
POLITECNICO DI TORINO
Master’s Degree in AUTOMOTIVE ENGINEERING

Master’s Degree Thesis

GPS-Driven Autonomous Navigation for
Precision Agriculture with AWS

Supervisor

Prof. Guido ALBERTENGO

Candidate

Marco CAMPINI

July 2024

Abstract

This thesis presents the development of a GPS-driven autonomous navigation sys-
tem designed for precision agriculture, specifically targeting vineyard management.
Conducted in collaboration with beSharp spa and commissioned by Q8 Italia, the
project aims to enhance the efficiency and accuracy of vineyard operations by
enabling a self-driving robot to autonomously navigate and detect grapevine dis-
eases. Leveraging the capabilities of Amazon Web Services (AWS), the system
offers scalable, cost-effective, and reliable real-time navigation solutions. The re-
search focuses on the architectural design, implementation process, and challenges
encountered during development. By integrating advanced robotics and cloud
computing technologies, this work contributes significantly to the field of preci-
sion agriculture, setting the foundation for future advancements in autonomous
agricultural robotics.

The thesis is organized into four main chapters: an introduction to the research
objectives and the state of the art in robot navigation, a detailed discussion of
the software architecture, the development and results of simulation and imple-
mentation, and a conclusion outlining experimental results and future work. This
comprehensive approach not only demonstrates the practical application of the de-
veloped system but also provides valuable insights for ongoing and future research
in precision agriculture.

i

Acknowledgements

I would like to express my deepest gratitude to my professor, whose guidance, sup-
port, and availability have been invaluable throughout the entirety of this research
project.

I am also immensely grateful to beSharp spa and Q8 Italia for providing me
with the opportunity to work on such an impactful project. Their support and
collaboration have been fundamental to this work, and I appreciate the resources
and knowledge they have generously shared.

Lastly, I want to extend my heartfelt thanks to my family. Their unwavering
support and belief in me have been a constant source of motivation and strength.

Thank you all.

ii

Table of Contents

1 Introduction 1
1.1 Objective of the Thesis . 2
1.2 Organization of the Thesis . 3
1.3 State of the Art in Robot Navigation 4

1.3.1 Introduction . 4
1.3.2 Navigation Techniques . 4
1.3.3 Learning-Based Navigation 5
1.3.4 Simultaneous Localization and Mapping (SLAM) 6

2 Software Architecture 7
2.1 ROS 2 . 7

2.1.1 Introduction . 7
2.1.2 Background and Motivation 7
2.1.3 Architecture of ROS 2 . 7
2.1.4 Key Features of ROS 2 . 9
2.1.5 Development and Deployment Tools 9
2.1.6 Applications of ROS 2 . 10

2.2 Cloud Computing . 12
2.2.1 Introduction to Cloud Computing 12
2.2.2 Characteristics of Cloud Computing 12
2.2.3 Service Models . 13
2.2.4 Deployment Models . 14
2.2.5 Benefits of Cloud Computing 15
2.2.6 Challenges in Cloud Computing 17
2.2.7 Amazon Web Services (AWS) 17
2.2.8 Future Trends in Cloud Computing 19
2.2.9 Project Infrastructure . 21

3 Development 24
3.1 Website . 24
3.2 Simulation . 26

iv

3.2.1 Gazebo Ignition . 26
3.2.2 RViz2 . 27
3.2.3 Husarion Robot Model . 27
3.2.4 Virtual Machine . 30
3.2.5 Map . 35
3.2.6 Nodes and Launch Files . 36
3.2.7 Results . 38

3.3 Robot . 41
3.3.1 Setup . 42
3.3.2 Nodes and Launch Files . 43
3.3.3 Results . 44

4 Conclusion 47
4.1 Experimental Results . 47
4.2 Future Work . 47

A Websocket functions 49

B Website 51

C GPS URDF Model 62

D Nodes and Launch Files - Simulation 64

E Nodes and Launch files - Robot 73

F EC2 Setup 76

G Husarion Tutorials 78

Bibliography 80

v

Chapter 1

Introduction

Agriculture is one of the fundamental activities of the human society, as it pro-
vides bio-fuels and, most importantly, food. To face the challenges and demands
of a continuously growing population and the escalating environmental concerns,
the agricultural sector is adopting more and more technology-driven solutions to
improve the efficiency, productivity and sustainability of farming. The latest ap-
proach to agricultural management that exploits advanced technology is known
as precision farming, also known as precision agriculture. "Precision agriculture
(PA) is a methodology to farm management that uses information technology (IT)
to certify that the crops and soil obtain exactly what they require for optimum
health and efficiency" [1].

Figure 1.1: Applications of integrated IoT and smart sensors for precision farm-
ing [2]

1

Introduction

1.1 Objective of the Thesis
This Master’s thesis focuses on the development of a GPS-driven autonomous nav-
igation system tailored for precision agriculture, leveraging the robust capabilities
of Amazon Web Services (AWS). This research has been conducted in collabora-
tion with the tech consulting company beSharp spa, marking the initial phase
of a broader and more intricate project commissioned by one of their clients, Q8
Italia. The ultimate goal of the comprehensive project is to create a sophisti-
cated self-driving robot that can autonomously navigate through vineyards and
accurately detect the presence of specific diseases on grapevines. Achieving this
involves integrating advanced technologies in robotics, data analysis, and cloud
computing. In this thesis, particular emphasis is placed on the development of
the autonomous navigation system, which serves as a foundational component of
the overall project. By utilizing AWS, this system is designed to offer reliable,
cost-efficient and scalable solutions for real-time navigation. The research details
the system architecture, implementation process, and the various challenges en-
countered and addressed throughout the development phase. This work not only
contributes to the field of precision agriculture by enhancing the efficiency and
accuracy of vineyard management but also sets the stage for future advancements
in autonomous agricultural robotics.

2

Introduction

1.2 Organization of the Thesis
The thesis is divided into four chapters, each addressing a distinct aspect of the
research problem and contributing to the overall understanding of the topic.

• Chapter 1 - Introduction: the first chapter provides an overview of the
research topic, stating the research problem, objectives, and the significance
of the study. It outlines the research questions and hypotheses that guide
the investigation. Additionally, this chapter presents a brief summary of the
methodology and the structure of the thesis. Finally, the state of the art in
robot navigation is presented.

• Chapter 2 - Software Architecture: the second chapter delves into the
software architecture relevant to the research problem. It provides a compre-
hensive overview of the architectural design, including the components, their
interactions, and the rationale behind architectural decisions. It discusses
different architectural styles and patterns that are applicable and how they
influence the overall system design. The chapter also addresses issues such as
scalability, performance, and maintainability.

• Chapter 3 - Development: the third chapter is dedicated to presenting
the main work of the thesis and the results of the research, divided into three
main sections: website, simulation and robot. The website section presents
the characteristics of the user interface developed to control the robot. The
simulation section discusses the setup, execution, and outcomes of various
simulations conducted to develop and test the code in a simpler environment.
It includes detailed descriptions of the simulation environment, parameters,
and results. The robot section covers the practical implementation of the
proposed solutions and their validation in real-world scenarios. This section
includes a description of the real robot, implementation process, challenges
faced, and the results obtained from validation experiments.

• Chapter 4 - Conclusion: the final chapter summarizes the key findings of
the research and their practical and theoretical implications. It restates the
significance of the study and provides concluding remarks. Recommendations
for future work are also presented, offering guidance for future researchers.

3

Introduction

1.3 State of the Art in Robot Navigation

1.3.1 Introduction
Robot navigation is a pivotal field within robotics, involving the design and im-
plementation of algorithms that enable robots to move autonomously within their
environment. This section delves into the state-of-the-art techniques in robot nav-
igation, highlighting the advancements and methodologies currently shaping the
field.

1.3.2 Navigation Techniques
Robot navigation techniques can be broadly classified into several categories, each
with its unique approach and applications. These categories include reactive nav-
igation, deliberative navigation, hybrid approaches, and learning-based methods.

Reactive Navigation

Reactive navigation systems rely on real-time sensor data to make immediate
decisions about movement, often without any global planning. These systems
are typically fast and computationally efficient but may struggle with complex
environments. Common techniques in reactive navigation include:

• Potential Fields: Robots generate a virtual field where obstacles repel and
goals attract the robot. While simple to implement, potential fields can suffer
from issues like local minima [3].

• Behavior-Based Control: This method decomposes navigation into a set
of behaviors (e.g., obstacle avoidance, goal seeking) that are executed based
on sensor inputs. The Subsumption Architecture is a classic example of this
approach [4].

Deliberative Navigation

Deliberative navigation involves constructing a detailed model of the environment
and planning paths based on this model. These systems are generally more ro-
bust in complex environments but require more computational resources. Key
techniques include:

• Graph-Based Methods: Methods like A* and Dijkstra’s algorithm use
graphs to represent the environment and find optimal paths. These methods
are highly effective in known environments but can be slow [3].

4

Introduction

• Sampling-Based Planners: Algorithms like Rapidly-exploring Random
Trees (RRT) and Probabilistic Roadmaps (PRM) are used for path plan-
ning in high-dimensional spaces. These methods are particularly useful in
robotics due to their ability to handle complex spaces [4].

Hybrid Approaches

Hybrid approaches combine the strengths of reactive and deliberative methods to
create systems that can handle a wider range of scenarios. These systems typically
use a high-level planner to generate a global path and a low-level controller to
handle local obstacles and real-time adjustments. Examples include:

• Hierarchical Planning: This approach uses a global planner to generate a
coarse path and a local planner to refine the path in real-time [4].

• Elastic Band Method: This method adjusts a precomputed path dynam-
ically as the robot encounters new obstacles, providing a balance between
efficiency and robustness [3].

1.3.3 Learning-Based Navigation
Recent advancements in machine learning have significantly impacted robot nav-
igation, enabling robots to learn from their environments and improve their per-
formance over time. Learning-based navigation methods include:

Reinforcement Learning

Reinforcement learning (RL) allows robots to learn optimal navigation policies
through trial and error. Techniques like Q-learning and Deep Q-Networks (DQN)
have been applied to navigation tasks, demonstrating the ability to learn effective
strategies in complex environments. Key aspects include:

• Reward Functions: Defining appropriate reward functions is critical for
successful RL applications in navigation [5].

• Exploration vs. Exploitation: Balancing exploration of new paths with
exploitation of known good paths is a central challenge in RL [5].

Imitation Learning

Imitation learning involves training robots to mimic expert demonstrations. This
approach can be more sample-efficient than RL and has been used in various
navigation tasks. Techniques include:

5

Introduction

• Behavior Cloning: Directly mapping states to actions based on expert data
[5].

• Inverse Reinforcement Learning: Inferring the reward function from ex-
pert demonstrations and using it to guide the robot’s actions [5].

1.3.4 Simultaneous Localization and Mapping (SLAM)
SLAM is a foundational technology in robot navigation, enabling robots to build
a map of their environment while simultaneously localizing themselves within it.
Modern SLAM techniques integrate various sensor modalities and leverage ad-
vanced algorithms:

Visual SLAM

Visual SLAM uses cameras to capture images of the environment and extract
features for mapping and localization. Techniques include:

• ORB-SLAM: A robust and versatile visual SLAM system using Oriented
FAST and Rotated BRIEF (ORB) features [6].

• Direct Methods: These methods, such as LSD-SLAM, use pixel intensities
directly rather than feature points, offering advantages in certain scenarios
[7].

Lidar-Based SLAM

Lidar-based SLAM utilizes laser scanners to generate highly accurate maps. These
systems are particularly effective in environments with rich geometric features.
Prominent methods include:

• Hector SLAM: Uses scan matching to estimate the robot’s pose in real-time
[8].

• Cartographer: Developed by Google, this method combines real-time con-
straints with global optimization to produce detailed maps [9].

6

Chapter 2

Software Architecture

2.1 ROS 2

2.1.1 Introduction

Robot Operating System (ROS) is a flexible framework for writing robot software.
It is a collection of tools, libraries, and conventions that aim to simplify the task
of creating complex and robust robot behavior across a wide variety of robotic
platforms [10]. ROS 2 is the next generation of ROS, designed to address limita-
tions of ROS 1 and to add features required for production-grade use cases [11].
This section provides an in-depth look into ROS 2, its architecture, features, and
applications.

2.1.2 Background and Motivation

The original ROS, often referred to as ROS 1, was introduced in 2007. Over
the years, it has been widely adopted by academia and industry for research and
development [10]. However, ROS 1 has several limitations, particularly in terms
of real-time capabilities, security, and support for multi-robot systems [11]. These
limitations necessitated the development of ROS 2, which aims to provide a more
robust and scalable solution suitable for commercial applications [11].

2.1.3 Architecture of ROS 2

ROS 2 retains the core concepts of ROS 1, such as nodes, topics, services, and
messages, but it introduces significant changes to the underlying architecture to
enhance performance, reliability, and flexibility [11].

7

Software Architecture

Data Distribution Service (DDS)

One of the key architectural changes in ROS 2 is the adoption of the Data Distri-
bution Service (DDS) standard for its communication layer. DDS is a middleware
protocol and API standard for data-centric connectivity from the Object Manage-
ment Group (OMG) [12]. It provides:

• Real-time Communication: DDS supports real-time, low-latency commu-
nication, which is essential for robotics applications [12].

• Quality of Service (QoS): DDS allows fine-grained control over communi-
cation parameters such as reliability, durability, and deadline [12].

• Scalability: DDS is designed to work efficiently in large and dynamic net-
works, making it suitable for multi-robot systems [12].

• Interoperability: As a standard, DDS enables interoperability between dif-
ferent implementations and platforms [12].

Node and Executor Model

In ROS 2, the concept of nodes remains central. A node is a process that performs
computation. Nodes can communicate with each other using topics, services, and
actions. ROS 2 introduces the executor model, which is responsible for managing
the execution of callbacks for incoming messages and service requests [11]. This
model provides:

• Flexibility: Different executors can be implemented to suit specific needs,
such as real-time constraints or custom scheduling policies [11].

• Efficiency: The executor model helps in optimizing the use of system re-
sources by managing the lifecycle and execution context of nodes [11].

Lifecycle Management

ROS 2 introduces a managed lifecycle for nodes, which allows greater control over
the state of nodes. The lifecycle states include unconfigured, inactive, active,
and finalized [13]. This feature is particularly useful for systems that require
deterministic startup and shutdown sequences, ensuring that nodes are correctly
initialized and cleaned up [13].

8

Software Architecture

2.1.4 Key Features of ROS 2
Security

Security is a critical requirement for modern robotic systems, especially those used
in sensitive or commercial applications. ROS 2 incorporates security features such
as [14]:

• Authentication: Ensuring that only authorized nodes can communicate
[14].

• Encryption: Protecting data in transit between nodes [14].

• Access Control: Defining policies for what each node can do, including
publish/subscribe permissions [14].

Real-time Capabilities

ROS 2 is designed with real-time performance in mind. It leverages DDS’s QoS
settings to meet the requirements of real-time applications [12]. Additionally,
ROS 2 allows the use of real-time operating systems (RTOS) and custom real-
time scheduling policies to achieve deterministic behavior [11].

Multi-robot Systems

Supporting multi-robot systems is a significant focus of ROS 2. It enables seamless
communication and coordination between multiple robots, which is crucial for
collaborative tasks [11]. The use of DDS facilitates efficient data exchange in
distributed environments [12].

Cross-platform Support

ROS 2 is designed to be platform-agnostic, supporting a wide range of operating
systems, including Linux, Windows, and macOS [11]. This cross-platform com-
patibility ensures that ROS 2 can be used in diverse development environments
and deployed on various hardware platforms [11].

2.1.5 Development and Deployment Tools
Colcon

Colcon is the build tool used in ROS 2, replacing the ROS 1 catkin tool [15]. It
provides a more flexible and efficient way to build packages and manage depen-
dencies [15]. Colcon supports parallel builds and can handle large codebases more
effectively [15].

9

Software Architecture

ROS 2 Launch System

The ROS 2 launch system allows for the configuration and deployment of complex
systems [16]. It provides tools for launching multiple nodes, configuring parame-
ters, and managing the lifecycle of nodes [16]. The launch system supports both
Python and XML, offering flexibility in how launch files are written and executed
[16].

Simulation

Simulation is a crucial aspect of developing and testing robotic systems. ROS 2
supports various simulation tools, including Gazebo and Ignition [17, 18]. These
tools allow developers to create realistic environments and simulate the behavior
of robots before deploying them in the real world [17, 18].

2.1.6 Applications of ROS 2
Autonomous Vehicles

ROS 2 is widely used in the development of autonomous vehicles [19]. Its real-
time capabilities, robust communication, and security features make it suitable for
applications where safety and reliability are paramount [19]. Companies in the au-
tomotive industry are adopting ROS 2 for prototyping and deploying autonomous
driving solutions [19].

Industrial Automation

In industrial automation, ROS 2 is used to control robotic arms, AGVs (Auto-
mated Guided Vehicles), and other machinery [20]. Its support for multi-robot
systems and real-time communication ensures efficient and coordinated operation
in industrial settings [20].

Healthcare Robotics

Healthcare robotics, including surgical robots and assistive devices, benefit from
ROS 2’s precision and reliability [21]. ROS 2 enables the integration of vari-
ous sensors and actuators, providing a robust framework for developing complex
healthcare applications [21].

Research and Education

ROS 2 continues to be a valuable tool in research and education [22]. Universi-
ties and research institutions use ROS 2 to teach robotics concepts and conduct

10

Software Architecture

cutting-edge research [22]. Its open-source nature and active community support
contribute to its widespread adoption in academia [22].

11

Software Architecture

2.2 Cloud Computing

2.2.1 Introduction to Cloud Computing

Cloud computing is a transformative model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources,
such as networks, servers, storage, applications, and services, that can be rapidly
provisioned and released with minimal management effort or service provider in-
teraction [23]. This model promotes availability and is composed of five essential
characteristics, three service models, and four deployment models.

The concept of cloud computing has evolved over several decades. The term
"cloud" is used as a metaphor for the Internet, based on the cloud drawing used
in the past to represent the telephone network, and later to depict the Internet in
computer network diagrams. The advent of virtualization, web 2.0, and advances
in networking have all contributed to the rise of cloud computing.

2.2.2 Characteristics of Cloud Computing

The essential characteristics of cloud computing include:

On-demand Self-service

Users can automatically provision computing capabilities, such as server time and
network storage, as needed, without requiring human interaction with each service
provider [23]. This characteristic is crucial as it reduces the time needed to deploy
new applications and services, thereby increasing efficiency and responsiveness.
For example, a developer can quickly deploy a virtual server without waiting for
IT to provide the necessary infrastructure.

Broad Network Access

Capabilities are available over the network and accessed through standard mech-
anisms that promote use by heterogeneous thin or thick client platforms, such as
mobile phones, tablets, laptops, and workstations [23]. This ensures that services
are accessible from anywhere at any time, provided there is internet connectivity.
An example is accessing cloud-based email services like Gmail from any device.
This characteristic supports the growing trend of remote work and global collab-
oration.

12

Software Architecture

Resource Pooling

The provider’s computing resources are pooled to serve multiple consumers using
a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand [23]. This creates an
economy of scale, as resources are utilized more efficiently. For instance, cloud
providers like Amazon Web Services (AWS) can host thousands of virtual servers
on fewer physical machines, optimizing resource usage. The pooling of resources
helps in cost reduction and resource efficiency.

Rapid Elasticity

Capabilities can be elastically provisioned and released, in some cases automati-
cally, to scale rapidly outward and inward commensurate with demand [23]. This
elasticity is one of the key benefits of cloud computing, allowing businesses to
handle varying workloads without investing in permanent infrastructure. An ex-
ample is an e-commerce website scaling its resources during peak shopping seasons.
Elasticity ensures that businesses can manage load spikes effectively without com-
promising performance.

Measured Service

Cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts) [23]. This pro-
vides transparency for both the provider and consumer of the utilized service. For
instance, a business can monitor its cloud usage and only pay for what it con-
sumes, similar to utility billing. This characteristic enables detailed monitoring
and management of resource usage.

2.2.3 Service Models
Cloud computing is commonly classified into three service models:

Infrastructure as a Service (IaaS)

IaaS provides virtualized computing resources over the internet. It serves as the
basic physical infrastructure and includes virtual machines, storage, and networks
[23]. IaaS is highly scalable and can be adjusted according to the demand. Exam-
ples of IaaS providers include AWS EC2, Google Compute Engine, and Microsoft
Azure VMs. These services allow businesses to rent virtual servers and storage
space, reducing the need for physical hardware. IaaS provides the foundational

13

Software Architecture

building blocks for cloud IT and typically includes access to networking features,
computers (virtual or on dedicated hardware), and data storage space.

Platform as a Service (PaaS)

PaaS provides a platform allowing customers to develop, run, and manage ap-
plications without the complexity of building and maintaining the underlying in-
frastructure typically associated with developing and launching an app [23]. This
model supports the complete application lifecycle, including building, testing, de-
ploying, managing, and updating. Examples of PaaS include Google App Engine,
Microsoft Azure App Services, and Heroku. These platforms simplify the devel-
opment process by providing pre-configured environments. PaaS can improve the
speed of development of applications, and the integration of databases and other
services.

Software as a Service (SaaS)

SaaS allows users to connect to and use cloud-based apps over the Internet. Com-
mon examples are email, calendaring, and office tools (such as Microsoft Office 365)
[23]. SaaS removes the need for organizations to install and run applications on
their computers or in their data centers, which simplifies maintenance and support.
Examples include Salesforce, Google Workspace, and Dropbox. These services are
subscription-based and accessible via web browsers. SaaS applications are accessed
by users via a web browser, and updates and maintenance are managed by the
SaaS provider.

2.2.4 Deployment Models
The four primary cloud deployment models include:

Public Cloud

Public clouds are owned and operated by third-party cloud service providers, de-
livering their computing resources like servers and storage over the Internet [23].
The major public cloud providers include AWS, Microsoft Azure, and Google Cloud
Platform. These services offer vast scalability and pay-as-you-go pricing models,
making them accessible to businesses of all sizes. Public clouds are suitable for
non-sensitive, high-volume workloads where cost and scalability are primary con-
cerns. The infrastructure and services are provided on a shared platform, and the
data security and management policies are controlled by the provider.

14

Software Architecture

Private Cloud

A private cloud refers to cloud computing resources used exclusively by a single
business or organization. A private cloud can be physically located at your or-
ganization’s on-site datacenter or hosted by a third-party service provider [23].
Private clouds provide greater control over data, security, and compliance, making
them ideal for industries with strict regulatory requirements. Technologies such
as VMware, OpenStack, and Microsoft Azure Stack enable the creation of private
clouds. Private clouds are customizable and can be tailored to the specific needs
of an organization.

Hybrid Cloud

Hybrid clouds combine public and private clouds, bound together by technology
that allows data and applications to be shared between them [23]. This approach
offers greater flexibility and optimization of existing infrastructure, security, and
compliance. For example, a business can use the public cloud for high-volume,
low-security needs such as web-based email, and the private cloud for sensitive,
business-critical operations like financial reporting. Hybrid cloud solutions are
becoming increasingly popular as they provide the best of both worlds. The hybrid
model allows for data and applications to move between private and public clouds,
offering greater flexibility and more deployment options.

Community Cloud

A community cloud is shared between several organizations from a specific group
with common computing concerns (e.g., mission, security requirements, policy, and
compliance considerations) [23]. Community clouds can be managed internally or
by a third-party and hosted internally or externally. An example is a government
cloud used by multiple government departments that need to adhere to similar
security standards and compliance requirements. Community clouds provide tai-
lored services that cater to the specific needs of the user group. This model is
particularly useful for collaborative projects and joint ventures.

2.2.5 Benefits of Cloud Computing

The advantages of cloud computing include cost efficiency, scalability, flexibility,
and disaster recovery capabilities. Cloud services eliminate the capital expense of
buying hardware and software and setting up and running on-site datacenters [24].

15

Software Architecture

Cost Efficiency

One of the most significant benefits of cloud computing is cost savings. Businesses
can reduce their capital expenditure (CapEx) and operational expenditure (OpEx)
by moving to the cloud. The pay-as-you-go model allows organizations to pay
only for the resources they use, which can lead to significant savings, especially
for small and medium-sized enterprises (SMEs). Moreover, cloud providers often
offer discounts for long-term usage and reserved instances. This financial flexibility
helps organizations to manage budgets more effectively and invest in other areas
of growth.

Scalability and Flexibility

Cloud computing offers unmatched scalability and flexibility. Businesses can scale
their resources up or down based on demand, ensuring they only pay for what they
use. This is particularly beneficial for businesses with fluctuating workloads, such
as e-commerce websites during peak shopping seasons or startups experiencing
rapid growth. Additionally, cloud services can be accessed from anywhere, provid-
ing flexibility for remote work and global operations. This dynamic scaling ensures
that applications can handle peak loads and unforeseen demands efficiently.

Disaster Recovery

Disaster recovery is another critical advantage of cloud computing. Cloud providers
offer robust backup and recovery solutions that ensure business continuity in the
event of data loss, hardware failure, or natural disasters. Services like AWS Disas-
ter Recovery, Azure Site Recovery, and Google Cloud Disaster Recovery provide
automated backups, real-time data replication, and fast recovery times. These
services can be more cost-effective and reliable than traditional on-premises dis-
aster recovery solutions. Having a robust disaster recovery plan is essential for
maintaining business operations and customer trust.

Collaboration and Productivity

Cloud computing facilitates collaboration and increases productivity by enabling
real-time access to data and applications from any location. Tools like Google
Workspace, Microsoft Office 365, and Slack allow team members to work together
seamlessly, share files, and communicate effectively. This is especially important in
today’s globalized business environment, where teams are often distributed across
different time zones and locations. Enhanced collaboration tools improve project
management and accelerate decision-making processes.

16

Software Architecture

2.2.6 Challenges in Cloud Computing
Despite the benefits, cloud computing also presents challenges such as security
risks, potential downtime, and the need for internet connectivity. Ensuring the
security and privacy of sensitive data stored in the cloud is a major concern [24].

Security and Privacy

Security is one of the most significant challenges in cloud computing. As data
is stored off-site, there is a risk of data breaches, unauthorized access, and data
loss. Cloud providers implement stringent security measures, including encryption,
identity and access management (IAM), and multi-factor authentication (MFA),
to protect data. However, businesses must also adopt best practices, such as reg-
ular security audits, employee training, and compliance with relevant regulations
like GDPR and HIPAA. Businesses should also implement encryption and access
controls to protect sensitive information.

Downtime and Availability

Downtime is another concern in cloud computing. While cloud providers offer
high availability and uptime guarantees, outages can still occur due to technical
issues, cyber-attacks, or natural disasters. Businesses must have contingency plans
in place to mitigate the impact of downtime. This can include using multi-cloud
strategies, maintaining on-premises backups, and leveraging disaster recovery ser-
vices offered by cloud providers. Ensuring business continuity requires compre-
hensive planning and risk management strategies.

Internet Connectivity

Cloud computing relies heavily on internet connectivity. Poor or unstable internet
connections can hinder access to cloud services, affecting productivity and business
operations. Organizations must invest in reliable, high-speed internet connections
and consider using hybrid or multi-cloud models to reduce dependency on a single
provider or location. Businesses should also have backup internet connections to
ensure continuous access to cloud services.

2.2.7 Amazon Web Services (AWS)
Amazon Web Services (AWS) is one of the most comprehensive and widely adopted
cloud platforms in the world. AWS offers over 200 fully featured services from data
centers globally [25]. AWS provides a wide range of services that cater to various
use cases, from startups to large enterprises and government agencies.

17

Software Architecture

AWS Services

Some of the prominent services provided by AWS include:

• Compute: Amazon Elastic Compute Cloud (EC2) provides scalable com-
puting capacity in the cloud [25]. EC2 instances can be customized with
various CPU, memory, and storage configurations to suit different workloads.
EC2 Auto Scaling helps automatically adjust the number of instances based
on demand, ensuring applications run smoothly.

• Storage: Amazon Simple Storage Service (S3) is an object storage service
offering industry-leading scalability, data availability, security, and perfor-
mance [25]. S3 is designed to store and retrieve any amount of data from
anywhere. It provides 99.999999999% durability and comprehensive security
and compliance capabilities.

• Database: Amazon Relational Database Service (RDS) makes it easy to set
up, operate, and scale a relational database in the cloud [25]. RDS supports
several database engines, including Amazon Aurora, PostgreSQL, MySQL,
MariaDB, Oracle, and Microsoft SQL Server. It automates tasks such as
backups, patching, and scaling.

• Networking: Amazon Virtual Private Cloud (VPC) lets you provision a log-
ically isolated section of the AWS cloud where you can launch AWS resources
in a virtual network that you define [25]. VPC provides advanced security
features such as network segmentation, security groups, and network access
control lists (ACLs).

• Machine Learning: AWS offers a suite of machine learning services, in-
cluding Amazon SageMaker, which enables developers and data scientists to
build, train, and deploy machine learning models at scale [25]. Other services
include Amazon Comprehend for natural language processing (NLP), Ama-
zon Rekognition for image and video analysis, and Amazon Lex for building
conversational interfaces.

Advantages of AWS

AWS provides several advantages such as high availability, security, flexibility, and
cost-efficiency. It supports a variety of use cases, including disaster recovery, data
lakes and analytics, machine learning, and more [25].

• High Availability: AWS data centers are built in clusters in various global
regions, providing redundancy and ensuring high availability. Services like
Amazon Route 53 and Elastic Load Balancing (ELB) distribute incoming
application traffic across multiple targets, enhancing fault tolerance.

18

Software Architecture

• Security: AWS complies with numerous security standards and certifica-
tions, including ISO 27001, HIPAA, SOC 1/2/3, and GDPR. AWS provides
a comprehensive set of security tools and features, such as AWS Identity and
Access Management (IAM), AWS Key Management Service (KMS), and AWS
Shield for DDoS protection.

• Flexibility: AWS supports a wide range of operating systems, programming
languages, and application architectures. This flexibility allows organizations
to use the technologies they are most comfortable with and integrate AWS
services with their existing IT infrastructure.

• Cost Efficiency: AWS offers a pay-as-you-go pricing model, which means
businesses only pay for the resources they use. AWS also provides various pric-
ing options, including reserved instances, spot instances, and savings plans,
to help organizations optimize their costs.

Use Cases

AWS is used by a diverse set of customers, including startups, enterprises, and
government agencies. Some common use cases include:

• Web Hosting: AWS provides scalable and reliable web hosting solutions,
including static websites using Amazon S3 and dynamic websites using EC2,
Elastic Beanstalk, and RDS.

• Big Data and Analytics: AWS offers a range of services for big data and
analytics, such as Amazon Redshift for data warehousing, Amazon EMR for
big data processing using Apache Hadoop and Spark, and AWS Glue for data
integration.

• DevOps: AWS supports DevOps practices with services like AWS Code-
Pipeline for continuous integration and delivery (CI/CD), AWS CodeBuild
for building and testing code, and AWS CodeDeploy for automated deploy-
ments.

• Internet of Things (IoT): AWS IoT Core enables secure device connectivity
and management, allowing organizations to collect and analyze data from
IoT devices at scale. Other services include AWS IoT Greengrass for edge
computing and AWS IoT Analytics for processing and analyzing IoT data.

2.2.8 Future Trends in Cloud Computing
The future of cloud computing includes increased adoption of multi-cloud strate-
gies, edge computing, and serverless architectures. Companies will continue to

19

Software Architecture

innovate with cloud services to stay competitive in the digital economy [24].

Multi-cloud Strategies

Many organizations are adopting multi-cloud strategies, where they use services
from multiple cloud providers to avoid vendor lock-in, increase resilience, and op-
timize costs. This approach allows businesses to leverage the best features of each
cloud provider and create a more flexible and robust IT infrastructure. By dis-
tributing workloads across multiple clouds, organizations can improve performance
and reduce the risk of downtime.

Edge Computing

Edge computing involves processing data closer to the source of data generation,
rather than relying on a centralized cloud infrastructure. This reduces latency
and bandwidth usage, making it ideal for applications requiring real-time data
processing, such as autonomous vehicles, industrial IoT, and smart cities. Cloud
providers are expanding their edge computing offerings, with services like AWS
Outposts, Azure Stack, and Google Anthos. Edge computing is expected to grow
significantly as the number of IoT devices and real-time applications increases.

Serverless Architectures

Serverless computing allows developers to build and run applications without man-
aging the underlying infrastructure. Services like AWS Lambda, Azure Functions,
and Google Cloud Functions enable developers to focus on writing code while
the cloud provider handles server provisioning, scaling, and maintenance. This
approach simplifies application development and reduces operational overhead.
Serverless architectures are well-suited for microservices, event-driven applications,
and scenarios with unpredictable workloads.

Artificial Intelligence and Machine Learning

The integration of artificial intelligence (AI) and machine learning (ML) with cloud
services is transforming various industries. Cloud providers offer AI and ML ser-
vices that simplify the development and deployment of intelligent applications. Ex-
amples include AWS SageMaker, Google AI Platform, and Azure Machine Learn-
ing. These services provide pre-built algorithms, data labeling tools, and scalable
infrastructure for training and deploying models. AI and ML are being used in
areas such as predictive analytics, natural language processing, image recognition,
and autonomous systems.

20

Software Architecture

Quantum Computing

Quantum computing is an emerging technology that has the potential to solve
complex problems that are beyond the capabilities of classical computers. Cloud
providers are investing in quantum computing research and offering quantum com-
puting services, such as Amazon Braket, IBM Quantum, and Microsoft Azure
Quantum. These services provide access to quantum processors and simulators,
enabling researchers and developers to experiment with quantum algorithms and
applications. Quantum computing is expected to revolutionize fields such as cryp-
tography, material science, and complex system simulations.

2.2.9 Project Infrastructure
The infrastructure of our project is built on Amazon Web Services (AWS), lever-
aging several of its services to create a robust and scalable system. The primary
components of our infrastructure include Amazon S3, AWS CloudFront, AWS
Lambda, Amazon DynamoDB, and the WebSocket API. Each component plays
a crucial role in ensuring the seamless operation of the static website and real-
time communication with the robot. This section details the architecture and
functionalities of these components.

Amazon S3 and AWS CloudFront

The static website is hosted on Amazon Simple Storage Service (S3). Amazon S3
is a scalable object storage service that allows us to store and retrieve any amount
of data at any time. The website content, including HTML, CSS, and JavaScript
files, are stored in an S3 bucket. The bucket is configured to be publicly accessible,
ensuring that users can access the website via the internet.

To enhance the performance and security of the website, we utilize AWS Cloud-
Front, a content delivery network (CDN). CloudFront distributes the content glob-
ally through a network of edge locations, reducing latency and improving load
times for users regardless of their geographic location. The S3 bucket serves
as the origin for the CloudFront distribution, which caches the website content
at the edge locations. The link to the distribution is the following: https:
//d20ch7cibo2tal.cloudfront.net

WebSocket API and AWS Lambda

The WebSocket API is a crucial component of our system, enabling real-time
communication between the website and the robot. This API is powered by three
AWS Lambda functions and Amazon API Gateway.

21

https://d20ch7cibo2tal.cloudfront.net
https://d20ch7cibo2tal.cloudfront.net

Software Architecture

AWS Lambda Functions

Lambda is a serverless compute service that allows us to run code without provi-
sioning or managing servers. We use three Lambda functions for the WebSocket
API:

• Connect Function: This function is triggered when a user establishes a
connection to the WebSocket API. It handles the initial handshake and stores
the user’s connection ID in a DynamoDB table.

• Disconnect Function: This function is triggered when a user disconnects
from the WebSocket API. It removes the user’s connection ID from the Dy-
namoDB table, ensuring that only active connections are maintained.

• Message Function: This function is triggered when a message is sent
through the WebSocket API. It processes the message and sends it to all
the active connections whose ids are stored in the DynamoDB table.

The code of each lambda function is reported in Appendix A.

Amazon API Gateway

Amazon API Gateway is used to create, publish, maintain, monitor, and secure
the WebSocket API. It handles the routing of messages to the appropriate Lambda
functions and manages the WebSocket connections. API Gateway ensures the scal-
ability and reliability of the WebSocket API, accommodating fluctuating numbers
of concurrent connections.

Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that provides fast
and predictable performance with seamless scalability. In our project, DynamoDB
is used to store the connection IDs of active WebSocket connections. The database
is designed to handle high-velocity data, making it ideal for tracking real-time
connection states.

Integration and Operation

The integration of these AWS services forms a cohesive and efficient infrastructure.
The static website hosted on S3 and distributed via CloudFront serves as the user
interface, providing a platform for users to interact with the robot in real-time.
The WebSocket API, facilitated by API Gateway and Lambda functions, enables
bi-directional communication, allowing users to send GPS waypoints to the robot
and receive real-time updates on its position.

22

Software Architecture

The connection IDs stored in DynamoDB ensure that messages are correctly
routed to active connections, maintaining the integrity and reliability of the com-
munication channel. This architecture not only supports the current requirements
of our project but also provides a scalable foundation for future enhancements and
expansions.

Figure 2.1: Overall AWS Infrastructure for the Project [26]

The AWS infrastructure of our project demonstrates the power and flexibility of
cloud services in building scalable and efficient systems. By leveraging S3, Cloud-
Front, Lambda, API Gateway, and DynamoDB, we have created an infrastructure
that supports real-time communication and ensures a seamless user experience.
This architecture not only meets the current needs of our project but also lays the
groundwork for future developments and enhancements.

23

Chapter 3

Development

3.1 Website

In order to have a user interface to control and monitor the robot, we decided
to create a static website, that is hosted on an AWS S3 bucket. In front of the
bucket, we put a CloudFront distribution, which can be accessed at this link:
https://d20ch7cibo2tal.cloudfront.net

Figure 3.1: Website

The key features are presented below.

24

https://d20ch7cibo2tal.cloudfront.net

Development

Status and Info Display

• The status of the robot is shown. It displays online while the robot sends
position data through the websocket. It displays disconnected when the
websocket connection times out. It displays offline if the websocket connec-
tion is up, but the robot is not sending any messages.

• It displays the time remaining and the distance remaining for the robot to
reach its destination.

Map Interface

• The map shows the current position of the robot, marked with a blue dot.

• Users can click on the map to add waypoints, which are destinations the robot
should navigate to.

• The map view can be zoomed in and out using the plus and minus buttons.

Waypoints Management

• There is a section labeled Waypoints where users can start the robot’s nav-
igation by clicking the Start button.

• The waypoints added on the map (blue points with white number) are sent
to the robot through the websocket connection for navigation.

Lock View Feature

• There is a toggle switch labeled Lock view. When this is enabled, the map
will automatically move to keep the robot in view as it navigates.

• If the user manually pans the map, the Lock view feature is automatically
disabled.

Websocket Communication

• The website connects to a websocket to communicate with the robot.

• The robot sends data about its current position and navigation status back
to the website in real-time.

Overall, this website allows users to interactively control the robot’s movements
by setting waypoints on the map and monitoring its progress. For the complete
implementation code, please refer to Appendix B.

25

Development

3.2 Simulation
In the development of robotic systems, simulation plays a crucial role in ensuring
the feasibility and reliability of various algorithms and functionalities. For our
project, we decided to commence with simulations before transitioning to the real
robot for final testing. The primary reason for this approach is the significant ease
and flexibility provided by simulation environments.

Simulating the robot in a controlled virtual environment allows for extensive
testing and iteration without the risk of damaging hardware or encountering un-
predictable real-world variables. Tools like Gazebo Ignition and RViz2 offer com-
prehensive platforms for creating detailed simulations, visualizing sensor data, and
debugging the robot’s performance. These simulations help in refining navigation
algorithms, tuning control parameters, and optimizing sensor integration.

Once the simulation phase provided satisfactory results, we transitioned to de-
ploying and testing our systems on the actual robot. The final tests in a real-world
environment were essential for validating the robustness and practicality of our so-
lutions. This staged approach ensured that our development process was efficient
and minimized potential risks associated with direct hardware testing.

3.2.1 Gazebo Ignition
Gazebo Ignition is a collection of libraries designed to develop robot applications.
It provides a robust framework for simulating robots in complex environments.
The main features of Gazebo Ignition include:

• Realistic Environment Simulation: It offers high-fidelity physics simula-
tion, accurate sensor models, and detailed 3D environments.

• Modular Design: Gazebo Ignition is modular, allowing users to select only
the components they need.

• Scalability: It supports simulations from small robots to large, complex
systems.

• Integration with ROS2: Seamlessly integrates with ROS2, enabling the
use of advanced robotic algorithms and communication protocols.

Gazebo Ignition comprises several components:

Ignition Gazebo: The primary simulation server.

Ignition Physics: Handles the physics simulations.

Ignition Rendering: Manages the 3D rendering.

26

Development

Ignition Sensors: Provides sensor models.

Ignition Transport: Facilitates communication between components.

The simulation environment in Gazebo Ignition is highly customizable, allowing
the addition of various obstacles, terrains, and other elements to create a realistic
testing ground for the robot.

3.2.2 RViz2
RViz2 is a 3D visualization tool for ROS2 that allows users to visualize robot
states, sensor data, and environment maps. It plays a crucial role in debugging
and monitoring the robot’s performance in simulations and real-world scenarios.

Key Features

• Visualization of Sensor Data: Displays data from various sensors such as
LiDAR, cameras, and IMUs.

• Robot Model Visualization: Shows the robot’s URDF model and its cur-
rent state.

• Interactive Markers: Enables interactive control and manipulation of the
robot.

• Plugins: Supports various plugins for additional functionalities.

RViz2 provides an intuitive interface for visualizing and debugging the Husarion
robot’s navigation and control systems.

3.2.3 Husarion Robot Model
In the development of our robotic system, we chose to work with the Husarion
ROSbot XL due to the availability of both the URDF (Unified Robot Description
Format) model and the physical robot.

URDF Model

The Husarion robot’s URDF model is essential for simulating and visualizing the
robot in Gazebo Ignition and RViz2. The URDF model includes descriptions of
the robot’s physical and visual properties, such as:

• Links: Represent the physical parts of the robot.

• Joints: Define the connections and degrees of freedom between links.

27

Development

• Sensors: Specify the locations and types of sensors on the robot.

• Actuators: Define the motors and their control parameters.

The URDF model can be equipped with 3 different types of sensors:

• LiDAR: Used for distance measurement, 3D mapping and environmental
awareness.

• Camera: Used for object recognition, scene understanding, and tasks that
require visual cues.

• IMU: Used for stabilization, orientation and movement.

For the LiDAR and the camera we had many different options to choose from.
Our setup for the simulated robot was the following:

• LiDAR: Slamtec RPLiDAR S1

• Camera: Intel RealSense Depth Camera D435

GPS Plugin

GPS sensors are crucial for autonomous navigation, enabling robots and vehicles
to follow predefined coordinates with precision. They provide essential geolocation
data, allowing for accurate positioning and path planning. Integrating GPS with
other sensors, such as IMUs, cameras, and LiDAR, enhances navigation perfor-
mance, ensuring efficiency and reliability. Since the ROSbot XL URDF model
does not include a GPS sensor, we had to create a Gazebo Ignition plugin to
simulate one. To do so, we had to follow the steps listed below:

• Create URDF model of the GPS

• Add the GPS to the robot’s URDF file

• Create a ROS-Gazbeo bridge to publish the GPS data on a ROS topic.

To create a URDF model of the GPS, we wrote a .xacro file detailing all the
sensor’s characteristics. This file, reported in Appendix C, follows a structure
similar to the other sensor components provided by Husarion in [27].

We then proceeded by adding the component to the URDF model of the robot.
To do so, we added the following lines of code to the rosbot_xl.urdf.xacro file
from the Husarion github repository [27]:

28

Development

1 <x a c r o : i n c l u d e f i l ename=" $(f i n d ros_components_descr ipt ion) / urdf /
my_navsat . urdf . xacro " />

2 <xacro:my_navsat
3 parent_l ink=" body_link "
4 xyz=" −0.03 0 .0 0 .5 "
5 rpy=" 0 .0 0 .0 0 .0 " />

At this point, we had to create the ROS-Gazebo bridge to publish the GPS
data on a ROS topic. We created a .yaml file with the following characteristics:

1 −−−
2 − topic_name : <robot_namespace>/gps/ f i x
3 ros_type_name : sensor_msgs/msg/NavSatFix
4 gz_type_name : gz . msgs . NavSat

Finally, we modified the ROSbot XL spawn.launch.py file to automatically
create the bridge every time the robot is spawned. Here is what was added to the
file:

1

2 . . .
3

4 de f launch_gz_bridge (context : LaunchContext , ∗ args , ∗∗ kwargs) :
5

6 . . .
7

8 ign_navsat_bridge = Node (
9 package=" ros_gz_bridge " ,

10 executab l e=" parameter_bridge " ,
11 name=" ros_gz_navsat_bridge " ,
12 parameters =[{ " c o n f i g _ f i l e " :

namespaced_gz_navsat_remappings_file }] ,
13 remappings=[
14 (" / t f " , " t f ") ,
15 (" / t f _ s t a t i c " , " t f _ s t a t i c ") ,
16] ,
17 output=" sc r e en " ,
18 namespace=namespace ,
19)
20

21 . . .
22

23 re turn [ign_l idar_bridge , ign_camera_bridge , imu_remapping ,
ign_navsat_bridge , point_cloud_tf]

24

29

Development

25 . . .

Now our plugin is working and publishing the GPS data on the /gps/fix ROS
topic.

Integration with ROS2 Navigation

The Husarion robot is integrated with the ROS2 navigation stack [28], often re-
ferred to as Nav2, which includes various packages for localization, path planning,
and obstacle avoidance. Nav2, or Navigation2, is the evolution of the original ROS
Navigation Stack, designed to be more flexible, scalable, and suitable for a wider
range of applications. It is built on ROS2, which provides enhanced middleware,
real-time capabilities, and improved security. Nav2 is modular, allowing develop-
ers to customize and extend its functionalities based on specific needs. Its key
functionalities are:

• Localization: Nav2 helps determine the robot’s position within a given map
using various algorithms and sensor data. This is crucial for the robot to
understand its location and navigate effectively.

• Path Planning: It calculates the optimal path from the robot’s current
location to the desired target, taking into account the robot’s dynamics and
environmental constraints. This ensures efficient and smooth navigation.

• Obstacle Avoidance: Nav2 continuously monitors the environment for ob-
stacles and dynamically adjusts the robot’s path to avoid collisions. This is
essential for safe navigation in dynamic and cluttered environments.

By integrating Nav2 into their robotic systems, developers can create robust,
efficient, and autonomous robots capable of navigating complex environments with
ease. Successful integration and simulation in Gazebo Ignition, along with visual-
ization in RViz2, ensure that the Husarion robot performs as expected in real-world
applications.

3.2.4 Virtual Machine
Developing an autonomous guide for a robot involves running complex simulations
and visualizations, which demand significant computational resources. For this
reason we decided to create an AWS EC2 to run all the simulations.

AWS EC2 Specifications

AWS EC2 instances provide scalable computing capacity in the cloud. The specific
AMI used, "High-End Ubuntu 22 Desktop - NICE DCV for NVIDIA-GPU 3D

30

Development

instances + CUDA", is optimized for high-performance computing (HPC) and
includes support for NVIDIA GPUs and CUDA, which are essential for running
intensive robotics simulations. This AMI was found on AWS Marketplace at the
following link: aws.amazon.com/marketplace

Advantages Over Personal Computers

Personal computers, even those with high-end specifications, may struggle with
the demands of running multiple simulations and visualizations concurrently. The
computational power provided by AWS EC2 instances ensures that all tasks can
be performed smoothly and efficiently, reducing the risk of system crashes and
slowdowns.

Collaboration Benefits

Multiple team members can easily collaborate on the project by accessing the same
EC2 instance. This eliminates the inconsistencies and synchronization issues that
can arise when working on separate personal computers.

Pay-as-You-Go Model

AWS operates on a pay-as-you-go pricing model, meaning users only pay for the
computing power they actually use. This can be more cost-effective than investing
in high-end personal computers, especially for projects with fluctuating computa-
tional needs.

Maintenance and Upgrades

AWS handles the maintenance and upgrading of hardware, ensuring that users
always have access to the latest technology without the additional cost and effort
of maintaining personal high-end machines.

Data Protection

AWS provides robust security features, including data encryption, network fire-
walls, and identity management. These features ensure that sensitive project data
is protected against unauthorized access and cyber threats.

Reliability

AWS guarantees high availability and reliability of its services. This minimizes
downtime and ensures that simulations and developments can proceed without
interruption.

31

https://aws.amazon.com/marketplace/pp/prodview-ch24i42e34ezm?sr=0-4&ref_=beagle&applicationId=AWSMPContessa

Development

DCV Viewer

To connect to our AWS EC2 that runs all the simulations we used a tool called
DCV Viewer.

DCV Viewer is a client application developed by NICE, an Amazon Web Ser-
vices (AWS) company, for connecting to and accessing remote desktops and graph-
ical applications hosted on cloud or on-premises servers. It is a component of NICE
DCV (Desktop Cloud Visualization), a high-performance remote display protocol
designed to deliver rich graphical and interactive applications over varying network
conditions.

DCV Viewer allows users to securely connect to remote desktops or applica-
tions, providing a seamless and high-quality user experience. It supports multiple
platforms including Windows, Linux, and macOS, and can be used to access both
2D and 3D applications hosted on remote servers. The viewer communicates with
the NICE DCV server, which streams the graphical output from the remote desk-
top or application to the viewer, while also transmitting user inputs (like keyboard
and mouse actions) back to the server.

There are several advantages to using DCV Viewer for accessing AWS EC2
instances or other remote resources:

• High Performance: NICE DCV is optimized for high performance, enabling
smooth interaction with both 2D and 3D applications. It leverages efficient
compression and adaptive streaming techniques to deliver low latency and
high frame rates, even over WAN connections [29].

• Security: DCV supports encryption of all communication between the client
and the server, ensuring that data remains secure. It integrates with AWS
security services, providing robust authentication and authorization mecha-
nisms [30].

• Platform Independence: The viewer is available for various operating systems,
making it versatile and accessible from different devices. This cross-platform
compatibility ensures users can connect from their preferred environments
[31].

• Scalability: As part of the AWS ecosystem, NICE DCV can easily scale with
the needs of the organization. Users can take advantage of AWS’s elastic
infrastructure to scale up or down based on demand, optimizing costs and
performance [32].

• Collaboration: DCV supports collaborative sessions where multiple users can
connect to the same remote desktop or application, facilitating teamwork and
collaborative workflows [33].

32

Development

• Cost Efficiency: By using remote desktops and applications, organizations
can reduce the need for high-end local hardware. Instead, they can leverage
the computational power of EC2 instances, which can be more cost-effective
and easier to manage [34].

• Ease of Use: The DCV Viewer offers a user-friendly interface, making it
straightforward for users to connect to remote resources without requiring
extensive configuration or technical knowledge [35].

EC2 Setup

In order to be able to simulate the ROSbot XL on our EC2 we had to configure
the machine. The commands used for the setup can be found in Appendix F.

After completing the installation, we ensured everything was functioning prop-
erly by executing the example ROS2 packages in separate terminals to confirm the
correct operation of both C++ and Python:

Listing 3.1: Terminal 1
1 # TERMINAL 1
2 source /opt/ ros /humble/ setup . bash
3 ros2 run demo_nodes_cpp t a l k e r

Listing 3.2: Terminal 2
1 # TERMINAL 2
2 source /opt/ ros /humble/ setup . bash
3 ros2 run demo_nodes_py l i s t e n e r

With these commands, we started a talker node (written in C++) that publishes
messages on a topic, and a listener node (written in Python) that is subscribed to
that topic and receives the messages sent by the talker.

To execute the tutorials suggested by Husarion, we completed some more steps,
provided in Appendix G.

Finally, we ran the first simulation with the command:

Listing 3.3: Launching Gazebo
1 ROSBOT_SIM

And got the following result:

33

Development

Figure 3.2: First simulation

We then proceeded to install some other useful packages:

Listing 3.4: Install packages
1 g i t c l one −b ros2 https : // github . com/ husar ion / tutor ia l_pkg . g i t
2 co l con bu i ld −−symlink− i n s t a l l
3 g i t c l one https : // github . com/robo−f r i e n d s /m−explore −ros2 . g i t
4 co l con bu i ld −−symlink− i n s t a l l

Our EC2 is now ready.

34

Development

3.2.5 Map

Figure 3.3: Husarion map

For the purpose of evaluating the performance and capabilities of the ROSbot-
XL, we utilized the default map provided by Husarion within the Ignition Gazebo
simulation environment. This map serves as a comprehensive and realistic testbed
for autonomous robotics research and development.

The Husarion default map features a variety of structural elements that present
common challenges encountered in real-world scenarios. The key features include:

• Unique Layout: The map includes distinct shapes and pathways, resem-
bling an abstract design with interconnected loops and paths. This unique

35

Development

layout challenges the robot’s navigation and path-planning algorithms to han-
dle complex routes and sharp turns.

• Varied Path Widths: The map features paths of varying widths, requiring
the robot to adapt to narrow and wide spaces, thus testing its ability to
navigate through different spatial constraints effectively.

• Simulated Obstacles: The design includes multiple enclosed spaces and
loop-like structures that act as obstacles, testing the robot’s obstacle detection
and avoidance systems.

Utilizing this map, we conducted a series of simulations to assess the naviga-
tion performance of the ROSbot-XL. The structured environment of the Husarion
default map enabled the thorough testing of key functionalities such as SLAM
(Simultaneous Localization and Mapping), autonomous navigation, and obstacle
avoidance. The map’s diverse settings provided a robust platform for identifying
strengths and potential areas for improvement in the robot’s operational capabil-
ities.

The unique layout and varied path widths of the Husarion map presented a
comprehensive challenge for the ROSbot-XL, ensuring that the simulations en-
compassed a wide range of scenarios that the robot might encounter in real-world
applications.

GPS Integration

In order to read GPS data while navigating through the map, we had to edit the
map file by adding the following code:

1 <sphe r i c a l_coo rd ina t e s>
2 <surface_model>EARTH_WGS84</ surface_model>
3 <world_frame_orientat ion>ENU</ world_frame_orientat ion>
4 <lat i tude_deg>53.1978</ lat i tude_deg>
5 <longitude_deg>18.3732</ longitude_deg>
6 <e l e v a t i o n>0</ e l e v a t i o n>
7 <heading_deg>0</heading_deg>
8 </ sphe r i c a l_coo rd ina t e s>

Now our GPS plugin is able to provide us with coordinates.

3.2.6 Nodes and Launch Files
In this subsection we will report all the ROS2 nodes and launch files that were
created during the project. All the code is reported in Appendix D.

36

Development

IMU Remapping

This node was created to publish the IMU data on a specific topic. As a matter
of fact, the Navsat Transform Node of the Robot Localization package [36], which
is used to transform GPS coordinates into local coordinates used by the robot, is
subscribed to the /imu topic, while the IMU broadcaster publishes the IMU data
on the /imu_broadcaster/imu topic. Thus, the remapping is necessary for the
Navsat Transform Node to work.

Write GPS

The goal of this node is to write the data sent by the GPS in a .txt file which
will be read to send the GPS data through the websocket.

Websocket Connection

The function of this node is to manage the websocket connection and all the
messages (sent and received). Through the websocket we send the GPS coordinates
of the robot and the navigation status, including distance and time remaining. On
the other hand, we receive navigation goals as GPS coordinates.

Coordinates Conversion

The following node is used to convert GPS coordinates into local coordinates used
by the robot to navigate. The code is taken from the Nav2 GPS Waypoint Follower
Demo package by ROS Navigation [37] and modified to suit our needs. The node
will be started when a series of position goals is received from the websocket, it
will convert the GPS positions to local coordinates and it will publish them to the
/gps_waypoints topic. Once all the conversions have ended, the node will publish
a message on the /control_navigator topic to start the navigation.

Smart Navigator

This node is responsible for the navigation of the robot. It will listen to the
topics /gps_waypoints and /control_navigator. When the "Start" message is
published on the /control_navigator topic, the node will start the navigation
through the converted coordinates that it received on the /gps_waypoints topic.
While navigating, the node also writes the navigation feedback on a file, which is
read by the Websocket Connection Node and sent to the website to keep the user
interface up to date.

37

Development

Autonomous Navigation

This launch file is used to start all the nodes and launch a series of launch files
that are necessary for the autonomous navigation to work.

3.2.7 Results

After the development of the code, a series of simulations were conducted to verify
its functionality and accuracy. The results of the simulations were highly satisfac-
tory, as the robot was able to successfully navigate to the goal whenever a valid
goal was set.

Figure 3.4: Valid goal

Even when multiple waypoints were provided, the Husarion ROSbot XL man-
aged to easily complete the whole navigation.

38

Development

Figure 3.5: Multiple waypoints

A goal can be considered valid if it is inside the map and does not overlap with
an obstacle.

If a goal outside the map is provided, the robot remains stationary while at-
tempting to generate a path to the unreachable point. However, it consistently
fails, and after several attempts, it aborts the navigation process.

Figure 3.6: Invalid goal - outside of map

39

Development

Conversely, when a navigation goal intersects with an obstacle, the robot navi-
gates towards it and attempts various strategies to overcome the obstruction. Af-
ter several unsuccessful attempts, it ultimately gives up and aborts the navigation
process.

Figure 3.7: Invalid goal - obstacle overlap

40

Development

3.3 Robot

Figure 3.8: Husarion ROSbot XL

After working with the simulated model, we moved on to the real robot, which was
provided by Q8 Italia. As mentioned before, we worked on a Husarion ROSbot
XL. The Husarion ROSbot XL is a robust and versatile mobile robot platform
designed for advanced research, education, and prototyping applications in the field
of robotics. It is equipped with a variety of sensors and computing power, making
it suitable for complex autonomous navigation, SLAM (Simultaneous Localization
and Mapping), and other advanced robotics tasks.

Key Features

• Modular Design: The ROSbot XL’s modular architecture allows for easy
customization and expansion, enabling users to add various sensors, actuators,
and other peripherals to tailor the robot to specific research needs.

• Powerful Computing: It comes with a Raspberry Pi 4 capable of running
ROS (Robot Operating System), which is essential for developing and testing
advanced algorithms in robotics.

41

Development

• Sensor Suite: The robot is equipped with an array of sensors, including
LiDAR, cameras, IMU (Inertial Measurement Unit), and GPS, providing rich
data for navigation and environmental interaction.

• ROS Compatibility: As the name suggests, the ROSbot XL is fully com-
patible with ROS, allowing users to leverage a vast ecosystem of libraries and
tools for robotics development.

• Autonomous Capabilities: With its powerful hardware and sensor suite,
the ROSbot XL can perform autonomous navigation, obstacle avoidance, and
mapping, making it ideal for applications in research and education.

Overall, the Husarion ROSbot XL is a comprehensive and flexible platform
that supports a wide range of robotics applications, from academic research to
industrial prototyping.

3.3.1 Setup
The first step was to download the HusarionOS image from https://husarion.
com/software/os/installation/#robot-setup-guide and install it on the Rasp-
berry Pi 4 using RaspberryPi Imager. We then proceeded by following the setup
guide at https://husarion.com/software/os/installation/#robot-setup-guide
and finally we completed the how to start tutorial at https://husarion.com/
tutorials/howtostart/

Remote Access

In order to configure remote access to the robot we decided to use a tool called
Tailscale to create a free VPN. This way we will always be able to connect via ssh
even when the robot is connected to a different Wi-Fi connection with respect to
our computer in a more secure way. Since we wanted to be able to see the robot’s
visual outputs on our computer using the ssh connection we had to configure X11
Forwarding by editing the /etc/ssh/sshd_config file both on the robot and on
our machine. The changes that were made are presented below.

Listing 3.5: X11 Forwarding configuration - robot
1 X11Forwarding yes
2 X11DisplayOffset 10
3 #X11UseLocalhost yes

Listing 3.6: X11 Forwarding configuration - machine
1 X11Forwarding yes
2 #X11DisplayOffset 10
3 #X11UseLocalhost yes

42

https://husarion.com/software/os/installation/#robot-setup-guide
https://husarion.com/software/os/installation/#robot-setup-guide
https://husarion.com/software/os/installation/#robot-setup-guide
https://husarion.com/tutorials/howtostart/
https://husarion.com/tutorials/howtostart/

Development

Then, on the robot we launched:

1 echo " export DISPLAY=:10 " >> ~/. bashrc
2 source ~/. bashrc

And on our computer:

1 xhost +
2 ssh −X husar ion@husar ion

Finally, we were able to easily connect to our robot and to forward the visual
outputs of the robot onto our machine.

3.3.2 Nodes and Launch Files
The nodes and launch files on the real robot are largely consistent with those
presented in the Simulation section. However, there are some minor modifications
specific to the robot context, which are detailed below.

GPS

The equipped GPS is a G Mouse VK-162, a very practical GPS receiver that
connects to our robot through a USB port. We created a ROS node, called GPS
Broadcaster Node, to read the GPS data and publish it on the /gps/fix topic.
Also, as the Write GPS Node from the simulation, it writes the GPS coordinates
on a file. This way the Websocket Connection Node is able to read the file and
send the information to the webpage. The implementation of the node can be
found in Appendix E.

LiDAR

A FHL-LD19P LiDAR was used for this project. It was connected to our robot via
USB port and configured following the setup guide at https://wiki.youyeetoo.
com/en/Lidar/D300#h-53-operation-based-on-ros2-under-linux. The guide
assisted us in constructing a package containing a launch file that initiates the
reading of LiDAR data and broadcasts it to the appropriate topic.

Autonomous Navigation Launch File

This LiDAR launch file and the GPS Broadcaster Node were added to the Au-
tonomous Navigation Launch File D.6, in order to automatically start them when
launching the navigation package.

43

https://wiki.youyeetoo.com/en/Lidar/D300#h-53-operation-based-on-ros2-under-linux
https://wiki.youyeetoo.com/en/Lidar/D300#h-53-operation-based-on-ros2-under-linux

Development

3.3.3 Results

In this section, we present the results of testing the autonomous navigation system
of our robot in two different environments: beSharp’s roof and a field near beSharp.

Mapping the Environments

The first phase of the test involved mapping the areas using the Simultaneous
Localization and Mapping (SLAM) package. The mapping process on beSharp’s
roof was straightforward and resulted in an accurate map of the area.

Figure 3.9: Roof map

However, mapping the field presented significant challenges. The lidar sensor
frequently detected grass as obstacles, resulting in a map filled with numerous
false obstacles. These unreal obstacles made navigation impossible, as the robot
perceived the area as cluttered with barriers, thus failing to generate a viable path.

44

Development

Figure 3.10: Field map

To address this issue, we decided to use an empty map for the field test.

Navigation Performance

After the mapping phase, we proceeded to the navigation tests.
Following a series of unsuccessful attempts, we finally achieved successful GPS-
driven autonomous navigation with our robot. Despite the initial challenges, we
managed to complete the navigation tasks, demonstrating the effectiveness and
reliability of our system.

45

Development

Discussion

These tests highlight the critical importance of high-accuracy sensors for au-
tonomous navigation tasks. The discrepancies in the field test underscore the
necessity for a more reliable lidar system that can distinguish between real obsta-
cles and irrelevant objects like grass. Additionally, for vineyard navigation, a more
precise positioning system is essential for setting accurate waypoints. A differential
GPS can be employed for this purpose, offering centimeter-level accuracy. In con-
clusion, the real-world tests of our autonomous navigation system were successful,
despite the challenges faced.

46

Chapter 4

Conclusion

In this last chapter we present the obtained results and comment on what the next
steps might be.

4.1 Experimental Results
In conclusion, the experiments conducted as part of this thesis demonstrated
promising results in the development of a GPS-driven autonomous navigation
system for precision agriculture. The system successfully leveraged the robust
capabilities of Amazon Web Services (AWS) to provide a scalable and efficient
solution for real-time navigation. However, several challenges remain that need to
be addressed in future research to enhance the system’s performance and applica-
bility.

One of the primary issues encountered was the initial localization of the robot.
Accurate initial positioning is crucial for the robot’s navigation system to function
optimally, and improvements in this area are necessary. Additionally, while the
current implementation utilized an indoor robot, a more suitable outdoor robot
would better reflect real-world agricultural applications. The limitations of using
a 2D LiDAR instead of a 3D LiDAR also impacted the precision and reliability
of the navigation system, highlighting another area for potential enhancement.
Furthermore, the use of a standard GPS introduced some inaccuracies that could
be mitigated by employing a differential GPS system for higher precision.

4.2 Future Work
Looking forward, several next steps are proposed to address these challenges and
advance the current system:

47

Conclusion

• Enhancing Initial Localization: Implementing advanced algorithms and
techniques for more accurate initial localization of the robot to improve nav-
igation accuracy.

• Transition to Outdoor Robots: Utilizing an outdoor robot that is better
suited for agricultural environments to test and validate the system in real-
world conditions.

• Upgrading to 3D LiDAR: Integrating a 3D LiDAR sensor to enhance
the perception capabilities of the robot, enabling more precise mapping and
obstacle avoidance.

• Adopting Differential GPS: Using a differential GPS system to signifi-
cantly improve the accuracy of the robot’s positioning.

• AWS GreenGrass for Code Deployment: Deploying code to the robots
using AWS GreenGrass, which allows for efficient and scalable edge comput-
ing, ensuring seamless updates and management of the system.

This project was conducted as a proof of concept (POC), and the insights gained
from this phase provide a strong foundation for future research and development.
By addressing the identified challenges and following the proposed next steps,
the autonomous navigation system can be further refined to meet the demanding
requirements of precision agriculture. This will ultimately contribute to the ad-
vancement of agricultural robotics, enhancing the efficiency and sustainability of
farming practices.

48

Appendix A

Websocket functions

Listing A.1: Connect function
1 import j son
2 import boto3
3 import os
4

5 dynamodb = boto3 . c l i e n t (’dynamodb ’)
6

7 de f lambda_handler (event , context) :
8 pr in t (event)
9 connect ionId = event [’ requestContext ’] [’ connect ionId ’]

10

11 dynamodb . put_item (
12 TableName=os . env i ron [’WEBSOCKET_TABLE’] ,
13 Item={ ’ connect ion_id ’ : { ’S ’ : connect ionId }}
14)
15

16 re turn {}

Listing A.2: Disconnect function
1 import j son
2 import boto3
3 import os
4

5 dynamodb = boto3 . c l i e n t (’dynamodb ’)
6

7 de f lambda_handler (event , context) :
8 pr in t (event)
9 connect ionId = event [’ requestContext ’] [’ connect ionId ’]

10

11 dynamodb . de lete_item (
12 TableName=os . env i ron [’WEBSOCKET_TABLE’] ,

49

Websocket functions

13 Key={ ’ connect ion_id ’ : { ’S ’ : connect ionId }}
14)
15

16 re turn {}

Listing A.3: Message function
1 import j son
2 import boto3
3 import os
4

5 dynamodb = boto3 . c l i e n t (’dynamodb ’)
6

7

8 de f lambda_handler (event , context) :
9 pr in t (event)

10 message = j son . l oads (event [’ body ’]) [’ t ex t ’]
11 pr in t (message)
12 sender_id = event [’ requestContext ’] [’ connect ionId ’]
13 pag inator = dynamodb . get_paginator (’ scan ’)
14 connec t i on Ids = []
15

16 apigatewaymanagementapi = boto3 . c l i e n t (
17 ’ apigatewaymanagementapi ’ ,
18 endpoint_url = " https : // " + event [" requestContext "] ["

domainName"] + " / " + event [" requestContext "] [" s tage "]
19)
20

21 f o r page in pag inator . pag inate (TableName=os . env i ron [’
WEBSOCKET_TABLE’]) :

22 connec t i on Ids . extend (page [’ Items ’])
23

24 f o r connect ionId in connec t i on Ids :
25 i f connect ionId [’ connect ion_id ’] [’ S ’] != sender_id :
26 apigatewaymanagementapi . post_to_connection (
27 Data=json . dumps(message) ,
28 ConnectionId=connect ionId [’ connect ion_id ’] [’ S ’]
29)
30 pr in t (’ s ent ’)
31

32 re turn {}

50

Appendix B

Website

Listing B.1: HTML and JavaScript
1 <!DOCTYPE html>
2 <html>
3 <head>
4 < t i t l e>OpenLayers Cl i ck Example</ t i t l e>
5 <l i n k r e l=" s t y l e s h e e t " h r e f=" https : // open laye r s . org /en/v6 . 1 5 . 1 / c s s /

o l . c s s " type=" text / c s s ">
6 <l i n k h r e f=" https : // cdn . j s d e l i v r . net /npm/ bootstrap@5 . 3 . 3 / d i s t / c s s /

boots t rap . min . c s s " r e l=" s t y l e s h e e t " i n t e g r i t y=" sha384−
QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH"
c r o s s o r i g i n=" anonymous ">

7 <l i n k r e l=" s t y l e s h e e t " type=" text / c s s " h r e f=" s t y l e / s t y l e . c s s ">
8 <s c r i p t s r c=" https : // open layer s . org /en/v6 . 1 5 . 1 / bu i ld / o l . j s "></

s c r i p t>
9 <s c r i p t s r c=" https : // cdn . j s d e l i v r . net /npm/ bootstrap@5 . 3 . 3 / d i s t / j s /

boots t rap . bundle . min . j s " i n t e g r i t y=" sha384−
YvpcrYf0tY3lHB60NNkmXc5s9fDVZLESaAA55NDzOxhy9GkcIdslK1eN7N6jIeHz "
c r o s s o r i g i n=" anonymous "></ s c r i p t>

10 </head>
11 <body>
12 <div c l a s s=" conta ine r " id=" t i t l e −conta ine r ">
13 <h1 id=" t i t l e ">Otto Robot</h1>
14 </ div>
15 <div c l a s s=" conta iner −f l u i d " id="map−conta ine r ">
16 <div c l a s s=" row ">
17 <div c l a s s=" co l −lg −4">
18 <!−− Sidebar −−>
19 <div c l a s s=" s ideba r ">
20 <h2>In fo</h2>
21 <p>Status :

o f f l i n e</p>
22 <p>Time remaining : </p>

51

Website

23 <p>Distance remaining :
</p>

24

25 <h3>Waypoints</h3>
26 <p id=" waypoint−t i p ">Cl i ck on the map to add a waypoint</p>
27 <ul id=" dynamic− l i s t " c l a s s=" l i s t −group ">
28 </ ul>
29 </ div>
30 <button type=" button " id=" sendBtn " c l a s s=" btn btn−out l i n e −

primary d i s ab l ed " o n c l i c k=" sendBtnClick () ; ">Star t</ button>
31 <button type=" button " id=" removeBtn " c l a s s=" btn btn−out l i n e −

danger r ight −al ignment hidden " o n c l i c k=" removeBtnClick () ; ">Clear
a l l</ button>

32 </ div>
33 <div c l a s s=" co l −lg −8">
34 <!−− OpenLayers Map Container −−>
35 <div id="map" c l a s s="map">
36 <div c l a s s=" form−check form−switch r ight −al ignment " id="

switchDiv ">
37 <input c l a s s=" form−check−input " type=" checkbox " r o l e="

switch " id=" flexSwitchCheckChecked " checked>
38 <l a b e l c l a s s=" form−check−l a b e l " f o r="

f lexSwitchCheckChecked ">Lock view</ l a b e l>
39 </ div>
40 </ div>
41 </ div>
42 </ div>
43 </ div>
44

45 <s c r i p t>
46

47 f unc t i on connectWebSocket () {
48 const websocketURL = ’ wss ://7 xuofk fz0a . execute−api . eu−west −1.

amazonaws . com/ product ion / ’ ;
49 socke t = new WebSocket (websocketURL) ;
50 socke t . onopen = func t i on (event) {
51 conso l e . l og (’ WebSocket connect ion opened : ’ , event) ;
52 robotStatus . innerText = ’ o f f l i n e ’ ;
53 robotStatus . c l a s s L i s t . remove (’ l i g h t −green−s tatus ’) ;
54 robotStatus . c l a s s L i s t . add (’ l i g h t −grey−s tatus ’) ;
55 } ;
56 socke t . onmessage = func t i on (event) {
57 var data = JSON. parse (event . data) ;
58 i f (data . sender == ’ robot ’) {
59 l a t = data . gps_data [0] ;
60 l on = data . gps_data [1] ;
61 i f (lockView) {
62 updateMap (la t , lon) ;
63 }

52

Website

64 updateGpsMarker (la t , lon , ’#3B78EA’) ;
65 r e s e tHear tbea t (la t , lon) ;
66 i f (data . time_remaining != −1.0){
67 updateTimeRemaining (data . time_remaining) ;
68 }
69 i f (data . d istance_remaining != −1.0){
70 updateDistanceRemaining (data . d istance_remaining) ;
71 }
72 robotStatus . innerText = ’ on l ine ’ ;
73 robotStatus . c l a s s L i s t . add (’ l i g h t −green−s tatus ’) ;
74 robotStatus . c l a s s L i s t . remove (’ l i g h t −grey−s tatus ’) ;
75 }
76 } ;
77 socke t . onc l o s e = func t i on (event) {
78 conso l e . l og (’ WebSocket connect ion c l o s e d : ’ , event) ;
79 robotStatus . innerText = ’ d i s connected (r e f r e s h the page) ’ ;
80 robotStatus . c l a s s L i s t . remove (’ l i g h t −green−s tatus ’) ;
81 robotStatus . c l a s s L i s t . add (’ l i g h t −grey−s tatus ’) ;
82 } ;
83 socke t . oner ro r = func t i on (event) {
84 conso l e . e r r o r (’ WebSocket e r r o r : ’ , event) ;
85 } ;
86 }
87

88 f unc t i on updateTimeRemaining (time) {
89 const timeSpan = document . getElementById (’ timeRemaining ’) ;
90 var hours = Math . f l o o r (time / 3600) ;
91 var minutes = Math . f l o o r ((time % 3600) / 60) ;
92 var seconds = time % 60 ;
93 timeText = Math . c e i l (seconds) + " s " ;
94 i f (minutes > 0) {
95 timeText = minutes + " m " + timeText ;
96 }
97 i f (hours > 0) {
98 timeText = hours + " h " + minutes + " m " + timeText ;
99 }

100 timeSpan . innerHTML = timeText ;
101 }
102

103 f unc t i on updateDistanceRemaining (d i s t anc e) {
104 const distanceSpan = document . getElementById (’ distanceRemaining ’)

;
105 distanceSpan . innerHTML = di s t ance . toFixed (2) + ’ m’ ;
106 }
107

108

109 f unc t i on updateMap (la t , lon) {
110 map . getView () . animate ({
111 cente r : o l . p ro j . fromLonLat ([lon , l a t]) ,

53

Website

112 durat ion : 300
113 }) ;
114 }
115

116 f unc t i on updateGpsMarker (la t , lon , c i r c l e C o l o r) {
117 var markerFeature = gpsSource . ge tFeatures () [0] ;
118 i f (markerFeature . g e t S t y l e () . getImage () . getRadius () == 0) {
119 map . getView () . animate ({
120 cente r : o l . p ro j . fromLonLat ([lon , l a t]) ,
121 durat ion : 300 ,
122 zoom : 18
123 }) ;
124 markerFeature . getGeometry () . s e tCoord inate s (o l . p ro j . fromLonLat ([

lon , l a t])) ;
125 }
126 var newStyle = new o l . s t y l e . S ty l e ({
127 image : new o l . s t y l e . C i r c l e ({
128 rad iu s : 6 ,
129 f i l l : new o l . s t y l e . F i l l ({
130 c o l o r : c i r c l e C o l o r
131 }) ,
132 s t r oke : new o l . s t y l e . Stroke ({
133 c o l o r : ’#F1F4FA’ ,
134 width : 2
135 })
136 })
137 }) ;
138 markerFeature . s e t S t y l e (newStyle) ;
139 var l i n e = new o l . geom . L ineSt r ing ([markerFeature . getGeometry () .

getCoord inates () , o l . p ro j . fromLonLat ([lon , l a t])]) ;
140 var s tep = 0 ;
141 var key = s e t I n t e r v a l (func t i on () {
142 i f (s tep < 100) {
143 s tep++;
144 markerFeature . getGeometry () . s e tCoord inate s (l i n e .

getCoordinateAt (s tep /100)) ;
145 //marker . setGeometry (new Point (l i n e . getCoordinateAt (s tep /100)

)) ;
146 } e l s e {
147 c l e a r I n t e r v a l (key) ;
148 }
149 } , 10) ;
150 map . updateSize () ;
151 i f (waypo intsL i s t . l ength > 0) {
152 distanceFromWaypoint = c a l c u l a t e D i s t a n c e ({ l a t : l a t , lon : lon } ,

waypo intsL i s t [0] . data) ;
153 i f (distanceFromWaypoint < p r e c i s i o n) {
154 var myList = document . getElementById (’ dynamic− l i s t ’) ;
155 myList . removeChild (myList . f i r s t C h i l d) ;

54

Website

156 removeMarker (waypo intsL i s t [0] . markerId) ;
157 }
158 }
159 }
160

161

162 // You can send messages to the WebSocket s e r v e r us ing socke t . send
()

163 f unc t i on sendMessage (waypoints) {
164 const message = {
165 type : ’ de fau l t ’ ,
166 t ex t : { sender : ’ f rontend ’ , data : waypoints }
167 } ;
168 conso l e . l og (message)
169 socke t . send (JSON. s t r i n g i f y (message)) ;
170 }
171

172

173 f unc t i on addMarker (event) {
174 var coo rd ina t e s = event . coo rd inate ;
175 var marker = new o l . Feature ({
176 geometry : new o l . geom . Point (coo rd ina t e s) ,
177 t ex t : (markerSource . ge tFeatures () . l ength + 1) . t oS t r i ng ()
178 }) ;
179 marker . s e t I d (markerIdCounter) ;
180 markerSource . addFeature (marker) ;
181 sendBtn . c l a s s L i s t . remove (’ d i sab led ’) ;
182 removeBtn . c l a s s L i s t . remove (’ hidden ’) ;
183

184 var coords = o l . p ro j . t rans form (coord inate s , ’EPSG:3857 ’ , ’EPSG
:4326 ’) ;

185 var l ong i tude = coords [0] ;
186 var l a t i t u d e = coords [1] ;
187 waypointsL i s t . push ({ markerId : markerIdCounter , data : { l a t :

l a t i t u d e , lon : l ong i tude }})
188 }
189

190

191 var s ty l eFunct i on = func t i on (f e a t u r e) {
192 var t ext = f e a t u r e . get (’ text ’) ; // Get the text f o r the marker
193 var s t y l e = new o l . s t y l e . S ty l e ({
194 image : new o l . s t y l e . C i r c l e ({
195 rad iu s : 6 , // Radius o f the c i r c l e
196 f i l l : new o l . s t y l e . F i l l ({
197 c o l o r : ’#3B78EA’ // F i l l c o l o r o f the c i r c l e
198 })
199 }) ,
200 t ex t : new o l . s t y l e . Text ({
201 t ex t : text , // Set the text f o r the marker

55

Website

202 f i l l : new o l . s t y l e . F i l l ({
203 c o l o r : ’ white ’ // Text c o l o r
204 })
205 })
206 }) ;
207 re turn s t y l e ;
208 } ;
209

210

211 f unc t i on updateLis t (l a t , lon) {
212 var l i s t I t e m = document . createElement (’ l i ’) ;
213 l i s t I t e m . className = ’ points − l i s t ’ ;
214 l i s t I t e m . textContent = ’ l a t : ’ + l a t . toFixed (6) + ’ lon : ’ + lon .

toFixed (6) ;
215

216 var de leteButton = document . createElement (’ button ’) ;
217 de leteButton . className = ’ btn−c l o s e r ight −al ignment f l o a t −r i ght ’ ;
218 de leteButton . o n c l i c k = func t i on () {
219 var markerId = par s e In t (t h i s . parentNode . datase t . markerId) ;
220 removeMarker (markerId) ;
221 t h i s . parentNode . remove () ;
222 } ;
223 l i s t I t e m . datase t . markerId = markerIdCounter ;
224 l i s t I t e m . appendChild (de le teButton) ;
225 l i s t . appendChild (l i s t I t e m) ;
226 }
227

228 f unc t i on removeMarker (markerId) {
229 var markerToRemove = markerSource . getFeatureById (markerId) ;
230 markerSource . removeFeature (markerToRemove) ;
231 markerSource . ge tFeatures () . forEach (func t i on (markerFeature ,

markerIndex) {
232 markerFeature . s e t (’ text ’ , (markerIndex + 1) . t oS t r i ng ()) ;
233 }) ;
234

235 removeWaypointFromArray (markerId) ;
236

237 i f (markerSource . ge tFeatures () . l ength == 0) {
238 sendBtn . c l a s s L i s t . add (’ d i sab led ’) ;
239 removeBtn . c l a s s L i s t . add (’ hidden ’) ;
240 removeBtn . innerHTML = " Clear a l l " ;
241 sendBtn . innerHTML = " Star t " ;
242 }
243 }
244

245 f unc t i on removeWaypointFromArray (markerId) {
246 f o r (var i = 0 ; i < markerIdCounter ; i++) {
247 t ry {
248 i f (waypo intsL i s t [i] . markerId === markerId) {

56

Website

249 waypointsL i s t . s p l i c e (i , 1) ;
250 break ;
251 }
252 } catch {
253 }
254 }
255 }
256

257 f unc t i on ext rac tCoord inate s () {
258 var coord inatesArray = [] ;
259 f o r (var i = 0 ; i < waypo intsL i s t . l ength ; i++) {
260 coord inatesArray . push (waypo intsL i s t [i] . data) ;
261 }
262 re turn coord inatesArray ;
263 }
264

265 f unc t i on removeBtnClick () {
266 f o r (var i = 0 ; i < markerIdCounter ; i++) {
267 removeMarker (i) ;
268 }
269 l i s t . innerHTML = " " ;
270 markerIdCounter = 0 ;
271 nav igat ing = f a l s e ;
272 }
273

274 f unc t i on sendBtnClick () {
275 i f (robotStatus . innerText !== ’ on l ine ’) {
276 a l e r t (’ Wait f o r the robot to connect and try again . ’) ;
277 re turn
278 }
279 waypoints = ext rac tCoord inate s () ;
280 sendMessage (waypoints) ;
281 removeBtn . innerHTML = " Cancel " ;
282 sendBtn . innerHTML = " Started ! " ;
283 sendBtn . c l a s s L i s t . add (’ d i sab led ’) ;
284 nav igat ing = true ;
285 }
286

287

288 f unc t i on re s e tHear tbea t (l a t , lon) {
289 c learTimeout (heartbeatTimer) ;
290 heartbeatTimer = setTimeout (func t i on () {
291 var robotStatus = document . getElementById (’ s tatus ’) ;
292 robotStatus . innerText = ’ o f f l i n e ’ ;
293 robotStatus . c l a s s L i s t . remove (’ l i g h t −green−s tatus ’) ;
294 robotStatus . c l a s s L i s t . add (’ l i g h t −grey−s tatus ’) ;
295 nav igat ing = f a l s e ;
296 updateGpsMarker (la t , lon , ’ grey ’) ;
297 } , heartbeatThresho ld) ;

57

Website

298 }
299

300 f unc t i on c a l c u l a t e D i s t a n c e (point1 , po int2) {
301 var dx = point1 . l a t − point2 . l a t ;
302 var dy = point1 . lon − point2 . lon ;
303 re turn Math . s q r t (dx ∗ dx + dy ∗ dy) ;
304 }
305

306

307 l e t socket ;
308 var heartbeatTimer ;
309 var heartbeatThresho ld = 5000 ; // 5 seconds
310 var markerIdCounter = 0 ;
311 var lockView = true ;
312 var lockViewSwitch = document . getElementById (’

f lexSwitchCheckChecked ’) ;
313 var sendBtn = document . getElementById (’ sendBtn ’) ;
314 var removeBtn = document . getElementById (’ removeBtn ’) ;
315 var l i s t = document . getElementById (’ dynamic− l i s t ’) ;
316 var waypointsL i s t = [] ;
317 var distanceFromWaypoint = 0 ;
318 var nav igat ing = f a l s e ;
319 var p r e c i s i o n = 2e −6;
320 var robotStatus = document . getElementById (’ s tatus ’) ;
321

322

323 connectWebSocket () ;
324 var map = new o l .Map({
325 t a r g e t : ’map ’ ,
326 l a y e r s : [
327 new o l . l a y e r . T i l e ({
328 source : new o l . source .OSM()
329 })
330] ,
331 view : new o l . View ({
332 cente r : o l . p ro j . fromLonLat ([0 . 0 , 0 . 0]) ,
333 zoom : 3
334 })
335 }) ;
336 // Create marker
337 var gpsMarker = new o l . Feature ({
338 geometry : new o l . geom . Point (o l . p ro j . fromLonLat ([0 . 0 , 0 . 0]))
339 }) ;
340

341 // Sty l e f o r the marker
342 var markerStyle = new o l . s t y l e . S ty l e ({
343 image : new o l . s t y l e . C i r c l e ({
344 rad iu s : 0 ,
345 f i l l : new o l . s t y l e . F i l l ({

58

Website

346 c o l o r : ’#3B78EA’
347 }) ,
348 s t r oke : new o l . s t y l e . Stroke ({
349 c o l o r : ’#F1F4FA’ ,
350 width : 2
351 })
352 })
353 }) ;
354

355 gpsMarker . s e t S t y l e (markerStyle) ;
356

357 var gpsSource = new o l . source . Vector ({
358 f e a t u r e s : [gpsMarker]
359 }) ;
360

361 var gpsLayer = new o l . l a y e r . Vector ({
362 source : gpsSource
363 }) ;
364

365 map . addLayer (gpsLayer) ;
366

367 var markerSource = new o l . source . Vector () ;
368 var markerLayer = new o l . l a y e r . Vector ({
369 source : markerSource
370 }) ;
371 markerLayer . s e t S t y l e (s ty l eFunct i on) ;
372 map . addLayer (markerLayer) ;
373

374 // Add a c l i c k event handler to the map
375 map . on (’ c l i c k ’ , f unc t i on (evt) {
376 var coords = o l . p ro j . t rans form (evt . coord inate , ’EPSG:3857 ’ , ’EPSG

:4326 ’) ;
377 var l ong i tude = coords [0] ;
378 var l a t i t u d e = coords [1] ;
379 //updateMap (l a t i t u d e , l ong i tude) ;
380 // sendMessage (l a t i t u d e , l ong i tude) ;
381 addMarker (evt) ;
382 updateLis t (l a t i t u d e , l ong i tude) ;
383 markerIdCounter++;
384 }) ;
385

386 map . on (’ po interdrag ’ , f unc t i on (evt) {
387 lockViewSwitch . checked = f a l s e ;
388 lockView = lockViewSwitch . checked ;
389 }) ;
390

391 lockViewSwitch . addEventListener (’ change ’ , f unc t i on (evt) {
392 lockView = lockViewSwitch . checked ;
393 }) ;

59

Website

394

395 </ s c r i p t>
396 </body>
397 </html>

Listing B.2: CSS
1 #t i t l e −conta ine r {
2 background−c o l o r : b lack ;
3 min−width : 100%;
4 margin : 0 ;
5 padding : 1.5% 5vw ;
6 }
7 #t i t l e {
8 c o l o r : white ;
9 }

10 #map{
11 width : 100%;
12 he ight : 500px ;
13 }
14 #map−conta ine r {
15 margin : 1%;
16 max−width : 98%;
17 }
18 #dynamic− l i s t {
19 max−he ight : 300px ;
20 over f low−y : auto ;
21 margin−bottom : 2%;
22 min−width : 100%;
23 }
24 . po ints − l i s t {
25 font−s i z e : smal l ! important ;
26 min−width : 100%;
27 }
28 #waypoint−t i p {
29 font−s i z e : smal l ;
30 c o l o r : grey ;
31 margin : 0 0 2% 0 ;
32 }
33 . l i g h t −green−s t a tu s {
34 c o l o r : #20B736 ;
35 }
36 . l i g h t −grey−s t a tu s {
37 c o l o r : #9E9E9E ;
38 }
39 . r i ght −al ignment {
40 f l o a t : r i g h t ;
41 }
42 #switchDiv {

60

Website

43 margin : 2%;
44 }
45 . hidden {
46 d i sp l ay : none ;
47 }

61

Appendix C

GPS URDF Model

1 <?xml ve r s i on=" 1 .0 " ?>
2 <robot xmlns :xacro=" h t tp : //www. ros . org / wik i / xacro ">
3 <xacro:macro name=" my_navsat "
4 params=" parent_l ink xyz rpy
5 t o p i c :=gps/ f i x ">
6

7 <j o i n t name=" ${ parent_l ink . r s t r i p (’ _link ’) } _to_navsat_joint " type
=" f i x e d ">

8 <o r i g i n xyz=" ${ xyz} " rpy=" ${ rpy} " />
9 <parent l i n k=" ${ parent_l ink } " />

10 <c h i l d l i n k=" navsat_l ink " />
11 </ j o i n t>
12

13 <l i n k name=" navsat_l ink ">
14 <v i s u a l>
15 <o r i g i n xyz=" 0 .0 0 .0 0 .0 " rpy=" 0 .0 0 .0 0 . 0 " />
16 <geometry>
17 <mesh f i l ename=" package : // ros_components_descr ipt ion /meshes

/donut1 . dae " />
18 </geometry>
19 </ v i s u a l>
20

21 <!−− base and head c o l l i s i o n −−>
22 <c o l l i s i o n>
23 <o r i g i n xyz=" 0 .0 0 .0 ${0 .0613/2 .0} " rpy=" 0 .0 0 .0 0 . 0 " />
24 <geometry>
25 <box s i z e=" 0 .0556 0 .0556 0 .0413 " />
26 </geometry>
27 </ c o l l i s i o n>
28

29 <i n e r t i a l>

62

GPS URDF Model

30 <o r i g i n xyz=" 0 .0 0 .0 ${0 .0613/2 .0 + 0.0018237} " rpy=" 0 .0 0 .0
0 .0 " />

31 <mass value=" 0.115033 " />
32 <i n e r t i a ixx=" 0.00004115765 " ixy=" 0 .0 " i x z=" 0 .0 "
33 iyy=" 0.00004115765 " i y z=" 0 .0 "
34 i z z="

0.00004956023 " />
35 </ i n e r t i a l>
36 </ l i n k>
37

38

39 <gazebo r e f e r e n c e=" ${ parent_l ink } ">
40 <sensor type=" navsat " name=" navsat_sensor ">
41

42 <top i c>${ top i c }</ top i c>
43 <frame_id>${ parent_l ink }</ frame_id>
44 <ignit ion_frame_id>${ parent_l ink }</ ignit ion_frame_id>
45

46 <update_rate>10 .0</ update_rate>
47

48 <always_on>1</always_on>
49 <v i s u a l i z e>f a l s e</ v i s u a l i z e>
50 <ros>
51 <namespace></namespace>
52 </ ros>
53 </ senso r>
54 </ gazebo>
55 </ xacro:macro>
56 </ robot>

63

Appendix D

Nodes and Launch Files -
Simulation

Listing D.1: IMU Remapping Node
1 import r c lpy
2 from rc lpy . node import Node
3 from sensor_msgs . msg import Imu
4

5 c l a s s ImuRemappingNode (Node) :
6 de f __init__(s e l f) :
7 super () . __init__(’ imu_remapping ’)
8 s e l f . imu_sub = s e l f . c r ea t e_subs c r i p t i on (Imu , ’ /

imu_broadcaster /imu ’ , s e l f . imu_callback , 10)
9 s e l f . imu_pub = s e l f . c r ea t e_pub l i she r (Imu , ’ /imu ’ , 10)

10

11 de f imu_callback (s e l f , msg : Imu) :
12 s e l f . imu_pub . pub l i sh (msg)
13

14 de f main (args=None) :
15 r c lpy . i n i t (args=args)
16 node = ImuRemappingNode ()
17

18 r c lpy . sp in (node)
19 node . destroy_node ()
20 r c lpy . shutdown ()
21

22 i f __name__ == ’__main__ ’ :
23 main ()

Listing D.2: Write GPS Node
1 import r c lpy

64

Nodes and Launch Files - Simulation

2 from rc lpy . node import Node
3 from sensor_msgs . msg import NavSatFix
4

5 c l a s s WriteGpsNode (Node) :
6 de f __init__(s e l f) :
7 super () . __init__(’ write_gps ’)
8 s e l f . gps_sub = s e l f . c r e a t e_subs c r i p t i on (NavSatFix , ’ / gps/ f i x ’

, s e l f . write_gps_cal lback , 10)
9 s e l f . i = 1

10

11 de f write_gps_cal lback (s e l f , msg : NavSatFix) :
12 i f s e l f . i >= 10 :
13 s e l f . i = 1
14 coords = f ’ {msg . l a t i t u d e }−{msg . l ong i tude } ’
15 write_gps (coords)
16 s e l f . i += 1
17

18 de f write_gps (coords) :
19 with open (’ /home/ubuntu/ gps_pos i t ion / gps_pos i t ion . txt ’ , ’w ’) as f

:
20 f . wr i t e (coords)
21

22 de f main (args=None) :
23 r c lpy . i n i t (args=args)
24 node = WriteGpsNode ()
25

26 r c lpy . sp in (node)
27 node . destroy_node ()
28 r c lpy . shutdown ()
29

30 i f __name__ == ’__main__ ’ :
31 main ()

Listing D.3: Websocket Connection Node
1 import websocket
2 import j son
3 import r c lpy
4 from rc lpy . node import Node
5 import os
6 import re
7 from sensor_msgs . msg import NavSatFix
8 import thread ing
9 import time

10

11 c l a s s WebSocketNode (Node) :
12 de f __init__(s e l f) :
13 super () . __init__(’ WebSocket ’)
14 # WebSocket

65

Nodes and Launch Files - Simulation

15 websocket . enableTrace (True)
16 s e l f . i = 1
17 s e l f . ws = websocket . WebSocketApp(
18 " wss ://7 xuo fk fz0a . execute−api . eu−west −1.amazonaws . com/

product ion / " ,
19 on_open=s e l f . on_open ,
20 on_message=s e l f . on_message ,
21 on_error=s e l f . on_error ,
22 on_close=s e l f . on_close
23)
24 s e l f . ws . run_forever ()
25

26

27 de f on_open (s e l f , ws) :
28 s e l f . get_logger () . i n f o (’ WebSocket : connect ion open ! ’)
29 s e l f . send_data ()
30

31 de f on_message (s e l f , ws , message) :
32 msg = json . l oads (message)
33 i f msg [’ sender ’] != ’ robot ’ :
34 data = msg [’ data ’]
35 s e l f . get_logger () . i n f o (f " Received : { data } ")
36 command = " ros2 run nav2_gps_waypoint_follower_demo

logged_waypoint_fol lower ’ ["
37 f o r coord in data :
38 command += " {\" l a t \ " : " + s t r (coord [’ l a t ’]) + " , \"

lon \ " : " + s t r (coord [’ lon ’]) + " } , "
39 command = command[: −2] + "] ’ "
40 s e l f . get_logger () . i n f o (command)
41 os . system (command)
42

43 de f on_error (s e l f , ws , e r r o r) :
44 pr in t (f " Error : { e r r o r } ")
45

46 de f on_close (s e l f , ws , c lose_status_code , close_msg) :
47 pr in t (" WebSocket c l o s e d ")
48

49 de f send_data (s e l f) :
50 with open (’ /home/ubuntu/ gps_pos i t ion / gps_pos i t ion . txt ’ , ’ r ’)

as g p s _ f i l e :
51 gps_l ine = g p s _ f i l e . r e a d l i n e ()
52 l a t , lon = gps_l ine . s p l i t (’− ’)
53

54 with open (’ /home/ubuntu/ navigator_feedback / navigator_feedback
. txt ’ , ’ r ’) as nav_f i l e :

55 nav_line = nav_f i l e . r e a d l i n e ()
56 di s tance_pattern = r " distance_remaining =(\d+\.\d+)"
57 distance_matches = re . search (distance_pattern , nav_line)
58 i f distance_matches :

66

Nodes and Launch Files - Simulation

59 distance_remaining = f l o a t (distance_matches . group (1))
60 e l s e :
61 distance_remaining = −1.0
62

63 time_pattern = r " estimated_time_remaining=b u i l t i n _ i n t e r f a c e s
\ . msg \ . Duration \(sec =(\d+) , nanosec=(\d+)\) "

64 time_matches = re . search (time_pattern , nav_line)
65 i f time_matches :
66 est imated_sec = i n t (time_matches . group (1))
67 est imated_nsec = i n t (time_matches . group (2))
68 time_remaining = est imated_sec + estimated_nsec / 1e9
69 e l s e :
70 time_remaining = −1.0
71

72 message = {
73 ’ type ’ : ’ d e f a u l t ’ ,
74 ’ t ex t ’ : { ’ sender ’ : ’ robot ’ , ’ gps_data ’ : [f l o a t (l a t) ,

f l o a t (lon)] , ’ d i stance_remaining ’ : distance_remaining , ’
time_remaining ’ : time_remaining }

75 }
76 s e l f . ws . send (j son . dumps(message))
77 thread ing . Timer (1 , s e l f . send_data) . s t a r t ()
78 re turn
79

80

81 de f main (args=None) :
82 r c lpy . i n i t (args=args)
83 node = WebSocketNode ()
84

85 r c lpy . sp in (node)
86 node . destroy_node ()
87 r c lpy . shutdown ()
88

89 i f __name__ == ’__main__ ’ :
90 main ()

Listing D.4: Coordinates Conversion Node
1 import r c lpy
2 import sys
3 import j son
4 from r o b o t _ l o c a l i z a t i o n . s rv import FromLL
5 from rc lpy . node import Node
6 from nav2_gps_waypoint_follower_demo . u t i l s . gps_ut i l s import

latLonYaw2Geopose
7 from geometry_msgs . msg import PoseStamped
8 from std_msgs . msg import S t r ing
9

10

67

Nodes and Launch Files - Simulation

11 c l a s s GpsWpCommander(Node) :
12

13 de f __init__(s e l f , wps_file_path) :
14 super () . __init__(’ minimal_cl ient_async ’)
15 s e l f . pose_publ i sher = s e l f . c r ea t e_pub l i she r (PoseStamped , ’ /

gps_waypoints ’ , 10)
16 s e l f . contro l_nav igator_publ i sher = s e l f . c r ea t e_pub l i she r (

Str ing , ’ / contro l_nav igator ’ , 10)
17 s e l f . l o c a l i z e r = s e l f . c r e a t e _ c l i e n t (FromLL , ’ /fromLL ’)
18 whi le not s e l f . l o c a l i z e r . wa i t_for_serv ice (timeout_sec =1.0) :
19 s e l f . get_logger () . i n f o (’ s e r v i c e not ava i l ab l e , wa i t ing

again . . . ’)
20

21 de f start_wpf (s e l f , wps) :
22

23 wpl = []
24 f o r wp_ll in wps :
25 wp = latLonYaw2Geopose (wp_ll [’ l a t ’] , wp_ll [’ lon ’] , 0 . 0)
26 s e l f . req = FromLL . Request ()
27 s e l f . req . l l_po in t . l ong i tude = wp . p o s i t i o n . l ong i tude
28 s e l f . req . l l_po in t . l a t i t u d e = wp . p o s i t i o n . l a t i t u d e
29 s e l f . req . l l_po in t . a l t i t u d e = wp . p o s i t i o n . a l t i t u d e
30

31 l og = ’ long ={: f } , l a t ={: f } , a l t ={: f } ’ . format (s e l f . req .
l l_po in t . long i tude , s e l f . req . l l_po in t . l a t i t u d e , s e l f . req . l l_po in t .
a l t i t u d e)

32 s e l f . get_logger () . i n f o (l og)
33

34 s e l f . f u tu r e = s e l f . l o c a l i z e r . ca l l_async (s e l f . req)
35 r c lpy . spin_unti l_future_complete (s e l f , s e l f . f u tu r e)
36

37 s e l f . r e sp = PoseStamped ()
38 s e l f . r e sp . header . frame_id = ’map ’
39 s e l f . r e sp . header . stamp = s e l f . get_clock () . now () . to_msg ()
40 s e l f . r e sp . pose . p o s i t i o n = s e l f . f u tu r e . r e s u l t () . map_point
41

42 l og = ’ x={: f } , y={: f } , z={: f } ’ . format (s e l f . f u tu r e . r e s u l t
() . map_point . x , s e l f . f u tu r e . r e s u l t () . map_point . y , s e l f . f u tu r e .
r e s u l t () . map_point . z)

43 s e l f . get_logger () . i n f o (l og)
44

45 s e l f . r e sp . pose . o r i e n t a t i o n = wp . o r i e n t a t i o n
46 s e l f . pose_publ i sher . pub l i sh (s e l f . r e sp)
47 wpl += [s e l f . r e sp]
48

49 control_msg = Str ing ()
50 control_msg . data = " Star t "
51 s e l f . contro l_nav igator_publ i sher . pub l i sh (control_msg)
52

68

Nodes and Launch Files - Simulation

53 de f main () :
54 r c lpy . i n i t ()
55

56 gps_wpf = GpsWpCommander(default_yaml_fi le_path)
57 wps = [{ ’ l a t ’ : 0 . 0 , ’ lon ’ : 0 . 0 } ,]
58 i f l en (sys . argv) > 1 :
59 wps = json . l oads (sys . argv [1])
60 gps_wpf . start_wpf (wps)
61

62

63 i f __name__ == "__main__" :
64 main ()

Listing D.5: Smart Navigator Node
1 import j son
2 import r c lpy
3 from rc lpy . node import Node
4 from std_msgs . msg import S t r ing
5 from geometry_msgs . msg import PoseStamped
6 from nav2_simple_commander . robot_navigator import Bas icNavigator
7

8 c l a s s smartNavigatorNode (Node) :
9 de f __init__(s e l f) :

10 super () . __init__(’ SmartNavigator ’)
11 s e l f . nav igator = Bas icNavigator ()
12 s e l f . waypoints = []
13 s e l f . c r ea t e_subs c r i p t i on (PoseStamped , ’ /gps_waypoints ’ , s e l f .

add_waypoints , 10)
14 s e l f . c r ea t e_subs c r i p t i on (Str ing , ’ / contro l_nav igator ’ , s e l f .

contro l_navigator , 10)
15

16 de f add_waypoints (s e l f , msg) :
17 s e l f . waypoints . append (msg)
18

19 de f contro l_nav igator (s e l f , msg) :
20 i f msg . data == ’ Star t ’ :
21 s e l f . nav igator . goThroughPoses (s e l f . waypoints)
22 s e l f . waypoints = []
23 s e l f . write_nav_feedback ()
24

25

26 de f write_nav_feedback (s e l f) :
27 whi le not s e l f . nav igator . isTaskComplete () :
28 with open (’ /home/ubuntu/ navigator_feedback /

navigator_feedback . txt ’ , ’w ’) as f :
29 f . wr i t e (s t r (s e l f . nav igator . getFeedback ()))
30

31

69

Nodes and Launch Files - Simulation

32

33 de f main (args=None) :
34 r c lpy . i n i t (args=args)
35 node = smartNavigatorNode ()
36

37 r c lpy . sp in (node)
38 node . destroy_node ()
39 r c lpy . shutdown ()
40

41 i f __name__ == ’__main__ ’ :
42 main ()

Listing D.6: Autonomous Navigation Launch File
1 import os
2

3 from ament_index_python . packages import get_package_share_directory
4 from launch import LaunchDescr ipt ion
5 from launch . a c t i o n s import DeclareLaunchArgument ,

Inc ludeLaunchDescr ipt ion
6 from launch . launch_descr ipt ion_sources import

PythonLaunchDescriptionSource
7 from launch . s u b s t i t u t i o n s import LaunchConf iguration
8 from launch_ros . a c t i o n s import Node
9

10

11 de f generate_launch_descr ipt ion () :
12 t u t o r i a l _ d i r = get_package_share_directory (’ tutor ia l_pkg ’)
13 map_yaml_file = LaunchConf igurat ion (’map ’)
14 params_f i le = LaunchConfiguration (’ params_f i le ’)
15 use_sim_time = LaunchConf igurat ion (’ use_sim_time ’)
16

17 declare_map_yaml_cmd = DeclareLaunchArgument (
18 ’map ’ ,
19 de fau l t_va lue=os . path . j o i n (tu to r i a l_d i r , ’maps ’ , ’map . yaml ’) ,
20 d e s c r i p t i o n=’ Fu l l path to map yaml f i l e to load ’ ,
21)
22

23 declare_params_file_cmd = DeclareLaunchArgument (
24 ’ params_f i le ’ ,
25 de fau l t_va lue=os . path . j o i n (tu to r i a l_d i r , ’ c o n f i g ’ , ’

nav igat ion . yaml ’) ,
26 d e s c r i p t i o n=’ Fu l l path to the ROS2 parameters f i l e to use f o r

a l l launched nodes ’ ,
27)
28

29 declare_use_sim_time_cmd = DeclareLaunchArgument (
30 ’ use_sim_time ’ , de fau l t_va lue=’ f a l s e ’ , d e s c r i p t i o n=’ Use

s imu la t i on (Gazebo) c l o ck i f t rue ’

70

Nodes and Launch Files - Simulation

31)
32

33 ### ROSBOT_SIM
34 rosbot_s im_f i l e_dir = os . path . j o i n (
35 get_package_share_directory (’ rosbot_xl_gazebo ’) , ’ launch ’ , ’

s imu la t i on . launch . py ’
36)
37

38 rosbot_sim_launch = Inc ludeLaunchDescr ipt ion (
39 PythonLaunchDescriptionSource ([rosbot_s im_f i l e_dir]) ,
40)
41

42 ### NAVIGATION
43 nav igat ion_launch_f i l e_di r = os . path . j o i n (
44 get_package_share_directory (’ tutor ia l_pkg ’) , ’ launch ’ , ’

nav igat ion . launch . py ’
45)
46

47 navigat ion_launch = Inc ludeLaunchDescr ipt ion (
48 PythonLaunchDescriptionSource ([nav igat ion_launch_f i l e_di r]) ,
49 launch_arguments={
50 ’map ’ : map_yaml_file ,
51 ’ params_f i le ’ : params_fi le ,
52 ’ use_sim_time ’ : use_sim_time ,
53 } . i tems () ,
54)
55

56 ### IMU
57 imu_node = Node (
58 package=’ imu_remapping ’ ,
59 executab l e=’ launch ’ ,
60 name=’ imu_remapping ’ ,
61 output=’ s c r e en ’ ,
62)
63

64 ### NAVSAT TRANSFORM
65 navsat_node = Node (
66 package=’ r o b o t _ l o c a l i z a t i o n ’ ,
67 executab l e=’ navsat_transform_node ’ ,
68 name=’ navsat_transform_node ’ ,
69 output=’ s c r e en ’ ,
70)
71

72 ### WRITE GPS
73 write_gps_node = Node (
74 package=’ write_gps ’ ,
75 executab l e=’ launch ’ ,
76 name=’ write_gps ’ ,
77 output=’ s c r e en ’ ,

71

Nodes and Launch Files - Simulation

78)
79

80 ### WEBSOCKET
81 websocket_node = Node (
82 package=’ autonomous_gps_navigation ’ ,
83 executab l e=’ websocket_connection ’ ,
84 name=’ websocket_connection ’ ,
85 output=’ s c r e en ’ ,
86)
87

88 ### NAVIGATOR
89 navigator_node = Node (
90 package=’ smart_navigator ’ ,
91 executab l e=’ launch ’ ,
92 name=’ smart_navigator ’ ,
93 output=’ s c r e en ’
94)
95

96 ld = LaunchDescr ipt ion ()
97

98 ld . add_action (declare_map_yaml_cmd)
99 ld . add_action (declare_params_file_cmd)

100 ld . add_action (declare_use_sim_time_cmd)
101

102 ld . add_action (navigat ion_launch)
103 ld . add_action (rosbot_sim_launch)
104

105 ld . add_action (imu_node)
106 ld . add_action (navsat_node)
107 ld . add_action (write_gps_node)
108 ld . add_action (websocket_node)
109 ld . add_action (navigator_node)
110

111 re turn ld

72

Appendix E

Nodes and Launch files -
Robot

Listing E.1: GPS Broadcaster Node
1 import s e r i a l
2 import r c lpy
3 from rc lpy . node import Node
4 from sensor_msgs . msg import NavSatFix
5

6 port = ’ /dev/ttyACM0 ’
7 baud = 9600
8 gps = s e r i a l . S e r i a l (port , baudrate = baud , timeout = 0 . 5)
9

10 c l a s s GpsBroadcasterNode (Node) :
11 de f __init__(s e l f) :
12 super () . __init__(’ gps_broadcaster ’)
13 s e l f . gps_pub = s e l f . c r ea t e_pub l i she r (NavSatFix , ’ / gps/ f i x ’ ,

10)
14 s e l f . get_logger () . i n f o (’ Started ! ’)
15 s e l f . get_logger () . i n f o (’ Pub l i sh ing . . . ’)
16 s e l f . c reate_timer (0 . 1 , s e l f . publ ish_gps)
17 s e l f . i = 1
18

19 de f wr i te_gps_pos it ion (s e l f , coords) :
20 with open (’ /home/ husar ion / gps_pos i t ion / gps_pos i t ion . txt ’ , ’w ’

) as f :
21 f . wr i t e (coords)
22

23 de f dms_to_dd(s e l f , coord , d i r) :
24 coord = i n t (coord) + (coord % 1) ∗100/60
25 i f d i r in [’W’ , ’S ’] :
26 coord ∗= −1

73

Nodes and Launch files - Robot

27 re turn coord
28

29 de f read_gps_data (s e l f) :
30 gps_l ine = gps . r e a d l i n e () . decode () . s t r i p ()
31 l a t i t u d e = 0 .0
32 l ong i tude = 0 .0
33 a l t i t u d e = 0 .0
34 t ry :
35 i f gps_l ine . f i n d (’GGA’) > 0 :
36 gps_data = gps_l ine . s p l i t (’ , ’)
37 i f gps_data [2] != ’ ’ :
38 l a t i t u d e = round (f l o a t (gps_data [2]) /100 , 6)
39 l a t_d i r = gps_data [3]
40 l a t i t u d e = round (s e l f . dms_to_dd(l a t i t u d e , l a t_d i r

) , 6)
41 i f gps_data [4] != ’ ’ :
42 l ong i tude = round (f l o a t (gps_data [4]) /100 , 6)
43 lon_dir = gps_data [5]
44 l ong i tude = round (s e l f . dms_to_dd(long i tude ,

lon_dir) , 6)
45 i f gps_data [9] != ’ ’ :
46 a l t i t u d e = f l o a t (gps_data [9])
47 a l t_uni t = gps_data [1 0]
48 except Exception as e :
49 s e l f . get_logger () . i n f o (s t r (e))
50 i f l a t i t u d e != 0 . 0 :
51 s e l f . i = 1
52 coords = f ’ { l a t i t u d e }−{ l ong i tude}−{ a l t i t u d e } ’
53 s e l f . wr i te_gps_pos i t ion (coords)
54 s e l f . i += 1
55 re turn [l a t i t u d e , long i tude , a l t i t u d e]
56

57 de f publ ish_gps (s e l f) :
58 l a t , lon , a l t = s e l f . read_gps_data ()
59 i f l a t == 0 .0 and lon == 0 . 0 :
60 with open (’ /home/ husar ion / gps_pos i t ion / gps_pos i t ion . txt ’ ,

’ r ’) as g p s _ f i l e :
61 gps_l ine = g p s _ f i l e . r e a d l i n e ()
62 l a t , lon , a l t = gps_l ine . s p l i t (’− ’)
63 msg = NavSatFix ()
64 msg . header . stamp = s e l f . get_clock () . now () . to_msg ()
65 msg . header . frame_id = ’ body_link ’
66

67 msg . l a t i t u d e = f l o a t (l a t)
68 msg . l ong i tude = f l o a t (lon)
69 msg . a l t i t u d e = f l o a t (a l t)
70

71 s e l f . gps_pub . pub l i sh (msg)
72

74

Nodes and Launch files - Robot

73 de f main (args=None) :
74 r c lpy . i n i t (args=args)
75 node = GpsBroadcasterNode ()
76

77 r c lpy . sp in (node)
78 node . destroy_node ()
79 r c lpy . shutdown ()
80

81 i f __name__ == ’__main__ ’ :
82 main ()

75

Appendix F

EC2 Setup

Listing F.1: Configuring system locale
1 l o c a l e # check f o r UTF−8
2

3 sudo apt update && sudo apt i n s t a l l l o c a l e s
4 sudo l o c a l e −gen en_US en_US .UTF−8
5 sudo update−l o c a l e LC_ALL=en_US .UTF−8 LANG=en_US .UTF−8
6 export LANG=en_US .UTF−8
7

8 l o c a l e # v e r i f y s e t t i n g s

Listing F.2: Enabling Ubuntu Universal Repository
1 sudo apt i n s t a l l so f tware −prope r t i e s −common
2 sudo add−apt−r e p o s i t o r y un ive r s e

Listing F.3: Adding GPG key for ROS2
1 sudo apt update && sudo apt i n s t a l l c u r l −y
2 sudo c u r l −sSL https : // raw . g i thubuse rcontent . com/ ros / r o s d i s t r o / master

/ ros . key −o / usr / share / keyr ings / ros−arch ive −keyr ing . gpg

Listing F.4: Adding ROS2 Repository
1 echo " deb [arch=$ (dpkg −−pr int −a r c h i t e c t u r e) s igned−by=/usr / share /

keyr ings / ros−arch ive −keyr ing . gpg] http :// packages . ro s . org / ros2 /
ubuntu $ (. / e t c /os−r e l e a s e && echo $UBUNTU_CODENAME) main " | sudo
tee / e tc /apt/ sour c e s . l i s t . d/ ros2 . l i s t > /dev/ n u l l

Listing F.5: Installing Development Tools
1 sudo apt update && sudo apt i n s t a l l ros−dev−t o o l s

76

EC2 Setup

Listing F.6: Installing ROS2
1 sudo apt i n s t a l l ros−humble−desktop
2 sudo apt i n s t a l l ros−humble−ros−base

77

Appendix G

Husarion Tutorials

Listing G.1: Installing Additional Packages
1 sudo apt i n s t a l l ros−humble−slam−too lbox
2 sudo apt i n s t a l l ros−humble−nav igat ion2
3 sudo apt i n s t a l l ros−humble−nav2−bringup
4 sudo apt i n s t a l l python3−pip
5 sudo apt i n s t a l l ros−humble−gazebo−ros−pkgs
6 sudo apt i n s t a l l ros−humble−robot− l o c a l i z a t i o n

Listing G.2: Setting up Gazebo Environment
1 mkdir −p rosbot_ws/ s r c
2 cd rosbot_ws
3 g i t c l one https : // github . com/ husar ion / rosbot_xl_ros s r c /

Listing G.3: Installing Work Tools
1 sudo apt−get update
2 sudo apt i n s t a l l ros−dev−t o o l s
3 vcs import s r c < s r c / rosbot_xl / rosbot_xl_hardware . repos
4 vcs import s r c < s r c / rosbot_xl / rosbot_xl_simulat ion . repos
5 sudo rosdep i n i t
6 rosdep update −−r o s d i s t r o $ROS_DISTRO
7 rosdep i n s t a l l − i −−from−path s r c −−r o s d i s t r o $ROS_DISTRO −y

Listing G.4: Building Libraries
1 export HUSARION_ROS_BUILD=s imu la t i on
2 source /opt/ ros /humble/ setup . bash
3 co l con bu i ld −−symlink− i n s t a l l

Listing G.5: Updating .bashrc
1 echo ’ source ~/rosbot_ws/ i n s t a l l / setup . bash ’ >> ~/. bashrc

78

Husarion Tutorials

Listing G.6: Creating Alias
1 echo " a l i a s ROSBOT_SIM=’ ros2 launch rosbot_xl_gazebo s imu la t i on .

launch . py ’ " >> ~/. bashrc
2 . ~/ . bashrc

79

Bibliography

[1] A.B. Zachariah. Precision Agriculture and the Future of Farming. Arcler Ed-
ucation Incorporated, 2018. isbn: 9781773612836. url: https://books.
google.it/books?id=jlAovAEACAAJ (cit. on p. 1).

[2] Prem Rajak, Abhratanu Ganguly, Satadal Adhikary, and Suchandra Bhat-
tacharya. Applications of integrated IoT and smart sensors for precision
farming. [Online; accessed May 10, 2024]. 2023. url: https://commons.
wikimedia.org/wiki/File:Applications_of_integrated_IoT_and_
smart_sensors_for_precision_farming.jpg (cit. on p. 1).

[3] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
isbn: 9780262201629 (cit. on pp. 4, 5).

[4] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011. isbn: 9780262015356 (cit. on
pp. 4, 5).

[5] J. Kober, J. A. Bagnell, and J. Peters. «Reinforcement Learning in Robotics:
A Survey». In: The International Journal of Robotics Research 32.11 (2013),
pp. 1238–1274. url: https://journals.sagepub.com/doi/10.1177/
0278364913495721 (cit. on pp. 5, 6).

[6] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. «ORB-SLAM: A Ver-
satile and Accurate Monocular SLAM System». In: IEEE Transactions on
Robotics. Vol. 31. 5. 2015, pp. 1147–1163. url: https://ieeexplore.ieee.
org/document/7219438 (cit. on p. 6).

[7] J. Engel, T. Schöps, and D. Cremers. «LSD-SLAM: Large-Scale Direct Monoc-
ular SLAM». In: European Conference on Computer Vision. 2014, pp. 834–
849. url: https://link.springer.com/chapter/10.1007/978-3-319-
10605-2_54 (cit. on p. 6).

[8] M. König, C. Wiesen, C. Heining, and W. W. Stürzl. «Real-time 3D SLAM
with a Hand-held RGB-D Camera». In: International Conference on Intelli-
gent Robots and Systems. 2011, pp. 3862–3867. url: https://ieeexplore.
ieee.org/document/6094807 (cit. on p. 6).

80

https://books.google.it/books?id=jlAovAEACAAJ
https://books.google.it/books?id=jlAovAEACAAJ
https://commons.wikimedia.org/wiki/File:Applications_of_integrated_IoT_and_smart_sensors_for_precision_farming.jpg
https://commons.wikimedia.org/wiki/File:Applications_of_integrated_IoT_and_smart_sensors_for_precision_farming.jpg
https://commons.wikimedia.org/wiki/File:Applications_of_integrated_IoT_and_smart_sensors_for_precision_farming.jpg
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://ieeexplore.ieee.org/document/7219438
https://ieeexplore.ieee.org/document/7219438
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_54
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_54
https://ieeexplore.ieee.org/document/6094807
https://ieeexplore.ieee.org/document/6094807

BIBLIOGRAPHY

[9] W. Hess, D. Kohler, H. Rapp, and D. Andor. «Real-time Loop Closure in
2D LIDAR SLAM». In: IEEE International Conference on Robotics and Au-
tomation (ICRA). 2016, pp. 1271–1278. url: https://ieeexplore.ieee.
org/document/7487258 (cit. on p. 6).

[10] S. Macenski, F. Martín, R. White, and J. Clavero. «Marathon 2: A Navigation
System». In: arXiv preprint arXiv:2003.00368 (2020). url: https://arxiv.
org/abs/2003.00368 (cit. on p. 7).

[11] M. Quigley, B. Gerkey, W. D. Smart, F. Martín, and S. Macenski. ROS 2
Design. 2014. url: https://design.ros2.org/ (cit. on pp. 7–9).

[12] RTI Connext DDS. Data Distribution Service (DDS) Overview. 2021. url:
https://www.rti.com/products/dds (cit. on pp. 8, 9).

[13] ROS 2 Documentation. Managed nodes (lifecycle) in ROS 2. 2021. url: htt
ps://design.ros2.org/articles/node_lifecycle.html (cit. on p. 8).

[14] G. Biggs and J. Karlsson. An overview of the ROS 2 security architecture.
2018. url: https://design.ros2.org/articles/ros2_security.html
(cit. on p. 9).

[15] Colcon Documentation. Colcon - ROS 2’s build tool. 2021. url: https://
colcon.readthedocs.io/ (cit. on p. 9).

[16] ROS 2 Documentation. Launch system in ROS 2. 2021. url: https://docs.
ros2.org/latest/api/launch/html/ (cit. on p. 10).

[17] Open Robotics. Gazebo Simulation. 2021. url: http://gazebosim.org/
(cit. on p. 10).

[18] Open Robotics. Ignition Robotics. 2021. url: https://ignitionrobotics.
org/ (cit. on p. 10).

[19] J. Zhang and S. Singh. «LOAM: Lidar Odometry and Mapping in Real-
time». In: Robotics: Science and Systems Conference. 2014. url: http://
www.roboticsproceedings.org/rss10/p18.pdf (cit. on p. 10).

[20] J. Henrich and H. Wörn. Robot Manipulation for Industrial Automation.
Springer, 1999 (cit. on p. 10).

[21] A. M. Okamura, L. N. Verner, R. H. Taylor, C. Simone, and P. Kazanzides.
«Teleoperation: An Enabling Technology for Healthcare, Manufacturing, and
Space Exploration». In: Technology 5.3 (2005), pp. 7–13 (cit. on p. 10).

[22] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer, 2016
(cit. on pp. 10, 11).

[23] Peter Mell and Timothy Grance. «The NIST definition of cloud computing».
In: NIST special publication 800.145 (2011), p. 7 (cit. on pp. 12–15).

81

https://ieeexplore.ieee.org/document/7487258
https://ieeexplore.ieee.org/document/7487258
https://arxiv.org/abs/2003.00368
https://arxiv.org/abs/2003.00368
https://design.ros2.org/
https://www.rti.com/products/dds
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/ros2_security.html
https://colcon.readthedocs.io/
https://colcon.readthedocs.io/
https://docs.ros2.org/latest/api/launch/html/
https://docs.ros2.org/latest/api/launch/html/
http://gazebosim.org/
https://ignitionrobotics.org/
https://ignitionrobotics.org/
http://www.roboticsproceedings.org/rss10/p18.pdf
http://www.roboticsproceedings.org/rss10/p18.pdf

BIBLIOGRAPHY

[24] Michael Armbrust et al. «A view of cloud computing». In: Communications
of the ACM 53.4 (2010), pp. 50–58 (cit. on pp. 15, 17, 20).

[25] Robert Baker. AWS: The Complete Guide from Beginners to Advanced for
Amazon Web Services. CreateSpace Independent Publishing Platform, 2018
(cit. on pp. 17, 18).

[26] itim2101. Icon by https://https//dribbble.com/itim2101 on freeicons.io. url:
https://freeicons.io/robotics- icon- set- 5/robot- icon- 268754
(cit. on p. 23).

[27] Husarion. ROSbot XL github repository. This work is licensed under the fol-
lowing licenses: Apache-2.0: https : / / github . com / husarion / rosbot _
xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_
APACHE2.txt MIT: https://github.com/husarion/rosbot_xl_ros/
blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_MIT.txt.
url: https://github.com/husarion/rosbot_xl_ros.git (cit. on p. 28).

[28] ROS Navigation. ROS navigation - navigation2. This work is licensed under
the following licenses: Apache-2.0: https://github.com/husarion/rosbot_
xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_
APACHE2.txt BSD-3-Clause: https://opensource.org/license/bsd-
3 - clause LGPL-2.1-or-later: https : / / www . gnu . org / licenses / old -
licenses/lgpl-2.1.en.html. url: https://github.com/ros-navigatio
n/navigation2.git (cit. on p. 30).

[29] AWS. NICE DCV. High-Performance Remote Display Protocol. 2023. url:
https://aws.amazon.com/hpc/dcv/ (cit. on p. 32).

[30] AWS. AWS Security Best Practices. 2023. url: https://aws.amazon.com/
architecture/security-identity-compliance/ (cit. on p. 32).

[31] AWS. NICE DCV Supported Platforms. 2023. url: https://docs.aws.
amazon.com/dcv/latest/userguide/what-is-dcv.html (cit. on p. 32).

[32] AWS. AWS Scalability Benefits. 2023. url: https://aws.amazon.com/
autoscaling/ (cit. on p. 32).

[33] AWS. NICE DCV Collaboration Features. 2023. url: https://docs.aws.
amazon.com/dcv/latest/userguide/working-with-shared-sessions.
html (cit. on p. 32).

[34] AWS. AWS Cost Management. 2023. url: https : / / aws . amazon . com /
pricing/ (cit. on p. 33).

[35] AWS. NICE DCV User Guide. 2023. url: https://docs.aws.amazon.com/
dcv/latest/userguide/ (cit. on p. 33).

82

https://freeicons.io/robotics-icon-set-5/robot-icon-268754
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_MIT.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_MIT.txt
https://github.com/husarion/rosbot_xl_ros.git
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://github.com/husarion/rosbot_xl_ros/blob/e48acb6d3efe7c7a5e1dddaec43b640ab4870c26/LICENSE_APACHE2.txt
https://opensource.org/license/bsd-3-clause
https://opensource.org/license/bsd-3-clause
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://github.com/ros-navigation/navigation2.git
https://github.com/ros-navigation/navigation2.git
https://aws.amazon.com/hpc/dcv/
https://aws.amazon.com/architecture/security-identity-compliance/
https://aws.amazon.com/architecture/security-identity-compliance/
https://docs.aws.amazon.com/dcv/latest/userguide/what-is-dcv.html
https://docs.aws.amazon.com/dcv/latest/userguide/what-is-dcv.html
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/dcv/latest/userguide/working-with-shared-sessions.html
https://docs.aws.amazon.com/dcv/latest/userguide/working-with-shared-sessions.html
https://docs.aws.amazon.com/dcv/latest/userguide/working-with-shared-sessions.html
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://docs.aws.amazon.com/dcv/latest/userguide/
https://docs.aws.amazon.com/dcv/latest/userguide/

BIBLIOGRAPHY

[36] Charles River Analytics. Robot Localization. This work is licensed under the
following licenses: https://github.com/cra-ros-pkg/robot_localiza
tion/blob/f2b36f761ffd6f7b07c98b6c748c4d75660098b9/LICENSE. url:
https://github.com/cra-ros-pkg/robot_localization.git (cit. on
p. 37).

[37] ROS Navigation. Nav2 GPS Waypoint Follower Demo. This work is licensed
under the following licenses: MIT: https://mit-license.org. url: https:
//github.com/ros-navigation/navigation2_tutorials/tree/cb800b
76d40d18229f1355807351a138b1123ec5/nav2_gps_waypoint_follower_
demo (cit. on p. 37).

83

https://github.com/cra-ros-pkg/robot_localization/blob/f2b36f761ffd6f7b07c98b6c748c4d75660098b9/LICENSE
https://github.com/cra-ros-pkg/robot_localization/blob/f2b36f761ffd6f7b07c98b6c748c4d75660098b9/LICENSE
https://github.com/cra-ros-pkg/robot_localization.git
https://mit-license.org
https://github.com/ros-navigation/navigation2_tutorials/tree/cb800b76d40d18229f1355807351a138b1123ec5/nav2_gps_waypoint_follower_demo
https://github.com/ros-navigation/navigation2_tutorials/tree/cb800b76d40d18229f1355807351a138b1123ec5/nav2_gps_waypoint_follower_demo
https://github.com/ros-navigation/navigation2_tutorials/tree/cb800b76d40d18229f1355807351a138b1123ec5/nav2_gps_waypoint_follower_demo
https://github.com/ros-navigation/navigation2_tutorials/tree/cb800b76d40d18229f1355807351a138b1123ec5/nav2_gps_waypoint_follower_demo

	Introduction
	Objective of the Thesis
	Organization of the Thesis
	State of the Art in Robot Navigation
	Introduction
	Navigation Techniques
	Learning-Based Navigation
	Simultaneous Localization and Mapping (SLAM)

	Software Architecture
	ROS 2
	Introduction
	Background and Motivation
	Architecture of ROS 2
	Key Features of ROS 2
	Development and Deployment Tools
	Applications of ROS 2

	Cloud Computing
	Introduction to Cloud Computing
	Characteristics of Cloud Computing
	Service Models
	Deployment Models
	Benefits of Cloud Computing
	Challenges in Cloud Computing
	Amazon Web Services (AWS)
	Future Trends in Cloud Computing
	Project Infrastructure

	Development
	Website
	Simulation
	Gazebo Ignition
	RViz2
	Husarion Robot Model
	Virtual Machine
	Map
	Nodes and Launch Files
	Results

	Robot
	Setup
	Nodes and Launch Files
	Results

	Conclusion
	Experimental Results
	Future Work

	Websocket functions
	Website
	GPS URDF Model
	Nodes and Launch Files - Simulation
	Nodes and Launch files - Robot
	EC2 Setup
	Husarion Tutorials
	Bibliography

