving field of automotive AI, paving the way
for the future development of intelligent driving assistance systems and proactive
safety measures.

Chapter 5 are some conclusions of this thesis and prospects for future work.
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Figure 1.1: Driving simulator paired with SCANeR™Studio. 1: force feedback
steering wheel, 2: pedals, 3: manual gearbox, 4: bucket seat, 5: high resolution
screens.

7



Chapter 2

Virtual scene construction

2.1 Device introduction
As mentioned in Section 1.4, a driving simulator and SCANeR™Studio were utilized
for vehicle data collection in a human-in-the-loop environment.

2.1.1 Hardware Setup
The driving simulator used in this experiment is equipped with a Logitech G920
steering wheel featuring vibration and force feedback. It also includes a clutch,
accelerator, and brake pedals, a manual gearbox, and a bucket seat. Three LG
high-definition monitors are used to replicate a realistic driving experience as closely
as possible. Additionally, an NVIDIA GTX 3080Ti graphics card was selected to
support the efficient operation of SCANeR™Studio.

2.1.2 Software
SCANeR™Studio is an advanced simulation and virtual reality software primar-
ily aimed at research and development in the automotive industry. The soft-
ware is widely used in the field of driving simulation to evaluate aspects such as
driver behavior, vehicle performance, and traffic systems. SCANeR™Studio comes
equipped with a comprehensive toolkit that can simulate complex traffic scenarios,
various weather conditions, different vehicle types, and dynamic obstacles like
pedestrians. It also supports integration with other engineering software such as
MATLAB/Simulink, enabling users to conduct in-depth data analysis and system
development. Whether used in car design, traffic research, or the development and
validation of autonomous driving systems, SCANeR™Studio helps manufacturers
and researchers evaluate and enhance vehicle performance and safety more effec-
tively.
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Its primary function is to offer users five distinct modes [29]:

1. Vehicle mode: For building mathematical representations of vehicles like
cars and trucks. These representations rely on various parts such as suspension
systems, braking mechanisms, lighting, tires, and wheels.

2. Terrain mode: For developing road systems that incorporate logical details
like traffic signs, signal lights, and speed limit indicators, along with a three-
dimensional visual environment.

3. Scenario mode: For designing training scenarios that utilize vehicles and
terrain to enhance driver abilities, road infrastructure, and cockpit controls.
This mode also allows for customizing situations, overseeing autonomous
vehicles in the vicinity of the driver, ensuring compliance with instructions,
and obtaining precise measurement data.

4. Simulation mode: For initiating a session and overseeing all simulator
components. The simulator comprises both hardware and software components
dedicated to sound, visualization, motion, and other functionalities.

5. Analysis mode: Utilized for analyzing exercise results, for instance: charts,
3D animations, and data tables.

Figure 2.1: SCANeR™Studio modules
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These software programs employ a shared communication protocol. Messages
are exchanged among them via an Ethernet Network. Figure 2.1 illustrates the
distributed architecture concept of SCANeR™Studio. Additionally, certain specific
modules such as ACQUISITION (DriverHandler), MODELHANDLER (Dynamic
model), MOTION, and SCANeR API can communicate with other key modules
using shared memory, albeit requiring a higher exchange rate. Figure 2.2 illustrates
some modules connected to shared memory.

Figure 2.2: Modules connected to shared memory

2.2 Scenario construction
This section aims to provide a comprehensive overview of scenario construction
for data collection, encompassing terrain, an array of objects such as vehicles and
pedestrians, a set of parameters including initial conditions and recording settings,
as well as storyboards essential for managing situations or events like accidents
[29]. Crafting tailored scenarios facilitates the execution of diverse driving tasks.

2.2.1 Terrain construction
As mentioned before, selecting the appropriate terrain is the starting point for
scenario construction, as it represents the simulated driving environment. In
SCANeR™Studio, users can utilize preset terrain modules from the library or
customize new terrains to meet experimental needs. The terrain mode is composed
of the following three sub-modules:

1. Environment Types: Environment types encompass complex terrain sce-
narios such as highways, countryside areas, and even urban settings. This
determines the driving experience of the simulator’s driver.

2. Road Infrastructure: The road infrastructure module includes traffic lights,
roundabouts, intersections, various levels of roads, obstacles, and bridges. The
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presence of these infrastructures greatly ensures the realism and complexity
of the driving experience in the simulated environment.

3. 3D Objects: 3D objects such as road signs, decorative models (trees, buildings,
billboards), can be set in the terrain. These objects enrich the details of the
simulated environment, enhancing the driver’s visual experience and making
the scenario more realistic and vivid.

With these three modules, the realism and diversity of the simulated environment
are guaranteed.

Recognizing the stark contrast in vehicle dynamics data distribution between
urban and rural settings is paramount. Urban locales demand frequent decelera-
tion, acceleration, and halting owing to congested thoroughfares, traffic signals,
intersections, pedestrians, and the necessity for constant maneuvering. Conversely,
rural areas witness diminished fluctuations in velocity, boasting wider turning radii
and diminished vehicular and pedestrian traffic. Hence, it becomes imperative to
execute tailored data gathering and analysis methodologies for disparate environ-
ments during the acquisition of vehicle dynamics data. By given this, the research
will utilize the terrain modules named Lake City and Riviera from the default
library for data collection.

Figure 2.3: Lake City View

Lake City (see Fig. 2.4 and Fig. 2.3) module is described as a complex terrain
(Right and Left Hand Traffic) where 3D were generated by computergraphic crew
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Figure 2.4: Lake City Top View

with specific options: occlusion map, bump map, specular map, specular. This
terrain is dedicated to Advanced RenderingMode. This is a comprehensive terrain
covering 3 environments: traffic jam in city center, the 500-meter-long sea-crossing
bridge can be considered a highway and suburban areas with no traffic congestion.
The terrain is configured with 47 traffic lights, and 28 intersections. The terrain
contains physics modules for handling interactions between 3D objects (interactive
vehicles, autonomous vehicles, pedestrians, bicycles, infrastructure objects, crash
barriers) such as collisions and the vibrations caused by driving over rough surfaces.
These physical behaviors are fed back to the driver in the form of vibrations through
the simulator steering wheel.

Riviera (see Fig. 2.5 and Fig. 2.6) module is described as a simple terrain
(Right and Left Hand Traffic with sea, seaside, tunnel, country, village (pedestrian
crossings), mountains, forest elements. Several ambiances in a Mediterranean style.
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Characteristics Quantity
Road length [km] 6.1

Driving side RHT
LHT

Traffic lights 47
Barriers 0

Intersections 28
PHYSICS compliant Yes

Table 2.1: Characteristics of the LakeCity Environment

This terrain is especially dedicated for demonstration or training purposes. Also,
this module contains physics modules for handling interactions between 3D objects.

Figure 2.5: Riviera View

2.2.2 Resources selection
As mentioned at the beginning of this chapter, to ensure the realism and complexity
of the simulation environment, the scene should include not only terrain but also
3D objects such as vehicles and pedestrians. In this section, we will briefly describe
the driving vehicles and other vehicles in the scene.

In SCANeR™Studio, vehicle models include several subsets such as simple models,
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Figure 2.6: Riviera Top View

Characteristics Quantity
Road length [km] 5.6

Driving side RHT
LHT

Traffic lights 0
Barriers 0

Intersections 12
PHYSICS compliant Yes

Table 2.2: Characteristics of the Riviera Environment

Callas models, and CarSim models. The "simple" vehicle models lack detailed tire,
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suspension, and steering models and cannot adequately respond to subtle phe-
nomena like rumble strips [29]. They do not include components models (physical
models of engine, suspensions), do not have roll movement, and the lateral speed
is set to zero, meaning they will not skid laterally. Additionally, they have some
deficiencies in recognizing environmental obstacles.

The dynamics of the simple models are very basic [29]:

• Bi-axle (2 wheels per axle)

• Position of the vehicle is computed with 1 road picking

• Terrain following

• Engine

• Transmission

• Braking

• Steering

For autonomous vehicles present in the scene, they primarily rely on the traffic
module to follow pre-planned routes. In such cases, simple models are often used
for modeling these types of vehicles. In this study, all autonomous vehicles in
the environment are composed of simple models from the default library. The
scene includes Cars, Buses, Bicycles, Motorbikes, Trucks, Trailer assemblies. Their
distribution is as shown in the Tab. 2.3. The driving behavior of autonomous
vehicles is categorized into three types (Normal, Cautious, and Aggressive) as
shown in the Tab. 2.4.

Vehicle type Vehicle distribution (%)
Cars 65
Buses 5

Bicycles 10
Motorbikes 10

Trucks 5
Trailer assemblies 5

Table 2.3: Distribution of autonomous vehicles

For interactive vehicles that rely on hardware (driving simulator, keyboard and
mouse) input, there are human driver controls. Experimental needs cannot be met
using simple models. This often requires more complex dynamic models to simulate
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Driving behavior Distribution (%)
Normal 90

Cautious 5
Aggressive 5

Table 2.4: Driving behavior distribution of autonomous vehicles

Figure 2.7: Callas Model

vehicle behavior in real driving. In this case the Callas model can be used.

Callas is the French name (Couplé A La Limite d’Adhérence au Sol) which rep-
resents dynamic model vehicles such as trucks, buses, cars and midgets, motorsport,
machione, tractors, and military vehicles (such as tracked vehicles) (see Fig. 2.7)
[29]. Unlike the simple model, it includes suspension and powertrain components,
making it the most realistic and comprehensive dynamic model. Among them,
suspension types can adopt all existing geometries: rigid axles, independent wheels,
crawlers (tracks), hybrid drivetrains. Powertrains can be electric or combustion,
with a full range of transmission options. Based on this, the study utilizes a Callas
car model named ’SmallFamilyCarElectric’ (see Fig. 2.8). Detailed parameters for
this vehicle model is shown in the Tab. 2.5.
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Figure 2.8: Small Family Car Electric

Engine
Aspiration Electric

Max Power (kW) 80
Electric Motor RPM (rpm) 10390

Max Torque (daN*m) 28
Transmission

Transmission Type Front Wheel Drive
Gearbox Technology Type Auto
Front Gear Ratio Number 1
Rear Gear Ratio Number /

Dimensions
Length (mm) 4440
Width (mm) 1770
Height (mm) 1545
Weight (kg) 1523

Front Overhang (mm) 952
Rear Overhang (mm) 788

Wheelbase (mm) 2700
CoG Height from ground (mm) 520
Front Track / Rear Track (mm) 1540 / 1535
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Ground Clearance (mm) 155
Driver Side Left

Frame
Steering wheel turn lock-to-lock 3

Steering diameter between sidewalks (m) 11
Steering diameter between walls (m) 11.8

Tires dimensions 195/65 15
Anti-Block Brake system yes

Active yaw control yes
Traction control yes
Front suspension Independent McPherson
Rear suspension Twist Beam

Performances
Max speed (km/h) 145

0-100 km/h (s) 25.6
Standing 400 m (s) 22.2
Standing 1000 m (s) 42.5

Specific suspension roll (°/G) 3.7
Specific suspension pitch (°/G) 3.97

Max Slope (%) 22
Max Banking (%) 36

Table 2.5: SmallFamilyCarElectric’s technical document

In order to obtain the required vehicle driving data, the installation of sensors is
necessary. SCANeR™Studio supports a variety of sensors such as cameras, lidars,
and radars. Each sensor contains a variety of optional configurations. Users can
use the default configurations in the library (such as Tesla sensor configurations) or
customize sensor configurations according to experimental needs. In this research, a
Long Range Radar Sensor (see Fig. 2.9 and Fig. 2.10) was equipped at the bumper
position of the front of the car 0.5m from the ground to detect the straight-line
distance to obstacles. Its technical specifications include a maximum detection
range of 250 meters, a horizontal FOV of -30° to 30°, and a vertical FOV of -30° to
30°.
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Figure 2.9: Zoomed view of radar sensor placement.

Figure 2.10: Long range radar sensor with maximum beam range of 250 m.

2.3 Simulation
After building the scenario, we can finally start running the simulation to collect
vehicle dynamics data. Before you start driving a car, you need to start the
following modules:

a) Traffic: Its role is to control the movement of other autonomous vehicles in
the scene and changes in road signs (traffic lights).

b) WalkerTraffic: This module is used to manage pedestrian traffic; controlling
the movement of pedestrians in the scene according to predefined scripts.

c) Visual: This module is dedicated to simulating the driver’s perspective
while driving; It conveys visual information about the environment, including
vehicles, pedestrians, and road traffic conditions, to the driver through a
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display. This ensures the driver receives the most realistic driving feedback
(see Figure 2.11).

Figure 2.11: Visual module with 6 views. 1: Side view, 2: Front view, 3: side
view, 4: left rear view, 5: right rear view, and 6: center rear view.

d) Dashboard: It completely replicates the dashboard of a real vehicle, including
current vehicle speed, motor speed, and other information(see Figure 2.12).

Figure 2.12: Close up of the interactive vehicle’s dashboard.

e) Sound: This module is used to generate sounds from both the vehicle itself
and the environment, such as the sound of the motor, the car horn, and the
noise of wheels slipping. Through this module, the driver can gain a more
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comprehensive understanding of the current vehicle status and surrounding
road conditions by combining audio cues with the visual module.

f) Acquisition: This module is dedicated to inputting signals from the driving
simulator (such as the steering wheel and pedals) into the SCANeR™Studio
vehicle, allowing the driver to control the vehicle in real-time.

g) Physics: As we mentioned in the previous section, this module is used to
provide the driver with physical feedback on vehicle behavior (such as collisions,
bumps caused by bad road conditions).

h) ModelHandler: This module is used to manage the interaction between the
vehicle model and the road.

i) Sensors: It is dedicated to simulating the cameras, lidar, ultrasonic radar
and other sensors mentioned in the previous section.
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Methodology

In the study described, we propose a methodology consisting of five main steps
to extract and analyze driving behavior data from a simulated vehicle driving
environment. This method is based on the SCANeR™studio software environment,
aiming to comprehensively process and evaluate driving behavior through the
following steps:

a) Data Acquisition: First, data is collected from the simulated vehicle driving
environment of SCANeR™studio along with driving simulator.

b) Data Preprocessing: Next, the collected data is preprocessed, including
cleaning, filtering, and formatting, to facilitate further analysis.

c) Data Segmentation: Subsequently, the data is segmented into "Elementary
Driving Behaviors (EDB)" based on parameters such as vehicle speed and
steering wheel angle.

d) The dataset labeling: The I-DBSCAN algorithm is used to analyze each
EDB to identify aggressive driving behaviors. Based on specific threshold
methods, identified aggressive driving behaviors are further refined into un-
comfortable behaviors and potentially dangerous driving behaviors.

e) Model Training: Finally, the preprocessed data is fed into a LSTM neural
network and RF for model training. Through this step, the main goal is
to establish a machine-learning model capable of accurately predicting and
analyzing driving behaviors. The following will provide a detailed explanation
of each step.
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3.1 Data Acquisition

In the simulation, drivers can control an interactive vehicle ( the real human driver
changes the vehicle’s motion through physical pedals and steering wheel in the
driving simulator), designated as a "small family electric car" to mimic authentic
driving behaviors within the scenario.

Signals Unit
Longitudinal Speed m/s

Longitudinal Acceleration m/s2

Lateral Acceleration m/s2

Accelerator pedal [-]
Brake force N
Motor speed rad/s

Motor efficiency %
Steering wheel angle rad
Steering wheel speed rad/s

Jerk m/s3

Distance to collision m
Time to collision s

Table 3.1: Signals collected from vehicle

The data is collected from the interactive vehicle for three different drivers. The
characteristic variables reported in Tab. 3.1 are highly instrumental in identifying
aggressive and energy efficiency-related driving behavior. This study uses signals
other than Motor efficiency to train the discomfort and risk driving recognition
model. Uses motor efficiency instead of motor speed and other signals to train
Efficiency and aggressive driving recognition model.

Figure 3.1 illustrates a glimpse of the small data that was collected. The lon-
gitudinal and lateral acceleration, as well as the vehicle velocity, are shown in the
Figure 3.1. The efficiency map of the interactive vehicle is displayed in Figure
3.2. Using the current and torque of the motor, we can determine the operating
efficiency of the electric motor at any given moment.
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Figure 3.1: Data recordings by one of the drivers. 1st row: vehicle velocity; 2nd
row: longitudinal acceleration; and 3rd row: lateral acceleration.

3.2 Data Preprocessing

After the data collection was completed, this study adopted a preprocessing step
aimed at further analysis by dividing the time series data into equal length monitor-
ing periods (MP) [30, 31]. Each MP was set to a length of 0.3 seconds, considering
the data sampling rate of 100Hz, each MP contained 30 time steps (see Fig. 3.3).
Moreover, there was a 0.1 second interval between MP, meaning there was an
overlapping part between adjacent MP. Then, feature engineering was performed
on the samples in each MP to extract statistical features (the statistical functions
used are shown in Tab. 3.2). This method not only reduced the number of samples
and computational costs but also enhanced the model’s interpretability.
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Figure 3.2: Efficiency map

Figure 3.3: Monitoring period
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Statistical
Function

Description

Mean Mean of a signal
Min Minimum value of a signal
Max Maximum value of a signal

Variance Square of the standard
deviation of a signal

STD Standard deviation of a
signal

RMS Root mean square
Q1 25th percentile
Q2 50th percentile
Q3 75th percentile

Peak amplitude Difference between the
maximum and minimum

value of the signal

Table 3.2: statistical functions for feature engineering

3.3 Data Segmentation

3.3.1 Creation of elementary driving behaviors

To gain a deeper understanding of driving behaviors. For the "discomfort and
risky driving recognition model", this study segmented the original dataset into 15
EDB, defining subsets of behaviors, including straight driving, slight left, and right
turns, and left and right turns under low, medium, and high-speed conditions. A
data profile describes each EDB. Even with a comparable data profile, aggressive
behavior will stand out from the pattern of average behavior [31, 32].

In the "efficiency and aggressive driving recognition model", the study utilized
the K-means clustering algorithm and threshold limits of steering angle and TTC
[33] to divide the original dataset into 30 EDB, encompassing straight driving,
slight left and right turns under low, medium, and high-speed conditions, with
or without collision risk. Among these, 15 EDB with collision risk were directly
labeled as aggressive driving behaviors. For the remaining 15 EDB, each one is
described by a data profile, where aggressive driving behaviors exceeded the average
behavior profile of each EDB.
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3.3.2 K-means clustering
To achieve the subdivision of these behavior subsets, the study employed the
K-means clustering algorithm and threshold limits of steering angle. The K-means
clustering algorithm (see Alg. 1) is a widely used unsupervised learning algorithm
designed to divide v observations into k clusters, with each observation assigned to
the nearest cluster center (i.e., the point that minimizes the variance within the
cluster). The mathematical expression of the K-means algorithm is as follows:

E = arg min
s

kØ
j=1

Ø
v∈Sj

|v − µj|2 (3.1)

In this context, Sj represents the cluster formed based on the value of k, E is
the squared error. The mean vector of cluster Sj, also known as the centroid, is
denoted by µj. The expression for the centroid is as follows:

µj = 1
|Sj|

Ø
v∈Sj

v (3.2)

The centroids are initialized randomly, and each sample point is assigned to the
centroid that minimizes the Euclidean distance. The centroids are then updated
by calculating the mean of all points in each cluster [34].

3.4 The dataset labeling

3.4.1 Iterative DBSCAN
After successfully defining subsets of EDB, this study employs the DBSCAN
algorithm for further analysis and separation of aggressive driving behaviors within
each EDB. Before delving into this step in detail, it is necessary to provide a
brief introduction to the DBSCAN algorithm. The pseudo-code of the DBSCAN
algorithm is reported below.

DBSCAN identifies clusters based on the estimated density of data points. The
core mechanism of this algorithm is the definition of a neighborhood radius (ϵ)
and the criteria for a point to become a "core point" which is that there must
be a specified number of m (minPts) in the range of ϵ. Algorithm divides the
data set D into three types of points (Core Point, Border Point, Noise Point), and
directly density-reachable (if q is in the ϵ-neighborhood of p, and p is the core
point), density-reachable (if q is in the ϵ-neighborhood of p within the domain,
and both p and q are core points), density-connected (if p and q are both non-core
points, and p and q are in the same cluster class) three connection rules form a
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Algorithm 1 K-means clustering pseudocode
1: Initialise Cluster Centers
2: for each iteration l do
3: Compute rnk:
4: for each data point xn do
5: Assign each data point to a cluster:
6: for each cluster k do
7: if k == arg min ||xn − µl−1

k || then
8: rnk = 1
9: else

10: rnk = 0
11: end if
12: end for
13: end for
14: for each cluster k do
15: Update cluster centers as the mean of each cluster:
16: µl

k =
q

rnkxnq
rnk

17: end for
18: end for

cluster class [35]. Because of these characteristics, DBSCAN particularly suitable
for identifying clusters in different density regions and effectively separating noise
from cluster regions.

Core Point: for a dataset D, a sample p is considered a core point if the ϵ-
neighborhood of p contains at least MinPts samples. The mathematical expression
for this is as follows:

Nε(p) ≥ MinPts
Nε(p) = {q ∈ D | dist(p, q) ≤ ε}

(3.3)

Nϵ(p) represents the number of points in the ϵ-neighborhood of point p.
Border Point: for a sample h that is not a core point, if h is within the ϵ-

neighborhood of any core point p, then sample h is referred to as a border point.
The mathematical expression for this is as follows:

h ∈ Nε(p) (3.4)

Noise Point: for a sample n that is not a core point, if n is not within the ϵ-
neighborhood of any core point p, then sample n is referred to as a noise point.
The mathematical expression for this is as follows:

n /∈ Nε(p) (3.5)
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Algorithm 2 DBSCAN pseudocode
Input: DB: Database
Input: ϵ: Radius
Input: minPts: Density threshold
Input: dist: Distance function
Data: label Point labels, initially undefined
for each point p in database DB do do

if label(p) /= undefined then
then continue

end if
Neighbors N ← RangeQuery(DB, dist, p, ϵ)
if |N | < minPts then

label(p)← Noise
continue

end if
c← next cluster label
label(p)← c
Seed set S ← N \ {p}
for each q in S do do

if label(q) = Noise then
label(q)← c

end if
if label(q) /= undefined then

then continue
end if
Neighbors N ← RangeQuery(DB, dist, q, ϵ)
label(q)← c
if |N | ≥ minPts then

then continue
end if
S ← S ∪N

end for
end for

Figure 3.4 illustrates the theory of DBSCAN clustering. The violet points (A)
are classified as core points. Points B are designated border points since they are
located within a certain distance from a core point. C are noise points because
they are neither in the epsilon range nor core points.

The choice of the minPts parameter is generally two times the number of
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Figure 3.4: DBSCAN cluster principle.

significant features obtained after performing Principal Component Analysis (PCA)
on the original data [36].

minPts = 2 ∗ Feature (3.6)

The selection of ϵ involves using the Elbow Method [37], which consists of
determining the distance from every point in the dataset to its Kth nearest neighbor
(where Kth is the minPts value). These distances are then arranged in descending
order and plotted, resulting in what is known as a sorted k-distance plot. In this
research, I-DBSCAN is used to separate anomalous driving behaviors from normal
behaviors within each EDB. When dealing with high-dimensional datasets, the
performance of clustering algorithms often deteriorates as the number of dimensions
increases, a phenomenon known as the "curse of dimensionality". The introduction
of PCA reduces the dimension of the input data set [38].

The steps of I-DBSCAN are as follows [30, 31]:

1. Determine the parameters necessary for DBSCAN: minPts and ϵ.

2. Set normPercent as the minimum percentage required for normal driving
clusters. Execute DBSCAN and verify that the percentage of normal driving
exceeds normPercent.

3. Segment the clusters into normal clusters, anomalous clusters, and noise.
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4. If the proportion of normal driving observations exceeds normPercent, the
procedure is finished. Otherwise, run another iteration on the normal driving
cluster.

3.4.2 Threshold limits related to comfort, safety, and effi-
ciency

To get labeled data to train the "discomfort and risk driving recognition model".
Aggressive driving behaviors were further divided into three types: behaviors that
affect passenger comfort, behaviors that pose a potential danger and aggressive
driving behavior that does not include the above two characteristics. According
to the study [39], by analyzing Jerk values (i.e., the rate of change of vehicle
acceleration), behaviors with Jerk values greater than 1.07 m/s3 or less than -
1.47 m/s3 can be classified as a aggressive driving behaviors that affect passenger
comfort. Such behaviors, often characterized by the driver’s frequent acceleration
or deceleration, may cause passengers to experience motion sickness. Moreover,
aggressive driving behaviors in everyday driving are also associated with a higher
risk of collision, primarily because these drivers have shorter TTC compared to
drivers engaged in normal driving [25]. TTC is defined as the time required for
two vehicles to collide if they continue at their current relative speed and direction
unchanged. The mathematical expression for TTC is as follows [33]:

TTC = Xi−1(t)−Xi(t)− ll

Ẋi(t)− Ẋi−1(t)
∀Xi(t) > Xi−1(t) (3.7)

where, Xi−1, Ẋi−1 represents the position and speed of the front of the leading
vehicle, li represents the length of the leading vehicle, Xi(t), Ẋi(t) represents the
position and speed of the front edge of the trailing vehicle.

In the research by W. Zhao [40], the threshold for the TTC, denoted as TTC(s),
is defined as 5 seconds. This means that driving behavior is considered potentially
dangerous and likely to result in a collision if TTC < TTC(s). Based on this
threshold, the aggressive driving dataset can be filtered to instances where TTC is
less than 5 seconds and label these instances as aggressive driving behaviors with a
risk of collision. The purpose of this classification is to enable timely warnings or
interventions for drivers when potentially dangerous aggressive driving behaviors
are detected, thereby effectively preventing possible accidents.

For the "efficiency and aggressive driving recognition model", normal driving
behaviors were further divided into two clusters: driving behaviors with high
efficiency and driving behaviors with low efficiency by using 25th percentile of
motor efficiency in the normal driving cluster as the threshold. Values below this
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threshold are classified as low-efficiency driving behavior and those above it as
high-efficiency driving behavior.

3.5 Model Training
In this study, after obtaining a labeled dataset, bayesian optimization-based LSTM
neural network and RF algorithms are used to predict driving behavior.

3.5.1 Bayesian optimization
Bayesian optimization-based LSTM is particularly suited for optimizing hyperpa-
rameters with additional computational costs when compared to standard LSTM.
It relies on Bayesian inference principles by constructing a probabilistic model of
the objective function and using it to select hyperparameters. It primarily consists
of two components: Gaussian Process and acquisition functions. This approach is
advantageous for optimizing complex functions, especially when samples are scarce.
Bayesian optimization approach is detailed in [17].

3.5.2 Long short-term memory neural network
LSTM is an enhanced type of recurrent neural network that introduces gates such
as forget gate ft, input gate it, and output gate ot (see Fig. 3.5). The forget gate
allows irrelevant information to be ignored, and the input gate and output gate
control the access to information.

These mechanisms address the issues of vanishing and exploding gradients in
long sequence data training, effectively modeling the long-term dependencies in
time series data. The Hidden state zt and cell state ct is given by:

zt = ot ⊙ tanh (ct)
ct = ft ⊙ ct−1 + it ⊙ tanh (Wc1zt−1 + Wc2xt +Wc3 + bc)

(3.8)

The current hidden state zt is updated by the Hadamard product of the current
cell state and the output gate. The current hidden state ct is determined by the
three gates, the previous hidden state zt−1, the weight matrix W , the bias term b
and the static metadata s, xt is input vector for current time step t and yt present
future values of a target [41]. The mathematical expression of input gate is:

it = σ (Wi1zt−1 + Wi2yt + Wi3xt + Wi4s + bi) (3.9)
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Figure 3.5: LSTM structure.

σ is the sigmoid activation function, which limits the output value to between
0 and 1. In this form, the amount of new input information can be controlled to
enter the unit state ct. The mathematical expression of forget Gate is:

ft = σ (Wf1zt−1 + Wf2yt + Wf3xt + Wf4s + bf ) (3.10)

It determines which information in unit state ct−1 should be retained or forgotten.
Output Gate - determines how much information about the unit state ct will be
used to calculate the hidden state zt at the current time step. Its mathematical
expression is:

ot = σ (Wo1zt−1 + Wo2yt + Wo3xt + Wo4s +bo) (3.11)

Through this gating mechanism, the LSTM network can learn and retain long-term
dependencies, resulting in better performance when processing long sequence data.

3.5.3 Random forest
RF is an ensemble algorithm proposed by Leo Breiman that constructs multiple
decision trees and combines their results to perform classification. With the help
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Figure 3.6: RF structure.

of decision trees, the algorithm introduces randomness, thereby improving overall
predictive performance and generalization ability. When the algorithm receives
an input vector x (sensor data in our case ), it constructs H regression trees and
averages outputs. If H number of trees T (x)H

1 are created, the regression predictor
of RF is[42, 43]:

fH
RF (x) = 1

H

HØ
h=1

Th(x) (3.12)

To reduce the correlation among trees, RF creates training data sets by randomly
sampling multiple subsets from the original data set. The process of training a
model on each subset to increase the diversity of the tree is called "Bagging". It
is worth noting that each subset is generated by "sampling with replacement",
which means that a data point may be selected multiple times, and some data
points may never be selected. Ultimately, the results of these models are combined
through voting or averaging (see Fig. 3.6 [44]). This not only improves the accuracy
of the models but also enhances their stability, allowing them to maintain good
performance even when facing small changes in input data. Additionally, when
constructing a decision tree, the algorithm selects the best feature from a subset
of input features as the splitting point. This characteristic helps to reduce the
correlation between different trees [42].
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Performance evaluation and
Discussion

4.1 Discomfort and risk driving recognition model
The 933,417 samples collected were consolidated into MP with 0.1 second inter-
vals and 0.3 second lengths, through which the raw data were transformed into
46,678 MP containing 30 samples per group. Subsequently, we followed the second
computational process (Data processing) mentioned in the methodology, which
resulted in the statistical characteristics presented in Tab. 3.2. Finally, the raw
data were transformed into a new dataset of 46,678 MP containing 110 features
each for further computations.

Using the k-means clustering algorithm with parameter k equal to 3, the 46,678
MP are divided into three clusters: low, medium, and high speed based on the
average speed (see Fig. 4.1). Based on this, we further segmented the data of
these three clusters using threshold limits of steering angle. Specifically, data with
steering angles less than 10 degrees (0.17 radians) were classified as straight ahead;
those with steering angles between 10 and 45 degrees (0.17-0.79 radians) were
identified as slight steering; and those with steering angles greater than 45 degrees
(0.79 radians) were categorized as significant steering. Positive and negative values
of the steering angle indicated that the car was turning to the right or to the left,
respectively. In this way, we ended up with an EDB of 15 different combinations of
speed and steering maneuvers.

Before applying the I-DBSCAN algorithm to each EDB, we first screened the
features of the raw data by PCA method to identify the most critical feature com-
ponents. Our analysis showed that only 17 key feature components were needed
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Figure 4.1: K-means clustering of speed. Black dot: centroid, yellow: low-speed
data point, cyan: medium-speed data points, purple: high-speed data points.

to explain 90% of the variance in the data. Figure 4.2 illustrates the outcome
of PCA which helps in selecting the key components/features. After processing
the input data, two key parameters for the DBSCAN algorithm were defined:
minPts and radius (ϵ). The minPts was set to twice the number of principal
component variables, i.e., 34. In order to select appropriate ϵ values, we plotted
elbow diagrams for all 15 EDB (see Fig. 4.3), and we eventually chose a range of
ϵ values centered on the range between 3.2 and 14.2. Subsequently, we execute
the DBSCAN algorithm at least three times for each EDB, after finding clusters
covering 90% (normPercent = 90%) of the EDB data. The purpose is to ensure
that the algorithm stops after finding a cluster containing 90% of the EDB data.
The results show that we identified 43,761 normal driving behaviors marked as 0,
and 2,917 aggressive driving behaviors marked as 1.

To explore the differences between normal and aggressive driving behaviors,
we extracted and compared some input features (average, mean of maximum
and minimum values) of EDB (see Tab. 4.1). The analysis revealed that mean
maximum longitudinal acceleration and mean minimum longitudinal acceleration
differed significantly between the two types of driving behaviors, which highlights
the effectiveness of the clustering algorithm. Values in parentheses indicate the
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Figure 4.2: Principal component analysis.

Figure 4.3: K-dist plot. Red cross: chosen ϵ.
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standard deviation. We observe that aggressive driving behaviors have a higher
degree of dispersion compared to normal driving behaviors, which show a higher
degree of consistency on a normal distribution. Figures 4.4 and 4.5 show that
aggressive driving behavior is clustered with normal driving behavior to some extent
based on the difference of longitudinal and lateral acceleration. Some sample points
in the figures that do not have significant differentiation may be clustered based on
other kinetic features. Based on the thresholds of jerk i.e., [1.07, -1.47] m/s3 and

Feature Units Normal Aggressive
Average Speed (m/s) 10.67

(6.19)
10.70
(6.71)

Average Longitudinal
Acceleration

(m/s2) 0.14
(1.26)

-2.21
(2.82)

Average Lateral
Acceleration

(m/s2) -0.13
(1.79)

-0.24
(2.38)

Average Jerk (m/s3) 0.01
(1.19)

-0.18
(3.21)

Max Speed (m/s) 10.82
(6.19)

11.09
(6.70)

Max Longitudinal
Acceleration

(m/s2) 0.32
(1.27)

-1.12
(3.34)

Max Lateral
Acceleration

(m/s2) 0.02
(1.81)

0.71
(3.51)

Max Jerk (m/s3) 0.21
(0.91)

0.42
(3.26)

Min Speed (m/s) 10.53
(6.19)

10.31
(6.71)

Min Longitudinal
Acceleration

(m/s2) -0.05
(1.36)

-3.4
(3.83)

Min Lateral
Acceleration

(m/s2) -0.29
(1.83)

-1.18
(2.47)

Min Jerk (m/s3) -0.19
(1.17)

-0.76
(3.15)

Table 4.1: Statistical feature of two labels. Values in round bracket are standard
deviation.

TTC (5 seconds), we segmented the aggressive driving data obtained, distinguishing
two types of aggressive driving behaviors: one that affects driving comfort and
the other with a potential crash risk. Based on this classification method, we
succeeded in classifying the data into four categories: 43,761 samples representing
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normal driving behavior (labeled 0), 1,062 samples representing general aggressive
driving behavior (labeled 1), 351 samples aggressive driving behavior with potential
collision risk (labeled 2), and 1,504 samples aggressive driving behavior involving
comfort (labeled 3).

Figure 4.4: Max longitudinal acceleration vs Min longitudinal acceleration. Red
dots: aggressive behavior, blue dots: normal behavior.

Taking the obtained sample features as inputs and the labels as outputs, 9237
samples were selected as the test set to verify the performance of the model. Pro-
cessing the data using a sliding time window of 100 time steps and an overlap
rate of 99%, and input them into a LSTM model for training. In order to select
the optimal initial parameter values, we used a Bayesian optimization method to
tune and optimize several key parameters including dropout rate, initial learn rate,
and L2 Regularization coefficient. By using Bayesian optimization, we are able to
effectively search through the parameter space and find those parameter values
that maximize the model performance. The finalized initial parameters are shown
in Tab. 4.2, which provide a strong starting point for our LSTM model to be able
to demonstrate better learning efficiency and prediction accuracy when dealing
with aggressive driving behavior recognition tasks.

To validate the effectiveness of the results achieved by the training algorithm,

39



Performance evaluation and Discussion

Figure 4.5: Max lateral acceleration vs Min lateral acceleration. Red dots:
aggressive behavior, bule dots: normal behavior.

Hyperparameter Value
LSTM number of layer 2
Number of hidden units 128

Maximum epochs 75
Batch size 64

Dropout rate 0.3
Initial learn rate 3.9463e-4

L2 Regularization 1.012e-4
Loss function Cross-Entropy

Table 4.2: Hyperparameters of LSTM network.

we paid special attention to the optimal initial hyperparameters determined by the
Bayesian optimization algorithm in the sixth iteration (see Fig. 4.6).

Figure 4.7 illustrates the trend of the training loss compared to the valida-
tion loss. It is observed that the loss value decreases rapidly at the beginning of
training, indicating that the model quickly learns the features of the data in the
early stages. The model tends to converge after approximately 4000 iterations.
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Figure 4.6: Bayesian Optimization Loss Curve.

Notably, although the blue solid line representing the training loss in the figure
fluctuates ( This is because we used a smaller batch size. When the batch size
is small, the distribution and characteristics of the data in each batch can be
very different. This variability causes the loss to fluctuate. However, this can
also help the model escape from local minima and avoid overfitting. This ran-
domness usually generalizes better to unseen data.), the overall trend is consistent
with the test loss, which is represented by the red dashed line. This implies that
the model does not suffer from overfitting and maintains good generalization ability.

The confusion matrix is a key tool for evaluating the performance of neural net-
works and is reported in Fig. 4.8. As an n x n square matrix (where n denotes the
total number of categories), the confusion matrix provides a detailed comparison of
the model’s classification predictions with the true labels (clustered by I-DBSCAN
algorithm). Elements on the diagonal of the matrix indicate the proportion of
correctly categorized samples, while off-diagonal elements reflect misclassification.
This detailed demonstration of categorization effectiveness not only helps us assess
the overall accuracy of the model, but also allows us to identify and improve the
model’s under-performance on specific categories.

The algorithm predicts the data samples in four classes: aggressive, normal
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Figure 4.7: Loss curve. Blue solid line: training loss; Red dashed line: : test loss.

Figure 4.8: Confusion matrix. Below the matrix: precision for each label, right
side of the matrix: recall for each label.

(normal driving), risky, and discomfort. The algorithm demonstrates excellent
performance in identifying normal, risky, and uncomfortable driving behaviors,
with both precision and recall exceeding 97%. However, some miss classifications
occur in general aggressive driving events, likely due to significant imbalances
among different categories of samples. Since the identification of risky and un-
comfortable behaviors is based on single feature threshold limits of TTC and
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jerk, these classifications are largely unaffected by data imbalance. Overall, the
model performs exceptionally well, as the majority of samples are correctly classified.

In Tab. 4.3, we compared the results of LSTM with RF. Due to the imbalance in
the samples, we chose to evaluate the performance of the models using the F-score.
It was found that LSTM outperforms RF across all labels. This is because LSTM
has the capability to automatically extract useful features from raw time series
data, whereas RF often faces limitations when dealing with high-dimensional data.

RF LSTM
F-score for aggressive 0.836 0.869

F-score for normal 0.991 0.996
F-score for risky 0.775 0.975

F-score for discomfort 0.847 0.994

Table 4.3: Performance comparison of RF and LSTM

Figure 4.9 illustrates how the algorithm detects and identifies aggressive driving
behaviors by feeding the features.

The LSTM model outputs four potential predictions labeled as 0, 1, 2, and 3.
By observing the lateral acceleration, it is noticed that around time 1.6 s, there
is a sudden change in lateral acceleration (which could be attributed to abrupt
maneuvers such as sharp turns or lane changes). The neural network’s prediction
shifts from 0 to 1, indicating the algorithm successfully identifies aggressive driving
behavior. As a result, this methodology can be used to alert the driver if he deviates
from his normal driving style.

4.2 Efficiency and aggressive driving recognition
model

We collected 8 hours of driving data from three drivers. According to the prepro-
cessing steps described in the methodology, 2,794,882 samples were divided into
139,767 MP, each MP with a time interval of 0.1 seconds, length of 0.3 seconds
and includes 110 statistical features.

Further we classified all the MP into three groups based on their speed distribu-
tion using a K-means clustering algorithm with 3 clusters: low-speed, medium-speed,
and high-speed driving (see Figure 4.10).

43



Performance evaluation and Discussion

Figure 4.9: Neural network input and output. The first row: longitudinal velocity
signal, the second row: longitudinal acceleration signal, the third row: lateral
acceleration signal, the fourth row: aggressive driving behavior prediction. 1
represents aggressive behavior.

Each group was subdivided into five clusters, with classifications as follows:
straight-line driving for steering angles less than 0.17 radians (10 degrees), slight
steering for angles between 0.17 and 0.79 radians (10 to 45 degrees), and significant
steering for angles greater than 0.79 radians (45 degrees). After segmenting each
steering operation combination, we used a TTC threshold of 5 seconds to further
divide the 15 EDB into 30 EDB. 15 EDB with a TTC of less than 5 seconds were
directly labeled as aggressive driving behavior, other 15 EDB with TTC greater
than 5 seconds are used for the I-DBSCAN algorithm (the EDB mentioned later in
I-DBSCAN refers to them).

To avoid the curse of dimensionality, it is essential to extract key features from
the 110 features of each MP. By applying the PCA method and considering 90%
of the cumulative variance in the data, the input features were reduced to 17 key
features. Fig. 4.11 displays the results of the PCA.

Before clustering the processed data, two critical hyperparameters for the DB-
SCAN algorithm had to be defined: minPts and radius (ϵ). minPts was set to twice
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Figure 4.10: K-means clustering of speed for efficiency recognition. Black dot:
centroid, yellow: low-speed data point, cyan: medium-speed data points, purple:
high-speed data points.

the number of principal components, i.e., 34 and a suitable ϵ range was chosen
between 2.4 and 12.54 by means of Elbow diagrams (see Fig. 4.12).

After completing all preprocessing steps, the data was input into the I-DBSCAN
algorithm, where all EDB was run through at least three iterations after finding
clusters containing more than 80% of the EDB data, the purpose of this step is
to stopping algorithm after discovering clusters covering 80% of the EDB data.
This indicates that the algorithm successfully classified normal driving behaviors
as the main clusters and aggressive driving behaviors as noise. After combining
EDB with TTC less than 5s, 89,005 MP were labeled as normal driving behaviors,
marked with a 0, and 50,762 MP were labeled as aggressive driving behaviors,
marked with a 1. To understand the differences between normal and aggres-
sive driving behaviors, we extracted and compared some statistical features (such
as averages, mean of maximum, and minimum values) from the EDB (see Tab. 4.4).

Standard deviations are displayed in parentheses. It can be observed that normal
driving behaviors, due to their smaller standard deviations, exhibit higher consis-
tency in a normal distribution; conversely, aggressive driving behaviors show greater

45



Performance evaluation and Discussion

Figure 4.11: Principal component analysis for efficiency recognition.

Figure 4.12: K-dist plot for efficiency recognition. Red cross: chosen ϵ.
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dispersion due to larger standard deviations. This indicates that the algorithm
successfully separated the outliers. By comparing the longitudinal acceleration
of normal and aggressive driving (see Fig. 4.13), it is found that the action of
slamming on the brakes is more likely to be identified as aggressive driving, as most
red MP are concentrated in negative longitudinal acceleration. From Fig. 4.13, it
is evident that some MP are not distinctly separated, primarily because they are
clustered based on other input features, such as lateral acceleration or steering speed.

Figure 4.13: Max longitudinal acceleration vs Min longitudinal acceleration for
efficiency recognition. Red dots: aggressive behavior, blue dots: normal behavior.

After successfully isolating aggressive driving behaviors from 15 EDB, we used
25th percentile of motor efficiency within the normal driving cluster as a threshold
to further divide normal driving behaviors into two types: one associated with high
efficiency driving behavior, and the other classified as inefficient driving behavior.
The box plot (see Fig. 4.14) shows that the average operational efficiency for high
efficiency driving is 94%, while the mean for inefficient driving behaviors is centered
around 87%. Ultimately, this study successfully categorized the original unlabeled
data into three distinct groups: high efficiency (labeled 0), aggressive (labeled 1),
and inefficient driving behavior (labeled 2).

This study utilized 111,913 MP to train and optimize the neural network model,

47



Performance evaluation and Discussion

Feature Units Normal Aggressive
Average Speed (m/s) 10.67

(5.31)
12.06
(5.74)

Average Longitudinal
Acceleration

(m/s2) 0.07
(1.3)

-0.27
(1.63)

Average Lateral
Acceleration

(m/s2) -0.21
(1.84)

0.07
(2.26)

Average Steering
Speed

(rad/s) -0.2
(1.02)

-0.005
(1.16)

Max Speed (m/s) 10.85
(5.33)

12.22
(5.64)

Max Longitudinal
Acceleration

(m/s2) 0.22
(1.29)

0.09
(1.71)

Max Lateral
Acceleration

(m/s2) -0.03
(1.84)

0.18
(2.29)

Max Steering Speed (rad/s) -0.11
(1.03)

0.014
(1.14)

Min Speed (m/s) 10.54
(5.33)

11.91
(5.53)

Min Longitudinal
Acceleration

(m/s2) -0.09
(1.36)

-0.61
(1.81)

Min Lateral
Acceleration

(m/s2) -0.40
(1.86)

-0.03
(2.25)

Min Steering Speed (rad/s) -0.29
(1.01)

-0.025
(1.18)

Table 4.4: Statistical feature of two labels for efficiency recognition. Values in
round bracket are standard deviation.

while the remaining 27,854 MP were used as a test set to assess the model’s perfor-
mance. Before inputting features into the Bayesian optimization LSTM model, we
reshaped the data using a sliding time window with a step size of 150 and an overlap
rate of 99%, which helps the model learn the temporal information contained in
the data. To achieve the best model, Bayesian optimization was employed to
select appropriate initial hyperparameters. After 10 rounds of iteration, the initial
hyperparameters were finalized as shown in Tab. 4.5.

The results are displayed in Fig. 4.15. This matrix is in a 3 x 3 format, where
the 3 labels are aggressive, low, and high-efficiency driving behaviors. It intuitively
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Figure 4.14: High efficiency vs low efficiency. Red dots: Outliers, red horizontal
line: mean efficiency.

Hyperparameters Value
LSTM number of layers 2
Number of hidden units 128

Maximum epochs 75
Batch size 128

Dropout rate 0.3
Initial learn rate 4.6663e-4

L2 Regularization 1.0343e-4
Loss function Cross-Entropy

Table 4.5: Hyperparameters of LSTM network for efficiency recognition.

compares the model’s classification predictions with the actual category labels
defined by TTC threshold limits and I-DBSCAN algorithm.

By analyzing the confusion matrix, we can see that the model exhibits extremely
high accuracy in predicting both high efficiency and aggressive driving behaviors,
with precision and recall exceeding 95% for both. However, in predicting inefficient
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Figure 4.15: Confusion matrix for efficiency recognition. Below the matrix:
precision for each label, right side of the matrix: recall for each label.

driving behaviors, performance slightly lower than the other two categories due to
smaller number of samples in this category, but its precision and recall rates still
exceed 90%. Overall, the model performs excellently in predicting these three types
of driving behaviors, with the vast majority of samples being correctly classified.
Due to the imbalance in data distribution, using the F-score is an excellent metric
for evaluating model performance. Tab. 4.6 shows the F-scores of the RF and
LSTM models and it is evident that both models perform exceptionally well across
the three categories, with the RF model achieving F-scores exceeding 98% in all
cases.

RF LSTM
F-score for aggressive 0.987 0.960

F-score for Low efficiency 0.991 0.967
F-score for High efficiency 0.992 0.975

Table 4.6: Performance comparison of RF and LSTM for efficiency recognition.

Fig. 4.16 shows the performance of the driving patterns recognition algorithm
by feeding features. From Fig. 4.16, it is observed that between 1.2 seconds and
1.7 seconds, the motor efficiency suddenly drops. This behavior is detected by the
model, causing the prediction to change from 0 to 2. Additionally, between 3.4
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Figure 4.16: Neural network input and output for efficiency recognition. The
first row: longitudinal velocity signal, the second row: longitudinal acceleration
signal, the third row: motor efficiency signal, the fourth row: driving behavior
prediction. 0 reprents high behavior, 1 represents aggressive behavior. 2 represents
low efficiency behavior.

seconds and 4.6 seconds, the longitudinal acceleration drops sharply. This behavior
is also captured by the model, resulting in the prediction change from 0 to 1.
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Chapter 5

Conclusion

This thesis proposes a methodology to cluster the driving behavior using I-DBSCAN
and predict using Bayesian optimization-based LSTM neural network and RF al-
gorithm. Data were gathered through a driving simulator within an environment
constructed in SCANeR™Studio.

It involves dividing the dataset into multiple monitoring periods and calculating
statistical features for each period. The data are then segmented into Elementary
Driving Behaviors and clustered at least three times using the I-DBSCAN algorithm
for each EDB. Clusters representing 90% or 80% of the EDB data are labeled as
normal driving behavior, with the remainder marked as aggressive driving behavior.
Aggressive driving behaviors are further classified into those affecting comfort and
safety based on Jerk and Time to Collision thresholds for discomfort and risk
driving recognition. On the other hand, motor efficiency thresholds are used in
efficiency and aggressive driving recognition. Then the labeled dataset is used
to train an LSTM neural network and RF in the Matlab environment, and their
performances are compared.

The results show that LSTM achieves better performance for discomfort and risk
driving recognition model, with F-scores of 0.869, 0.975, and 0.994 for aggressive
driving behavior, risky driving behavior, and discomfort driving behavior, respec-
tively. For efficiency and aggressive driving recognition model. F-scores of RF
are 0.987, 0.991, and 0.992 for aggressive driving behavior, low-efficiency driving
behavior, and high-efficiency driving behavior, respectively. These results indicates
that the algorithm has acceptable accuracy in identifying these driving behaviors.

Despite the algorithm’s notable results, some areas require improvement, such as
the data imbalance from three drivers affecting the model’s performance. Expanding
the dataset size, incorporating more drivers, and increasing the sample size of
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aggressive driving behaviors could further enhance model performance. The model
has not yet been tested in a real-world environment, so its reliability in actual
conditions remains to be verified.
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