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Resume

Spherical robots (SRs) play an important role in the field of mobile robots thanks to
their several advantages over the classical wheeled and legged ones. Their spherical
shell protects the inner components from possible contaminations (water, dust, etc.)
and collisions; moreover, the symmetrical geometry makes impossible to overturn
the robot. This allows the robot to make falls and to be thrown over obstacles
without the risk of damaging or flipping. The spherical shape permits the robot to
roll down a slope without any energy consumption. Moreover, some SRs, depending
on their driving mechanism, can perform omnidirectional movements.

Because of these characteristics, SRs are an excellent choice for a wide range of
applications. They are mainly thought for the exploration of unstructured, harsh,
and hostile environments like planets, caves, pipes; inspection of disaster areas
to assess damages and potential hazards; search and rescue (SAR) operations;
underwater inspection, data collection, environment monitoring; surveillance, social
services, indoor exploration, and child monitoring.

This master’s thesis focuses on the design and development of a pendulum-
driven SR, drawing inspiration from prior research conducted by [1]. The framework
outlined in [1] successfully addressed some of the technical challenges associated
with creating such a complex robot. To enhance the robot versatility, the work
proposed in [1] an innovative differential mechanism to transfer the torque from the
motors to the pendulum, allowing to place the motors far from the sphere center
and lowering the Center Of Mass (COM) of the system. However, some limitations
were identified, motivating further studies to enhance the robot’s capabilities. The
primary objective of this research was to develop a viable solution that could
improve the robot’s obstacle-climbing capability.

To achieve this goal, a performance parameter called Maximum Step Height
(MSH) was defined. Its value is computed as the height of a step at which the SR,
when generating the maximum torque, is able to maintain an equilibrium condition
on the step edge. The MSH value of the SR designed by [1] was equal to 25 mm.
The objective of this thesis consisted of improving it up to a value equal or greater
than 100 mm.

For a simple pendulum-driven spherical robot it was shown that the MSH value
depends only on the distance between the barycenter and the sphere center. The
following equation represents this relation:
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where R is the sphere radius and a is the position of the system COM from the
sphere center. It can be observed that the only solution to improve the MSH
consists in designing a system whose COM is as far as possible from the center
of the sphere. Nevertheless, this complicates a lot the design process, and this
solution was already implemented by [1].

The solution proposed in this thesis entails the integration of a Control Moment
Gyroscope (CMG) system. The first part of this work was dedicated to study
its working principle. It was explained how a CMG group is able to generate a
temporary torque exploiting the principle of conservation of the angular momentum.
When a flywheel is spinning with a high angular velocity about a first axis and it is
tilted about a second axis perpendicular to the previous one, a torque is generated
along a third direction defined by the right hand rule. Coupling two gyroscopes
with opposite spinning and tilting velocities, the result is a varying torque along a
constant direction. Its magnitude is described through the following equation:

τG = 2IωΩ cos (Ω · t) (2)

where I is the flywheel inertia about the spinning axis, ω is the spinning velocity,
and Ω is the tilting velocity.

An innovative spherical robot driving mechanism composed only by gyroscopes
was proposed. It was demonstrated that two three-gimballed gyroscopes allow to
generate a torque along any desired direction, making the robot omnidirectional.
However, after a detailed analysis, it was concluded that this system couldn’t be
used to meet the project requirements. Hence, the CMG group was selected as an
auxiliary propulsion system to be coupled with a pendulum and the differential
mechanism developed by [1].

When needed, the CMG can be used in order to generate a torque that opposes to
the pendulum raising movement. This is equivalent to an instantaneous increase of
the pendulum weight without changing the barycenter position. As a consequence,
more torque is needed to maintain the pendulum at a 90° angle, and therefore
more torque is transferred to the sphere shell. Consequently, the MSH does not
depend only on the COM but also on the generated gyroscopic torque. Equation
1 can be corrected by substituting the barycenter position with a new term that
accounts also for the gyroscopic torque:

a∗ = a + τG

(mp + Ms)g
(3)

From this equation it can be observed that the MSH is no longer a barycenter
position constraint, but rather a design guideline that can be used to compute
the gyroscopic torque needed to overcome a step of height h knowing the robot
barycenter position a.

After this preliminary study, the design process of the robot started, paying a
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DESIGN AND PROJECT REQUIREMENTS
Diameter 0.5 m
Max. Mass 25 kg
a/R 0.35
Nominal Speed 2.5 m/s
Nominal Slope Angle 15°
Runtime at Nominal Condition 1h
MSH 0.1 m

Table 1: Design guidelines and objectives of the project. The nominal working
point is defined by the nominal speed and the nominal slope angle.

particular attention to fulfil the project requirements shown in table 1. First, the
design of the CMG group was realized. A comprehensive study with the aim of
optimizing the flywheel dimension was conducted. To select the spinning motors, a
thorough analysis of the losses due to the air friction was realized. After finalizing
the design of the CMG group, the two main motors controlling the pendulum were
dimensioned, selecting them based on the nominal robot speed requirement of
2.5 m/s.

Once all the motors were selected, the main structure of the pendulum was
designed in order to support all the internal components. This allowed to define
the distance of the main motors from the center of the sphere, which was used to
dimension the belt transmission necessary to transfer the torque from the motors
to the differential system developed by [1].

Figure 1: a) Rendering of the SR from Sloidworks. b) The same SR assembled in
Simscape.
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Figure 2: Curve representing MSH/R VS a∗/R. The red point identifies the
MSH/R value when using the gyroscopes, while the blue one when not using them.

The battery pack was dimensioned to meet the runtime requirement of a mini-
mum of 1 h while working at the nominal operating point (climbing a slope of 15◦

at a speed of 2.5 m/s).
For the spherical shell, the harmonic steel sheets used in [1] were substituted

with two PMMA hollow hemispheres. A second layer made of impermeable rubber
is needed to enhance the static friction of the shell on the ground, like in [1].

The final result of the design process can be seen in fig. 1(a), where a rendering
of the SR model realized in Solidworks is shown. Its diameter is equal to 0.5 m,
and its total mass is 18 kg. The batteries and the hardware weren’t included, but
the whole dimensioning process was performed considering a total mass of 22 kg,
allowing for the inclusion of hardware components weighing up to 4 kg while still
adhering to the project requirements.

After completing the design process of the SR, simulated models were created to
study its performance. An analytical model able to describe the straight motion on
an inclined plane was developed, and linear speed controllers were designed based
on this model. More comprehensive multibody models of the SR were utilized to
verify the project requirements and test the designed controllers. In fig. ??(b), the
multibody model of the SR realized in Solidworks is shown.

The results demonstrated that the CMG system successfully enhanced the
robot’s obstacle overcoming capability. Through a simplified multibody model
incorporating all the specifications obtained from the design process it was shown
that the CMG system allowed to successfully climb steps with the expected height.
In fig. 2, the curve derived from the representation of eq.1 is plotted and two
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points have been marked.The blue one corresponds to the MSH over radius of this
robot without the aid of the gyroscopes, which only depends on the barycenter
position. The red one, instead, represents the MSH that can be overcame when the
gyroscopes are functioning with the spinning and tilting velocities defined during
the design, which are 8000 rpm and 15 rpm, respectively. The MSH/R is increased
from a value of 0.06325 to 0.8285, which correspond to steps of a height equal to
15.8 mm and 110 mm, respectively. In fig. 3, four frames of the SR overcoming
the step are shown. The first one shows that the robot is standstill in front of the
step with the pendulum raised at 90◦. The mere barycenter offset doesn’t allow the
robot to overcome the obstacle. In the subsequent frames, the spinning gyroscopes
start the tilting motion, leading to an increase of the total torque transmitted to
the spherical shell and allowing the robot to finally overcome the step.

However, when testing the robot’s obstacle overcoming capability and the linear
speed controllers on the more comprehensive multibody models with the differential
mechanism developed by [1], discrepancies between the expected and obtained
results were observed. These findings highlighted the challenges associated with
controlling the spherical robot through the differential mechanism.

Overall, this master’s thesis made significant progress in the design and develop-
ment of a pendulum-driven spherical robot, presenting a viable solution to improve
its obstacle-climbing capability. The integration of a Control Moment Gyroscope
auxiliary propulsion system showed promise in enhancing the robot’s performance.
Further research should focus on selecting the appropriate hardware components,
designing a rubber cover with surface features to enhance gripping capabilities,
and developing a control system capable of controlling the robot on both straight
and curvilinear paths. These future efforts will contribute to advancing the field of
spherical robotics and maximizing the robot’s capabilities in various applications.

Figure 3: Four frames of the simplified model of SR overcoming a step of 110 mm.
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Chapter 1

Introduction

Spherical robots (SRs) play an important role in the field of mobile robots thanks to
their several advantages over the classical wheeled and legged ones. Their spherical
shell protects the inner components from possible contaminations (water, dust, etc.)
and collisions; moreover, the symmetrical geometry makes impossible to overturn
the robot. This allows the robot to make falls and to be thrown over obstacles
without the risk of damaging or flipping. The spherical shape permits the robot to
roll down a slope without any energy consumption. Moreover, some SRs, depending
on their driving mechanism, can perform omnidirectional movements.

Because of these characteristics, SRs are an excellent choice for a wide range of
applications. They are mainly thought for the exploration of unstructured, harsh,
and hostile environments like planets, caves, pipes; inspection of disaster areas
to assess damages and potential hazards; search and rescue (SAR) operations;
underwater inspection, data collection, environment monitoring; surveillance, social
services, indoor exploration, and child monitoring.

This thesis presents the design and development of a spherical mobile robot.
The inspiration for this prototype was drawn from the spherical Unmanned Ground
Vehicle (UGV) developed by M. Melchiorre et al. [1], which provided a solid
foundation upon which the current prototype was built. The original project is
shown in figure 1.1. The driving mechanism was selected by [1] after realizing a
trade-off analysis of the state-of-the-art spherical robot propulsion systems. Design,
performance and control simplicity are the main characteristics that were studied
to carry out the choice. The single pendulum driving system was selected by [1]
as the best possible choice. It belongs to the Barycenter offset (BCO) propulsion
mechanisms, and it is characterized by a 2 Degrees Of Freedom (DOF) pendulum
attached to a central diametral shaft, which is anchored to the robot spherical shell.
When the motors lift the pendulum, a reaction torque acts on the sphere, causing
it to move.

The framework described in [1] enabled to overcome some of the technical
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Figure 1.1: Rendering of the SRs designed by M. Melchiorre et al. [1].

challenges associated with developing such a complex robot. At the meantime,
the limitations of its design [1] were identified, and a significant effort was made
to improve the efficiency and versatility of the robot. One of its main drawbacks
was its limited maximum torque, which negatively affected its ability to overcome
obstacles.

The first part of this work was dedicated to find a viable solution to this issue.
At first, an alternative to the BCO driving mechanism was considered, with a
propulsion system made only of Control Moment Gyroscopes (CMGs). However,
due to the complexity of designing and controlling the system, along with the
limitations of this driving mechanism, it was decided to use it only as an auxiliary
driving system to be paired with the 2 DOF pendulum described in [1]. Therefore,
an optimal design for the CMGs and internal components of the robot was studied
to improve the robot obstacle-surmounting ability. Once the design was finalized,
a multibody simulation was conducted and the control of the robot was studied.

Max. Step Height 25 mm
Max. Slope Angle 15°
Min. Velocity 2.5 m/s
Min. Acceleration 0.5 m s2
Max. Diameter 0.5 m
Max. Mass 25 kg

Table 1.1: Design specification of the spherical robot by [1]
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1.1 Project Objectives

Figure 1.2: Analysis of limit cases of incline (a) and step (b). Image from [1].

The design specifications of the original project [1] are listed in table 1.1. Two
performance parameters were defined to evaluate the robot capability of climbing
slopes and obstacles: the “Maximum Step Height” (MSH), and the “Maximum
Slope Angle” (MSA). Both are calculated solving a static equilibrium problem.
The MSA refers to the maximum slope angle at which the robot can maintain an
equilibrium condition while generating the maximum torque (which for a pendulum-
driven robot is obtained when the pendulum is at 90°, fig. 1.2(a)). The MSH,
instead, is determined as the height of a step at which the SR, when generating
the maximum torque, can maintain an equilibrium condition on the step edge (fig.
1.2(b)).

The limited MSH value of the original robot [1] is due to the BCO driving
system. In static conditions, this type of SRs can develop a maximum driving
torque when raising the pendulum at a 90° angle (Figure 1.2) and it only depends
on the system barycenter distance from the sphere center. As a matter of fact, a
static equilibrium is possible only when the barycenter of the robot is vertically
aligned with the contact point between ground and sphere (point C in Figure 1.2).
Two significant relationships can be deduced from this observation. Having defined
“a” as the distance between the barycenter and the sphere center:

a
R

= sin φ −→ φ = arcsin a
R

(1.1)

a
R

=
ñ

1 − (1 − h
R

)2 −→ h
R

= 1 −
ñ

1 − ( a
R

)2 (1.2)

The first one defines the equilibrium condition of the sphere on a slope; φ is
the angle of the slope and it’s equal to the MSA. The second one defines the
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Figure 1.3: MSA and MSH-over-Radius curves obtained from the static equilib-
rium equation. Image from [1].

equilibrium condition between the sphere and a step; h is the height of the obstacle
and it’s the MSH. In Figure 1.3, a plot of the two equations above is shown. It
should be noted that the MSH-over-radius curve exhibits a much more pronounced
nonlinear behavior. As a result, to overcome higher steps, it is necessary to place
the sphere barycenter as close as possible to the shell. This provides a crucial
guideline in the design process of the robot. By defining the MSH as one of the
project objectives, it becomes possible to calculate the lower bound for the distance
between the barycenter and the sphere center. Nevertheless, this may complicate a
lot the design process.

The addition of a CMG auxiliary propulsion system allows to relax this constraint.
As it will be explained in Chapter 3, the CMG group can be used to generate
a temporary torque that opposes to the pendulum raising movement. This is
equivalent to an instantaneous increase of the pendulum weight without changing
the barycenter position. As a consequence, more torque is needed to maintain the
pendulum at a 90° angle, and therefore more torque is transferred to the sphere
shell. Hence, the MSH is no longer a barycenter position constraint, but rather
a design guideline that can be used to compute the gyroscopic torque needed to
overcome a step of height h once the robot barycenter position has been fixed.

The only constraint to the barycenter position is now defined by the MSA the
robot is required to climb. In the previous project [1] this parameter was chosen
to be φ = 15◦, as indicated in Table 1.1. Consequently, the ratio between the
barycenter position and the sphere radius is approximately a/r ≈ 0.26. However,
it’s worth noting that the smaller this ratio, the greater the gyroscopic torque
required to overcome obstacles, which could lead to a more challenging design.
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Therefore, a minimum ratio of 0.35 was chosen as reference. Consequently, the
correspondent MSA is approximately φ ≈ 20.5◦. Without the use of any gyroscopic
group, the MSH would be equal to 16mm.

The objective of the project consisted in developing a CMG system to improve the
obstacle overcoming capability of the robot while meeting the design requirements.
A reference value for the MSH was chosen, which is MSH= 100mm. A list of the
other design requirements of the project is shown in table 1.2.

DESIGN AND PROJECT REQUIREMENTS
Diameter 0.5 m
Max. Mass 25 kg
a/R 0.35
Nominal Speed 2.5 m/s
Nominal Slope Angle 15°
Runtime at Nominal Condition 1h
MSH 100 mm

Table 1.2: Design guidelines and objectives of the project. The nominal working
point is defined by the nominal speed and the nominal slope angle.

1.2 Contribution of this Work
This thesis makes a significant contribution to the field of pendulum-driven spherical
robots by addressing the challenge of limited Maximum Step Height (MSH) due to
the barycenter position. The contributions of this work are as follows:

Firstly, a comprehensive state-of-the-art review is provided, establishing the
foundation for the research. A novel concept design of a CMG-only-propelled
spherical robot is proposed. However, due to the complexity limitations of this
design, it was decided to use the CMG group only as an auxiliary propulsion system.
This innovative integration strategy advances the field of propulsion systems in
spherical robots and offers a practical solution to enhance their performance.

While similar solutions have been described in the literature ([2],[3],[4]), many
of them remain unimplemented or abandoned. In contrast, this thesis presents a
thorough overview of the design process for the CMG auxiliary propulsion system.
Extensive efforts were dedicated to maximizing the robot’s MSH while adhering to
the project’s design specifications. The design process covers the study of CMG
systems’ principles, the design of gyroscopes, the selection of CMG motors, and the
dimensioning of the motors responsible for the control of the pendulum integrated
with the auxiliary propulsion system.

To better understand the robot’s functioning, an analytical model representing
the dynamics of the spherical robot rolling along a straight path is proposed.
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This analytical model serves as a foundation for developing a linear speed control
architecture, enabling precise control of the robot’s velocity along a straight path.

Furthermore, more comprehensive multibody models are employed to evaluate
the performance of the designed robot. Through these simulations, the effectiveness
of the CMG system in enhancing obstacle overcoming capability is demonstrated,
providing practical insights into the implications of the proposed design.

Overall, this thesis contributes significantly to the field of pendulum-driven
spherical robots by addressing the limited MSH challenge and presenting a novel
design incorporating a CMG auxiliary propulsion system. The comprehensive
design process, analytical modeling, and evaluation using multibody simulations
contribute to the knowledge base of researchers and engineers in the field, advancing
the development and application of spherical robots.
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Chapter 2

State of the Art

2.1 Introduction
In the following paragraphs, an up-to-date state of the art of the Spherical Robots
(SRs) is presented. It focuses on the most common driving mechanisms that have
been developed so far, presenting some of the most recent paper about this topic.
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2.2 Spherical Mobile Robots:
Driving Mechanism Classification

In this section, a State of the Art of the SRs is presented, classifying them on
the basis of the driving mechanisms that have been developed so far. Gravity
Driving, and Shape Transformation methods are the most common ones. Some
other propulsion strategies can be found in the literature, such as RW (Reaction
Wheels), CMG (Control Moment Gyroscope), and Differential Driving Systems.
Each one of these driving mechanisms is individually covered in the next paragraphs,
explaining their functioning, and presenting several examples. Finally, some less
popular propulsion systems are analyzed.

2.2.1 Gravity Driving Methods: Barycenter Offset

Figure 2.1: 2D representation of a spherical robot with the barycenter displace-
ment

The gravity driving method consists of an internal system that displaces the
barycenter of the SR. Consequently, an eccentric torque is generated, causing the
robot to roll towards the barycenter position. This locomotion strategy allows
to move on flat surfaces, overcome small obstacles, and climb-up gentle slopes.
Barycenter offset is mainly generated through two mechanisms: using a 2-DOF
pendulum (pendulum driving strategy) or by means of an internal driving unit
(IDU). The IDU consists in a single wheel or in a wheeled platform that climbs up
the inner shell surface (hamster ball). Another mechanism that has been used in
some prototypes is the so called “Shifting Masses” strategy, which is composed
by several masses that can linearly displace inside the robot along fixed shafts.
A few more systems of marginal interest have been developed; two examples are
presented at the end of this section.
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Pendulum Driving Strategy

Figure 2.2: Sketch of a single pendulum driving mechanism. Image from [5].

The pendulum driving strategy consists of a 2-DOF pendulum that can swing
around the pitch and roll axes of the robot. It is usually attached to a central
diametral shaft. A schematic representation of the system is presented in Figure
2.2. When the motors lift the pendulum, a reaction torque acts on the sphere,
causing it to move. The design of this SR can be quite challenging, and its main
disadvantages are its lack of omnidirectionality and limited torque.

A first example of pendulum spherical robot is GroundBot from Rotundus AB
[6] (Figure 2.3(c)); with a diameter of 60cm, it can reach 3 m/s. The unit is
equipped with cameras mounted in clear domes on the sides of the robot and can be
operated from a sophisticated telepresence command station. It can be commanded
to patrol a route autonomously using GPS.

GroundBot was chosen by M. Seeman et al. [7] for a study on the autonomy
of a surveillance robot. They were able to point out the several advantages of
spherical robots, such as stability and robustness; some drawbacks were met, such
as the image stabilization problem due to the uncontrolled oscillations. GroundBot
represents one of the best of its kind but when it comes to overcome obstacles, it
has some limitations due to its driving mechanism.

S. Xie et al. [8] developed a spherical mobile robot for polar region scientific
research. It can navigate thanks to the internal pendulum system or by exploiting
the wind thrust. Two motors control the forward and lateral swing of the pendulum.

Y. Ping et al. [9] developed a pendulum-driven “[. . . ] spherical robot carrying a
binocular stereovision, referred to as Visionbot. Stereovision is used to enhance
the environmental perception of spherical robots, thus reducing cumulative errors
caused by sliding, mechanical clearance, and model error”. Therefore, a motion
control technique that exploits visual feedback is proposed; the overall goal is to
realize an autonomous robot. [7] and [9] are two of the few papers that cover the
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Figure 2.3: (a) Rendering of the DAEDALUS robot [11]. (b) prototype of a
rolling and jumping spherical robot [12]. (c) GroundBot from Rotundus AB [6].

autonomous driving in the field of spherical robots.
M. Yang et al. [10] tried to overcome one of the limitations of this type of

driving mechanism. When the pendulum is attached to the central shaft, its range
of motion around the roll axis is limited by the shaft itself. To solve this problem,
they realized a structure where the pendulum is mounted inside a squared shape
instead of a simple shaft. A similar solution can be found in [8]. Tow pairs of
motors are used to control the two DOF of the pendulum.

A. P. Rossi et al. [11] presented an example of pendulum driven SR named
DAEDALUS. The aim of this model is to explore and characterize the entrance of
Lunar lava tubes (Figure 2.3(a)). The election of a spherical mobile robot instead
of a classical rover is due to the protection that the spherical shell assures to the
internal components (sensors and scientific equipment) and the higher stability
in unstructured terrain. Extendable pods that come out of the shell are used to
improve the locomotion capabilities, to increase the stability during data collection
and to prevent failures.

F. Wang et al. [12] presented a novel design of spherical robot characterized
by a multi-mode motion: rolling and jumping. The jumping is realized through

Figure 2.4: Double pendulum driven spherical robot [13]
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a spring mechanism that can release the elastic potential energy stored, allowing
it to hop up to a height of 17cm. The rolling, instead, is achieved through the
barycenter offset caused by the swinging of the jumping driving module, which is
used as a pendulum (Figure 2.3(b)).

Most of the pendulum driven spherical robots in the literature are characterized
by a single pendulum system, like the ones presented above. However, a little
number of double-pendulum-driven SR can be found [14], [13]. An example is
the one developed by Zhao et al. [13] for reconnaissance and unstructured hostile
environment exploration (Figure 2.4). The main characteristic of this type of
spherical robot is the semi-omnidirectionality: through a synchronous rotation of
the two pendulums in opposite directions, the inertia moment around the yaw axis
is the only force acting on the sphere, causing the robot to turn in place.

Hamsterball (Direct Driving Methods)

Figure 2.5: Sketch of multi-wheeled (left) and a single-wheeled (right) IDU.
Images from [5]

The hamster ball driving system consists of a multi/single wheeled mobile robot
placed inside the spherical shell and usually referred as IDU (internal driving unit).
When the IDU moves, it climbs up the internal surface of the sphere, causing the
barycenter to displace towards the desired direction.

This system has several advantages: the barycenter is closer to the shell surface
with respect to a pendulum driven system, which allows maximizing the output
torque. The design is simple, and the driving mechanism is straightforward to
control. In some hamster-ball-driven spherical robots, the IDU is kept in place
through a tensioning element, that is usually a platform or a rod with a wheel
placed at the top. The introduction of the tensioning element is important for
preventing the IDU from slipping or overturning.

One of the biggest problems of this system is that the internal surface of the
sphere needs to be as uniform as possible to maintain the friction between the

11



State of the Art

IDU wheels and the shell. Collisions with obstacles could cause the loss of contact
between wheels and surface too, and, in the worst case, the overturning of the
robot [4].

Figure 2.6: :(a) Structure of BHQ-3: (a1) Motor2, (a2) Motor1, (a3) Sponge
wheels, (a4) Steering wheel, (a5) Driving wheel. (b) BB-8 from SPHERO: (b1) and
(b2) are the spherical shell and cap, (b3) mechanism that actuates the cap, (b4)
wheels to maintain contact with the shell, and (b5) the driving wheels. (c) Robot
described in [15]. (d) Model developed by Y. L. Karavaev and A. A. Kilin [16]

The omnidirectionality of the robot depends on the type of wheels of the IDU.
The most recent developed hamster-ball-driven robots are characterized by omni
wheels, which allow omnidirectional movements [15, 16, 17]. A simpler design
based on classic wheels can enable both quasi-omnidirectional and omnidirectional
movements [18, 19, 20]. Below, a more in dept analysis of some prototypes is
presented.

Q. Zhan et al. [18] present BHQ-3, a hamster-ball-driven spherical robot that
can perform omnidirectional movements. Its IDU is characterized by two simple
wheels: a bigger one, that is the driving wheel, and a second one used to steer the
driving one. The driving wheel is in contact with the inner surface of the shell,
and it climbs up the sphere causing the barycenter to move; the sphere rolls due
to the moment of gravity. The second wheel rotates on a central platform that is
kept in contact with the inner surface of the shell through three sponge wheels.
The authors realized a prototype of the mobile robot: with a 150 mm radius, the
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robot was able to climb a 17° slope and cross a 3 cm height obstacle. It must be
noticed that, compared to an omnidirectional wheel, this system needs to actuate
the steering wheel to place the driving one along the desired direction, and only
then the robot will move (Figure 2.6(a)).

A. Singh et al. [19] realized a modular snake robot composed by three spherical
robot modules. Each one of these modules takes inspiration from BHQ-3. Omni-
directional motion, and the ability to navigate in marshy, wet, and sandy terrains
without any risk for the internal components are the main reasons why the authors
decided to use spherical modules. The main difference from the Q. Zhan et al.
prototype consists in the use of a pinion-crown gear system instead of the small
steering wheel. This solution prevents the steering wheel from slipping.

Y. L. Karavaev and A. A. Kilin [16] developed a spherical robot with a three
omni-wheeled IDU (2.6(d)). Omni-wheel axes are rotated of 45° with respect to the
wheels plane to ensure contact with the internal surface of the shell. The authors
present both a kinematic and a dynamic model of the problem and various control
architectures. A similar prototype has been developed by P. D. Ba et al. [15].

W. Liu et al. [17] developed a novel design of spherical robot with an actuation
system that combines a multi-wheeled platform with a supporting rod. In particular,
the internal driving unit consists of a platform with 4 omnidirectional wheels
(MECANUM wheels) actuated by two motors, one for each pair of wheels. To
prevent the platform from overturning and to keep the wheels always in contact
with the surface, a rod is placed perpendicular to the platform and has at the top
an omni wheel rolling on the surface of the opposite hemisphere (2.6(c)).

A hamster-ball-driven spherical robot that had a lot of success is the “Sphero
Bolt” by Sphero, a coding robot that lets kids learn coding through hands-on
play and STEAM activities and is nowadays on the market. In [20], the internal
components of a Sphero BB-8 robot are presented: a semispherical structure holds
all the electronics and the two actuators used to actuate the two driving wheels
(2.6(b)).

Other Barycenter Offset Strategies

The hamster ball and the pendulum driving mechanisms are the most common
propulsion systems adopted for spherical mobile robot motion. Among the barycen-
ter displacement driving strategies, there are a few more of marginal interest. A
first example is the shifting masses method. It consists of several masses that can
displace inside the robot along fixed linear guides. Compared to the pendulum
driving strategy, this system allows omnidirectional movements, and a more pre-
cise control of the barycenter position. However, the mechanical design and the
necessary control architecture are very complicated; the efficiency of the system
is low because high power actuators are needed to perform faster and smoother
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movements. Moreover, collisions at the points where the linear guides are attached
to the shell are undesirable.

Figure 2.7: (a) Spherical robot designed by S. Sang et al. [21]. (b) Fluid actuated
spherical mobile robot [22]

An example of this type of system is the one developed by S. Sang et al. [21]
(Figure 2.7(a)). The propulsion system is composed by “four power screwed spokes,
connected in 109.47° inside a tetrahedral shape”. “There are four heavy objects
(heavy shortly or weight), placed through spokes, which are elevated upward and
downward using four stepper motors [. . . ]”. Another example of driving system
is the one developed by S.A. Tafrishi et al. [22]. They presented a study of a
fluid actuated spherical mobile robot (Figure 2.7(b)). Their model is characterized
by an inner pipe structure where an incompressible fluid circulates driven by a
hydraulic system. The displacement of the fluid generates the moment needed
for robot motion. Among the pipes, the ones responsible for the forward (pitch)
and lateral (roll) motion can be distinguished. One of the main benefits of this
novel type of actuation is the absence of the unstable points that characterize the
pendulum-like systems.

L. Jia et al. [23] designed a type of amphibious spherical robot that can navigate
underwater and autonomously head toward the water thanks to a double inverted
pendulum mechanism (Figure 2.8). The robot is characterized by a spherical shell
where the batteries, the payloads, three DC motors, and the control board are
encapsulated. Two arms are attached to the sides of the hull and two propellers
are placed at the end of the arms. The rolling movement is performed displacing
the center of gravity of the robot using the arms as inverted pendulums. To change
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the heading direction, a small flywheel is placed inside the shell and is rotated,
generating a reaction force on the structure that will cause a change in the yaw angle
(COAM driving mechanism). The underwater navigation is performed through the
propellers placed at the end of the arms. Two small grippers are placed next to
the motors for manipulation tasks.

Figure 2.8: Amphibious robot by L. Jia et al. [23]; 3D rendering (left) and
inverted pendulum driving mechanism (right).
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2.2.2 Shape Transformation Spherical Robots
The shape transformation spherical robots include two groups that exploits two
different propulsion strategies: the shell deformation, which consists in deforming
the spherical shape in such a way that will generate a driving force; the hybrid
robots, which can transform their structure to change the propulsion method. The
most common are the hybrid ones; a lot of robots able to roll and perform another
type of movement can be found in the literature. The main advantage of being
able to transform the shape is the significant enhancement of the cross-obstacle
ability while maintaining the spherical shape benefits. On the other hand, the
mechanical design and the control architecture of this type of robot are much more
complicated. In the next paragraphs, some examples of crawling and rolling, flying
and rolling, amphibious, and soft inflatable spherical robots are presented.

Crawling And Rolling SR

Figure 2.9: Application concept of a hybrid walking and rolling robot. Image
from [24].

This type of robots is characterized by the ability of walking and rolling. They
can be in a closed configuration, exploiting the rolling motion for a less power-
consuming travel, or they can extend their legs and crawl. The walking ability
improves the capability of obstacle crossing and solves the limited maximum torque
problem of pendulum and hamster-ball driven spherical robots. At the same time,
the spherical shape ensures the several advantages of a SR. The application concept
of a hybrid walking and rolling robot is shown in Figure 2.9.

S. Kamon et al. [25] presented a model of reconfigurable robot that can transform
from a sphere into a three-legged walking robot using a linear motor. It doesn’t have
any driving module that allows its control while it’s in the spherical configuration;
in this case, the ball-shape is exploited to protect the robot and its inner mechanism
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from collisions. For its locomotion, 10 motors are used, 3 for each leg and one linear
motor for opening/closing the upper hemisphere of the shell while transforming.

T. Aoki et al. [24] developed another example of rolling and walking spherical
robot called QRoSS V (Figure 2.10(a)). The robot can transform from a storage
state, where the legs are inside the spherical shell, to a configuration where the
legs are deployed outside the shell. Their prototype is characterized by an external
shell made of SMA (shape memory alloys) wires fixed to a central pole through
flanges; the 4 legs of the robots are fixed to the central rod and can be stored inside
the outer shell. Inside the central pole is placed an air dumper to absorb the shock
in the axial direction. The rolling motion is performed through a leg kick. The
experimental results show that the robot is able to overcome a 14cm obstacle.

N. Bun-Athuek and P. Laksanacharoen [27] developed another example of
reconfigurable spherical robot. It can crawl thanks to its three legs or roll on its
spherical shell (Figure 2.10(c)). The robot structure consists of two hemispheres
connected through an actuated mechanism that enables the opening of the shell;
the legs are placed on the edge of the hemispheres, two on one side and the third
on the other side. To perform the rolling movement the legs are used to push
the sphere in the desired direction; it must be noticed that the control action can

Figure 2.10: (a) QRoSS V robot [24]. (b) Soft spherical robot by J. Pan et al.
[26]. (c) Butterfly movement and rolling movement concept of the reconfigurable
spherical robot by N. Bun-Athuek and P. Laksanacharoen [27]
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be performed only when the legs are in contact with the ground. The walking
movement consists of a butterfly swimming motion where 2 legs pull the two half
hemispheres while the third one pushes it.

J. Pan et al. [26] presented a prototype of soft spherical robot inspired by
organs and modularity of organisms such as starfish and octopuses (Figure 2.10(b)).
The robot is composed by two hemispherical 3D printed shells kept together by
electromagnets. On each one of these 2 hemispheres, 5 silicone gel robotic feet
are placed. Their movement is controlled through SMA springs, two for each foot.
These feet are used both for crawling and to push the robot to make it roll when
closed in a spherical shape. Moreover, the two hemispheres can separate and can
move independently to overcome obstacles or navigate through smaller spaces.

Amphibious SR

This category of spherical robots includes all the ones that are designed to move
on land and navigate underwater. Li M. et al. [28] presented in their paper
a prototype of spherical amphibious robot able to quadruped walking on land
and navigating underwater thanks to a water-jet propulsion system 2.11. Its
structure is characterized by a reconfigurable spherical shell that opens its lower
half when walking. The choice of a spherical structure was driven by the maximum
internal space it provides, the advantages of a symmetrical shape both on land and
underwater and the possibility to move in confined spaces. Inside its shell it carries
several micro-robots that can collect/manipulate underwater object or monitor the
environment in a restricted space.

Figure 2.11: (a) Spherical robot moving towards the water. (b)Micro-robots
conducting tasks in restricted spaces. (c) Image of the prototype.

Soft Inflatable SR

Among the spherical robots characterized by the ability of transforming their shape,
some inflatable robots can be found.
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K. Ho and N. M. Mayer [29] a prototype of spherical robot composed by 12
inflatable sections; the motion of the robot is performed through deflating and
inflating these segments (Figure 2.12(a)). To stay in a still position, “the section
towards the ground is deflated and sunken.” To move forward, “the above-mentioned
section is inflated while the neighboring section towards the intended direction is
deflated”. The actuation and control system are placed in the center of the sphere.
The possible advantages of this robot are the same of the other soft robots: ability
of navigating in an unstructured field, safe human interaction, etc.

Flying And Rolling SR

Finally, an interesting prototype of spherical robot able to roll, crawl, and fly has
been developed by M. Zhang et al. [30] (Figure 2.12(b)). These motion modes
have been combined to exploit their respective advantages and to enhance the
robot applicability across various situations. The robot can flexibly switch between
the motion modes, as the authors demonstrated via simulations in the Gazebo
environment.

Figure 2.12: (a) Inflatable soft spherical robot. (b) Closed and deployed configu-
ration of the robot by Zhang et al. [30].
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2.2.3 Driving System Exploiting Angular Momentum
Some SR exploit the angular momentum conservation principle to enhance their
movement capabilities. Two possible strategies are used: the control moment
gyroscope (CMG), which consists in tilting a spinning rotor, and the reaction wheel
(RW), which exploits the third Newton’s law.

CMG: Control Moment Gyroscope

Figure 2.13: (a) Single and (b) dual CMG configurations. Image from [4].

Various SR using CMG can be found in literature. It relies on the same principle
used in spacecraft attitude control systems. A CMG group consists of one or more
spinning rotors that can be tilted through one or more motorized gimbals; the
changing of the rotor spinning axes orientation causes a gyroscopic torque that
can be used to accelerate or change the heading direction of the spherical robot.
Usually, two counter rotating rotors are used, otherwise the tilting torque would
cause an undesired motion of the sphere [4]. This driving mechanism is often
together with another one (usually a gravity driving method).

In Figure 2.13 the single and dual CMG configurations are shown; in the case
of the dual configuration, the resulting torque acting on the robot is the sum of
the two gyroscopic torques τpa and τpb. The disposition of the rotors presented in
Figure 2.13 can be used to accelerate the robot and overcome the limited torque
provided by a barycenter offset driving system. The disposition shown in 2.14,
instead, generates a net torque on the robot along the yaw axes, causing a change
in the heading direction. A more in-depth analysis of how the gyroscopic torque
works is presented in the next chapter.

An example of spherical robot with a CMG driving system is the one developed
G. C. Schroll [4]. This robot exploits two actuating mechanisms: the pendulum
driving strategy for forward and lateral movements and a CMG group to gain a
greater torque to overcome steepest slopes and obstacles. The CMG group consists
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Figure 2.14: Dual CMG configuration to rotate the robot along the yaw axis.

of two rotors arranged as shown in Figure 2.13(a). It allows to solve the limited
torque problem of the pendulum-driven robots. Moreover, it includes a stable
platform for sensors to enhance the environmental perception. A similar example is
the one developed by Chen et al. [2] (Figure 2.15(a)). Another example of spherical
robot that uses a CMG group as driving system is the one proposed by Shu G. et
al. [31] (Figure 2.15(a)). The model proposed (CNU-sphere robot, where CNU
stands for Chungnam National University) is characterized by three actuators: two
are used to actuate two wheels in contact with the inner surface of the spherical
shell that provide the driving force; a CMG actuator is used to control the heading
angle (yaw). The model has been realized on precedent studies performed on a
disk-type robot.

Figure 2.15: (a) Spherical robot using a CMG driving system to accelerate [2].
(b) Spherical robot using a CMG driving system to change the heading direction
[31].

RW: Reaction Wheels

The RW (Reaction Wheels) is another driving method that exploits the spinning of
a rotor. In this case, the driving principle is the third Newton’s law. The rotor is a
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stationary flywheel and when a torque is applied to spin it, an opposite reaction
torque will be generated, resulting in the opposite change of momentum of the
sphere. A possible drawback of this system is the occurrence of an undesirable
gyroscopic precession, which means that the flywheel must be stopped before
changing the heading direction [4]. An example of RW driven spherical robot
is L.U.N.A., a prototype that has been developed for the DEADALUS project
[6] while studying the different possible locomotion strategies (Figure 2.16(b)).
The prototype was discarded because of the too high-power consumption and the
difficulties in controlling the mobile robot. Another example is the one developed by
Jia Q. et al. [32] (Figure 2.16(a)). In this case, the flywheel has a double purpose:
it’s used like a pendulum for forward driving and for changing the heading direction,
while a third motor is used to spin the rotor so that the angular momentum of the
robot is increased. A Kalman Filter is used to estimate the robot pose through the
information coming from IMU and motor drivers. Two more sensors are used to
know the lean angles and spin rates of the flywheel.

Figure 2.16: (a) The spherical robot developed by Jia Q. et al. [32]. (b) L.U.N.A.
[11]
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2.2.4 Differential Driving System

Figure 2.17: (a) Differential driving spherical mobile robot by Y. Dong et al. (b)
One of the two prototypes developed by E. V. Potapov et al. (c) RolLeapO by
Chang W. et al.

The differential driving system consists in a still central platform where two motors
are placed to actuate the two hemispheres independently. The locomotion principle
is the same of a hoverboard-Segway. The still central platform can be used for
placing exteroceptive sensors, ensuring a more stable acquisition compared to
spherical robots with other propulsion systems. Several spherical robots use the
central platform for placing a hopping mechanism, to enhance the obstacle-crossing
ability.

In 2020, E. V. Potapov et al. [33] realized two similar prototype of differential
driven spherical mobile robots whose aim is to explore an indoor environment and
recognize objects through computer vision algorithms. In the central platform
are placed the batteries, the motors, the microprocessor and the camaras. The
small motors used allow the prototypes to move at a constant speed of 0.26m/s
(Figure 2.17(b)). Chang W. et al. [34] presented a model of spherical robot with a
differential driving system and a five-bar linkage with a release/retract mechanism
for leaping (Figure 2.17(c)). The combination of the spherical shape and a leaping-
system allow this robot to navigate in both flat and extremely rough terrain. The
choice of a differential driving system is due to the larger amount of available
space inside the robot compared to other propulsion methods, necessary to store
the leaping system. The robot was able to leap up a barrier of 14.5 cm, which is
1.14-times the radius of the robot. Y. Dong et al. [35] presented another example
of spherical robot that can roll and jump, enhancing the robot mobility on rough
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terrain (Figure 2.17(a)). The robot structure consists of two hemispherical shell
that can rotate independently. Between the two hemispherical shells, a support
pedestal holds the two brushless motors and the hopping mechanism. The latter
consists of a spring mechanism that stores elastic potential energy to release it
when the robot needs to overcome an obstacle. The authors realized a prototype
and the tests showed that it was able to jump up to 58 cm with a take-off angle of
60°.

2.2.5 Other Spherical Robots
There are few other examples of spherical mobile robot that can be found in the
literature. Below, some spherical robot actuated by an internal drone, underwater
spherical robots and wind-driven robots are presented.

SR Actuated by an Internal Drone

Figure 2.18: (a) Micro spherical rolling and flying robot by C. J. Dudley et al.
[36], and (b) Rollcopter by S. Sabet et al. [37].

A novel type of driving system consists in placing a drone inside the spherical
structure. This solution allows to exploit the flying capability to enhance the cross-
obstacle ability, while protecting the drone with a spherical shell and exploiting
the rolling movement for a less power consumption. The main drawback of this
system is the complicated control system.

C. J. Dudley et al. [36] presented a prototype of micro spherical rolling and
flying robot composed by a “micro-quadcopter encased in a lightweight spherical
exoskeleton that can rotate about the quadcopter” (Figure 2.18(a)). The robot
takes advantage of both the driving modes, resulting in a more versatile mobile
robot which can easily overcome obstacles, navigate through narrow spaces, and
exploit the rolling mode for travelling in a more efficient way compared to the
flying-only robots. S. Sabet et al. [37] presented another example of flying and
rolling spherical mobile robot named Rollcopter (Figure 2.18(b)). Like the other
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one, it combines the flying capability of a drone with the advantages of a spherical
robot. It is based on six reversible propellers placed along three orthogonal axes;
this placement allows the robot to fly at any attitude and to produce the torques
needed to roll. The results obtained from the simulations show that “the required
force for rolling is smaller than the flying forces” but “the advantage of rolling
over flying decreases as the translational velocity or slope increases and the forces
become equal when the slope is 90°” (which means vertical ascension).

SR For Underwater Applications

Some underwater spherical robots can be found in the literature. For example, a
group of researchers from Manchester University (UK) developed two underwater
spherical robots named MK-V and MK-VI, whose aim is to monitor nuclear storage
tanks and sewage treatment equipment [38]. E. V. Potapov et al. [39] presented
a model of spherical underwater robot (SUR IV) whose main characteristic is
the possibility of both driving at high-speeds using the propeller thrusters and
low-speeds through the water-jet thrusters.

Wind Driven SR

Figure 2.19: Different states of the spherical robot developed by Li T. and Liu W.
[40]: (a) folded state; (b) process of deployment; (c) deployed state; (d) inflating
process; (e) inflated state; and (f) floating state.

A last class of spherical robots that can be found in the literature is the wind-driven
one. This type of mobile robot allows to explore special environments such as
deserts, volcanos, polar regions, and the planetary surface. Their main advantages
are their low cost, low power consumption, and the simple structure. However, their
usage is limited by the atmospheric conditions because they require enough wind
to navigate, and it’s not possible to control the heading direction. An example of
wind-driven spherical robot is the one developed by Li T. and Liu W. [40]. Its most
important characteristic is its collapsible structure. It can switch from a folded
state to an inflated state(Figure 2.19. It can travel through multiple movement
modes: rolling, bouncing, and flying. Depending on the level of inflation it will
be more inclined to navigate in a mode or another. Another example is the one
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presented by S. Xie et al. [8]. It also includes an internal pendulum to navigate
also when there is no wind.
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Chapter 3

Control Moment Gyroscopes

3.1 Introduction
When the gyroscope’s spinning rotor is tilted, a gyroscopic torque perpendicular to
the spinning and tilting directions is observed. This principle is at the basis of the
Control Moment Gyroscope (CMG), an attitude control device that has been used
in several space station, including the International Space Station. CMGs have
been also used in some spherical robots (2.2.3) in order to increase the acceleration
of the sphere, but they were never the main driving system of the robot.

The purpose of this chapter is to explore the potential applications of CMG
groups in spherical robots. As discussed in the introduction section 1, the primary
limitation of spherical robots is their limited ability to overcome obstacles. To
address this challenge, the possibility of utilizing one or more CMG groups as
a solution is examined. This chapter begins by providing a brief overview of
the mathematical tools required to understand the concepts discussed. Next,
the feasibility of implementing a gyroscope-only propulsion system to control the
movements of a spherical robot is investigated. Specifically, the kinematics of a
three-gimbal scissored pair CMG is analyzed, and a strategy to generate torque
along any desired direction from any configuration is presented. Lastly, the potential
use of CMG groups as an auxiliary driving system is evaluated, and the driving
system that will be utilized in the prototype of the spherical robot is introduced.
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3.2 The Gyroscopic Torque

Figure 3.1

This section shows how to compute the gyroscopic torque generated by tilting a
spinning rotor.

Consider the generic rigid body of figure 3.1. It is possible to obtain an equivalent
equation to the Newton’s second law for a rotating rigid body expressed with respect
to its barycenter: Ø

M⃗eG + M⃗iG = 0

The total moment of all the forces acting on a system can be expressed also as:

Ø
M⃗eG = dK⃗G

dt

Where K⃗G is the angular momentum (moment of momentum). K⃗G is usually
expressed with respect to a reference frame (RF) fixed on the rigid body. If the
RF is a principal axis system, the inertia tensor will have the form:

I =

Iλ 0 0
0 Iµ 0
0 0 Iν


Then, the angular momentum will have the following equation:

K⃗G = Iλωλλ⃗ + Iµωµµ⃗ + Iνων ν⃗

Substituting these results into the previous equation we obtain the formula that
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allows to compute the action of the inertia on the body:

M⃗iG = −dK⃗G

dt
= −

1Iλω̇λλ⃗ + Iµω̇µµ⃗ + Iνω̇ν ν⃗
2

+
Iλωλ

dλ⃗

dt
+ Iµωµ

dµ⃗

dt
+ Iνων

dν⃗

dt

(3.1)

The derivatives of the versors can be also expressed as:

dλ⃗

dt
= ω⃗T ∧ λ⃗

dµ⃗

dt
= ω⃗T ∧ µ⃗

dν⃗

dt
= ω⃗T ∧ ν⃗

Where ω⃗T is the angular velocity of the reference system λ, µ, ν.
It’s worth noting that this equation has been found considering the RF λ, µ, ν

fixed to the rigid body, therefore their angular velocities are the same. However,
when the body has a symmetry axis and rotates around it, the equation above
remains valid even if the RF is not attached to the body. Hence, it can be used to
compute the gyroscopic torque.

Figure 3.2: One gimbal gyroscope.

Consider now the one-gimbal gyroscope in Figure 3.2. The reference system in
yellow (RS1) is fixed, while the red reference system (RS2) is attached to the blue
gimbal. The two reference systems are centered at the barycenter of the gyroscope.
The RS2 coincides with the RF (λ, µ, ν) used to compute the moment of inertial
forces. The total angular velocity of the rotor is:

ω⃗tot = Ωλ⃗ + ων⃗

Therefore, the angular velocity components expressed in the mobile reference frame
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are: 
ωλ = Ω
ωµ = 0
ων = ω

The derivative of the angular velocities and the versors are needed to obtain the
equation 3.1 for the gyroscope. The angular velocities remain constant, so their
derivative is zero; the versor derivatives are computed as follows:

dλ⃗
dt

= 0

dµ⃗
dt

= Ω ν⃗ = Ω ·
è
cos (θ(t))k⃗ − sin(θ(t))⃗j

é
dν⃗
dt

= −Ω µ⃗ = −Ω ·
è
cos (θ(t))⃗j + sin(θ(t))k⃗

é
Where θ(t) is the tilting angle with respect to the axis k⃗ (θ (t) = Ω · t). Substi-

tuting these values inside equation 3.1 we obtain:

M⃗iG = (IνωΩ) =
è
IνωΩ ·

è
cos θ(t)⃗j + sin θ(t)k⃗

éé
= Iνω⃗ ∧ Ω⃗ (3.2)

That is the equation describing the gyroscopic torque action.
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3.3 CMG Only-Propelled Spherical Robot

3.3.1 One Scissored Pair CMGs
One important aspect emerges from equation 3.2: the direction of the gyroscopic
torque (GT) moves with the gyroscope. Therefore, we must restrict the component
acting along k⃗ if, for example, we only want to use the GT component acting along
the j⃗ axis. Furthermore, the torque will not be constant, but its magnitude will
follow a sinusoidal function (refer to equation 3.3).

Figure 3.3: CMG anchored to the ground.

As previously stated, a gyroscope used as a source of torque by tilting a spinning
momentum wheel is known as Control Moment Gyroscope. In a CMG anchored to
the ground, as the one shown in figure 3.3, the unwanted GT component would be
canceled out by the reaction forces of the ground. The corresponding GT function
is the following one:

M⃗iG = (IνωΩ) · cos Ωt⃗j (3.3)

If a single one-gimballed-CMG is placed inside a spherical robot it would be
necessary to counter the unwanted GT component in another way. A solution can
be achieved using a second CMG which is tilted in such a way that the component
along the direction of interest is maintained, while the other component is canceled
out. When the gyroscopes are used in this configuration, they are also known as
scissored pair control moment gyroscopes. Let’s consider the gyroscope in
figure 3.4. The red reference frame moves with the internal gimbal, and it’s rotated
around the k⃗ axis of the fixed reference frame about an angle equal to α1. The

31



Control Moment Gyroscopes

Figure 3.4

transformation matrix from the fixed to the mobile reference frame is the following
one:

Rf
1 (θ (t)) =

cos α1 − sin α1 · cos (θ1 (t)) sin α1 · sin (θ1 (t))
sin α1 cos α1 · cos (θ1 (t)) − cos α1 · sin (θ1 (t))

0 sin (θ1 (t)) cos (θ1 (t))

 (3.4)

Where θ (t) is the tilting angle with respect to the axis k⃗ The GT can be computed
through the equation 3.2:

τ⃗G = Iν ω⃗ ∧ Ω⃗ = M · [(−cθ1sα1) i⃗ + (cθ1cα1) j⃗ + sθ1 k⃗] (3.5)

Where M is equal to IνωΩ. If we have an identical CMG inside the sphere with
opposite ω and Ω, the value of M will be the same, while θ2 = θ1 + π. As a result,
the components along the i⃗ and the j⃗ axis will be added, while the component
along the k⃗ axis will be canceled out:

τ⃗G1 + τ⃗G2 = M
î
(−cθ1sα1) i⃗ + (cθ1cα1) j⃗ + sθ1 k⃗ + (−cθ2sα2) i⃗ + (cθ2cα2) j⃗ + sθ2 k⃗

ï
=

= M
î
(−cθsα1) i⃗ + (cθcα1) j⃗ + sθk⃗ + (−cθsα2) i⃗ + (cθcα2) j⃗ + sθk⃗

ï
=

= M
î
(−sα1 + sα2) i⃗ + (cα1 − cα2) j⃗

ï
cθ (3.6)

Four cases of interest can be found:

• α1 = α2 + π: τ⃗tot = M ·
1
2c θsα2⃗i − 2c θcα2 j⃗

2
• α1 = 3

2π, α2 = π
2 : τ⃗tot = 2M cos(θ) · i⃗

• α1 = 2π, α2 = π τ⃗tot = 2M cos(θ) · j⃗
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• α1 = α2: τ⃗tot = 0

The first three cases describe the configuration with diametrically opposed
gyroscopes. This is the most useful and the only possible configuration of a
scissored pair of one-gimballed-CMGs inside a spherical robot; otherwise, the
barycenter would be displaced from the center of the sphere, generating a moment
due to the gravity force.

Figure 3.5: SR with two CMGs.

This configuration–two diametrically opposed one-gimballed gyroscopes–has two
main limitations:

• The first one is that it allows to generate a torque along a unique direction. It
can’t be used to completely control the robot movements, but only the rolling
of the sphere in one direction.

• The second one, as already highlighted at the beginning of this chapter, is
that the torque has an oscillatory behavior due to the sinusoidal function that
governs the equation.

Therefore, if the gyroscope is tilted at an angle greater than 90 degrees, a negative
torque acts on the robot, decreasing its velocity; if no external forces are present,
it stops when the tilting angle reaches 180 degrees. The same behavior can be
observed when then gyroscope is tilted back to its original position.

This behavior is caused by the conservation of the angular momentum. When
starting spinning the rotors in opposite directions, the total angular momentum
of the system is equal to zero. When the gyroscopes are tilted, a torque acts on
the sphere to compensate for the total angular momentum of the two gyroscopes,
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which is now different from zero. For this same reason, if the rotors are stopped
after having been tilted, the sphere stops too.

Another way to analyze this behavior is the following. The CMGs can be thought
as a propulsion system able to store a certain amount of angular momentum. It can
be dispensed to the sphere, but when the whole momentum has been transferred,
it is impossible to provide more torque. Eventually, the gyroscopes will need to
be charged again, taking back the momentum provided and generating a negative
torque that acts on the sphere.

3.3.2 Multiple Scissored Pair CMGs

Figure 3.6: SR with 4 CMGs.

A second perpendicular couple of diametrically opposed gyroscopes could be added
to overcome the first restriction of a single pair of one-gimballed CMGs (figure
3.6). In this manner, a torque could be generated in any direction in the plane
containing the four gyroscopes. For example, if they are positioned along the X
and Y axes of the spherical robot RF, the generated gyroscopic torques will be
located on the X and Y axis respectively. Their magnitude will be described by
the second and the third equations presented in the four cases of interest of the
previous chapter. Therefore, tilting the two couple of CMGs with the same Ω
and varying the spinning velocity ω, the resultant torque will be described by the
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equation:
τ⃗tot = 2IνΩω1 cos (Ω · t) · i⃗ + 2IνΩω2 cos (Ω · t) · i⃗

|τ⃗ tot| = 2IνΩ
ñ

ω2
1 + ω2

2 · cos(Ω · t)
However, after the robot starts rolling, a new problem arises. The only way to
change the heading direction consists in stopping in such a way that the plane
containing the four gyroscopes will be horizontal. Otherwise, the torque generated
when tilting again the rotors will have a vertical component, causing the sphere to
follow a curved path. It is clear that, even with a perfect model of the robot, the
disturbances coming from an uneven ground and external forces make impossible
to control the sphere.

Therefore, a third couple of gyroscopes should be placed along the third axis of
the sphere RF. In this manner, the gyroscopic torque could be directed along any
direction, making possible to control the rolling motion from any orientation of the
three pairs of CMGs. It must be noted that the same torque generated with two
pairs of CMGs can be provided through a two-gimballed single pair. In the same
way, the 6 gyros needed to control the robot rolling direction can be substituted by
a pair of three-gimballed CMGs. This allows to reduce the space needed and the
weight of the robot. In the following paragraphs, a scissored pair three-gimbals
CMG inside a spherical robot is analyzed, presenting a possible motion strategy,
and the kinematic of the system. Finally, the main problems of the system are
presented.

3.3.3 Scissored Pair Three Gimballed CMG
In this section, a scissored pair three-gimbals CMG inside a spherical robot is
analyzed. This configuration, as explained in the previous paragraphs, allows
to generate a gyroscopic torque along any desired direction. Thanks to the 3
DOF-structure it is possible to completely control the orientation of the rotor. A
reconfiguration of the three gimbal angles allows to tilt the gyroscope around any
direction. Based on the considerations made in the previous chapter, a motion
strategy was developed. Here the main steps are listed:

• Positioning of the tilting axis: knowing the desired heading direction of the
sphere and the rotation of the sphere RS with respect to the fixed World RS,
the motion of the two external joints (first and second gimbals) is computed
in order to reposition the tilting axis.

• Spinning and tilting of the rotors: the rotors can start spinning in opposite
directions; then, the internal gimbal (the third one) of the two gyroscopes is
tilted in opposite directions and a gyroscopic torque is generated.
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• Rolling at a constant velocity: the gyroscopes are tilted until the tilting angle
reaches 90° As explained in the previous sections, going beyond 90° would
generate a negative torque, which would stop the sphere. The sphere is now
rolling with a constant velocity.

• Stopping the sphere: when the sphere has covered the desired distance or
a change of direction is needed, the third gimbal can be tilted back to a 0°
angle. This will generate a new gyroscopic torque in the opposite direction
with respect to the previous one and, if no other external forces are present, it
will cause the sphere to stop. Finally, the rotors are stopped.

After the fourth step, if the sphere hasn’t reached the goal yet, the four points will
be repeated. The biggest drawbacks of this strategy are the capability of moving
only along straight paths and the need to stop the sphere every time it must change
the heading direction.

In the next paragraphs, a more in-depth analysis of the first step is presented.
The direct and inverse kinematics of a 3-gimbals gyroscope are needed in order to
compute the angular displacement of the gimbals. The analysis is realized assuming
that the robot is moving on a horizontal plane and that the angles of the gyroscope
pose, and the orientation of the sphere RF are known.

Figure 3.7: 3-gimbal gyroscope.
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Positioning of the Tilting Axis: Direct Kinematics

To compute the direct kinematics (DK) of the gyroscope, the matrix of transforma-
tion between the sphere (RF0) and the third gimbal reference frame needs to be
found: R0

3.
In order to do that it is necessary to write all the transformation between every

single consequential reference frame. Five reference frames can be defined: the
ground reference frame (RFw), which is fixed, the sphere reference frame (RF0),
which moves with the sphere, and the gimbals reference frames (RF1 – RF3). To
develop the DK we are interested in the last four reference frames.

To develop the calculations, the Denavit Hartenberg (DH) convention has been
used. A schematic diagram highlighting the joints and links of the device is shown
in Figure 5. The Zero Reference Frame describes the sphere pose. Table 1 shows
the DH parameters, which are used to describe the transformation between two
consequential reference frames.

Figure 3.8: Denavit Hartenberg parameters of the three gimbals gyroscope.

Figure 3.9: Schematic representation of the 3-gimbal gyroscope.
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The transformation matrices between consequential reference frames can be
obtained by substituting the DH parameters inside the following matrix:

A
(i−1)
i (qi) =


cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi

cαi
−cθi

sαi
aisθi

0 sαi
cαi

di

0 0 0 1

 (3.7)

In this case we have:

R0
1 (θ1) =

cθ1 0 −sθ1

sθ1 0 cθi

0 −1 0

 R1
2 (θ2) =

cθ2 0 sθ2

sθ2 0 −cθ2

0 1 0

 R2
3 (θ2) =

cθ2 −sθ1 0
sθ2 cθi

0
0 0 1


Multiplying these three matrices we obtain the relation between the sphere and
the third gimbal:

R0
3 (θ1, θ2, θ3) =

c1c2c3 − s1s2 −c1c2s3 − s1c3 c1s2
s1c2c3 + c1s3 −s1c2s3 + c1c3 s1s2

−s2c3 s2s3 c2

 =

a0
x b0

x c0
x

a0
y b0

y c0
y

a0
z b0

z c0
z

 (3.8)

Positioning of the Tilting Axis: Inverse Kinematics

The matrix 3.8 can be used to compute the inverse kinematics, which are the
equations of the joint angles associated with a specific pose of the third reference
frame expressed in relation to RF0:

θ1 = Atan2
1
c0

y, c0
x

2

θ2 = Atan2
Aò

(c0
y)2 + (c0

x)2
, c0

z

B

θ3 = Atan2 (b0
z, −a0

z)

(3.9)

These angles correspond to the angular displacement of each one of the motors
associated to the three gimbals. The next step consists in defining the new pose of
RF3. The heading direction is known with respect to the RFw; the new pose of
RF3 is defined aligning the tilting axis to the heading direction. Therefore, the
transformation matrix from RFw to the new RF3 can be easily obtained. Finally,
knowing the rotation matrix from RFw to RF0 (the orientation of the sphere
reference system with respect to the fixed one after the robot movements), it is
possible to define the rotation matrix ãR0

3, which is the rotation matrix from the
current sphere orientation to the new pose of the third reference system. The
new angles ãθ1,ãθ2,ãθ3 can be computed through the inverse kinematics and can be
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subtracted to the current ones in order to obtain the needed gimbal movements. A
more detailed explanation is presented in the next section.

Positioning of the Tilting Axis: Gimbals Input

Figure 3.10: Top-view of the spherical robot. The heading direction and the new
pose of RF3 are shown.

This section explains how to select the pose of the third gimbal reference frame
when the sphere is moving on a horizontal plane. The choice of the RF3 pose can
be done knowing that the tilting axis (axis z3 in Figure 3.9) has to be parallel
to the heading direction, as shown in Figure 3.10, while the spinning axis (x3 in
Figure 3.9) must be perpendicular to the ground. In this way, the torque generated
by a single gyroscope will be parallel to y3. It should be noted that the spinning
and tilting velocities are opposite in the two gyroscopes; as a result, the spinning
and tilting directions of one gyroscope will be opposite to the positive directions of
the reference frames. The transformation matrix from the world reference frame
and the desired pose of äRw

3 will be:

äRw
3 =

 0 −sin(Φ) cos(Φ)
0 cos(Φ) sin(Φ)

−1 0 0

 (3.10)

Knowing the transformation between RFw and RF0 (Rw
0 can be computed through

the measurements of an IMU placed in the sphere’s center), we can obtain the
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transformation matrix that relates RF0 with RF3.

ãR0
3 = R0

w
äRw

3 = (Rw
0 )−1äRw

3 = (Rw
0 )−1

 0 −sin (Φ) cos (Φ)
0 cos (Φ) sin (Φ)

−1 0 0

 (3.11)

Finally, using the equations 3.9, the joint angles ãθ1, ãθ2, ãθ3 required to achieve the
desired position can be computed; subtracting from these the current ones, the
angular displacement of each joint can be computed.

3.3.4 Problems of a CMG Only-Propelled SR
Effect of Dissipative Forces

Figure 3.11: 2D scheme of a spherical robot moving on a flat surface.

The study that has been presented so far doesn’t account for the impact of external
forces on a CMG-only-propelled spherical robot. In this section, a qualitative
analysis on the effect of dissipative forces is realized.

It will be shown that the effect of external dissipative forces can lead to unde-
sirable behaviors. If we include, for example, the rolling friction, the total torque
acting on the sphere when repositioning the spinning axis will be greater than
the one that caused the sphere to accelerate. This means that the sphere will not
only stop, but it will also start to roll in the opposite direction. An example is
provided below for a more detailed explanation. The problem can be reduced to a
2D problem because the sphere is assumed to roll in a straight path.

Consider the spherical robot on a flat surface as in Figure 3.11. The two rotors
are spinning in opposite directions at the same speed ω. At t = 0s, the third
gimbal (the green one in figure 3.7) of the two gyroscopes starts moving in opposite
directions with a constant velocity Ω until it reaches a 90◦ angle. This generates
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a gyroscopic torque C(ϕ) (ϕ is the tilting angle), causing the sphere to roll in a
specific direction. While moving, the sphere experiences rolling friction with a
friction coefficient µ. Its angular acceleration will be:

θ̈ = 2IωΩ cos (φ) − Mgµ

MR2 + Isf

Where I is the inertia of the rotors, M is the total mass of the robot, R is
the radius of the robot and Isf is the inertia of the sphere. By integrating the
acceleration, we can obtain the speed attained by the robot at the end of the tilting
motion:

θ̇
3

π

2Ω

4
=
Ú π

2Ω

0

2IωΩ cos (Ωt) − Mgµ

MR2 + Isf

dt = 2Iω

MR2 + Isf

− Mgµ

MR2 + Isf

π

2Ω

When the tilt angle reaches 90◦, we immediately begin tilting the gyroscopes
back to 0◦. The acceleration will be:

θ̈ = −2IωΩ cos (φ) + Mgµ

MR2 + Isf

By integrating again the acceleration we obtain:

θ̇
3

t′ + π

2Ω

4
=
Ú

−2IωΩ cos (Ωt′) + Mgµ

MR2 + Isf

dt′ =

= − 2Iω

MR2 + Isf

sin (Ωt′) − Mgµ

MR2 + Isf

t′ + K

Where t′ = t − π
2Ω , and K is the constant of integration. K can be computed by

equating the value of velocity obtained from the previous calculus at t′ = 0s:

θ̇ (t′) = 2Iω

MR2 + Isf

(1 − sin (Ωt′)) − Mgµ

MR2 + Isf

(t′ + π

2Ω)

Substituting t′ = π
2Ω , we obtain the velocity attained by the sphere when the

tilting angle is once again equal to 0◦, which is negative:

θ̇
3

t′ = π

2Ω

4
= − Mgµ

MR2 + Isf

π

Ω

Actually, the equation of the acceleration changes when the sphere stops, because
the rolling friction changes its sign; however, the result obtained is sufficient to
demonstrate that the robot stops before reaching a tilting angle of 0◦. Therefore,
robot will begin to move backwards. A possible solution to this problem would
consist in repositioning the rotors with a Ω1 smaller than the one used when
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accelerating the sphere. In this manner, the negative gyroscopic torque could be
compensated by friction forces,avoiding the robot to start moving backwards.

Uphill Climbing

Figure 3.12: Free body diagram of a sphere rolling on a hill in a straight line.

The spherical robot’s ability to ascend an inclined plane is a crucial feature. The
CMG propulsion system, as explained so far, is able to provide only a limited
amount of torque. If the robot is subjected to a constant negative acceleration, the
sphere can only be accelerated in the positive direction until the gyroscopes reach
the 90° tilting angle. As a result, if the sphere is climbing a slope, it can only be
accelerated for a time equal to π

2Ω s. After this period, the gravity force is the only
one applied on the robot (other external forces are neglected). If the robot doesn’t
reach the end of the slope before stopping, it will start rolling backwards. For a
better understanding of this problem, an example with numerical data is presented.
Consider a spherical robot equipped with a scissored-pair three gimballed CMG.
The data are the following:

• M <tot= 16Kg

• Msf = 3.5Kg

• R = 0.25 m

• Isf = 0.25 Kg · m2

• mg = 2 Kg

• rg = 0.04 m

• Ig = I = 0.5 mgr2
g = 0.0016 Kg · m2
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The free body diagram of the sphere is shown in Figure 3.12. The sphere starts
going uphill at t = 0s, with an acceleration that depends on the torque generated
by the inner CMG couple. The following equations can be obtained:

Mgsin (α) + Mẍ = Fa

Mgcos (α) = N

C − Isf θ̈ − FaR = [2IωΩ cos (Ωt)] − Isf θ̈ − (Mgsin (α) + Mẍ)R = 0

(3.12)

Applying the pure rolling constraint: ẍ = θ̈R, the acceleration of the system
will be:

θ̈(t) = 2IωΩ cos (Ωt) − MgR sin(α)
MR2 + Isf

From this equation, rotational speed and displacement can be obtained:

θ̇ (t) =
Ú 2IωΩ cos (Ωt) − MgR sin (α)

MR2 + Isf

dt

= 2Iω

MR2 + Isf

sin (Ωt) − MgR sin (α)
MR2 + Isf

t + K1

θ (t) =
Ú A

2Iω

MR2 + Isf

sin (Ωt) − MgR sin (α)
MR2 + Isf

t + K1

B
dt =

= − 2Iω

(MR2 + Isf ) Ω cos (Ωt) − MgR sin (α)
MR2 + Isf

t2

2 + K1t + K2

Applying the zero initial conditions, the two constants of integration can be
obtained:

K1 = 0, k2 = 2Iω

(MR2 + Isf ) Ω
Therefore, the speed and the angular displacement of the sphere while tilting the
gyroscopes will be described by the following equations:

θ̇ (t) = 2Iω

MR2 + Isf

sin (Ωt) − MgR sin (α)
MR2 + Isf

t

θ (t) = − 2Iω

(MR2 + Isf ) Ω cos (Ωt) − MgR sin (α)
MR2 + Isf

t2

2 + 2Iω

(MR2 + Isf ) Ω
When the gyroscope reaches a 90◦ tilting angle, the gyroscopic torque goes to zero;
therefore the only acceleration acting on the robot is the one due to the gravity
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force:

θ̈(t) = −MgR sin(α)
MR2 + Isf

The speed can be described by the following equation:

θ̇ (t′) =
A

2Iω

MR2 + Isf

B
− MgR sin (α)

MR2 + Isf

3
t′ + π

2Ω

4

Where t′ = t − π
2Ω . The angular displacement can be obtained by integration of

the angular speed:

θ (t′) =
A

2Iω

MR2 + Isf

B
t′ − MgR sin (α)

MR2 + Isf

3
t′ + π

Ω

4
t′

2 +

+(−MgR sin (α)
MR2 + Isf

( π
2Ω)2

2 + 2Iω

(MR2 + Isf ) Ω)

It is possible to plot these functions substituting the data listed above. The
obtained graphs are the following:

Figure 3.13: Spherical Robot Angular Speed.
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Figure 3.14: Spherical Robot Linear Displacement.

As expected, the robot is able to climb the slope as long as the acceleration due
to the gyroscopic torque is greater than the negative acceleration due to gravity.
Then, the robot starts to decelerate, and it will eventually reach the starting point,
indicating a clear limitation of the system. For this reason, the CMG is usually
applied as an auxiliary propulsion system. With the help of a primary propulsion
system (such as a BCO), the CMGs can be “recharged” without affecting the robot
motion. In the next chapter, the use of a scissored pair as an auxiliary propulsion
system is studied, and the driving system that will be used on the spherical robot
prototype is presented.

Another approach to overcome this limitation would be to change the shape
of the shell. A polyhedral structure, rather than a spherical one, could remain
stationary on a slope without requiring a positive torque. It would also allow for
a slow recharge of the CMGs: the tilting velocity could be selected to generate a
small negative torque that would not be sufficient to tip the robot over.
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3.4 CMG as an Auxiliary Driving System

In the previous paragraphs, the use of the CMG as primary driving system of a
SR has been studied. The problems with this type of system have been discussed,
and it has been concluded that a gyroscope-only driving system can’t be realized.
This doesn’t mean that a CMG group can’t be used inside a SR, but that it must
be associated with a primary driving unit, such as a pendulum or a hamster ball
driving system. Thus, it can serve as an auxiliary driving system to stabilize or
boost the robot.

(a) (b)

Figure 3.15: (a) Diagram of the spherical robot encountering an obstacle.
(b) CMG group disposition for stabilizing the robot against lateral oscillations
(front view).

The first option employs a scissored pair CMG group to stabilize the robot
against lateral oscillations. If the sphere is travelling on an uneven terrain, small
obstacles could be met along the path (3.15(a)). Consequently, reaction forces
acting on a different direction from the heading one may cause the sphere to start
oscillating. The twin gyroscopes could be used as shown in fig. 3.15(b): the two
rotors spinning in opposite directions are tilted around the z-axis to generate a
gyroscopic torque around the x-axis. They could be placed on the pendulum of a
pendulum-driven SR. It is important to note that the system’s z-axis must always
be perpendicular to the ground; otherwise, the CMGs would act on both the roll
and yaw axes of the sphere. Therefore, an external gimbal controlling the attitude
of the CMG’s YZ plane is needed.
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Figure 3.16: Conceptual Design of a SR with a CMG used to provide a temporary
boost.

The second option consists of two CMGs used to give a temporary boost to
the robot in the forward direction. Consider a SR whose main propulsion system
consists of a 2 DoF pendulum. The CMG can be attached to the pendulum to
generate a gyroscopic torque that opposes the pendulum’s movement when needed
(a conceptual representation is shown in figure 3.16). This effect can be seen as a
temporary increase in the weight of the pendulum, requiring more torque to lift
and resulting in a higher reaction torque on the sphere. This boost can be utilized
to enhance the robot’s ability to overcome obstacles.

As already explained in the introduction, one of the main disadvantages of the
SRs is their limited obstacle climbing performance. For this reason, the aim of this
thesis is to present a pendulum driven SR with a CMG group used to increase the
available torque. A more detailed explanation is presented in the next paragraph.

3.4.1 CMG to Enhance Obstacle Climbing Capability
The CMG group configuration used inside the sphere is the same that was studied
in paragraph 3.3.1: two one-gimballed gyroscopes spinning and tilting in opposite
directions. An illustration of the front view of the SR is shown in fig. 3.17. It can
be observed that the gyroscopic torque components along the y-axis cancel out,
leaving only the ones along the x-axis. The gyroscopic torque must act against
the upward movement of the pendulum. A simple free body diagram studying the
static equilibrium of the sphere facing a step is shown in fig. 3.18. The problem can
be split into two. The analysis of the forces acting on the pendulum (fig. 3.18(a)),
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Figure 3.17: Front view of a SR equipped with a CMG group, highlighting the
details of the gyroscopic torque action.

and the ones acting on the sphere (fig. 3.18(b)). The equations obtained are as
follows:



τM = L · mpg + τG

V = mpg

b = R ·
ñ

1 − (1 − h
R

)2

a = (L · mp)/(mp + Ms)

τM = b(V + Msg)

Rearranging these equations, it is possible to recalculate the MSH-over-radius
curve 1.2 while including the effect of the gyroscopic torque:

h

R
= 1 −

öõõô1 −
A

a + τG

(mp+Ms)g

R

B2

(3.13)

It can be observed that the barycenter of the sphere is increased by a factor which
depends on the gyroscopic torque and the total mass of the system. Therefore, it
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Figure 3.18: Free Body Diagram of the robot while climbing a step (static
equilibrium condition).

is possible to define a new variable a∗ that is computed as:

a∗ = a + τG

(mp + Ms)g
(3.14)

Substituting this variable inside 3.15, it results:

h

R
= 1 −

ó
1 −

3
a∗

R

42
(3.15)

which is the same relation expressed by eq. 1.2. To understand how the maximum
step height can vary with the aid of the gyroscopic torque, the relation between

Figure 3.19: MSH-over-radius curve against Maximum Gyroscopic Torque. Total
mass and barycenter position of the robot from [1].
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the step over radius and the maximum gyroscopic torque expressed by eq. 3.15 is
represented in fig. 3.19. To plot the curve, the values of the SR from [1] were used.
It can be observed that if the gyroscopes aren’t used, the step height is one tenth
of the radius, which was the MSH of the SR from [1].

Note that the gyroscopic torque is not constant, therefore, while tilting the
gyroscopes the value of a∗ will decrease until it returns to be equal to a. However,
the torque needed to overcome a step decreases while climbing it, therefore it was
considered sufficient to refer to the the maximum gyroscopic torque to asses the
MSH that the robot was able to climb.

Finally, observe that the value of a∗ doesn’t depend only on the gyroscopic
torque, but also on the total mass of the system.

In the next chapter, the design process of the robot is presented, which was
carried out trying to maximize the MSH parameter, while respecting the other
constraints.
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Design Process

In this chapter, the design process of the robot is presented. The first paragraph
describes the design of the SR by M. Melchiorre et al. [1]. The subsequent sections
discuss the new design, highlighting the CMG group, the dimensioning of the main
motors, and the pendulum structure design. Finally, the chapter concludes by
presenting the final design of the robot.

4.1 Previous Work
This Section presents the SR that was developed by M. Melchiorre et al. [1]. As
previously stated, this SR uses a BCO propulsion system consisting of a 2 DOF
pendulum. Unlike traditional designs, the pendulum actuators are not attached to
the central shaft. Instead, they have been placed at the bottom of the pendulum
structure to lower the robot barycenter. Motion is transferred to a differential
driving system located at the center of the shaft through two transmission belts.
This differential driving system is similar to the one used in cars and is composed
of one planet gear that is attached to the central shaft and two sun gears that are
connected to the motors through the timing belts (fig. 4.2 (a)). The angular speed
of the main shaft can be related to the speed of the sun gears and the pendulum
through two cinematic relation. Consider the fig. 4.1: let’s define an x and y
axis passing through the sun gear centers, and the central shaft respectively. It is
possible to obtain the following equations:

ω3 = ω1 − ω2

2 − ωp (4.1)

Ω = ω1 + ω2

2 − Ωp (4.2)
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Figure 4.1: Differential gear used on the SR by [1].

Where ω1 and ω2 are the velocity of the sun gears around the x axis, ω3 and ωp are
the sphere and pendulum velocity around the y axis, and Ω and Ωp are the main
shaft and pendulum angular speeds around the x axis.

The spherical shell consists of two layers, namely the inner layer made of
harmonic steel sheets bent to assume a spherical shape and the outer layer made of
impermeable rubber. The combined mass of the spherical shell and the differential
mechanism was approximately 5.7 kg. This value was used to determine the
pendulum mass and the barycenter distance form the sphere center.

Figure 4.2: (a) Driving mechanism and pendulum. (b) Assembly of the SR.
Images from [1].
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4.2 New Project

4.2.1 Design of the CMG Group
In the following paragraphs, the design of the components of the CMG group is
presented. The discussion begins with the dimensioning of the flywheel, highlighting
the procedure that was followed to define its size based on the design specifications.
This is followed by the presentation of the selection process for the spinning motors.
Finally, the gyroscope design is shown.

Flywheel Dimensioning

Figure 4.3: Drawing of the flywheel. Measures from CAD.

As already stated in section 1.1, the design of the gyroscope has been realized
in order to improve the MSH performance parameter. The relation described by
eq. 3.13 was used to compute eq. 4.3. The maximum gyroscopic torque was then
used to compute the size of the flywheel.

τG,MAX =
1√

R2 − 2Rh − a
2

gMtot (4.3)

To compute the maximum gyroscopic torque some values had to be fixed: the
step height, the radius of the robot, the barycenter position, and the total mass of
the system. The MSH value was chosen to be 10% greater than the one of table 1.2:
MSH = 110 mm. The spherical radius and the barycenter position were computed
from the design specifications: R = 250 mm and a = R · sin(φ) ≈ 87.5mm. The
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effect of the system mass on the gyroscopic torque was then studied. As explained
in the previous chapter, reducing the weight of the system leads to a decrease in the
required gyroscopic torque. Multiple options were examined, and it was determined
that the minimum achievable weight was 22kg. The pendulum accounted for 16 kg
of the weight, while the sphere and differential mechanism weighed a combined 6 kg.
The resulting maximum gyroscopic torque was equal to: τG,MAX = 25.82 N · m.

This value was then used to compute the inertia of the gyroscope flywheel.
It can be obtained from equation 3.3 imposing t = 0s.The spinning and tilting
velocities were taken equal to ω = 8000 rpm and Ω = 15 rpm respectively. The
flywheel inertia resulted to be: I = 0.0098 kg · m2.

An approximation was made for the shape of the flywheel, assuming it to be a
hollow cylinder. Thanks to this assumption, two equations can be used to compute
its size:

Ifl = 0.5 · mfl

1
r2

ext + r2
int

2
(4.4)

mfl = ρπhfl

1
r2

ext − r2
int

2
(4.5)

The mass of the flywheel was fixed to mfl = 3.2 kg. This two equations are not
sufficient to compute the three variables defining the size of the flywheel: external
and internal radius, and its thickness. A first solution can be achieved by fixing
one of the three variables, but this result doesn’t guarantee an optimal use of the
internal space. Therefore a non-linear optimization problem aiming at reducing the
overall dimensions of the flywheel was solved. The variables of the problem are:
x1 = Rint, x2 = (Rext − Rint), x3 = h. The distance from the edge of the cylinder
and its center was selected as auxiliary function to minimize:

f (x1, x2, x3) =
ó

(x1 + x2)2 + x2
3

4 (4.6)

The equations 4.5 and 4.4 can be used to obtain the two nonlinear equality
constraints of the problem:

0.5 · mfl

1
x2

1 + (x1 + x2)2
2

− Ifl = 0 (4.7)

ρπx3
1
(x1 + x2)2 − x2

1

2
− mfl = 0 (4.8)

Finally, a linear inequality constraint can be defined, which limits the external
radius to 70 mm:

x1 + x2 ≤ 0.07 (4.9)
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The sizes of the flywheel obtained by solving this problem are listed in the first
column of table 4.1. When designing the flywheel on Solidworks, these values were
used as a reference but they were slightly changed due to the approximation made
at the beginning of the problem considering the flywheel as a hollow cylinder.

Theory Real
mfl 3.2 kg 3.35 kg
Ifl 9.75 · 10−3kg · m2 9.8 · 10−3 kg · m2

Rext 66 mm 66 mm
Rint 42 mm 40 mm
h 51 51 mm

Table 4.1: Sizes of the flywheel.

Drag Forces on a High-Speed Spinning Flywheel

To dimension the motors responsible for the flywheel spinning motion, it was
crucial to assess the potential sources of loss in a high-speed spinning rotor. More
specifically, a comprehensive analysis of the air resistance acting on the flywheel’s
surface was conducted.

The main factor responsible for an increase of the drag are the surface area of the
flywheel, speed, and viscosity of the medium surrounding the disk. The viscosity of
a fluid increases with the pressure, therefore, the most common solution adapted
to minimize the drag moment consists of placing the flywheel inside a housing and
reduce the inner pressure through a vacuum pump. Because this solution cannot
be implemented inside the spherical rover, it is critical to quantify the drag torque
acting on the rotor.

For this reason, several analytical models from the literature are introduced
and subsequently applied to the present scenario. The objective is not to perform
an exhaustive theoretical investigation, but rather to estimate the impact of air
friction, allowing for its consideration during the selection of the spinning motors.

A first theoretical model is the one developed by Von Karman and Cochran,
which allow to compute the drag moment on a disk rotating in the free space. The
drag moment is caused by the flow on the disk plates, while the drag on the edges

CM = 3,87 Re− 1
2 Re < 5 · 104

CM = 0,146 Re− 1
5 Re ≥ 5 · 104

Table 4.2: Moment coefficient equations used in equation 4.10.
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was considered to be negligible because of the thin thickness of the used disk. The
moment is described through a dimensionless parameter called moment coefficient
CM and the equation of the drag acting on one face is:

M = CM ρa ω2R5 · 0,5 (4.10)

where ρa is the air friction, ω is the spinning velocity of the disk, and R is the
disk radius. The moment coefficients depend on the Reynolds number, which is a
dimensionless parameter that is used to describe the behavior of the flow (laminar
or turbulent). Von Karman and Cochran obtained two possible empirical equation
describing the CM that can be read in table 4.2. The Reynolds number is computed
through equation 4.11:

Re = ρa ω R2

µ
(4.11)

where µ is the dynamic viscosity of the air.
In the case of a flywheel, the thickness can’t be considered to be thin; therefore

it is necessary to account for the drag moment acting on the lateral surfaces. A
solution is presented in [41]: the moment coefficient must be corrected as shown in
equation 4.12:

C ′
M = CM ·

R + 5
2 l

R
(4.12)

where l is the thickness of the rotor.
When considering a flywheel placed inside an enclosure, other models have been

developed. J. Abrahamsson et al. [42] analyzed the drag losses approximating the
flywheel as a disc enclosed in a cylindrical container (figure 4.4). They consider
an annulus with outer radius r2 (radius of the disk) and inner radius r1 (the shaft
radius). The drag moment is considered to act only on the two flat faces of the
annulus.

The moment acting on the disk (both surfaces) can be computed through

Figure 4.4: Schematic picture of a disc rotating inside a cylindrical enclosure.
Image from [42]
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Figure 4.5: Overview of the possible flow configurations that may occur when a
disc rotates inside a cylindrical enclosure. The Reynolds number can be computed
through equation 4.11. Image from [42].

equation 4.13:

M = CM ρa ω2
1
r5

2 − r5
1

2
· 0,5 (4.13)

Here, the moment coefficient is computed through four different empirical equations,
each one referring to a specific air flow regime (figure 4.5). The flow regimes depend
on the ratio between the gap and the outer disk radius (G = d

r2
), and on the

Reynolds number, as shown in figure 4.6.
This model is one of the most used to estimate the drag moment acting on the

flywheel. However, it was developed for a thin disk rotating inside an enclosure,
and it doesn’t consider the losses due to the friction acting on the edge (cylindrical
surface).

Another model used to compute the drag acting on a spinning flywheel placed
inside an enclosure is presented by Antonello S. S. et al. [43]. They considered the
overall drag moment as the result of two contributions:

• An axial contribution, due to the air flow between the case and rotor cylindrical
surfaces (the annulus gap);

• A transversal contribution.

The flow inside the annulus gap is laminar at low angular speeds; when the
spinning velocity exceeds a critical value, the flow becomes unstable and the so-
called Taylor vortices appear. These are due the centrifugal forces acting on the
fluid particles. The flow regimes inside the annulus can be described through the
Taylor number:

Ta = Rωd

ν

ó
d

R
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Figure 4.6: Flow regimes according to Daily and Nece [44].

where ν is the kinematic viscosity. The Taylor vortices appears starting from
a value of Tacr = 41.3, while, for Taylor numbers greater than 400 the fluid is
considered fully turbulent. This is usually the case of a fast-spinning flywheel. The
air friction moment operating on the cylindrical surface, like the drag acting on
the disk plates, is described by equation 4.14:

M = CMρa π l ω2 R4 · 0.5 (4.14)

The moment coefficient for the axial contribution can be computed through the
equations showed in table 4.3. Reϕm is the Couette Reynolds number and is defined
as:

Reϕm = R ω d

ν

The transversal contribution is computed through equation 4.10, but the moment
coefficient is calculated through the equations listed in table 4.4.

Low Turbulent Reϕm ≤ 104 Ca
M = 1.03

1
d
R

20.3
Re−0.5

ϕm

High Turbulent Reϕm > 104 Ca
M = 0.065

1
d
R

20.3
Re−0.2

ϕm

Table 4.3: Moment coefficients for the axial contribution of the drag computed
through equation 4.14.

58



Design Process

Laminar Re < 104 CM = π R1
s Re

Low Turbulent 104 < Re < 2 · 105 CM = 1.334√
Re

High Turbulent Re > 2 · 105 CM = 0.0311
Re1/5

Table 4.4: Moment coefficients for the transversal contribution of the drag
computed through equation 4.10.

These models were applied to the specific case of the flywheel designed in the
previous section, operating at the nominal speed divided by a safety factor of 0.95
and at room temperature. The data used to compute the drag moment are listed
in table 4.5, while the results can be read in table 4.6.

Although the flywheels of the gyroscopic group are enclosed in a casing, the
drag considered for designing the spinning motors is that of a rotor rotating in
free space. The corresponding value can be found in table 4.6, and it’s equal to
42 mNm. For motor design purposes, this value was divided by a safety factor of
0.8, resulting in a final drag value of 52 mNm.

DATA
ρa 1.204 kg/m3 air density at 20°C
ω 8420 rpm angular speed
l 0,051 m thickness of the rotor
R 0,066 m external radius
b 0,005 m air gap thickness between the rotor and the case
µ 1.81 · 10−5 kg/ms dynamic viscosity of air at 20°C
Rint 0,005 m radius of the flywheel shaft

Table 4.5: Data used to compute the Drag Moment.

Model Transversal Circumferential Drag

Von Karman 14 mNm - 14 mNm
Von Karman Corrected [41] - - 42 mNm
J. Abrahamsson et al. [42] 3.8 mNm - 3.8 mNm
Antonello S. S. et al. [43] 4.9 mNm 2.6 mNm 10.1 mNm

Table 4.6: Data used to compute the drag moment on the flywheel when spinning
at 8000 rpm.
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Spinning Motors

The selection of the motors responsible for the spinning of the flywheels was made
considering three parameters: the nominal torque, speed and voltage. The nominal
torque needs to be greater than the air friction torque at the maximum spinning
velocity. This value was found at the end of the previous paragraph and it was
then divided by a safety factor of 0.8. The obtained result was 52 mNm. The
nominal speed was fixed when designing the flywheel at 8000 rpm. As for the
nominal torque, the value used for the motor choice has been divided by a safety
factor of 0.95, obtaining a speed of approximately 8420 rpm. Finally, the nominal
voltage was requested to be as close as possible to 12V.

The motor that satisfied these requirements was found in the Maxon catalogue.
Its specifications can be read in figure 4.7. The Maxon website allows the customers
to verify that the requested nominal working point is found inside the motor
continuous operating area. Thanks to this tool it is possible to know also the voltage
and current requested by the motor, which are Vnom ≈ 12.6 V and Inom ≈ 4.1 A.

A concise analysis of the motor’s step response, considering its coupling with
the flywheel, was conducted to determine the time required to reach the nominal
speed.

Figure 4.7: Data sheet of the selected motor for the spinning motion.
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Figure 4.8: Drag force evolution against spinning velocity. In blue the theoretical
curve, in red the approximation.

The dynamic model of the system was studied. The differential equation is the
following one:

Iθ̈ + τa = τm (4.15)

where τa is the drag moment, while τm is the motor torque. The equation of the
motor is the following one:

θ̇ = kvVmot − kτ τm → τm = kvVmot − θ̇

kτ

(4.16)

where kv and kτ are the speed constant and speed/torque gradient, respectively
(these values are written in the motor catalogue). Substituting this equation into
the first one, the differential equation becomes:

Iθ̈ + τa + θ̇

kτ

= kvVmot

kτ

(4.17)

The drag moment equation is 4.10, where the moment coefficient was computed
through the equations of table 4.2 and corrected as shown in equation 4.12. To
simplify the problem, this function was approximated to a second order equation
of the type:

τair = ka1θ̇ + ka2θ̇
2 (4.18)

where ka1 = 0.11 · 10−4 and ka2 = 0.8 · 10−7. Image 4.8 depicts the variation of air
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friction as a function of the spinning velocity for both the real and the approximated
models.

The dynamic model of the system after substituting the approximation of the
drag moment is described by the following equation:

Iθ̈ + (ka1θ̇ + ka2θ̇
2) + θ̇

kτ

= kvVmot

kτ

(4.19)

Having defined the state variable x = [x1; x2], the state space representation of
the problem has the following form:I

ẋ1 = x2

ẋ2 = kvV −x2
Ikτ

− ka1x2+ka2x2
2

I

(4.20)

The non-linear differential problem can be effectively solved through numerical
integration methods. In this case, the second-order Runge-Kutta method was
selected. The step response of the system is illustrated in figure 4.9, which shows
the time required to reach the nominal speed is approximately Twnom = 16 s.

This result provides valuable insights into the system’s behavior. In scenarios
where a “boost” effect is required, the flywheel needs to reach its nominal speed
before its application. The 16-seconds "charging time" is a reasonable duration,
but it can be further reduced by developing a dedicated controller.

Figure 4.9: Step response of the motor coupled with the flywheel.
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Gyroscope Design

Figure 4.10: Front view and lateral cross-section of the gyroscope. The components
are: 1) first half of the case, 2) shaft, 3) second half of the case, 4) Jaw coupling, 5)
Spacer, 6) Small angular contact ball bearing, 7) Big angular contact ball bearing, 8)
Motor plate, 9) C-plate for tilting motor connection, 10) Flange1 for main structure
connection, 11) Flange1 for tilting motor-gyroscope connection, 12) Tilting motor, 13)
Angular contact ball bearings for tilting axis positioning, 14) Flange2 for tilting motor-
gyroscope connection, 15) Flange2 for main structure connection, 16) Motor-to-C-plate
connection plate, 17) Closing Plate, 18) Spinning Motor.

In the preceding paragraphs, the design of the flywheel and the motors responsible
for its spinning motion was presented. These components constitute the main
elements of the gyroscopic group. Here, a concise explanation of the overall design
is provided.

In figure 4.10, a front view and a lateral cross-section of the system are illustrated.
All the components are listed in the image caption. The motor is connected to
the shaft through a jaw coupling, which was selected from the MIKI PULLEY
STARFLEX catalogue (figure 4.11).
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Figure 4.11: ALS-014-R jaw coupling from the MIKI PULLEY STARFLEX
catalogue.

A static load analysis was performed to determine the minimum shaft diameter.
The equation used is the following one:

d = 3

ó
16

π σadm

ñ
4M2

f + 3M2
t (4.21)

where Mf and Mt are the bending and torsional moment, respectively; σadm is the
admissible stress, and it is computed as R/n, which is the tensile strength (a mean
value of 600 MPa is usually used for steel) divided by a safety factor (for this
application, a value of 8 was chosen). For a beam of 50 mm of length, a value of
6.2 mm was obtained. The designed shaft doesn’t have a constant cross section,
but its minimum diameter is equal to 8 mm.

The gyro case (figure 4.10, numbers 1 and 3) was designed not only to provide
structural support for the entire system but also to enhance user safety during
operation and minimize drag friction. To allow the system assembling operations,
it was divided into two halves that are then held together through screws and
connecting plates.

The tilting motor axis was vertically aligned with the barycenter of the system.
This measure allowed to select a smaller motor1.The TRINAMIC Motion Control
catalogue was used to select a suitable stepper motor (QMot QSH2818) for the
system. Elements 10 and 15 serve as connectors between the system and the
pendulum structure, bearing the entire weight of the system. As a result, there is
no shear load exerted on the shaft of the stepper motor.

Finally, a rendering of the gyroscope system can be seen in figure 4.12.

1: The moment arm of the gyroscope weight is zero, meaning that the motor torque does not
need to overcome the weight of the system when tilting the gyroscope
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Figure 4.12: Rendering of the gyroscope (the lower half of the case was removed).

4.2.2 Main Motors Dimensioning

As already explained in the previous sections, the 2-DOF pendulum from [1] was
adopted as the main driving system. However, the originally selected motors from
[1] couldn’t be used due to changes in weight distribution and power requirements.
This paragraph outlines the design process of the new gearbox and motor.

One of the design specifications outlined in table 1.2 is the required nominal
speed for the robot to maintain while climbing a 15° slope. This requirement was
used to compute the design specifications of the gearbox and the motor. First,
the angle of the pendulum necessary to maintain an equilibrium condition was
computed. It was observed that a static condition is achieved when the barycenter
of the robot is vertically aligned with the contact point between the shell and the
ground (see figure 4.13). Therefore, the pendulum angle can be computed as:

θeq = arcsin
3

Rs

a
sin α

4
(4.22)

Next, the nominal torque needed to maintain still the pendulum can be calculated
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Figure 4.13: SR in equilibrium condition while climbing a slope of 15°.

through equation 4.23:

τnom,s = mp g l sin θ (4.23)

where l is the distance from the sphere center of the barycenter to the pendulum
and it is computed as l = M

M+mp
· a.

The power transmitted to the main shaft of the robot can be calculated by
multiplying the torque by the angular speed of the sphere. Dividing this result by
two and including the efficiencies of the differential system (ηD) and the toothed
belt transmission (ηB), the power coming out of the gearbox is obtained:

Pr = τnom,s ωnom

2 ηD ηB

(4.24)

From this result, the nominal torque the gearbox must withstand can be computed:

τnom,r = Pr

ωnom

(4.25)

Finally, another important requirement that must be considered when selecting
a gearbox is the maximum torque that it can withstand (τmax,r). The minimum
value can be computed by dividing by two the sum of the torque needed to raise
the pendulum at a 90° angle and the maximum gyroscopic torque.

The used data and the obtained results can be read in table 4.7. The efficiencies
are the same that were used in [1].

Once all the design specification were collected, first the gearbox was chosen,
then a compatible motor was selected. The two main requirements for the gearbox
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were the nominal and the maximum torque. The gear ratio was selected to be as
close as possible to the maximum admissible ratio, which can be determined by
dividing the maximum continuous input speed of the gearbox by the desired output
speed (ωnom). By doing so, the torque required for the coupled motor is minimized.

Finally, the selection of the motor was carried out computing its minimum
output power, the nominal speed, and the nominal torque. These three values are
calculated through the following equations:

Pm = Pr

ηr

(4.26)

ωnom,m = nnom,r ir · π

30 (4.27)

τnom,m = Pm

ωnom,m

(4.28)

The gearbox that was chosen is the Planetary Gearhead GP 42 C, while the
motor is the RE 40; both were selected from the Maxon catalogue. Their technical
data are shown in figures 4.14 and 4.15.

Figure 4.14: Technical data of the selected Gearbox.
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Figure 4.15: Technical data of the selected Motor.

DATA
M 6 kg Shell + differential system weight
mp 16 kg Pendulum weight
a 87.5 mm Barycenter position of the SR
α 15° Angle of the slope
ηD 0.98 Efficiency of the differential sys.
ηB 0.95 Efficiency of the toothed belt

RESULTS
θeq 48° Angle of the pendulum
l 0.12 Baryenter of the pendulum
ωnom 10 rad/s Nominal angular speed of the SR
τnom,s 13.96 Nm Nominal torque at the shaft
ir 81 : 1 Gear ratio
Pr 75 W Output power of motor + gearbox
τnom,r 7.5 Nm Nominal torque at the gearbox
τmax,r 22 Nm Maximum torque at the gearbox
Pm 104 W Output power of the motor
τnom,m 0.129 Nm Nominal torque of the motor
τmax,m 0.276 Nm Maximum torque of the motor

Table 4.7: Data used to design the main motors and results of the equation
presented in the paragraph. The results are divided in three: the first group are
general results, the second one is relative to the gearbox, while the third one to the
motor. The motor results have been obtained after the gearbox selection
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4.2.3 Pendulum Structure Design

The pendulum structure of the spherical robot plays a crucial role in its overall
functionality and stability. It was designed to support the CMG group, the main
motors, the batteries and the hardware components. Its design focuses on achieving
a balance between structural integrity, weight optimization, and compactness. To
meet these requirements, a combination of steel and aluminum alloy plates was
chosen as the primary construction materials.

One of the main obstacles encountered during the design process was accom-
modating the space limitations imposed by the spherical shape of the robot. The
CMG group had to be able to rotate around its tilting axis without hitting any
other components. Another significant challenge to overcome was meeting the
requirements for the barycenter placement. The final result is a light structure of
less than 0,425 kg which leaves the possibility for future upgrades thanks to its
modularity. Figure 4.16 shows an isometric view of the structure outlining all the
components.

Figure 4.16: Isometric view of the Pendulum structure. The main components
are: 1) Swinging rod, 2) Seeger, 3) Angular contact ball bearing, 4) Connecting
plate, 5) CMG-holding plate, 6) Tilting motor plates, 7) Plate with spinning motor
positioning hole, 8) Main motor positioning plate, 9) Main motor holding ring.
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When placing the main motors and the CMG group, the total weight of the sys-
tem is about 12 kg, with 4 kg still available for batteries and hardware components.
A rendering of the pendulum is shown in figure 4.17.

Figure 4.17: Rendering of the Pendulum Structure holding the two CMG groups
and the main motors.

4.2.4 Toothed Belt Design
The power transmission from the main motors to the differential system is achieved
through two toothed belts. Due to changes in the arrangement of internal compo-
nents, the original sizing from [1] could not be used, necessitating a redesign of the
belts. To select the most suitable transmission belts, the procedure outlined in the
“POGGI Catalog 3315X” was followed.

The GT3 belt type was chosen. The theoretical pitch length of the belt was
computed through the following equation:

Lt = 2 · i + 1.57 · (Dp + dp) + (Dp + dp)2

4 · i
(4.29)

where i is the interaxis of the two pulleys, and Dp and dp are their diameters. The
pulleys were selected from the Misumi catalogue (code GPT44GT3150-A-N12) and
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they have 44 teeth both. This value was used to compute their diameters:

Dp = p · z

π
(4.30)

Once the theoretical pitch length was computed, the closest value was selected
from the catalogue.

Finally the maximum transmitted power was computed through the following
equation:

Pt = Pb · CL · Cd · Lf (4.31)

where Pb is the transmitted power rating, Lf is the length factor and depends on
the belt pitch and the belt length, CD is the teeth-in-mesh factor and it depends
on the number of teeth in mesh, and CL is the belt width factor. The values of
these parameters were obtained from the catalogue and are summarized in table
4.8. It is evident that the maximum transmitted power significantly exceeds the
nominal output power of the gearbox.

TOOTHED BELT DESIGN

i 203 mm Pulleys interaxis
Dp 42.02 mm Pulley1 diameter
dp 42.02 mm Pulley2 diameter
Lt 549 mm Theoretical pitch length
Lr 552 mm Pitch length from catalogue
Pb 87 W Transmitted power rating
CL 1.89 Belt width factor.
Cd 1 W Teeth-in-mesh factor
Lf 1.1 W Length factor
Pt 181 W Maximum transmitted power

Table 4.8: Data used to compute the Drag Moment.
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4.2.5 Electrical Integration

Figure 4.18: Diagram of the hardware configuration.

The hardware configuration of the SR encompasses a comprehensive set of compo-
nents that work in harmony to enable its functionality and control. In figure 4.18, a
diagram illustrating the layout is presented. Serving as the central processing unit,
a microcontroller assumes the role of the robot’s brain, orchestrating the execution
of tasks and coordinating the interplay between different hardware modules.

“Main motor 1” and “Main motor 2” are the two motors responsible for con-
trolling the orientation of pendulum. Motors 3 and 4 are the ones responsible for
the spinning motion of the gyroscope flywheels, while motors 5 and 6 are the ones
used to perform the tilting movement. To ensure efficient operation and control of
the motors, all of them are equipped with dedicated drivers

For a simple teleoperated functioning, four sensors are needed. The two main
motors are equipped with encoders, which enable real-time measurement and
feedback of their rotational speed. The pendulum structure includes an Inertia
Measurement Unit (IMU), that enables the tracking of angular displacements and
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velocities relative to the world frame. Additionally, an encoder is used to measure
the angle between the pendulum and the central shaft longitudinal axes. These
measurements provide a crucial feedback for control algorithms.

Power supply is a critical aspect of the robot’s operation, and thus, it relies
on two larger batteries to provide power to the six motors. These batteries were
carefully selected to meet the demands of the system in terms of space, weight, and
desired runtime of the robot. In addition to the larger batteries, a smaller battery
is dedicated to powering the microcontroller and the various sensors integrated into
the system, ensuring their independent and reliable operation.

Finally, to allow the user interaction with the robot, a remote controller com-
municating via radio or Wi-Fi is adopted

Battery Dimensioning

The dimensioning of the batteries was carried out to meet the runtime requirement
of a minimum of 1 h while working at the nominal operating point (climbing a slope
of 15° at a speed of 2.5 m/s). To select the most suitable batteries, it was necessary
to compute the nominal current and voltage requested by the motors. These can
be calculated knowing the nominal torque and speed. The first one is outlined in
table 4.7, while the second one can be computed multiplying the gearbox output
speed by the gear ratio ir. The results obtained are: τnom,m = 0.129 Nm and
nnom,m = 7735.

The nominal voltage is then calculated using eq. 4.16, where kv and kτ are
outlined in the motor catalogue (speed constant and speed/torque gradient from
fig. 4.15). The nominal current is obtained multiplying the torque constant by the
nominal torque. The results are: Vnom = 25.7 V and Inom = 4.3 A. Therefore, to
ensure a runtime of 1 h, a battery with a minimum nominal capacity of 4300 mAh
must be selected. Currently, the most suitable option on the market is the Li-Ion
battery, with a nominal voltage of 3.6 V and a capacity around 2500 mAh. To
obtain a capacity equal or greater than the one needed, two batteries must be
placed in a parallel configuration, while the requested voltage is achieved with a
minimum of 8 batteries placed in a series configuration. Therefore, a 8s2p Li-Ion
battery pack, such as the one offered by MaxAmps with a capacity of 5200 mAh
and a nominal voltage of 28.8 V , should satisfy the project requirements.

Gyroscope impact on Battery Life

The influence of the gyroscope’s operation on battery life can’t be ignored.The
primary power-consuming component of the gyroscope is the motor responsible for
spinning the flywheel. Therefore, the power requested to spin the flywheel at its
maximum velocity (8000 rpm) was evaluated.
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Consider the motor supplied with a step input voltage of 12 V , following the
approach outlined in paragraph 4.2.1. By solving the differential equation described
in equation 4.20, the torque of the motor can be determined using equation 4.16.
Dividing this result by the torque motor constant (from the catalogue), the current
as a function of time can be derived. The integral of this curve provides the total
charge consumed by the motor over a specific time period. It was estimated that
spinning the flywheel from a standstill for one minute would consume approximately
4.3 % of the total charge of a battery with a capacity of 5200 mAh.

During a gyroscope-assisted maneuver, the primary motors are responsible for
counterbalancing the gyroscopic torque in order to stabilize the pendulum and
transfer the torque to the sphere. The maximum torque that can be requested to
the motors is the amount necessary to sustain the pendulum in a raised position
at a 90° angle throughout the entire maneuver. In paragraph 4.2.1, the maximum
gyroscopic torque was evaluated and it resulted τG,MAX = 25.82 N · m. The torque
needed to raise the pendulum at a 90° angle can be computed through equation
4.23 and it’s equal to τ90◦ = 18.88 N m. Therefore, the total torque requested to
each one of the main motors results:

τM = 18.88 + 25.82 · sin (Ω t)
2 (4.32)

where t ∈
è
0, pi

2Ω

é
, while Ω is the tilting velocity of the gyroscope and it’s equal

to Ω = 15 rpm. Integrating this equation over the time interval the total charge
consumed is computed. The obtained result is approximately the 3.1 % of the total
charge of a 5200 mAh battery.

Therefore, the total amount of charge consumed when the gyroscope are used
can reach up to a 7.4 % of the total charge of a 5200 mAh battery.
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4.3 Design Result and Considerations

Figure 4.19: Rendering of the CAD model of the Spherical Robot.

In this chapter, a comprehensive overview of the key considerations and decision-
making processes involved in creating a functional and efficient robot were presented.
By carefully analyzing the requirements and constraints, various design elements
such as the CMG group, pendulum structure, motors of the robot, and hardware
layout have been addressed. The final result of this process is shown in figure 4.19.
In this CAD model, the hardware components weren’t included, but the design
was implemented to accommodate the space they require.

A PMMA shell was used instead of the harmonic steel sheets of the SR from [1]
because they were considered too flexible. A second layer made of impermeable
rubber is needed to enhance the static friction of the shell on the ground, like in [1].

The total weight of the model is approximately 18 kg, where the pendulum
accounts for 12 kg. The motors and the CMG group were designed to work with a
pendulum of 16 kg. Consequently, the hardware components can weigh up to 4 kg
and still respect the project requirements.

In the next chapter, the analytical model of the robot will be studied and the
multybody simulation will be introduced.
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Chapter 5

Modeling of the Spherical
Robot

5.1 Introduction
In the preceding chapter, a comprehensive presentation of the design of the spherical
robot was provided, highlighting the principal considerations and processes em-
ployed to achieve a functional and efficient robotic system. The subsequent chapter
focuses on the analysis of the models that accurately represents the behavior and
dynamics of the robot. These models play a pivotal role in investigating the robot’s
response to varying inputs and external forces, as well as facilitating the design of
the control system.

Within this chapter, various mathematical frameworks will be examined. Firstly,
the dynamic model of the robot within a two-dimensional (2D) environment is thor-
oughly investigated. Subsequently, a Simulink Simscape-based multi-body model
is introduced. Although the multibody simulation provides a more comprehensive
representation of the robot’s behavior, the 2D analytical model played a pivotal
role in the development of the control system for the robot’s forward movements. It
facilitated the adoption of classical control techniques that rely on the mathematical
description of the system. Furthermore, the analytical simulation needs much less
computing power than the multibody simulation, resulting in significantly reduced
execution time.
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5.2 Two-Dimensional Analytical Model

The analytical model of the spherical robot was initially realized in two dimensions.
This allowed to study the SR forward and backward movements on an inclined
pane. This model was then exploited to tune the parameters of the control system
responsible for the straight line motion control of the robot.

5.2.1 Two-Dimensional Kinematics

Figure 5.1: Two-dimensional representation of the robot climbing a slope. q1 and
q2 are the generalized variables

The problem of the robot moving in a straight line motion on an inclined plane is
represented through a schematic illustration in fig. 5.1. the problem can be easily
described through two generalized variables: the angle of rotation of the sphere
computed from the starting position (q1), and the lifting angle of the pendulum
measured from the line perpendicular to the inclined plane (q2). Considering a
fixed reference system wit the x-axis parallel to the inclined plane, the robot’s
x-coordinate can be defined under the assumption of pure rolling as:

x = R · θ
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where R is the radius of the sphere. Therefore, the position and linear velocity, as
well as the rotational velocity of the sphere can be described as:

r⃗1 =

q1R
R
0

 → v⃗1 =

q̇1R
0
0

 , w⃗1 =

 0
0
q̇1

 (5.1)

The pendulum is attached to the center of the sphere and it can be approximated
as a point mass with a constant distance from the sphere center equal to l. Its
position depends on the sphere center position and on the lifting angle described
by q2. The equation describing the pendulum kinematics are the following ones:

r⃗2 =

q1R + ls2
R − lc2

0

 → v⃗2 =

q̇1R + lc2q̇2
ls2q̇2

0

 , w⃗2 =

 0
0
q̇2

 (5.2)

where l is the distance of the pendulum barycenter from the sphere center, ci and
si are the cosine and the sine of the generalized variable qi, respectively.

5.2.2 Two-Dimensional Dynamics
The dynamic model was obtained through the Lagrangian Approach. The La-
grangian function is defined as:

L(q, q̇) = K(q, q̇) − P (q) (5.3)

where K and P are the total kinetic and potential energy of the system, respectively.
This function is used to obtain the n differential equations describing the problem,
where n is the number of generalized coordinates. In this case, two generalized
coordinates have been used, therefore two differential equations are sufficient to
describe the problem. Their form is the following one:

d

dt

A
∂L(q, q̇)

∂q̇i

B
− ∂L(q, q̇)

∂qi

= F nc
i (q) (5.4)

where F nc
i (q) are called generalized forces, and they are the non conservative forces

acting along the i-th coordinate.
The total kinetic energy of the system composed by the sphere and the pendulum

is computed as:

K = 1
2Mv2

1 + 1
2mv2

2 + 1
2Iω2

1 + 1
2Ipω2 (5.5)

where m and M are the pendulum and sphere masses respectively; I is the total
inertia of the sphere, while Ip is the total inertia of the pendulum. Substituting
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the vectors describing the kinematics of the problem obtained in 5.1 and 5.2, the
total kinetic energy has the form:

K = 1
2 q̇2

1

1
mR2 + MR2 + I

2
+ 1

2 q̇2
2(ml2 + Ip) + mRlq̇1q̇2 c2 (5.6)

The potential energy of the system is described by the following equation:

P = −mg⃗ · r⃗1 − mg⃗ · r⃗2 (5.7)

Where g⃗ is the gravitational acceleration vector expressed in the fixed reference
system of fig. 5.1:

g⃗ = −g

sin(α)
cos(α)

0

 (5.8)

Substituting the position vectors of the sphere and the pendulum, the potential
energy of the system results:

P = g [M (q1Rsα + Rcα) + m (q1Rsα + Rcα + ls2sα − lc2cα)] (5.9)

Replacing the equations 5.6 and 5.9 in 5.3, the Lagrangian function is obtained
and it is written down as follows:

L = 1
2 q̇2

1 (mR2 + MR2 + I) + 1
2 q̇2

2(ml2 + Ip) + mRlq̇1q̇2 c2+
+g [M (q1Rsα + Rcα) + m (q1Rsα + Rcα + ls2sα − lc2cα)]

(5.10)

This function is finally used to calculate the two differential equations describing
the system using eq. 5.4:

q̈1 (In) + q̈2 (mRlc2) − q̇2
2 mRls2 + β1q̇1 + Rsαg (M + m) = τM − τnc

ext,1

q̈1 (mRlc2) + q̈2 (ml2 + Ip) + mgl (sαc2 + β2q̇2 + cαs2) = τM − τnc
ext,2

(5.11)

where τM is the motor torque, τnc
ext are the torques due to external non-conservative

forces, In is equal to In = mR2 + MR2 + I, and β1 and β2 are the viscous friction
coefficients used to account for the friction dissipation.

These equations don’t account for the effect of the gyroscopic torque because
they were used to study the straight-line-movement of the robot, but it could be
included subtracting the gyroscopic torque in the right hand side of the second
equation.
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5.3 Multibody Model in Simscape Simulink
Before assembling a prototype, it is crucial to conduct a comprehensive evaluation
of the design and overall performance of the system. This evaluation aims to
minimize the potential issues that may arise during the prototype realization phase.
For this reason, a detailed model that is able to faithfully describe the behavior
of the system needs to be developed. An analytical model could predict a well
approximated response to certain inputs. However, it is challenging to realize
an accurate mathematical description of a complex system. To obtain a more
comprehensive representation, multibody dynamical simulations can be employed.
Consequently, a multybody model of the SR was realized. For this purpose, the
CAD files of the SR components designed in Solidworks were used to develop a
simulation of the system in the Simscape Simulink environment. By using this
approach, an accurate depiction of the robot is achieved, allowing to simulate
the motion, forces, and torques experienced by the SR during its operation. By
setting up the appropriate physical parameters of each component, such as mass
and inertia, it is possible to accurately replicate the robot’s behavior in a virtual
environment. Stability, energy consumption, and control system effectiveness can
be studied, aiding in the refinement and optimization of its design.

5.3.1 Description of the block scheme
A screenshot of the SR assembled in the Simscape environment is presented in figure
5.2. Each element (body) of the robot was imported in the Simulink environment
as a STEP file. Each component possesses a default reference system, though
additional reference systems can be generated as needed to establish connections

Figure 5.2: Screenshot of the Simscape environment with the SR.
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between elements within the system. A simple connection between two reference
systems will arrange the two components in such a way that the frame axes coincide
and no relative motion is allowed. If joint connections are needed, specific blocks
must be placed in between the reference systems of the two elements. The joint
block must be chosen depending on the number of DOFs that the adjoining bodies
share. An example is shown in figure 5.3. Here, the blue lines represents simple
connections between the components, while the block framed in yellow is an example
of “revolute joint”, which allows one rotational degree of freedom between the two
connected blocks (the motor gearbox and the pulley). If the two connected blocks
represent an actuated component and a motor, like in fig. 5.3, the torque provided
by the actuator must be input to the specific torque port of the joint block.

All the Simscape simulations need three main blocks from which all the connec-
tions branch off: the “Solver Configuration”, where the simulation parameters are
specified, the “Mechanism Configuration”, where the gravity vector is defined, and
the “World Frame”.

Figure 5.3: Screenshot of the Simscape environment: detail of the connections
between components. Simple connections in blue and the kinematic constraint
block in yellow.

5.3.2 Interaction between the ground and the sphere
In order to allow the sphere to move freely in the space, it must be connected to
the world frame with a six DOFs joint block. To simulate the interaction between
the floor and the spherical shell of the robot, two possible solutions can be adopted.
The first one consists of using the built-in block responsible to compute the spatial
contact forces. It doesn’t require to specify anything, and the stiffness and damping,
as well as the friction coefficients, can be modified from the block interface.

A second possible solution exploits the external library developed by Steve
Miller [45], which was the same one used in [1]. A “sphere-to-plane force” block is
responsible for computing the interaction forces between the spherical shell and the
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plane. In this block, the sphere radius and the plane dimension must be specified.
The coefficients used to determined the forces at play can be modified as in the
built-in bock.

Both options are valuable; however, the Spatial Contact Force provides a simpler
approach for simulating contact forces, particularly with more complex surfaces,
without the need for any additional downloads. For Simulink versions that don’t
support the Spatial Contact Force block, the library from reference [45] offers a
suitable solution.

An example of the blocks needed to simulate a sphere on the plane is shown in
fig. 5.4. A two-DOF joint was used to allow the tilting of the plane around the x
and y axes.

Figure 5.4: Screenshot of the Simscape environment: on the left the blocks used
to simulate the sphere on the plane; on the right, the visual representation of the
system.

5.3.3 Step obstacle

To implement a step in the simulated environment, it can be accomplished by
adding a solid object on the top of the floor and establishing a connection between
it and the sphere using a new spatial contact force block. This approach enables
the simulation to accurately replicate the interaction between the sphere and the
step, allowing for a realistic representation of the scenario.

If an older version of Simulink is used and this block is not supported, a solution
is presented in [1]. The step can be simulated through a cylinder with a very small
radius and two parallelepipeds, as shown in fig. 5.5. A “sphere-to-tube force” block
from the library [45] needs to be used to simulate the contact at the edge of the
step, while another “sphere-to-plane force” block is used to simulate the contact
between the sphere and the plane at the top of the step.
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Figure 5.5: Screenshot of the Simscape environment: on the left the blocks used
to simulate the sphere on a plane with a step; on the right, the visual representation
of the system.

5.3.4 Model of the DC motors

As previously discussed, the “File Solid” blocks offer the ability to define the inertia
and geometric properties of the bodies. However, if the block represents a motor,
it is not possible to directly specify the output torque within its “File Solid” block.
In such cases, it is necessary to create a dedicated model for the motor, wherein
the output torque is generated. This torque is then inputted into the torque port
of the revolute joint that is associated with the motor. In the next paragraphs it
will be explained how to realize the model of a dc-brushed motor.

Motor torque

Consider a single coil pivoted about its vertical axis and run by current, as show in
fig. 5.6. If the coil is placed inside a magnetic field, it will start to spin around its
vertical axis. This phenomenon is described by the Ampère’s law and the torque

Figure 5.6: Coil run by current in a magnetic field.
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Figure 5.7: Stator and rotor scheme of a DC motor.

acting on the coil is described by the following equation:

τ = ilB d cos(α) (5.12)

where i is the current going through the coil, B is the magnetic field intensity, l
is the length of the vertical branch of the coil, d is the length of the horizontal
branch of the coil, and α is the rotation angle between the coil and the magnetic
field as depicted in fig. 5.6.

Looking at equation 5.12, it can be noted that the torque is not constant and
it depends on the position of the coil: between −π

2 and π
2 it is positive, while it

is negative from π
2 to −π

2 . To develop a torque with a constant sign the current
flowing through the coil must change its direction when α is equal to a multiple
of 90°. This can be done connecting the coil to a commutator, which is a device
composed by 2 separate segments attached to the loop. Spring-loaded brushes sit
on each side of the commutator and make contact with the commutator as it turns,
supplying the coil with voltage. This solution allows only to have a torque with a
constant sign, but not with a constant value. This issue can be solved by increasing
the number of coils in such a way that the loop supplied with voltage is the one
with the α closest to ±π

2 .
This structure is at the basis of the brushed DC motors. Here, the coils are

wounded around what is called the armature core 5.7. The armature is also known
as the rotor, which is the rotating part of the motor, while the stator or field
identifies the stationary part of the motor.

The magnetic field is usually generated through an electromagnet, which is a
solenoid supplied with current. The intensity of the magnetic field inside a solenoid
can be calculated though the equation 5.13:

B = µ n Isol (5.13)

where µ is the magnetic permeability of the dielectric inside the solenoid, n is

84



Modeling of the Spherical Robot

the coil density and it is calculated as the number of loops over the length of the
solenoid N/L, while Isol is the current flowing through the solenoid.

With this information, the equation 5.12 can be rewritten as follows:

τM = iald
3

µ
N

Lsol

if

4
(5.14)

where ia and if are the armature and field current, respectively. This equation
is usually written in another form, which exploits the equation of the flux of a
solenoid:

Φ = µ · Asol

Lsol

N if = K0 Nif (5.15)

where K0 = µ · Asol/Lsol.
By replacing this last equation in 5.14, the motor torque results:

τM =
A

ld

Asol

K0N

B
iaif = K iaif (5.16)

Electric equations of the motor

Figure 5.8: Electrical diagram of the motor.

Consider a brushed-dc motor where the stationary magnetic field is generated by
an electromagnetic windings. The electrical circuit of the motor is depicted in fig.
5.8. The left part of the circuit represents the stator (field). The transfer function
of the stator can be written down as:

If (s)
Vf (s) = 1/Rf

1 + s · Lf/Rf

(5.17)

The rotor (armature) circuit is the one on the right of fig. 5.8. The VBemf is the
voltage generated by the back electromotive force (EMF), which opposes the change
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in the flux due to rotor movement. It is computed as:

VBemf = −dΦ
dt

= − d

dt
(BA cos (θ(t))) = BA sin (θ(t)) ω (5.18)

where ω is the angular speed of the rotor, and θ is equal to α + π
2 . In the precious

paragraph it was stated that α can be approximated to zero; consequently, θ results
to be always π

2 . Substituting eq. 5.13 and 5.15 in the VBemf , the back EMF voltage
can be written down as:

VBemf = Kifω (5.19)

where K is the same used to compute the motor torque.
Finally, the transfer function of the armature circuit can be computed and it

results:
Ia(s)

Va(s) − VBemf (s) = 1/Ra

1 + s · La/Ra

(5.20)

Mechanical equations of the motor

Figure 5.9: Mechanical diagram of the motor.

The mechanical equations of the motor attached to the load can be obtained from
the diagram of fig. 5.9. In particular, the transfer function of the motor angular
speed is the following one:

ω(s)
τM(s) − τd(s) = 1/b

1 + s · JL/b
(5.21)

Diagram of a DC-brushed motor

From the equations 5.17, 5.20, and 5.21, the block diagram of fig. 5.10 is obtained.
This diagram models the functioning of a general brushed DC motor. A common
adopted solution to control the motors is the armature current control. This control
technique consists in maintaining constant the flux of the magnetic field inside the
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motor, and control the motor torque through the armature current. To keep the
flux constant, the stator voltage Vf , and therefore the stator current if , are kept
constant. This control technique changes the block diagram of the motor as shown
in fig. 5.11. It can be noted that the non linearity introduced by the product of
the two currents (ia and if ) here is eliminated.

This model is the one that was implemented in the Simscape Simulink model.
The values used were taken from the catalogues of the selected motors.

Figure 5.10: Block diagram of a general brushed-DC motor.

Figure 5.11: Block diagram of an armature current controlled brushed-DC motor.
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Chapter 6

Testing of the Simulations

6.1 Introduction

The modeling of a robotic system is crucial because it allows to study the robot
dynamics, evaluate the overall performance of the system, and minimize the
potential issues that may arise during the prototype realization phase. In the
previous chapter, the analytic two dimensional model and the multibody simulation
of the robot were presented, outlining the process involved in their creation. In
the subsequent sections, the simulation environments will undergo testing and
verification to ensure their accuracy and reliability. Specifically, the behavior of
the robot will be compared to the one that was theorized in the previous chapters,
verifying the kinematic relations and the robot dynamics when using the gyroscopes.

6.2 Testing the Differential System Kinematics

To test the correct assembling of the pendulum in the simulation environment, the
functioning of the differential driving system was assessed, ensuring the validity of
the kinematic equations 4.1 and 4.2. For clarity and improved comprehension, the
equations are restated below:

ω3 = ω1 − ω2

2 − ωp

Ω = ω1 + ω2

2 − Ωp

The tests were performed inputting precise speed and torque curves in the motor
joints of the multibody simulation.
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6.2.1 Rolling in the Forward Direction

The first test consisted in verifying that the robot follows a straight path when
the speed of the main motors is the same. In fact, the relative speed between the
pendulum and the main shaft about the x-axis1 can be computed through eq. 4.2,
and it results equal to zero:

Ω + Ωp = 0 (6.1)

The relative speed between the pendulum and the central shaft about the y-axis
can be computed through eq. 4.1 and it’s equal to the reduced angular velocity of
the motors:

ω3 + ωp = |ω1| (6.2)

Note that ω3 coincides with the angular velocity of the spherical shell. The graphs
below depict the reduced angular speeds of the motors (fig. 6.1 on the left), the
sphere velocity measured about the Y-axis of the world frame and computed
through eq. 4.1 (fig. 6.1 on the right), and the path followed by the SR (fig. 6.2).

Figure 6.1: On the left: angular speeds of the motors. On the right: the sphere
velocity measured about the Y-axis of the world frame and computed through eq.
4.1.

1: to have a better understanding refer to fig. 4.1. Note that the x and y axis of the figure are
not the ones of the World frame, therefore the velocities ω3, ωp, Ω, and Ωp aren’t refereed to the
World frame, except for particular cases, like the one of the first test performed.
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Figure 6.2: Path followed by the SR.

6.2.2 Providing Different Torque to the Motors
In the second test, two constant torques with values 1 Nm and 2 Nm were provided
to the two motor joints. This time, the relations 4.1 and 4.2 were verified measuring
directly the relative angular velocities between the pendulum and the main shaft
about the x and y axes, which are equal to ω3 + ωp and Ω + Ωp, respectively. This
can be done through the joint blocks inside the simulation, which allow to measure
the relative speed of the reference systems connected.

In fig. 6.3 the graphics of the path followed by the sphere (left), and the reduced
angular speeds of the motors (right) are shown. Figure 6.4 shows the validity of
the two kinematic equations, where the measured and computed values perfectly
overlap. Specifically, the red lines represent the relative velocities computed through
the motors speeds, while the dashed blue lines represent the measured relative
velocities.

Figure 6.3: Graphics of the path followed by the sphere (left), and the reduced
angular speeds of the motors (right).
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Figure 6.4: On the left: relative velocities about y-axis computed through the
motors speeds (red) and measured (blue). On the right: relative velocities about
x-axis computed through the motors speeds (red) and measured (blue).

6.3 Tuning the Analytical Model Parameters
After confirming the proper functioning of the differential driving system in the
multibody simulation, a simulation of the 2D analytical model was realized (fig. 6.5).
During this simulation, careful parameter tuning was performed by comparing the
obtained results with those derived from the multibody simulation when providing
to each motor joint a constant 1 Nm torque. This step was crucial because the
control of the forward motion of the system was developed on the basis of this
analytical model.

The obtained results are listed in table 6.1. In figure 6.6 the angular displacement
(left) and velocity (right) of the pendulum in the multibody (red curve) and in
the analytical model (blue dashed curve) are shown. Fig. 6.7 represents the same
variables referred to the sphere. The curves do not perfectly overlap, but this is
due to the simplifications made in the analytical model, in which the system is
described as a sphere and a simple pendulum with no friction with the plane.

Figure 6.5: Simulink simulation of the 2D analytical model of the pendulum.
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2D ANALYTICAL MODEL PARAMETERS

M 5 kg Sphere mass
m 13.2 kg Pendulum mass
l 0.12 m Pendulum barycenter from the sphere center
R 0.25 m Sphere radius
Ip 0.07 kg m2 Pendulum inertia
Isf 0.11 kg m2 Sphere inertia

Table 6.1: 2D analytical model parameters.

Figure 6.6: Angular displacement (left) and velocity (right) of the pendulum in
the multibody (red curve) and in the analytical model (blue dashed curve). Total
input torque: 2 Nm. Angle of the plane: 0°.

Figure 6.7: Angular displacement (left) and velocity (right) of the sphere in the
multibody (red curve) and in the analytical model (blue dashed curve). Total input
torque: 2 Nm. Angle of the plane: 0°.

92



Testing of the Simulations

The model was verified also for the case of a SR rolling on an inclined plane.
The graphics from fig. 6.8 and 6.9 represent the same curves of fig. 6.6 and 6.7
obtained when the plane has an inclination of 5° and a constant torque of 1 Nm is
provided to each motor joint.

Figure 6.8: Angular displacement (left) and velocity (right) of the pendulum in
the multibody (red curve) and in the analytical model (blue dashed curve). Total
input torque: 2 Nm. Angle of the plane: 5°.

Figure 6.9: Angular displacement (left) and velocity (right) of the sphere in the
multibody (red curve) and in the analytical model (blue dashed curve). Total input
torque: 2 Nm. Angle of the plane: 5°.
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6.4 Testing the CMG group
After verifying the correct functioning of the differential mechanism in the multi-
body simulation, and tuning the analytical model parameters, the CMG was tested
to ensure that the robot would behaves as expected when using the gyroscopes.
Specifically, another simulation was created to compare the dynamics of the multi-
body simulations with the one expected from the differential equations 5.11. As
already mentioned, those equations don’t account for the effect of the gyroscopic
torque, but it can be included by subtracting the gyroscopic torque to the right
hand side of the second equation:

q̈1 (mR2 + MR2 + I) + q̈2 (mRlc2) − q̇2
2 mRls2 + Rsαg (M + m) = τM

q̈1 (mRlc2) + q̈2 (ml2 + Ip) + mgl (sαc2 + cαs2) = τM − τG

(6.3)

In these tests, the effect of external and dissipative forces wasn’t considered.
To perform the tests, it was provided a torque curve to each motor joint of the

Simscape simulation equal to half the gyroscopic torque generated when spinning
the flywheels at 1000 rpm and tilteing them at speed of 15 rpm. In such a way, τM

results equal to τG, and the gyroscopic torque is directly transferred to the sphere.
A graphic representing the total input torque is shown in fig. 6.10. To simulate the
analytical model, the differential equations were written in Matlab and were solved
through the numerical integration “4th Order Runge-Kutta” algorithm. As it was
done for the previous tests, the curves from the two simulations were overlapped
to highlight the differences (fig. 6.11 and 6.12). As already noticed for the results

Figure 6.10: Total torque provided by the motors τM .
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of the previous tests, the curves do not perfectly overlap due to the simplifications
made in the analytical model, but it can be observed that the behavior of the robot
is well described by the analytical equations and the gyroscopes work as expected.

Figure 6.11: Angular displacement (left) and velocity (right) of the pendulum in
the multibody (red curve) and in the analytical model (blue dashed curve). Total
input torque: 2 Nm. Angle of the plane: 5°.

Figure 6.12: Angular displacement (left) and velocity (right) of the sphere in
the multibody (red curve) and in the analytical model (blue dashed curve). Total
input torque: 2 Nm. Angle of the plane: 5°.
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Chapter 7

Control System Design

7.1 Introduction
In the last two chapters, the models used to simulate the robot were presented and
tested. A more comprehensive and accurate model of the SR was achieved through
the multibody simulation. The correct functioning of the differential driving system
and the CMG group in the simulation environment were assessed, showing that
the system behaves as expected from the theory. A second model was developed
based upon the analytical equations that were obtained through the Lagrangian
approach in chapter 5. This analytical model was fine-tuned to yield consistent
simulation results with the multibody model.

In this chapter, two control architectures are presented. Their aim consists in
ensuring an accurate tracking of the input speed of the spherical robot along a
straight path on an inclined plane. The first control system was designed based on
the analytical model of the robot, which was linearized to enable the utilization of
classical control techniques. It was subsequently applied on the multibody model
and tested within the multibody simulation environment.

The second control system was directly designed and tested on the multibody
simulation.

7.2 Linearization of the Analytical Model
This paragraph provides an explanation of the methodology employed to obtain the
linearization of the analytical model. The result will be used in the next sections
to study the behavior of the SR system for control purposes.

To linearize the analytical model, first the equilibria points must be found.
To obtain them, it is sufficient to impose all the derivatives of the generalized
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coordinates equal to zero and substitute them in the equations 5.11:
Rsα (M + m) g = τ0

mglsαc2,0 + mglcαs2,0 = τ0

(7.1)

The external forces are considered to be equal to zero. From this equations, the
angle of the pendulum and the torque needed to maintain the system in equilibrium
can be computed:

τ0 = Rsα (M + m) g

q2,0 = asin
1
Rsα

M+m
ml

2
− α

(7.2)

From this result it can be observed that infinite equilibrium points can be found,
but the angle of interest for this specific application belongs to the [−π

2 , π
2 ] interval.

To simplify the final linearized expression, deviation variables are defined as:

q̂2 = q2 − q2,0 , ˙̂q2 = q̇2 , ¨̂q2 = q̈2 , τ̂ = τ − τ0 (7.3)

This change of variables allow to linearize the system around the origin (q̂2 = 0 and
τ̂ = 0). These variables were substituted inside equations 5.11. The linearization
was realized through Taylor series expansion and the obtained equations are written
down below:

¨̂q1 (mR2 + MR2 + I) + ¨̂q2 (mRlc2,0) + β1 ˙̂q1 = τ̂

¨̂q1 (mRlc2,0) + ¨̂q2 (ml2 + Ip) + β2 ˙̂q2 + mglcαc2,0q̂2 = τ̂
(7.4)

This equations can be written in matrix form as:

Hl(q)¨̂q + Cl(q, q̇) ˙̂q + Gl(q) = Mlτ̂ (7.5)

where

Hl =
C

mR2 + MR2 + I mRlc2,0
mRlc2,0 ml2 + Ip

D
, Cl =

C
β1 0
0 β2

D
,

Gl =
C

0 0
0 mglcαc2,0

D
, Ml =

C
1
1

D
.

From this equation, the state space representation is obtained and it has the
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following form: I
ẋ = Ax + Bu
y = Cx + Du (7.6)

where the state variables are

x =


q̂1
q̂2
˙̂q1
˙̂q2

 , ẋ =


˙̂q1
˙̂q2
¨̂q1
¨̂q2

 , u = τ̂ .

while the matrices are

A =

 02×2 I2×2

−H−1
l Gl −H−1

l Cl

 , B =

 02×1

H−1
l Ml


C =

è
0 0 1 0

é
, D = 0

This representation is used in the next sections to study the behavior of the
system and realize the control architecture. The block scheme that depicts the
linearized plant is shown in fig. 7.1. The transfer function of the linearized plant
will be:

Y (s)
U(s) = C(sI − A)−1B (7.7)

Figure 7.1: Block scheme of the linearized plant.
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7.3 Linear Speed Controller with Fuzzy Gain
Scheduler

In this section, the first control architecture used to control the SR speed along
a straight path is presented. The reference signal is the desired SR rolling speed,
which is the angular velocity around the main shaft, and it can be easily computed
from the desired linear speed:

ω∗
s = v∗

linear

R
(7.8)

As explained in the previous chapter, to move along a straight path the main
motors need to operate at equal and opposite speeds, as deduced from the kinematic
equations 4.1 and 4.2. For this reason, a single external speed control loop computes
the current reference that will be sent to the two motors. Then, two internal current
control loops, one for each motor, are used to track the current reference. By

(a)

(b)

Figure 7.2: Block scheme of the system: (a) multibody simulation, (b) analytic
simulation.
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designing the internal control loops to exhibit faster dynamics compared to the
external loop, the motor dynamics have minimal influence on the overall system.

Figure 7.2(a) depicts the block diagram scheme of the system simulated in
the multibody simulation. However, the control architecture was designed using
the analytic model, where only one motor was simulate and its output was then
doubled. This simplification was justified by the fact that the two motors output
are expected to be the same. The block diagram scheme depicting the analytical
model is shown in fig. 7.2(b). Note that, to calculate the motor speed (ωshaft), the
eq. 4.1 is used, and therefore the sphere and the pendulum angular velocities (q̇1
and q̇2 respectively) are summed.

In the next paragraphs, first the internal control loop will be presented, showing
that a proper controller makes the transfer function ia(s)

i∗
a(s) a simple low pass filter

with a magnitude of 0 dB. Then, the external control loop is described, explaining
its structure and the solution adopted to stabilize the system.

7.3.1 Internal Control Loop

Figure 7.3: Block scheme of the internal control loop.

The internal control loop is responsible for the tracking of the input reference
current coming from the external control loop. In fig. 7.3 the current loop block
diagram is illustrated. The controller transfer function is the one written inside the
blue framed box, while the other one contains the transfer function of the motor. It
can be observed that a PI (Proportional-Integrative) controller is used, where the
proportional and the integral gain are equal to the armature motor resistance and
inductance, respectively, multiplied by a frequency ωb. The higher this value, the
grater the bandwidth of the current loop, which corresponds to a faster response
to a step input. The correct values of Ra and La can be found in the motor data
sheet.

To demonstrate the aforementioned concept, the transfer function of the block
scheme depicted in figure 7.3 can be obtained and its Bode representation can be
studied. To calculate the transfer function, refer to image 7.4. The plant is described
through its linerized transfer function. The gain K is equal to K = 2KmKrε, where
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(a)

(b)

Figure 7.4: Block scheme of the internal control loop before reduction (a) and
after reduction (b).

Km is the motor constant, while Kr and ε are the ratio and the efficiency of the
gearbox, respectively. The constant K ′ is equal to K ′ = KmKr. The vector E is
used to compute the motor shaft speed and it’s equal to [0 0 1 1].
The block diagram can be reduced as shown in image 7.4(b). Having defined the
block transfer functions as:

Gm(s) = 1
Ra + Las + KE(sI − A)−1K ′ (7.9)

Ci(s) = ωb(Ra + Las)
s

(7.10)

the negative feedback loop of fig. 7.4(b) can be rewritten as:

ia(s)
i∗
a(s) = Ci(s)Gm(s)

1 + Ci(s)Gm(s) (7.11)

In fig. 7.5, the bode plot of transfer function 7.11 is depicted. Observe that, as
it was mentioned in the introduction to this chapter, the shape of the magnitude
and phase curves are similar to the ones of a low pass filter with a pole in ωb. The
value chosen for the transfer function bandwidth was ωb = π · 103 rad/s. To obtain
this plot, a value of 5 kg m2

s2 was assigned to the viscous friction coefficient β2.
Thanks to this result, in the next paragraphs the dynamics of the overall system

will be studied ignoring the influence of the motors, which it has been shown that
starts to be relevant at higher frequencies.
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Figure 7.5: Bode plot of the current loop.

7.3.2 External Control Loop
The external control loop is responsible for the SR rolling speed control, which
is deduced from the desired linear speed through eq. 7.8. From the previous
paragraph conclusions, a new block scheme (fig. 7.6) which represents the system
ignoring the motor dynamics can be drawn. It can be noted that the reference
armature current is calculated subtracting to the output of the Cω(s) block, which
in the following is referred as the Speed Controller, the pendulum angular velocity
q̇2 multiplied by a constant term β. In the next paragraphs, first this negative
feedback is studied, then the Speed Controller block is described.

Figure 7.6: Block diagram of the system ignoring the motor dynamics.
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The Viscous Friction Problem

The analytical system that has been developed includes the effects of the viscous
friction of the pendulum joint and the sphere. The viscous friction is always present
in real applications and contributes to the damping of the system. However, it
is very difficult to determine the real values of the viscous coefficients β1 and β2.
A possible solution consists in introducing the viscous friction, along with the
Static and the Coulomb ones, as a non-conservative force in the right hand side
of the Lagrangian equations 5.11. Anyway, the absence of a damping term causes
the model to be unstable. The problem has been solved including the damping
effect in the control input, where the pendulum angular speed is multiplied by a
constant term β and subtracted to the speed control output. This solution allowed
to stabilize the system regardless of the presence of the viscous friction in the plant
model.

Referring to fig. 7.6, the input to the plant results equal to:

τm = (uω − βq̇2) K (7.12)

The linearized Lagrangian eq. 7.13 of a SR rolling on a flat plane without the
viscous friction component can be rewritten as:

q̈1 (mR2 + MR2 + I) + q̈2 (mRl) = (uω − βq̇2) K

q̈1 (mRl) + q̈2 (ml2 + Ip) + mglq2 = (uω − βq̇2) K
(7.13)

It can be observed that through this input, a damping effect similar to the one
caused by the viscous friction has been introduced. The only element that really
changed is the Cl matrix of the linearized Lagrangian equation written in matrix
form (eq. 7.5):

Cl =
C

0 βK
0 βK

D

The transfer function of the blocks contained in the blue square of fig. 7.6 can be
written down as:

G(s) = 2KC(sI − A)−1B
1 + 2KβE(sI − A)−1B

(7.14)

where the vector E = [0 0 0 1] was defined to select the pendulum angular speed
from the state vector. The evolution of the closed loop system poles by varying
the value of β and without using the speed controller can be studied analyzing the
roots of the equation: 1 + G(s, β) = 0. Figure 7.7 presents a graph illustrating the
variation of the three roots as the β value is varied from 0 to 5. It can be observed
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that the closed-loop system becomes stable for values of β greater than 0.32. This
finding indicates that a minimum value of β is required to ensure the stability of
the system.

Figure 7.7: Locus of the closed loop system poles of when varying the parameter
β from 0 to 5 and without any speed controller.

The Speed Controller

The speed controller block is responsible for computing the control input of the
transfer function G(s) (eq. 7.14). The controller was designed to track a step
angular velocity reference input with a value that can vary from 0rad/s to 10rad/s
(equivalent to a linear speed of 2.5 m/s) within a minimum settling time and with
a limited peak in the system response. Moreover, it was designed to work when
the sphere is rolling on an inclined plane with an angle of steepness that can vary
from −15◦ to 15◦. The SR is a highly non-linear system, and for this reason a non
linear controller was adopted. A scheme of the overall speed controller is shown in
fig. 7.8. It can be observed that a PID (Proportional Integral Derivative) and a
PI (Proportional Integral) controllers have been used. The first one (PID1) relies
on a fuzzy gain scheduler logic to perform an on-line tuning of the PID gains on
the basis of the error signal. The second one (PI∗) is characterized by constant
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gains and it works only when the output gets closer to the reference input. Its
objective consists of ensuring a faster convergence to the desired value limiting the
response overshoot. A set/reset block is responsible for turning on or off the PI∗

block depending on how close the system response is to the reference input. Finally,
a switch is used to turn to zero the output of the speed controller when the angle
of the pendulum overcomes the 90◦. This simple solution was adopted to limit the
range of motion of the pendulum without slowing down the system response.

Figure 7.8: Scheme of the speed controller.

The Speed Controller: Fuzzy Gain Scheduler

The fuzzy gain scheduler was realized using the “lookup table” blocks from the
Simulink Library. The result is the same as the one that would have been achieved
through the “fuzzy” block, but this solution ensures a much faster simulation.

To design the fuzzy controller, the following steps were followed:

1. Choose the fuzzy controller inputs and outputs.
Initially, two inputs were considered for the design: the error between the
desired and actual angular velocity, and the inclination angle of the plane.
However, it was found to be overly complex to evaluate the second value,
resulting in the decision to utilize only the first input. The outputs of the
controller are the three PID gains.

2. Define the linguistic descriptors to be used.
The input and output variables are identified through “Linguistic Variables”:
“error” was used to refer to the input signal, while “P-gain”, “I-gain”, and
“D-gain” to the output ones. Both the input and output subsets can assume
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different “Linguistic Values”, each one corresponding to a specific value of the
related variable. Specifically the input ones are “Ze”,“S”,“M”,“L”,“XL”. The
output linguistic values are:

• P-gain: “XS”,“S”,“M”,“L”,“XL”;

• I-gain: “S”,“M”.

• D-gain: “S”,“M”.

3. Define the membership function for each Linguistic Variable.
The membership functions are used to define the degree of membership of
a linguistic variable to a certain linguistic value, the “degree of truth” of a
statement (e.g. “The error is small” will have a degree of membership equal
to 1 when e(t) = 4 rad/s). In fig. 7.9, the graphic membership functions
are depicted. The crisp values correspondent to each linguistic value of the
PID gains were obtained by a manually tuning PID controllers to enhance the
output response to five different step inputs, each one of the value of the crisp
errors.

(a) (b)

(c) (d)

Figure 7.9: Membership functions of the error (a), the proportional gain (b), the
integral gain (c), and the derivative gain (d).

4. Define the rules and the defuzzification method.
The rules of the fuzzy block are depicted in fig. 7.10. The “centroid defuzzifi-
cation method” was adopted.
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Figure 7.10: Fuzzy rules table.

The Speed Controller: Set/Reset and PI∗

The second controller is a proportional-integral controller. The controller gains
have been chosen with the objective of providing a faster convergence of the output
to the reference value. Consequently higher gains were selected, namely kp = 4,
and ki = 10. As already mentioned, in order to to control the activation of the PI∗

controller, a set/reset block has been Incorporated before it. This block enables
the PI controller to operate only when the error is close to zero. Specifically, if the
speed reference is greater than 4 rad/s, the PI∗ will start working when the error is
less than the 8% of the speed reference, while it will be deactivated if it overcomes
the 20%.For speed references below 4 rad/s, the percentage error is calculated
relative to this velocity. The use of different threshold values (8% and 20%) for
activating and deactivating the controller was done to avoid chattering issues.

In fig. 7.11, the truth table of the reset dominant logic used is presented. From

Figure 7.11: Truth table of the set/reset, reset dominant logic.
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the table, the following logic expression can be deduced:

v = S̄R̄u + SR̄ū + SR̄u = R̄(uS̄ + S). (7.15)

This expression can be represented graphically through the scheme of fig. 7.12.

Figure 7.12: Logic circuit of the set/reset, reset dominant logic.

7.4 Straight Path Controller With Gravity
Compensation

A second straight path controller was developed after testing the previous one
on the multibody model. Specifically, the obtained results did not align with the
expectations, showing that the robot couldn’t move along a straight path on an
inclined plane. Even if the same reference current (which is equivalent to a torque
reference) was provided by the controller to the two motors, their speeds were
unexpectedly different. This second controller was developed in the attempt to
address the cause of this deviation. In fact, the difference from the other controller

Figure 7.13: Scheme of the straight path controller with gravity compensation.
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lies in the external control loop. Two different speed controllers are used, one for
each motor, and each one of these compute the control input based on the single
motor speed error. These values are calculated by subtracting the actual motor
speeds from the motor reference speed, which is computed using eq. 4.1. The same
damping contribution of the previous controller, calculated as the β parameter
times the pendulum speed, is then subtracted to both the output of the speed
controllers. Finally, gravity compensation is performed to compute the contribution
needed to compensate the gravity force acting on the sphere. This part of the
controller is crucial to guarantee steady state zero error when the robot moves on
an inclined plane. The gravity compensation output is added to both the control
inputs. The schematic diagram of this controller can be observed in fig. 7.13.

The two speed controllers consist in simple PDs (proportional-derivative con-
trollers), where both the gain were selected equal to 0.02. The β parameter was
chosen equal to 14. The output of the gravity compensation is equal to:

τ0 = mpgl sin(θp) (7.16)

where θp is the angle of the pendulum with respect to the vertical axis. If the
values of mp and l used are close to the real ones, and no constant forces except
for the gravitational one act on the robot, this controller allows a good tracking of
the reference speed.
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Results

8.1 Introduction

In this chapter, the validation of the robot resulting from the design process
presented thus far is illustrated.

In the first part, the Maximum Step Height (MSH) that a SR with the CMG
system is able to climb is verified. The theoretical MSH value of the SR model
incorporating all the design specifications defined along the design process is com-
puted and it is then compared with the value specified in the project requirements.
A simplified multibody model of this SR was realized in order to perform an
experimental validation of this value. The results of this same test procedure are
then presented for the SR model with the SolidWorks-designed components (fig.
4.19).

After these two first paragraphs, some considerations about the influence of the
static friction coefficient on the step overcoming capability are made.

Subsequently, the chapter presents the simulation results of the robot when
using the forward speed controllers designed in the previous chapter. The outcomes
of both the analytical and multibody simulations are showcased.

It is important to note that the results of the simulations of the multibody
model assembled with the SolidWorks-designed components did not align with the
initial expectations. The underlying factors contributing to this deviation will be
thoroughly examined and discussed at the end of this chapter.
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8.2 Maximum Surmountable Step Analysis

8.2.1 Test Procedure

To assess the obstacle overcoming capability of the SR, first the theoretical value
was calculated. Knowing the design specifications of the robot,this can be done in
two ways: the first consists of simply using equation 3.13 and then multiplying the
result by the sphere radius; the second one consists of computing the value of a∗

and, after dividing it by R, the correspondent point on the curve of fig. 1.3 can
be found, knowing the MSH/R value. This second option gives the possibility to
understand how much the step that can be overcame with the aid of the gyroscopes
is taller than the one that can be climbed without using them.

Then, an experimental test was performed, consisting in validating the obstacle
overcoming capability inside the multibody simulations. In order to do that, the
torque curves were directly inputted to the revolute-joints of the pendulum motors,
while speed curves were given to the spinning and tilting revolute-joint motors of
the gyroscopes. The simulations were started with the robot standstill in front of
the step. First the torque needed to raise the pendulum at 90◦ was provided. Then,
the CMG system was activated and, simultaneously, the torque needed to react to
the gyroscope action was provided to the pendulum motors.

8.2.2 SR Model with Theorized Design Specifications

DESIGN SPECIFICATIONS

R 250 mm Radius of the sphere
Mtot 22 kg Total mass of the sphere
Msf 6 kg Sphere mass
mp 16 kg Pendulum mass
a 87.5 mm Robot COM - sphere center distance
l 120 mm Pendulum COM - sphere center distance
τ90 18.88 Nm Torque to raise the pendulum at a 90° angle.
ω 8000 rpm Flywheel spinning velocity
Ω 15 rpm W Flywheel tilting velocity
Ifl 9.76E − 3 kg · m2 Flywheel inertia
τG 25.8 Nm Maximum gyroscopic torque

Table 8.1: Theoretical design specifications of the SR.
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The obstacle climbing capability of the SR incorporating all the design specifications
defined along the design process was initially tested. In table 8.1 the design details
of the model are listed. These specifications were defined in order to make the SR
able to climb a step with a height of 110mm. This value was chosen in order to
satisfy the MSH design requirement of 100 mm.

From a theoretical point of view, it can be verified that these values are correct
using the equation 3.14. In particular, the value of a∗/R results equal to 0.8285.
The correspondent h/R value is equal to 0.44, which, when multiplied by the radius,
gives a MSH of 110 mm. In fig. 8.1 , the MSH-over-radius curve is plotted and two
points have been marked. The blue one corresponds to the MSH over radius of
this robot without the aid of the gyroscopes, which only depends on the barycenter
position. The red one, instead, represents the MSH that can be overcame when
the gyroscopes are functioning with the spinning and tilting velocities from table
8.1. The MSH/R is increased from a value of 0.06325 to 0.8285, which correspond
to steps of a height equal to 15.8 mm and 110 mm, respectively.

This result was then experimentally verified. A simplified multibody model of
this SR was constructed in Simulink. A capture of the visualization interface of
the SR assembled in the Simscape environment is shown in fig. 8.2. In fig. 8.3,
four frames of the SR overcoming the step are shown. The first one shows that

Figure 8.1: MSH-over-radius curve. The red dot identifies the position on the
curve when using the gyroscopes, while the blue one when not using them.
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Figure 8.2: Capture of the visualization interface of the simplified SR assembled
in the Simscape environment.

the robot is standstill in front of the step with the pendulum raised at 90◦. The
mere barycenter offset doesn’t allow the robot to overcome the obstacle. In the
subsequent frames, the spinning gyroscopes start the tilting motion, leading to
an increase of the total torque transmitted to the spherical shell and allowing the
robot to finally overcome the step.

Figure 8.3: Four frames of the SR overcoming a step of 110 mm.
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8.2.3 SR Model with SolidWorks-Designed Components

The same test was repeated on the SR model with the SolidWorks-designed
components, which was shown in fig. 4.19. Because the hardware and the batteries
weren’t included in this model, the design specifications differ from the theorized
ones and they can be read in table 8.2. Specifically the total mass is equal to only
17.3 kg. Consequently, the theoretical MSH of this robot is higher than 100 mm.
It was computed through eq. 3.15, and it resulted equal to 205mm.

The multibody model of this SR was presented in section 5.3.1. A capture of
the visualization interface of the SR assembled in the Simscape environment is
shown in fig. 8.4. When testing the maximum surmountable obstacle through the
simulations, the maximum height of the step was only equal to 162mm. The main
reason why the result wasn’t the one theorized is because, even if the same torque
was given to the two pendulum motors, their output speed was slightly different. As
a consequence, due to the utilization of the differential system, the sphere direction
wasn’t perpendicular to the step, and the torque available for overcoming the step
was smaller than the needed one. A more in-depth explanation to this problem is
presented in the next paragraphs.

In fig. 8.5, four frames of this SR overcoming the step 162mm tall are shown.

Figure 8.4: Capture of the visualization interface of the SR assembled with the
Solidworks components in the Simscape environment.
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DESIGN SPECIFICATIONS

R 250 mm Radius of the sphere
Mtot 17.3 kg Total mass of the sphere
Msf 4.2 kg Sphere mass
mp 13.1 kg Pendulum mass
a 95.2 mm Robot COM - sphere center distance
l 126 mm Pendulum COM - sphere center distance
τ90 16.18 Nm Torque to raise the pendulum at a 90° angle.
ω 8000 rpm Flywheel spinning velocity
Ω 15 rpm W Flywheel tilting velocity
Ifl 0.00976 kg · m2 Flywheel inertia
τG 25.8 Nm Maximum gyroscopic torque

Table 8.2: Specifications of the multibody model assembled using the CAD files
of the SR designed through Solidworks.

Figure 8.5: Four frames of the SR model with the SolidWorks-designed components
overcoming a step of height 162mm.
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8.2.4 Static Friction Considerations

Figure 8.6: Free body diagram of the robot when overcoming a step.

In the tests that were performed, the hypothesis of pure rolling motion were made.
However, it must be pointed out that in a real environment, the shell and the step
materials determine the static friction coefficient, which can limits the height of
the surmountable step. Referring to the figure above, the following equations can
be deduced: 

Mθ̈R + Mg sin(α) = Fa

N = Mg cos(α) = Mg R−h
R

Iθ̈ + Mθ̈R2 + MgR sin(α) = τ

(8.1)

To have a pure rolling movement, which is necessary to overcome the step, the
ratio between the friction and the force referred as N must be lower than the static
friction coefficient. Its minimum value can be computed as:

µs =
( τ−MgR sin(α)

I+MR2 )R + g sin(α)
g(R − h)/(R) (8.2)

To overcome a step 100 mm tall with the designed SR, a static friction coefficient
of approximately 1.3 is needed. This value exceeds the average one typically
observed among natural surfaces. Consequently, relying solely on the inherent
friction between the spherical shell and the ground is impractical. Therefore, in the
future, a thorough study must be performed to design a rubber cover with specific
surface features that enhance the gripping capabilities of the shell on the ground.
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8.3 Control Systems Validation
In the following paragraphs the results of the application of the linear speed
controllers on the simulated SR models are presented. First, the results obtained
from the analytical simulations when using the linear speed controller with the fuzzy
gain scheduler are illustrated. Subsequently, the performance of this controller on
the multibody model of the SR with Solidworks-designed components (fig. 8.4) is
showcased. As anticipated in the previous chapter, these outcomes deviated from
the results obtained through analytical simulations. To address this problem, a
second control architecture with specific speed controllers dedicated to each motor
was designed. Therefore, the results obtained by testing this second control system
are shown. The problems that affected the previous results can be observed to also
affect these ones. Finally, a discussion about the underlying factors contributing to
this deviations is presented.

8.3.1 Test Procedures
To test the control architecture and verify their functioning, two linear speed
profiles have been provided as input of the controllers and the system response
have been evaluated comparing it with the desired one. These tests have been
repeated for three different angles of inclination of the plane where the SR was
moving: 0◦, 7◦, and 15◦.

8.3.2 Analytical model
In the simulations of the analytical SR model, only the linear speed controller with
the fuzzy gain scheduler was validated. This is due to the fact that only one motor
with a doubled output torque was modeled in the analytical system. The second
control architecture consisted of two specific speed controllers dedicated to each
motor. Therefore, it couldn’t be applied on this simulation.

Figure 8.7: Screen capture of the analytical model of the robot with the linear
speed controller simulated in Simulink.
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Figure 8.8: Screen capture of the structure of the controller block.

Figure 8.9: Structure of the fuzzy gain scheduler (a) and the set/reset block (b).

The screen capture of the analytical model of the robot with the linear speed
controller is shown in fig. 8.7. In fig. 8.8 the structure of the controller block is
illustrated, while the structure of the fuzzy gain scheduler and the set/reset blocks
are shown in fig.8.9(a) and (b), respectively. The functioning of the system was
evaluated giving two types of input: a signal composed by subsequent velocity
steps of 1 m/s, 1.5 m/s, 2 m/s, and 2.5 m/s, and a trapezoidal velocity profile
that reaches 2.5 m/s. The robot was tested on a plane with an inclination of 0◦,
7◦, and 15◦. The results are shown in figures 8.10-8.12. It can be observed that the
controller allows the tracking of the velocity profile in all three scenarios, enabling
a good control of the system also on steeper terrains. At 7◦ and 15◦ the curves
starts with a decreasing trend because the robot is in a standstill position on an
inclined plane.

118



Results

Figure 8.10: Linear speed of the analytical robot model VS input speed profile.
Testing on a plane with an inclination of 0◦.

Figure 8.11: Linear speed of the analytical robot model VS input speed profile.
Testing on a plane with an inclination of 7◦.

Figure 8.12: Linear speed of the analytical robot model VS input speed profile.
Testing on a plane with an inclination of 15◦.
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8.3.3 Multibody Model

Linear Speed Controller with Fuzzy Gain Scheduler

In this paragraph, the results of the application of the fuzzy gain scheduler linear
speed controller on the multibody model of the SR of fig. 8.4 are presented. A
screen capture of the Simulink environment with the robot model and the controller
is shown in fig. 8.13 . The results from testing the control architecture when the
robot moves on a horizontal plane are shown in figure 8.14. The same input speed
profiles that were given to the analytical model of the SR were used. It can be
noted that the response doesn’t overlap with the one of the analytical model, but
both the velocity profiles are well tracked by the SR. Under the sphere center speed
graphs, the path followed by the robot in the XY plane during the manoeuvres
can be observes. It can be noted that, in the first scenario, there is a deviation
of 16 cm in the negative direction of the y-axis. However, this deviation accounts
for less than 0.5% of the length of the displacement along the x-axis. In fig. 8.15,
the sphere center speed of the SR along the x-axis when moving on a slope of 5◦ is
shown. It can be observed that the robot is not able to follow the desired trajectory.
The cause of this result is the same one that was described in the paragraph
8.2.3. Specifically, even if the same torque was given to the two pendulum motors,
their output speed differs, causing the sphere to move in a different way from the
predicted one.

Figure 8.13: Simulink environment with the robot model and the linear speed
controller.
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Figure 8.14: Linear speed of the multibody robot model VS input speed profile.
Testing the fuzzy gain scheduler controller on a plane with an inclination of 0◦.

Figure 8.15: Linear speed of the multibody robot model VS input speed profile.
Testing the fuzzy gain scheduler controller on a plane with an inclination of 7◦.
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Linear Speed Controller with Gravity Compensation

As already explained, to address the problem that was experienced when testing the
fuzzy gain scheduler controller, a second control architecture with two separated
speed controllers was developed. The same tests were performed. Here, only the
result obtained when the sphere is moving on a plane with an inclination of 7◦

is presented and it can be observed in fig. 8.16. It can be noted that also this
controller doesn’t perform as planned. Specifically, also in this case, the speeds of
the two motors differ. A graph showing the angular velocity curves of the motors
can be observed in fig. 8.17. In the next paragraph, the possible cause behind this
unexpected outcomes is discussed.

Figure 8.16: Linear speed of the multibody robot model VS input speed profile.
Testing the controller with gravity compensation on a plane with an inclination of
7◦.
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Figure 8.17: Shaft Angular Velocities of the two pendulum motors when controlled
through the controller with gravity compensation on a plane with an inclination of
7◦.

8.4 Analysis of Underlying Factors for Deviations
in Simulation Results

The unexpected behavior of the robot when the control systems were tested can
be attributed to the different output speeds of the two pendulum motors. This is
believed to be caused by the action of varying resistive torques on the bevel gears
of the differential system. These resistive torques, in turn, result from the tilting of
the central shaft of the sphere as a consequence to friction forces acting along a
direction not parallel to the rolling one.

This behavior was not anticipated, and it was initially assumed that the design
of the straight-line motion control systems could be achieved based on the two-
dimensional analytical equations of the robot. In particular, although the use of a
differential system does not allow for decoupling the control of the two motors, it
was believed that a system characterized by a single motor with a doubled output
torque could effectively describe the problem at hand. This is because if the same
resistive torques act on the two motors, they will have equal and opposite output
speeds. It has been shown through the kinematic equations of the differential
system that this results in a straight line movement of the robot.

However, if there are forces acting along a different direction from the rolling
one, the linear speed controllers weren’t designed to effectively correct the control
input, causing the system response to be different from the desired one.
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Chapter 9

Conclusions

This master’s thesis focuses on the design and development of a pendulum-driven
spherical robot (SR), drawing inspiration from prior research conducted by [1]. The
framework outlined in [1] successfully addressed some of the technical challenges
associated with creating such a complex robot. However, limitations in its design
were identified, motivating extensive efforts to enhance the robot’s efficiency and
versatility. The primary objective of this research was to develop a viable solution
that could improve the robot’s obstacle-climbing capability.

To achieve this goal, a performance parameter called MSH (Maximum Step
Height) was defined. Its value is computed as the height of a step at which the SR,
when generating the maximum torque, is able to maintain an equilibrium condition
on the step edge. The MSH value of the SR designed by [1] was equal to 25 mm.
The objective of this thesis was to improve it up to a value of 100 mm.

For a simple pendulum-driven spherical robot it was shown that the only
solution to improve the MSH value consisted in increasing the distance between
the barycenter and the center of the sphere. Nevertheless, this complicates a lot
the design process.

The solution proposed in this thesis entails the integration of a Control Moment
Gyroscope (CMG) auxiliary propulsion system. This system enables to momentarily
increase the maximum torque transmittable to the spherical shell. Consequently,
the MSH can be substantially improved without necessitating a considerable
displacement of the robot’s barycenter from the sphere center.

The first part of this work was dedicated to study the working principle of
the CMG systems. An innovative spherical robot driving mechanism composed
only by gyroscopes was proposed. After a detailed analysis, it was concluded that
this system couldn’t be used to meet the project requirements. Hence, the use
of the two CMGs as an auxiliary propulsion system was presented, coupling it
with the pendulum system with the differential mechanism developed by [1]. It
was explained the strategy behind this solution, and it was illustrated how the
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relation between the MSH and the robot barycenter position was changed by the
introduction of the gyroscopic torque.

After this preliminary study, the design process of the gyroscopes was presented,
showing the solutions adopted in order to meet the project requirements. A brief
analysis of the drag forces acting on a high-speed spinning flywheel was realized
in order to correctly select the motors responsible for the spinning motion. After
finalizing the design of the CMG group, the two main motors controlling the
pendulum were dimensioned, selecting them based on the nominal robot speed
requirement of 2.5 m/s. Once all the motors were selected, the battery pack was
dimensioned to meet the runtime requirement of a minimum of 1 h while working
at the nominal operating point (climbing a slope of 15° at a speed of 2.5 m/s). For
the spherical shell, the harmonic steel sheets used in [1] were substituted with two
PMMA hollow hemispheres. A second layer made of impermeable rubber is needed
to enhance the static friction of the shell on the ground.

The final result of the design process was a spherical UGV with a diameter of
0.5 m, and a total mass of 18 kg. The batteries and the hardware weren’t included,
but the whole dimensioning process was performed considering a total mass of
22 kg, allowing for the inclusion of hardware components weighing up to 4 kg while
still adhering to the project requirements.

Simulated models of the SR were then created to study its performance. An
analytical model able to describe the straight motion on an inclined plane was
developed, and linear speed controllers were designed based on this model. More
comprehensive multibody models of the SR were utilized to verify the project
requirements and test the designed controllers.

The results demonstrated that the CMG system successfully enhanced the
robot’s obstacle overcoming capability. Through a simplified multibody model
incorporating all the specifications obtained from the design process it was shown
that this solution allowed to successfully climb steps with the expected height.
However, when testing the robot’s obstacle overcoming capability and the linear
speed controllers on the multibody models with the differential mechanism developed
by [1], discrepancies between the expected and obtained results were observed.
These findings highlighted the challenges associated with controlling a spherical
robot through a differential mechanism.

Overall, this master’s thesis made significant progress in the design and develop-
ment of a pendulum-driven spherical robot, presenting a viable solution to improve
its obstacle-climbing capability. The integration of a Control Moment Gyroscope
auxiliary propulsion system showed promise in enhancing the robot’s performance.
Further research should focus on selecting the appropriate hardware components,
designing a rubber cover with surface features to enhance gripping capabilities,
and developing a control system capable of controlling the robot on both straight
and curvilinear paths. These future efforts will contribute to advancing the field of
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spherical robotics and maximizing the robot’s capabilities in various applications.

126



Appendix A

Gantt

127



Gantt

128



Appendix B

Project Ethical Implications
The use of spherical robots in applications such as search and rescue operations,
surveillance, and exploration of unstructured or unknown environments presents
both ethical opportunities and challenges. One of the key benefits is the enhanced
safety they offer by reducing the risks and potential injuries to human workers
in hazardous situations. These robots can access and navigate areas that are
inaccessible or too dangerous for humans, allowing for more effective and efficient
operations.

However, the widespread adoption of spherical robots also raises concerns about
potential job displacement, particularly for workers in roles such as watchmen or
security personnel. While these robots can perform certain tasks autonomously,
there is an opportunity to mitigate the impact by retraining and re-educating
workers to take on new roles as robot supervisors or operators. By providing the
necessary training and skills, these workers can oversee and manage the robots’
activities, ensuring their safe and responsible use while leveraging their human
judgment and expertise.

Furthermore, the development and large-scale production of spherical robots
have the potential to create new job opportunities in various sectors, ranging from
manufacturing and maintenance to programming and technical support. This
growth in the field can lead to the emergence of specialized roles and skillsets,
fostering economic growth and increasing employment prospects.

To address the ethical implications, it is essential to prioritize a comprehensive
approach that combines technological advancement with social responsibility. This
includes investing in education and training programs to equip individuals with the
necessary skills to adapt to the changing job landscape and actively participate in
the deployment and management of spherical robots. Additionally, ongoing dialogue
between stakeholders, including workers, policymakers, and industry leaders, can
facilitate the development of inclusive and ethical practices that ensure a fair
transition and balance between human workers and robotic systems.
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