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Abstract

With the increasing availability of egocentric wearable devices, there has been a
surge in first-person videos, leading to numerous studies aiming to leverage this data.
Among these efforts, 3D scene reconstruction stands out as a key area of interest.
This process allows for the recreation of the scene where the video was captured,
providing invaluable support for the growing field of augmented reality applications.
Some egocentric datasets include static 3D scans of recording locations, usually
requiring costly hardware or dedicated scans. An alternative approach involves
reconstructing the scene directly from video frames using Structure from Motion
(SfM) techniques. This method not only captures the motion of the actor and the
objects they interact with, including transformations (e.g., slicing a carrot) but also
enables the use of any egocentric footage for scene reconstruction, even without
physical access to the environment in real life. However, the task of decomposing
dynamic scenes into objects has received limited attention. For example, SfM finds
it challenging to distinguish between moving and static parts, resulting in cluttered
point cloud reconstructions where the same object may appear superimposed or in
multiple places within the scene.

In this thesis, we combine SfM with egocentric methods to segment moving
objects in 3D. This is achieved by creating a scene with COLMAP, a SfM algorithm,
and then modifying a recent algorithm called NeuralDiff, originally designed for
producing 2D segmentations of static objects, foreground, and actors, to extract
3D geometry. Additionally, we explored ways to reduce the overall computational
demands, such as by simplifying the NeuralDiff architecture to better meet our
goals by merging the foreground and actor streams, and by developing an intelligent
video frame sampling technique that captures the essence of the scene using fewer
frames.
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Introduction

In the last two decades, thanks to the massive technological development that
changed our daily lives with things like smartphones or social media, also the
world of cameras changed. People wanted to capture unique moments of their
lives and share them with their friends. To fulfill this desire smart devices1 and
action cameras2 were introduced, tiny robust cameras that could be mounted on
the observer’s body allowing him to have full use of his arms. This allows the
recording of first-person videos, also known as egocentric videos, of activities that
were difficult if not impossible to capture before.

The abundance of these new types of videos promoted their study, leading to
several research aimed to leverage this data. A new branch of Computer Vision
specifically for these types of problems has been born, which is referred to as
Egocentric Vision. Among its tasks, we can mention Action Recognition [1], Object
Detection [2] and Segmentation [3], Object Tracking [4], etc. Its main applications
found a place in fields such as: (i) Augmented Reality (AR) and Virtual Reality
(VR), where egocentric data can be used to provide realistic perspectives and
interactions as in training simulations or video games; (ii) Healthcare, providing
assistance and monitoring a patient, helping him with rehabilitation movements,
or reminding an old person that she has not turned off the gas stove; (iii) Security
and Surveillance, where safety can be aided by a virtual assistant that can detect
anomalous or suspicious behaviors (some other examples can be found on [5]).

With the emergence of new video data, not only have new research branches
been established, but existing fields of study have also been captivated by this new
type of data, seeking to address the new challenges it presents. These challenges
include motion blur caused by the rapid movement of the camera, limited field of
view, and occlusion due to the rich interactions of the user with objects and the
proximity of the device to where those interactions happen.

The field of 3D Scene Reconstruction, also known as stereophotogrammetry,

1Smart Glasses: Hololens, Aria glasses, Google glass, etc.
2Usually wearable devices used to record videos during sports or any other activity that

requires mobility or versatility. Some common brands are GoPro, DJI, Insta-360, Sony, etc.

1



Introduction

is a branch of photogrammetry that specializes in creating three-dimensional
models from image sequences by extracting features from them and then finding
correspondences.

Stereophotogrammetry eased the process of acquiring 3D scenes. In fact, 3D
reconstructions were, and still are, complex to obtain and manage. The few
datasets that contain 3D ground truth have been acquired through static 3D
scans of recording locations. This method is unfortunately very expensive both
in monetary terms since the hardware scanners are costly, and in time complexity
terms. Moreover, those require that a person, possibly specialized or who knows how
the scanner works, is physically present on the site. With 3D scene reconstructions
based on simple images, we could avoid most of these problems as we would just
need a camera that is nowadays pretty cheap and widespread, and a person without
any special training that move around the environment as it is. We could even have
no access to the physical place as long as we can send there a controlled camera.
Some practical examples of how we could exploit the above-mentioned advantages
in the future could be space reconstructions [6], obtained via rovers, or medical
reconstructions [7], via medical probes. On the other hand, 3D reconstructions
could be used in the growing field of augmented reality applications, like in museal
applications where architectures and objects can be made available around the
world [8], or also landscapes and environments replication that will be used in
videogames or metaverse spaces.

However, egocentric videos presented for their nature some additional intrinsic
difficulties that made 3D scene reconstruction struggle. First, those are limited
by the presence of the actor’s body. While the wearer performs any sort of action
he/she is usually present in the scene with his arms, occluding part of the scene.
This can make the reconstruction process more difficult, as it might not be possible
to find any correspondence between the reconstructing images. As a result, the
final point cloud that constitutes the 3D reconstruction is an altered representation
of the true scene. The reconstruction is soiled by points that represent body parts
and occluded parts of the scene are omitted. Another problem is represented by
the interactions the actor has with his surroundings. If we take as an example
a kitchen scenario where a person is cooking, he may be moving or transforming
objects in the scene, like slicing some vegetables or changing the location of pans.

This causes these transformations all to be captured in the reconstruction as
they coexisted in the same temporal instant, while in reality, they happened at
different time instants, resulting in cluttered and misleading reconstructions.

In this thesis, we propose some possible solutions to the issues mentioned above
by segmenting dynamic moving objects in 3D and using this information to remove
their traces from the reconstructed scene. Possible solutions could be background
subtraction [9] and motion segmentation [10] techniques. However, those are difficult
to apply on egocentric videos due to a moving background and motion parallax [11].
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Thus, we introduce two different approaches to 3D object segmentation. In
both of them, the first step is to obtain a 3D reconstruction of the environment
and the motion components in 2D. This is performed using Structure from Motion
(SfM) [12], a technique used to reconstruct 3D structure from 2D images, and a
neural rendering technique, NeuralDiff [11], used to decompose the input frames
in separate motion components. On top of that, the first approach relies on a
Monocular Depth Estimator [13], a pre-trained neural network that has learned to
predict the depth of each pixel from the camera viewpoint. The depth is then used
by the subsequent modules, to project the dynamic pixels from 2D frames to the
three-dimensional scene, thanks to geometrical projection formulas. The second
one instead exploits the intrinsic knowledge learned from NeuralDiff, a combination
of three neural networks each one designed to extract a type of motion: static,
moving object, and moving actor. On the second approach, we also analyzed how
different sampling strategies of the video frames affected the results. As a last step,
we modified NeuralDiff to better suit our needs by combining two of the three
neural layers and thus reducing the computational demand of the overall pipeline.

Results showed that the pipeline using NeuralDiff performed well on the ego-
centric videos. Additionally, our proposed sampling improved over the uniform
one.

Reasearch goals and motivations
Our research aims to address the problems introduced by egocentric videos in the
3D reconstruction scenario, like actor’s occlusion, motion parallax, motion blur,
etc. We worked with one of the largest egocentric datasets, EPIC-KITCHENS [14],
and used COLMAP [15], an open-source general-purpose Structure from Motion
(SfM) pipeline, to reconstruct scenes from egocentric videos. In the second stage,
we segmented in two ways objects that move in 3D. The first one is based on a
Monocular Depth Estimator [16], a pre-trained neural network that has learned to
predict the depth of each pixel from the camera. Once the dynamic pixels, detected
via NeuralDiff [11], are projected in the 3D scene, their distances are taken from
the reconstruction points and segmented if closer than a certain threshold. As a
matter of fact, we expect the dynamic points to be in the same position, or at least
close, to the projected pixels. The second one instead is achieved by a recent neural
rendering pipeline: NeuralDiff. Neural rendering techniques manage to represent
3D scenes thanks to Multi Layer Perceptrons (MLPs), which learn the mapping of
3D coordinates to their color and opacity as introduced in NeRF [17]. NeuralDiff
method is designed to divide 2D videos into three separate components, each one
represented by a MLP namely: static, foreground and actor. We extracted from it
the static MLP that can give color and opacity to any 3D point as it belonged to
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the static scene. In this way, the opacity was used to segment the point as dynamic
or not. If below a certain threshold, the opacity indicates that the point is not
visible in the static part, meaning that it belongs to a dynamic object.

In addition, we explored different ways to reduce the computational demands.
The first one consists in simplifying the NeuralDiff architecture, by merging the
two dynamic MLPs in a single one.

The other technique that we explored was to find an intelligent video frame
sampling method. We removed any redundant frames while keeping an overall view
of the scene and its information. We called this method Intelligent sampling.

Results on six kitchens show that Monocular pipeline struggles with egocentric
videos while NeuralDiff manages to segment dynamic objects in 3D. In addition
Intelligent sampling reveals to be successful in improving the results of random
sampling.

Contributions
In this thesis, we propose two ways to segment dynamic objects in 3D from the
challenging egocentric videos. The first step consists in reconstructing the 3D
scene. In this stage, we tested the Structure from Motion (SfM) [12] algorithm
COLMAP [15] on different sampling strategies. We showed that both the number of
frames and the resolution revealed to play a key role in a successful reconstruction.

The next step aimed to test methods for segmenting dynamic 3D objects and
removing them from the scene. We started by testing the Monocular pipeline by
evaluating the precision of the depths estimated from each frame by the Monocular
Depth Estimator [16] module. Through this pre-trained neural network, we can
obtain the depth of each frame. The depth is then used by subsequent modules
of the pipeline to obtain the 3D coordinates of the pixels by using geometrical
projection formulas. It immediately showed its limitations. The pre-trained neural
network seemed to be dependent on the training data as the results were mediocre
and in the 12 datasets used as input by [16], no one was egocentric. Also, the
monocular-based technique used to segment the point in 3D relied on a threshold
distance. This distance is dependent on the scene as each one has a different scale
due to the 3D scene reconstruction step, making it difficult to adapt to each new
scene.

The second pipeline we proposed is based on the intrinsic knowledge of the
NeuralDiff [11] component. The method seemed pretty robust as shown both
qualitatively and quantitatively. As no 3D ground truth was available for our scenes
we used a common strategy used in neural rendering to assess the performances of
the network. It consists of projecting from 3D to 2D the learned 3D structure to
an image and comparing it with ground truth, the real image and the manually
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segmented real image for assessing the segmentation. We tested this pipeline by
changing the resolution, the number of frames used, and the sampling procedure of
the frames employed.

We compared our new sampling strategy, Intelligent sampling, with a standard
uniform sampling (e.g., sampling frames uniformly in the video). Results showed
that our proposed sampling proved to be successful, capturing the essence of the
environment even with a reduced number of frames. Quantitatively, the proposed
method is able to achieve 2.9% improvements in terms of PSNR, 1.73% in terms
of static PSNR, and 1.78% in terms of mean Average Precision. Qualitatively we
provided some proofs that showed objects that were not segmented in the basic
uniform sampling were segmented in ours. We also found a correlation between
the frequencies of the frames sampled and the frequencies of the actions/objects
annotations. This was a good explanation, other than the intuition we gave before,
of its functioning, meaning that our sampling focuses on those areas where a lot of
actions happen.

As the last step, we proposed NeuralCleaner, a simplified version of the Neu-
ralDiff pipeline. Since for our purposes, we don’t need the distinction between
moving objects or actor, we merged the respective NeuralDiff layers in a single one.
In this way, the training should result to be 1

3 lighter and the results confirm it, as
we obtain a reduced computational time of around ∼ 30%.

In summary, our contributions are the following:

• We proposed two methods, one based on Monocular Depth Estimation and
the other based on NeuralDiff, to tackle egocentric video challenges and to
segment dynamic objects in 3D.

• We tested COLMAP, an SfM technique, on the egocentric dataset EPIC-
KITCHENS as the number of frames and their resolution varies.

• We tested a Monocular pipeline on egocentric videos for segmenting dynamic
objects in 3D.

• We tested how robust the NeuralDiff pipeline was to the change in the number
of frames and their resolution.

• We proposed a new Intelligent sampling strategy aimed at eliminating redun-
dant frames while keeping important information.

• We simplified NeuralDiff in NeuralCleaner to better suit our needs and reduce
the computational times of ∼ 30%.

• Through extensive experiments, we showed that NeuralDiff pipeline outper-
formed the Monocular pipeline.
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Chapter 1

Photogrammetry

Photogrammetry involves recording, measuring, and interpreting photographic
images and other phenomena to obtain reliable information about physical objects
and the environment.

It comprises all techniques concerned with making measurements of real-world
object features from images. Its utility ranges from the measuring of coordinates,
quantification of distances, heights, areas, and volumes, and preparation of topo-
graphic maps, to the generation of digital elevation models and orthophotographs.
The functioning relies mostly on optics and projective geometry rules.

In this chapter, we present the basic modelization of cameras and the various
assumptions on top of which we will base rules and equations (see Section 1.1).
Then we show structure from motion and how to link to images captured from
different cameras extracting features in various modalities and then matching with
the more appropriate algorithm in Section 1.2. In the last part with Section 1.2.5,
we present COLMAP, an open-source SfM that allows us to perform most of the
topics we previously explained.

1.1 Photogrammetry Fundamentals
As the first assumption, we can model the camera as a simplified version of itself:
the Pinhole Camera [18]. As in the first designed cameras (camera obscura [19]), in
the Pinhole Camera world’s light is captured through a pinhole and then projected
into the focal plane. The main idea is reported in Figure 1.1.

A Pinhole camera is characterized by two collections of parameters:

• Extrinsic parameters: they give information on location and rotation in the
world.

• Intrinsic parameters: gives us internal properties such as: focal length, field
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Figure 1.1: Pinhole Camera. A world’s object is captured by the camera
making light pass through the pinhole and is then projected on the focal plane
upside-down.

of view, resolution, etc.
These parameters can be rewritten in their corresponding matrices:

Intrinsic = K =

fx s cx

0 fy cy

0 0 1

 (1.1)

where fx, fy are are the focal lengths of the camera in the x and y directions, they
are needed to keep the image aspect ratio; cx, cy are the coordinates of the principal
point (the point where the optical axis intersects the image plane).

Extrinsic =
[
R3×3 t3×1
01×3 11×1

]
(1.2)

where: R3×3 is a rotation matrix; t3×1 is a translation vector.
with R that can be decomposed in its components:

Rx =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 Ry =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 Rz =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


(1.3)

Extrinsic matrix is also known as the 4x4 transformation matrix that converts
points from the world coordinate system to the camera coordinate system.

Exploiting homogeneous coordinates we can rewrite the image-capturing process
of a specific camera as the combination of its characteristic matrices:

u
v
z

 =

fx s cx 0
0 fy cy 0
0 0 1 0

 [R3×3 t3×1
01×3 11×1

] 
Xw

Yw

Zw

1

 (1.4)

In Figure 1.2 we can see an example of the different reference systems involved
in a photogrammetry problem.
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Figure 1.2: Reference systems. An example of different reference systems
involved in a photogrammetry problem. In red is reported the world system while
in black is the camera one. The yellow plane corresponds to the camera focal plane.

1.2 Structure from Motion: SfM
Structure from motion (SfM) is a technique that estimates the 3D structure of
a scene using 2D images. It is used in various applications like 3D scanning,
augmented reality, and visual simultaneous localization and mapping.

We can compute SfM in different ways depending on the data and tools at
our disposal. Factors such as the type and the number of cameras can imply
using different methods. Also, the ordering of the frames may be relevant for a
successful reconstruction.

The most basic scenario consists of two images captured from the same camera
from two different points of view:

Figure 1.3: Basic SfM Scenario. Two cameras capture the same object from
different viewpoints.
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In this case, the 3D structure can be recovered up to scale, meaning that the
relations between the obtained points are faithful to the reality, but it can differ
from the real size by a scale factor. The scale factor could be retrieved if we know
the size of an object in the scene or by having information from other sensors.

In the basic scenario the method consists of the following main steps:

1. Feature detection and Matching: consists of finding relevant points in
each image and finding the corresponding, if they exist, in other images.

2. Estimating Fundamental matrix: which describes the geometric relationship
between two images of a scene taken from different viewpoints.

3. Estimating Essential matrix from fundamental matrix: which represents
the intrinsic geometry of the scene, independent of the camera parameters.

4. Estimating Camera pose from essential matrix: in this step, the positions of
the cameras in the world are extracted.

In the following sections, we describe all these steps.

1.2.1 Feature Detection and Matching

To find corresponding points in two images we need to detect some points of
interest in each image. Instead of trying to match each pixel, which would be
computationally inefficient and possibly misleading due to color, it has been shown
successfully to use feature points. Feature points are relevant points that encapsulate
the local appearance of its surrounding pixels which is invariant under changes in
illumination, translation, scale, and in-plane rotation. Good features are unique,
can be easily tracked, and can be easily compared.

A practical example could be to imagine how we humans find correspondences in
pictures, looking at Figure 1.4. If we would be asked to find the exact position of
the six patches in the underlying image, the job would be easier for patches E and
F, being corners they have less possible misleading correspondences, as happens
instead of patches A or B.
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Figure 1.4: Feature Detection Example [20]. The easier patches to match to
the background are the ones with sharp corners.

Similarly, computers extract features. Two of the first algorithms are based on
corner detection: Harris Corner Detector and Shi-Tomasi Corner Detector.
Depending on the differences between the two images to be compared, different
algorithms have been developed. Here I describe some of them as reported in [20]:

• SIFT [21]: Harris corner detector is not good enough when scaling of image
changes. Lowe developed a breakthrough method to find scale-invariant
features and it is called SIFT. An example of SIFT features is reported in
Figure 1.5.

• SURF (Speeded-Up Robust Features) [22]: faster SIFT version achieved by
using a box filter approximation for the computation of image derivatives
instead of Gaussian Filters like in SIFT.

• FAST Algorithm for corner detection [23]: All the above feature detection
methods are good in some way. However, they are not fast enough to work in
real-time applications like SLAM. There comes the FAST algorithm, which is
really "FAST".
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Figure 1.5: SIFT features position. Example of interest points, we can see
that most of them are placed around corners or edges.

• BRIEF (Binary Robust Independent Elementary Features) [24]: SIFT uses
a feature descriptor with 128 floating point numbers. Consider thousands
of such features. It takes lots of memory and more time to match. We can
compress it to make it faster. But still, we have to calculate it first. There
comes BRIEF which gives the shortcut to finding binary descriptors with less
memory, faster matching, and still higher recognition rate.

• ORB (Oriented FAST and Rotated BRIEF) [25]: Open source alternative
to SIFT and SURF released by OpenCV.

After having found these points of interest, we need to match them with the
different pictures. This step is also known as Feature Matching. The most basic
algorithms are:

• Brute-Force Matcher [25]: Given a set of images, for each one, the descriptor
of one feature is compared with the one of every other image using a distance
metric. The matched feature is the one whose distance is the smallest. It
is called Brute-Force because it involves nearly no optimization, taking all
possible combinations of images. In Figure 1.6 is reported the output of a
Brute-Force Matcher.

• FLANN [26]: which stands for Fast Library for Approximate Nearest Neigh-
bors. It contains a collection of algorithms optimized for fast nearest neighbor
search in large datasets and for high dimensional features, such as hierarchi-
cal k-means clustering. It works faster than BFMatcher for large datasets.
FLANN focuses on giving approximate nearest-neighbor search rather than
exact matches. Sacrificing some accuracy in favor of speed makes it suitable
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Figure 1.6: Features correspondence computed using BruteForce Matcher on
a sample image.

for large-scale datasets. In this way, the feature-matching problem becomes a
clustering problem.

1.2.2 Estimating fundamental and essential matrices
The fundamental (F) and the essential (E) matrices allow us to relate the projection
of a point located in space from one image to the other. These matrices are based
on the so-called Epipolar Geometry, which describes the relationship between two
images. As we can see from Figure 1.7, given two cameras Cl and Cr the following
definitions can be given:

• The epipole: which is the point of intersection of the baseline (the line
that connects the two camera centers Cl and Cr) with the image plane. In
Figure 1.7 denoted by ei.

• An epipolar plane: which is any plane containing the baseline.

• An epipolar line: which is the intersection of any epipolar plane with the
image plane.
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Figure 1.7: Point correspondence geometry. In particular, are reported:
the epipoles e, e’; the epipolar plane, which is any plane containing the line that
connects the two camera centers, also known as baseline; the epipolar line which is
the intersection of any epipolar plane with the image plane.

Now that we have a clear understanding of the underlying geometry, we proceed to
see the actual derivation of the two matrices.

Consider the following scenario, reported in Figure 1.8: we have a point X and
two cameras Cl and Cr. The relative positions are respectively xl and xr, while
the pixel projections are pl and pr. If we consider as reference the left camera, the
position of the right one is shifted of a vector t.

We can extract the essential matrix by making the following considerations:
xl · (t × xl) = 0 (1.5)

but xl can be written as:
xl = Rxr + t (1.6)

So Equation 1.5 becomes:
xl · (t × (Rxr + t)) = xl · (t × Rxr) a= xT

l [t]× Rxr = 0 (1.7)
where equality (a) is due to the cross-product matrix notation1. We call essential
matrix the term [t]× R, such that:

xT
l [t]× Rxr = xT

l Exr = 0 (1.8)

1

a × b = [a]× b =

 0 −a3 a2
a3 0 −a1

−a2 a1 0

b1
b2
b3
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Figure 1.8: A point X viewed from two cameras with xl being the distance of
X from Cl and xr being the distance of X from Cr. pr and pl are instead the
projection of X on the respective camera’s focal plane.

In a similar way, we can get the fundamental matrix, by replacing the relative
positions with the pixel positions. Recalling that the pixel positions are linked to
the relative positions by:

pl = 1
zl

Klxl pr = 1
zr

Krxr (1.9)

where zi are the focal distances. We can substitute in Eq. 1.8 and obtain:

pT
l zlK

−1T

l EK−1
r zrpr = 0 zl, zr /= 0 (1.10)

Since zi are constants can be simplified, obtaining:

pT
l K−1T

l EK−1
r pr = pT

l Fpr = 0 zl, zr /= 0 (1.11)

where F is the fundamental matrix. We can thus write the relation between the
two matrices:

E = KT
l FKr (1.12)

1.2.3 Estimating camera pose from essential matrix
Since [t]× is skew-symmetric and R is orthonormal (since it is a rotation matrix), if
we know the essential matrix we can decompose it in its components using singular
value decomposition, as we can see from Equations 1.13, 1.14, 1.15
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[t]× = UWΣUT (1.13)
R = UW T V T (1.14)

W =

0 −1 0
1 0 0
0 0 1

 (1.15)

1.2.4 Multi-view Structure from Motion
We now explain how we can relate multiple images to recover the structure of a
scene. The last stage is called bundle adjustment and it is an iterative algorithm
used to adjust structure and motion parameters by minimizing a cost function.
The possible methods for bundle adjustment are described in [27]:

• Sequential: it works by considering additional images at each time, extending
in this way the initial reconstruction.

• Factorization: it works by computing camera poses and scene geometry
using every image measurement at the same time.

Bundle Adjustment is needed since the image measurements are usually noisy. It
adjusts the positions and orientations of cameras, as well as the 3D coordinates of
points in the scene, to minimize the difference between the observed image features
and their predicted locations in the reconstructed 3D model. In simpler terms, it’s
like fine-tuning a puzzle to make sure all the pieces fit together perfectly, optimizing
the alignment of the cameras and the 3D points to improve the accuracy of the
reconstruction.

1.2.5 COLMAP
All the sections above focused on a theoretical description of how Structure-from-
Motion works. In this section, we illustrate an actual open-source implementation,
COLMAP [15].

COLMAP is a software that can reconstruct 3D images using Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) techniques. SfM is used to estimate
the 3D structure of a scene and camera positions from 2D images taken from
different viewpoints, while MVS is focused on creating a detailed 3D model with
meshes and textures. COLMAP offers both graphical and command-line interface
and can be used on Windows, Linux, and Mac. It is designed for regular desktop
computers and servers/clusters and is licensed under the BSD License.

The concepts we explained in the theoretical part are not always applicable in
the real world, or their results are not quite satisfying. In literature, a vastity of
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Figure 1.9: Multiple View Scenario. In multiple view scenario multiple
cameras are present, each one recording the scene from a different point of view.

Figure 1.10: Building Rome in one day. Result of Rome with 21K registered
out of 75K images.

authors tried and succeeded in obtaining refined algorithms for specific scenarios.
However, they still lacked a general-purpose method. With COLMAP they managed
to compensate for the lack of generalization. The actual implementation and
characteristics are explained by the authors in [12, 28] and an example of its usage
is shown in Figure 1.10.

Usage

The usage of COLMAP is pretty straightforward. After the creation of a project
folder with a images directory containing the images we want to process we can
simply launch the script reported in Listing (1.1).

Listing 1.1: Automatic COLMAP Reconstruction
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1 #!/bin/bash
2 #The project folder contains a folder "images" with all images.
3

4 DATASET_PATH=/path/to/project
5 colmap automatic_reconstructor \
6 --workspace_path $DATASET_PATH \
7 --image_path $DATASET_PATH/images \
8 --single_camera 1
9

The program offers ample freedom for the single usage of the various steps
needed for SfM or MVS. Here we report the actual pipeline that we used for the
extraction of the point clouds for our experiments.

Listing 1.2: COLMAP Single Commands
1 #!/bin/bash
2 DATASET_PATH="/scratch/fborgna/EPIC_Diff/"
3

4 colmap feature_extractor \
5 --database_path $DATASET_PATH/database.db \
6 --image_path $DATASET_PATH/images \
7 --ImageReader.single_camera 1 \
8

9 colmap exhaustive_matcher \
10 --database_path $DATASET_PATH/database.db
11

12 mkdir $DATASET_PATH/sparse
13

14 colmap mapper \
15 --database_path $DATASET_PATH/database.db \
16 --image_path $DATASET_PATH/images \
17 --output_path $DATASET_PATH/sparse \
18 --camera_model SIMPLE_PINHOLE \
19

20 mkdir $DATASET_PATH/dense
21

22 colmap image_undistorter \
23 --image_path $DATASET_PATH/images \
24 --input_path $DATASET_PATH/sparse/0 \
25 --output_path $DATASET_PATH/dense \
26 --output_type COLMAP \
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27 --max_image_size 2000
28

29 colmap patch_match_stereo \
30 --workspace_path $DATASET_PATH/dense \
31 --workspace_format COLMAP \
32 --PatchMatchStereo.geom_consistency true
33

34 colmap stereo_fusion \
35 --workspace_path $DATASET_PATH/dense \
36 --workspace_format COLMAP \
37 --input_type geometric \
38 --output_path $DATASET_PATH/dense/fused.ply
39

40 colmap poisson_mesher \
41 --input_path $DATASET_PATH/dense/fused.ply \
42 --output_path $DATASET_PATH/dense/meshed-poisson.ply
43

44

1.2.6 Monocular Depth Estimation
Until now we have always considered scenarios in which multiple images were
available from different points of view. What if we have just one image?

This scenario takes the name of Monocular Depth Estimation [16]. As we have
previously seen, the projection of a scene on the bi-dimensional image plane of a
camera inevitably loses the three-dimensional structure of the scene. In this way,
we can no more use optics laws, since we do not have enough information to solve
those equations.

Possible solutions include the usage of neural architectures. As a matter of fact,
these methods try to learn relations between the possible objects or elements of
the image, thus extracting a higher semantic knowledge from the picture. This
task is known to be solved particularly well from neural networks, in particular,
convolutional or transformer-based networks, trained on large amounts of data,
which are nowadays growing in number and quality.

More precisely, the advent of transformers [29] has marked a new state of the
art, not only in natural language processing but also in dense prediction. As shown
and stated in [16], they “introduce dense vision transformers, an architecture that
leverages vision transformers in place of convolutional networks as a backbone for
dense prediction tasks.[...]this architecture yields substantial improvements on dense
prediction tasks.[...]we observe an improvement of up to 28% in relative performance
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when compared to a state-of-the-art fully-convolutional network”. The reason for
the difference in performance between the two networks lies in their functioning.
Although both networks have an encoder-decoder structure, the convolutional layer
in one of them limits its performance. Convolutional networks downsample the
input image progressively to extract features at multiple scales. However, in dense
prediction tasks, it is crucial to maintain feature resolution and granularity. This is
because the decoder cannot recover the initial information from compressed features,
which could result in poor performance. “Unlike fully-convolutional networks, the
vision transformer backbone foregoes explicit downsampling operations after an
initial image embedding has been computed and maintains a representation with
constant dimensionality throughout all processing stages” [16].

The second motivation that made us choose for transformer-based architecture
is its versatility and generalizability. In [13] the authors introduce a method that
enables mixing multiple datasets during training. In this way, the model will
be effective across a variety of scenarios since each dataset is equally varied and
captures the diversity of the visual world. Specifically, they experimented with
eleven datasets which consist of RGB images with corresponding depth annotation
of some form.

In Figure 1.11 we can see some examples of input images with their relative
predicted depth map and 3D projection.
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Figure 1.11: Top: input images. Middle: Inverse depth maps predicted by the
presented approach. Bottom: corresponding point clouds rendered from a novel
viewpoint. (Taken from [13])
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Neural Rendering

Neural Rendering refers to a novel set of deep image and video generation tech-
niques that allow for explicit or implicit manipulation of various scene properties
like illumination, camera parameters, pose, geometry, appearance, and semantic
structure. It combines generative machine learning techniques with a physical
understanding of computer graphics to produce controllable and photorealistic
outputs.

In this chapter, we will introduce Neural Radiance Field (NeRF), and show how
it posed an important step in this topic, promoting the birth of new models aimed
at different scopes like NeuralDiff.

2.1 Previous works
In the next paragraphs, we give a quick review of the work preceding NeRF.

View synthesis and image-based rendering. Photorealistic novel views can
be reconstructed if a dense sampling of images has been provided by simple light
field sample interpolation techniques [30, 31]. If sparser images are available, some
methods have been introduced that rely on extracting traditional geometry and
appearance representations from observed images. A popular class of approaches
uses mesh-based representations of scenes with diffuse [32] or view-dependent [33]
appearance. Also, there are differentiable rasterizers [34, 35] that can directly
optimize mesh reconstruction to reproduce a set of input images using gradient
descent. However, due to local minima or poor conditioning of the loss landscape,
the optimization is usually difficult.

High-quality photorealistic view synthesis is also performed by volumetric repre-
sentations, from a set of given RGB images. Volumetric methods can represent
complex shapes and materials, well suited for gradient-based optimization. First
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works [36] used observed images to directly predict color voxel grids. Later [37,
38, 39] used deep networks to color a sampled volumetric region from some given
images.

However, these methods, being based on discrete sampling of the voxel grid, are
restricted to low resolution due to time and computational power. With neural
rendering instead a continous representation was proposed, reducing the memory
requirements and producing higher-quality renderings.

Background subtraction Background subtraction techniques have been used
to detect moving objects in videos [9]. The simplest way to obtain the background
would be to capture a background image that does not contain any foreground object.
Unfortunately in some scenes, it is not possible and it could be changed under
critical situations like illumination changes, objects appearing and disappearing
from the scene. Some expedients have been introduced that try to predict the
background via a background initialization step, which bases its guess on the first
few frames of the video [9]. However, egocentric videos still contain too many
challenging problems (light change, multiple different objects, moving camera, etc.)
that do not allow background subtraction to be a viable solution.

Motion segmentation Motion segmentation consists of decomposing a video
into individually moving objects [10]. Amongst others, it has applications in
robotics, traffic monitoring, sports analysis, inspection, video surveillance, and
compression. However, these techniques usually rely on optical flow, which can be
subject to some ambiguities like, in our case, motion parallax. Even occlusion plays
an important role. Motion segmentation struggles for example when an object
moves in front of or behind other objects in the scene, leading to ambiguity in the
flow field. Also, many methods fail when a dynamic object temporarily remains
static.

Discovering and segmenting objects in videos Discovering and segmenting
objects in videos is related to background subtraction and motion segmentation.
For instance, moving objects can be segmented from the background by using a
probabilistic model that acts on optical flow [40]. In [41], pixel trajectories and
spectral clustering are combined to produce motion segments. Some recent works
revisit classical motion segmentation techniques from a data-driven perspective [42],
e.g. using physical motion cues to learn 3D representations or learning a scene
representation using neural rendering (see Section 2.2).
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Figure 2.1: NeRF. Optimization of a continuous 5D neural radiance field
representation (volume density and view-dependent color at any continuous location)
of a scene from a set of input images. The 2D novel views are obtained thanks
to classic volume rendering techniques. Here in this example, given 100 images
acquired from different viewpoints, they sample two novel views.

2.2 NeRF: Representing scenes as neural radi-
ance fields for view synthesis

With NeRF [17] the authors introduced a new state-of-the-art model for synthesizing
novel views of complex scenes by just using a set of sparse images and their relative
positions. Figure 2.1 is reported as an example of the main steps from the original
paper.

2.2.1 NeRF
A continuous 3D scene is represented as a 5D vector-valued function whose input
is a 3D coordinate x = (x, y, z) and 2D viewing direction d = (θ, ϕ), and whose
output is an emitted color c = (r, g, b) and volume density σ. In practice, the scene
is represented by an MLP network FΘ : (x, d) → (c, σ), where Θ are the weights of
the network. This was given the name of Neural Radiance Field (NeRF).

The representation is encouraged to be multiview consistent by restricting the
network to predict the volume density σ as a function of just the location x,
while the color c is a function of both the input, location and direction. To do
this the MLP FΘ first processes the input x with 8 fully-connected layers (using
ReLU activation functions and 256 channels per layer), and outputs σ and a
256-dimensional feature vector. The scheme is summed up in Figure 2.2.

The effects of the direction in input can be seen in Figure 2.3.

Volume rendering with radiance fields

The implicit representation of the scene relies on the volume densities and on the
color of every point in that scene. The color of any ray passing through the scene is
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Figure 2.2: FΘ Scheme. The input position x pass through 8 Fully connected
(FC) layers of 256-channels. Each FC layer is followed by a ReLU activation
function. This intermediate result is then concatenated with the input direction (d)
and fed to one last FC with 128 channels that feed its output to a ReLU function.
The output of the ReLU is the color c and the volume density (σ).

Figure 2.3: Here we reported the results obtained with different strategies, as
written underneath each image. In particular, removing view dependence prevents
the model from recreating the specular reflection on the bulldozer tread. Removing
the Positional encoding instead, we obtain a blurred image, meaning that high
frequencies are not captured nor represented.

rendered using principles from classical volume rendering [43]. The volume density
σ(x) can be interpreted as the differential probability of a ray terminating at an
infinitesimal particle at location x. While the expected color C(r) of camera ray
r(t) = o+ td with near and far bounds tn and tf is:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt (2.1)

where T (t) denotes the accumulated transmittance along the ray from tn to t, i.e:
the probability that the ray travels from tn to t without hitting any other particle.
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Figure 2.4: Example of rays passing through an image plane of size 3x3 pixels.

Namely:

T (t) = exp(−
∫ t

tn

σ(r(s)) ds) (2.2)

To obtain a new view in our neural radiance field, we should estimate the C(r)
function for each ray passing through each pixel of the focal plane (see Figure 2.4).
This integral is approximated using a numerical method known as quadrature.
Typically deterministic quadrature is used for rendering discretized voxel grids,
but in our case, it would limit our model’s resolution since the network would only
be queried at a fixed discrete set of locations. To solve this problem a stratified
sampling approach has been used, where each interval [tn, tf ] has been partitioned
into N evenly-spaced bins, from which a random sample is then uniformly extracted.
Namely, as in the following:

ti ∼ U [tn + i − 1
N

(tf − tn), tn + i

N
(tf − tn)] (2.3)

In this way, even if we are using a discrete set of samples, using stratified sampling
allows us to represent a continuous scene representation because the network
is evaluated at continuous positions during the training phase. Following the
quadrature rule discussed in [44] they used the samples to estimate C(r):

Ĉ(r) =
N∑

i=1
Ti(1 − exp(−σiδi))ci, where Ti = exp(−

i−1∑
j=1

σjδj) (2.4)

where δi = t(i+1) is the distance between adjacent samples. It can be noticed
that the function that approximates C(r) is differentiable and can be reduced to
traditional alpha compositing1 with alpha values being αi = 1 − exp(−σiδi).

1Alpha compositing is a digital imaging technique used to combine multiple layers of images or
graphics with transparency, known as alpha channels.
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Training procedure

To optimize a scene RGB frames are required with the corresponding camera poses
and intrinsic parameters (for synthetic data these are easily retrievable from the
scene model; while for real images COLMAP was used to extract them). At each
iteration a batch of rays from the set of all pixels of all images of the dataset is
extracted and following the sampling procedure previously described the actual
color is predicted for both the “coarse” and the “fine” model. All the previous steps
are differentiable such that we can use gradient descent to optimize the model by
minimizing the loss function that is computed as the total squared error between
the rendered and true pixel colors for the two models:

L =
∑
r∈R

[
∥∥∥Ĉc(r) − C(r)

∥∥∥2

2
+
∥∥∥Ĉf (r) − C(r)

∥∥∥2

2
] (2.5)

where R is the set of rays of each batch, C(r) is the RGB color ground truth
and Ĉc(r), Ĉf (r) are the predicted color for the “coarse” and the “fine” model for
ray r.

Optimizing a neural radiance field

In the previous sections, the core components of a Neural Radiance Field were
presented, yet, these parts alone are not able to achieve state-of-the-art results. To
improve the quality of the representation two improvements were found successful:

• Positional encoding of the input coordinates, to encourage the representation
of high-frequencies.

• Hierarchical sampling procedure that allows for efficiently sample high-
frequency representation.

Positional encoding After having found that the model FΘ performed poorly
operating solely on xyzθϕ input, in accordance to the work by Rahaman et al. [45]
that states that deep networks are biased towards learning low-frequency functions;
they encode the inputs to a higher dimensional space using high-frequency functions.

The new model FΘ can thus be represented as a combination of functions
FΘ = F ′

Θ ◦ γ, where γ is a function from R to a higher dimensional space R2L,
and F ′

Θ is still the basic block introduced in the previous sections. Formally the
function used for the encoding part is:

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L − 1πp), cos(2L − 1πp)) (2.6)

In particular γ(·) is applied separately to each component of x and d after these
values are normalized to lie in [−1,1]. Reporting the paper results, they found out
that good values of L were: 10 for γ(x); and 4 for γ(d).
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Figure 2.5: Probability Density Function of normalized coarse weights ŵi along a
ray with Nc samples.

Hierarchical sampling Stratified sampling allows to cover continuous regions
but however is still inefficient: free space and occluded regions that do not contribute
to the rendered image are still sampled repeatedly. To solve this problem the
authors proposed a hierarchical representation which increased rendering efficiency
by distributing samples proportionally to their expected effect on the final rendering.

This solution consists of simultaneously optimizing two networks: one “coarse”
and one “fine”. The first step expects to sample a set of Nc points using stratified
sampling and feed those to the coarse model. Once this first partial result has been
obtained a more informed sampling of points is produced. The coarse sampling
allows us to get a rough idea of which parts of the volume are the most relevant.
To do this they rewrite the alpha composited color from the coarse model Ĉc(r) in
Eq. 2.4 as a weighted sum of all sampled colors ci along the ray:

Ĉc(r) =
Nc∑
i=1

wici, wi = Ti(1 − exp(−σiδi)) (2.7)

By normalizing the weights as ŵi = wi∑Nc
j=1 wj

we can produce a piecewise-constant
probability density function along the ray as seen in Figure 2.5. The next Nf

samples are extracted from this distribution and then, combined with the previous
Nc samples, fed to the “fine” network. The final rendered color Ĉf (r) is obtained
using Eq. 2.4 with Nc + Nf . This procedure revealed successful in obtaining more
samples from regions we expect to contain visible content.

2.2.2 Results
A qualitative idea of the potentiality of NeRF is reported in Figure 2.6 and 2.7.
Specifically, in the first Figure is reported the comparison of NeRF, Local Light Field
Fusion LLFF [46], and Scene Representation Network SRN [47] on the synthetic
data introduced in [17]. We can see that NeRF is able to retrieve even the smaller
details and no artifacts that are present in other methods are produced. On the
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other hand, in the second figure, the algorithms are compared on real images and
NeRF shows better performance with respect to other methods.
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Figure 2.6: Comparison of test images from the newly introduced synthetic
dataset. The algorithms compared are NeRF, Local Light Field Fusion LLFF [46],
and Scene Representation Network SRN [47]. The NeRF method can recover
fine details in both geometry and appearance. LLFF exhibits some artifacts on
the microphone and some ghosting artifacts in the other scenes. SRN produces
distorted and blurry rendering for every scene. Neural Volumes struggle to capture
details we can see from the ship reconstruction.
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Figure 2.7: Comparison on the test set of the real images. As expected LLFF
is performing pretty well being projected for this specific use case (forward-facing
captures of real scenes). However, NeRF can represent fine geometry more consis-
tently across rendered views than LLFF as we can see in Fern’s and T-rex. NeRF is
also able to reproduce partially occluded scenes as in the second row. SRN instead
completely fails to represent any high-frequency content.
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2.3 NeuralDiff: segmenting 3D objects that move
in egocentric videos

NeuralDiff is a neural radiance field adapted to distinguish three different parts of
egocentric videos:1) static, that is everything that does not move, 2) foreground,
which is everything that at some point of the video moves, and 3) actor,which
comprehends the body parts of the person who is wearing the camera.

Still, this is not an easy task. Motion in egocentric vision is a complex attribute
to identify. We need to distinguish what is independent of the camera motion while
dealing with the camera’s large viewpoint change and parallax that generate a
large apparent motion.

In a static camera scenario, the problem of separating the foreground from the
static background would be easily solved by recurring to background subtraction
techniques, but the parallax effect of a moving camera makes this technique useless.
As an example provided in the paper, we can think of an egocentric video of a person
cooking: the actor behaves in the scene by moving (and transforming) objects.
However, ego-motion is the dominant effect since objects move only sporadically,
and in a way that is hardly distinguishable from the much larger apparent motion
induced by the viewpoint change, making it very difficult to segment dynamic
objects automatically.

Even motion segmentation techniques struggle to separate a scene into different
motion components, since they require correspondences, they reason locally, across
a handful of frames and usually avoid explicit 3D reasoning, making it difficult
to treat egocentric videos with many small objects that move only occasionally
throughout a long sequence [10].

With this work, the authors take inspiration from neural rendering techniques [17]
to create a motion analysis tool to obtain their goal. In particular, they leverage
the ability to reconstruct accurately 3D scenes to recover the background and then
build on top of it the dynamic parts. 3D objects that are manipulated in the video
also present a significant structure. They usually move in “bursts”, changing their
state when they are involved in an interaction, otherwise staying rigidly attached
to the background. Exploiting this property they extend the neural render to
reconstruct the moving object’s appearance using a slowly-varying time encoding.
The last part that shows unique properties in the scene is the actor due to his
continuous movement while occluding the scene and with a motion linked to the
camera. In Figure 2.8 is reported a general overview of NeuralDiff capabilities.

Neural rendering for dynamic videos. The spread of neural rendering with
NeRF (Section 2.2) paved the way for new research also in dynamic scenarios
(see NeRF-W [48]). Another direction tried focusing on modeling dynamic scenes
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Figure 2.8: Given an egocentric video with camera reconstruction, NeuralDiff, a
neural architecture, learns how to decompose each frame into a static background
and a dynamic foreground, which includes every object that sooner or later will
move and the actor’s body parts. Each of these streams is learned by exploiting the
characteristics of the scene that is going to be captured. Being a neural radiance
field, NeuralDiff is also capable of rendering images from novel viewpoints as can
be seen in the bottom right part of the scene.

mostly with monocular videos as input [49, 50]. Most of these approaches use a
canonical model in conjunction with a deformation network, or warp space [50],
starting from a canonical volume. Closer to the work presented is [49], where a
static NeRF model is combined with a dynamic one.

Nonetheless none of the previous managed to segment 3D objects in such long
and challenging videos. We next describe how NeuralDiff succeeded in it.

2.3.1 NeuralDiff
Static components

As reported in Section 2.2, a video x is a collection (xt)t∈[0,...,T −1] of T RGB frames
xt ∈ R3×H×W . Each of these frames can be seen as a function xt = h(B, Ft, gt),
where B is the static background, Ft is the variable Foreground, and gt is the
moving camera. The motion and parameters of the camera are assumed to be
known, usually being extracted via a Structure from Motion (SfM) algorithm such
as COLMAP [15] which is explained in detail in Section 1.2.5. The background
and foreground layers include the shape and reflectance of the 3D surfaces in the
scene as well as the illumination.

Instead of trying to invert the function h to get B and Ft, which is known
as inverse rendering, neural rendering directly learns h using a neural network f,
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h(B, Ft, gt) = f(gt, t), provided the time and the camera viewpoint for the frame
xt. Viewpoint g and time t can be factorized by a careful design of the function f,
thus f can be used to generalize new unobserved viewpoints. In the basic NeRF
implementation, the main assumption is that the scene is static, meaning that Ft

is empty and f can be rewritten as f(gt). The color of each frame is then obtained
by a volumetric sampling process that simulates ray casting. More in detail the
pixel color xut ∈ R3 of pixel u ∈ Ω = {0, ..., H − 1} × {0, ..., W − 1} is obtained by
averaging the color of the 3D points along the ray gtrk weighted by the probability
that a photon emanates from the point and reaches the camera.

A neural network, (σb
k, cb

k) = MLP b(gtrk, dt) retrieve the density σb
k ∈ R+ and

the color cb
k ∈ R3 of each point gtrk, where the superscript b refers to the fact

that we are dealing with the static background and dt is the unit-norm viewing
direction.

A photon while travelling along the segment (rk, rk+1) is transmitted with
probability T b

k = e−δkσb
k where the quantity δk = |rk+1 − rk| is the length of the

segment. This definition allows us to calculate the probability of transmission
across several segments as the product of the individual transmission probabilities.
The color of pixel u can thus be written as:

xut = fu(gt) =
M∑

k=0
vk(1 − T b

k)cb
k, vk =

k−1∏
q=0

T b
q (2.8)

where fu(gt) is the function that maps the viewpoint to the single pixel u. The
model is trained by minimizing the reconstruction error ∥x − f(gt)∥.

Dynamic components

To reconstruct egocentric videos, we deal with moving objects, so we can not
neglect the foreground Ft. To capture this layer they propose to build on top of the
background MLP b a foreground-specific MLP f , (σf

k , cf
k , βf

k ) = MLP f(gtrk, zf
t ).

Its outputs are a “foreground” occupancy σf and color cf . It also predicts βf
k , an

uncertainty of the color associated to each 3D point along the ray rk and whose
role is discussed in the next paragraphs. The variable zf

t is introduced to capture
the properties of the foreground that change over time.

The color xut of a pixel u is obtained by the composition of both background
and foreground, so S = {b, f}:

xut = fu(gt, zt) =
M∑

k=0
vk(

∑
p∈S

wp(Tk)cp
k) where vk =

k−1∏
q=0

∏
p∈S

T p
q (2.9)

The factor vk requires a photon to be transmitted from the camera to point rk

through different materials. The weights wp(Tk) mix the colors based on point
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densities. As done in NeRF-W [51]:

wp(Tk) = 1 − T p
k ∈ [0,1] (2.10)

Each stream is designed differently, to include inductive biases that match the
statistics of each layer (background, foreground, actor). The resulting analysis-
via-synthesis method shows that neural rendering techniques are also useful for
analysis, and not just synthesis.

Smooth dynamics The model can now be optimized by minimizing the loss
across all input frames:

min
f,z1,...zT

1
T |Ω|

T∑
t=1

∑
u∈Ω

∥xt − f(gt, zt)∥2 (2.11)

However, there is a problem with the characteristics of the foreground, because,
even if dynamic, it does not change at every frame most objects spend most of
their time rigidly attached to the background. This makes the dependence on
independent frame-specific codes zt almost useless. They came up with the idea of
replacing it with a low-rank expansion of the trajectory of sates, taking zt = B(t)Γ
where B(t) ∈ Rp is a fixed basis and the motion Γ ∈ RP ×D are coefficients such
that P << T . In particular B(t) = [1, t, sin2πt, cos2πt, sin4πt, cos4πt, ...]

Improved geometry: capturing the actor The foreground layer can be
divided again into objects manipulated by the actor, Which can move sporadically,
and the actor, which instead moves continually. To detect the actor a third MLP is
integrated into the previous model. The actor’s MLP is similar to the foreground
MLP: (σa

k , ca
k.βa

k) = MLP a(rk, za
t ), where the a stays for actor. The main difference

is that this time the 3D point rk is expressed with respect to the camera, and not
to the world (gtrk). This follows the physical properties of the recording stage, the
camera is attached to the actor’s head, making his body parts almost always present
in front of the camera therefore it shows a reduced variability in the reference frame
of the camera. On the contrary, the background and foreground are invariant to
the world reference system.

Improved color mixing A principled mixing model is proposed to replace
Equation 2.10. It is obtained by dividing the segment δk into Pn sub-segments,
alternating between the P different materials (P = |S|, e.g.P = 3 if all three layers
are considered). They show that the probability that a photon is absorbed in a
subsegment of material p is given by:

wp(Tk) = σp
k∑P

q=1 σq
k

(1 −
P∏

q=1
T q

k ) (2.12)
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where the first term represents the probability that a given material p is responsible
for the absorption. The latter one instead is the probability that the photon is
absorbed by all the materials involved.

Uncertainty and regularization

Uncertainty. Here we clarify the role of the previously announced βp
k variable.

It is predicted from each MLPs (βb
k = 0 for the background) and represents the

uncertainty of the color associated with each 3D point along the ray rk for each
layer p as pseudo-standard deviations (StDs). As reported in [48], the StD of a
rendered color xut is given as the sum of all the StDs for each material: βut = ∑

p βp
ut

where βp
ut is obtained from Equation 4.4 by replacing cp

k with βp
k . Now we can

introduce a probabilistic loss:

Lprob(f, zt|xt, gt, u) = ∥xut − fu(gt, zt)∥2

2β2
ut

(2.13)

Sparsity. The occupancy of the foreground and actor components is further
penalized by using:

Lsparse(f, zt|xt, gt, u) =
P∑

p=1

M∑
k=0

σp
k (2.14)

Training loss. Finally, the loss used for training the model is:

L = Lprob + λLsparse (2.15)

where λ > 0 is a weight set to 0.01.

2.3.2 EPIC-Diff benchmark
The goal of this paper was to identify any “detachable” object, namely a object
that moves independently from the camera. An extension of EPIC-KITCHENS [14]
was introduced to give an evaluation to their method.

Data selection. 10 video sequences, or also called scene, were selected from
EPIC-Kitchen, each lasting 14 minutes on average. Then 1000 frames were sampled
from each and fed to COLMAP [15] to obtain camera reconstructions. The scenes
followed these constraints. 1)The videos should contain different viewpoints and
multiple manipulated objects. 2) COLMAP should reconstruct the sequence with
at least 600 frames. In the end, they obtain 10 sequences with an average of 900
frames.
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Figure 2.9: Examples of frames with their corresponding manually segmented
binary pixel-wise masks.

Data annotation. Being an unsupervised algorithm, the only data annotations
that were collected for testing and validation. They uniformly hold out 56 frames
on average for validation (for setting parameters) and for testing. The latter
were manually annotated with segmentation pixel-wise binary masks to assess
static/dynamic components. The test frames are not used for training such that
they can be used also to evaluate novel-view synthesis. In total, they obtained 560
manual image-level segmentation masks. An example can be see in Figure 2.9

Evaluation. The task evaluated is background subtraction. To accomplish this
they used standard segmentation metrics: each frame is decomposed in its pixels
and a mask is extracted from the predicted frame. Then it is compared with its
ground-truth calculating average precision (AP). Each AP is then averaged with
every frame and scene to obtain mean average precision (mAP).

For novel view synthesis instead, PSNR is used. Specifically, they provided,
using the ground-truth masks, the PSNR of the static and the moving parts.

Results. The experiments are based on a PyTorch implementation of the model
that has been published on https://github.com/dichotomies/NeuralDiff, more
details can be found in the paper [11].

The baselines compared are:
(1)NeRF [17] which uses a single stream to predict static scenes.
(2)NeRF-BF trains two NeRF models in parallel, one for the Background (B)

and the other for the foreground (F). The latter stream is conditioned on time
by passing a positional-encoded version of the time variable, that in this case
corresponds with the frame number. This differs from NeuralDiff time encoding
for Equation 2.11.

(3)NeRF-W [48] also contains two interlinked background and foreground
streams. It was designed to deal with image collection, so it struggles to adapt
to videos. Some adjustments were made to adapt it to this task, more details are
reported in the paper.

Qualitative Results. We report just some qualitative results to grasp the
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Figure 2.10: Three Scenes reconstruction from NeRF, NeRF-W and NeuralDiff,
NeuralDiff+C+A. It can be seen that NeuralDiff produces less ghosting artifacts,
captures most moving objects and shows more details, especially the upgraded
version.

effective results obtained from their method. In Figure 2.10 the output of the
compared methods is reported for three different scenes. It can be seen that
NeuralDiff produces less ghosting artifacts, captures most moving objects and
shows more details, especially the upgraded version. In particular: NeRF struggles
with the dynamic components and creates blurry reconstructions; NeRF-W obtains
sharper static images but still struggles with dynamic regions; NeuralDiff produces
sharper results but the upgraded version captures more details, such as the arms in
the first scene or the spoon in the second. Another qualitative result is shown in
Figure 2.11. In the best segmentation case for NeuralDiff+A, NeRF-WW creates
noisy results, where the plate, the pasta colander, and the actor’s body are barely
captured. NeuralDiff instead manages to capture all moving objects and more body
parts but misclassifies the floor as foreground. NeuralDiff-A better estimates the
shape of the actor’s body (second and third row) and correctly recognize the floor
as static.

For the failure case instead, NeuralDiff still beats NeRF-W. In detail, NeRF-
W fails to recognize any foreground object. NeuralDiff performs a little better
by discriminating some foreground objects but still including some of the static
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Figure 2.11: Segmentation Masks. Here the masks for which NeuralDiff scored
best (top 4 rows) and worst (last 2 rows) are reported.

background as foreground (e.g. last row, part of the sink is reported as foreground).
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Chapter 3

Datasets

In this chapter, we are going to present some of the currently largest egocen-
tric datasets. Following a chronological order we started by introducing EPIC-
KITCHENS in Section 3.1 upon which the remaining are built. EPIC-KITCHENS
100 in Section 3.2 is an enlargement of its data. EPIC-Fields in Section 3.3 extends
its frames with 3D camera information while at Section 3.4 VISOR introduces pixel
segmentation annotations.

3.1 EPIC-KITCHENS
EPIC-KITCHENS [14] is the largest and most varied dataset in egocentric vision
up to our knowledge. It contains 55 hours of annotated video data recorded by a
head-mounted camera of nonscripted actions, meaning that the actors were not
following any scripted actions (we will see this in more detail later).

3.1.1 Motivation
EPIC-KITCHENS was born to fill the gap in the scarcity of annotated video
datasets. As a leading comparison, at the time of writing significant progress has
been seen in many domains such as image classification [52], object detection [53],
captioning [54] and visual question answering [55]; due to the advances in deep
learning but mainly due to the availability of large-scale image benchmarks such as
PASCAL VOC [56], ImageNet [57], Microsoft COCO [58], ADE20K [59]. In the
same way, the authors thought that introducing a large-scale video dataset could
contribute to the development of video domains.

Some video datasets were already available for action classification [60, 61, 62,
63, 64] but, a part from [63], these all contain very short videos, focusing on just a
single action. A solution to this problem was given by Charades [65] where 10k
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Dataset Ego? Non-
Scripted?

Native
Env? Year Frames Sequ-

ences
Action

Segments
Action
Classes

Object
BBs

Object
Classes

Partici-
pants

No.
Env.s

EPIC-KITCHENS ✓ ✓ ✓ 2018 11.5M 432 39,596 149∗ 454,255 323 32 32
EGTEA Gaze+ [16] ✓ × × 2018 2.4M 86 10,325 106 0 0 32 1
Charades-ego [41] 70%✓ × ✓ 2018 2.3M 2,751 30,516 157 0 38 71 N/A
BEOID [6] ✓ × × 2014 0.1M 58 742 34 0 0 5 1
GTEA Gaze+ [13] ✓ × × 2012 0.4M 35 3,371 42 0 0 13 1
ADL [36] ✓ × ✓ 2012 1.0M 20 436 32 137,780 42 20 20
CMU [8] ✓ × × 2009 0.2M 16 516 31 0 0 16 1
YouCook2 [56] × ✓ ✓ 2018 @30fps15.8M 2,000 13,829 89 0 0 2 K N/A
VLOG [14] × ✓ ✓ 2017 37.2M 114 K 0 0 0 0 10.7 K N/A
Charades [42] × × ✓ 2016 7.4M 9,848 67,000 157 0 0 N/A 267
Breakfast [28] × ✓ ✓ 2014 3.0M 433 3078 50 0 0 52 18
50 Salads [44] × × × 2013 0.6M 50 2967 52 0 0 25 1
MPII Cooking 2 [39] × × × 2012 2.9M 273 14,105 88 0 0 30 1

Table 3.1: Comparative overview of relevant datasets (action classes with > 50
samples)

videos have been collected of humans performing daily tasks at home. The problem
with this dataset is that the actions recorded were scripted, meaning that the actor
had a text in which he was asked to perform some steps. In this way the actions
lose their naturalness, their inbred evolving and multi-tasking properties.

To solve these problems they decided to focus on first-person vision, such that
the recording would not interfere with the actor’s actions, increasing the possibility
of a successful recording. Also, the viewpoint given by first-person vision allows
us to record multi-task actions and the many different ways to perform a variety
of important everyday tasks. In Table 3.1 we report a summary of the datasets
compared by the authors.

3.1.2 Data collection
The data collection involved 32 people in 4 cities in different countries (in North
America and Europe): 15 in Bristol/UK, 8 in Toronto/Canada, 8 in Catania/Italy
and 1 in Seattle/USA between May and Nov 2017. Participants were asked to
record each time they visited the kitchen for three consecutive days, starting filming
just before entering the kitchen and stopping before leaving it. They participated
in the process of their own free will without being paid in any way.

A few requests were asked of them. The first was to be in the kitchen alone
during the recording, such that no inter-person interaction could interfere. The
second one instead was to remove all items that could disclose their identity, for
example, portraits or mirrors. In this way, they could remain anonymous.

Each participant was equipped with a head-mounted camera with adjustable
mounting such that it could be adapted to the participant’s height and possibly
different environment. They had to check, before each recording, the battery life
and the viewpoint, such that their stretched hand were approximately located in
the middle of the camera frame. The camera settings were set for most of the
videos to a linear field of view, using 59.94fps as frame rate and Full HD resolution
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Figure 3.1: Top (left to right): time of day of the recording, a pie chart of high-
level goals, histogram of sequence durations and dataset logo; Bottom: Wordles
of narrations in native languages (English, Italian, Spanish, Greek and Chinese).
Figure from [14].

of 1920x1080, however some subjects made minor changes like wide or ultra-wide
FOV or resolution. In particular, 1% of the videos were recorded at 1280x720 and
0.5% at 1920x1440. Also 1% at 30fps, 1% at 48fps and 0.2% at 90fps.

On average, each participant recorded 13.6 sequences, each of those lasting on
average 1.7 h while the maximum duration recorded was 4.6h. The duration of the
recording was linked to the person’s kitchen engagement. In Figure 3.1 we can see
some statistics of the data acquired.

3.1.3 Data Annotation pipeline
After the end of a sequence, each participant was asked to watch the recording and
narrate verbally the actions carried out to a microphone. The sound narration was
chosen because it was faster than a written one, and participants were thus more
willing to provide these annotations. The guidelines for narrations are reported in
Figure 3.2.

The most used language was English, but other languages were used, if the
participant was not so fluent in English. In particular a total of 5 languages were
used: 17 people narrated in English, 7 in Italian, 6 in Spanish, 1 in Greek, and 1 in
Chinese.

The motivation to obtain the narrations directly from the actors was because
they surely knew what they were doing, avoiding misinterpreting some possible
actions. The posthumous narration was instead motivated by the fact that actors
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Figure 3.2: Narration Guidelines are given to each participant to be followed
after the completion of a recording. Figure taken from [14]

Figure 3.3: Extracts from 6 transcription files in .sbv format. Figure from [14].

could perform their actions most naturally, without being concerned about labeling.
The second step of annotations consists of the transcription of the speech

narrations. After testing some automatic audio-to-text algorithms, which led to
inaccurate transcriptions, they opted for manual transcriptions and translation via
Amazon Mechanical Turk (AMT), a crowdsourcing marketplace that allows them
to do tasks that computers are still unable to complete. More in-detail requests
to AMT are called HIT (Human Intelligence Tasks). To ensure consistency, the
authors divided speeches into chunks of around 30 seconds by also removing silent
parts and sent each chunk 3 times as HIT. In this way, they selected just HIT
which had a correspondence. An example of transcription is shown in Figure 3.3

In the end, they collected 39,596 action narrations, corresponding to a narration
every 4.9 seconds in the video. These narrations gave them a good starting point for
labeling all actions with a rough temporal alignment, obtained from the timestamp
of the audio narration Concerning the video, they still were not perfect. In fact:

• The narrations can be incomplete. So only narrated action will be considered
in evaluation.

• The narration can be belated after the action takes place.

• The narration consists of participants’ vocabulary and free language. Similar
terms have been grouped into minimally overlapping classes.
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Figure 3.4: Example of verbs and nouns classes clustered in wider groups. Figure
taken from [14]

It is worth adding a few words about verb and noun annotations. Due to the
freedom of terms and language, a variety of verbs and nouns have been collected. To
reduce the number of them, they grouped these into classes with minimal semantic
overlapping. More in detail, as regards verbs, they tried using automatic tools to
cluster them but ended up manually clustering, due to the inefficient results; on the
other hand nouns semi-automatically cluster them, preprocessing the compound
nouns e.g. “pizza cutter” as a subset of the second noun e.g. “cutter” and also
manually adjusting the clustering, merging the variety of names used for the same
object, e.g. “cup” and “mug”. In total, they obtained 125 verb classes and 331 noun
classes. In Figure 3.4 we can see some examples of grouped verbs and nouns into
classes, while in Figure 3.5 the authors show the verb classes ordered by frequency
of occurrence in action segments, as well as the noun classes ordered by a number
of annotated bounding boxes.

In addition to verb and noun annotations they also provide active object bound-
ing box annotations. Similarly to verbs and nouns, they use AMT also for this
task. Where each HIT aims to get an annotation for one object, for a maximum
duration of 25 seconds, which corresponds to 50 consecutive frames at 2fps. The
annotator can also state that the object is inexistent in at frame f. In total they
collected 454,255 bounding boxes, some examples are provided in Figure 3.6.

3.1.4 Benchmarks and baseline results

The introduction of a new video dataset implies a variety of potential challenges
that were not available before. Some of these are routine understanding, activity
recognition, and object detection. To spur the beginning the authors define the
previously stated three challenges, providing baseline results. In the following
paragraphs we provide an overview of the challenges.
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Figure 3.5: From Top: Frequency of verb classes in action segments; Frequency
of noun clusters in action segments, by category; Frequency of noun clusters in
bounding box annotations, by category; Mean and standard deviation of bounding
box, by category. From [14]

Action recognition challenge Provided a trimmed action segment, the chal-
lenge requires to recognize what action class is performed, detecting the pair of verb
and noun classes that compose the action. To participate in the challenge is asked
to test the model on both splits1 and for each test segment report the confidence

1To test the generalizability to novel environments they structured the test set to have a
collection of seen and unseen kitchens.
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Figure 3.6: Sample of consecutive action segments with keyframe object annota-
tions from [14]

Figure 3.7: Sample qualitative results from the challenge’s baseline of the Action
Recognition Task

scores for each verb and noun class. In Figure 3.7 is reported a qualitative example
of the task.

Action anticipation challenge Provided an anticipation time, which is 1s
before the action starts, the challenge consists of classifying the future action into
its action class composed of the pair of verb and noun classes. To participate in
the challenge is asked to test the model on both splits and for each test segment
report the confidence scores for each verb and noun class. In Figure 3.8 is reported

• Seen Kitchens (S1): In this split each kitchen is seen in both training and testing.
• Unseen Kitchens (S2): This divides the participants/kitchens so all sequences of the

same kitchen are either in training or testing.
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Figure 3.8: Sample qualitative results from the challenge’s baseline of the Action
Anticipation Task

Figure 3.9: Sample qualitative results from the challenge’s baseline of the Object
Detection Task

a qualitative example of the task.

Object Detection Challenge This challenge is required to perform object
detection and localization. It must be noted that the annotations captured only
active objects, namely objects involved in the action. To participate is required
to provide predicted bounding boxes and their confidence scores on both dataset
splits. In Figure 3.9 a qualitative example is reported.

Dataset release

• Dataset sequences, extracted frames, and optical flow are available at:
http://dx.doi.org/10.5523/bris.3h91syskeag572hl6tvuovwv4d
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• Annotations, challenge leader-board results and updates and news are available
at http://epic-kitchens.github.io

3.2 EPIC-KITCHENS 100
In 2021 with [66] a new pipeline is introduced to extend the EPIC-KITCHENS
dataset. EPIC-KITCHENS-100 collects 100 hours, 20M frames, 90k actions in
700 variable-length videos, capturing long-term unscripted actions in 45 different
environments using head-mounted cameras. Due to its novel annotation pipeline,
which will be described more in detail later, more complete annotations of fine-
grained actions are available, allowing the creation of new challenges such as action
detection2 , cross-modal retrieval (e.g. Audio-Based Interaction Recognition) and
domain adaptation3.

3.2.1 Motivation

The introduction of EPIC-KITCHENS has transformed egocentric vision, showcas-
ing the unique potential of first-person views for action recognition and in particular
hand-object interactions. To continue on this previously marked path they decided
to enlarge EPIC-KITCHENS, maintaining the unscripted and unedited object
interactions nature. The unscripted characteristics make the dataset result in an
unbalance of data, with novel compositions of actions in new environments, making
it a challenging dataset for domain adaptation.

The most important novelty is the new annotation pipeline which allows to
obtain denser and more complete actions’ annotations in the recorded videos,
enabling different tasks on the same dataset.

3.2.2 Data collection

The additional videos were obtained by half of the previous participants, 16 persons,
half of the 32 previously involved, and 5 new additional subjects. In the end, the
total number of participants reached 37 and the different kitchens were 45.

The new request for the subjects was to record 2-4 days of their kitchen routine.

2Action detection involves both recognizing the action and localizing the temporal intervals
and spatial regions where the actions occur in a video.

3Training on a domain, e.g. a specific kitchen, and test on another domain, e.g. a kitchen of a
different person.

48

http://epic-kitchens.github.io


Datasets

Figure 3.10: Annotation pipeline from [66]: a narrator, b transcriber c temporal
segment annotator and d dependency parser. Red arrows show AMT crowdsourcing
of annotations.

3.2.3 Annotation

An overview of the pipeline taken from the paper is reported in Figure 3.10.

Narrator The non-stop audio narration has been replaced with a pause-and-talk
approach. By pausing the narrator can propose an initial temporal "pointing" but
mostly avoids to miss or misspoke some actions due to lack of time. He does not
have to narrate past actions while watching future actions, so short and overlapping
actions are easier to annotate.

For this, an interface was built for the participants, which can be seen in
Figure 3.10(a). An important new feature is the possibility to re-record and delete
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a narration.

Transcriber Each narration is first transcribed and then translated into English
by a hired translator for correctness and consistency. The transcription process
has been facilitated by providing a new transcriber interface showing three images
sampled around the time stamp. As a matter of fact, in the old EPIC-KITCHENS
transcriptor struggled to understand some of the narration without any video
context.

Each narration was analyzed by 3 AMT workers using a consensus of 2 or more
workers. A transcription was rejected if its Word2Vec [67] embeddings were lower
than a threshold of 0.9. In case of consensus failure, the transcription was selected
manually.

Parser They used spaCy (https://spacy.io) to parse the transcriptions into
verbs and nouns. Then they manually grouped those into minimally overlapping
classes.

Temporal Annotator They built an AMT interface for the start/end times of
action segments (see Figure 3.10.d). To improve the quality this time the number
of workers was increased from 4 to 5.

Quality improvements The attention cared for during the annotation process
led to denser and more accurate annotations. We can see the results by comparing
the same action and their respective annotation from the two different pipelines in
Figure 3.11.

3.3 EPIC-Fields
The necessity of suitable datasets and benchmarks in the unified problem of 3D
geometry and video understanding, which has been pushed by Neural Rendering
(See Section 2), led to the rise of EPIC Fields [68]. EPIC Fields is an expanded
version of EPIC-KITCHENS comprehending 3D camera information. 96% of
EPIC-KITCHENS videos were reconstructed, registering 19M frames in 99 hours
recorded in 45 kitchens.

EPIC-KITCHENS is suited for studying the unified problem of geometric
reconstruction and semantic understanding. As a matter of fact, egocentric videos
are relevant to mixed and augmented reality applications which have spread in the
last years, and the videos probe dynamic neural reconstruction due to their length
(up to one hour) and their dynamic nature.
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Figure 3.11: Comparing non-stop narrations (blue) to “pause-and-talk” narrations
(red). Right: timestamps (dots) and segments (bars) for two sample sequences.
“pause-and-talk” captures all actions including short ones. Black frames depict
missed actions. Figure from [66].

Anyway obtaining camera information from EPIC-KITCHENS is difficult due
to the complexity of its videos. Removing this step the authors try to ease the
research by marrying 3D geometry to video understanding.

In conclusion, they made two contributions:

• Intelligent Subsampling of frames for SfM algorithms

• Introduce a set of benchmark tasks:

– dynamic novel view synthesis: reconstruct the same scene from a different
point of view.

– identifying independently from the camera moving objects
– segmenting independently from the camera moving objects
– video object segmentation.

3.3.1 Data
Some of past egocentric datasets [69, 70] contain static 3D scans of the environment,
separately reconstructed from the actions. This additional step is an additional
expense both in time and money since the reconstructions are done with some
dedicated costly hardware. In this work, they provide a pipeline to extract the
geometric reconstruction of the scene by just processing the egocentric video.
EPIC Fields extends EPIC-KITCHENS (See Section 3.2) to include camera pose
information. For each frame camera, extrinsic and intrinsic parameters are provided,
which enable tasks like 3D reconstruction. In total, they successfully processed 671
videos resulting in 18,790,333 registered video frames with estimated camera poses.
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Motivation. The 3D reconstruction could help recognize different actions. Some
actions could be located in the same 3D spot, e.g. washing the dishes at the sink.
Also, the construction of this dataset could enable studying the relevance of 3D
egocentric trajectories to actions (for anticipation), objects (for understanding
object state changes) and hand-object understanding.

Collection Since EPIC-KITCHENS did not collect videos with 3D reconstruction
in mind, its videos are difficult to reconstruct. Structure from Motion algorithms
takes as assumption that the recorded scene is static, meaning that each object
will always have the same position in 3D. However, the kitchen’s activities involve
the movement of objects like ingredients or utensils, and above all the presence of
the operating hands.

Some other difficulties are introduced by:

• the length of videos: which on average last 9 mins

• the skewed distribution of viewpoints: the time spent in different parts
of the scene is different. In particular, we have alternating phases of small
motion around hot spots, e.g. washing dishes, and of fast motions, like taking
something to finish some task.

The solutions to these problems were given by:

• Intelligent subsampling of video frames.

• Using SfM for reconstructing the filtered frames.

• Registering remaining frames to the reconstruction.

Subsampling This step aims to reduce the number of frames while keeping
enough overlapping viewpoints for accurate reconstruction while diminishing the
viewpoint skew. Overlap is measured,citing [68] ’by estimating homographies on
matched SIFT features. Given a homography H, we define visual overlap r as the
fraction of image area covered by the quadrilateral formed by warping the image
corners by H. Windows is formed greedily, finding runs of frames (i+1,...,i+k) with
overlap r ≥ 0.9 to the first frame i. Filtering discards about 81.8 % of frames.

Once filtered, frames are fed to COLMAP (Its functioning is reported in Sec-
tion 1.2.5).

Dense reconstruction, automated verification, and restart The remaining
frames are fed to COLMAP with initial reconstruction. The final reconstruction
is accepted if over 70% of the frames are registered successfully. In the end, 631
videos were obtained.
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In case of failure, the threshold r is increased,e.g. r≥0.95. This usually results
in doubling the frames but increasing the success rate to 96%.

3.3.2 Benchmarks
The authors defined three new benchmarks to explore the combination of 3D and
video understanding.

New-View Synthesis (NVS)

Given a reconstruction based on a subsample of frames, the goal is to predict new
video frames based on their timestamps and camera parameters. The quality of the
reconstruction is evaluated as proposed in [17], measuring the Peak-Signal-to-Noise
Ratio (PSNR) of the reconstructed frames compared to the real ones, making the
lack of a 3D ground truth irrelevant.

Video and Frame Selection. Due to the computationally expensive cost of
Neural Reconstruction, they provided a benchmark of limited selection of videos,
namely 50 for a duration of 14.7 hours and 2.86M registered frames.

Frame selection instead is needed to divide the data into train and evaluation
splits. The evaluation frames were divided into three tiers of difficulty:

• In-Action (Hard): frames belonging to an annotated action segment. During
an action, it is likely that objects in the scene are moved making it difficult to
reconstruct.

• Out-of-Action: frames NOT belonging to an annotated action segment.
These frames can be further divided into:

– Easy: Frames for which exists a neighboring frame in the training set.
The temporal proximity should ease the process of reconstruction.

– Medium: Frames for which do not exist a neighboring frame in the
training set.

Benchmark methods. Three different neural rendering techniques were used
to illustrate their possibilities and limits in such challenging scenarios like EPIC
Fields. The methods used were:

• NeuralDiff [11]: consists of three different NeRFs, each one tailored to a
part of the scene: static background, moving foreground, and the actor. See
Section 2 for more details.

• NeRF-W [51]: extend NeRF abilities by learning a low latent space that
can modulate scene appearance and geometry. As a result, it can separate
static and transient components.
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Figure 3.12: Dynamic New View Synthesis. Example from [68] of the
output for the three different methods used: NeRF-W, T-NeRF+ and NeuralDiff.
We can see how the initial labeling of difficulty for frames was accurate as the
reconstructions struggle with Hard frames.

• T-NeRF+ [71]: time conditioned NeRF at which was added another NeRF
to model the static background.

Unsupervised Dynamic Object Segmentation (UDOS)

In Unsupervised Dynamic Object Segmentation (UDOS) the objective is to find
those regions in each frame that correspond to dynamic objects. The lack of a 3D
ground truth makes 2D segmentation accuracy the only way to assess the model.
In particular, mean average precision (mAP) was used, as proposed in [11].
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Figure 3.13: UDOS. Comparison,reported from [68], of the different methods’
output. The 2D-based performs very well on dynamic objects, while 3D methods
struggle a bit but can detect even semi-static objects.

Video and Frame selection. The used videos were the same as NVS, with
the difference that only In-Action frames were considered, with VISOR annotations
as ground truth. Actually, VISOR annotations were processed in the following
way: the original masks were converted into foreground-background masks in three
different ways, depending on the type of objects present.

• Dynamic objects only setting: a dynamic object is an object that is currently
being moved by visible hands.

• Dynamic and semi-static objects setting: objects that moved, not neces-
sarily in the current frame, are semi-static objects.

• Dynamic and semi-static excluding body parts setting: active hands
are excluded, as some methods overfit to predicting hands solely as dynamic
objects, ignoring other moving objects.

As Baseline methods, the authors used 4 methods: three based on 3D neural
rendering techniques (NeRF-W, T-NeRF, NeuralDiff) and one based on 2D optical
flow (Motion

Grouping (MG) [72]. The results are shown in Figure 3.13. It is worth noting
how 3D methods are better at discovering semi-static objects. However none of
the 3D methods explicitly consider motion and this can be seen as MG performs
better on purely dynamic motion, due to the input being the optical flow.

Semi-Supervised Video Object Segmentation (VOS)

Semi-supervised video object segmentation is a standard video understanding task
that consists of propagating some given masks for one or more objects in a reference
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frame to the subsequent ones. Usually, this task is performed by 2D models but
here the authors show how integrating the third dimension could be beneficial.
The idea is to project the 2D mask in 3D, fixing its position in the 3D scene and
reprojecting it depending on the new camera position.

Two baselines were provided, a 2D and a 3D one. In Figure 3.14 we can see the
results and how the intuition previously described led to a good improvement.

Figure 3.14: VOS. Comparison of the two different methods taken from [68].
The 3D method is better at having as output something close to the ground truth.
The 2D method instead is performing poorly.

3.4 VISOR

VISOR [73] is an extension of the EPIC-KITCHEN dataset introducing pixel
annotations and a benchmark suite for segmenting hands and active objects. In
particular segmentation annotations are provided in a sparse way, meaning that
not every frame is segmented at pixel level.

The authors proposed a pipeline to obtain the annotations. Namely it con-
sists of: (i) identifying active objects that are of relevance to the current action;
(ii)annotating pixel-level segments via an AI-powered interface; (iii) relating objects
spatially and temporally for short-term consistency. Some examples of annotations
are reported in Figure 3.15.

They segment each Active object, namely each object that is involved in the
current action. This is different, as we will see in later sections, from our goals,
where we just want to segment moving objects. As shown in Figure 3.15, most of
the time, when cooking the gas stove is segmented but it is not dynamic. Or as
another example. if an object that is not involved in the current action is moved
it would not be segmented (e.g. move a chair while getting something from the
pantry).
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Figure 3.15: VISOR Annotations and Benchmarks. Sparse annotations of
the P06-03 scene, where flour becomes dough in the end. Each color represents a
different object. In the bottom part, the three proposed challenges are reported for
the current scene. Namely: Semi-Supervised Video Object Segmentation (VOS),
Hand Object Segmentation (HOS) and Where Did This Come From (WDTCF).
Figure taken from [73].

3.5 Other egocentric datasets

3.5.1 Ego4D: Around the World in 3,000 Hours of Egocen-
tric Video

Ego4D [74] is a massive-scale egocentric video dataset and benchmark suite. It
captures 3670 hours of daily life activity located in a multitude of places (outdoor,
workplace, leisure, etc.). The videos are captured by 931 different persons from 74
worldwide locations and 9 different countries. In addition to video frames, some
scenes are accompanied by audio, 3D meshes of the environment, eye gaze, stereo,
and/or synchronized videos from multiple egocentric cameras at the same event.

Furthermore, they presented new benchmark challenges centered around un-
derstanding the first-person visual experience in the past (querying an episodic
memory), present (analyzing hand-object manipulation, audio-visual conversation,
and social interactions), and future (forecasting activities).
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Figure 3.16: Aria Glasses exploded in its components.

With this work, the authors aimed to push the research into first-person percep-
tion. All the data and other information can be found at https://ego4d-data.
org/.

3.5.2 Aria Digital Twin: a new benchmark dataset for
egocentric 3D machine perception

Aria Digital Twin (ADT) [75] is an egocentric dataset captured via Aria glasses (see
Figure 3.16) with an additional object, environment, and human-level ground truth.
It comprises 200 sequences of real-world actions performed by Aria wearers in two
real indoor scenes. Each sequence is composed of: 1) raw data of two monochrome
camera streams, one RGB camera stream, and two IMU (inertial measurement
unit) streams; 2) sensor calibration; 3) ground truth data with 6-degree-of-freedom
(6DoF) poses of the Aria glasses, object 6DoF poses, 3D eye gaze vectors, 3D
human poses, 2D image segmentations, image depth maps, and 4) photorealistic
synthetic renderings.

With their work, ADT researchers want to set a new baseline in the egocentric
machine perception domain, which includes complex challenges like 3D object
detection and tracking, scene reconstruction and understanding, sim-to-real learning,
and human pose prediction; while also inspiring new machine perception tasks for
augmented reality applications. Also, they want to promote the usage of ADT data,
and to do this they created some benchmarks that demonstrate the usefulness of
the data gathered.
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Part II

Our Contribution
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Chapter 4

Methodology

Our goal is to segment, and then remove, dynamic objects in 3D from egocentric
videos and intelligently filter samples to remove redundant information. In this
chapter, we present how we exploited the presented topics and used them to
reach our goal (Section 4.1). We then describe in detail our proposed pipelines in
Section 4.2.

4.1 Goals

3D dynamic object segmentation The main goal of this thesis is to Segment
Dynamic Objects in 3D from egocentric videos and remove them from 3D recon-
structions such that we have a clean reproduction of the recorded scene. Up to
now, Structure from Motion (SfM) algorithms find it challenging to reconstruct
dynamic scenes, resulting in messy point clouds, where the same object can appear
multiple times within the scene. An explicative example is reported in Figure 4.1.
A scene where a pizza is prepared from dough is reconstructed. It is clearly visible
from the frames that the induction cooker is slowly proceeding the making of the
pizza but in the reconstruction, it is reported in its integrity. This is due to a
lack of temporal reasoning of structure from motion procedures. Also, above the
pizzas there seem to be multiple pans intersecting one with each other. Obviously,
this does not correspond to reality, but by moving of few centimeters at some
time intervals, the process registers it as a new object each time it is in a new
position. Other examples are visible like the chopping board and some objects on
the inductor stove. In this example, our goal would be to reconstruct the kitchen
cleaned of all the objects that moved during the video recording. This would be of
immense potential since any environment could be reconstructed from just a video
of it and the presence of dynamic objects/persons would not interfere with it.
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Figure 4.1: Reconstruction of a pizza preparation video. The top and bottom
frames give us a glance at the action performed during the video while the central
pointcloud highlights the problems of SfM in dynamic environments like the
superimposition of the same object on itself or the reconstruction of objects that
are not always present in the scene, e.g. the two pizzas.

Optimization The second goal of this thesis is to reduce the computational
times of the overall pipeline. As introduced in Section 2.3, our pipeline is based on
NeuralDiff [11], a neural network that learns to represent a 3D scene by adjusting
its weights. As this method is computationally expensive, our pipeline aims to
speed it up through a filtering method that reduces the number of frames while
keeping the same important information of larger samplings. This will be presented
in Section 4.3. Also, we took a a simplified version of NeuralDiff, in which the actor,
the person who is wearing the camera, the foreground, and the dynamic objects,
are fused, since for our scopes, the distinction was not needed and thus we could
remove one of the three neural radiance fields by accelerating the computations.

4.2 Pipelines
In this section, we present the actual methods that we considered and implemented
to actually achieve our goals. As we have seen from Section I, 3D dynamic object
segmentation is still an evolving field. We took inspiration from various works to
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Figure 4.2: Basic Pipeline. In the basic pipeline a video (represented by the
image of a person cooking) is reconstructed via COLMAP [15] and then fed to
NeuralDiff [11]. At this stage, the frames are decomposed into actor, foreground,
and background (as can be seen in the frames reported below NeuralDiff ). A clean
reconstruction is obtained by running another COLMAP step on the extracted
background frames.

come up with some different ideas for actually segmenting 3D dynamic objects.
All the methods revolve around a COLMAP reconstruction and a NeuralDiff [11]
renderer. The basic block would in fact be NeuralDiff but a reconstruction of the
scene with camera intrinsic and extrinsic parameters is required to correctly locate
the images in the 3D space.

Colmap Pipeline The first and most trivial idea is to reconstruct the scene with
the SfM algorithm, COLMAP, and then separate the static and dynamic objects in
2D on the frames using NeuralDiff [11]. Once the cleaning has been done we could
reconstruct from the cleaned frames the static scene. In Figure 4.2 is reported the
pipeline of this first approach.

Monocular Pipeline Yet, the previous method is not optimal because we have
two COLMAP steps, which are computationally expensive, and one of NeuralDiff,
which is computationally expensive too. In order to improve it we present a second
pipeline that we call Monocular pipeline. This pipeline removes the last COLMAP
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step by using a pre-trained neural monocular depth estimator [16]. This last module
extracts pixels depth from each frames, then, using geometric projections, we obtain
the 3D projection, if camera instrinsic and extrinsic parameters are provided.

Recalling Section 1.1, if we have a depth map Z and zi the depth of the i pixel,
we can project it in the 3D camera’s coordinate system using the following relations:


xc = (u − cx) zi

fx

yc = (v − cy) zi

fy

zc = zi

(4.1)

where u and v are respectively the pixel coordinates and cx and cy are the principal
point coordinates. We can then move on to the world reference system by using
the camera extrinsic parameters, that encapsulate the rotation matrix R and the
translation vector t in itself:

Extrinsic =
[
R3x3 t3x1
01x3 11x1

]

obtaining the final coordinates as:
 xw

yw

zw

 = R

 xc

yc

zc

+ t (4.2)

In this way, we could train NeuralDiff, after obtaining a reconstruction of the
scene included, and project the dynamic-segmented pixels into 3D space. Then to
segment dynamic objects in 3D we take all the points of the COLMAP pointcloud
that are at a distance less than a predefined value from the dynamic-projected
points and classify them as moving. We remark that the projection of the pixels
in the 3D space does not correspond to the COLMAP reconstruction as they
are the result of two different processes. If we consider ppixel a point projected
from dynamic pixels to the world coordinate system and pcol a point in the world
coordinate-system belonging to the initial reconstruction, we can label it following
these relations:

pcol =
{

dynamic if d(ppixel, pcol) ≤ ς
static if d(ppixel, pcol) ≥ ς

(4.3)

where d(·, ·) is an euclidean distance and ς represent the predefined threshold.
Reconstruction points arising from moving objects are expected to be in the same
positions or at a close distance from the dynamic-projected ones. The same could
be done with static points. This second pipeline is reported in Figure 4.3.
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Figure 4.3: Monocular Pipeline. The monocular pipeline shares the first
part with the basic pipeline. A video is reconstructed via COLMAP and fed to
NeuralDiff. The difference is that here the dynamic layers are projected in 3D and
points closer than a distance ς are segmented as dynamic. The red dots represent
the pixel projected in the scene in the top image while in the bottom represents
the dynamic labeled points of the COLMAP reconstruction.

Figure 4.4: Overview of NeuralDiff. Given only the camera viewpoint gt and
a frame specific code zf

t (learned latent variable), the NeuralDiff three stream
architecture learns to predict the color value of pixel xut by combining information
coming from the static model of the background, and from two dynamic components,
one for the foreground objects, and one for the actor. Figure reported from [11].

NeuralDiff Pipeline The last pipeline instead takes advantage of the intrinsic
knowledge of NeuralDiff, removing the necessity of the last step, being that SfM or
a depth extractor. We recall the functioning of NeuralDiff in Figure 4.4. Given

64



Methodology

a video sequence x NeuralDiff works with single pixels xut extracted from each
frame xt. For each training step it is required to provide the camera viewpoint gt,
the viewing direction dt, and the frame-specific code, which represents the time
evolution of the video. The model then, via three different Multi-Layer-Perceptrons
(MLPs), learns to map the position of a queried 3D point to its corresponding color
ck and opacity σk for each layer, namely static, foreground, and actor, as if it is seen
from that specific camera. This is obtained by querying multiple points sampled
on the ray cast from the camera to the pixel and by minimizing the reconstruction
error ∥xut − x̂ut∥ between the true pixel xut value with and the predicted one x̂ut,
that is obtained as:

x̂ut = fu(gt, zt) =
M∑

k=0
vk(

∑
p∈S

wp(Tk)cp
k) where vk =

k−1∏
q=0

∏
p∈S

T p
q (4.4)

where fu(gt) is the function that maps the viewpoint to the single pixel u, Ti

is the probability of a photon to be transmitted, zt is the frame specific-code
and S = {b, f, a} is the components involved (e.g. background and foreground:
S = {b, f}). The factor vk requires a photon to be transmitted from the camera to
point rk through different materials. The weights wp(Tk) mix the colors based on
point densities:

wp(Tk) = σp
k∑P

q=1 σq
k

(1 −
P∏

q=1
T q

k ) (4.5)

This means that after training we are already grasping the 3D structure of the
scene. In addition, the scene is divided in its motion components by the MLPs
and any additional step would be unnecessary. To segment and remove dynamic
objects, we took the MLP that encodes the static part of the scene and queried
the points that were reconstructed in the beginning. The static MLP should give
opacity, or density, only to points that were still in the scene while the opacity of
any point that belonged to any moving object should be close to zero, as they are
encoded by the other MLPs. Any point p is then labeled as:

p =
{

dynamic if σb ≤ τ
static if σb ≥ τ

(4.6)

where σb is obtained from (σb, cb) = MLP b(p, dt), b in apex stays for background,
and τ is a threshold to decide under which the opacity is relevant. In our tests we
chose τ experimentally, looking how the varying threshold affected qualitatively te
scene reconstruction.

The overall pipeline can thus be simplified as in Figure 4.5, and it is referred to
as NeuralDiff-Pipeline.
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Figure 4.5: NeuralDiff Pipeline. In this pipeline we obtain the three motion
layers as in the other methods but the segmentation is performed by querying the
static neural renderer with the positions of the points belonging to the COLMAP
reconstruction. Each point is segmented as a dynamic if its density is less than a
predefined value.

NeuralCleaner The last modification that we made was to remove the distinction
between the actor and the foreground, combining them into a single stream. The
foreground MLP is thus now responsible for capturing every moving object. Since
it was out of our scope to distinguish between these two layers,we reduced the
computational times by removing one of the three neural streams of NeuralDiff.
In Figure 4.6 we show the resulting architecture for the proposed model. This
pipeline has been named Neural Cleaner. The decision process is the same as the
NeuralDiff pipeline and can be seen in Equation 4.2.

4.3 Filtering
The filtering method consists of seeking temporal windows where frames are
overlapped and keeping just a frame per window. The overlap is computed by
estimating homographies 1 on matched SIFT (see Section 1.2) features. In Figure 4.8
some examples of overlaps are visualized.

1A homography is a transformation that maps points from one image to corresponding points
in another image.
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Figure 4.6: NeuralCleaner Architecture. Given only the camera viewpoint gt

and a frame specific code zf
t (learned latent variable), the NeuralCleaner two-stream

architecture learns to predict the color value of pixel xut by combining information
coming from the static model of the background, and from the dynamic component,
which is unique in this case. The parameters of this model are learned using a
probabilistic loss L.

EF Sampling. This technique was proposed in EPIC-Fields [68] to obtain
accurate 3D reconstructions from egocentric videos, which present the challenging
problems of dynamic objects, long duration video (∼ 9min on avg) and the skewed
distribution of viewpoints, namely the fact that in videos there are phases of slow
motion around hot spots (e.g. around the gas stove) alternating to high motion in
transition actions (e.g. taking something from the pantry). The main idea was to
remove redundant frames while maintaining enough overlap and temporal coverage
to allow an accurate reconstruction. We refer to this method as EF-Sampling.

Intelligent Sampling. We took inspiration from this technique for our sampling
method that we called Intelligent Sampling. This sampling is used to keep only
important frames, trying to remove any redundant information for the neural
rendering step. The idea of maintaining important frames is different from the
SfM step. In our case, an improved set of images would minimize overlap, ensuring
comprehensive coverage of the scene. Ideally, if the images are limited in number,
they should be evenly spaced throughout the scene for optimal representation. In
this way, contrary to the idea of EF-Sampling reported in Paragraph 4.3, there
should not be any blind spot and the environment is captured in its entirety. Its
position in our pipeline is reported in Figure 4.7. The COLMAP reconstructed
frames are intelligently sampled and fed to NeuralDiff.

The actual implementation is strictly based on EF-Sampling and since its goal is
the contrary of the latter, they share part of the method. Intelligent sampling given
a set of N frames performs an EF-sampling with an overlap threshold such that
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Video Sampled
Frames

EF Sampling NEURALDIFFCOLMAP
Intelligent
 Sampling Sampled

Frames
Reconstructed

Frames

Figure 4.7: Sampling Steps in our pipelines. The initial video is subsampled
by EF-Sampling and the resulting frames are fed to COLMAP. Once COLMAP
reconstructed the scene these frames are again subsampled via Intelligent Sampling
and fed to NeuralDiff.

Figure 4.8: Example of overlapping frames (X and Y). The dot represent the
features extracted. The left and central examples present the same level of overlap
even though the image frames are closer together in the central example because
the number of features shared is the same. The right examples instead present a
higher level of overlapping due to the bigger number of features.

it gives N − Ndesired frames. These frames are then discarded and the remaining
Ndesired frames are kept.

AU Sampling. We also tried a less rigid approach with the AU Sampling. This
other method is a hybrid of Intelligent Sampling and uniform sampling (which
is the baseline we tried to improve). In AU Sampling, we perform an Intelligent
Sampling taking more than Ndesiredframes. The Ndesired frames are then uniformly
extracted from this larger set. In this way, we keep some overlapping frames by
increasing the threshold and then obtain equitemporal-spaced samples from the
entire duration of the video.
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Chapter 5

Experiments

In this chapter we will present: in Section 5.1 the data used for the actual testing
of our proposed pipelines and the metrics we will be using to assess our results;
in Section 5.3 the results from COLMAP reconstructions and some exploration
on changing some experimental parameters, accompanied by some qualitative
visualization; in Section 5.4 the Monocular pipeline results; in Section 5.5 our
sampling strategy results compared with the Uniform one; and in Section 5.6 the
NeuralDiff pipeline results.

5.1 Data selection

The data selection was dictated by our problem. Indeed evaluating 3D scenes
reconstructions is not an easy task due to the lack of 3D ground-truths. These are
usually very expensive due to costly hardware scanners but sometimes are also not
available, as in our scenario, where we would like a static-dynamic segmentation.
In our case obtaining the static part would mean to clean the scene from all the
possible moving objects which adds an extra cost in terms of time, but in other
scenarios ’cleaning’ the environment could not be allowed.

EPIC-Diff. For this fact we evaluated our scene reconstructions on a subsample of
the EPIC-KITCHENS extension proposed in NeuralDiff [11], known as EPIC-Diff.
In this extension, the authors of NeuralDiff added manually pixel-wise segmented
masks for ten scenes of which we just considered the P01-01, P03-04, P04-01,
P09-02, P16-01, P21-01 scenes.
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Figure 5.1: Two frames from EPIC-Diff and their corresponding manual dynamic
(in white)/background (in black) segmentation masks.

5.2 Metrics
As regards metrics we looked in literature for a way to evaluate our results but
unfortunately each method involved a ground truth which for our dataset is not
available. Possible ways to obtain a groundtruth could be manual annotations or
simulating the environments. Both these two methods would take a considerable
large amount of time and are also beyond the scope of this thesis.

For this reason we ended up by using the metrics proposed in [11], exploiting their
manually segmented frames as annotations, of which two examples are reported in
Figure 5.1, where the white pixels corresponds to moving objects.

These are: PSNR and mAP.

5.2.1 PSNR: Peak signal-to-noise ratio
The Peak Signal-to-Noise Ratio (PSNR) [76] is a metric commonly used in image
and video processing to quantify the quality of a reconstructed or processed signal,
like an image or video. It gives a measures of the ratio between the maximum
possible power of a signal (MAX) and the power of the distortion or noise that
affects the signal (MSE).

The formula for PSNR is usually expressed in decibels (dB) and is given by:

PSNR = 20 · log10

(
MAX
MSE

)

where:

• MAX is the maximum possible pixel value of the image (1 in our case).

• MSE is the Mean Squared Error, which represents the average squared differ-
ence between the original signal and the reconstructed or distorted signal.

It is worth noting that a high PSNR does not guarantee that the processed
signal will be perceived as visually pleasing or high-quality by humans, especially
in the case of perceptually sensitive applications like image and video compression.
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Figure 5.2: Example of Precision-recall curve. We can see how the bottom line
model represents the worst a model can perform, e.g. predict every sample as it
is coming from the same class,if the dataset is balanced. A better model would
tend to the upper-right corner, which instead represents the best possible model, a
model that have maximum precision and recall.

5.2.2 AP: Average Precision
Average Precision (AP) is a metric commonly used in object detection and infor-
mation retrieval to evaluate the performance of machine learning models [77]. It
measures the precision-recall trade-off of a model.

It can be useful to remind what Precision and Recall are. Namely:

Precision = TP

TP + FP
(5.1)

Recall = TP

TP + FN
(5.2)

where:

• TP=True positive

• FP=False positive

• TN=True negative

Average precision is then computed as the area below the precision-recall curve,
specifically the curve obtained by varying the confidence threshold of the inference
model as shown in Figure 5.2. That is why it can also be found in literature as AUC
(Area Under Curve). Its scalar value summarize the precision-recall performance of
the model. A higher AP is desirable, indicating a model that effectively retrieves
relevant instances while minimizing false positives.
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5.3 COLMAP Reconstruction
Once we had fixed the data we were working on, we proceeded to do some experi-
ments on COLMAP reconstructions. More precisely, we took scene P01-01 and
tried varying both the number of frames and their resolution for the reconstruc-
tion. Most of the scenes have too many frames to handle, which could result in
out-of-memory issues or at the least in a long computational time. We aimed to
find a good compromise between quality of reconstruction and computational time.

5.3.1 Results
The first thing we did was to subsample the frames using the same technique
reported in EPIC-Fields [68] and explained in Section 4.3. We report the results of
the COLMAP reconstructions both quantitatively and qualitatively.

It is worth noting a few things watching these references.

Resolution The first one is that the resolution plays an important role in the
successfulness of the reconstruction as we can see from Table 5.1, where the higher
number of points is obtained at the highest resolution. The same subsample of
frames is reported and the right one at a resolution of 114x64 failed. This is due to
the feature extractor, which in a high-resolution image can retrieve information
that instead is lost in low-resolution frames. A lack of significant features means no
matching between images so the reconstruction has very few frames matched. The
qualitative results of changing the resolution during the COLMAP reconstruction
are shown in Figure 5.4, where we can see two different resolutions in comparison.
It can be seen that a higher resolution allows a denser pointcloud.

Amount of frames The second thing is that the higher the frames the better.
In Table 5.2 we can see on each row the distinct steps COLMAP performs during
a reconstruction and their duration for each different subsample reported in each
column (the columns’ names are in the form “P01_01_xx” where xx represent
the subsample, e.g. P01_01_08 is the subsample of scene P01_01 having 2598
initial frames). We can see that the number of points reconstructed is correlated
to the number of the initial frames but also to the computational cost. Chances of
matching increases and also we will have more areas of the environment covered,
as shown in Figure 5.3. We can see that augmenting the number of frames more
parts of the kitchen are revealed, e.g. the round table at the center of the room,
the sideboard in front of the sink. But also some important objects that are visible
in the video, like dishes on top of the table. This is a key point to the development
of our pipeline because we need to be sure that the scene contains points deriving
from the motion of objects.
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Scene P01_01_04 P01_01_04 P01_01_04
Initial Frames 1231 1231 1231
Reconstructed Frames 765 648 6
Resolution 456x256 228x114 114x64
PCD points 629270 152763 -
Duration 1h 7min 5s 44min 14s -
Feature Extraction 16 s 7s -
Exhaustive Matcher 42s 33s -
Mapper 18min 35s 23min 57s -
Image Undistorter 1s 0s -
Patch Match Stereo 47min 1s 19min 28s -
Stereo Fusion 30s 9s -

Table 5.1: Comparison of recostruction of scene P01_01 using different resolutions.
The higher the resolution, the better. Too low resolution, as 114x64 in this case
can lead to a unsuccessful reconstruction.

Scenes P01_01_04 P01_01_06 P01_01_08 P01_01_09
Initial Frames 1231 1487 2598 5223
Reconstructed Frames 648 911 2045 4741
PCD points 152763 204024 460914 1079375
Duration 44min 14s 1h 12min 34s 3h 6min 32s 10h 41min 8s
Feature Extraction 7s 8s 13s 28s
Exhaustive Matcher 33s 49s 2min 32s 10min 22s
Mapper 23min 57s 44min 5s 2h 1min 25s 8h 18s
Image Undistorter 0s 1s 1s 2s
Patch Match Stereo 19min 28s 27min 15s 1h 1min 18s 2h 24min 16s
Stereo Fusion 9s 16s 1min 3s 5min 42s

Table 5.2: Comparison of recostruction details for scene P01_01 using different
initial frames at same resolution of 228x128. The higher the frames, the better
the reconstruction but at a higher computational cost. The columns’ names are in
the form “P01_01_xx” where xx represent the subsample, e.g. P01_01_08 is the
subsample of scene P01_01 having 2598 initial frames.

By considering these results and always keeping in mind the time of computation
at our disposal we opted to feed the next pipeline with around five thousand frames
at a resolution of 228x128. The pipeline of NeuralDiff is heavy and working at full
resolution was prohibitive in the number of experiments we could try.

In Figure 5.5, we present visualizations of other kitchen reconstructions, each
displaying the challenges of reconstructing egocentric videos due to multiple inter-
secting objects on the countertop.
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Figure 5.3: Different COLMAP pcd reconstructions changing number of samples,
that is reported after the @. Each row is the same reconstruction viewed from
different viewpoints. From top to bottom, the number of frames increases. We can
see how the number of frames positively affects the reconstruction.
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Figure 5.4: Different COLMAP pcd reconstructions changing resolution. Each
row is the same reconstructions viewed from different viewpoints. The first reports
the reconstruction for a resolution of 456x256 and the bottom one the half resolution.
It is clear how the resolution has a beneficial impact on the overall reconstruction.

5.4 Monocular Pipeline

Here I report the qualitative result obtained from the Monocular Pipeline. As
expected the results are really poor. The main reason for the failure of this technique
is due to the inaccuracy of the depth estimator. In Figure 5.6 we can see on the
right a frame (the name on top is in the form“Scene:@x” where scene represents the
scene and x represents the number of the frame) and on its left, its pixel projection
in the 3D reconstruction is reported in red, with the camera represented by the red
frustum. We can notice that in some scenes it seems to capture the main elements,
like the hands in scene P01-01 or the pot in scene P16-01. However, others like
P09-02 seem to completely get it wrong, as the smartphone is not visible in the
projection.

Once the frames are projected in the environment space we also have to find a
threshold for the distance at which a reconstruction point is labeled as dynamic or
static. This makes the pipeline highly scene-specific requiring each time a lot of
fine-tuning for a mediocre result.

Also using a distance principle for segmentation, we can see how the scene
deteriorates in this form of spherical groups of points (see Figure 5.7). In Figure 5.8
we can see how the segmentation of what is dynamic and what is static change
depending on the distance threshold. In particular, the scene taken was P03-04
and the values reported are 0.5, 5, and 20.
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Figure 5.5: COLMAP reconstructions for scenes P03-04, P04-01, P09-02, P16-
01,P21-01. Each row represents a different kitchen.
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Figure 5.6: Different scenes where monocular depth estimation was performed.
In particular on the right we can find the frame that is instead projected (in red)
on the left in the 3D reconstruction of that kitchen. The red frustum (pyramid)
represents the camera position and orientation in the space. The name on top is
in the form “Scene:@x” where scene represents the kitchen and x represents the
number of the frame.
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Figure 5.7: Dynamic points segmented on scene P01-01 using Monocular Pipeline.

Figure 5.8: Different Segmentation changing the distance threshold. Each point
is segmented as dynamic if its distance from a pixel projected in 3D space is less
than a threshold Th. The scene is P03-04 and in the left side we can find the static
part while on the right side, we have the dynamic points. Here we can notice how
this method is pretty inaccurate.
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Original Sampled Reconstructed Obtained Int/Unif Samples Threshold
P01-01 98935 5223 4741 3652 1089 0.9
P03-04 100251 5060 4522 3654 868 0.855
P04-01 69292 4269 3242 2144 1098 0.89
P09-02 22187 4953 4398 3495 903 0.975
P16-01 74592 5531 5480 4476 1004 0.945
P21-01 415853 4655 4588 3733 855 0.94

Table 5.3: Split∼ 1000. Number of frames resulting from the different sampling
steps. In particular from the original number of frames (Original) are reduced with
the homography filter to remove redundancy and keep overlap, resulting in Sampled.
The reconstructed frames are the ones which were successfully reconstructed by
COLMAP (Reconstructed). The obtained ones are the reconstructed frames filtered
again with the homography filter (Obtained). The final samples (Int/Unif Samples)
are the reconstructed frames without the previously obtained ones. The thresholds
reported are referred to the last homography filter step.

Original Sampled Reconstructed Obtained Int/Unif Samples Threshold
P01-01 98935 5223 4741 4019 722 0.91
P03-04 100251 5060 4522 3839 683 0.86
P04-01 69292 4269 3242 2463 779 0.896
P09-02 22187 4953 4398 3776 622 0.977
P16-01 74592 5531 5480 4837 643 0.95
P21-01 415853 4655 4588 3942 646 0.945

Table 5.4: Split∼ 700.

5.5 Sampling Frames

To work with the NeuralDiff pipeline that follows this section, we have to further
downsample the frames reconstructed by COLMAP to have some reasonable
computational times. We found that at a resolution of 114x64 ∼ 1000, a scene
took ∼ 4h while at 228x128 ∼ 700 a scene took ∼ 11h. In Table 5.4 and Table 5.3
we can see the number of frames kept at each sampling step, obtained using the
homography filter and the proposed Intelligent sampling (see Section 4.3). In
particular is worth noting the difficulty in obtaining a precise subsample, e.g. all
consisting of 700 frames. Each video of each scene has its own characteristics,
making it complicated to find a threshold that is valid for all the kitchens. We recall
that the threshold sets the minimum value for which frames having overlap over it
are removed. So higher value of the threshold means more frames in homography
filter, the contrary in Intelligent sampling.
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5.6 NeuralDiff Pipeline
Different number of samples for the same scene. To evaluate our final
pipeline we started by creating the subsamples upon which we would have trained
the neural render. Specifically, we focused on one scene, P01-01, to see how the
number of frames selected and the method that selects them affect the pipeline
performances. Figure 5.9 gives a visualization of the three different subsampling
obtained using the methods presented in Section 4.3 for a total of 217 frames. The
left column gives an idea of how the frames are distributed along the video, while
in the right side are present the histograms of the samples. We can see that the
three method are different from the shapes we obtained. The Intelligent sampling
has several peaks of the same size while the others foocus on a specific time instant.

We then proceeded to test the various subsample for P01-01 obtaining the results
reported in Table 5.5. As we can see the Intelligent sampling achieves good results.
The PSNR is always higher concerning the other methods. It can be seen that
all methods suffer the scarcity of frames and in the last subsample, 217, Uniform
sampling improves over the Intelligent one by up to 0.09dB. For the static PSNR
instead the Intelligent method is always better than the Uniform one, even at low
frames. For the mean Average Precision instead, we can see some oscillations, but
we have to be careful since our mask is combining the actor and the foreground
layer, meaning that the average precision does not assess the ability of the model
to distinguish these two parts. For example in Figure 5.10 we can see that in the
400 frames subsamples is exactly present this deficit, where the Uniform sampling
is unable to detect the actor even though its mAP is higher than the Intelligent
one (mAPUniform61.6% > mAPIntelligent56.63%).

Also for our aim to segment dynamic objects, we are interested in the static
PSNR (as we obtain dynamic objects as what is NOT static) and Figure 5.10 shows
us that the static part is almost identical for each scene.

Qualitative Results Here we present the 3D static reconstruction for P01-01.
As shown in Figure 5.11, the first row is the COLMAP pointcloud extracted from
the sampled videosequence. Below are placed instead the static reconstructions for
the three different sampling strategies. The first thing that comes to our eyes is the
overall color which in the Intelligent sampling seems more faithful to the reality.
The second thing is the segmentation of the plate on the tabletop, which can be
seen in the COLMAP row. The plate is successfully removed in the Intelligent
sampling while it is still visible in the other subsamples, although the best model
was the Uniform one according to the metrics. Another example is given by the
pan highlighted with the green circle which is removed in the Intelligent sampling
while not in the others. We can also look at scene P03-04 in Figure 5.12 where
the Intelligent sampling manages to remove the can highlighted in red while the
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P01-01 Sampling Durata [s] PSNR PSNR
statico mAP

2938 Int. 11 h36 min 59 s 24.82 20.41 72.21
2938 Unif 11 h16 min8 s 24.42 20.41 72.79
2015 Int. 8 h3 min50 s 24.51 20.46 70.49
2015 Unif 7h 52min 34s 23.93 20.33 69.87
1000 Int. 3h 43min 41s 23.59 20.37 67.55
1000 Unif 3 h43 min1 s 22.8 20.10 66.51
1000 AU 4 h2 min45 s 23.43 20.31 67.99
722 Int. 2h 34 min 22.65 20.20 65.42
722 Unif 2 h30 min7 s 22.09 19.65 62.95
722 AU 2h 36 min46 s 22.48 20.05 64.10
397 Int. 1h 19 min53 s 21.33 19.64 56.63
397 Unif 1h 21 min 42 s 20.98 19.54 61.6
397 AU 1h 14min 36s 21.2 19.95 59.97
217 Int. 40 min55 s 20.32 19.60 51.69
217 Unif 41 min8 s 20.51 19.42 53.00
217 AU 25 min39 s 20.26 19.39 50.58

Table 5.5: NeuralDiff Pipeline Results on P01-01 at 114x64. For the same
scene P01-01 results of NeuralDiff pipeline trained on different amount of frames
are reported. The Frames are selected using the three different sampling strategis:
Intelligent, Uniform and AU (see Section 4.3). The frames are all at a 114x64
resolution.

Uniform sampling can not. Other comparisons for the same scene P01-01 with
different frame subsamples are provided in Figure 5.13, where Intelligent sampling
manages to reconstruct better colors at lower frames but seems to have similar
results at higher ones. In Figure 5.14 we can see a lot of ‘noisy’ points in the
COLMAP reconstruction being removed by our pipeline, leaving the kitchen ‘clean’.
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Figure 5.9: Visualization of the sampling of scene P01-01 for the three different
methods: Intelligent, Uniform and AU using 217 frames in total. The left box is a
proposal we gave to visualize how the frames actually spread along the temporal
axis, where a line is drawn in correspondence with each sample. The right boxes
represent instead histograms with the frequencies of the samples on the entire
duration of the video.
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Figure 5.11: Qualitative results for the static reconstruction of P01-01 scene at
217 frames. In red is highlighted a dynamic plate, while in green is a dynamic
pan. We can see that Intelligent sampling is correctly removing the objects while
Uniform can not.
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Figure 5.12: Qualitative results for the static reconstruction of P03-04 scene. In
red is highlighted a dynamic can that is successfully removed in Intelligent sampling
while not in Uniform.
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Figure 5.13: Comparative of the qualitative results for different samplings of the
P01-01 scene.
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Scene Sampled Frames Sampling Durata [s] PSNR Improv. PSNR
statico Improv. mAP Improv.

P01-01 1089 Intelligent 3h 43 min41 s 23.59 0.79 20.37 0.27 67.55 1.04
Uniform 3 h43 min1 s 22.8 20.10 66.51

P03-04 868 Intelligent 3h 14 min44 s 19.90 0.77 16.73 0 61.92 -2.08
Uniform 3h 10 min48 s 19.13 16.73 64.00

P04-01 1098 Intelligent 4h 10 min 12 s 24.32 0.51 21.23 0.74 71.37 5.56
Uniform 4h 2 min 9s 23.81 20.49 65.81

P09-02 903 Intelligent 3 h25 min58 s 23.97 0.58 19.43 -0.02 60.05 -1.18
Uniform 3 h17 min5 s 23.39 19.45 61.23

P16-01 1004 Intelligent 3h 46 min57 s 22.89 0.14 20.17 0.23 66.89 3.28
Uniform 3h 43min 11s 22.75 19.94 63.61

P21-01 855 Intelligent 3h 15 min 59 s 20.02 0.91 15.73 0.66 72.94 4.06
Uniform 3 h7 min50 s 19.11 15.07 68.88

Table 5.6: NeuralDiff models trained on different scenes at ∼1000 frames, resolu-
tion 114x64. The column Improv. represents the difference between the previous
column of the Intelligent split and the Uniform one.

NeuralDiff Pipeline on all scenes. To further validate our results, we repeated
the experiments using different scenes using a subsample of ∼1000 frames and
one of ∼ 700. The results are reported in Table 5.6 at a resolution of 114x64 and
Table 5.7 at a resolution of 228x128. The results show that our method improves, at
a resolution of 228x128, on average of +1.96% on the PSNR,+0.54%, and +1.78%
on the mAP; while at a resolution of 114x64 we have an improvement of +2.91%
on the PSNR,+1.73%, and +1.78% on the mAP.

Scene Sampled Frames Sampling Durata [s] PSNR I-U PSNR
statico I-U mAP[%] I-U

P01-01 722 Intelligent 10 h25 min35 s 21.64 0.18 19.58 0.08 66.26 1.93
Uniform 10h 5 min 7 s 21.46 19.50 64.33

P03-04 683 Intelligent 9h 40 min5 s 18.89 0.39 16.17 -0.15 61.08 -1.09
Uniform 9h 16 min59 s 18.5 16.32 62.17

P04-01 779 Intelligent 10h 45 min 46s 22.15 0.81 20.04 0.46 67.65 4.81
Uniform 11h 17 min34 s 21.34 19.58 62.84

P09-02 622 Intelligent 8 h35 min 22.39 0.96 19.10 0.22 67.56 9.34
Uniform 8 h53 min13 s 21.43 18.88 58.22

P16-01 643 Intelligent 9h5 min 38s 21.25 0.38 19.38 0.39 63.34 -1.2
Uniform 9h 7 min 52s 20.87 18.99 64.54

P21-01 646 Intelligent 9h8 min 54s 18.09 -0.23 15.20 -0.28 65.49 -3.11
Uniform 9 h8 min 7 s 18.32 15.48 68.60

Table 5.7: NeuralDiff models trained on different scenes at ∼700 frames, resolution
228x128. The column I-U represents the difference between the previous column of
the Intelligent split minus the Uniform one.
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Figure 5.14: Qualitative results of different kitchens. On the first row is reported
the COLMAP reconstruction while below is the corresponding cleaned pointcloud.

Sampling and action distributions. Behind the Intelligent sampling which
was expressed in Section 4.3, we wanted to validate it. We then verified the
existence of a link between the positions of the sampled frames and the frequencies
of the objects/actions that were annotated during the videos. In Figure 5.9 the
three sampling methods are reported. In Figure 5.15 and Figure 5.16 are reported
respectively the comparison of Intelligent and Uniform sampling with the object
count, obtained from EPIC-KITCHENS [14] annotations, for scene P01-01 changing
the number of samples, as can be read on each sub-figure; and the comparison of
Intelligent and Uniform sampling with the object count for each scene with fixed
sampling at ∼ 1000 frames.

The plots show that the Intelligent sampling technique closely matches the
object counts, except for a few scenes. This helps to explain how our method works.
It focuses on areas where many actions occur, filtering out lengthy actions and
keeping only frames that contain multiple actions. This means that only relevant
information is retained.
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Figure 5.15: Comparison of frequencies for the Intelligent and Uniform sampling
with the object count for the P01-01 scene changing the total number of sampled
frames.
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Figure 5.16: Comparison of frequencies for the Intelligent and Uniform sampling
with the object count for each scene at a fixed subsample ∼ 1000 frames.
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Metrics for profile similarity. We also tried to give a quantitative measure of
similarity and dissimilarity by comparing some different metrics: Cosine Similarity,
Kullback-Leibler Divergence (KLD), Jensen-Shannon Divergence (JSD). More in
detail:

• Cosine Similarity. It is the cosine of the angle between two vectors. It is
derived from the dot product:

v1 · v2 = ∥v1∥ ∥v2∥ cos(θ) (5.3)

CosineSimilarity = cos(θ) = v1 · v2

∥v1∥ ∥v2∥
(5.4)

In our case, we took as vectors the bins of the frames histograms as vector
one and the bins of the actions/objects as the second one.

• Kullback-Leibler Divergence (KLD) [78] It is a non-symmetric measure
of the difference between two probability distributions P and Q. It represents
the measure of the lost information when Q is used to approximate P.

DKL(P∥Q) =
∑

i

P (i) log2

(
P (i)
Q(i)

)
(5.5)

• Jensen-Shannon Divergence (JSD). [79] It is based on the Kullback–Leibler
divergence, but it is modified to be symmetric and always has a finite value.

JSD(P∥Q) = 1
2D(P∥M) + 1

2D(Q∥M) (5.6)

where M = 1
2(P + Q) is a mixture distribution of P and Q.

Clearly, we do not have distributions, so we obtained them by normalizing such
that their elements summed to 1. The results obtained are reported in Table 5.8,
where we can see that the Intelligent sampling performs better than the Uniform
sampling both in cosine similarity and in K-L and JS divergences.

5.7 NeuralCleaner
As a last step, after assessing that our method was functioning, we tried to speed
up the overall pipeline. We tried to eliminate the actor layer of the NeuralDiff
pipeline since we are not interested in it, as we only want to know what is moving.
The foreground and actor layer are thus merged together and we tried to see how
much we could improve by eliminating this distinction. In Table 5.9 we can see
the results in comparison with the NeuralDiff pipeline. On average we obtained
reduced computational cost of ∼ 30%.
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Cosine Similarity↑ K-L Div.↓ JS-Div ↓
Intelligent Uniform Intelligent Uniform Intelligent Uniform

P01-01 0.9131 0.9071 0.1130 0.1342 0.0393 0.0450
P03-04 0.7638 0.6773 0.4224 0.5389 0.1609 0.2025
P04-01 0.6528 0.6316 0.5892 0.6631 0.2196 0.2438
P09-02 0.7438 0.7323 2.2962 1.2859 0.1377 0.1399
P16-01 0.8029 0.8130 0.2170 0.2431 0.0727 0.0815
P21-01 0.8804 0.8761 0.1694 0.1760 0.0574 0.0611

Table 5.8: Metrics comparing the profile of the histograms of frames and annota-
tions. In particular higher values of Cosine similarity indicates similarity; while the
value of the two divergences represents the distance between the two distributions.

P01-01 Sampling Durata
Ndiff[s] Durata [s] Improvement % PSNR PSNR

statico mAP

1089 Int 3h 43min 41s 2h 55 min30 s -21.54 23.49 19.92 61.00
1089 Unif 3h 43 min1 s 2h 58 min56 s -19.76 22.86 19.55 56.40
722 Int 2 h34 min 1h 46min 41s -30.72 22.51 19.47 50.03
722 Unif 2 h30 min7 s 1h 46min 8s -29.29 22.29 19.46 51.83
397 Int 1h 19min 53s 54 min27 s -31.83 21.46 19.72 53.69
397 Unif 1h 21min 42s 57 min30 s -29.62 21.01 19.51 50.60
217 Int 40 min55 s 28 min49 s -29.57 20.55 18.20 40.87
217 Unif 41 min8 s 29 min 13s -28.97 20.51 19.45 46.61

Table 5.9: Results for NeuralCleaner, compared with the durations of the Neu-
ralDiff pipeline. We can see that the durations are on average shorter of ∼30%.
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Figure 5.10: Qualitative results on P01-01 at 228x128 Visualization of the
output of the different models trained on different subsamplings for scene P01-01.
The first column represent the real frame while the next ones are respectively: the
predicted image, which is the combination of: the static part, the foreground, and
the actor part.
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Chapter 6

Conclusions

In conclusion, we have explored the new spreading egocentric videos trends and
how the research’s attention was captured by these new data. Specifically, we have
covered Neural Rendering, a technique that employs neural networks to learn 3D
representation of a scene, and Photogrammetry which is the study on how to obtain
information about a scene starting from some gathered images depicting it. We
have also analyzed the new unique challenges introduced by egocentric data, such
as motion blur, occlusion, restricted field of view, etc., as well as strategies to tackle
them.

We started by using EPIC-KITCHENS [14], one of the largest egocentric datasets
containing video recordings of cooking routines of different peoples from different
countries in kitchen scenarios, annotated with actions and object labels. We pro-
ceeded to test and evaluate on it a Structure from Motion algorithm, COLMAP [15],
and we assessed its limitation on these types of data among which it stands out
fuzzy reconstruction.

Further on, we proposed two pipelines to compensate for the COLMAP weak-
nesses, by segmenting dynamic objects in the 3D reconstruction point cloud and
removing them in a second stage. The pipelines share the same basic building
blocks: COLMAP to retrieve the camera poses and NeuralDiff to segment moving
objects in 2D. These two pipelines differ in the presence of just one element: Monoc-
ular Depth Estimator, a pre-trained neural network that has learned to predict the
frames’ pixels depth. If also camera position and direction are available we could
project each pixel in the 3D world using projective geometry. The first pipeline,
which we have called Monocular Pipeline, bases its functioning on this element.
After the NeuralDiff block has decomposed the frame in the static and moving
layers, the latter are projected in the 3D reconstruction point cloud. The distance
of the projected points from the reconstruction ones will then determine if the
reconstructed point is dynamic or not. The second pipeline, which we refer to
as NeuralDiff Pipeline, on the other hand, lacks the presence of the Monocular
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Depth Estimator and exploits the intrinsic knowledge of the 3D scene learned by
the NeuralDiff block. In fact, during training, this block learns to give color and
opacity to any queried 3D point which is then averaged with other points to be
rendered on a 2D surface. We modified it such that we are no longer interested in
rendering an image but just in querying 3D points. In this way, after each neural
renderer is trained we can query points to the static stream and segment them as
dynamic if their opacity is under a certain threshold.

The results clearly stated that NeuralDiff Pipeline outperformed Monocular
Pipeline. The latter was heavily dependent on the scene to decide a segmenting
threshold and also the projection of the frames in the 3D world was not as accurate
as we expected.

We assessed the robustness of the NeuralDiff pipeline by testing different
parameters such as the total number of frames used, the resolution of the frames,
and the type of sampling from which the frames were derived. We proposed a new
sampling method aimed at removing any redundant frames and reducing their total
number, such as to speed up the training, by minimizing the overlap between frames.
This technique revealed itself to be successful as at an equal number of frames our
method gave better results than the basic one based on uniform extraction. With
these experiments, we also found a practical explanation of the reason why our
sampling method performed better and it is linked to the action/object annotations
frequency, which showed a similar pattern along the duration of the video.

As a last step, we modified NeuralDiff to better fulfill our goals, removing the
distinction between actor and foreground during layer discrimination allowed us
to remove a neural network block resulting in lighter training, obtaining what we
called NeuralCleaner Pipeline.

Further research on this topic is necessary as it presents multiple unexplored
paths. A promising one is the freshly introduced Gaussian Splatting, a rendering
algorithm that outperformed neural radiance field capable of obtaining real-time
results, as opposed to the ∼hours required by NeRF.
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