
POLITECNICO DI TORINO
Master’s Degree in AUTOMOTIVE ENGINEERING

Master’s Degree Thesis

Energy-Efficient Adaptive Cruise Control
for EVs in Urban Scenarios with Traffic

Lights Negotiation

Supervisors

Prof. ANDREA TONOLI

PhD Candidate STEFANO FAVELLI

Candidate

CHENGYANG YE

JULY 2024

Abstract

The rapid urbanization and increasing environmental concerns have driven the
demand for efficient and sustainable transportation solutions. Small electric vehicles
are becoming a popular choice for urban commuting due to their low emissions
and cost-effectiveness. However, optimizing energy consumption remains a critical
challenge for enhancing the overall efficiency and practicality of these vehicles
in complex urban environments. Nowadays, the Advanced Driver Assistance
Systems (ADAS) of electric vehicles are flourishing. With the gradual enhancement
of the computational power of onboard chips, more complex algorithms, such
as Model Predict Control (MPC), can be applied in real-time to ADAS. With
the advancement of communication technology, more information such as Signal
Phase and Timing (SPaT) can be obtained through Vehicle-to-Infrastructure (V2I)
technology, providing the potential for further enhancing the capabilities of ADAS.

The main work of this thesis is developing an advanced vehicle controller based
on MPC that seamlessly integrates vehicle following and traffic light information
to minimize energy consumption while optimizing driving comfort. The controller
utilizes Vehicle-to-Vehicle (V2V) technology or estimation methods to obtain
the lead vehicle’s trajectory. By dynamically adjusting the headway distance to
the preceding vehicle, the controller achieves efficient energy management within
the complex and congested urban traffic conditions. A significant aspect of the
proposed system is the integration of SPaT information through V2I communication
technology. This allows the vehicle to anticipate upcoming traffic signals, proactively
adjust its speed, and thereby reduce unnecessary acceleration and braking. In
addition, this approach also decreases overall resistance, thereby enhancing energy
efficiency. The controller no longer switches between speed tracking and car-
following tasks as two separate modes; instead, it integrates them into a single
algorithm that balances both tasks in real-time.

The CasADi toolbox coded in MATLAB is used for controller implementation.
Firstly, the focus is on designing the non-linear programming architecture, then it
is transformed into quadratic programming to deploy it in real-time. The algorithm
is compiled with MinGW64 to generate C code and implemented in Simulink with
the vehicle model for Software-in-the-Loop (SiL) testing. The driving cycle used is
based on a human driver driving recorded in Torino.

We use Monte Carlo simulation-based method to tune the controller and the
simulation results demonstrated that the proposed controller performs well in
different scenarios, significantly reducing the energy consumption of electric vehicle,
improving travel efficiency, and providing a safe and reliable driving experience.
Energy consumption can be reduced up to 12%, depending on different scenario

and working logic. The inclusion of V2V information is shown to markedly improve
performance in terms of energy savings and driving comfort, and it is particularly
beneficial for multiple vehicles engaged in cooperative adaptive cruise control.

This study serves as a valuable reference for the future development of intelligent
transportation systems. It underscores the potential of integrating advanced
communication technologies and predictive control strategies to achieve sustainable
and efficient urban mobility solutions for electric vehicles.

Keywords: Model Predictive Control, Adaptive Cruise Control, Vehicle-to-Infrastructure,
Energy Efficiency

ii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 4
1.3 Thesis Outline . 5

2 Theoretical Background 6
2.1 Adaptive cruise control . 6

2.1.1 Introduction . 6
2.1.2 Head way distance policy . 6
2.1.3 String stability . 8
2.1.4 Cooperative Adaptive Cruise Control 9

2.2 Model Predict Control . 10
2.2.1 Predict Horizon . 10
2.2.2 Plant Modeling . 11
2.2.3 Constraint . 11
2.2.4 Cost Function . 12
2.2.5 Format, Solver and Toolbox 12
2.2.6 Simple Example . 14
2.2.7 Advantage and Disadvantage 15

2.3 Driving Comfort . 15
2.4 SPaT and Actuated Signal . 16

2.4.1 SPaT . 16
2.4.2 Actuated Signal . 16

3 System Architecture Design and Methodology 17
3.1 Overall structure . 17
3.2 Reference speed generator . 19

3.2.1 SPaT logic . 20
3.2.2 Vehicle following . 23
3.2.3 No SPaT and no vehicle following 23

3.3 MPC Formulation with NLP . 24

ii

3.3.1 Preliminary knowledge . 24
3.3.2 Lead vehicle trajectory . 26
3.3.3 Optimized vector . 27
3.3.4 Vehicle model . 27
3.3.5 Constraints . 29
3.3.6 Cost function . 37
3.3.7 Full formulation . 41
3.3.8 Coding . 41

3.4 MPC Formulation with QP . 42
3.4.1 Preliminary knowledge . 42
3.4.2 Lead and ego vehicle trajectory 44
3.4.3 Optimized vector . 45
3.4.4 Vehicle model . 45
3.4.5 Constraints . 46
3.4.6 Cost function . 51
3.4.7 Full formulation . 53
3.4.8 Coding . 53

3.5 Environment Setup and Controller Development 55
3.5.1 Overall structure . 55
3.5.2 Environment Setup . 55
3.5.3 Controller Development . 57

4 Experiments and Results 60
4.1 Test scenario . 60
4.2 Tuning . 63
4.3 Cut-in test . 66
4.4 Scenario test . 67

4.4.1 ACC with SPaT . 68
4.4.2 ACC with SPaT and stop 70
4.4.3 Pure ACC . 72
4.4.4 Only traffic light negotiation 73

4.5 Lead vehicle trajectory estimation 75
4.6 Headway distance policy . 77
4.7 NLP and QP . 80
4.8 Multiple vehicle following . 83

4.8.1 All constant speed . 83
4.8.2 All constant acceleration . 85
4.8.3 Constant speed-v2v . 86
4.8.4 Constant acceleration-v2v 87

iii

5 Conclusions and Future Works 89
5.1 Conclusion . 89
5.2 Future work . 90

List of Tables 92

List of Figures 93

Bibliography 96

iv

Chapter 1

Introduction

1.1 Background
With the accelerating process of global urbanization and the continuous growth
of urban populations, urban traffic congestion and air pollution have become
increasingly severe issues. Private cars, as a significant component of urban
transportation, have a notable impact on environmental pollution. According to
statistics from the World Health Organization (WHO) and the International Energy
Agency (IEA), emissions from private cars in cities account for over 30% of total
urban pollution emissions, making them a primary source of urban air pollution
and greenhouse gas emissions [1][2]. Additionally, frequent stops and starts and
low-speed driving modes in cities further exacerbate the energy consumption and
pollution emissions of private cars. The transportation sector accounts for about
24% of global CO2 emissions, with private cars contributing a significant portion
[3].

To address these challenges, many countries and regions have introduced relevant
policies to promote the development and adoption of electric vehicles (EVs), reduce
greenhouse gas emissions, and achieve sustainable development goals. For example:

• China’s "New Energy Vehicle Industry Development Plan (2021-2035)" ex-
plicitly states that by 2035, new energy vehicles will become the mainstream,
with full electrification in the public sector. The Chinese government supports
the development of new energy vehicles through subsidies, tax incentives, and
infrastructure construction, aiming for new energy vehicle sales to account for
about 20% of total vehicle sales by 2025 [4]. The dual-credit policy requires
automakers to produce a certain proportion of new energy vehicles while
producing traditional fuel vehicles. If they fail to meet the target, they need
to purchase credits from other manufacturers, thus promoting the production
and technological advancement of new energy vehicles [5].

1

Introduction

• The European Union’s "European Green Deal" aims to achieve carbon neu-
trality by 2050, with the promotion of zero-emission vehicles being a crucial
component. According to this agreement, by 2030, the EU plans to reduce
greenhouse gas emissions in the transportation sector by at least 55%. To
this end, the EU has established a series of strict emission standards and
promotes the development and market adoption of electric vehicles through
financial support and policy incentives. For example, the EU has set strict
CO2 emission limits for new cars, not exceeding 95 grams per kilometer by
2021, and further reducing to 59 grams per kilometer by 2030 [6]. These
standards force automakers to accelerate the electrification process.

• The United States’ "Clean Future Act" aims to achieve net-zero emissions by
2030, including significant investments in electric vehicle infrastructure such
as charging station networks and providing purchase subsidies to encourage
consumers to buy electric vehicles. Additionally, the act supports the research
and development of electric vehicle technologies, accelerating the commercial-
ization of new technologies [7]. California’s Zero-Emission Vehicle Program,
as a pioneer in the US, stipulates that all new passenger cars sold by 2035 will
be zero-emission, effectively banning the sale of new fuel vehicles. This plan
has significantly promoted the adoption of electric vehicles and inspired other
states to follow suit [8].

• Japan’s "Green Growth Strategy" proposes that by 2035, all new cars sold will
be electric vehicles (including hydrogen fuel cell vehicles and hybrid vehicles).
By providing financial subsidies, research funds, and infrastructure construc-
tion, Japan aims to become a leading global market for new energy vehicles
[9]. These policies commonly leverage legislation and economic incentives to
promote the production and consumption of electric vehicles, reducing green-
house gas emissions in the transportation sector and achieving sustainable
development goals.

The widespread adoption of electric vehicles in urban travel is crucial for im-
proving air quality and reducing greenhouse gas emissions. Electric vehicles can
significantly reduce exhaust emissions and reliance on fossil fuels, thereby lowering
urban air pollution levels. This has important implications for enhancing residents’
quality of life and promoting public health. Moreover, electric vehicles have notable
advantages in terms of energy efficiency, particularly in congested and low-speed
urban environments, where their efficient electric drive systems consume less energy
than traditional internal combustion engine vehicles under similar conditions.

However, the energy efficiency and range of electric vehicles remain key chal-
lenges in their widespread adoption. Limitations in battery technology make it

2

Introduction

difficult for current electric vehicles to match the range of traditional fuel vehi-
cles. Additionally, the slow rate of battery recharging extends the time needed to
replenish energy, especially during peak periods and long-distance travel, where
charging time becomes a critical factor affecting user experience. Optimizing the
energy consumption management of electric vehicles is thus crucial for their broad
application.

In urban traffic environments, improving the energy efficiency of electric ve-
hicles through advanced control strategies and communication technologies can
extend their range, reduce operating costs, and decrease energy consumption and
environmental pollution, further promoting the adoption and use of electric vehicles.

Model Predictive Control (MPC) has a rich history and wide range of applications
in various fields. Initially developed in the late 1970s and early 1980s for the process
industries, MPC has evolved into a powerful and versatile control strategy used
in various domains, including automotive engineering, aerospace, and robotics.
The primary advantage of MPC lies in its ability to handle multi-variable control
problems with constraints while optimizing performance criteria. By predicting
future system behavior based on a dynamic model, MPC can make real-time
adjustments to control inputs, ensuring optimal operation even in the presence of
disturbances and uncertainties.

MPC’s history dates back to the late 1970s when it was primarily applied
in the petrochemical industry for complex process control. With advances in
computational power and algorithmic development, MPC’s application scope has
expanded significantly. In the 21st century, MPC has become widely adopted in the
automotive industry, particularly for engine control, chassis control, and advanced
driver-assistance systems. The real-time requirements of automotive applications
demand that MPC algorithms respond swiftly and accurately to dynamic driving
conditions, making it ideal for optimizing performance and safety. In addition to
its automotive applications, MPC has also been utilized in aerospace for aircraft
attitude control and trajectory optimization, and in robotics for path planning and
motion control.

The controller developed in this research utilizes CasADi for coding within
MATLAB. CasADi[10] is an open-source software framework for numerical opti-
mization and algorithmic differentiation, created by Joel Andersson, Joris Gillis,
Greg Horn, James Rawlings, and Moritz Diehl. It is particularly well-suited for
solving dynamic optimization problems and is widely used in the field of control
engineering. CasADi provides a powerful and flexible environment for implementing
MPC algorithms, allowing for efficient and real-time optimization. Its ability to
handle complex mathematical models and perform automatic differentiation makes
it an invaluable tool for developing advanced control systems. Using CasADi
within MATLAB has significantly enhanced our capability to perform complex
optimizations efficiently. We would like to express our gratitude to Joel Andersson

3

Introduction

and the CasADi development team for their contributions to this powerful tool,
which has greatly facilitated the implementation of our MPC-based controller.

1.2 Motivation
Driven by global policies, the electric vehicle market is rapidly expanding, becoming
a key solution for achieving environmental goals and improving urban transportation.
However, despite the significant environmental benefits of electric vehicles, their
range and energy efficiency issues remain major challenges to their widespread
adoption. Therefore, optimizing energy consumption in complex urban traffic
environments to enhance operational efficiency is a primary research focus.

Frequent stops and starts and low-speed driving modes during peak traffic
hours result in significant energy waste and pollution emissions from private cars.
Traditional following control systems often fail to fully utilize preceding vehicle
trajectory and traffic signal information, leading to frequent acceleration and
braking, increasing energy consumption and driving resistance. To overcome these
issues, this research proposes a MPC based vehicle controller. MPC is chosen
because of its ability to predict future system states and optimize control actions
based on these predictions. This allows for real-time adjustments that can account
for dynamic changes in the traffic environment and vehicle states.

The proposed MPC-based controller can obtain preceding vehicle trajectories
through Vehicle-to-Vehicle (V2V) communication technology or predict the trajecto-
ries using known information and assumptions, allowing for dynamic adjustment of
headway distance and driving speed to optimize energy management. For example,
by obtaining or predicting traffic signal changes in advance, vehicles can decelerate
early, avoiding sudden braking and re-acceleration, thereby saving energy.

Optimizing the driving strategy of electric vehicles in urban environments not
only helps extend battery range and reduce energy consumption but also improves
travel efficiency, reduces traffic congestion, and enhances driving comfort. For
instance, by dynamically adjusting headway distance, vehicles can follow the
preceding vehicle more smoothly, reducing the discomfort caused by frequent
braking. This approach aligns with the principles of sustainable development and
provides technical support for the future development of Intelligent Transportation
Systems.

Policy-driven initiatives and technological advancements provide a practical
background and application scenario for this research. For instance, China’s "Smart
Transportation" initiative and Europe’s "Connected and Automated Mobility"
strategy offer broad platforms and opportunities for implementing this research.
Therefore, the motivation for this study is to improve the energy efficiency and
driving comfort of electric vehicles in urban traffic environments through advanced

4

Introduction

control algorithms and communication technologies, providing new solutions for
the development of Intelligent Transportation Systems and responding to global
policies on clean energy and smart transportation.

1.3 Thesis Outline
This thesis work is structured as follows:

• Chapter 2 include the Theoretical Background, introduce the Adaptive cruise
control, Model Predictive Control, driving comfort.

• Chapter 3 is dedicated to the design of system architecture, discuss about the
reference speed generator and MPC controller base on NLP an QP

• Chapter 4 shows the simulation result, discuss the performance of controller
in different scenario, discuss the lead vehicle trajectory estimation, headway
policy and string stability

• Chapter 5 is the final chapter, where conclusions and future works are reported

5

Chapter 2

Theoretical Background

Before discussing the proposed method, this chapter focuses on introducing the
theoretical background of this thesis. Firstly, introduce Adaptive Cruise Control
(ACC) and its history, explaining the headway distance policy, string stability,
and Cooperative Adaptive Cruise Control (CACC). Secondly, discuss the control
logic, Model Predictive Control (MPC), detailing its structure, formulation, and
execution tools. Third, address issues related to driving comfort.

2.1 Adaptive cruise control

2.1.1 Introduction
Adaptive Cruise Control (ACC) is an advanced driver assistance system designed to
enhance the driving experience and improve safety. This system uses radar, cameras,
and sensors to detect the speed and distance of the vehicle ahead, automatically
adjusting the car’s speed to maintain a preset following distance. When the vehicle
in front slows down or stops, the ACC system will decelerate or even bring the
car to a complete stop; when the road clears or the vehicle in front speeds up, the
system will resume the preset speed. This reduces the driver’s operational burden
and significantly improves comfort and safety during long-distance driving

2.1.2 Head way distance policy
The headway policy is a strategy used to maintain a safe and comfortable following
distance between a vehicle and the one ahead. It is a function related to the ego
vehicle’s speed. There are several types of headway policies. In the paper "Spacing
Policies for Adaptive Cruise Control: A Survey"[11] by Cunxue Wu and Zhongming
Xu et al. (2020), the existing headway policies are discussed in detail.

6

Theoretical Background

Figure 2.1: Headway distance policy of ACC

The simplest headway distance policy is the Constant Spacing Policy (CSP),
which ensures that the vehicle maintains a constant distance from the lead vehicle
regardless of the ego vehicle’s speed.

Ldes = constant (2.1)

A widely used policy is the Constant Time Headway (CTH). In this policy, the
headway distance is proportional to the vehicle speed, where τ is the time distance
in seconds, and v is the vehicle speed. It is a simple and efficient policy; however,
at high vehicle speeds, the headway distance may become too large, which can
impact traffic efficiency.

Ldes = τv (2.2)

Another popular policy is Human Driver Behavior Policy (HDB). This policy
uses a polynomial to approximate the human driver’s following distance, which
can reduce the headway distance at high vehicle speeds compare to CTH. where
A = 2, T = 1.5, G = −0.0246T + 0.010819.

Ldes = A + Tv + Gv2 (2.3)

Spacing error is the offset between the desired headway distance and the
actual headway distance. It is one of the key performance indicators (KPIs) used
to evaluate the performance of ACC.

7

Theoretical Background

2.1.3 String stability
String stability [12] refers to the ability of a platoon of vehicles (a line of vehicles
traveling together) to maintain uniform spacing and speed without amplifying
disturbances as they propagate through the platoon. In simpler terms, it means
that if the lead vehicle changes speed, the following vehicles can smoothly adjust
their speeds without causing increasing oscillations in acceleration and deceleration,
thereby preventing instability or traffic jams.

For simple Adaptive Cruise Control, the headway policy strongly affects string
stability. The Constant Spacing Policy (CSP) is a typical condition of string
instability, which means that the spacing errors of subsequent vehicles are larger
than those of preceding vehicles. The figure 2.2, 2.3 shows the concepts of string
stability and string instability . In this scenario, the lead vehicle has a sinusoidal
speed trajectory, and δn represents the spacing error (the difference between the
desired headway distance and the actual headway distance) for the nth following
vehicle.

Figure 2.2: String stability convoy

8

Theoretical Background

Figure 2.3: String instability convoy

2.1.4 Cooperative Adaptive Cruise Control
Cooperative Adaptive Cruise Control (CACC), is an advanced driver-assistance
system that enhances driving safety, efficiency, and fuel economy by enabling
communication and coordination among vehicles. Building on traditional Adaptive
Cruise Control, CACC incorporates wireless communication between vehicles,
allowing them to share information such as speed, acceleration, and emergency
braking events. This information sharing enables vehicles to adjust their speed
and following distance more precisely, reducing traffic congestion, increasing road
capacity, and lowering the risk of collisions. CACC systems rely on Vehicle-
to-Everything (V2X) technology, which includes Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication, ensuring real-time data exchange
and efficient vehicle coordination. By improving cruise control performance not
only for individual vehicles but also for groups of vehicles traveling together, CACC
maintains stable following distances and formations, enhancing the overall efficiency
and safety of traffic flow. [13] show a example of CACC

9

Theoretical Background

2.2 Model Predict Control
Model Predictive Control is an advanced control strategy extensively employed in
industrial process control and various dynamic systems. The fundamental concept
involves using a mathematical model of the system to forecast future behavior and
optimize current control actions accordingly. With advancements in chip processing
power, MPC has increasingly found applications in the automotive industry, where
it emphasizes real-time performance.

Paper [14] detail introduce Model predict control, Figure 2.4 illustrates the
working principle of the Model Predictive Control system. The MPC controller
comprises a plant model and an optimizer. The plant model is utilized to predict
the future states of the plant over a specified prediction horizon. Based on these
predictions and the desired reference trajectory, the optimizer computes the optimal
control signals. These control signals are then applied to the plant to achieve the
desired performance while satisfying constraints.

Figure 2.4: MPC loop base on [14]

2.2.1 Predict Horizon
Figure 2.5 shows the predict horizon. In Model Predictive Control, the predict
horizon is the length of time or the number of discrete time steps over which the
controller predicts the future states and outputs of the system at each control step.
Specifically, the predict horizon determines the future time span considered in the
optimization process, meaning that at each control interval, the controller uses the
current system state and a known model to forecast the system’s behavior and

10

Theoretical Background

state changes over several future time steps. The controller optimizes the future
control input sequence within this prediction horizon to minimize a predefined
cost function, which typically includes the deviation between the reference state
and predicted state and the cost of the control inputs. In practice, although the
controller calculates the inputs over the entire prediction horizon, it only applies
the control input for the first time step and then re-evaluates the system state,
repeating the optimization process. Then, only the first control variable will be
executed. The process is then repeated at the next time step.

Figure 2.5: Predict horizon and control signal base on [14]

2.2.2 Plant Modeling
Establish a mathematical model of the system to be controlled. This model can
be linear or nonlinear, typically described by state-space equations or transfer
functions. The predictive horizon refers to the future time period over which the
system’s behavior is predicted and optimized. The model is used to forecast the
future system status within this predictive horizon.(x is the system state vector,
which includes multiple states,x = [x1; x2; x3...xN] u is input control variable, y is
out put)

xk+1 = f(xk, uk)
yk+1 = h(xk, uk) (2.4)

2.2.3 Constraint
In Model Predictive Control, constraints are limitations imposed on the system’s
state variables, control inputs, and output variables to ensure that the system
operates within acceptable physical, operational, and safety boundaries. These

11

Theoretical Background

constraints can include physical limits (e.g., maximum motor speed), operational
limits (e.g., reactor temperature range), safety limits (e.g., pressure upper limit),
and environmental limits (e.g., emission standards). Constraints are categorized into
hard constraints (eq 2.5), which must be strictly adhered to, and soft constraints
(eq2.6), which allow for some degree of violation but impose penalties in the
objective function though slack variable. By incorporating these constraints into
the optimization problem, MPC can generate optimal control strategies that meet
both control objectives and practical operational requirements.

xlb < xk < xub

ulb < uk < uub
(2.5)

xlb − ϵk < xk < xub + ϵk

ulb − ϵk < uk < uub + ϵk

ϵk > 0
(2.6)

2.2.4 Cost Function
Also called the objective function, the cost function is used to quantify control
objectives in order to optimize control outputs. The optimizer minimizes this
function by optimizing the optimized vector, usually control variables. w is weight
factor, it is used to balance the importance of different cost terms.

min
NØ

k=1
w1f1(xk, uk) + w2f2(xk, uk) +

s.t. constraint (1)
constraint (2)
constraint (3)

(2.7)

2.2.5 Format, Solver and Toolbox
Format

Model Predictive Control includes many different formats, such as Nonlinear Pro-
gramming (NLP), Quadratic Programming (QP), and Distributed MPC. Different
formats are well-suited for different fields.

Nonlinear Programming: Used for nonlinear systems where the system model
and/or constraints are nonlinear. It typically requires nonlinear optimization
algorithms. While the solution is more precise, the high computational complexity
makes real-time use challenging

12

Theoretical Background

Quadratic Programming: Refers to the optimization problem where the cost
function is quadratic and the constraints are linear. This format is computationally
efficient, making it suitable for real-time applications.

Distributed MPC : Suitable for large-scale systems, breaking the entire system
into multiple subsystems, each independently computing control strategies while
coordinating to achieve a global optimization goal. The mathematical form involves
local optimization problems for each subsystem, with coordination constraints and
information sharing to achieve overall optimization .

Tool box

To solve the MPC problem, a toolbox should be used. There are many open-source
toolboxes available, such as CasADi and ACADOS.

CasADi[10] is an open-source software tool for symbolic computation, optimiza-
tion, and automatic differentiation. It excels in handling complex mathematical
models involving dynamic systems and nonlinear optimization problems. CasADi
provides an efficient way to compute, allowing for high-performance differentiation
and optimization operations through its symbolic expressions. The tool is widely
used in fields such as automatic control, robotics, aerospace, and energy, helping
users solve large-scale and complex optimization problems.

ACADOS[15] is an open-source software framework focused on solving nonlinear
optimization and model predictive control (MPC) problems. It leverages efficient
numerical algorithms and automatic differentiation techniques to achieve fast
solutions for large-scale optimization problems. acados supports multiple back
end solvers and offers flexible interfaces, making it suitable for embedded systems
and real-time control applications. Its design aims to deliver high-performance,
low-latency control solutions, and it is widely applied in areas such as autonomous
driving, industrial automation, and robotics.

Solver

Solvers can be invoked by the above toolbox, the most common solver include

• IPOPT [16] (Interior Point Optimizer) is an efficient nonlinear optimization
solver based on the interior point method, capable of handling large-scale
optimization problems with nonlinear constraints. It is widely used in scientific
research, engineering design, and economics, supporting various programming
languages such as C++, Python, and MATLAB. IPOPT is open-source,
flexible, and extensible, allowing users to customize objective and constraint
functions to meet specific needs.

• qpOASES [17] is an open-source C++ implementation of the online active set
strategy for solving quadratic programming (QP) problems. It is designed

13

Theoretical Background

to handle real-time applications efficiently, making it suitable for model pre-
dictive control (MPC) and other embedded optimization tasks. qpOASES
excels in scenarios requiring rapid re-solving of QP problems with slightly
varying parameters, leveraging warm-start capabilities to enhance performance.
Its ease of integration, robustness, and real-time optimization capabilities
make qpOASES a popular choice in control systems and other engineering
applications.

• QRQP [10] (Quadratic Regularization Quadratic Programming) is an optimiza-
tion solver designed for efficiently solving quadratic programming problems.
It employs quadratic regularization techniques to ensure robustness and con-
vergence, making it well-suited for large-scale and sparse problems. QRQP is
particularly effective in handling ill-conditioned and degenerate cases, offer-
ing stability and reliability in various applications such as machine learning,
finance, and engineering optimization tasks. Its implementation focuses on
achieving high performance and accuracy, making QRQP a valuable tool for
complex quadratic optimization challenges.

2.2.6 Simple Example

The MPC is explained by a simple ACC example. The ego vehicle is keeping a
constant headway distance (L) to the lead vehicle. In the following system, the
control variable is vehicle acceleration (a), the state are vehicle distance (s) and
speed (v), the reference is lead vehicle position (slead) in predict time horizon, ts

is iteration time. In the cost function, punish the spacing error, acceleration and
also build a soft constraint, use the slack variable ϵ to additionally punish the
acceleration higher than 2 m/s2 and lower than -2 m/s2.

The state equation is represented as:

sk+1 = sk + vkts

vk+1 = vk + akts
(2.8)

Then, the MPC formulation can be written as :

min qN
k=1 wL(slead,k − sk − L)2 + waa2 + wϵϵk

s.t.
−2− ϵk < ak < 2 + ϵk

sk < slead,k

ϵk > 0

(2.9)

14

Theoretical Background

2.2.7 Advantage and Disadvantage
MPC excels in handling complex multi-variable systems, managing multiple input
and output variables simultaneously, and explicitly dealing with physical and
operational constraints. By utilizing rolling optimization to predict future system
behavior and optimize control inputs, it enhances system performance and stability.
Additionally, MPC’s framework is highly flexible, suitable for various types of
systems and objective functions, and employs feed forward control to proactively
address disturbances, thereby improving system robustness and response speed.

However, MPC also has some drawbacks. Firstly, it requires solving an optimiza-
tion problem at each sampling period, resulting in a heavy computational burden,
especially for large-scale or complex systems. Secondly, its performance is highly
dependent on the accuracy of the system model; inaccuracies in the model can lead
to degraded control effectiveness. The tuning of MPC parameters is also complex,
necessitating extensive experience and experimentation. Implementing MPC is
more complex than traditional control strategies, leading to higher development
and maintenance costs, and it imposes high real-time requirements on hardware
and software.

2.3 Driving Comfort

Figure 2.6: Driving comfort standard relative to acceleration and jerk base on
[18]

Driving comfort is a very important KPI. Papers [18] and [19] provide detailed
explanations of the indicators that affect driving comfort. Figure 2.6 shows the
standard.

For lateral acceleration, the range of ±0.9 m/s2 is the most comfortable operating
range, while the range of ±4 m/s2 is considered normal driving and does not cause
discomfort. Sustained lateral acceleration outside this range may cause discomfort.

15

Theoretical Background

For longitudinal acceleration, the range is not symmetric as it is for lateral
acceleration. The normal driving zone is from -2 m/s2 to 1.47 m/s2.

For jerk, the longitudinal and lateral zones are the same and symmetric. The
best zone is within ±0.9 m/s3, while values exceeding ±2 m/s3 are considered very
aggressive.

2.4 SPaT and Actuated Signal

Figure 2.7: SPaT signal description base on [20]

2.4.1 SPaT
Signal Phase and Timing (SPaT)[21][20] is a signal that includes the traffic light
phase and countdown timer. It can be broadcast from road site unit to approaching
vehicles, so that connected vehicles adjust their speed for a timely arrival at a green
light as shown in figure 2.7, allowing them to avoid unnecessary acceleration and
stop. Which can improve driving experience and save energy.

2.4.2 Actuated Signal
Actuated Signal is an extension of SPaT, which uses sensors and cameras to monitor
real-time traffic flow of vehicles and pedestrians. Based on this data, the system
dynamically adjusts the signal phases and timing. The V2I signal is no more a
fix countdown timer, but a estimated upper bound countdown timer and a lower
bound countdown timer, they can be adjusted at any time base on traffic flow.

16

Chapter 3

System Architecture Design
and Methodology

This chapter focuses on the overall design of our MPC-based ACC controller.

• The first section, introduce the overall structure of the controller. The
expandability of the system is fully considered, and all parts of the controller
are modularly designed to easily upgrade and replace the functions of the
controller in future work.

• From the second to fourth sections, went into detail the design logic and
formula of each sub-block of the controller.

• The fifth section, introduce the test environment setup and the controller
implementation in Simulink.

3.1 Overall structure
Figure 3.1 shows the overall structure of the controller. The controller operates
in a closed loop, with the output being the signals for electric motor torque and
mechanical braking pressure for each wheel. The electric motor torque signal can
either be positive or negative. Positive torque represents normal driving torque,
while negative torque represents regenerative braking.

The MPC controller is implemented by two architecture. The first one is based
on Nonlinear Programming (NLP). It uses a high-accuracy model; however, due to
computational complexity, the calculation speed is very slow, making it unsuitable
for real-time use. it is build as a reference to prove the feasibility of the method.

The second one is based on Quadratic Programming (QP). it is transformed
from the NLP structure by simplify the model to achieve real-time usability.

17

System Architecture Design and Methodology

Figure 3.1: Overall structure of the system

The inputs available for implementation are:

• Ego vehicle state, it including the ego vehicle position, current speed, and
acceleration.

• SPaT information: This is the information of traffic light, called Signal Phasing
and Timing (SPaT), it include the traffic light phase and countdown timer
(the time which the traffic light will change the phase) The controller can
also be used with actuated signals, which include traffic light phases and the
maximum/minimum counter to change the phase.

• V2V information: This includes the lead vehicle’s planned speed in the
prediction horizon of the MPC control. such information can help the ego
vehicle complete more prise tracking. If such information not available, it has
to be estimated.

The controller include :

• Reference Speed Generator: This module generates the tracking reference
speed according to the lead vehicle and SPaT information and provides it to
the MPC controller.

• MPC Controller: This is the main core of the controller. It uses the lead
vehicle state, ego vehicle state, and the reference speed generated by the
Reference Speed Generator to compute the total required torque at the motor
level. Then provide it the the low-level control.

• low-level control: it is used to separate the total required torque into motor
torque and brake pressure in each wheel.

18

System Architecture Design and Methodology

3.2 Reference speed generator
The reference speed generator is used to provide the desired speed profile to be
tracked by the MPC in the prediction horizon. Figure 3.2 shows the logic of
reference speed generator, It include three different working mode with different
priority. It first generates the profile according to SPaT information. then, if the
SPaT information does not exist, it then tracks the lead vehicle. If both SPaT
information and the lead vehicle are absent, it generate the speed profile let the
vehicle accelerates to the maximum speed of road limitation. Additionally, there is
the possibility to change the priority between vehicle following and SPaT logic to
better follow the lead vehicle and avoid other vehicles cutting in.

Figure 3.2: Reference speed generator logic and priority

The inputs available for implementation are:

• ego vehicle current speed vc

• maximum speed of road limitation vm

• lead vehicle position slead

• estimated lead vehicle speed in predict horizon vlead

• SPaT signal, include the traddic light phase, upper and lower countdown timer

19

System Architecture Design and Methodology

3.2.1 SPaT logic
Design approach

The primary task of the reference speed generator is to make decisions based on
SPaT information. Extensive research has been conducted on energy-efficient vehicle
speed profiles. It has been demonstrated in [22] and [23] that for a given travel
time and distance (such as passing a traffic light), the most energy-efficient speed
profile involves accelerating or decelerating as quickly as possible and maintaining a
constant speed in between. In the paper by Peng Hao and Guoyuan Wu, "Developing
a Framework of Eco-Approach and Departure Application for Actuated Signal
Control" [24], they designed the Eco-Approach and Departure (EAD) application
based on a rule-based system to generate speed reminders. We adopted this concept;
however, the previous method used a piecewise sinusoidal function to generate
the speed profile to avoid high jerk and maintain comfort. This approach is not
suitable for MPC control. Therefore, we restructured the rule-based framework
and modified the speed profile formula to integrate it into the MPC control. The
comfort requirements will be realized by the MPC controller.

Figure 3.3 shows the SPaT reference speed generated logic. table 3.1 shows the
symbol meaning

Figure 3.3: SPaT decision-making of traffic lights negotiation

20

System Architecture Design and Methodology

Table 3.1: Parameter symbol and unit of reference speed generator

parameter symbol unit
distance between vehicle and traffic light d m
vehicle current speed vc m/s
maximum speed by road limitation vm m/s
critical speed vcr m/s
minimum time needed to pass traffic light tmin s
maximum comfortable acceleration amax m/s2

upper bound SPaT red phase countdown timer Ru s
lower bound SPaT red phase countdown timer Rl s
upper bound SPaT green phase countdown timer Gu s
lower bound SPaT green phase countdown timer Gl s

The design target is to avoid stopping, reduce unnecessary acceleration and
deceleration, and pass road sections as quickly as possible. The vehicle will
accelerate or decelerate to the target speed using a comfortable acceleration and
then maintain a constant cruising speed. If the current phase is red, the vehicle
will try to pass the traffic light at the beginning of the green phase. However, this
may lead the vehicle to maintain a low constant speed, which can affect traffic.
Therefore, if the target cruising speed is lower than a threshold (vcr), the vehicle
will stop before the red phase. If the current phase is green, the vehicle will try
to pass the traffic light at high speed to save travel time. If the remaining time
is not sufficient, the vehicle will stop. Even if the ego vehicle has to stop due to
resistance from other vehicles, this speed profile still benefits by reducing the total
resistance. The power of resistance is proportional to the cube of the vehicle’s
speed. Early speed reduction can minimize high-speed driving, thereby decreasing
total resistance power. More dynamic energy can be regenerated by the electric
motor.

Mathematical formulation

tmin is the minimum time needed to pass the traffic light if the vehicle accelerates
to the maximum speed of the road limitation. amax is the maximum acceleration
allowed by the controller, we choose this value equal to 1.47 refer to the content in
chapter 2.

tmin =

(d+0.5·(vm−vc)2

vmamax
if d > v2

m−v2
c

2amax

−vc+
√

v2
c +2amax·d

vm
if d < v2

m−v2
c

2amax

(3.1)

21

System Architecture Design and Methodology

In order to make sure ego vehicle will not break traffic regulations and make
sure safety, the redundancy of the countdown timer is adopted (tb = 1s). For red
countdown timer, add tb and for green countdown timer, reduce tb .The non-capital
letter is the value after redundancy addition.

ru = Ru + tb

rl = Rl + tb

gu = Gu − tb

gl = Gl − tb

(3.2)

Safety distance refers to the distance required for a vehicle to stop comfortably.
If the vehicle is far from the traffic light, meaning the distance to the traffic light
is greater than the safety distance, a more aggressive strategy is employed. The
reference speed is generated based on the lower bound red phase countdown timer
and the upper bound green phase countdown timer. Conversely, if the vehicle is
closer to the traffic light, a opposite strategy is used.

dsafe = max(V 2
c

2amax
,20) (3.3)

The equations (3.4)-(3.6) present the formulas for speed profile generation.
Case 1 Acceleration to maximum speed (acc to vmax):

vref =
vc + amaxt if t > vm−vc

amax

vm if t > vm−vc

amax

(3.4)

Case 2 Tracing a specific speed (v to vh = d
ttl

):
if the traffic light can not turn green when the ego vehicle reach it by accelerate

to maximum speed of road limitation, ego vehicle has to tracing a specific speed in
order to pass the traffic light when the phase just change into green with a specific
cruising speed to avoid stop

vh = dis2tl
ttl

vref =
vc + amaxt · sign(vh) if t < abs(vh−vc)

amax

vh if t > abs(vh−vc)
amax

(3.5)

Case 3 Stopping before the traffic light (Stop):

vref =
vc − v2

c

2d·t if t < v2
c

2d·t
0 if t > v2

c

2d·t
(3.6)

22

System Architecture Design and Methodology

3.2.2 Vehicle following
When a vehicle in front is detected, the reference speed is generated based on the
prediction of the lead vehicle’s speed, obtained either from V2V communication
or by estimation. Since the SPaT logic and vehicle-following logic share the same
weight factor, the speed-tracking error should remain similar to achieve good
performance while maintaining the desired headway distance. In SPaT logic, the
speed tracking error is low in the early steps of the prediction because acceleration
and deceleration are smooth. The reference speed in the vehicle-following logic is
set to be just 1 m/s higher than the lead vehicle’s speed in the prediction horizon.
However, this approach can result in longer times for the ego vehicle to reach the
desired headway distance if the current relative distance is too large. Therefore,
if the headway distance h exceeds 1.1 times the desired value hdes, the reference
speed will be increased accordingly.

vref =
vlead + 1 if h < 1.1hdes

1.2vlead + 1 if h > 1.1hdes

(3.7)

3.2.3 No SPaT and no vehicle following
If both lead vehicle and SPaT do not exist, ego vehicle will just travel in the highest
speed to save the travel time.

vref =
vc + amaxt if t > vm−vc

amax

vm if t > vm−vc

amax

(3.8)

How to judge if a lead vehicle exists is a problem. Normally, this can be
determined by whether a vehicle is detected by the sensor. However, modern
radar detection ranges can exceed 300 meters, which is too far for initiating vehicle
following. In this paper, we suggest using a threshold. When the lead vehicle is
farther than this threshold, we consider the lead vehicle as non-existent. Conversely,
if the lead vehicle is within this threshold, we consider it to exist. This threshold is
determined by the distance at which the ego vehicle can comfortably stop from the
maximum speed of the road limitation.(ahard = −2m/s2)

dthreshold = − V 2
m

2ahard
(3.9)

23

System Architecture Design and Methodology

3.3 MPC Formulation with NLP
In this section, we introduce the Nonlinear Programming MPC controller. We
choose a sampling time of 0.3 seconds and a prediction horizon of 20 steps, resulting
in a prediction time of 6 seconds. The controller is written using the CasADi toolbox
in MATLAB. CasADi is an efficient symbolic framework for solving nonlinear
optimization problems.

The inputs available for implementation are:

• ego vehicle initial state

• lead vehicle trajectory

• reference speed

• traffic light distance base limitation

The output available for implementation are:

• control total torque in motor level

3.3.1 Preliminary knowledge
This section introduces some preliminary knowledge of the CasADi toolbox for
solving NLP problems.

NLP in CasADi

In CasADi, the NLP is written as the following form.

minf(z, p)
s.t.
lbz < z < ubz
lbg < G(z, p) < ubg

(3.10)

Where z is the optimized vector, p is input parameter, f(z, p) is the cost function,
lbz and ubz are the lower and upper limitation of optimized vector. g(z, p) is
constraint. lbg and ubg are the lower and upper limitation of constraint.

Data format

The MPC state and control variables are implemented though MX data format of
CasADi. MX allows for elementary operations that are not restricted to scalar unary
or binary operations. The elementary operations used to form MX expressions

24

System Architecture Design and Methodology

can involve general multiple sparse-matrix valued input and multiple sparse-matrix
valued output functions. Consequently, MX can be more economical when working
with operations that are naturally vector or matrix-valued with many elements.nx

and nu are the number of state and control variable, they are defined by n × 1
vector.

x = MX.sym(′x′, nx,1)
u = MX.sym(′u′, nu,1) (3.11)

Look up table

The MPC formulation is written in the time domain; however, some variables
are not in the time domain. For example, road slope, road curvature, and the
judgment of SPaT existence are in the distance domain, while maximum electric
motor torque and ISO limitations of acceleration and jerk are in the speed domain.
In other words, the main variables such as state and control variables are written
as x(t) and u(t) (t is time). Other variables, such as road angle, are written as θ(s)
(s is vehicle travel distance, also representing current position). Maximum electric
motor torque is written as Tmax(v) (v is vehicle speed). These variables depend on
travel distance or speed, not on time.

In order to use these variable, the lookup table of CasADi should be use. d1...dM

are look up table domain, Y1...YM are look up table output, x is input, y is output

interp_function = casadi.interpolant(’LUT’,’linear’,{[d1, ..., dM]}, [Y1, ..., YM])

y = interp_function(x)
(3.12)

Build solver

CasADi makes an important distinction between initialisation and evaluation steps,
Only construct the solver once, and then evaluate it repeatedly using slightly
different numerical inputs. As shown in equation 3.13, The solver should be
constructed by optimized vector z, cost function f and constraint formula g, So
these content should not change in every repeatedly using. Equation 3.14, the input
value at each repeatedly using are ubz, lbz, ubz, lbz (upper and lower boundary of
state and constraint), also z0 is the iterative starting point, it should be set as
close as possible to the final result, a good estimation of iterative starting point
can reduce the solving time however it is not mandatory.

nlp = struct(’x’,z,’f’,J,’g’,g);

NLPsolver = nlpsol(’solver’,’ipopt’,nlp,opts)
(3.13)

result = NLPsolver(’x0’,z0,’ubx’,ubz,’lbx’,lbz,’lbg’, lbg, ’ubg’, ubg); (3.14)

25

System Architecture Design and Methodology

Single shooting method (dense formulation)

In CasADi, the optimized vector can use both single shooting method and multiple
shooting method, we firstly introduce the single shooting method in this section.
For single shooting, all the state are be written as a function of control variable and
inital state, idealy the optimized vector is only include control variable. Equation
3.15 show the logic. every term in Nth sampling time can written as a function of
previous (N − 1)th sampling time, by parity of reasoning.

x1 = x0 + F (x0, u0)
x2 = x1 + F (x1, u1)

=
x1ú ýü û

x0 + F (x0, u0) +F (
x1ú ýü û

x0 + F (x0, u0), u1)
...

xk = xk(x0, u0, u1, . . . , uk−1) ∀k ∈ {1, 2, . . . , N}.

Z =
è
u0, u1, . . . , uN−1

é⊤

(3.15)

3.3.2 Lead vehicle trajectory
Because MPC works based on future predictions, it need the future trajectory of
the lead vehicle within the prediction horizon. This information can be obtained
from the lead vehicle using V2V technology, such as when the lead vehicle also
uses an MPC-based ACC system or has other speed reminders. However, in many
real-world scenarios, V2V communication might be unavailable due to technical
limitations, lack of infrastructure, or non-cooperative lead vehicles. In such cases,
the ego vehicle must rely on estimation methods to predict the future trajectory of
the lead vehicle. Two types of estimation are considered: lead vehicle is driving in
constant speed or constant acceleration, where ts is iteration time. k is the number
of step in prediction horizon.

• v2v: the lead vehicle trajectory can be precise

• constant speed: hypothesize that the lead vehicle will maintain a constant
speed within the prediction horizon.

slead,k = slead,0 + ktsvlead,0 (3.16)

• constant acceleration: hypothesize that the lead vehicle will maintain a
constant acceleration within the prediction horizon.

slead,k = slead,0 + ktsvlead,0 + 1
2alead,0(kts)2 (3.17)

26

System Architecture Design and Methodology

3.3.3 Optimized vector
The NLP-based MPC controller is implemented using the single shooting method.
The optimized vector includes only the control variable and slack variable. The
initial state (s0, v0) should also be included in the optimized vector to iterate.
Theoretically, the initial state can be written as a parameter and not included
in the optimized vector; however, in CasADi, the constraints do not allow free
variables. The specification shows an option to allow free variables, but in actual
operation, we did not find this option. Initial acceleration should also be included
in order to penalize the initial jerk.

z = [x0, a0, u0, ϵ0, u1, ϵ1...., uN−1, ϵN−1] (3.18)

3.3.4 Vehicle model

Figure 3.4: Vehicle longitudinal dynamic model base on [25]

In this paper, Only longitudinal driving is involved. Therefore, the internal
model is a discretized simple longitudinal model. Table 3.2 shows the symbol
meanings and units. Equation 3.19 shows the discretized function, where vehicle
travel distance is iterated by speed and speed is iterated by acceleration. We use
the total torque at the motor level. A positive value means the motor is providing
traction, while a negative value means the vehicle is braking. The braking torque
is composed of electric motor regenerative braking and mechanical braking. The
mechanical braking torque is divided by the gearbox ratio and equivalently reflected

27

System Architecture Design and Methodology

in the motor torque. The content in the bracket of the second equation refers
to acceleration. The first term is the traction/braking force at the wheel. The
motor torque propagating to the wheel side should account for the gearbox ratio,
gearbox efficiency, and wheel radius. The gearbox efficiency should be inverted for
traction and regenerative braking. The second to fourth terms are resistance forces,
including aerodynamic drag, gravitational forces, and rolling resistance.

sk+1 = sk + vkts

vk+1 = (1
r
Tmkigbη

sign(Tmk)
gb − 1

2ρCxAxV 2
k −mgsin(θk)− f0mgcos(θk)) 1

λm
ts + vk

(3.19)

Table 3.2: Parameter symbol and unit of NLP controller

parameter symbol unit
vehicle mass m kg
inertial coefficient λ -
vehicle front area Ax m2

areo-dynamic coefficient Cx -
wheel radius rw m
total torque at motor level Tm Nm
gear box efficiency igb -
air density ρ kg/m3

gravitational acceleration g N/m2

road angle θ rad
rolling resistance coefficient f0 -
sampling time ts s
vehicle travel distance s m
vehicle speed v m/s
friction coefficient µ -
electric motor maximum power Pmax w
electric motor maximum toque Tmax Nm

28

System Architecture Design and Methodology

3.3.5 Constraints

As shown in the preliminary knowledge, in CasADi, The soft constraints is realized
by slack variables. The weight factor of the slack variable varies in order depending
on the requirement. Some soft constraints can be obeyed simultaneously; the
optimized result will be generated through competition. Soft constraints that
should not be violated frequently will use a high-order weight factor. Other
constraints are hard constraints that should never be violated. the constraints
can be written as either optimized vector constraints or formulas of the optimized
vector. Both of these include three parts: the formula/optimized vector (G/z),
upper bound (ubg/ubz), and lower bound (lbg/lbz). The formula (G) is set during
initialization and should not change with every repeated use, every term include
the optimized vector should written in it. The upper bound and lower bound can
be changed, all the input value should be written in it. So the equation written in
casadi is not always the same as the normal ordinary logic. In each of the following
sections, the formula is first introduced and written in ordinary logic form, then
followed by its representation in CasADi using matrix notation.

Optimized vector constraint

The optimized vector includes the initial state as discussed before. In the optimized
vector, constraints should be used to force it to be equal to the input initial state.

sin

vin

ain

 ≤
s0

v0
a0

 ≤
sin

vin

ain

 (3.20)

The others should be bounded in basic logic, The motor torque do not be
constrain, all the slack variable should be positive.

C
−∞

0

D
≤

C
Fm,k

ξi,k

D
≤

C
∞
∞

D
(3.21)

Vehicle speed

The vehicle speed limitation should consider both the road speed limit and safety
requirements, and it should always be positive. The road speed limitation depends
on the vehicle’s position and should be obtained through a lookup table. This
speed limitation represents a hard constraint that must not be violated under
any circumstances. This limitation defined by traffic regulations and road design

29

System Architecture Design and Methodology

parameters.

0 ≤ vk ≤ vmax(sk)

vmax = casadi.interpolant(’LUT’,’linear’,{[distance]}, [speed limitation])C
−∞

0

D
≤

C
vk − vmax(sk)

vk

D
≤

C
0
∞

D (3.22)

The road curvature affects driving safety. The road curvature depends on the
vehicle’s position and should be obtained through a lookup table. To ensure safety,
the vehicle must drive below a certain speed when drive in curved roads. This safe
speed is determined by the road curvature. The equation 3.23 shows the function
that limits the safe speed based on road curvature. This constraint of speed due to
road curvature can be violated occasionally; it is a soft constraint but should be
avoided as much as possible to maintain safety. To manage this, A slack variable
is used with a high-value weight factor in the optimization process. The slack
variable allows for some flexibility in the constraint, but the high-value weight
factor penalizes deviations, ensuring that the vehicle adheres to the safe speed limit
under normal conditions. This approach balances safety and flexibility, allowing
the vehicle to adapt to unexpected situations while prioritizing safe driving on
curved roads.

vsafe = 3.34 · |θ(sk)|− 1
3

θ(sk) = casadi.interpolant(’LUT’,’linear’,{[distance]}, [road curvature]) (3.23)

0 ≤ vk ≤ vsafeè
−∞

é
≤

è
vk − vsafe(sk)

é
≤

è
0

é (3.24)

Speed tracking error

The vehicle should track the reference speed. However, due to other constraints such
as traffic lights, maintaining the desired headway distance, and ensuring comfort,
the reference speed cannot always be strictly followed. When these constraints
interfere, deviations from the reference speed will occur, and such offsets will be
penalized to maintain optimal performance. This penalty is realized by introducing
a slack variable. Both real speeds higher or lower than the reference should be
penalized, The slack variable allows for flexibility in meeting these constraints
while still aiming to follow the reference speed as closely as possible. By assigning
a penalty to the slack variable, The trade-offs between different constraints can

30

System Architecture Design and Methodology

be managed.The weight factor associated with the slack variable determines the
severity of the penalty, ensuring that significant deviations are minimized.

vref,k ≤ vk + ϵv,k

vref,k ≥ vk − ϵv,kC
vref,k

−∞

D
≤

C
vk + ϵv,k

vk − ϵv,k

D
≤

C
∞

vref,k

D (3.25)

Intrusion to lead vehicle desired headway distance

The ego vehicle should maintain the desired headway distance from the lead vehicle,
in this section, the chosen policy is HDB (from eq 2.3). When the distance between
the ego vehicle and the lead vehicle is less than the desired value, we impose a
penalty on the intruded distance to encourage the ego vehicle to restore the desired
headway distance. When the reference speed of the ego vehicle is higher than that
of the lead vehicle, the ego vehicle will attempt to intrude into the desired headway
distance. This intrusion triggers a distance penalty, which acts to decelerate the
ego vehicle to maintain desired headway distance. At the same time, the distance
penalty also prevents the ego vehicle from reaching its reference speed, leading to a
speed offset penalty. These two types of penalties, distance and speed work against
each other. The controller optimizes these penalties to find a balance, resulting
in an overall optimal driving behavior. Conversely, when the reference speed of
the ego vehicle is lower than that of the lead vehicle, the distance penalty is not
triggered. In this scenario, the ego vehicle can successfully track the reference
speed without the interference of a distance penalty. This allows the vehicle to
achieve other objectives set by the reference speed generator, such as planning a
more reasonable energy-saving speed profile to pass through traffic lights efficiently.

Figure 3.5: Punishment of intrusion to lead vehicle desired headway distance

31

System Architecture Design and Methodology

ϵL,k + slead,k ≥ sk + A + Tvk + Gv2
kè

−∞
é
≤

è
sk + A + Tvk + Gv2

k − ϵL,k

é
≤

è
slead,k

é (3.26)

Safety distance

The penalty for intruding into the lead vehicle’s desired headway distance does
not have a high weight factor; it is a soft constraint that can be violated. This
does not ensure safety, and the risk of collision still exists. To mitigate this risk
and avoid potential danger, another hard constraint is added to ensure that the
distance between the lead vehicle and the ego vehicle never falls below one meter.
This hard constraint acts as a safety measure to provide an additional layer of
protection, ensuring that even if the soft constraint is violated, the vehicles maintain
a minimum safe distance.

slead,k − sk ≥ 1è
−∞

é
≤

è
1 + sk

é
≤

è
slead,k

é (3.27)

Acceleration and jerk should remain within comfortable limits and ISO
standard

The ISO standard regulates the maximum acceleration, deceleration, and jerk,
which depend on the vehicle speed. These values are piece-wise speed-based
functions that should be obtained from a lookup table. These constraints are hard
constraints that must not be violated under any circumstances to ensure safety
and compliance with regulatory standards. The limitation on jerk is symmetric.

amax(vk) = casadi.interpolant(’LUT’,’linear’,{[0,5,20,25]}, [5,5,3.5,3.5])

amin(vk) = casadi.interpolant(’LUT’,’linear’,{[0,5,20,25]}, [−4,−4,−2,−2])

jlim(vk) = casadi.interpolant(’LUT’,’linear’,{[0,5,20,25]}, [5,5,3.5,3.5])

(3.28)

amin(vk) ≤ ak ≤ amax(vk)
jmin(vk) ≤ jk ≤ jmax(vk)

−∞
−∞
−∞
−∞

 ≤

ak − amax(vk)
−ak + amin(vk)

jk − jlim(vk)
−jk − jlim(vk)

 ≤

0
0
0
0

(3.29)

32

System Architecture Design and Methodology

Figure 3.6: ISO standard for acceleration and jerk relative to comfort

The acceleration and jerk should always remain below certain thresholds to
ensure comfort. However, in some emergency conditions, some discomfort should
be allowed. As discussed in Chapter 2, the acceleration and jerk should always
remain within ±2 m/s2. This constraint is a soft constraint with a high weight
factor, indicating that it should not be violated frequently.

−2− ϵs,k ≤ ak ≤ 2 + ϵs,k

−2− ϵs,k ≤ jk ≤ 2 + ϵs,k
−∞

0
−∞

0

 ≤

ak − 2− ϵs,k

ak + 2 + ϵs,k

jk − 2− ϵs,k

jk + 2 + ϵs,k

 ≤

0
∞
0
∞

(3.30)

Electric motor limitation

The electric motor has physical limitations; the traction torque and regenerative
braking torque must be below a certain value. These values are piecewise functions
depending on the motor rotation speed. Because our controller is designed for an
electric vehicle that only has a fixed gear ratio, the motor speed is proportional
to the vehicle speed. Therefore, it is a speed-based function that can be obtained
from a lookup table. Equation 3.31 shows the function of the motor’s maximum
torque. Since our control variable is the total torque at the motor level, the traction
torque will be bounded by the motor’s limitations. However, the braking torque is
a combination of regenerative braking and mechanical braking, which means it will
not be bounded solely by the motor’s limitations. Consequently, only the positive
motor torque is constrained to ensure it stays within the motor’s physical limits.

33

System Architecture Design and Methodology

Tm,max(ω) =
Tmax if ω < ω∗

Pmax

ω if ω >= ω∗
(3.31)

Figure 3.7: Motor torque physical limitation

Tmk ≤ Tm,max(ωk)

Tm,max(vk) = casadi.interpolant(’LUT’,’linear’,{[ω]}, [Tm, max])è
−∞

é
≤

è
Tm − Tm,max(ωk)

é
≤

è
0

é (3.32)

Tire limitation

In this paper, the controller is designed for a rear-wheel-drive vehicle. The friction
also limits the drive and braking forces. Excessive motor torque can cause significant
slip, decreasing traction force and wasting energy. Therefore, the traction force
must be limited. For braking force, mechanical braking can be used on all four
wheels. The total friction limitation for both the front and rear wheels is considered

|Tmkigb
1

rw
η

sign(Tmk)
gb | ≤ µmgcos(θ(sk))

Tmkigb
1

rw
η

sign(Tmk)
gb ≤ µx

L

#
mg

!
Lf cos(θ(sk)) + hgsin(θ(sk))

"
+hg(1

2ρCxAf v2 + λam)
$

0
0
0

 ≤

µmgcos(θ(sk))− Tmkigbη
sin(Tmk)
gb

1
rw

µmgcos(θ(sk)) + Tmkigbη
sin(Tm,k)
gb

1
rw

µ
L(Lf cos(θ(sk) + hgsin(θ(sk)) + hg(1

2ρv2
k + λma)− Tmkη

sign(Tmk)
gb

 ≤
∞∞
∞

(3.33)

34

System Architecture Design and Methodology

Traffic light stop constraint

Even though a reference speed generator is used to create a speed profile that
aims to stop the vehicle before the red phase of the traffic light, the jerk must
still be limited to maintain comfort. As a result, the reference speed will not be
strictly followed, which could lead to the vehicle stopping after the stop line—an
unacceptable outcome. Therefore, a constraint ensuring the vehicle stops before
the traffic light is necessary. Additionally, if the vehicle is to prioritize car-following
behavior, such a constraint is the only way to ensure the vehicle stops when the
traffic light turns red

Our overall logic is to use Boolean values to transform real-world problems
into mathematical ones. The input value is the phase of the traffic light within
the prediction horizon. The green phase is 1, red phase is 0, The future phase is
estimated using the current phase and the lower bound of the countdown timer.
When the countdown timer finishes, the phase will change. Algorithm 1 show the
algorithm

Figure 3.8 shows the logic, We consider a distance-based constraint as a "wall"
at the stop line. The position of this wall is obtained from a distance-based lookup
table. Before reaching a specific traffic light, the value of this wall remains the same,
representing the stop line position. If the vehicle passes the traffic light position
in predict horizon, pass will equal to 1, otherwise, pass equal to 0. If the phase
is green or the vehicle has already pass the traffic light in predict horizon, a high
value equal to 107 will be added to the wall, effectively "pushing" the wall far away,
making it as if the wall has disappeared. The ego vehicle position is estimated
using the previous MPC solution, so it can appear in the boundary. We do not use
the real position because it would cause numerical issues with the lookup table.
Detailed discussion about this estimation will be provided in the next section about
QP. After testing, this estimation method has been found to work perfectly without
any other effect. the traffic stop limitation term is the upper bound of constraints
which can be input as overall.

Algorithm 1 Phase in predict horizon
1: for each time step in predict horizon 1 : N do
2: countdown timer = countdown timer - ts

3: if countdown timer ≤ 0 then
4: phase change, different from initial one
5: else
6: phase is the same as initial one
7: end if
8: end for

35

System Architecture Design and Methodology

Figure 3.8: Constraint of traffic light schematic

sk ≤ wallk(sk) + phase · 107 + pass · 107è
−∞

é
≤

è
sk

é
≤

è
wallk(sk,est) + phase · 107 + pass · 107

é (3.34)

36

System Architecture Design and Methodology

3.3.6 Cost function
Power consumption

One of our targets is to reduce power consumption, so including power consumption
in our considerations is necessary. The total real power consumption is given by
Equation 3.35. The battery power consumption is determined by motor speed,
motor torque, and motor efficiency. Due to the opposite directions of energy flow
during traction and braking, the motor efficiency should be inverted between these
two conditions. Additionally, motor efficiency is not a constant; it depends on the
operating point (motor torque and speed).

Pb = Tmωmη(Tm, ωm)sign(Tm) (3.35)

Since MPC aims to minimize the cost function formed by a polynomial, to use motor
efficiency in the cost function, It should be interpolated as a polynomial. Figure
3.9 first graph shows the efficiency map, due to the structure of the efficiency map
being symmetric and having lows in the middle, it is not suitable for polynomial
interpolation. Therefore, the power map is used instead, where the input is motor
torque and speed, and the output is battery power shown in figure Figure 3.9
second map. The power map monotonically increases when either the torque or
speed increases, making this behavior more suitable for polynomial interpolation.
the efficiency is already integrated into the battery power map.

Figure 3.9: Electric motor efficiency map and battery power map

37

System Architecture Design and Methodology

The points on the map are initially sampled, with speed divided into 100 nodes
and torque into 200 nodes, creating 20,000 combinations of speed and torque.
Subsequently, points exceeding the electric motor’s capability are filtered out,
resulting in 11,406 remaining points.

Figure 3.10: Sampling points

Then, a 5×5 polynomial is interpolated with the sampling points. Using another
optimization problem created by CasADi to achieve this. For each sampling point,
the interpolated battery power is calculated using the equation shown in Equation
3.36. The cost function is the sum of the offsets between the interpolated battery
power and the real battery power across all the sampling points. Two constraints
are used: 1) the power should increase when the torque increases, and 2) the
efficiency should always be lower than zero. These two constraints help reduce
local minima in the power map.

Pbat = b00 + b10Tm + b01ω + ... + b50T
5
m + ... + b14Tmω4 + b05ω

5 (3.36)

min qN−1
k=0 Preal − Pinterpolated

s.t.
dP
dT

> 0

Pinterpolated > Tmωm

(3.37)

38

System Architecture Design and Methodology

Because the most important information on this map is motor efficiency, to
prove the reliability, we use the interpolated battery power polynomial to calculate
the motor efficiency. The results are shown in the figure: the left one represents the
original efficiency map, while the right one is derived from the interpolated data.
As observed, the tendencies are similar, indicating that the interpolated polynomial
can accurately capture the efficiency characteristics of the motor. This validation
step ensures that our interpolation method preserves the essential features of the
motor’s efficiency map. The resulting goodness of fit among the sampling points is
98.74 %

Figure 3.11: Validated original and interpolated efficiency map

Positive power consumption should be penalized to save energy, while negative
power consumption, which indicates regenerative energy, should be encouraged.
Therefore, the power consumption term in the cost function is added accordingly.

Jp,k = wpPbat,k(Tm,k, ωm,k) (3.38)

Acceleration and jerk

Acceleration and jerk highly affect comfort. Even though the ISO standard regulates
them, the limits can still be too radical. Therefore, it is reasonable to penalize both
acceleration and jerk. Both positive and negative values of acceleration and jerk
should be penalized, so we use their squares to simultaneously address positive and
negative values. The penalties are divided into two sets: the first step penalizes
acceleration below ±2 m/s2, and the second step addresses values over ±2 m/s2
using slack variables, as discussed in the constraints section.

Jaj,k = waa2
k + wjj

2
k (3.39)

39

System Architecture Design and Methodology

Slack variable

the slack variable include :

• speed tracking error ϵv

• intruding into the lead vehicle’s desired headway distance ϵL

• exceeding safety and comfort limitations ϵs

The slack variable are always positive, so both linear of quadratic are reasonable.
Figure 3.12 show the difference between linear and quadratic. Quadratic has lighter
punishment in low offset and harder punishment in high offset. For speed and
distance, they are punished by quadratic term because we always desire small
deviations in these terms and want to avoid large deviations. For the safety
and comfort limitation penalties, they are punished by linear term because these
constraints should not be violated frequently, even with small overflows.

Figure 3.12: Slack variable punishment tendency

Jϵ,k = wvϵ2
v,k + whϵ2

L,k + wsϵs,k (3.40)

Full cost function

the final cost function of NLP is formed by all the terms discussed above

J =
N−1Ø
k=0

wpPbat(Tm,k, ωm,k) + waa2
k + wjj

2
k + wvϵ2

v,k + whϵ2
L,k + wsϵs,k (3.41)

40

System Architecture Design and Methodology

3.3.7 Full formulation

min
z

N−1Ø
k=0

1
wpPbat(Tm,k, ωm,k) + waa2

k + wjj
2
k + wvϵ2

v,k + whϵ2
L,k + wsϵs,k

2
s.t. initial state, 3.20

optimized variable, 3.21
speed tracking error, 3.25
intrusion to desired headway distance, 3.26
acceleration and jerk bounds from the ISO standard, 3.29
acceleration and jerk bounds from comfortable, 3.30
road speed limit constraint, 3.22
comfortable curve speed constraint, 3.24
safety distance, 3.27
electric motor constraint, 3.32
tire constraint, 3.33
traffic light stop constraint, 3.34

(3.42)

3.3.8 Coding
For now, all formula of cost function and constraints are introduced, this part
introduce the way to coding them into CasADi in MATLAB. The NLP structure
is written in a more understandable structure, the coding is simple.

First, initialize the constraint, cost function. Create the empty list for constraint
formula (g), upper and lower bound (ubg,lbg). And also initial cost function (J) is
equal to 0.Then use for loop to traversal all time step in predict horizon, for each
time step add the new term of cost function and new constraint in the list.

Algorithm 2 NLP coding
1: J ← 0
2: g ← []
3: ubg ← []
4: lbg ← []
5: for each time step t in the prediction horizon 1 : N do
6: J ← J + new_cost(t)
7: g ← [g; new_constraint(t)]
8: ubg ← [ubg; new upper bound(t)]
9: lbg ← [lbg; new lower bound(t)]

10: end for

41

System Architecture Design and Methodology

3.4 MPC Formulation with QP
In the last section, we introduced the NLP-base MPC controller. While it is
accurate, the computation time is too high, making real-time implementation
unfeasible. Therefore, NLP is transformed into a QP structure, which can compute
much faster and achieve real-time performance. In the QP structure, we simplify
the model and use some estimations. Simulations show that the QP structure
significantly increases computation speed without greatly decreasing performance.

the input should be :
• ego vehicle initial state

• lead vehicle trajectory

• reference speed

• traffic light distance base limitation
the out put is :

• control total torque in motor level

3.4.1 Preliminary knowledge
In this section, we introduce some preliminary knowledge of the CasADi toolbox
for solving QP problems

QP in CasADi

In CasADi, the NLP is written as the following form.
min1

2zT Hz + cT z
s.t.
lbz < z < ubz
lbg < Gz < ubg

(3.43)

z is the optimized vector, and H is the Hessian matrix, which is an nz × nz matrix
(where nz is the number of optimized vectors) that includes the quadratic term of
the cost function it is a positive semi definite matrix. c is the coefficient vector of
the linear term, represented as an nz × 1 vector that includes the linear term of
the cost function. G is the constraint matrix, which is an ng × nz matrix (where
ng is the number of constraints). ubg, lbg, ubz, and lbz are the upper and lower
bounds of the constraints and optimized vectors, respectively, similar to NLP.

As shown in the formula, the QP structure only allows up to quadratic terms
in the cost function and only linear terms in the constraints. This is why some
structures has to be changed.

42

System Architecture Design and Methodology

Data form

SX is another data format in CasADi that can also define the optimized vector in
a QP structure. While MX supports more types of operations and is more efficient
in handling multiple sparse-matrix valued inputs and outputs, SX is a simpler data
format that is more efficient for small-scale problems. After testing, it is proved
that SX is more efficient for our QP problem.

z = SX.sym(′z′, nz,1) (3.44)

Build solver

In casadi, the QP solver can be build use two kind of interface, they called low
level and high level interface.

High-level interface :

QP = struct(’x’,z,’f’,zT HzT + cT z,’g’,Gz);

QPsolver = qpsol(’QPsolver’,’qpoases’,QP,opts)

result = QPsolver(’x0’,z0,’ubx’,ubz,’lbx’,lbz,’lbg’, lbg, ’ubg’, ubg);

(3.45)

Low-level interface :

QP = struct(’h’, SX(H).sparsity(), ’a’, SX(G).sparsity())

QPsolver = conic(’QPsolver’,’qpoases’,QP,opts)

result = QPsolver(’ubx’,ubz,’lbx’,lbz,’uba’,ubg,’lba’,lbg,’h’,H,’g’,C,’a’,G);
(3.46)

The low-level interface can only solve QP problems that have the same structure as
shown above. However, it also supports changing the cost function and constraint
formulas during repeated use, which provides more flexibility. This means that
it supports modifying content such as weight factors and terms multiplied by the
optimized vector. Additionally, it does not require defining the optimized vector.

The high-level interface is similar to the NLP introduced in the previous section.
It has the same limitations as NLP, where only the bounds of constraints and the
optimized vector can be changed during repeated use. However, it supports solving
any structure of QP problems not limited to the above structures. The optimized
vector must be defined.

Multiple shooting method (spare formulation)

For the multiple shooting method, the optimized vector includes not only the
control values but also the states. This results in the matrix containing many

43

System Architecture Design and Methodology

zero terms, which is why it is also referred to as sparse. The iteration of states
is realized through constraints. In this method, the state variables at each time
step are treated as independent optimization variables, and the dynamic model of
the system is enforced through constraints that link the state variables across time
steps.

0 ≤ xk − xk−1 − f(xk−1, uk−1) ≤ 0

z = [x0, u0, ϵ0, x1, u1, ϵ1......xN−1, uN−1, ϵN−1, xN]
(3.47)

3.4.2 Lead and ego vehicle trajectory
For lead vehicle trajectory, the method is the same as NLP :

• V2V: the lead vehicle trajectory can be precise

• Constant speed: hypothesize that the lead vehicle will maintain a constant
speed within the prediction horizon.

slead,k = slead,0 + ktsvlead,0 (3.48)

• Constant acceleration: hypothesize that the lead vehicle will maintain a
constant acceleration within the prediction horizon.

slead,k = slead,0 + ktsvlead,0 + 1
2alead,0(kts)2 (3.49)

Because in the QP structure, the optimized vector term cannot be used as the
input of a lookup table, we cannot use the same method as NLP to obtain
distance and speed-based data such as road slope and motor torque limitation.
Additionally, in constraints, only linear terms can be used, so quadratic terms
cannot be implemented. To solve these two difficulties, we propose to estimate the
ego vehicle trajectory within the prediction horizon and use the estimated values
as the input of the lookup table and replace the nonlinear terms in the constraints.

The estimation method has three approaches.

• Constant speed: Hypothesize that the ego vehicle will maintain a constant
speed within the prediction horizon.sk = s0 + ktsv0

vk = v0
(3.50)

• Constant acceleration: Hypothesize that the ego vehicle will maintain a
constant acceleration within the prediction horizon.sk = s0 + ktsv0 + 1

2a0(kts)2

vk = v0 + ktsa0
(3.51)

44

System Architecture Design and Methodology

• Use previous MPC solution: Hypothesize that the ego vehicle will follow
the entire trajectory of the previous MPC solution.

sego,k =

sego,pre,k+1 if k = 1,2,3...N − 1
sego,pre,k + vego,kts if k = N

(3.52)

vego,k =

vego,pre,k+1 if k = 1,2,3...N − 1
vego,pre,k + aego,kts if k = N

(3.53)

3.4.3 Optimized vector
The QP-based MPC controller is implemented using the multiple shooting method.
The optimized vector include both states (sk, vk) and control variable (Tmk). The
acceleration (ak) is also be constrained as additional state in order to easily punish
the jerk.

The resulting optimization vector is :

z = [x0, a0, u0, ϵ0, x1, a1, u1, ϵ1......xN−1, aN−1, uN−1, ϵN−1, xN , aN] (3.54)

3.4.4 Vehicle model

Figure 3.13: Vehicle longitudinal dynamic model base on [25]

The vehicle model remains the same as before, but use the estimated values of
speed (ævk) in the quadratic terms in aerodynamic drag and the estimated value

45

System Architecture Design and Methodology

Table 3.3: Parameter symbol and unit of QP controller

parameter symbol unit
vehicle mass m kg
inertial coefficient λ -
vehicle front area Ax m2

areo-dynamic coefficient Cx -
wheel radius rw m
total torque at motor level Tm Nm
gear box efficiency igb -
air density ρ kg/m3

gravitational acceleration g N/m2

road angle θ rad
rolling resistance coefficient f0 -
sampling time ts s
vehicle travel distance s m
vehicle speed v m/s
estimated vehicle travel distance ås m
estimated vehicle speed åv m/s
friction coefficient µ -
electric motor maximum power Pmax w
electric motor maximum toque Tmax Nm

of distance (æθk) in road slope. Additionally, the gearbox efficiency is inversed due
to different energy flow directions during traction and regenerative braking. Since
this cannot be implemented in QP, the gear box efficiency is neglected in QP..

sk+1 = sk + vkTs

vk+1 = (1
r
Tm,kigb − 1

2ρCxAxævk
2 −mgsin(æθk)− f0mgcos(æθk)) 1

λm
ts + vk

(3.55)

Table 3.3 shows the parameters and units use in this chapter.

3.4.5 Constraints
The constraints use the same idea as in NLP, but the variables that are functions
of the state and obtained from the lookup table use the estimated state. These
estimated states are defined by the initial state and are predefined variables not
included in the optimized variables. Therefore, they should not be written in
the constraint formula (G) as in NLP, but in the constraint bounds (ubg, lbg).
Additionally, the constraint formula should be written as G · z, which is different

46

System Architecture Design and Methodology

from NLP. In each of the following sections, the formula is first written in ordinary
logic form, then followed by its representation in CasADi using matrix notation

Optimized vector constraint

The optimized vector includes the initial state as discussed before. In the optimized
vector, constraints should be used to force it to be equal to the input initial state.sin

vin

ain

 ≤
s0

v0
a0

 ≤
sin

vin

ain

 (3.56)

the other states be bounded in base logic, the states are also included. Speed
and slack variable should always be positive, travel distance and motor torque are
not be constrained

−∞
0
−∞

0

 ≤

sk

vk

Fm,k

ξi,k

 ≤

∞
∞
∞
∞

 (3.57)

Iteration constraint

As discussed in preliminary knowledge, the model state iteration should be realize
in constraint. the road slop is get from estimated vehicle position in the predict
time horizon, the areodynamic resistance also use estimated vehicle speed.

The resulting total resistance is expressed by Dk.

Dk = 1
2ρACxævk

2 + mgsin(θ(æsk)) + mgf0cos(θ(æsk))(ævk > 0.1) (3.58)

The state evolution becomes
sk+1 = sk + vkts

vk+1 = 1
λm

tsDk + vk

C
0

ts

λm
Dk

D
≤

C
1 ts −1 0 0
0 1 0 −1 igbts

λmr

D

sk−1
vk−1
sk

vk

Tm

 ≤
C

0
ts

λm
Dk

D (3.59)

Acceleration as additional state for easily punish jerk.
λmak = igb

r
Tmk −Dkè

Dk

é
≤

è
igb

r
−λm

é C
Tm,k

ak

D
≤

è
Dk

é (3.60)

47

System Architecture Design and Methodology

Vehicle speed

The vehicle speed limitation should consider both the road speed limit and safety
requirements, they are get from estimated vehicle position in the predict time
horizon.

0 ≤ vk ≤ vmax(sk)
0 ≤ vk ≤ 3.34 · |θ(sk)|− 1

3è
0

é
≤

è
1

é è
vk

é
≤

è
vmax(æsk)

é
è
0

é
≤

è
1

é è
vk

é
≤

è
3.34 · |θ(æsk)|− 1

3

é
(3.61)

Speed tracing error

The offset of the reference speed in NLP is already linear and can be the same in
QP. The reference speed is an input that should be implemented in the constraint
bounds.

vref,k ≤ vk + ϵv,k

vref,k ≥ vk − ϵv,kC
vref,k

−∞

D
≤

C
1 1
1 −1

D C
vk

ϵv,k

D
≤

C
∞

vref,k

D (3.62)

Intrusion to lead vehicle desired headway distance

The intrusion into the lead vehicle’s desired headway distance also uses three
methods. The quadratic term of the headway distance policy should use the
estimated ego vehicle speed.

Figure 3.14: Punishment of intrusion to lead vehicle desired headway distance

48

System Architecture Design and Methodology

ϵL,k + slead,k ≥ sk + A + Tvk + Gv2
k

è
−∞

é
≤

è
1 −1 T

é sk

ϵL,k

vk

 ≤ è
slead,k − A−Gævk

2
é (3.63)

Safety distance

the ego vehicle also should keep at least one meter to lead vehicle.
slead,k − sk ≥ 1è

−∞
é
≤

è
1

é è
sk

é
≤

è
slead,k − 1

é (3.64)

Acceleration and jerk should remain within comfortable limits and ISO
standard

The acceleration and jerk should also comply with the ISO standard. The ISO
standard is a piecewise function of the ego vehicle speed. In QP, these values are
obtained from the estimated ego vehicle speed and implemented as inputs in the
constraint bounds.

amin(vk) ≤ ak ≤ amax(vk)
jmin(vk) ≤ jk ≤ jmax(vk)C

−∞
−∞

D
≤

C
1
−1

D è
ak

é
≤

C
amax,k(ævk)
−amin,k(ævk)

D
C
−∞
−∞

D
≤

C
1
−1

D è
jk

é
≤

C
jlim,k(ævk)
jlim,k(ævk)

D
(3.65)

The acceleration and jerk should always remain within ±2 m/s2. Though the
slack variable with high weight factor.

−2− ϵs,k ≤ ak ≤ 2 + ϵs,k

−2− ϵs,k ≤ jk ≤ 2 + ϵs,kC
−∞
−2

D
≤

C
1 −1
1 1

D C
ak

ϵs,k

D
≤

C
2
∞

D
C
−∞
−2

D
≤

C
1 −1
1 1

D C
jk

ϵs,k

D
≤

C
2
∞

D
(3.66)

Electric motor limitation

The electric motor limitation is a piecewise function. This limitation should also
be obtained from the estimated ego vehicle speed. The motor limitation is formed

49

System Architecture Design and Methodology

by a constant and a hyperbolic function. The boundary should use the minimum
value between them.

Tm,max(ω) =
Tmax if ω < ω∗

Pmax

ω if ω >= ω∗
(3.67)

Tm ≤ Tm,max(ωk)è
−∞

é
≤

è
1

é è
Tmk

é
≤

è
min(Tmk,max, Pm,max

wmk
)
é (3.68)

Tire limitation

the friction limitation is similar to NLP, but change the areodynamic term in to
estimated ego vehicle, the slop is base on the estimated vehicle position.

|Tmkigb
1

rw
| ≤ µmgcos(θ(sk))

Tmkigb
1

rw
≤ µx

L

è
mg

1
Lfcos(θ(sk)) + hgsin(θ(sk))

2
+ hg(1

2ρCxAfv2
k + λma)

é
C
−µmgcos(θ(æsk))

−∞

D
≤

è
igb

rw

é è
Tm,k

é
≤

C
µmgcos(θ(æsk)

mg((Lf − f0)cos(θ(æsk) + (hg − 1)sin(æsk))

D
(3.69)

Traffic light limitation

the traffic light limitation is still base on the estimated vehicle position in the
predict horizon.

Algorithm 3 Phase in predict horizon
1: for each time step in predict horizon 1 : N do
2: countdown timer = countdown timer - ts

3: if countdown timer ≤ 0 then
4: phase change, different from initial one
5: else
6: phase is the same as initial one
7: end if
8: end for

sk ≤ wallk(sk) + phase · 107 + pass · 107è
−∞

é
≤

è
1

é è
sk

é
≤

è
wallk(sk,est) + phase · 107 + pass · 107

é (3.70)

50

System Architecture Design and Methodology

3.4.6 Cost function

The cost function in QP is written in the form 1
2zT Hz + cT z. It is separated into

two parts. The matrix H includes the quadratic terms. For the variable z2
i , its term

is in Hi,i. For the variable zizj, its term exists in both Hi,j and Hj,i at the same
time. The term should be equally separated into two parts and written in both
Hi,j and Hj,i. The vector c includes the linear terms, with the term of variable zi

in ci. It should be noted that due to the 1
2 in the formula, the matrix H should be

considered as twice the designed cost function’s quadratic term. we first introduce
and write the formula in ordinary logic form, then introduce the written format in
CasADi using matrices.

Power consumption

In QP, the cost function can use up to quadratic terms. Therefore, the 5 × 5
polynomial can not be used to interpolate the power map; instead, a 2×2 polynomial
is used instead. The interpolation method is the same as in NLP, using CasADi.
the constant term b00 is useless, so it is bot used in the QP. The resulting goodness
of fit among the sampling points is 98.13 %

Pbat = b00 + b10Tm + b01ω + b11Tmω + b20T
2
m + b02ω

2

Pbat,k = 1
2

C
Tm,k

vk

DT C
2wpb20 wpb11

igb

r

wpb11
igb

r
wpb02(igb

r
)2

D C
Tm,k

vk

D
+

C
wpb10
wpb01

DT C
Tm,k

vk

D (3.71)

Figure 3.15: Validated original and interpolated efficiency map

51

System Architecture Design and Methodology

Acceleration and jerk

Acceleration and jerk highly affect comfort. The penalties are divided into two sets:
the first step penalizes acceleration below ±2 m/s2, and the second step addresses
values over ±2 m/s2 using slack variables. Jerk is the function of acceleration
written in equation 3.72

jk = ak − ak−1

ts

(3.72)

Jaj,k = waa2
k + wjj

2
k

Ja,k =
è
ak

éT è
wa

é è
ak

é
Jj,k = 1

2

C
ak

ak−1

DT C
2wj(1

ts
)2 −2wj(1

ts
)2

−2wj(1
ts

)2 2wj(1
ts

)2

D C
ak

ak−1

D (3.73)

Slack variable

the slack variable include :

• offsetting from the reference speed ϵv

• intruding into the lead vehicle’s desired headway distance ϵL

• exceeding safety and comfort limitations ϵs

The slack variable are always positive, as the same as NLP, ϵv and ϵL use quadratic
term, ϵs use linear term.

Jϵ,k = wvϵ2
v,k + whϵ2

L,k + wsϵs,k

Jϵ,k = 1
2

ϵv,k

ϵL,k

ϵs,k

T 2wv 0 0

0 2wL 0
0 0 2ws

ϵv,k

ϵL,k

ϵs,k

 (3.74)

Full cost function

the final cost function of NLP is formed by all the trems discussed above

J =
N−1Ø
k=0

wpPbat(Tmk
, ωm,k) + waa2

k + wjj
2
k + wvϵ2

v,k + whϵ2
L,k + wsϵs,k (3.75)

52

System Architecture Design and Methodology

3.4.7 Full formulation

min
z

N−1Ø
k=0

1
wpPbat(Tm,k, ωm,k) + waa2

k + wjj
2
k + wvϵ2

v,k + whϵ2
L,k + wsϵs,k

2
s.t. iteration constraint, 3.59

initial state, 3.56
state, 3.57
offset to reference speed, 3.62
intrusion to desired headway distance, 3.63
acceleration and jerk bounds from the ISO standard, 3.65
acceleration and jerk bounds from comfortable, 3.66
speed limit constraint, 3.61
safety distance, 3.64
electric motor constraint, 3.68
tire constraint, 3.69
traffic light constraint, 3.70

(3.76)

3.4.8 Coding
Our QP structure has seven optimized variables at each time step, with a prediction
horizon of 20 steps, which means we have a total of 143 optimized variables. The
Hessian matrix is a 143 × 143 matrix, and the constraint matrix is a 340 × 143
matrix. These huge matrices are very difficult to code. In this section, we introduce
a simple coding method.

In the beginning, the empty list is created for the constraint matrix (G) and
the upper and lower constraint bounds (ubg, lbg) as in NLP. The Hessian matrix
(H) and the coefficient vector of the linear term (c) are initialized with all zeros.

A for loop is employed to iterate through the entire prediction horizon. At each
time step, only the current seven optimized variables and three previous states
are utilized, constituting partial optimized variables. This approach enables us to
independently address constraints for each time step.

Firstly, Identify the useful optimized variables by the time step number k (nz is
the total number of optimized variables, nx is the number of states). Then, each
time a constraint needs to be added, create a 1× nz vector g with all zeros, use
the identified number of optimized variables to rewrite the specific term of vector
g, and then add it to the constraint matrix. The constraint bounds are directly
added as new terms.

In handling the Hessian matrix, different part of cost function may share the
same term. To prevent overwriting each other, when introducing a new cost, it’s

53

System Architecture Design and Methodology

added based on the original Hessian matrix. This method is similarly applied to
the coefficient vector of the linear term.

Algorithm 4 QP coding constraint and cost
1: G← []
2: ubg ← []
3: lbg ← []
4: H ← zeros(nz × nz)
5: C ← zeros(nz × 1)
6: for each time step t in the prediction horizon 1 : N do
7: NT m ← 1 + nx + (k − 1)nz

8: Nϵv ← 2 + nx + (k − 1)nz

9: NϵL ← 3 + nx + (k − 1)nz

10: Nϵs ← 4 + nx + (k − 1)nz

11: Ns ← 5 + nx + (k − 1)nz

12: Nv ← 6 + nx + (k − 1)nz

13: Na ← 7 + nx + (k − 1)nz

14: Ns,previous ← Ns − nz

15: Nv,previous ← Nv − nz

16: Na,previous ← Na − nz

17: g ← zeros(1× nz)
18: g([N1, N2, N3])← [x1, x2, x3]
19: G← [G; g]
20: ubg ← [ubg; new upper bound(t)]
21: lbg ← [lbg; new lower bound(t)]
22: H(N1, N1)← cost1
23: H(N2, N1)← cost2
24: H(N1, N2)← cost2
25: end for

Algorithm 5 QP coding state bounds
1: ubz ← []
2: lbz ← []
3: ubz ← [ubz; initial state(t)]
4: lbz ← [lbz; initial state(t)]
5: for each time step t in the prediction horizon 1 : N do
6: ubz ← [ubz; new upper bound(t)]
7: lbz ← [lbz; new lower bound(t)]
8: end for

54

System Architecture Design and Methodology

3.5 Environment Setup and Controller Develop-
ment

In the previous three sections, we introduced the sub-blocks of the total controller.
In this section, we will assemble the controller and integrate it into MATLAB
Simulink(R).

3.5.1 Overall structure
The scenario information is formed by two part, SPaT signal and lead vehicle state
and aso the sgo vehicle state should be a input of controller.

Figure 3.16: Overall structure of the system in MATLAB Simulink

3.5.2 Environment Setup
SPaT signal

In the real use case, the vehicle will directly receive three pieces of information
(traffic light phase, upper bound countdown timer, and lower bound countdown
timer) from SPaT using V2I technology, and receive the positions of the traffic light
and the ego vehicle through GPS. These scenarios should not be integrated into
the controller, but rather provided as inputs. To simulate such scenarios, we create
a signal called ’SPaT’. This signal not only includes the normal SPaT information,
but also integrates the traffic light position and an additional signal representing

55

System Architecture Design and Methodology

whether SPaT exists. the signal is get from the following setup, The phase offset
time is the time until the first red phase starts in the beginning of test scenario:

Figure 3.17: Simulated SPaT signal in MATLAB Simulink

Table 3.4: Traffic light setup

parameter symbol unit
Green Light Duration tr s
Red Light Duration tg s
phase offset time t0 s
current time t s
traffic light position stl m

The traffic light exist signal is get from look up table, input is travel distance, out
up is logic value, 1 means traffic light signal exist, 0 means it do not exist.

Firstly use the ego vehicle distance to locate which traffic light ego vehicle is
ahead by the look up table, secondly get the setup of that traffic light, then adjust

56

System Architecture Design and Methodology

the phase by :

phase =

0(red) if (t− t0) mod (tr + tg) < tr

1(green) if (t− t0) mod (tr + tg) > tr

(3.77)

To determine the upper bound countdown timer and lower bound countdown
timer, it is essential to have knowledge of the duration of the current phase. Then,
use the lookup table to get the upper and lower bound countdown timers. The
mod operation gives the seconds passed since the beginning of the last red phase,
so when the phase is green, the green light duration should additionally subtract tr.

tlast = ((t− t0) mod (tr + tg))− phase · tr (3.78)

Ego and lead vehicle state

the ego vehicle state are get from the plant model, the plant model is build though
the Simscape libraries in MATLAB Simulink.

Figure 3.18: Plant model construct by Simscape libraries in MATLAB Simulink.

3.5.3 Controller Development
Different functions are set separately in different blocks, which is helpful for
improving specific logic in future work. The following figure 3.19 shows the
structure of the QP controller. The NLP controller is similar but does not include
’ego vehicle state estimation’ and ’get limitation block’. The blocks for lead/ego
vehicle estimation and reference speed generator are implemented using simple

57

System Architecture Design and Methodology

Figure 3.19: MPC controller in MATLAB Simulink.

58

System Architecture Design and Methodology

MATLAB function blocks in Simulink. The block "get limitation" is used to obtain
the limitations of speed, traffic lights, and road angle. It is independent of the MPC
solver because we want to dynamically change the road information during use,
and the solver itself cannot be changed. For NLP controller, it is only a baseline
which will not use in real-time, the road information is included in the solver which
means a solver can only deal with the specific road section.

The solver includes CasADi code, which cannot be directly implemented in
Simulink or on a real vehicle controller. Therefore, we transform the solver into
C language by MinGW64, and then implement it into the ’s-function’ block of
Simulink, which can execute C language code. The compilation files are provided
by the CasADi official website. Named ’casadi_fun’

Firstly, write the optimization problem as introduced in the last two sections
and generate the function. The inputs should be defined using the MX form in
CasADi. In QP-based MPC controller, these inputs include the ego vehicle’s initial
state, speed limitation, ego vehicle’s estimated distance and speed in the prediction
horizon, lead vehicle’s estimated distance in the prediction horizon, reference speed,
and distance-based traffic light limitations. The output is the total torque at the
motor level.

ACC_QP_problem = Function(’ACC_QP_problem’, {input}, {output}) (3.79)

Then, generate the CasADi files and compile them into C language files. The
’lib_path’ and ’in_path’ are the paths for the CasADi toolbox files. These paths
should be automatically obtained using the following command. Then we can get
a ’.mex64’ file.

ACC_QP_problem.save(’ACC_QP_problem.casadi’)
lib_path = GlobalOptions.getCasadiPath()
inc_path = GlobalOptions.getCasadiIncludePath()
mex(’-v’,[’-I’ inc_path],[’-L’ lib_path],’-lcasadi’, ’ACC_QP.c’)

(3.80)

At last, put them into s-function block.

Figure 3.20: s-function control interface

59

Chapter 4

Experiments and Results

This chapter is dedicated to the implementation of the test plan and the subsequent
evaluation of the test results. The experiments are executed in MATLAB Simulink,
where connect the controller to a vehicle model built using Simscape for testing.

Firstly, tune the weight factor. Secondly, test the reaction to cut-in scenarios
and use four different scenarios to test the controller. Thirdly, compare the effects
of lead vehicle trajectory estimation and different headway policies. Fourthly,
compare the differences between the NLP-based controller and the QP controller.
Finally, analyze the multi-vehicle following performance using V2V technology.

4.1 Test scenario

The test driving cycle recorded in Turin, Italy, shown as figure 4.1, with a total
length of 3089 meters and travel time of 435 seconds.The lead vehicle is driven by
a human, without any optimization. The SPaT information is set by assumption,
as shown in Figure 4.3. The x-axis represents the elapsed time of the current
phase, while the y-axis represents the maximum and minimum actuated signal back
counters, the back counter will suddenly change sometimes. The SPaT information
is only available within 300 meters before the traffic light. The signals delivered to
the vehicle include only these two back counters and the phase.The test vehicle
model is a Fiat 500e, and the data is shown in Table 4.1. The vehicle model is
constructed by Simscape libraries in MATLAB Simulink. The controller refresh
time is 0.1 seconds, assume that during braking, 80 percent of the brake torque
will be contributed by regenerative braking, while the remaining 20 percent will be
provided by mechanical braking.

60

Experiments and Results

Figure 4.1: Driving cycle in map

Table 4.1: Vehicle data

mass 1443kg wheelbase 2.322m
inertial factor 1.05 front overhang 1.045m
wheel radius 0.3m rear overhang 1.277m
front area 2.15m2 areo-dynamic coefficient 0.33
rolling coefficient 0.006 gear box ratio 9.559
gear box efficiency 0.97 center gravity height 0.5m

61

Experiments and Results

Figure 4.2: Speed and acceleration of driving cycle

Figure 4.3: SPaT information and driving cycle

62

Experiments and Results

4.2 Tuning
The weight factor will significantly affect the performance of the controller. An
incorrect combination of weight factors can lead to very poor solutions. The weight
factor are tuned by Monte Carlo simulation.

Monte Carlo simulation is a statistical method that uses a large number of
random samples to perform numerical calculations, commonly used to solve complex
mathematical and physical problems. By generating random numbers to simulate
possible states of a system, it then statistically analyzes these states to estimate
the behavior and characteristics of the system. This method is widely applied in
fields such as financial engineering, physical simulations, and computer graphics,
valued for its ability to handle complex and nonlinear problems. However, Monte
Carlo simulation has high computational costs, and the accuracy of the results
depends on the number of samples.

MATLAB provides the function for the Monte Carlo method. ns is the number
of samples, and np is the number of parameters. The vector will be equally divided
into ns intervals between 0 and 1, and a value is randomly generated in each
interval. This ensures that the samples are evenly distributed. The initial setting
range of these weight factors are shown in equation, the ws should use much higher
order than others, the concrete value is not important. So it is set to 108.

S = lhsdesign(ns, np)pj

p
p̄j

 =

10−5 10−2 10−2 100 100

wp wa wj wv wL

102 106 106 106 106

 (4.1)

The test scenario is a simple one shown as figure 4.4, then generate 200 com-
binations of weight factor, run them by QP controller and get the lead vehicle
trajectory by v2v, with vehicle following logic in this scenario and get the result.

Figure 4.4: Scenario used in tuning

Then, we obtain the KPIs from these results. The KPIs include the RMS of
acceleration, RMS of jerk, energy consumption, and RMS headway distance error.

63

Experiments and Results

Figure 4.5: Tuning result

64

Experiments and Results

Some of these weight factor combinations may completely fail, resulting in a very
high RMS distance error. Therefore, a threshold is implemented for the RMS
distance error. Any combinations with an RMS distance error higher than this
threshold will be considered useless and will be discarded.

After obtaining these results, build another rough cost function as shown in
Equation 4.2. This cost function includes all the KPIs and uses weight factors to
bring these costs to the same order of magnitude, then choose the combination with
the lowest cost function. The results are shown below; this is our first assumption
of the weight factors.

J = arms + jrms + drms + 100Pbat (4.2)

• Wp = 0.0253 (1/w) Wa = 4.2 (s2/m)

• Wj = 899.21 (s3/m) Wv = 337.9 (s/m)

• WL = 607 (1/m) Ws = 108

The previous step is just a rough test; the results cannot be directly used. They
are only to ensure the order of the weight factors. In the next step, the controller
should be test in driving cycle shown in the previous section and manually tune the
parameters. Each time, tune just one factor while fixing the others. This process
is repeated until obtain the final solution. wa is not very sensitive; a large weight
factor can lead to lower energy consumption. wp should not be too large or too
small. A small value will not make full use of the power map, while a too large
value will lead to local minima in each time step calculation. In such cases, the
controller will try to decrease speed and relax the headway distance to save energy,
but in the next time step calculation, it will have to accelerate to make up for
previous decisions. A smaller wL can give the vehicle more flexibility to change
the headway distance and decide on a more efficient working point of the motor to
save energy. However, a too low value will reduce the headway distance and result
in hard braking when the ego vehicle is approaching the lead vehicle from a far
distance at high speed. wj should be high to avoid high jerk.

• Wp = 0.5 (1/w) Wa = 3000 (s2/m)

• Wj = 10000 (s3/m) Wv = 4000 (s/m)

• WL = 4000 (1/m) Ws = 108

At last, open the SPaT signal, and let the vehicle get the lead vehicle trajectory
by estimation. The performance is change a lot, We consider that for further
prediction steps, the lead vehicle’s trajectory information becomes less precise.
Additionally, the SPaT logic reference is generated based on the current vehicle

65

Experiments and Results

state and does not account for conditions within the prediction horizon. Therefore,
we decided to decrease the weight factor of speed tracking to 1000 s/m in the second
10 steps. After testing, we found that this adjustment improves the controller’s
performance.

4.3 Cut-in test

Adaptive Cruise Control needs to evaluate its performance in response to other
vehicles cutting in because this situation frequently occurs in real-world driving.
When another vehicle suddenly moves into the lane, it alters the driving environment,
affecting the current vehicle’s speed and following distance. To ensure safety and
comfort, ACC must quickly and accurately respond to these sudden changes by
adjusting speed and maintaining a safe following distance to avoid collisions or
abrupt braking. Thus, assessing ACC’s performance in handling cut-in scenarios
verifies its reliability and effectiveness in complex driving conditions, ultimately
enhancing overall driving safety.

A simple scenario is used to test the reaction to a cut-in. The lead vehicle trajec-
tory are base on estimation of constant acceleration. The lead vehicle accelerates to
13 m/s with a constant acceleration of 1.5 m/s2, then maintains a constant speed.
The ego vehicle keeps a distance of about 16 meters from the lead vehicle. At 25
seconds, a cut-in occurs: another vehicle cuts in 6 meters in front of the ego vehicle
and replaces the lead vehicle. The ego vehicle quickly decelerates to increase the
headway distance. After that, it accelerates to recover the speed. Throughout the
entire process, the acceleration and jerk remain within ±2 m/s2, ensuring comfort.

66

Experiments and Results

Figure 4.6: Result of cut-in test

4.4 Scenario test
After the simple test, we turn to a more complex test scenario discussed in Section
4.1. In this section, we always use the QP-based controller and obtain the lead
vehicle trajectory in the prediction horizon through V2V communication. Our
controller can handle different tasks, so we create four different scenarios. The first
three use the same lead vehicle trajectory but change the SPaT information, while
the last one is a condition where there is no lead vehicle, and the controller only
performs traffic light negotiation.

• ACC with SPaT

• ACC with SPaT and stop

• Pure ACC

• Only traffic light negotiation

67

Experiments and Results

4.4.1 ACC with SPaT

Figure 4.7: Result in scenario ’ACC with SPaT’

68

Experiments and Results

The first scenario is shown in Figure 4.7. In this scenario, the vehicle can receive
SPaT information 300 meters before the traffic light. The vehicle can maintain the
desired headway distance or use the SPaT information to plan a speed profile to
avoid stopping and save energy.

From 0 to 43 s, and after 387 s, the vehicle is either far from the traffic light or
has already passed it. No SPaT information is available in these periods, and the
ego vehicle executes only the ACC task.

From 50 seconds to 120 seconds and from 287 seconds to 340 seconds, the ego
vehicle decelerates earlier than the lead vehicle and maintains a constant cruising
speed to avoid stopping. The multiple speed steps are due to sudden changes in
the SPaT back counter information. However, since the lead vehicle still exists and
does not stop exactly at the stop line, the ego vehicle still has to stop. Nonetheless,
the ego speed profile benefits from energy savings because it reduces high-speed
travel time. If the lead vehicle stops just before the stop line and accelerates quickly
when the traffic light turns green, it is possible to avoid stopping.

Table 4.2 shows the KPIs between the lead vehicle and the ego vehicle. Compared
to the lead vehicle, the maximum, minimum, and root mean square of acceleration
and jerk are significantly decreased, providing a more comfortable driving experience.
Some high jerk values beyond 1 m/s3 occur in the inflection points between the
deceleration and the constant cruising phase

Table 4.2: KPIs in scenario ’ACC with SPaT’

lead vehicle ego vehicle
Travel time [s] 435 435

Rms acceleration [m/s2] 0.677 0.494
Max acceleration [m/s2] 2.701 1.560
Min acceleration [m/s2] -2.762 -1.240

Rms jerk [m/s3] 0.857 0.185
Max jerk [m/s3] 8.965 1.356
Min jerk [m/s3] -5.758 -1.399

Energy consumption(wh) 232.1 215.6
Energy save 10.61%

69

Experiments and Results

4.4.2 ACC with SPaT and stop

Figure 4.8: Result in scenario ’ACC with SPaT and stop’

70

Experiments and Results

The second scenario is similar to the first scenario. only change the 4th traffic
light phase offset, creating a condition where the lead vehicle passes the traffic light
at the end of the green phase, while the ego vehicle stops before the traffic light
because the phase has already switched to red, and it has to wait for the entire red
phase.

Figure 4.8 shows the simulation results. From 0 to 43 s, and after 387 s, the
vehicle is either far from the traffic light or has already passed it. No SPaT
information is available in these periods, and the ego vehicle executes only the
ACC task.

At 170 s, the ego vehicle stops due to the traffic light turning red, while the lead
vehicle passes in the last second of the green phase. Until 302 s, the lead vehicle is
far ahead of the ego vehicle: during this period, the controller has no lead vehicle
information. The ego vehicle follows only the SPaT to plan its speed, attempting
to pass the intersections as soon as possible. Then, at 302 s, it catches up with the
lead vehicle again.

In the other cases, the ego vehicle follows the lead vehicle with SPaT information.
From 82 to 112 s, and from 306 to 340 s, the ego vehicle decelerates earlier than
the lead vehicle and maintains a constant cruising speed to avoid stopping.

The table 4.3 shows the overall KPIs of the total driving cycle. Compared to the
lead vehicle, the maximum, minimum, and root mean square of acceleration and
jerk are significantly decreased, providing a more comfortable driving experience.
Before stopping due to the traffic light, the ego vehicle saves approximately 6
percent energy compared to the lead vehicle. However, because the ego vehicle
maintains a higher speed to catch up with the lead vehicle, this leads to higher
energy consumption. overall energy saving is not significant, at about 2.90 percent.

Table 4.3: KPIs in scenario ’ACC with SPaT and stop’

lead vehicle ego vehicle
Travel time [s] 435 435

Rms acceleration [m/s2] 0.677 0.494
Max acceleration [m/s2] 2.701 1.543
Min acceleration [m/s2] -2.762 -1.350

Rms jerk [m/s2] 0.857 0.158
Max jerk [m/s2] 8.965 1.287
Min jerk [m/s2] -5.758 -1.144

Energy consumption [wh] 232.1 225.4
Energy saving 2.9%

71

Experiments and Results

4.4.3 Pure ACC

Figure 4.9: Result in scenario ’pure ACC’

72

Experiments and Results

The third scenario 4.9 is the condition that there is no SPaT information, the
ego vehicle just do the vehicle following.

Table 4.4 shows the KPIs. Again, the maximum, minimum, and root mean square
of acceleration and jerk are significantly decreased, providing a more comfortable
driving experience. The energy saving becomes 7.43%, which is lower than the
scenario with SPaT. SPaT information truly saves more energy. The jerk is always
below ±0.6, which is lower than in the previous scenario with SPaT.

Table 4.4: KPIs in scenario ’pure ACC’

lead vehicle ego vehicle
Travel time [s] 435 435

Rms acceleration [m/s2] 0.677 0.530
Max acceleration [m/s2] 2.701 1.674
Min acceleration [m/s2] -2.762 -1.288

Rms jerk [m/s2] 0.857 0.158
Max jerk [m/s2] 8.965 0.606
Min jerk [m/s2] -5.758 -0.611

Energy consumption [wh] 232.1 214.8
Energy saving - 7.43%

4.4.4 Only traffic light negotiation
In the last scenario figure 4.10, there is no lead vehicle, just ego vehicle pass the
road section with SPaT information alone.

Table 4.5: KPIs in scenario ’only traffic light negotiation’

human driver ego vehicle
Travel time [s] 435 289

Rms acceleration [m/s2] 0.677 0.432
Max acceleration [m/s2] 2.701 1.149
Min acceleration [m/s2] -2.762 -1.352

Rms jerk [m/s2] 0.857 0.167
Max jerk [m/s2] 8.965 1.352
Min jerk [m/s2] -5.758 -1.348

Energy consumption [wh] 232.1 245.4
Energy saving - −5.72%

Table 4.5 show KPIs, the ego vehicle totally avoid stoping in such scenario, the
travel time is significantly decreased and also keep the comfortable. However, due

73

Experiments and Results

to higher average speed, the total resistance is increase, the energy consumption is
a little higher than human driver.

Figure 4.10: Result in scenario ’only traffic light negotiation’

74

Experiments and Results

4.5 Lead vehicle trajectory estimation
As discussed in Section 3.4, V2V information is not always available, so it has
be estimated. In this section, we discuss how the performance of the controller
will change if the lead vehicle trajectory is obtained through estimation. The test
scenario is ’ACC with SPaT’, with QP base controller.

Figure 4.11: Comparison among different lead vehicle trajectory estimation

Figure 4.11 shows the result. For the speed profile, the V2V and con-a are
similar, while con-v has some speed overshoot at the end of acceleration. Around
230 s, both con-a and con-v decrease the speed slightly, but this does not happen
in V2V. This is because when estimating the lead vehicle trajectory, it is hard to
know when the lead vehicle will start to move. In the prediction horizon, the lead
vehicle is always seen as stationary, which leads the ego vehicle to decrease speed.

75

Experiments and Results

For the acceleration profile, con-a has more oscillation compared to the others. For
the headway distance profile, at the end of acceleration, con-v reacts slowly and
leads to a higher headway distance than the others.

Table 4.6: KPIs of different lead vehicle trajectory estimation

v2v con-v con-a
Travel time [s] 435 435 435

Rms acceleration [m/s2] 0.492 0.561 0.522
Max acceleration [m/s2] 1.543 1.672 1.694
Min acceleration [m/s2] -1.224 -1.565 -1.278

Rms jerk [m/s2] 0.182 0.230 0.264
Max jerk [m/s2] 1.300 0.906 1.647
Min jerk [m/s2] -1.403 -1.565 -1.372

Energy consumption [wh] 207.5 223.1 213.0
−10.61% −3.88% −8.22%

Figure 4.12: Acceleration-jerk plan of different lead vehicle trajectory estimation

Table 4.6 and figure 4.12 shows the KPIs of v2v and two estimation method,
Both con-v and con-a yield reduced performance, with higher acceleration, jerk,
and energy consumption. The constant speed method significantly increases the
energy consumed and tracking error but produces a lower jerk when compared
to con-a. Although the root mean square of acceleration is slightly higher than
con-a, but the acceleration profile is smoother. Therefore, we consider that con-v is
more comfortable than con-a, but con-a can save more energy and provides better
tracking, a trade-off between comfort and energy reduction should be made, while
the benefits of leveraging V2V remain evident. Allowing a precise prediction of
the lead vehicle’s speed is a very active area of research, where machine learning
algorithms and probabilistic approaches are emerging as concurrents of V2V.

76

Experiments and Results

4.6 Headway distance policy
Until now, the controller is always work with human driver behavior policy. In this
section, we discuss the performance of different headway distance policies. Figure
4.13 shows these policy.

• Constant time gap(CTG):
h = A + τv (4.3)

Where h is the headway distance, τ is time distance, it is set as 1.5s. v is
current vehicle speed,A is the constant distance when the vehicle is static

• Human driver behavior(HDB):

h = A + Tv + Gv2 (4.4)

This policy is the rewrite of HDB, increase the headway distance by change
the HDB parameter:
A = 2 , T = 1.5 , G = −0.0246T + 0.010819 .

• Rebuild human driver behavior(rHDB):

h = A + Tv + Gv2 (4.5)

Where the parameters of the rHDB are set as follows:
A = 2 , T = 1.8846 , G = −0.0226 .

• Saturation (ST) This policy is highly increase headway distance in low speed,
then keep the constant headway distance.

h = max(3v,22) (4.6)

Figure 4.13: Tested distance policy

77

Experiments and Results

Figure 4.14: Comparison among different distance policy

The results are use QP-base controller, using v2v to get the true lead vehicle
trajectory in prediction horizon and test in scenario ’ACC with SPaT’, figure 4.6
shows the result and table 4.7 shows the KPIs.

CTG is the most powerful one; it can save the most energy and also has very
low acceleration and jerk, which ensure comfort. However, it has a large headway
distance during high speeds, increasing the possibility of cut-ins. ST has the highest
values in terms of acceleration and the lowest energy savings, and it also shows an
overshoot of headway distance at the end of acceleration.

78

Experiments and Results

Table 4.7: KPIs of different distance policy

HDB rHDB CTG ST
Rms acceleration [m/s2] 0.492 0.478 0.477 0.485
Max acceleration [m/s2] 1.543 1.499 1.446 1.652
Min acceleration [m/s2] -1.224 -1.222 -1.220 -1.186

Rms jerk [m/s2] 0.182 0.174 0.175 0.174
Max jerk [m/s2] 1.300 1.103 1.300 0.825
Min jerk [m/s2] -1.403 -1.374 -1.388 -1.502

Energy consumption [wh] −10.61% −11.66% −11.89% −10.03%

Figure 4.15: Acceleration-jerk plane by different distance policy

Therefore, it not a good choice. rHDB increases the headway distance based
on HDB, which leads to less acceleration and jerk and also saves more energy
compared to HDB. Thus, increasing the headway distance can provide better

79

Experiments and Results

performance in both energy saving and comfort. However, rHDB still has more
energy consumption than CTG, even though the headway distance of rHDB is
always higher than that of CTG. Not only does headway distance affect energy
consumption, but the negative slope decrease of the distance policy function also
negatively impacts energy consumption.

4.7 NLP and QP
The MPC controller is implenmented in two form : NLP and QP, NLP is more
precise and QP can realize real-time. In this section, we compare the different
between them, using two scenario (ACC with SPaT and pure ACC) and two method
of lead vehicle trajectory estimation (v2v and con-a). the tables shows the KPIs
and figure 4.7 shows the headway distance distance error which means the offset
between the real headway distance and desired headway distance.

In most condition, NPL can save more energy than QP, however there still exist
the condition such as ACC with SPat and v2v that NPL use more energy.

NLP can always do more precise tracking. Lower rms , mean and variance of
headway distance error. This is because in QP, the speed quadratic term are use
the estimated value, but in NLP they are always true value, no accuracy speed
estimation leads to less accuracy of distance tracing.

NLP has higher peak acceleration than QP, however it has lower max decelera-
tion.

NLP has more benefit when V2V information is not available.

with SPaT,V2V QP NLP

headway distance error [m]
Var 122.2 115.4
Rms 12.3 12.0
Mean 5.6 5.4

Acceleration [m/s2]
Var 0.492 0.496
Max 1.543 1.551
Min -1.224 -1.146

Jerk [m/s3]
Var 0.182 0.182
Max 1.300 1.354
Min -1.403 -1.371

Energy save 10.61% 10.64%

80

Experiments and Results

with SPaT,cona QP NLP

headway distance error [m]
Var 121.1 118.3
Rms 12.32 12.06
Mean 5.67 5.42

Acceleration [m/s2]
Var 0.522 0.521
Max 1.694 1.926
Min -1.278 -1.198

Jerk [m/s3]
Var 0.264 0.261
Max 1.647 1.616
Min -1.372 -1.582

Energy save 8.22% 8.81%

pure ACC,v2v QP NLP

headway distance error [m]
Var 0.236 0.006
Rms 0.487 0.330
Mean 0.325 0.276

Acceleration [m/s2]
Var 0.530 0.539
Max 1.674 1.927
Min -1.288 -1.252

Jerk [m/s3]
Var 0.158 0.166
Max 0.606 0.765
Min -0.611 -0.724

Energy save 7.43% 7.13%

pure ACC,cona QP NLP

headway distance error [m]
Var 0.192 0.057
Rms 0.441 0.337
Mean 0.246 0.286

Acceleration [m/s2]
Var 0.568 0.571
Max 1.695 1.928
Min -1.753 -1.666

Jerk [m/s3]
Var 0.313 0.296
Max 1.840 1.727
Min -1.402 -1.582

Energy save 5.24% 5.35%

81

Experiments and Results

82

Experiments and Results

4.8 Multiple vehicle following
The multiple vehicle following behavior is a important indicator for ACC controller,
in this section, we discuss the string stability of our controller, we use three vehicles
follow each other, test the string stability when they use v2v, constant acceleration
and constant speed method to predict lead vehicle trajectory.

The controller can benefit significantly when performing the multiple vehicle
following task. The first vehicle can estimate the lead vehicle’s trajectory within
the prediction horizon, and then the MPC solution can be transmitted as V2V
information. This information includes the first vehicle’s future trajectory and
is delivered to the second vehicle, then to the third, fourth vehicles, and so on,
forming a data line.

Figure 4.16: Multiple vehicle following by v2v

A simple scenario which the lead vehicle run in a sin wave speed profile show in
figure 4.17 is used to test string stability, the ego vehicle only do the car following
without SPaT information.

Figure 4.17: Multiple vehicle following tested scenario

4.8.1 All constant speed
The first condition is all the vehicle are estimate the lead vehicle trajectory by
constant speed, figure 4.18 shows the graph of speed, acceleration and jerk of each
vehicle. table 4.8 shows the KPIs.

83

Experiments and Results

This method shows strong string instability. The amplitude of the sinusoidal
speed profile increases vehicle by vehicle, and acceleration, jerk, and energy con-
sumption also become higher. This method is not suitable for multiple vehicle
following.

Figure 4.18: Result of method ’all by constant speed’

vehicle 1 vehicle 2 vehicle 3
Rms acceleration [m/s2] 1.056 1.168 1.318

Rms jerk [m/s3] 0.315 0.385 0.555
Energy consumption [wh] 106 116 124

Table 4.8: KPIs of method ’all by constant speed’

84

Experiments and Results

4.8.2 All constant acceleration
The second condition is all the vehicle are estimate the lead vehicle trajectory by
constant acceleration, figure 4.19 shows the graph of speed, acceleration and jerk
of each vehicle. table 4.9 shows the KPIs

Figure 4.19: Result of method ’all by constant acceleration’

vehicle 1 vehicle 2 vehicle 3
Rms acceleration [m/s2] 0.924 0.897 0.874

Rms jerk [m/s3] 0.267 0.268 0.277
Energy consumption [wh] 92 89 86

Table 4.9: KPIs of method ’all by constant acceleration’

This method demonstrates string stability. The amplitude of the sinusoidal speed

85

Experiments and Results

profile decreases vehicle by vehicle, and both acceleration and power consumption
decrease. However, jerk increases slightly but not significantly. After further testing,
when the number of following vehicles increases, it will converge to a certain value.

4.8.3 Constant speed-v2v
The third condition is the first vehicle use constant speed estimation, the other
vehicle are use v2v get the previous vehicle MPC solution as the lead vehicle
trajectory, figure 4.20 shows the graph of speed, acceleration and jerk of each
vehicle. table 4.10 shows the KPIs.

As discussed before, if all the vehicles use constant speed estimation, the vehicle
flow will be string instability, but the v2v information can fix such behavior, the
amplitude of the sinusoidal speed profile decreases vehicle by vehicle, and all of
acceleration , jerk, energy consumption will decrease.

Figure 4.20: Result of method ’constant speed-v2v’

86

Experiments and Results

vehicle 1 vehicle 2 vehicle 3
Rms acceleration [m/s2] 1.038 0.991 0.946

Rms jerk [m/s3] 0.315 0.294 0.275
Energy consumption [wh] 106 100 96

Table 4.10: KPIs of method ’constant speed-v2v’

4.8.4 Constant acceleration-v2v
The last condition is the first vehicle use constant acceleration estimation, the
other vehicle are use v2v get the previous vehicle MPC solution as the lead vehicle
trajectory, figure 4.21 shows the graph of speed, acceleration and jerk of each
vehicle. table 4.11 shows the KPIs.

Figure 4.21: Result of method ’constant acceleration-v2v’

87

Experiments and Results

vehicle 1 vehicle 2 vehicle 3
Rms acceleration [m/s2] 0.924 0.883 0.846

Rms jerk [m/s3] 0.268 0.246 0.231
Energy consumption [wh] 92 89 86

Table 4.11: KPIs of method ’constant acceleration-v2v’

The contribution of v2v information is similar to before. the vehicle flow is
string stability, the amplitude of the sinusoidal speed profile decreases vehicle by
vehicle, and all of acceleration , jerk, energy consumption will decrease.

88

Chapter 5

Conclusions and Future
Works

5.1 Conclusion
This study presents an MPC-based vehicle controller that integrates Adaptive
Cruise Control (ACC) and traffic light states to optimize energy consumption
and enhance the driving experience of connected urban electric vehicles. The
ACC dynamically adjusts the vehicle’s speed based on the distance and speed
of the preceding vehicle, ensuring safety and comfort while minimizing energy
consumption. By leveraging V2I communication, the vehicle can anticipate traffic
signal changes and adjust its speed proactively, reducing frequent acceleration and
deceleration.

The structure of the controller includes a reference speed generator and an MPC
controller, which comprises two architectures: Nonlinear Programming (NLP) and
Quadratic Programming (QP).

Initially, a rough test using a Monte Carlo simulation was conducted to determine
the order of weight factors. These weight factors were refined through manual tuning
in a controlled driving cycle to achieve optimal performance. Cut-in reactions were
analyzed to assess the controller’s robustness and adaptability.

The controller was tested in various scenarios, and the results indicated that it
performed well across different conditions. It significantly reduced energy consump-
tion with or without SPaT information, with further reductions achieved when
SPaT information was available.

The approach involved comparing the NLP and QP structures within the
MPC framework, highlighting differences in performance, particularly in tracking
accuracy and computational efficiency. The results demonstrated that the NLP-
based controller offered more precise tracking, while QP exhibited significant

89

Conclusions and Future Works

computational efficiency, making it more suitable for real-time applications.
Different headway distance policies were also explored. Policies like CTG,

although energy-efficient and comfortable, might increase the risk of cut-ins due to
larger headway distances at high speeds. In contrast, policies like HDB provided a
balance by offering better performance in both energy saving and comfort.

Challenges related to V2V communication unavailability were addressed, empha-
sizing the need for accurate lead vehicle trajectory estimation. The results indicated
that while estimation methods could provide satisfactory performance, they were
not as reliable as direct V2V information. The application of V2V in multi-vehicle
tracking was further discussed, with results indicating that V2V information can
enhance string stability.

5.2 Future work
The reference generator block in this paper is rule-based, but there is potential for
algorithmic improvement. Future work will explore the use of machine learning
techniques to achieve a more precise prediction of the lead vehicle’s trajectory.
Additionally, machine learning can be employed to make QP’s results more similar
to NLP’s, further enhancing efficiency and accuracy. Further optimization of control
algorithms will be pursued to improve the system’s real-time performance and
robustness. Expanding the scope of simulations to cover more diverse urban traffic
conditions and scenarios is also important. Moreover, additional applications of V2I
will be investigated to further enhance the intelligence and coordination capabilities
of the vehicle controller.

90

List of Tables

3.1 Parameter symbol and unit of reference speed generator 21
3.2 Parameter symbol and unit of NLP controller 28
3.3 Parameter symbol and unit of QP controller 46
3.4 Traffic light setup . 56

4.1 Vehicle data . 61
4.2 KPIs in scenario ’ACC with SPaT’ 69
4.3 KPIs in scenario ’ACC with SPaT and stop’ 71
4.4 KPIs in scenario ’pure ACC’ . 73
4.5 KPIs in scenario ’only traffic light negotiation’ 73
4.6 KPIs of different lead vehicle trajectory estimation 76
4.7 KPIs of different distance policy . 79
4.8 KPIs of method ’all by constant speed’ 84
4.9 KPIs of method ’all by constant acceleration’ 85
4.10 KPIs of method ’constant speed-v2v’ 87
4.11 KPIs of method ’constant acceleration-v2v’ 88

92

List of Figures

2.1 Headway distance policy of ACC 7
2.2 String stability convoy . 8
2.3 String instability convoy . 9
2.4 MPC loop base on [14] . 10
2.5 Predict horizon and control signal base on [14] 11
2.6 Driving comfort standard relative to acceleration and jerk base on [18] 15
2.7 SPaT signal description base on [20] 16

3.1 Overall structure of the system . 18
3.2 Reference speed generator logic and priority 19
3.3 SPaT decision-making of traffic lights negotiation 20
3.4 Vehicle longitudinal dynamic model base on [25] 27
3.5 Punishment of intrusion to lead vehicle desired headway distance . 31
3.6 ISO standard for acceleration and jerk relative to comfort 33
3.7 Motor torque physical limitation . 34
3.8 Constraint of traffic light schematic 36
3.9 Electric motor efficiency map and battery power map 37
3.10 Sampling points . 38
3.11 Validated original and interpolated efficiency map 39
3.12 Slack variable punishment tendency 40
3.13 Vehicle longitudinal dynamic model base on [25] 45
3.14 Punishment of intrusion to lead vehicle desired headway distance . 48
3.15 Validated original and interpolated efficiency map 51
3.16 Overall structure of the system in MATLAB Simulink 55
3.17 Simulated SPaT signal in MATLAB Simulink 56
3.18 Plant model construct by Simscape libraries in MATLAB Simulink. 57
3.19 MPC controller in MATLAB Simulink. 58
3.20 s-function control interface . 59

4.1 Driving cycle in map . 61
4.2 Speed and acceleration of driving cycle 62

93

List of Figures

4.3 SPaT information and driving cycle 62
4.4 Scenario used in tuning . 63
4.5 Tuning result . 64
4.6 Result of cut-in test . 67
4.7 Result in scenario ’ACC with SPaT’ 68
4.8 Result in scenario ’ACC with SPaT and stop’ 70
4.9 Result in scenario ’pure ACC’ . 72
4.10 Result in scenario ’only traffic light negotiation’ 74
4.11 Comparison among different lead vehicle trajectory estimation . . . 75
4.12 Acceleration-jerk plan of different lead vehicle trajectory estimation 76
4.13 Tested distance policy . 77
4.14 Comparison among different distance policy 78
4.15 Acceleration-jerk plane by different distance policy 79
4.16 Multiple vehicle following by v2v 83
4.17 Multiple vehicle following tested scenario 83
4.18 Result of method ’all by constant speed’ 84
4.19 Result of method ’all by constant acceleration’ 85
4.20 Result of method ’constant speed-v2v’ 86
4.21 Result of method ’constant acceleration-v2v’ 87

94

Bibliography

[1] World Health Organization. Ambient air pollution: A global assessment of
exposure and burden of disease. World Health Organization, 2016 (cit. on
p. 1).

[2] International Energy Agency. CO2 Emissions from Fuel Combustion 2019.
International Energy Agency, 2019 (cit. on p. 1).

[3] International Energy Agency. Global EV Outlook 2020. International Energy
Agency, 2020 (cit. on p. 1).

[4] The State Council of China. New Energy Vehicle Industry Development Plan
(2021-2035). State Council. 2020 (cit. on p. 1).

[5] Ministry of Industry and Information Technology. Parallel Management of
Average Fuel Consumption and New Energy Vehicle Credits for Passenger
Car Enterprises. MIIT. 2017 (cit. on p. 1).

[6] European Commission. The European Green Deal. European Commission.
2019 (cit. on p. 2).

[7] U.S. House of Representatives. The CLEAN Future Act. House Committee
on Energy & Commerce. 2020 (cit. on p. 2).

[8] California Air Resources Board. Zero-Emission Vehicle Program. CARB. 2020
(cit. on p. 2).

[9] Cabinet Office of Japan. Green Growth Strategy. Government of Japan. 2020
(cit. on p. 2).

[10] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz
Diehl. «CasADi – A software framework for nonlinear optimization and
optimal control». In: Mathematical Programming Computation (2018) (cit. on
pp. 3, 13, 14).

[11] Cunxue Wu, Zhongming Xu, Yang Liu, Chunyun Fu, Kuining Li, and Minghui
Hu. «Spacing policies for adaptive cruise control: A survey». In: IEEE Access
8 (2020), pp. 50149–50162 (cit. on p. 6).

96

BIBLIOGRAPHY

[12] A. Farnam and G. Crevecoeur. «Guaranteeing String Stability of Multiple
Interconnected Vehicles Using Heterogeneous Controllers». In: Journal of
Dynamic Systems, Measurement, and Control 143.6 (Jan. 2021), p. 061002.
issn: 0022-0434. doi: 10.1115/1.4049366. eprint: https://asmedigita
lcollection.asme.org/dynamicsystems/article-pdf/143/6/061002/
6617802/ds_143_06_061002.pdf. url: https://doi.org/10.1115/1.
4049366 (cit. on p. 8).

[13] Vicente Milanés, Steven E Shladover, John Spring, Christopher Nowakowski,
Hiroshi Kawazoe, and Masahide Nakamura. «Cooperative adaptive cruise
control in real traffic situations». In: IEEE Transactions on intelligent trans-
portation systems 15.1 (2013), pp. 296–305 (cit. on p. 9).

[14] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. «Review on
model predictive control: An engineering perspective». In: The International
Journal of Advanced Manufacturing Technology 117.5 (2021), pp. 1327–1349
(cit. on pp. 10, 11).

[15] Jonathan Frey, Rien Quirynen, Tom van Leeuwen, Andrea Zanelli, Dario
Brescianini, Robin Verschueren, Niels van Duijkeren, Andrea Zanelli, and
Dario Brescianini. acados: a modular open-source framework for fast embedded
optimal control. https://github.com/acados/acados. 2021 (cit. on p. 13).

[16] Andreas Wächter and Lorenz T Biegler. «On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming». In:
Mathematical programming 106 (2006), pp. 25–57 (cit. on p. 13).

[17] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg
Bock, and Moritz Diehl. «qpOASES: A parametric active-set algorithm for
quadratic programming». In: Mathematical Programming Computation 6
(2014), pp. 327–363 (cit. on p. 13).

[18] Chang Wang, Xia Zhao, Rui Fu, and Zhen Li. «Research on the comfort
of vehicle passengers considering the vehicle motion state and passenger
physiological characteristics: Improving the passenger comfort of autonomous
vehicles». In: International journal of environmental research and public health
17.18 (2020), p. 6821 (cit. on p. 15).

[19] Il Bae, Jaeyoung Moon, and Jeongseok Seo. «Toward a comfortable driving
experience for a self-driving shuttle bus». In: Electronics 8.9 (2019), p. 943
(cit. on p. 15).

[20] Ardalan Vahidi and Antonio Sciarretta. «Energy saving potentials of con-
nected and automated vehicles». In: Transportation Research Part C: Emerg-
ing Technologies 95 (2018), pp. 822–843 (cit. on p. 16).

97

https://doi.org/10.1115/1.4049366
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/143/6/061002/6617802/ds_143_06_061002.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/143/6/061002/6617802/ds_143_06_061002.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/143/6/061002/6617802/ds_143_06_061002.pdf
https://doi.org/10.1115/1.4049366
https://doi.org/10.1115/1.4049366
https://github.com/acados/acados

BIBLIOGRAPHY

[21] Haitao Xia, Kanok Boriboonsomsin, Friedrich Schweizer, Andreas Winckler,
Kun Zhou, Wei-Bin Zhang, and Matthew Barth. «Field operational testing
of eco-approach technology at a fixed-time signalized intersection». In: 2012
15th International IEEE Conference on Intelligent Transportation Systems.
IEEE. 2012, pp. 188–193 (cit. on p. 16).

[22] Matthew Barth, Sindhura Mandava, Kanok Boriboonsomsin, and Haitao
Xia. «Dynamic ECO-driving for arterial corridors». In: 2011 IEEE forum on
integrated and sustainable transportation systems. IEEE. 2011, pp. 182–188
(cit. on p. 20).

[23] Alexander Koch, Tim Bürchner, Thomas Herrmann, and Markus Lienkamp.
«Eco-driving for different electric powertrain topologies considering motor
efficiency». In: World Electric Vehicle Journal 12.1 (2021), p. 6 (cit. on p. 20).

[24] Peng Hao, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J Barth.
«Eco-approach and departure (EAD) application for actuated signals in real-
world traffic». In: IEEE Transactions on Intelligent Transportation Systems
20.1 (2018), pp. 30–40 (cit. on p. 20).

[25] Antonio Sciarretta, Ardalan Vahidi, et al. Energy-efficient driving of road
vehicles. Springer, 2020 (cit. on pp. 27, 45).

98

	Introduction
	Background
	Motivation
	Thesis Outline

	Theoretical Background
	Adaptive cruise control
	Introduction
	Head way distance policy
	String stability
	Cooperative Adaptive Cruise Control

	Model Predict Control
	Predict Horizon
	Plant Modeling
	Constraint
	Cost Function
	Format, Solver and Toolbox
	Simple Example
	Advantage and Disadvantage

	Driving Comfort
	SPaT and Actuated Signal
	SPaT
	Actuated Signal

	System Architecture Design and Methodology
	Overall structure
	Reference speed generator
	SPaT logic
	Vehicle following
	No SPaT and no vehicle following

	MPC Formulation with NLP
	Preliminary knowledge
	Lead vehicle trajectory
	Optimized vector
	Vehicle model
	Constraints
	Cost function
	Full formulation
	Coding

	MPC Formulation with QP
	Preliminary knowledge
	Lead and ego vehicle trajectory
	Optimized vector
	Vehicle model
	Constraints
	Cost function
	Full formulation
	Coding

	Environment Setup and Controller Development
	Overall structure
	Environment Setup
	Controller Development

	Experiments and Results
	Test scenario
	Tuning
	Cut-in test
	Scenario test
	ACC with SPaT
	ACC with SPaT and stop
	Pure ACC
	Only traffic light negotiation

	Lead vehicle trajectory estimation
	Headway distance policy
	NLP and QP
	Multiple vehicle following
	All constant speed
	All constant acceleration
	Constant speed-v2v
	Constant acceleration-v2v

	Conclusions and Future Works
	Conclusion
	Future work

	List of Tables
	List of Figures
	Bibliography

