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1 ABSTRACT 

In the Architecture, Engineering, and Construction (AEC) sector, as well as in the cultural heritage 

field, the digitalization of the built heritage is an ever more increasing demand until reaching a high 

level of importance, which can be attributed to the necessity for more accurate and efficient methods 

for preserving and managing historical structures. Digitalization methodologies, such as Building 

Information Modelling (BIM) and Geographic Information Systems (GIS) provide a detailed and 

precise digital representation, enabling more effective documentation and preservation of the cultural 

heritage sites, ensuring that historical and architectural details are available for future generations. 

The Scan-to-BIM process, between its diverse functions has developed the focus in the generation of 

parametric models focused on the existing historical buildings or so-called Historic Building 

Information Modelling (HBIM). This process starting from raw point cloud data and finishing in the 

virtual representation of historical buildings, has the capability of facilitating the planning for 

maintenance, metric computation specialists, and management bodies. 

In recent years, the development of Artificial Intelligence (AI) algorithms has further improved this 

process. Particularly, through Machine Learning (ML) and Deep Learning (DL), the semantic 

segmentation process facilitates the division of the diverse classes of architectural elements such as 

Columns, Floors, Roofs, Walls. This automation of the element classification not only speeds up the 

process but also minimizes the potential for human error, leading to more reliable and consistent 

models.  

This thesis focuses on the automation of the Scan-to-HBIM process, specifically targeting the 

modelling of various architectural classes of the Chapels XXIV and Chapel XXVIII of the Sacro 

Monte di Varallo case study (North-West Italy). For each category of the architectural elements, the 

optimal techniques for their digital and parametric reconstruction have been investigated.  

Advanced techniques in Visual Programming Language (VPL) and ML frameworks have been thus 

analysed to transform point cloud data into detailed HBIM models efficiently. Starting from the state-

of-the-art ArCH dataset, manually annotated, the so semantically labelled point clouds have been 

processed using Dynamo for Autodesk Revit with the help of AI, producing a semi-automated 

workflow for the creation of the HBIM categories at various Level of Detail (LOD). Additionally, 

the assessment of time efficiency and accuracy deviations when converting point cloud data into 

HBIM models has been considered. 
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The proposed workflow aims to enhance future HBIM projects and processes by enabling the creation 

of elements at a higher LOD than B and C, specifically LOD D and beyond. This could be ensured 

by applying further semantic segmentation techniques. The proposed methodology is also open to 

improvement by the reformulation of diverse methods for its geometry creation process. As a further 

development, ML techniques could also be used in the future for the insertion of non-geometric 

parameters regarding to the Level of Information (LOI) such as material, colours, etc. 
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2 INTRODUCTION 

Built Heritage serve as a tangible connection to the cultural heritage and legacy. Given their age and 

detail, as well as the lack of detail and documentation for most, preservation of these buildings is 

difficult at best and in many cases impossible. Of these, the 59 UNESCO World Heritage Sites [1] 

are the best examples of historical representation.  

Nowadays, BIM is one of the most powerful methodologies in the conservation and management of 

heritage buildings. Detailed digital representations provided by BIM also aid in the maintenance, 

refurbishing, and preservation of these structures. Still, the process to bring scan data into HBIM 

models, often referred to as the scan-to-HBIM workflow, is extremely time-consuming and must be 

done carefully, especially for more complex architectures. 

This master thesis, performed at Politecnico di Torino, aims to automate the Scan-to-HBIM process 

in Revit using Dynamo software, as a powerful plug-in that speaks the same language as Revit. It 

includes the use of professional Python packages to perform complex calculations and high memory-

consuming operations. This research proves how 3D models at a LOD B and a LOD C can be 

automated using Dynamo, enhancing efficiency and accuracy in the modelling process.  

In the first chapter, is explored why the Sacro Monte di Varallo complex was built by diving into 

bibliographic research. Is also discussed the inspirations of the architects and how the design evolved 

from its initial concept to the final construction. A closer look at two Chapels in Piazza dei Tribunali, 

specifically Chapel XXIV and Chapel XXVIII is taken. For each Chapel, the architectural details and 

their locations are highlighted. 

The second chapter provides a summary of the current technologies and tools. It then explains the 

current standards for the BIM process, focusing on Italy but also considering other countries. Towards 

the end, the chapter compares four of the latest research studies on the automation of the scan-to-

HBIM process, identifying their limitations and deciding which limitation to address. 

The third chapter aims to present current methods and technical solutions used in the scan-to-HBIM 

process for cultural heritage. It begins by identifying the primary challenges in automating the scan-

to-HBIM process for complex buildings like the Sacro Monte Varallo Chapels. Following this, an 

automated workflow is suggested, combining advanced scanning techniques with BIM software. This 

proposed workflow is then evaluated on two specific cases: Chapel XXIV and Chapel XXVIII of 

Sacro Monte Varallo. 
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The fourth chapter explains the procedure for creating Dynamo scripts using nodes and Python scripts 

to automate the modelling of various building elements, such as arches, columns, Mouldings, floors, 

doors, walls, windows, stairs, vaults, and roofs, for both levels of detail.  

The fifth chapter presents and compares the results of this automated modelling process, 

demonstrating the precision and accuracy of the proposed workflow. But also, its flaws and 

requirements. 

The final chapters summarize the findings and suggests potential avenues for future research, 

highlighting the importance of continued development in automated Scan-to-HBIM processes for the 

preservation of built heritage.   
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3 CASE STUDY: SACRO MONTE DI VARALLO 

The Sacro Monte di Varallo, located in North-West Italy, stands as a one of the several examples of 

the country's rich architectural and cultural heritage. This UNESCO World Heritage site, renowned 

for its collection of chapels depicting scenes from the life of Christ, presents a unique opportunity to 

explore the intersection of historical preservation and modern digital technologies. This study focuses 

on the digitalization and preservation of data associated with the chapels at Sacro Monte di Varallo, 

proposed by the Main10ance project [2], which emphasizes the need for a digital transition in heritage 

conservation. 

This chapter provides an in-depth analysis of chapels XIV and XVIII within the Sacro Monte di 

Varallo, offering details of their historical and architectural significance. By meticulously 

documenting and examining the architectural characteristics and historical contexts of these chapels, 

this research contributes to the broader discourse on heritage conservation. 

3.1 Sacro Monte di Varallo History 

The purpose of this chapter is to present a case study of the architectural and cultural heritage sites 

located in Sacro Monte di Varallo, Italy. The selected case studies illustrate the integration 

automatization of the modelling process of Scan-to-HBIM by using DL frameworks in the semantic 

segmentation of point clouds for heritage preservation, as well as historical and artistic evaluations 

of specific chapels within the Sacro Monte di Varallo complex. 

The Sacro Monte di Varallo was first built with statues, paintings, and images inside simple, rural 

buildings by Franciscan friar Bernardino Caimi in the late 15th century to create a “New Jerusalem” 

for pilgrims who could not travel to the Holy Land. In the first years of the 16th century, the complex 

was significantly expanded under the guidance of Gaudenzio Ferrari, who introduced realistic, life-

sized sculptures (Figure 1) and frescoes to create a sort of realistic experience for visitors.  

Not so many years later, expansion and remodelling works were executed by Galeazzo Alessi, a 

famous late-Renaissance architect. The subsequent centuries saw further developments by various 

artists and architects, transforming Sacro Monte di Varallo into a comprehensive spiritual and 

educational journey through Christ's life [3]. 
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Figure 1. Jesus before the court of Herod. [4] 

As of today, Sacro Monte di Varallo is renowned for its collection of chapels, each depicting scenes 

from the life of Christ. These chapels are masterpieces of architecture and art, reflecting the religious 

and cultural significance of their time. Due to its exceptional value, Sacro Monte di Varallo has been 

recognized as a UNESCO World Heritage site, underscoring its global cultural importance [4] 

 

Figure 2. Aerial view of Sacro Monte di Varallo. [5] 

3.2 Chapel XXIV 

This thesis specifically examines data from two Chapels, with Chapel XXIV, depicting "Jesus before 

the Tribunal of Anna," as the first case study. The current complex formed by Chapels 16 and 24 is 

the result of volumetric integration of two bodies different in size, yet linear and simple in both design 

and constructive concept. Chapel XVI, the smaller one, is dominated by Chapel XXIV, built more 
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than a century and a half later. Although they belong to different eras, they contrast ideologically with 

the ideal concept that led to their construction.  

 

Figure 3. Chapel XVI and Chapel XXIV Complex. [6] 

Chapel XVI, known as the "Son of the Widow," was built according to Alessi's design, reflecting the 

architectural code of the time. Meanwhile, Chapel XXIV, known as the "Tribunal of Anna," was 

planned by the same architect but eventually built by Bescapè in the early 1600s and completed in 

1737, deviating significantly from all previous projects as (Figure 4). The original name of the Chapel 

XXIV was “Christ’s Capture” [3].  

 

Figure 4. Hypothetical reconstruction of Galeazzo Alessi’s project. [3] 
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Chapel XVI consists of a single rectangular space, symmetrical in all openings, Mouldings, and 

external embellishments. It is covered by a barrel vault, arranged longitudinally, and the internal route 

certainly retains the central entrance already realized in the sixteenth century, although the exit was 

perhaps modified. The gable roof with two slopes on a rectangular plan is connected to the building 

by a simple cornice and classical triangular tympanums on the short sides, constructed in local stone. 

 

Figure 5. Chapel XVI Facade. [6] 

 

Figure 6. Location of Chapel XXIV. [4] 

Chapel XXIV, the "Tribunal of Anna," was the last built on the Sacred Mount, and its proportions are 

perhaps not equally aligned with the prospect of the adjacent Piazza dei Tribunali. The main front, 

with three superimposed orders placed on a projecting plane, is resolved differently: baroque 

Mouldings on the upper orders, with false windows framed in stone, surmount a large portico with 
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three cross vaults enclosed by the perimeter walls, bordered on the front by stone balustrades and an 

external central staircase. 

A slightly sloping partition wall internally determines an elliptical vaulted space of considerable 

dimensions, encompassing the plastic-pictorial scene of the Tribunal of Anna. The ambit’s walls are 

all enclosed and secluded towards the back where a small opening perhaps allowed access to the 

adjacent space to the dome cover of the elliptical vault. The pavilion roof with four stone slopes is 

surrounded by a quite simple cornice and capitals terminating the corner pilasters. 

 

Figure 7. Outside view of Chapel XXIV: Jesus at the court of Anna. [6] 

Construction events and historical notes [3]indicate that both constructions should not have had any 

contact points, both appearing as isolated nuclei. The "Widow's Chapel" was commissioned between 

1587 and 1590 by Matilde di Savoia, Marchioness of Pianezza, following designs by G. Alessi. It 

was completed between 1599-1606, as indicated in historical guides.  

During the same period, Bescapè visited the Sacred Mount, imparting new guidelines for the location 

of the "Tribunal of Anna." The paintings, attributed to Galloni, and the stucco statues, recognized by 

Bordiga and Bartolomeo Revelli, were completed in 1737. 

In 1969, Enes Pignoni, with Giorgio Perrone's collaboration, provided for the restoration. The core 

of Chapel XXIV - the Tribunal of Anna - according to designs already planned by Alessi in 1566, 

appears planned even in 1593 with an unsigned plan, now preserved in the Diocesan Archives of 

Milan. This design, perhaps reflecting Bescapè’s intentions during his frequent episcopal visits, 

suggests that the chapel should be isolated, with its front portico perfectly aligned with the road 
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connection between Piazza della Basilica and Piazza dei Tribunali. The project was conducted by 

Giovanni Battista Morondi (1700-1770), who ensured architectural continuity despite stylistic 

inflections. 

 

Figure 8. First design of Chapel XXIV. [7] 

These buildings are volumetrically integrated, maintaining their independence in form and route. The 

"Widow's Chapel" appears linear and perpendicular to the other three chapels in Piazza dei Tribunali. 

The volumetric integration of these buildings forms an almost inconspicuous nucleus in shape, size, 

and environmental use. From a collected entrance, almost overshadowed by a high terminal blind, 

the pass to the symmetrical and scenically designed layout of Chapel XXIV on Piazza dei Tribunali 

is made.  

 

Figure 9. Interior of Chapel XXIV. [6] 
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Regarding the constructive aspects, the plant comprises two irregular rectangular sections integrated 

together. The coverings are made of locally available, uneven loose stone. The vaults feature cross-

shaped designs and a semi spherical dome. The stairs consist solely of external stone access steps to 

the buildings.  

The wall techniques involve the use of stone and brick, while the floors are made of stone, featuring 

cut designs and regular arrangements for public routes, as well as mortars with brick and terracotta. 

Externally, there are decorative elements including squares and corner capitals made of stucco. 

Notably, there are no underground structures. As of June 30, 1980, Chapel XXIV was reported to be 

in a precarious condition. ( [8], [6]) 

3.3 Chapel XXVIII 

The second case study focuses on Chapel XXVIII, known as "Jesus before the Tribunal of Herod". 

This significant chapel, also designed by Giovanni D’Enrico, depicts Jesus being presented to Herod, 

emphasizing the dramatic interactions and expressions through life-sized statues and intricate 

frescoes.  

 

Figure 10. Location of Chapel XXVIII. [4] 

The detailed artistic work captures the historical and theological essence of the scene, enhancing the 

educational and spiritual value of the site [8]. Located in the Piazza dei Tribunali, this chapel 
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constitutes the West Side, positioned centrally between chapels 25 and 27, and facing Chapel XXIV. 

Built as an isolated block, it stands prominently within the complex. 

The building, with a rectangular layout, is composed of two rectangular bodies: a front porch, 

narrower, and a rear body that includes the chapel, wider and shorter in height. The porch, with four 

orders, rises on four columns supporting the architrave and a central arch, on which two-barrel vaults 

and full-height arches are set on the sides, and a large central cross vault all made of stone and 

plastered. 

 

Figure 11. Longitudinal section of Chapel XXVIII. [9] 

  

Figure 12. Plan View and Prospect of Chapel XXVIII. [9] 
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At the fourth order, there is an elevated loggia, formed by eight full-height arches (Figure 12) 

supported by stone columns and brick pilasters. The rear body consists of a single large bay, covered 

by a large pavilion vault. It contains the representation of Jesus before the Tribunal of Herod. 

The floors are composed of regular stone slabs in the porch and irregular stone with mortar painted 

in diagonal squares inside (Figure 13). The stairs are limited to external stone access steps. The covers 

consist of two pitched roofs at different altitudes, supported by a wooden structure with a mantle in 

gneiss. There are no underground structures. The walls techniques involve stone masonry with 

smooth plaster and the internal vault is frescoed with an architectural and central perspective scene 

by Tanzio da Varallo, completed by Marziano Bernardi in 1628. 

 

Figure 13. Plan Views of Chapel XXVIII. [9] 

 The 35 statues that compose the scene were made by Giovanni D'Enrico on painted plaster [9]. The 

scene is visible from the outside through a wooden grille with leaded windows located above a 

kneeling point. Significant restoration work was conducted around 1826, which involved replacing 

the columns and the local stone trabeation [10]. 
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Figure 14. Outside views of Chapel XXVIII: Jesus before the court of Herod. [9]  
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4 STATE OF THE ART: SCAN-TO-BIM. 

4.1 Current Technologies and Tools. 

Scan-to-HBIM automation process uses advanced technology and software tools to transfer a physical 

structure into a digital model precisely. The most common tools for this transformation are laser 

scanners, photogrammetry software, and BIM software. For instance, some of the significant BIM 

software tools are Autodesk Revit, Graphisoft ArchiCAD, Trimble Tekla, and Nemetschek Allplan.  

 

Figure 15: BIM-CAD chosen software in the years. [11] 

Revit is among the most adopted BIM software tools and is prominent in its lead for architectural 

design, structural engineering, and construction. It enables multidisciplinary collaboration and 

advanced modelling in 3D. Critical features of Revit [12] include Parametric Modelling: Allows users 

to create intelligent models with parametric components. MEP Design: Facilitates the design of 

mechanical, electrical, and plumbing systems. Construction Simulation: Detailed simulation of the 

construction process. Multi-disciplined collaboration, advanced 3D visualization, rendering, 

performance analysis, and automated documentation creation make Revit an overall robust BIM tool. 

Bentley Systems offers BIM software such as OpenBuildings Designer [13], which is tailored for 

infrastructure projects and large-scale construction. This software supports detailed 3D modelling 

and integrates seamlessly with other Bentley tools for project management and analysis. Bentley’s 

software is known for its robust engineering capabilities and suitability for complex infrastructure 

projects.  
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Figure 16. Autodesk Revit Architecture- Structure-MEP Disciplines. [12] 

ArchiCAD by Graphisoft [14] is renowned for its user-friendly interface and powerful architectural 

design tools. It supports open BIM standards, enhancing interoperability with other software. 

ArchiCAD excels in providing detailed building models and is favoured by architects for its design-

centric features and efficient workflow management. 

Tekla Structures [15] is a BIM software known for its strength in structural engineering, particularly 

useful for steel and concrete detailing. It provides precise modelling tools that aid in fabricating and 

managing complex structures. Tekla is often used in conjunction with other software to enhance the 

detail and accuracy of structural designs. 

Allplan [16] offers a comprehensive suite of tools for both architects and engineers. It provides 

powerful features for detailed design and supports 3D modelling and BIM workflows. Allplan’s 

strength lies in its flexibility and ability to manage both architectural and engineering tasks within the 

same platform. 

Additionally, visual programming languages such as Dynamo for Revit and Grasshopper for Rhino 

enhance the modelling process through automation and custom workflows. Dynamo allows for the 

creation of scripts to automate repetitive tasks, generate complex geometry, and manage data, 

integrating seamlessly with Revit. Grasshopper provides similar capabilities for Rhino, and through 

add-ins, it can also interface with Revit. 
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4.2 Methodologies and Standards. 

BIM methodology employs different LOD to define the precision, completeness, and reliability of 

information at different stages of a project. The differences in these levels are standardized to ensure 

consistency and clear communication among all the parties involved. The understanding and 

utilization of LOD is crucial for the successful implementation of BIM across different countries all 

over the world, each having its own specific standards. This subchapter explores the differences 

between each LOD, their denominations, and the differences between the BIM standards in the 

principal countries like United States, the United Kingdom, and Italy, with a particular focus on the 

Italian regulation. 

 

Figure 17. Differences in Levels of Details. [17] 

The concept of LOD in BIM ranges from basic representations to highly detailed as-built models. 

Each LOD is composed by two key components: Level of Geometry (LOG) and Level of Information 

(LOI) [18]. 

The LOG refers to the graphical representation of elements within the BIM model, defining the 

accuracy and detail of geometric shapes, dimensions, and spatial positioning of the elements. The 

LOG evolves from simple shapes with approximate dimensions at the conceptual stage to highly 

detailed and accurate representations in the final as-built models.  
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The LOI encompasses the non-graphical data associated with BIM elements, including information 

such as materials, quantities, performance data, and other attributes necessary for construction, 

operation, and maintenance. The LOI evolves from basic information about materials and 

approximate quantities at initial stages to detailed specifications and as-built conditions in the final 

stage.  

 

Figure 18. LOD = LOG + LOI [18] 

In Italy, the UNI 11337 - 4 [19] standard outlines the LODs used in BIM. Being LOD A, or 

Conceptual, the most basic level used during the initial project phases. The LOG at this stage includes 

symbolic representations or approximate dimensions, while the LOI provides general data such as the 

overall shape and location. This level is crucial for initial feasibility studies and preliminary design 

concepts. 

As the design progresses to LOD B, or Schematic Design, the LOG becomes more refined, including 

approximate size, shape, and location. The LOI at this stage includes basic material information and 

approximate quantities. This level is used for developing the design concept further and preparing for 

detailed design stages, providing a more tangible representation of the project's layout and primary 

components. 

LOD C, or Detailed Design, represents a more advanced stage where the LOG includes elements with 

specific size, shape, location, and orientation. The LOI at this stage includes detailed materials, 

quantities, and assembly details. This level is crucial during the design development and construction 

documentation phases as it provides the necessary detail for accurate construction planning and 
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execution. It ensures that all elements are precisely defined and that their interactions and connections 

are well-documented. 

In the Construction Documentation stage, known as LOD D, the LOG is further refined to include 

detailed connections and interfaces between components. The LOI provides comprehensive 

coordination information, such as assembly details and construction sequences. This level is essential 

for ensuring that all the parts of the project are accurately depicted, and that potential clashes or issues 

are identified and resolved before construction begins. 

LOD E, or Fabrication & Assembly, is the stage where the LOG is highly detailed and ready for 

fabrication. The LOI includes detailed fabrication data such as exact dimensions, tolerances, and 

materials, making it suitable for actual construction processes. This level ensures that all components 

can be manufactured and assembled accurately, based on the detailed specifications provided. 

The final level, LOD F, or As-Built, represents the completed construction as it is built. The LOG at 

this stage is fully accurate and precise, reflecting the constructed building, while the LOI includes 

comprehensive details necessary for operation and maintenance. This level captures the true state of 

the project after completion, including any changes made during construction, ensuring that the final 

model is an accurate representation of the built environment. 

The United States, the United Kingdom, and Italy each have their own BIM standards, with specific 

denominations and focuses for LOD. In the United States, the National BIM Standard-United States 

(NBIMS-US), defined by the BuildingSMART Alliance and the American Institute of Architects 

(AIA), uses a straightforward numerical system. 

The United Kingdom follows the UK BIM Framework [20], guided by the UK BIM Alliance and the 

Centre for Digital Built Britain (CDBB), which complements with the RIBA Plan of Work stages 

which focuses on the design stages [21]. Meanwhile, Italy’s UNI 11337 [19] standard defines LODs 

that align with international practices while incorporating specific Italian regulations. 

Despite the differences in terminology and numbering systems, the core concept of LOD remains 

consistent across these standards. The US standards focus on the geometries from symbolic 

representation finishing in an accurate as-built representation, the UK standards align LOD with 

project stages for better workflow integration, and the Italian standards combine global best practices 

with local regulations by adding a LOD considering that elements can be updated. 
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Figure 19. LOD differences in Italy, U.S. and U.K. [22] 

Understanding and applying the appropriate LOD for each phase of a project is essential for efficient 

project delivery, cost and time savings, and enhanced collaboration. Standardized LOD definitions 

help reduce errors and rework, improving the overall quality and reliability of the construction 

process.  

Additionally, adhering to national standards ensures regulatory compliance and adherence to industry 

best practices, leading to better project outcomes and more efficient building processes. 

4.3 Recent developments in the Built Heritage domain. 

The ArCH dataset is a comprehensive collection designed for the classification and semantic 

segmentation of architectural cultural heritage. It includes 17 annotated and 10 non-annotated point 

clouds from various historically significant sites, many of which are UNESCO World Heritage 

candidates.  The semantic annotation follows the CityGML LOD 3/4 and incorporates the IFC 

standard and the Art and Architecture Thesaurus (AAT). 



 
 

30 
 

 

Figure 20. ArCH dataset Class Definition. [23] 

The dataset categorizes elements into nine classes, such as arches, columns, and roofs, with an 

additional "other" category. This detailed annotation aids in the precise analysis and preservation of 

heritage structures, enhancing the dataset's value for developing advanced computational models for 

heritage conservation.  

 

Figure 21. ArCH dataset Categories. [23] 

Between the latest studies the Multiclass semantic segmentation for digitisation of movable heritage 

using DL techniques is studied [24], the application of DL for multiclass semantic segmentation of 

movable heritage is meticulously explored. Conducted at the Politecnico di Torino's Laboratory of 

Geomatics for Cultural Heritage, this research focuses on automating the digitization processes of 

museum artifacts.  

Utilizing DL techniques, the researchers developed a methodology to automatically generate 

exclusion masks, thereby optimizing photogrammetric procedures. This approach not only 

accelerates the digitization process but also ensures high precision in the generated 3D models, 

facilitating superior documentation and preservation of cultural heritage. 

Similarly, the research ML-Based Monitoring for Planning Climate-Resilient Conservation of Built 

Heritage  [25] underscores the integration of ML with photogrammetry in the conservation of built 

heritage. Their study employed drones for photogrammetric surveys, creating detailed 3D models of 

the Palazzo Pitti. These models were instrumental in the automatic segmentation and classification 
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of architectural elements, allowing for the identification of structures most vulnerable to 

environmental degradation. 

From the previous articles is observed that remote sensing and modelling techniques have, in these 

past years, become very significant contributors to the labour of preservation and restoration of 

cultural heritage sites.  

One of the most recent research [26] focused in the Sacro Monte di Varallo case study, analyses point 

cloud semantic segmentation by using a DL framework to recognize the diverse types of historical 

architectural elements in the named ArCH dataset (Figure 22), which are segmented in 10 different 

categories: 0 - Arch, 1 - Column, 2 - Decoration, 3 - Floor, 4 - Door, 5 - Wall, 6 – Window, 7 – Stairs, 

8 – Vault, 9 - Roof.  

This then applied to a dataset containing 11 labelled point clouds from different historical and 

architectural contexts, followed using a modified Dynamic Graph CNN (DGCNN) for point cloud 

segmentation, modified to include additional features.  

The network is then trained and evaluated using different scenes of the ArCH dataset giving as a 

result a remarkably high segmentation accuracy with the modified DGCNN outstanding when 

compared to other methods like PointNet, PointNet++ and PCNN. These results will be used later to 

improve modelling times for Building Information Modelling, in this case, referred to Historical BIM 

(HBIM) models. 

 

Figure 22. Chapel XIV and Chapel XVIII semantic segmentation. [23] 

Techniques such as Scan-to-HBIM can be effectively applied together with Finite Element Modelling 

(FEM) for analytical dynamic modelling of structure behaviour in heritage buildings [27] with 
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particular use in identifying and addressing structural issues in masonry and roofing systems (Figure 

23). This by proposing a methodology that integrates a 3D metric survey into a 3D HBIM model 

using Rhinoceros 3D integrated with Autodesk Revit for the structural BIM model and followed by 

a dynamic simulation of the Finite Element Model (FEM) in PRO_SAP.  

 

Figure 23. Comparison between analytical models and damages on wall structures. [27] 

4.4 Latest semi-automated Scan-to-HBIM approaches. 

In the context of architectural heritage preservation, significant advancement has been made toward 

the digitization and modelling of historical buildings through automated Scan-to-HBIM 

methodologies. These approaches have been used for the conversion of a vast amount of 3D data into 

BIM models that are detailed and extremely precise for use in documentation, analysis, and 

preservation purposes. 

Most recent Volumetric Modelling approach [28] focuses on the automated transformation of point 

clouds into HBIM models using volumetric modelling methods. This involves the creation of cubic-

shaped Revit families containing relevant data such as colour and materials, enhancing the LOD and 

accuracy in representing historical buildings. By integrating diverse datasets, including GIS, BIM, 

and real-time sensor data, this methodology underscores the importance of managing and centralizing 

multifaceted information.  

The research demonstrates the advantages of this automated process in improving the efficiency of 

data management and the fidelity of the resulting models. The programming for this process was done 

using Dynamo software, importing the point clouds from an ASCII file with a .txt extension to retain 

all relevant data. Since the elements are cubic-shaped, they simplify the reality significantly, and like 

meshes, they are essentially surface representations of reality.  
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For a better representation or smoother surface representation, the size of the cubes must be small, 

with 1 mm being the smallest size allowed in Revit. This requires the point cloud to contain enough 

points to cover all visible surfaces adequately. However, a denser point cloud demands more 

processing capacity from the computer, necessitating the segmentation of the point cloud to balance 

processing capabilities and data coverage. 

 

Figure 24. 3D Model representing the Sacristy Mayor Painting. [28] 

From a Parametric Modelling perspective [29] the exploration of the application of AI and ML 

techniques in the HBIM process. Their semi-automated approach employs AI for semantic 

segmentation and classification of architectural elements within point clouds.  

Utilizing Random Forest classifiers, this methodology automates the recognition and annotation of 

complex structures and the manual modification of parametric template geometries, via Grasshopper 

with a linkage to Revit, which are replicated for each category, enhancing the efficiency and accuracy 

of HBIM creation.  

This research emphasizes the potential of AI to streamline traditionally time-consuming manual 

processes of point cloud data segmentation and the replication of geometries within the model. 

However, the process is not fully automated due to the manual creation or modification of parametric 

geometries.  
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Additionally, there is a possibility of misclassification of elements during segmentation and the need 

for training the ML algorithm for other datasets. The accuracy of the elements in the model can vary 

from 0 to 0.5 m, which may require revision for high-precision needs. 

 

Figure 25. Croce’s proposed methodology. [29] 

Recent Surface Modelling Approach [30] propose a semi-automated workflow for converting point 

cloud data into BIM models using Surface Modelling methods. This approach leverages automatic 

segmentation and classification techniques to create 3D meshes that accurately represent architectural 

elements, significantly reducing the manual labour traditionally required in HBIM. 

The utilization of advanced algorithms, such as Delaunay triangulation and the Ball-Pivoting 

algorithm, enables the generation of precise 3D surfaces from raw point cloud data. This process is 

conducted using Rhinoceros and its VPL software Grasshopper, and subsequently, the model is 

manually exported to ArchiCAD (see Figure 26) to obtain a BIM model. 

 A notable limitation of this method is the interoperability between Rhinoceros and ArchiCAD, which 

does not support automated export of the modelled elements. Additionally, the use of meshes results 

in objects that are primarily voids, lacking interior materials (for columns) or interior layers (for roofs, 

walls, floors). However, the accuracy of the data is remarkably high, with values ranging between 

0.04m and 0.057m for the mesh elements. 
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Figure 26. Automated Parametric Workflow. [30] 

Latest Surface Modelling approach [31] propose a semi-automated Scan-to-HBIM process using the 

VPL Dynamo to employ Surface Modelling via Boundary-Representation (B-rep) methods. This 

approach bridges the gap between rapid 3D data acquisition and labour-intensive modelling. By 

manually conducting the segmentation and classification phases, the issue of element 

misclassification is addressed but lose the automated advantage [31]. Instead, the individual 

exportation of segments separately as .txt files, which are then reimported individually into families 

for reconstruction.  

 

Figure 27. Automated Parametric Workflow. [30] 



 
 

36 
 

One notable procedure used is the clipping box, which allows for better interception of points inside 

the volume to create a NURBS curve and subsequently generate geometry through a sweep operation. 

A limitation of this clipping box procedure is that more points inside the box result in a higher LOG, 

but at a greater computational cost. 

This procedure also relies on the precision and accuracy of the point cloud, with the average accuracy 

of the elements varying from 1 to 2 cm in cases where data gathering is performed well. 

In comparison, these studies reveal a common goal of enhancing the Scan-to-HBIM process through 

automation and advanced computational techniques. Escudero [28] focuses on fully automated 

approaches leveraging diverse datasets and advanced algorithms, while Croce et al. [29], Avena et 

al. (2023), and Andriasyan et al. [30] emphasize semi-automation to balance computational 

efficiency and practical usability.  

Each methodology presents unique strengths and addresses specific challenges within the HBIM 

workflow, highlighting the importance of integrating AI, ML, and parametric modelling. Challenges 

remain in fully automating the Scan-to-HBIM process, including managing large datasets, ensuring 

data accuracy, and developing automatized protocols. A summary of the distinct aspects of each 

research can be found in the next table: 

 

 
AUTOMATION 

LEVEL 
ACCURACY SOFTWARE USED LIMITATIONS 

ESCUDERO (2023) Automated Up to 1 mm Revit + Dynamo 
High processing 

capacity. 

CROCE ET AL. 

(2023) 
Semi-Automated 0-0.5 m Revit + Grasshopper 

Manual creation 

templates. 

ANDRIASYAN ET 

AL. (2020) 
Semi-Automated 

0.04 - 0.057 

m 

Rhinoceros + Grasshopper -

> ArchiCAD 

Interoperability 

between software. 

AVENA ET AL. 

(2023) 
Semi-Automated 0.01-0.02 m Revit + Dynamo 

Manual 

Segmentation. 

Table 1. Summary of Reference methodologies. 

After comparing the table, it can be seen that for the Volumetric Modelling approach [28] the 

volumetric elements don’t represent the actual materials and layers of the real elements (Figure 28) 

meaning that families from whichever software is used, cannot be applied, plus this requires a high 
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processing capacity from the computers or a manual segmentation of the points clouds in order to be 

done.  

 

Figure 28. Generated model in Revit from Point Cloud. [28] 

From the parametric modelling approach for Heritage Components [29], the whole method relies on 

a manual creation of template families that are later replied (Figure 29), the problem in here is that 

the only way to do parametric families is manually, neither dynamo nor grasshopper are allowed to 

render them parametric. At most what can be done is to create geometries and from that assign 

families to it. 

 

Figure 29. Replication of template families using Grasshopper. [29] 

In the Surface Modelling approach by using meshes [30] the main limitations are the interoperability 

between diverse software, which can just be solved by the creation of plugins that allow the 

interoperability between Rhinoceros and ArchiCAD and the void elements that come from meshes.  
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As of July 2022, the interoperability problem was solved by “Robert McNeel & Associates“ [32], but 

having the surfaces of the elements (Figure 30) is just a part of what HBIM is, because also internal 

materials have to be considered, considering that is how they are really made.  

 

Figure 30. 3D Model of Casa di Pilatos in ArchiCAD by using meshes. [30] 

At last, but not least, is considered that the surface modelling approach for Heritage Components [31] 

main problem is the manual segmentation of points by exporting separate .txt files in order to create 

the profiles of each one of the elements (Figure 31) that are going to compose the family.  

 

Figure 31. Manual segmentations of elements. [31] 
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After considering these 4 methodologies where the limitations are more difficult to sort in some cases, 

the problem to solve is the integration of Revit’s integrated VPL, Dynamo and a solution for fitting 

methods for the detection of planar surface, this by applying a further instance segmentation for points 

performed by Croce et al. This considering that actual advancements in technology such as ML can 

help to automate this process. 

 PROS CONS 

ESCUDERO (2023) 
Reach high precision and 

visual representation. 

Requires high computational cost. Based on Surfaces. 

Approximates reality by using volumes. 

CROCE ET AL. (2023) Reach high Level of Detail. Requires manual creation of template families. 

ANDRIASYAN ET 

AL. (2020) 

Reach good representation of 

surfaces. 
Based on surfaces, not filled elements. 

AVENA ET AL. (2023) Reach high Level of Detail Requires manual segmentation of elements. 

Table 2. Pros and Cons of Reference methodologies. 
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5 METHODOLOGY 

This chapter refers to the methodologies for converting point cloud data into HBIM models, focusing 

on different LOD and utilizing Dynamo's capabilities. It details the process of reading input data, 

categorizing elements, and applying specific algorithms and nodes for efficient and accurate 

modelling. By employing a two-way approach—using both LOD B and LOD C—this method ensures 

flexibility in modelling while maintaining the capacity to refine and enhance the model as needed. 

 

Figure 32. Semi-Automatic Scan-to-HBIM proposed methodology. 

As a first step, the AI capabilities are exploited by its facility of coding. The process is very repetitive 

each time the prompt is written, it starts with the language in which the code is written, the inputs the 

node is going to have, the process that is desired to do and what is required for the output.  

The programming language used is C, implemented by CPython3 which is the standard native Python 

interpreter that Dynamo uses [33], this allowing now to import the libraries from Python differently 

than the previous interpreter Iron Python that didn’t allow to import these.  
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Figure 33. Default Python node content using CPython3. 

For the inputs are considered the hierarchy of the lists coming from the previous node, since the lists 

have different levels [34], the code must create all the necessary iterations to reach the level where 

the points or the data is located. So, the input prompt must contain how many levels are in the output 

of the connecting node. 

Regarding the algorithm development, the prompt must contain the process desired by giving a 

description of the problem. Also, the method desired must be specified or in other cases some simple 

explanation of the problem to be solved can be texted to make ChatGPT find an optimal solution as 

output. 
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Figure 34. Lists levels in Dynamo. 

Since the release of ChatGPT 4 and by having the premium version, it is possible to train an AIs to 

have better programming skills, because if it is not trained the code has errors almost at every code 

generated. This trained AI has improved the performance of the overall script in Dynamo and reduced 

the time required for programming by producing codes in an efficient and correct way.  

There are still limitations in the use of the AI, because it is extremely sensitive to the grammar and 

the sense of the phrases in the prompt. Also, after each answer it consumes more memory so there is 

a point at which it is barely usable, then a new conversation must be started. In other cases, if a 

conversation starts with a certain algorithm, it cannot change later to other algorithms so easily. 

 



 
 

43 
 

 
Figure 35. Python code generated by ChatGPT. 

5.1 From the Point Cloud to the HBIM Model. 

Since the input points are given in a .txt file of ASCII format, these data points need to be converted 

into objects (points, colours, integer numbers, vectors) used in Dynamo. Python scripts make it 

possible to conduct this conversion. 
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Figure 36. Classification of Structural elements. 

The first entity that Revit is being dealt with is the Families. They are subdivided into three types: 

Structural Elements, Hosted Elements, and Non-structural Elements. More specifically, the families 

consist of Columns, Floors, Walls, and Roofs/Ceilings in the category of Structural Elements. The 

hosted elements cover other elements like Mouldings, Doors, and Windows. Finally, the non-

structural elements are composed of Arches, Stairs, and Vaults. As detailed in Figure 37. 

 

Figure 37. Classification of Hosted Elements. 

Each category will require a different approach for modelling because some of its elements can be 

easily modelled (like floors and roofs), and others are more complex to model (vaults and mouldings). 

This is highly dependent on detail, form, or irregularity of the element. While it can simplify reality, 

BIM modelling should, on the one hand, include as much information as possible about each building 

component. 

 

Figure 38. Classification of Non-Hosted elements. 

The following two methods of approach will be employed for the thesis: 

LOD B: The approach makes use of standard parametric families in Revit, which are suitable for 

more straightforward and quicker modelling, at the cost of detail at initial stages, but accessible for 

post model processing. 
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LOD C: This approach features more detailed modelling with mostly non-modifiable geometries. 

However, some members, such as floors and roofs, will be done using generic families and basic 

dynamo nodes, which can be adjusted to many family parameters, such as height offsetting from the 

base. Or for the creation of geometries for elements that have a higher complexity and cannot be 

created by using directly the Dynamo nodes.  

In any case, whatever choice is made, the geometric names encode the most critical information, for 

instance, in the case of columns the type of name includes the length of base, radius of shaft, and 

length of capital. 

Elements will then be modelled following a constructive approach; this approach is taken to replicate 

the actual construction process so that some sort of logic exists in the order of elements being 

constructed.  

Project parameters must also be set and modified concerning the construction reference. For example, 

levels will be set concerning the floor and roof heights because, generally, the floor and roof 

elevations correspond to the levels. Additional parameters must be added to the geometries or families 

for a particular LOI. For example, hierarchies will be added as parameters for every type of element 

so that these types of families are always privy to their category. 

Each category will be modelled using Dynamo capabilities. Python libraries will be imported into 

Python nodes within Dynamo environment despite being usually unsupported. As an example, 

methods developed by the Scikit-learn [35] library for clustering will be used to make it possible to 

identify points belonging to several elements. The use of ChatGPT in designing Python scripts will 

make this possible. 

5.1.1 Input reading. 

Considering that the point cloud is in a .txt file then is needed to read the data inside by considering 

that all the values are separated with blanks and that the structure of each lines has the next values: 

X, Y, Z, R, G, B, Element classification as a scalar value, Nx, Ny, Nz. This is realized by using a 

python node that needs to take the input which is the .txt file path, then should be capable of loading 

the file to read every value, this reading by considering spaces as delimiter value of each column. 

After that, it must extract the first ten columns of the data into separate lists, each one containing each 

of the values. Finally, the script outputs these lists as tuple values for a posterior processing. 
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5.1.2 ArCH dataset Categories 

Before proceeding into the modelling, the point clouds must be subsampled due to the high 

computational cost required. The subsampling is made by using a minimum space between points of 

5 centimetres. This to obtain files around the 10 MB of weight, which require up to 8 GB of RAM 

when running the Dynamo Script. 

5.1.2.1 Floors 

The process of modelling floors is realized through the Floor.ByOutlineTypeAndLevel [36] node in 

Dynamo. This node has three necessary inputs: the Closed Curves defining each floor's boundary, the 

type of each Floor, and the Level at which would be liked to host each floor. 

Beginning with the Closed Curves, the most convenient way to manage this is to use the Alpha Shapes 

algorithm [37]. The algorithm guarantees that the perimeter definition is precise. This is achieved by 

generating the minimum convex form, which could accommodate all the points that define the floor 

outline. 

In the case of the Floor Type, if the dimension for the lowest floor is unknown, it is assumed to be of 

some generic type. The height difference is examined for the next floor, and the correct type of floor 

is determined according to a ceiling or vault. This method ensures that each floor is assigned a relevant 

and structurally appropriate type based on its position and the surrounding architectural features. 

The lowest level is set to all floors to eliminate mistakenly assigned levels. When the floor family is 

placed, the level adapts by changing the Height Offset parameter. This means reassignment of the 

floor to the closest level based on its actual elevation within the building.  

The height offset parameter is modified to guarantee that each floor is correctly positioned relative to 

the building levels and that it's consistent and accurate within the model, thereby allowing for the 

correct floors to be built with precision boundaries and proper type with exact level assignment. 

5.1.2.2 Columns 

For columns, the approach is more complex due to the nature of columns, so the process is a bit more 

involved. Two different methods based on the LOD, both beginning with HDBSCAN Instance 

Segmentation [35] are applied, which partitions the points defining each element into lists. 

At LOD B,  is used the Dynamo node Column.ByCurve [36]. This node requires input that is a path, 

and this is created using the node Line.ByBestFitThroughPoints [36]. The level is first set to the 

lowest level and further adjusted if the condition that the minimum z-value of points is greater than 
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the z-value of the level. This method only allows the creation of structural columns. For support, this 

type from the model [36] is chosen. 

Coarser detail in this approach enables later manual modification of the family to allow the creation 

of highly detailed elements at a later stage. The main advantage of this technique is that it is simple, 

fast, and the family type can easily be changed, but this is at the expense of the initial detail. 

For LOD C, the method consists in dividing each element into three parts consisting of the base, shaft, 

and capital [29], with these divisions based on the normal values, specifically the normal (Nz) value 

[31]. As the first assumption, it is considered that the points at the upper part of the base have a 

positive normal value around 1. The same consideration is done for the capital, in which the lower 

part should have normal values in a negative direction with values near -1. 

Initially, each element is divided into two parts to calculate the normal (Nz) values for each division, 

wanting to ensure that the positive or negative normal (Nz) values are taken in the points where the 

shape change exists. Points below the mid-elevation with a positive normal (Nz) value are designated 

as base top points. These points are used to create a cuboid geometry representing the base of the 

column, especially if the base shape differs from the shaft. 

For the upper part, points with a negative normal (Nz) value are considered. These points define the 

capital section of the column that is also represented as a cuboid, in contrast to points belonging to 

the shaft. The shaft points lie between the heights of the base and the capital and can be extruded to 

form the column shaft [38]. This is one way in which a more detailed representation of a column can 

be formed as its various parts are accurately modelled. 

The three geometries of the base, shaft, and capital are assembled after being created [39]. The joint 

of these geometries is critical for a column to be adequately represented within the model. After 

ensuring that the geometries can be appropriately assembled, a family type is defined for these, and 

subsequently, they can be inserted into Revit. This method has a higher LOD than level B as the 

distinction in geometrical shapes of the column is marked. 

These can be applied based on the applicable degree of detail, and  it can satisfactorily model complex 

columns when the two meet the desired project requirements. The ordering of the points for efficient 

modelling based on the applicable degree of detail in both methods is guaranteed with HDBSCAN 

clustering [35] at the first stage. 
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5.1.2.3 Walls 

In the case of the walls, the first step is to filter the elements that have a Normal value in the Z 

direction greater than 0.75 and lower than -0.75, this because walls are vertical elements so any point 

that has a value out of this range must be considered as noise.  

After this filtering, another separation of the points is realized and this time is according to the levels 

present in the project, those ones coming from the floor points.  

To create walls the Dynamo node Wall.ByCurveAndHeights [36] is used, this node contains 4 inputs 

which are: curve of the wall defining the curve in the middle axis of the wall, height of the wall, level 

in which is located the wall and WallType which is the type of family of the wall. 

Since the walls are mainly straight and not so detailed elements, a down sampling can be realized to 

reduce memory usage. As next step the planes of each wall are calculated by using the Random 

Sample Consensus (RANSAC) + Hough Transform algorithm [40], [41], [42] that identifies the 

inliers within a dataset by iteratively selecting random subsets and then fitting the model to these 

subsets.  

But since the algorithm is not so efficient due to the noise and irregularity of the data, the result are 

planes that contain points far from each other. Other alternative is the creation of a histogram with 

posterior calculation of each line inside it [43]. 

This is then solved by first creating clusters applying the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) [44] algorithm to separate farther points inside of each plane, 

and then a re-joining of the planes is done by joining the planes that have a dot product between 

normal values less than 0.9 which is the cosine of 25 degrees, this meaning that walls that have an 

orientation difference less than 25 degrees are joined.  

But also, another condition must be applied, and is that the distance between the centres of the walls 

in the normal direction must be less than 1 meter, this to not join walls that are far from each other 

but still be able to join both faces of a wall when present. 

As a second solution is found an Instance Segmentation by using not just positioning but also normal 

values [45] [46], this adding another layer of filtering to these algorithms. The clustering algorithm 

chosen is HDBScan due to its spatial clustering as main capacity. The only parameter used is the main 

cluster size defined as a minimum of points in each cluster equal to 10. For this method is still needed 

the joining of the planes, which is done by considering the conditions that have a dot product between 
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plane normal values less than 0.9, a distance in the normal direction less than 0.75 which is considered 

for 110% of the greatest value of the wall widths, and as final parameter a maximum distance between 

clusters of 0.8 meters to not join farther planes. 

The first step to find the lines is the creation of Bounding Boxes that are an abstract cuboid 

representation of the geometry. Then its faces are calculated and the faces with the highest areas are 

going to be the simple representation of the walls’ faces. Then to get the middle line a middle point 

is calculated between the two centroids of the surfaces and moving one of the faces to this point. 

But sometimes walls present just one face, so a conditional is applied that in the case of a distance 

between the faces less than 10 cm or bigger than 37.5 cm from the points, it does not make any 

translation, just considers the middle line as the exterior face. After this, the exterior lines are 

trimmed/extended to avoid overlapping of walls. 

For the second parameter, the height of the wall, the difference between the maximum Z coordinate 

and the minimum Z coordinate is calculated and rounded. For the third parameter, the level, the split 

of the points for each level was already done and this corresponds to the list of levels coming from 

the roof and floor nodes.  

For the Wall Type it is more complex since the family types must be created so the wall width is 

calculated by considering multiplying the average distance of the points from the face by 2 and by 

100 so it is converted into centimetres. This is done just for the walls that have two faces. After this 

a family type is created for each one of the dimensions and the resultant name type is “Wall X cm”, 

being X the thickness of the wall in meters.  

Finally, a Base offset from the level is applied to the wall by considering the lowest elevation of each 

list of points. 

5.1.2.4 Roofs and Ceilings 

Roofs, ceilings, and floors share similar input parameters. The creation of roofs and ceilings involves 

using the Roof.ByOutlineTypeAndLevel [36] and Ceiling.ByOutlineTypeAndLevel [36] nodes in 

Dynamo. Both nodes require three main inputs: the family type, the closed curves defining the 

perimeter, and the level at which they are located. 

For the family type, a generic family in Revit is selected, with the understanding that roof and ceiling 

types differ. This ensures that each element is appropriately categorized while allowing for flexibility 

in later stages of the modelling process. 
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The level input follows a procedure like that used for floors. Initially, the lowest level is assigned to 

avoid misassignments. Once the elements are placed, the level is adjusted by modifying the height 

offset parameter, ensuring that each element is correctly positioned according to its actual elevation 

in the building.  

The closed curves defining the perimeter of roofs and ceilings are determined using the Alpha Shapes 

algorithm [37]. This algorithm generates the smallest convex shape encompassing all points 

representing the perimeter, ensuring precise boundary definition. 

In the case of roofs, after determining the closed curves and setting the initial level, an additional step 

is required to adapt the shape to the point cloud. This involves adding points to refine the roof's shape, 

making it more accurately conform to the actual structure. Due to computational limitations, 

subsampling must be performed to manage processing requirements effectively. This step ensures 

that the roof accurately reflects the detailed topography of the building while maintaining manageable 

data sizes for processing. 

5.1.2.5 Mouldings 

These elements are not modelled. 

5.1.2.6 Windows 

Since Windows are Hosted elements, the approach consists in finding dimensions, Host element and 

Location point. For the dimensions, a bounding box can be created and the greatest value between 

the width and length is the one defining the width of the window, for the height the value is taken 

from the Bounding Box. For the host, the closest wall element must be found, this by calculating the 

distance between the window points and the walls. For the Location Point, the mid location of the 

element is found by using the origin point of a plane that fits the best the points. At last, the elements 

are created by using the FamilyInstance.ByHostAndPoint 

5.1.2.7 Vaults 

For the Vaults, the approach is to get the points that are defining its boundaries. If the Length is 

different than the Width, then it is not a simple Cross vault, meaning that there are also Barrel Vaults 

in the shape. Considering this, the first step is to create a Barrel Vault that contains all the length of 

the cluster, then filter the points that are farther than at least 5 to 7 centimetres, this to get the Cross 

Vault points. To create the Cross Vault the first step is to calculate the Diagonal Arcs, which are 

defining the 4 external points and the middle point in which both Arcs intersect. Since some points 
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may have been lost in the separation from the Barrel Vault points, the 4 external points of the Cross 

Vault are translated to the minimum height of the cluster. The next step then is to get the Arcs defined 

by the Barrel Vault and then the 2 missing arcs have its start and end in the previous 4 external points 

and the middle point is defined by the height of the intersection point of the diagonal Arcs. With this 

4 Arcs, 2 new Arcs are created in middle of each direction, this to create a surface that is constrained 

in passing at the middle point of the Cross Vault. Final steps consist in cutting these two surfaces to 

keep only the external parts and joining them with the Barrel Vault. From these surfaces an array of 

points at every 0.1 parameter is created, resulting in a matrix of points that are going to define the 

shape of the roof element. For the thickness of the Vault, a cutting region is created at the middle of 

each Arc, then the difference between the maximum and minimum heights is calculated and averaged. 

If there are no Arcs present on an element, this means that the element is not a vault but a ceiling, to 

which is applied a default thickness of 10 centimetres. 

5.1.2.8 Arc 

These elements are considered together with the Vaults. Its main function is to determine the 

thickness of the Vault. 

5.1.2.9 Stairs 

For the stairs, a simple approach is performed. First, a general Convex Hull of the stairs is created. 

Followed by this, the points are filtered by their normal value, so only the values that have a positive 

Nz value are used.  

Now, the differentiation of each step as an individual instead of treating them altogether must be 

done. So is applied a clustering and computed the planes that best fit each list of points. This allows 

to calculate what the convex hull of each step would be and then extrude it down to the bottom. That 

leaves one full element composed by the union of the solids. After this, the family is assigned to each 

one of the elements. 

5.1.2.10 Others 

These elements are not modelled since do not contain enough information.  
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6 MODELLING PROCESS 

This chapter describes the transformation of processed point cloud data into a detailed HBIM model. 

Utilizing Dynamo and Python scripts, the 10 element categories were modelled in two different LOD. 

The process begins with data importation and Instance Segmentation of elements such as floors, 

columns, and walls. Each section explains the specific routines and scripts used to automate the 

creation of these elements, ensuring both efficiency and accuracy. The modelling of simpler 

components at LOD B is covered first, followed by more detailed components at LOD C, addressing 

the unique challenges posed by each element type. 

6.1 Import Data 

To import the .txt into the dynamo environment a Python Node is used in both cases, where this code 

reads a dataset from a file specified by the file_path variable, with the data being space delimited. 

The numpy.loadtxt [47] function is utilized to load the data into a NumPy array.  

The dataset is expected to have ten columns, each representing different parameters. These columns 

are then individually assigned to separate lists: X_list, Y_list, Z_list, R_list, G_list, B_list, Scalar_list, 

Nx_list, Ny_list, and Nz_list. These lists respectively correspond to coordinates (X, Y, Z), colour 

components (Red, Green, Blue), a scalar value, and normal vectors (Nx, Ny, Nz). Finally, these lists 

are output together as a tuple. 

 

Figure 39. Reding Node for Point Cloud .txt file. 
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6.2 Dynamo Routine for LOD B 

6.2.1 Floors 

 

Figure 40. Overall script for Floors - LOD B. 

Starting with the creation of the floors, the first thing to do is to separate the points that have a scalar 

value of 3 in the list of points of the input, to have a better organization of the data. This by taking as 

input a set of lists, referred to as Lists_input, which contains data corresponding to coordinates (X, 

Y, Z), colour components (R, G, B), scalar values, and normal vectors (Nx, Ny, Nz). The objective 

is to filter these lists to extract elements where the scalar value equals 3, a condition specified by the 

variable “Tipo.  

The next step is to identify each element by Instance Segmentation of 3D points using HDBSCAN 

and outputting them as Dynamo Point objects. It imports necessary libraries, combines the input X, 

Y, and Z coordinates into a NumPy array, and configures HDBSCAN with specified parameters 

(min_cluster_size and min_samples). After performing Instance Segmentation, it filters points for 

each cluster label and creates Dynamo Point objects for clusters meeting the size criteria. The 

resulting clusters are output as a list for further use in Dynamo. 

 

Figure 41. Floor Point filtering and clustering. 

The next step is to create the Levels referred to the Floors. It starts by finding the best fit plane through 

given points using Plane.ByBestFitThroughPoints. The plane's origin Z coordinate is extracted and 
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used to determine the elevation. The elevation data is then indexed and labelled with floor level names 

using a code block that formats strings. Finally, these elevations are converted into Dynamo elevation 

objects with specific names using Level.ByElevationAndName. 

 

Figure 42. Levels creation from Floors. 

After this, the script generates floor outlines using Alpha Shapes. It starts by calculating the alpha 

shapes from input data, which defines the floor outline as a polycurve. The points of this polycurve 

are extracted and simplified using the Ramer-Douglas-Peucker algorithm, which reduces the number 

of points based on a tolerance value specified as 0.1. The simplified points are then used to create a 

polygon, which is subsequently exploded into its constituent outline Curves. 

 

Figure 43. Floor outline by Alpha Shapes. 

The next step is for the script to create floor elements by defining floor outlines, types, and levels. 

The floor outline curves are connected to the Floor.ByOutlineTypeAndLevel node, which takes these 

curves along with a specified floor type and level to generate the floor elements. The floor type is set 

to a random type in the Floor Types node, and this information, along with the outline curves and the 

previously calculated levels, is used to create the floor elements in the model. 
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Figure 44. Floor elements creation. 

After the creation of the elements, the next step is to modify the base offset for floor elements. It starts 

by retrieving the elevation level using the Level.Elevation node. The offset value is calculated by 

subtracting the lowest elevation in the points of each floor from the elevation. The parameter name 

for the offset is set using a string node labelled Offset di altezza da livello. Finally, the 

Element.SetParameterByName node applies the calculated offset value to the floor elements, 

adjusting their base elevation accordingly. 

 

Figure 45. Add Base Offset to Floor. 

6.2.2 Columns 

For the columns, the first step is to identify and cluster each column points using the DBSCAN 

clustering algorithm. The Get Pillars node retrieves the points that have a Scalar Value = 1, which are 

then clustered using the DBSCAN algorithm. The List.Count node counts the number of points in 

each cluster. A condition to filter clusters with fewer than 10 points is set. The List.FilterByBoolMask 

node applies this condition to filter the clusters, and the List.Clean node removes any empty or null 

items from the list, preserving the indices. 
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Figure 46. Column Point filtering and clustering. 

Then the middle line is found by Line.Bybestfittroughpoints, and a default family from Revit is 

applied to create the column instance. 

6.2.3 Walls 

The third elements to be modelled are then the Walls. 

 

Figure 47. Overall script for Walls - LOD B. 

The Dynamo script starts by deleting elements along the Z-axis for both mouldings and walls. It 

retrieves these points using custom Python nodes: Get Moulding for mouldings and Get Walls for 

walls. Each point's Z-axis index is identified using the Index in List (Z) set to 9.  

The script extracts the Z-coordinate for each point, defining two numeric values, -0.1 and 0.1, to 

determine if the point's Normal along the Z-axis falls within this range. These points are then filtered 

using a Boolean mask in Filter by Bool Mask. 
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Figure 48. Filtering in Z axis for Wall points. 

Next, points are filtered by level and clustered using the HDBSCAN algorithm. Elevation levels are 

obtained with the Level.Elevation node and sorted using List.Sort. These sorted levels and points are 

fed into a custom Python node (Point Filter by Level) to filter points based on their elevation levels. 

Duplicate points are removed using Point.PruneDuplicates with a tolerance of 0.05, and unwanted 

points are deleted using another custom Python node (Delete unwanted points). The cleaned points 

are clustered using HDBScan through the Get clusters-HDBSCAN python node. 

 

Figure 49. Level filtering and clustering for Wall points. 

The script also removes horizontal planes from a set of points. Using the Get Inliers-RANSAC custom 

Python node, it retrieves inlier points, creating planes with the Plane.ByBestFitThroughPoints node. 

The normal vector of each plane is extracted using Plane.Normal, and the Z-component is compared 

to a threshold of 0.1 to identify horizontal planes. Comparisons check if the Z-component is between 

-0.1 and 0.1, combined with an And node to create a Boolean mask that identifies horizontal planes. 
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The List.FilterByBoolMask node filters out these planes, and List.Clean removes empty entries while 

preserving indices. 

 

Figure 50. Planes calculation and filtering for Wall points. 

The List.Count node counts elements in each list. A threshold of 10 is set, and the script compares 

the count of each list to this threshold using a greater-than comparison node. The result is a Boolean 

mask indicating lists with 10 or more points. The List.FilterByBoolMask node uses this mask to filter 

the lists. 

 

Figure 51. Lists filtering for Wall points. 

For clustering points, the script sets DBSCAN algorithm parameters with an epsilon (Eps) of 1 and a 

minimum of 150 points per cluster, executed via a custom Python node (Get clusters-DBSCAN). 

Clusters are processed to remove empty lists using List.Clean, preserving original indices, and 

flattened into a single list with List.Flatten. 

 

Figure 52. DBScan Clustering for Wall points. 
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In another instance, the script joins planes by filtering based on a minimum number of points. The 

Join planes custom Python node aggregates plane data, and List.Count counts points in each plane. A 

comparison node checks if the count is greater than 100. The resulting Boolean mask is used by 

List.FilterByBoolMask to filter planes. 

 

Figure 53. Join planes of Wall points. 

the script performs DBSCAN clustering on points with parameters of Eps 5 and a minimum of 150 

points per cluster, fed into Get clusters-DBSCAN. Clusters are cleaned with List.Clean and flattened 

with List.Flatten. 

 

Figure 54. Third clustering for Wall points. 

For the second plane detection method, the union of points from Walls and Mouldings categories 

begins with two List.Transpose nodes, which reorganize the rows and columns of the input nested 

lists, by then resulting in lists with the values of the parameters for each point. These transposed lists 

are then fed into a List Create node, which joins the individual lists into a single, unified list. This list 

is subsequently processed by a List.Flatten node, which reduces the nested lists to a single level, 

simplifying the data structure for clustering. Finally, the Create Clusters node, powered by a Python 

script, takes the lists, gets the X, Y, Z, Nx, Ny, Nz parameters from each point and use them as input 

for the HDBScan algorithm. 
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Figure 55. Creation of cluster by a 6D HDBScan algorithm. 

 

To identify the centroid of the largest surface, List.DropItems skips smaller surfaces. Remaining 

items are flattened using List.Flatten. Surface.PointAtParameter calculates the centre point with U 

and V parameters set to 0.5. 

 

Figure 56. Centroid calculation for Wall faces. 

The centroid of a wall surface is calculated by dropping specified items with List.DropItems and 

transposing the remaining items with List.Transpose. The first and last items are extracted using 

List.FirstItem and List.LastItem. Surface.PointAtParameter calculates midpoints, and 

Line.ByStartPointEndPoint creates a line between these midpoints. Curve.PointAtParameter finds the 

midpoint of this line. 
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Figure 57. Centroid calculation for Wall points. 

For calculating the average distance between two sets of points, the script defines a vector between 

two points using Vector.ByTwoPoints. This vector is used to translate the geometry with 

Geometry.Translate. The Geometry.DistanceTo node computes distances between the translated 

geometry and another set of points, which are averaged using the Math.Average node. 

 

Figure 58. Average distance between Surface and Wall points. 

In extracting wall lines, the script defines minimum and maximum wall thicknesses to filter relevant 

wall curves. The Surface.PerimeterCurves node retrieves perimeter curves of surfaces. Using 

List.GetItemAtIndex, a specific curve is selected, flattened with List.Flatten, and translated using a 

Python script node and conditional checks based on wall thickness. The Curve.PointAtParameter 

node identifies a point on the curve, and Plane.ByOriginNormal creates a plane at this point with a 

normal vector. The Curve.PullOntoPlane node projects the curve onto this plane. 
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Figure 59. Middle line for Walls. 

Wall height is calculated by finding the difference between the highest and lowest Z-coordinates 

using Point.Z. The highest and lowest Z-values are determined with List.MaximumItem and 

List.MinimumItem, respectively, and subtracted to find the height, rounded to two decimal places 

using Math.Round. 

 

Figure 60. Wall height calculation. 

To calculate the width of a wall and convert the measurement from meters to centimetres, the script 

processes a numeric input through a multiplication node and converts the unit using Convert by Units. 

The final wall width is rounded using Math.Round. 

 

Figure 61. Wall width calculation. 
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A string describing the wall type with its measurement in centimetres is created by rounding down a 

numeric input with Math.Floor, converting to a string, and combining with other strings using 

Concatenate String (e.g., Wall 200 cm). 

 

Figure 62. Wall width String concatenation. 

For creating new wall types with specified properties, the script selects an existing wall type and 

defines a new wall name. It converts the wall thickness using Convert by Units and generates a new 

wall family type with Create Compound System Family Type. The 

FamilyType.SetCompoundLayerWidth node sets the width of compound layers, ensuring the desired 

wall structure and dimensions. The List.Flatten node prepares the list for further use. 

 

Figure 63. Wall family types creation. 

The final node to create the wall elements. 
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Figure 64. Wall creation by Curve and Height. 

Finally, the script adjusts the base offset of a wall element by retrieving all parameters with 

Element.Parameters, selecting the base offset parameter with List.GetItemAtIndex, and converting to 

a string with Parameter.Name. Level.Elevation provides the level's elevation, used to calculate the 

new base offset. Element.SetParameterByName updates the wall's base offset parameter. 

 

Figure 65. Base offset of Wall modification. 

 

6.2.4 Roofs and Ceilings 

The fifth script is the script for Roofs and Ceilings. 
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Figure 66. Overall script for Roofs and Ceilings - LOD B. 

It begins by using a custom Python script node, Get Roof, to extract roof-related point data. These 

points are then passed to another Python script node Get clusters-HDBSCAN, which applies the 

HDBSCAN clustering algorithm to group the points into clusters. 

 

Figure 67. Roof Point filtering and clustering. 

This Dynamo script subsamples a set of points to reduce duplicates based on a specified proximity 

tolerance. The Min Proximity (m) node sets a tolerance value, in this case, 0.2 meters. This tolerance 

value is then used by the Point.PruneDuplicates node, which removes duplicate points that fall within 

the specified proximity. 

 

Figure 68. Roof points subsample node. 

This Dynamo script generates a roof outline using Alpha Shapes. It begins with the Alpha Shapes 

node to create a polycurve representing the roof outline. The points of this polycurve are extracted 

using PolyCurve.Points. These points are then simplified using the Ramer-Douglas-Peucker 

algorithm, which reduces the number of points based on a specified tolerance of 0.1. The simplified 
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points are used to create a polygon with the Polygon.ByPoints node. Finally, the Geometry.Explode 

node breaks down the polygon into its lines. 

 

Figure 69. Roof outline by Alpha Shapes. 

This Dynamo script creates a roof by defining its outline, type, and level. The Roof Types node 

specifies the type of roof, in this case, Generic - 225mm. The Roof.ByOutlineTypeAndLevel node 

then combines the roof outline, selected roof type, and specified level to generate the roof element. 

 

Figure 70. Floor elements creation. 

This Dynamo script sets the base offset of elements from a specified level. It starts by retrieving the 

parameters of the selected elements using the Element.Parameters node. The index of the base offset 

parameter is specified with the Base Offset Index node. The List.GetItemAtIndex node retrieves the 

specific parameter name for the base offset. The Z-coordinates of points are obtained using the 

Point.Z node, and the minimum Z-coordinate is identified with List.MinimumItem. The elevation of 

the level is retrieved using the Level.Elevation node. A code block calculates the difference between 

the minimum Z-coordinate and the level elevation to determine the base offset value. Finally, the 

Element.SetParameterByName node sets the base offset for the elements using the calculated value 

and the parameter name, updating the elements accordingly. 
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Figure 71 Set Base offset from level to Roofs. 

This Dynamo script adds points to a roof while ensuring no duplicate points within a specified 

proximity. It starts by setting a minimum proximity tolerance of 0.3 meters using the Min Proximity 

(m) node. The Point.PruneDuplicates node then processes the input points, removing any that are 

closer to each other than the specified tolerance. Finally, the Roof.AddPoint node takes the pruned 

list of points and adds them to the roof element, ensuring that the points added to the roof are unique 

and appropriately spaced. 

 

Figure 72. Points addition to the Roof elements. 

 

6.2.5 Windows 

The sixth script is the script for Windows. 
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Figure 73. Overall script for Windows - LOD B. 

The initial step in this workflow involves two custom Python nodes labelled as Get Windows and Get 

Clusters-Point. The Get Windows node is likely responsible for identifying and selecting window 

elements within the design model. The output from this node is then passed to the Get Clusters-Point 

node, which appears to cluster these window points, potentially for subsequent analysis or operations.  

.  

Figure 74.Windows Point filtering and clustering. 

The second step focuses on determining a specific location point based on a set of input points. The 

Plane.ByBestFitThroughPoints node calculates a plane that best fits the given points, followed by 

extracting the plane's origin using the Plane.Origin node. The coordinates (x, y, z) of this origin point 

are retrieved through the Point.X, Point.Y, and Point.Z nodes. The z-coordinates of the points are 

evaluated using the List.MinimumItem node to find the minimum z-value, ensuring the point is 

aligned with the lowest elevation. Finally, the Point.ByCoordinates node constructs the location point 

using these coordinates. 
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Figure 75.Windows element location point calculation. 

 

In the third step, the script calculates the dimensions of the window element. Starting with the 

BoundingBox.ByMinimumVolume node, the smallest bounding box encapsulating the geometry is 

created. This bounding box is converted into a cuboid using the BoundingBox.ToCuboid node. The 

width, length, and height of the cuboid are extracted via the Cuboid.Width, Cuboid.Length, and 

Cuboid.Height nodes, respectively. The first two dimensions are then compared using the Math.Max 

node to determine the largest dimension of the cuboid. 

 

Figure 76.Windows element dimension calculation. 

In the fourth step, the script generates a string representation for the window type. The previously 

calculated measures are converted to centimetres from metres. These variables are processed by 

Math.Floor nodes, ensuring they are integers. The String from Object nodes convert these integer 
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values into strings, which are then combined with other string elements using a Concatenate String 

node. This creates a descriptive string that specifies the window type, integrating numerical and 

textual data to generate a comprehensive label. 

 

Figure 77.Windows element Window Type Name String creation. 

The fifth step involves duplicating an element type and modifying its dimensions. The Family Types 

node selects a specific family type from the model. This type is duplicated using the 

FamilyType.Duplicate node. The new type's parameters are adjusted via 

Element.SetParameterByName nodes, where the String nodes provide the parameter names (e.g., 

"Altezza" for height and "Larghezza" for width). The Element.SetParameterByName nodes update 

these parameters with new values, effectively altering the dimensions of the duplicated element. 

 

Figure 78.Windows element Window Type creation. 
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The sixth step identifies the host element for a given geometry. The Geometry.DistanceTo node 

calculates the distance between the geometry and other elements. The resulting list of distances is 

flattened using the List.Flatten node. The List.SortIndexByValue node sorts these distances, and the 

List.FirstItem node selects the nearest element. Finally, the List.GetItemAtIndex node retrieves the 

corresponding host element based on its index. 

 

Figure 79.Windows element Hosting element calculation. 

Finally, the elements are placed by its previously defined Family Type, Host element and Location 

Point. 

 

Figure 80. Window elements creation. 

6.2.6 Vaults 

 

Figure 81. Overall script for Vaults. 

The Vault creation procedure starts with the Get Vaults and Create Points nodes to select and create 

points for vault structures. A Boolean toggle determines whether to preserve indices during 

processing. The script filters the vault points using the Delete unwanted points node, which removes 
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unnecessary points. Finally, the Get clusters-DBSCAN node clusters the remaining points using the 

DBSCAN algorithm, organizing them for further analysis or operation. 

 

Figure 82. Filter Vault Points and Get Clusters. 

The next section of the Dynamo script focuses on extracting and processing vault profiles, continuing 

from the previous step. It begins by identifying the outer surfaces of the vaults using custom Python 

scripts. Then, it selects the two smallest surfaces from these outer surfaces. Next, it extracts curve 

points from the surfaces to identify the Barrel Vault profiles. These points are pre-processed to align 

and filter them appropriately. 

 

Figure 83. Calculate profiles of main Barrel Vault 

In the third step, the Dynamo script filters point lists based on their distance from the Barrel Vault 

surface and the number of points in each list. The workflow begins with adjusting the distance 

parameter. Points are then compared to this distance using a custom Python script to create a surface 

and filter points accordingly. The filtered points are cleaned to remove duplicates or unwanted points 

and then clustered using the DBSCAN algorithm. Lists are further filtered by ensuring they meet a 

minimum count threshold before being processed into clusters. 
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Figure 84. Get points of Cross Vault. 

In the fourth step, the Dynamo script focuses on extracting diagonal arcs from vault profiles. It begins 

by identifying the lateral faces of the vault using a custom Python script “Get Lateral Faces”. These 

faces are processed to extract edge curves. Later, further refine and filter these curves based on their 

lengths is realized, ensuring only significant curves are considered. The script then creates diagonal 

surfaces using the filtered curves. Finally, the Python script “Get Diagonal Arcs” is employed to 

identify and generate diagonal arcs from these surfaces. 

 

Figure 85. Get Diagonal Arcs of Cross Vault. 

In the fifth step, the Dynamo script is designed to create the arcs of a cross vault. It starts by joining 

and flattening lists of points that represent the edges of the vault. The script then calculates the 

minimum height of each cluster of point. Using the gathered data, it identifies the middle point of the 

cross vault through a custom Python script “Points to Min Height”. These points are then used to 

form a polygon, which is subsequently exploded into individual geometries. Finally, these geometries 

are used to create surfaces that define the cross-vault structure. 
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Figure 86. Get Perimetral Arcs of Cross Vault. 

In the sixth step, the Dynamo script is focused on creating arcs for extrusion in the vault modelling 

process. It begins with a code block that defines the process of fitting lines through points and 

checking for intersections. This block also filters and organizes the points to ensure the correct 

geometry is used for the arcs. The script then calculates the height of the arc from the barrel vault 

using a Python script, which involves determining the average height of intersecting points. Two 

types of arcs are generated based on these calculations, which are then joined together and filtered to 

obtain the Arcs that start on the Barrel Vault and the 2 other missing arcs. 

 

Figure 87. Filter Points. 

In the seventh step, the Dynamo script is focused on creating the cross-vault surface. It begins with a 

code block that generates a new middle arc by identifying key points and using these to create curves. 

The arc creation process involves using parameters to define points along the curve and then 

transforming these points into the required geometry. This middle arc is added to the existing 

geometry. Finally, the script generates the cross-vault surface by sorting and reordering points, 
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calculating distances, and using these points to define the surface geometry. This results in the 

formation of the cross-vault surface. 

 

 

Figure 88. Create Cross Vaults Surfaces. 

In the eighth step, the Dynamo script is aimed at generating the general vault surface by combining 

the surfaces of the cross-vault and the barrel vault. It begins by extracting arcs from the barrel vault 

using a code block that processes the geometry to define these arcs. Another code block gathers the 

remaining arcs. These arcs are then filtered by area to ensure only the relevant sections are used. The 

script joins the lists of these arcs, consolidating them into a comprehensive set. This set is then used 

to cut the barrel vault surface, incorporating the necessary geometrical transformations. Finally, the 

cross vault and barrel vault geometries are joined together, resulting in the creation of a unified 

general vault polysurface. 

 

Figure 89. Cut Barrel Vault and Join to Cross Vault. 
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In the ninth step, the Dynamo script aims to create a grid of points on a vault surface. It starts with 

creating the surface by union, where vectors are defined to align the surface in the Z positive direction. 

An 'If' node then evaluates conditions to ensure the correct surface configuration. Following this, 

surfaces are joined together using a code block that manages the geometry. The script proceeds to 

generate a grid of points on these surfaces, ensuring an even distribution. Finally, another code block 

performs a subsample of the grid of points, which involves flattening the list of points, removing 

duplicate points, and filtering out those not inside the area of the vault. 

 

Figure 90. Create Grid of Points in the Surface. 

In the tenth step, the focus is on obtaining all the roof type thicknesses, translating points, defining 

the roof outline, and clustering arcs for analysis. Initially, the script retrieves a selected roof type and 

calculates its thickness. The grid points are then translated accordingly in the Z direction. The script 

continues by defining the roof outline using Alpha Shapes, which simplifies the boundary points into 

a manageable polygon and subsequently explodes the geometry into its constituent parts. In parallel, 

the arcs are clustered using the DBSCAN algorithm, which helps in identifying distinct arcs based on 

their spatial distribution. The thickness values of these arcs are then calculated using custom Python 

scripts that extract and compute these values, ensuring they meet specified conditions before 

flattening the list for further processing. 

 

Figure 91. Calculate Thickness of Vault. 

In the eleventh step, the Dynamo script focuses on defining vault thickness parameters and creating 

vault family types. The process begins by determining the vault width through unit conversion and 
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rounding operations to ensure consistency in measurements. This width is then integrated into a string 

format to create a specific vault type identifier, which includes concatenating various string elements 

representing different attributes of the vault, having as result that each Type name has the “Vault X 

cm” structure, where X is the thickness. Subsequently, the script proceeds to create compound system 

family types for the vault, using the previously defined attributes and measurements. These 

parameters include material, layer function, and thickness for each layer. 

 

Figure 92. Create new Family Type. 

In the last step, the process involves determining the level elevation using the Z-coordinate of each 

vault point and identifying the minimum item from each cluster. This minimum item is then used to 

define elevation levels in the Revit environment. Once the levels are established, the script proceeds 

to create roofs using the specified outline found with Alpha Shapes, each calculated roof type, and 

the recently created levels. The roof creation is executed through the 

“Roof.ByOutlineTypeAndLevel” node. Following the roof creation, specific points are added to the 

roof using the “Roof.AddPoint” node, to align the shape of the roof elements to its real shape. 

 

Figure 93. Create the Roof element and Add Points from Grid. 

6.2.7 Arch 

These points are considered in the vault procedure. Are used to calculate the thickness of the vault 

element. 
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6.2.8 Stairs 

 

Figure 94. Overall script for Stairs - LOD B. 

This Dynamo script identifies and selects points related to stairs for further analysis. The Get Stairs 

node, a custom Python script, retrieves point data associated with stairs. These points are then input 

into the Get clusters-HDBSCAN node, which applies the HDBSCAN clustering algorithm to group 

the points into clusters. 

 

Figure 95. Stair Point filtering and clustering. 

The script then extracts the curves of each step in a stairway. It begins by identifying the index of a 

specific normal vector component (Index of Nz), used to filter the points based on their Z-coordinates. 

The filtered points are further processed to find minimum and maximum Z-values, helping to 

determine the elevation of each step. 

Convex hulls of the points are calculated to define the boundary of each step, creating polygons using 

Polygon.ByPoints. These polygons are then converted to surfaces using Surface.ByPatch. The 

surfaces are thickened to solids with Surface.Thicken, and intersections between these solids and 

another geometry are computed using Geometry.Intersect. 
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Figure 96. Filter points in Z coordinates and get Convex Hull of whole element. 

The script also uses the RANSAC algorithm to identify planes from a set of points. It begins by 

counting the elements in the list with List.Count and determining the minimum item using 

List.MinimumItem. A code block and Math.Floor node calculate a threshold value, which is then 

input into a custom Python node “RANSAC PLANES” to perform the RANSAC plane fitting. 

The resulting planes are processed to extract their origins with Plane.Origin, and the Z-coordinates 

of points are obtained using Point.Z. These coordinates are used to create a translation vector by using 

the node Vector.ZAxis, which creates a vector with 0, 0, 1 values, for translating geometry along the 

Z-axis. The Geometry.Translate node then applies this translation to the geometry. 

 

Figure 97. Get the planes of each step. 

To create solid representations of stair steps, the script identifies the convex hull of points on each 

step using AW Points.ConvexHull2D found in the AW Points package, followed by generating 

polygons with Polygon.ByPoints. These polygons are converted into surfaces using Surface.ByPatch. 

The surfaces are then thickened into solids on both sides with Surface.Thicken. 

The thickened surfaces are intersected with another geometry using Geometry.Intersect. The resulting 

intersected geometries are cleaned with List.Clean and flattened with List.Flatten to remove nested 

lists. These cleaned geometries are then converted into solids using Surface.Thicken and combined 
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into a single solid with Solid.ByUnion. Boolean operations and code blocks control the flow and 

ensure the operations are applied correctly. 

 

Figure 98. Steps extrusion to the bottom and solid creation. 

6.3 Dynamo Routine for LOD C 

6.3.1 Floors 

The overall procedure in this LOD is the same as in the previous one. 

 

Figure 99. Overall script for Floors - LOD C. 

6.3.2 Columns 

The second elements to be modelled are the columns. 

 

Figure 100. Overall script for Columns - LOD C. 

The first step is the exact same as the previous LOD. 
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Figure 101. Column Point filtering and clustering. 

The next step is to divide each cluster into two parts based on their Z-coordinate. The Point.Z node 

extracts the Z-coordinates of the points. The Math.Average node calculates the average Z-coordinate 

value. A comparison node checks if each Z-coordinate is greater than the average. This Boolean mask 

is then used in the List.FilterByBoolMask node to filter the list into two parts: the first containing 

elements with Z-coordinates above the average and the second with elements below or equal to the 

average. 

 

Figure 102. Column division in two groups. 

To create the base, the next step is to get the bottom half of elements based on their normal vectors 

and Z-coordinates. The process begins by obtaining normal vectors with the Get Normal Vector node 

and extracting their Z-components using the Vector.Z node. A threshold of 0.7 is set in a code block 

to filter these vectors. The List.FilterByBoolMask node applies this threshold, and the resulting list 

is flattened using List.Flatten. 

Next, the Z-coordinates of the points are extracted with the Point.Z node, and the average Z-

coordinate is calculated using Math.Average. Another List.FilterByBoolMask node uses this average 

to filter the list into elements below the average Z-coordinate. The List.Clean nodes remove any 

empty or null items from both lists while preserving indices, resulting in two clean lists of elements 

for further analysis or processing. 
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Figure 103. Selection of bottom half of column points. 

After the base points are selected, the creation base columns by calculating various geometric 

parameters and constructing cuboids is performed. The process starts with determining a best-fit line 

through given points using Line.ByBestFitThroughPoints. The start point of this line is identified, 

and distances between points and this line are computed using Geometry.DistanceTo. The Z-

coordinates of points are extracted with Point.Z and averaged. These averages are used in several 

calculations, including finding the segment length on the curve and rounding the results. The script 

also determines the maximum and minimum items in the lists. Finally, cuboids are created at specified 

segment points on the curve, with dimensions calculated using the average values and predefined 

multipliers, resulting in the placement of base columns in the model. 

 

Figure 104. Creation of Column Base. 

Now, on the other hand, each cluster is divided into the top half of elements based on their normal 

vectors and Z-coordinates. It begins by obtaining normal vectors using the Get Normal Vectors node 

and extracting their Z-components with Vector.Z. A threshold value of -0.7 is set to filter these vectors 

using the List.FilterByBoolMask node. The filtered list is flattened using List.Flatten. 

Next, the Z-coordinates of the points are extracted using Point.Z, and the average Z-coordinate is 

calculated with Math.Average. This average is used in a comparison to determine which points are 

above the average Z-coordinate. The List.FilterByBoolMask node filters the list based on this 
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comparison. The List.Clean nodes then remove any empty or null items from both lists while 

preserving indices, resulting in two clean lists of elements for further analysis or processing. 

 

Figure 105. Selection of top half of column points. 

After the capital points are selected, the column capitals are generated by calculating various 

geometric properties and constructing cuboids. It starts with a best-fit line through the given points 

using Line.ByBestFitThroughPoints. The start point of the line is determined, and distances from this 

line to other points are calculated using Geometry.DistanceTo. Z-coordinates of the points are 

extracted and averaged using Math.Average. These averages are used to find specific segment lengths 

on the curve, which are then rounded. The script identifies maximum and minimum items in the lists 

and uses these dimensions to create the cuboids referring to the capital section.  

 

Figure 106. Creation of Column Capital. 

After the creation of Base and Capital, the script is responsible for preparing shaft points by 

combining and flattening lists. The List.Create node aggregates multiple lists into a single list of lists. 

The List.Transpose node then switches rows and columns, effectively reorganizing the data structure. 

Finally, the List.Flatten node reduces the nested list structure into a single, flat list. 

 

Figure 107. Selection of shaft section of column points. 
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The next step is to create a shaft geometry by defining and sweeping a profile along a path. It starts 

by generating a best-fit line through a set of points using Line.ByBestFitThroughPoints. Points at 

specific parameters (0.01, 0.5, and 0.99) along this curve are found using Curve.PointAtParameter. 

These points are transposed into a list for further operations. The distances between these points and 

the geometry are calculated with Geometry.DistanceTo, and the average distance is computed using 

Math.Average. This average distance is used to define the radius for circles created at the specified 

points with Circle.ByCenterPointRadius. 

A path for the sweep is created using Line.ByStartPointEndPoint, connecting the start and end points 

on the curve. Finally, the shaft geometry is formed by sweeping the circular profile along the defined 

path using Solid.BySweep. 

 

Figure 108. Creation of Column Shaft. 

The last step for geometry creation is to combine the base, shaft, and capital geometries to create a 

single column solid. The Join Base, Shaft, and Capital node aggregates these three geometries into a 

list. This list is then reorganized using the List.Transpose node, which ensures the geometries are 

correctly aligned for union. Finally, the Solid.ByUnion node merges these geometries into one 

cohesive solid, resulting in a complete column object. 

 

Figure 109. Joint of 3 different elements into a solid. 
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6.3.3 Walls 

The third elements to be modelled are then the Walls. The script is the same as before. 

 

Figure 110. Overall script for Walls - LOD C. 

6.3.4 Roofs 

The fifth script is the script for Roofs and Ceilings. The script is the same as before. 

 

Figure 111. Overall script for Roofs and Ceilings - LOD C. 

6.3.5 Windows 

Same as previous LOD. 

6.3.6 Vaults 

Same as previous LOD. 

6.3.7 Arch 

Same as previous LOD. 

6.3.8 Stairs 

The last script is the script for Stairs. The script is the same as before. 
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Figure 112 Overall script for Stairs - LOD C.  
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7 RESULTS 

In this chapter, the results of the semi-automated Scan-to-HBIM workflow applied to Chapels XXIV 

and XXVIII of the Sacro Monte di Varallo are presented. The objective of this study was to develop 

a detailed and accurate HBIM model using advanced Instance Segmentation and modelling 

techniques. The results are analysed through various metrics, including average error values, Instance 

Segmentation accuracy, and visual error representations, which are essential for evaluating the 

effectiveness of the proposed methodology. 

7.1 Chapel XXIV: Category Based Levels of Details Comparison. 

• Floors: 

Due to missing points in the Point Cloud, the Instance Segmentation algorithm is not so effective and 

outputs two clusters. Also, the floor elements do not cover the whole area of the Chapel but just a 

small portion of the Façade. In this case the results are again under 5 cm. 

 

Figure 113. Average Error Value per Floor – Chapel XXIV. 

 

Figure 114. Identification of Floor Elements – Chapel XXIV. 

 

Figure 115. Visual Error Representation for Floors – Chapel XXIV. 
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• Columns: 

For both LOD the column elements are still basic geometries. For LOD B a generic family of 30cm 

diameter was used. The error average is under 5 cm in both cases, being more precise in the LOD C 

due to the addition of the base and capital geometries. 

 

Figure 116. Average Error Value per Column – Chapel XXIV. 

 

Figure 117. Identification of Column Elements – Chapel XXIV. 

 

Figure 118. Visual Error Representation for Columns – Chapel XXIV. 

• Walls: 
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After trying the two Instance Segmentation procedures, the Instance Segmentation comparation 

presented in Figure 120 show that the RANSAC + Clustering works better in cases where the wall 

points are segmented by levels, and the Clustering by Positioning and Normal Values works better if 

the data has all the information. In the cases where the points do not contain data in the Normal Values 

the second process misinterprets these points as a new cluster even if they are in the same position of 

other clusters. In both cases further processing must be done to calculate the openings of the walls, 

where one approach could be the use of Alpha Shapes, or by manual modification of the profiles of 

the wall elements. 

  

Figure 119. Average Error Value per Wall – Chapel XXIV. 

  

Figure 120. Wall Instance Segmentation by using RANSAC + Clustering vs 6D Clustering – 

Chapel XXIV. 
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Figure 121. Identification of Wall Elements – Chapel XXIV. 

  

Figure 122. Visual Error Representation for Walls – Chapel XXIV. 

• Roofs:  

For the Roof elements the use of Alpha Shapes outputs a very precise geometry. Since the elements 

created are flat surfaces and points are added in a posterior phase, the procedure was tried by 

subsampling the points by minimum spacing at 30 centimetres, but after 15 minutes passed the routine 

had to be stopped. This then giving as result average error for each element around 50-100 

centimetres. 
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Figure 123. Average Error Value per Roof – Chapel XXIV. 

 

Figure 124. Identification of Roof Elements – Chapel XXIV. 

 

Figure 125. Visual Error Representation for Roofs – Chapel XXIV. 

• Windows: 

Due to error in the data caused by the glass present in the windows elements, the Instance 

Segmentation by 6D Clustering cannot to be done. This then forcing to use the simple 3D clustering 

and then create new types from default template families present in the Revit Library. Since the 

windows depend on the position of its hosts, walls, the error is mainly related to the position of those. 
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Figure 126. Window Instance Segmentation by using 6D Clustering – Chapel XXIV. 

 

Figure 127. Window Instance Segmentation by using 3D Clustering – Chapel XXIV. 

 

Figure 128. Identification of Window Elements – Chapel XXIV. 
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Figure 129. Visual Error Representation for Windows – Chapel XXIV. 

• Vaults-Arcs: 

Due to voids in the Point Cloud regarding these elements, the routine did not work for this case study. 

Several approaches were tried, for example calculating the points of a mesh and adding those points 

to a roof element, a second approach was to join the Arcs points with the Vaults to attempt in the 

filling of the geometries but still the routine was not able to find a suitable geometry. As seen in 

Figure 130, the 6D clustering is not precise with the actual data. 

 

Figure 130. Vault Instance Segmentation by using 6D Clustering – Chapel XXIV. 

• Stairs: 

In the case of the Stairs, the Convex Hull algorithm works properly to determine the outline of the 

elements. The clustering algorithm also has satisfactory results by considering there are two stair 

elements present in the Chapel. The errors are in these cases, in the range of millimetres. 
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Figure 131. Average Error Value per Stair – Chapel XXIV. 

 

Figure 132. Identification of Stair Elements – Chapel XXIV. 

 

Figure 133. Visual Error Representation for Stairs – Chapel XXIV. 

• Point Cloud to HBIM model comparison: 

For the LOD C the average processing time is 25 to 30 minutes, having an input .txt file of 13 MB, 

meaning a subsampling of the Point Cloud by minimum spacing of 5 cm. In the next figure is 

presented a comparation of the Point Cloud with the postprocessed 3D HBIM model. In the 

postprocessing stage just the profiles of the walls are modified. 
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Figure 134. Comparison between Point Cloud and HBIM model – Chapel XXIV. 

7.2 Chapel XXVIII: Category Based Levels of Details Comparison. 

• Floors: 

In this case, the main problem is again the presence of points only in the exterior areas. In 

comparison with the previous Chapel, this time the number of clusters is correct, but for the cluster 

on the first floor the data is precise. This then results in errors around 20 centimetres, but the 

element is similar to the real one. 

 

 

Figure 135. Average Error Value per Floor – Chapel XXVIII. 
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Figure 136. Identification of Floor Elements – Chapel XXVIII. 

 

Figure 137. Visual Error Representation for Floors – Chapel XXVIII. 

 

• Columns: 

The errors in the left correspond to the LOD B elements and Right the LOD C elements. In both cases 

the errors are one-digit centimetres. For the LOD B the errors are higher due to the absence of the 

base and capitol geometries. This method provides a fast, precise and accurate positioning of the 

column elements. 
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Figure 138. Average Error Value per Column – Chapel XXVIII. 

 

 

Figure 139. Identification of Column Elements – Chapel XXVIII. 

 

Figure 140. Visual Error Representation for Columns – Chapel XXVIII. 
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• Walls: 

In this case study, again, after trying the two Instance Segmentation procedures, the Instance 

Segmentation comparation presented in Figure 142 show that the RANSAC + Clustering works 

better in cases where the wall points are segmented by levels, and the Clustering by Positioning 

and Normal Values works better if the data has all the information. Since in this case the Normal 

Values were present in almost all the points of the Point Cloud, the results are much better than 

in Chapel XIV when using the Instance Segmentation algorithm. In both cases further processing 

must be done to calculate the openings of the walls, where one approach could be the use of Alpha 

Shapes, or by manually changing the profiles of the wall elements. 

  

Figure 141. Average Error Value per Wall – Chapel XXVIII. 

  

Figure 142. Wall Instance Segmentation by using RANSAC + Clustering vs 6D Clustering – 

Chapel XXVIII. 
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Figure 143. Identification of Wall Elements – Chapel XXVIII. 

  

Figure 144. Visual Error Representation for Walls – Chapel XXVIII. 

• Roofs:  

The Addition of the points to the roof element require nearly 5 minutes for its calculation.  

 

Figure 145. Average Error Value per Roof – Chapel XXVIII. 
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Figure 146. Identification of Roof Elements – Chapel XXVIII. 

 

Figure 147. Visual Error Representation for Roofs – Chapel XXVIII. 

• Windows: 

Due to error in the data caused by the glass present in the windows elements, the Instance 

Segmentation by 6D Clustering cannot to be done. This then forcing to use the simple 3D clustering 

and then create new types from default template families present in the Revit Library. 

 

Figure 148. Window Instance Segmentation by using 6D Clustering – Chapel XXVIII. 
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Figure 149. Window Instance Segmentation by using 3D Clustering – Chapel XXVIII. 

 

Figure 150. Identification of Window Elements – Chapel XXVIII. 

 

Figure 151. Visual Error Representation for Windows – Chapel XXVIII. 

• Vaults-Arcs: 

In this Case Study, the data is more complete than in Chapel XIV. This allows to create the Vaults 

present in the Chapel without major problems. The separation of vaults and arc points, by taking the 

vault points for the outline calculation and the arcs points for the thickness of the Roof element was 

the approach used. The errors are around 1 cm which could be said to be more precise than any 

manual method can reach in the same amount of time.  
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Figure 152. Average Error Value per Vault – Chapel XXVIII. 

 

Figure 153. Identification of Vault Elements – Chapel XXVIII. 

 

Figure 154. Visual Error Representation for Vault – Chapel XXVIII. 

 

• Stairs: 
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For this Case Study, the stairs are simpler than in the previous one. With the existence of just one 

step, it is demonstrated that the routine can generate diverse complexities of stairs. The errors in this 

case are in the magnitude of centimetres, but always less than 4 centimetres. 

 

Figure 155. Average Error Value per Stair – Chapel XXVIII. 

 

Figure 156. Identification of Stair Elements – Chapel XXVIII. 

 

Figure 157. Visual Error Representation for Stairs – Chapel XXVIII. 

• Point Cloud to HBIM model comparison: 

For the LOD C the average processing time is 20 minutes, having an input .txt file of 10 MB, meaning 

a subsampling of the Point Cloud by minimum spacing of 5 cm. In the next figure is presented a 

comparation of the Point Cloud with the postprocessed 3D HBIM model. In the postprocessing stage 

just the profiles of the walls are modified. 
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Figure 158. Comparison between Point Cloud and HBIM model – Chapel XXVIII. 
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8 DISCUSIONS 

The integration of advanced technologies and methodologies in the Scan-to-HBIM workflow for built 

heritage presents both significant opportunities and challenges. This chapter provides an analysis of 

the results obtained from implementing Dynamo, included within Revit, and leveraging ChatGPT's 

Python programming capabilities to automate the modelling process. By examining the pros and cons 

of the proposed workflow, the benefits of precision and efficiency in element placement and 

modelling time reduction are highlighted. Additionally, the dependencies on high-quality input data, 

such as comprehensive point clouds and precise semantic segmentation are addressed. Furthermore, 

this chapter explores potential future improvements, including the incorporation of advanced Instance 

Segmentation techniques and non-geometric parameters, to enhance the accuracy and detail of HBIM 

models.  

8.1 Pros and Cons of the proposed workflow. 

The implementation of Dynamo, included within the Revit software suite, presents several advantages 

over alternative tools such as Grasshopper. One of the primary benefits of using Dynamo is its ability 

to integrate seamlessly with Revit, thereby providing a robust environment for parametric design and 

automated element placement. This integration allows for precise and accurate positioning of 

architectural elements automatically, which significantly reduces the potential for human error and 

enhances the overall accuracy of the HBIM model. 

Furthermore, the use of Dynamo contributes to a substantial reduction in modelling times. This 

efficiency is primarily due to Python’s advanced algorithmic capabilities incorporation in Dynamo, 

which semi-automates the primitive fitting methods and the Instance Segmentation trough ML 

algorithms. This aspect is particularly beneficial in large-scale projects or complex architectural 

structures where manual modelling is time consuming. 

Incorporating ChatGPT's programming skills in Python further optimizes the scripting process within 

Dynamo. ChatGPT can assist in generating Python scripts more quickly and efficiently, reducing the 

time required for script development and enhancing overall script performance. This ability to rapidly 

produce and refine scripts not only accelerates the modelling process but also ensures that the scripts 

are robust and error-free, thereby improving the reliability of the automated workflow. 

However, the effectiveness of this semi-automated approach is highly dependent on the quality of 

input data, specifically the point clouds. These point clouds must be comprehensive and precise, as 

any inaccuracies or gaps can lead to significant errors in the resulting HBIM model. The requirement 
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for high-quality point clouds underscores the importance of utilizing advanced scanning technologies 

and methodologies to ensure the accuracy and completeness of the input data. As seen in the case of 

the walls for both Chapels, where Chapel XVIII had better results than Chapel XIV due to a better 

quality of the point cloud. 

Additionally, the success of the automated modelling process hinges on the precision of semantic 

segmentation. Semantic segmentation, which involves categorizing each point in the point cloud 

according to its corresponding architectural element, is a critical step in the workflow. Any errors in 

this process can lead to misidentification of elements, resulting in inaccurate or incomplete models. 

Despite these advancements, point clouds generally provide a Low LOI, capturing only the exterior 

surfaces of elements. This limitation means that while the exterior geometry is accurately represented, 

interior details and other critical information may not be included. As a result, additional data 

collection and integration may be necessary to achieve the desired LOD in the HBIM model. 

Moreover, as the LOD increases, so does the demand on computational resources. Higher levels of 

detail require more complex computations and larger datasets, which can strain available computer 

processing capacity. This increase in computational demand necessitates robust hardware and 

optimized software solutions to manage and process the detailed data efficiently. 

PROS CONS 

Cost reduction using Revit Dynamo’s 

integrated graphical programming interface. 
Highly dependent on quality of input data. 

Time reduction of Scan-to-HBIM process via 

ML. 
Low LOI reached. 

Capacity of leveraging ChatGPT programming 

skills. 

The higher the LOD, the higher the 

Computational requirements. 

Table 3. Pros and Cons of Proposed workflow. 

 

8.2 Future Work 

Future work should focus on several key areas to further enhance the proposed semi-automated Scan-

to-HBIM workflow. One area of improvement is the further semantic segmentation to increase the 
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output LOD. By leveraging DL techniques, it may be possible to improve the accuracy and efficiency 

of the Instance Segmentation process, thereby reducing the potential for errors and enhancing the 

overall quality of the HBIM model. 

Additionally, efforts should be made to increase the LOI captured in point clouds. This could involve 

the use of more advanced scanning technologies or the integration of supplementary data sources to 

provide a more comprehensive representation of both the exterior and interior elements of the 

structure. Achieving a higher LOI would enable the creation of more detailed and accurate HBIM 

models, which are essential for advanced documentation, analysis and planning. 

A promising avenue for future research is the use of advanced Instance Segmentation techniques that 

consider multiple factors such as position, normal direction, colour, and other attributes. Traditional 

Instance Segmentation methods primarily rely on spatial coordinates, which may not capture the full 

complexity of architectural elements. By incorporating additional data dimensions, such as the normal 

vectors that indicate the orientation of surfaces, the RGB colour values that can help differentiate 

materials, and other relevant attributes, the Instance Segmentation process can become more accurate 

and robust. 

The implementation of enhanced computational techniques and optimizations will also be crucial as 

the complexity and detail of HBIM models continue to increase. Developing more efficient 

algorithms and leveraging high-performance computing resources can help manage the growing data 

and processing demands, ensuring that the workflow remains practical and efficient for large-scale 

projects. 

Furthermore, the integration of non-geometric parameters such as material properties, historical data, 

and maintenance records into the HBIM model could provide additional value. These parameters can 

enhance the utility of the HBIM model for various stakeholders, including preservationists, architects, 

and engineers, by providing a more comprehensive dataset for decision-making and analysis. 
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9 CONCLUSIONS 

The semi-automated Scan-to-HBIM workflow developed in this study for the Sacro Monte di Varallo 

case provides an innovative approach in the digital preservation of built heritage. By leveraging 

advanced Instance Segmentation techniques, ML algorithms, and VPL tools such as Dynamo.  

Key findings from this research highlight notable improvements in both the efficiency and accuracy 

of the Scan-to-HBIM process. The use of Dynamo and Python scripts allowed for the automation of 

many repetitive tasks, significantly reducing modelling time and minimizing human error.  

The relationship between input data and output is extremely related; high-quality input data is 

essential for generating accurate and reliable HBIM models. Any deficiencies in the input data 

directly affect the precision of the resulting models, highlighting the need for high-resolution and 

well-processed point clouds. 

The ability to produce models at various Levels of Detail (LOD B and LOD C) ensures flexibility 

and precision in representing architectural elements, crucial for different stages of heritage 

conservation projects. 

The integration of DL techniques for semantic segmentation proved effective in accurately 

categorizing architectural elements, reducing the manual effort required and enhancing the overall 

quality of the HBIM models. 

This research contributes to the field of digital heritage preservation by providing a scalable and 

efficient methodology for the Scan-to-HBIM process. The semi-automated workflow not only 

improves the accuracy and efficiency of creating HBIM models but also lays another point of view 

for future research in integrating advanced technologies such as AI and ML for heritage conservation. 

Future research should focus on improving semantic segmentation, enhancing the LOI, exploring 

advanced Instance Segmentation techniques, and incorporating non-geometric parameters such as 

material properties and historical data.  



 
 

109 
 

10 Bibliography 

 

[1]  U. W. H. Centre, “Italy - UNESCO World Heritage Convention,” [Online]. Available: 

https://whc.unesco.org/en/statesparties/it. [Accessed 6 June 2024]. 

[2]  “PROGETTO – MAIN10ANCE,” [Online]. Available: https://main10ance.eu/progetto/. 

[Accessed 1 Luglio 2024]. 

[3]  L. Fecchio, “Galeazzo Alessi e il libro dei misteri (1565-1572). un architetto e il progetto per 

una nuova Gerusalemme sul Sacro Monte di Varallo.,” 31 May 2021. [Online]. Available: 

https://hdl.handle.net/11583/2903498. [Accessed 01 June 2024]. 

[4]  “Sacro Monte di Varallo,” [Online]. Available: https://www.sacrimonti.org/sacro-monte-di-

varallo. [Accessed 26 May 2024]. 

[5]  “Itinerario turistico Sacro Monte, Lago d’Orta, Isola di San Giulio,” [Online]. Available: 

https://www.ortaeoltre.it/it/itinerario-turistico-Tour-Orta-Sacro-Monte-Varallo.php. [Accessed 

25 May 2024]. 

[6]  “Cappelle nn 16/24 “Il figlio della Vedova di Naim” “Il Tribunale dI Anna",” [Online]. 

Available: 

http://catalogo.beniculturali.it/detail/ArchitecturalOrLandscapeHeritage/0100022344. 

[Accessed 25 May 2024]. 

[7]  L. Fecchio, “Galeazzo Alessi e il Libro dei Misteri (1565-1572). Un architetto e il progetto per 

una Nuova Gerusalemme sul Sacro Monte di Varallo. - Attachments.,” 2021. [Online]. 

Available: https://hdl.handle.net/11583/2903498. [Accessed 2 June 2024]. 

[8]  “Cappella XXIV - Gesù davanti al tribunale di Anna, Sacro Monte di Varallo,” [Online]. 

Available: https://sacromontedivarallo.com/cappella-xxiv-gesu-al-tribunale-anna/. [Accessed 

26 May 2024]. 



 
 

110 
 

[9]  “Cappella n 28 - Gesù al Tribunale di Erode Comune Di Varallo, Ammi,” 25 May 2024. 

[Online]. Available: 

http://catalogo.beniculturali.it/detail/ArchitecturalOrLandscapeHeritage/0100015810. 

[10]  “Cappella XXVIII - Gesù al tribunale di Erode, Sacro Monte di Varallo,” [Online]. Available: 

https://sacromontedivarallo.com/cappella-xxviii-gesu-al-tribunale-erode/. [Accessed 26 May 

2024]. 

[11]  A. Boiko, “Lobbyist Wars and the Development of BIM. Part 2: open BIM VS closed BIM. 

Revit vs ArchiCAD and Europe VS the Rest of the World,” 17 December 2020. [Online]. 

Available: https://www.linkedin.com/pulse/lobbyist-wars-development-bim-part-2-open-vs-

closed-revit-boiko-artem. [Accessed 26 May 2024]. 

[12]  Autodesk, “Autodesk Revit,” 2024. [Online]. Available: 

https://www.autodesk.com/products/revit/overview. 

[13]  Bentley Systems, “Building Design: OpenBuildings: BIM Software,” 2024. [Online]. 

Available: https://www.bentley.com/software/openbuildings-designer/. 

[14]  Graphisoft, "Archicad," 2024. [Online]. Available: https://graphisoft.com/solutions/archicad. 

[15]  Tekla, “Tekla Structures - Structural BIM Software,” 2024. [Online]. Available: 

https://www.tekla.com/products/tekla-structures. 

[16]  Allplan, “Allplan AEC,” 2024. [Online]. Available: https://www.allplan.com/products/allplan-

aec/. 

[17]  4. group., “I LOD (livelli di dettaglio) nel BIM. Spiegati bene,” 19 May 2020. [Online]. 

Available: https://4mgroup.it/blog/i-lod-del-bim-spiegati-bene. [Accessed 26 June 2024]. 

[18]  V. Maggiani, “LOD Simply Explained: The LOD Kiwi,” UK Construction Online, 15 April 

2019. [Online]. Available: https://www.ukconstructionmedia.co.uk/features/lod-simply-

explained-the-lod-kiwi/. [Accessed 16 June 2024]. 



 
 

111 
 

[19]  UNI, UNI 11337 – 4: Definizione dei livelli informativi., 2017.  

[20]  “UK BIM Framework – BIM Standards, Guides & Resources,” UK BIM Framework, 

December 2019. [Online]. Available: https://www.ukbimframework.org/. [Accessed 21 June 

2024]. 

[21]  S. Blundell, “RIBA and BIM: How design is fundamental to the process,” Planning, Building 

& Construction Today, 20 12 2017. [Online]. Available: 

https://www.pbctoday.co.uk/news/digital-construction-news/bim-news/riba-and-bim-how-

design-is-fundamental-to-the-process/37465/. [Accessed 21 June 2024]. 

[22]  M. Ellis, “Level of Detail or Development: LOD in BIM,” Advenser, 2020. [Online]. Available: 

https://rebim.io/level-of-detail-or-development-lod-in-bim/. 

[23]  “Dataset – ArCH dataset.,” [Online]. Available: https://archdataset.polito.it/dataset/. [Accessed 

29 June 2024]. 

[24]  G. Patrucco and F. Setragno, “Multiclass semantic segmentation for digitisation of movable 

heritage using deep learning techniques,” Virtual Archaeology Review, vol. 12, no. 25, p. 85, 

2021.  

[25]  L. Fiorini, A. Conti, E. Pellis, V. Bonora, A. Masiero and G. Tucci, “Machine Learning-Based 

Monitoring for Planning Climate-Resilient Conservation of Built Heritage,” Drones, vol. 8, no. 

6, p. 249, 2024.  

[26]  F. Matrone, R. Pierdicca, M. Paolanti, C. Morbidoni, E. S. Malinverni, E. Frontoni and A. M. 

Lingua, “Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural 

Heritage,” Remote Sensing, vol. 12, no. 6, p. 1005, 2020.  

[27]  A. Ursini, F. Matrone, A. Grazzini and M. Zerbinatti, “From scan-to-BIM to a structural finite 

elements model of built heritage for dynamic simulation,” Automation in Construction, vol. 

142, p. 104518, 2022.  



 
 

112 
 

[28]  P. A. Escudero, “Scan-to-HBIM: automated transformation of point clouds into 3D BIM models 

for the digitization and preservation of historic buildings,” VITRUVIO - International Journal 

of Architectural Technology and Sustainability, vol. 8, no. 2, pp. 52-63, 2023.  

[29]  V. Croce, G. Caroti, A. Piemonte, L. De Luca and P. Véron, “H-BIM and Artificial Intelligence: 

Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Reconstruction,” 

Sensors, vol. 23, no. 5, p. 2497, 2023.  

[30]  M. Andriasyan, J. Moyano, J. E. Nieto-Julián and D. Antón, “From Point Cloud Data to 

Building Information Modelling: An Automatic Parametric Workflow for Heritage,” Remote 

Sensing, vol. 12, no. 7, p. 1094, 2020.  

[31]  M. Avena, O. Roman, E. M. Farella, F. Remondino and A. Spanò, “A SEMI-AUTOMATED 

APPROACH TO MODEL ARCHITECTURAL ELEMENTS IN SCAN-TO-BIM 

PROCESSES,” The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Vols. XLVIII-M-2-2023, pp. 1345-1352, 2023.  

[32]  Graphisoft, “Rhino – Grasshopper – Archicad Toolset,” Graphisoft, [Online]. Available: 

https://graphisoft.com/downloads/addons/interoperability/rhino. [Accessed 29 May 2024]. 

[33]  P. APARAJIT, “Why has Dynamo Switched to Python 3, Should I Update Too?,” 17 May 2021. 

[Online]. Available: https://dynamobim.org/why-has-dynamo-switched-to-python-3-should-i-

update-too/. [Accessed 9 June 2024]. 

[34]  “Lists of Lists | The Dynamo Primer,” DynamoBIM, [Online]. Available: 

https://primer.dynamobim.org/06_Designing-with-Lists/6-3_lists-of-lists.html. [Accessed 9 

June 2024]. 

[35]  scikit-learn, “HDBSCAN,” [Online]. Available: https://scikit-

learn/stable/modules/generated/sklearn.cluster.HDBSCAN.html. [Accessed 2 December 

2023]. 

[36]  “Dynamo Dictionary,” [Online]. Available: https://dictionary.dynamobim.com/. 



 
 

113 
 

[37]  M. Mahmoud, W. Chen, Y. Yang and Y. Li, “Automated BIM generation for large-scale indoor 

complex environments based on deep learning,” Automation in Construction, vol. 162, p. 

105376, 2024.  

[38]  G. Qin, Y. Zhou, K. Hu, D. Han, C. Ying and H. Liu, “Automated Reconstruction of Parametric 

BIM for Bridge Based on Terrestrial Laser Scanning Data,” Advances in Civil Engineering, vol. 

2021, pp. 1-17, 2021.  

[39]  M. Lo Turco, E. C. Giovannini and A. Tomalini, “Parametric and Visual Programming BIM 

Applied to Museums, Linking Container and Content,” ISPRS International Journal of Geo-

Information, vol. 11, no. 7, p. 411, 2022.  

[40]  H. Macher, T. Landes and P. Grussenmeyer, “From Point Clouds to Building Information 

Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings,” Applied 

Sciences, vol. 7, no. 10, p. 1030, 2017.  

[41]  V. A. Cotella, “From 3D point clouds to HBIM: Application of Artificial Intelligence in 

Cultural Heritage,” Automation in Construction, vol. 152, p. 104936, 2023.  

[42]  M. Mahmoud, W. Chen, Y. Yang and Y. Li, “Automated BIM generation for large-scale indoor 

complex environments based on deep learning,” Automation in Construction, vol. 162, p. 

105376, 2024.  

[43]  Z. Chen and S. Gentes, “From Point Clouds to as-built BIM: Semi-automated Wall 

Reconstruction for Dismantling of Nuclear Power Plants,” in 32nd Forum Construction 

Informatics, Darmstadt, 2021.  

[44]  “DBSCAN,” scikit-learn, [Online]. Available: https://scikit-

learn/stable/modules/generated/sklearn.cluster.DBSCAN.html. [Accessed 14 1 2024]. 

[45]  T. Xie, H. Chen, W. Liu, R. Zhou and Q. Li, “3D surface segmentation from point clouds via 

quadric fits based on DBSCAN clustering,” Pattern Recognition, vol. 154, p. 110589, 2024.  



 
 

114 
 

[46]  T. Czerniawski, B. Sankaran, M. Nahangi, C. Haas and F. Leite, “6D DBSCAN-based 

segmentation of building point clouds for planar object classification,” Automation in 

Construction, vol. 88, pp. 44-58, 2018.  

[47]  “numpy.loadtxt — NumPy v1.26 Manual,” [Online]. Available: 

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html. [Accessed 27 11 2023]. 

 

 

 


