
POLITECNICO DI TORINO

Master’s Degree
in Mathematical Engineering

Master’s Degree Thesis

Challenges in simulation of Chemical Reaction Networks

Supervisor Candidate
prof. Enrico Bibbona Gabriele Galilei

Academic Year 2023-2024

Summary

The study of deterministic models of Chemical Reaction Networks has been a central topic
in Chemical Physics since the 1970s thanks to the work of M. Feinberg, F. Horn, and R.
Jackson. The stochastic counterpart was formulated in the same period and investigated
mostly through simulations. Stochastic simulation algorithms have been developed, the
most known one being the exact simulation method usually associated to the name of
Gillespie who made it popular in the field of Chemical Physics. A mathematical theory
of stochastic models of Chemical Reaction Networks has been developed more recently,
but efficient simulation methods are still needed to address most models that remains
intractable with analytical tools.

The interest in studying complicated models and the availability of an increased com-
puter power made it possible to simulate larger examples and it stimulated the develop-
ment of approximate simulation methods to speed up the computations further. The most
known approximated simulation algorithm is the so-called τ -leaping method, again due
to Gillespie. Recently, several authors proposed improvements to τ -leaping algorithm, in-
cluding the MidPoint corrections and Post-Leap Checks both introduced by D. Anderson
and collaborators on which we focus.

In this thesis, we develop a few non-trivial numerical examples where the application
of such improved τ -leaping methods are compared among each other and against exact
simulations to evaluate their performance.

The first setting is that of the stochastic Lotka-Volterra predator-prey model, in a
parameter regime where the extinction of one of the populations is a rare event, but
still possible when the initial population consistency is not extremely large. This is an
interesting classical case where we expect that the trivial τ -leaping method can easily fail,
while the improved ones should show their capabilities. We illustrate our findings showing
that both improvements (MidPoint corrections and Post-Leap Checks) are important and
that they can be successfully combined.

In the second setting we simulate a stochastic model of nanoparticle growth that has
been subject of recent studies. In this case the simulation algorithm needs a careful
implementation due to several source of complexity, both in terms of speed and memory
usage, and in terms of the peculiarity of the model. In this case MidPoint corrections are
not applicable, while Post-Leap Checks are strictly necessary for the τ -leaping method
to be applicable. However, in some interesting parameter regimes, the computational
advantage provided by the approximated τ -leaping method with respect to the exact
Gillespie algorithm partly fades away due to the high rate of failure of the Post-Leap
checks.

1

Contents

Introduction 4

I Preliminary concepts 6

1 Chemical Reaction Networks 7
1.1 Introduction to Chemical Reaction Networks 7
1.2 Results on stochastic processes based on Chemical Reaction Networks . . . 9
1.3 Classical Scaling . 9

II Simulation methods for Chemical Reaction Network 17

2 Exact methods: Gillespie algorithm 18

3 Approximated methods: τ-leaping method 20
3.1 Adaptive time interval for τ -leaping method 21
3.2 τ -leaping method with Post-Leap Check 24
3.3 MidPoint correction . 27

III Application of the methods 29

4 Application to Lotka-Volterra model 31
4.1 Introduction to the model . 31
4.2 Computational times and error analysis . 33
4.3 Application of the Gillespie algorithm . 33
4.4 Application of the τ -leaping algorithm with fixed time interval 37
4.5 Application of the τ -leaping algorithm with adaptive time interval 43
4.6 Application of the τ -leaping algorithm with Post-Leap Check 51

5 Application to the case study of nucleation and growth of gold nanopar-
ticles 59
5.1 Introduction to the case study . 59
5.2 Formulation of the model . 60

2

5.3 Application of the Gillespie algorithm in Classical Scaling 61
5.4 Application of the τ -leaping algorithm with Post-Leap Check in Classical

Scaling . 65
5.5 Application of the Multinomial algorithm in Classical Scaling 73
5.6 Application of the Gillespie algorithm in Alternative Scaling 79
5.7 Application of the τ -leaping algorithm with Post-Leap Check in Alternative

Scaling . 83
5.8 Application of the Multinomial algorithm in Alternative Scaling 89

Bibliography 94

List of Figures 97

List of Tables 103

3

Introduction

In 1864, C. M. Guldberg and P. Waage developed a theory, known as the affinity theory,
in which the rate of a chemical reaction is directly proportional to the concentration of its
reactants [1]. Only in 1879 did they microscopically justify this assumption by attributing
it to the frequency of particle collisions [2]. This gave rise to the law of mass action. The
significance of this discovery led to the development of various kinetic theories on the con-
centration of chemical species based on the law of mass action. In 1900, J. H. van’t Hoff’s
studies on the thermodynamic implications of the law of mass action and on solutes, C.
N. Hinshelwood and N. N. Semenov’s research on critical reactions and the concept of a
chain reaction, and R. Aris’ work leading to a rigorous mathematical formulation of reac-
tion systems and the introduction of the concept of Chemical Reaction Network followed.
Subsequently, in the early 1970s, F. J. M. Horn and R. Jackson [3] and M. Feinberg [4]
developed the theory now known as Chemical Reaction Network theory.

With the advent of computers, there naturally arose a desire to simulate the behav-
ior of chemical component concentrations in a Chemical Reaction Network. In [5], D.
Gillespie introduced the Stochastic Simulation Algorithm, better known as the Gillespie
algorithm, for the exact simulation of Chemical Reaction Networks. Subsequently, many
steps were taken to approximate such algorithms. These methods are still used to describe
the behavior of biochemical systems and more.

In this work, the aim was to compare various simulation methods for Chemical Re-
action Networks in term of computational time and strong approximation error; then
possible modifications to those algorithms were studied. All of the latter is then applied
on two case studies of different mathematical and applied nature.

Chapter 1 introduces the basics of Chemical Reaction Network theory and its nota-
tion. Simultaneously, the law of mass action and kinetics based on it are explained, which
will be used in the case studies. Previous literature results are presented, such as the
possible rewriting of the trigger number of a reaction in terms of variable-rate Poisson
processes [6] and the Markovian nature of stochastic processes based on Chemical Reac-
tion Networks [7]. It is also noted that in chemistry, often the discussion revolves around
the concentration of a species in the examined environment rather than particle count-
ing. Therefore, classical scaling is introduced, modifying reaction rates to maintain the
theory of Chemical Reaction Networks but acting on concentrations rather than counts.

4

A theorem is stated and proven by T. G. Kurtz and S. N. Either [8], imposing that for
infinite-volume environments, simulations obtained through the examined methods should
tend toward the deterministic solution of the associated system of ODEs for the Chemical
Reaction Network.

Chapter 2 explains the exact simulation method for Chemical Reaction Networks devel-
oped by D. Gillespie [5], based on the result that concentration evolution is well described
by multivariate Poisson processes.

Chapter 3 explains the approximate simulation method proposed by Gillespie himself
in [9], called the τ -leaping method. The idea behind this method is to consider a time
interval larger than the time between one reaction and the next one and to estimate how
many times each reaction occurred in that interval. However, this model often led to
negative concentrations that make mathematical sense but not logical sense. Therefore,
in [9] [10] [11], an adaptive time interval is introduced, respecting the so-called leap con-
dition, thus reducing the probability of failure. Subsequently, a better implementation of
the τ -leaping algorithm is explained, where each proposed leap respects the leap condi-
tion, hence its name Post-Leap Check. Finally, the MidPoint correction is described, an
additional approximation term in the evaluation of the reaction rates to use in τ -leaping
methods.

In Chapter 4, the algorithms described in Chapters 2 and 3 are applied to the Lotka-
Volterra predator-prey model [12] [13], chosen because a deterministic solution of the
associated ODEs can be described. The associated Chemical Reaction Network is de-
rived, simulated, and the strong approximation errors and average computational times
are analyzed.

In Chapter 5, the analysis performed in Chapter 4 is repeated, but applied to the case
study of the growth and nucleation of gold nanoparticles. In particular, the number of
nanoparticles for each size is simulated until the system reaches a steady state, i.e., until
the exhaustion of gold monomers. The analysis is also repeated in a scaling different from
the classical one, allowing the nucleation and growth probabilities to be of the same order
from the early instants.

5

Part I

Preliminary concepts

6

Chapter 1

Chemical Reaction Networks

1.1 Introduction to Chemical Reaction Networks
Definition 1.1.1 (Chemical Reaction Networks). We call Chemical Reaction Network
the triplet {S , C , R} where:

(i) S = {S1, . . . , SL} is the set of the species;

(ii) C is the set of the complexes, non-negative linear combinations of species with integer
coefficients;

(iii) R = {yk −→ y′
k : yk, y′

k ∈ C e yk /= y′
k} is the set of the possible reactions.

Thinking in a biochemical context, the species are nothing but the different types of
molecules involved in the reactions, and the complexes are combinations of these chemical
species with their respective stoichiometric coefficients appearing in a reaction on the left
or right side.
Note that we will denote by:

(i) L the number of species;

(ii) M the number of reactions.

Example 1.1.1. Taking into account the simple reaction:

A + B −→ 2A

B −→ A

we will have that:

• S = {A, B} ;

• C = {A, B, A + B, 2A} ;

• R = {A + B −→ 2A, B −→ A} .

7

Chemical Reaction Networks

Given a fixed reaction k, this can be written as follows:

LØ
i=1

ykiSi −→
LØ

i=1
y′

kiSi

where the arrays yk, y′
k ∈ ZL≥ 0 represent the coefficient vectors associated with the

reactant complex and the product complex, respectively.

Definition 1.1.2 (Reaction vector). The reaction vector ζk associated with the k-th
reaction is defined as ζk := y′

k − yk ∈ ZL.

Example 1.1.2. Referring to the previous example 1.1.1, the reaction vectors will be:

ζ1 = (2− 1, 0− 1) = (1, −1) ζ2 = (1− 0, 0− 1) = (1, −1).

Specifically, species in the left complex are referred to as reactants, whereas species in
the right one are termed products.

Definition 1.1.3 (Reaction Rate). Given the reaction y → y′, the term reaction rate,
reaction speed, or propensity function λy→y′ : NL

0 −→ [0,∞) is used to describe the speed
at which the reaction y → y′ occurs. The vector of reaction rates is referred to as the
kinetics.

The evolution in time of most of the biochemical systems can be expressed via a Chem-
ical Reaction Network, paired with a kinetics.

The most common example of kinetics is that of mass action.

Example 1.1.3 (Mass Action Kinetics). Given a reaction of the form:

LØ
i=1

yiSi −→
LØ

i=1
y′

iSi,

and adopting the convention that 00 = 1, the mass action kinetics is defined as follows:

λy→y′(x) = κ ·
LÙ

i=1

xi!
(xi − yi)!

where κ is referred to as the reaction rate constant. Thus, for the reaction 2A + B −→ C
we will have that λ([a, b, c]) = κ · a(a− 1) · b.

In particular, when the concentration of a chemical species, denoted as xi, is less
than yi, the reaction rate λy→y′(x) is zero. This circumstance indicates a deficiency of
reactants and subsequently the impossibility of the chemical reaction. Conversely, as
the concentrations of reactants increase, the likelihood of the reaction demonstrates an
enhanced yield, reflecting in a higher reaction rate. This kinetic phenomenon adheres to
the law of mass action, and the resulting kinetics are consequently categorized as mass
action-type kinetics.

8

Chemical Reaction Networks

1.2 Results on stochastic processes based on Chemi-
cal Reaction Networks

The stochastic process X = (X1, . . . , XL), representing the number of particles in the sys-
tem over time for each species, can be formally characterized using the reaction vectors
ζ1, . . . , ζM associated with the possible reactions.

Let Nk be the counting process related to how many times the k-th reaction has been
triggered in the time interval (0, t). Hence it is trivial to think that:

X(t) = X(0) +
MØ

k=1
Nk(t) ζk.

Consider Yk a unit-rate Poisson Process and λk the propensity function of the k-th reac-
tion. In [6], Kurtz formally describes how, under certain conditions, the solution to the
following problem exists and it is unique:

Nk(t) = Yk

3Ú t

0
λk(X(s)) ds

4
. (1.1)

This result expresses how any counting process can be written as a unit-rate Poisson
process with variable time. In particular, if the propensity function of the k-th reaction
in the state λk(X(s)) is high for s ∈ (0, t), then the time argument of the Poisson distri-
bution is also high since these functions are non-negative. This leads to higher counts.
Conversely, if λk(X(s)) is low for s ∈ (0, t), so will be the counts.

Therefore the dynamics of the process can be described as follows:

X(t) = X(0) +
MØ

k=1
Nk(t) ζk (1.2)

= X(0) +
MØ

k=1
Yk

3Ú t

0
λk(X(s)) ds

4
ζk. (1.3)

Simultaneously, this also makes the process X a continuous-time Markov chain, pre-
senting an interesting aspect from a simulation perspective: when simulating the process
X in the time window (t, t+r), it is not necessary to store information about the process’s
past, only its current state, X(t).

1.3 Classical Scaling
In the chemical context, the description of a system state often revolves around chemical
concentrations rather than the number of particles, primarily due to the large number of
particles involved, which is on the order of Avogadro’s number (NA ≈ 6·1023). Specifically,
the definition V := NA · v is introduced, where v represents the volume of the container
in which reactions take place. So Classical Scaling is when there is:

9

Chemical Reaction Networks

(i) an initial abundance of species on the order of V ≫ 1;

(ii) a modification of rate constants to account for the dimensions of the surrounding
environment: each rate constant of reaction k from y to y′ is approximately of the
order cV

k = O(V 1−sk), where sk denotes the number of reacting particles involved in
reaction k.

Consequently, the reaction rates λV
k and the state XV , which now reflects not the

number of particles but rather the concentration of species expressed in moles per unit
volume, are updated. Thus, we have:

XV (t) = XV (0) + 1
V

MØ
k=1

Yk

3Ú t

0
λV

k (XV (s)) ds

4
ζk (1.4)

This scaling procedure is derived from simplifying assumptions: considering a reaction
of the type A+B → C, the probability of collision between two particles of species A and
B will vary proportionally to the volume, and this holds generally for higher-order reac-
tions. For reactions of the type A→ C, on the other hand, the probability of occurrence
in containers of different sizes does not undergo significant variations and, therefore, does
not exhibit a volume dependence.

One can define a system of coupled ordinary differential equations based on a Chemical
Reaction Network:

ẋ = F (x), F (x) :=
MØ

k=1
λk(x)ζk. (1.5)

This system, yielding continuous solutions, pertains to the concentrations of the species.
An illustrative example follows.

Example 1.3.1. Let’s revisit example 1.1.1. The reaction rates are λ1([a, b]) = κ1 · a · b
and λ2([a, b]) = κ2 · b. The reaction vectors are ζ1 = (1,−1) and ζ2 = (1,−1). Thus, the
equations take the form: A

ȧ

ḃ

B
= κ1ab

A
1
−1

B
+ κ2b

A
1
−1

B
I

ȧ = κ1 · a · b + κ2 · b
ḃ = −κ1 · a · b− κ2 · b

It is worth noting that the reverse operation from a system of ordinary differential
equations to a Chemical Reaction Network is not unique, even though the simulation
effects coincide.

Regarding the relation between the solution of 1.5 and the stochastic process XV ,
in [8], the following theorem is stated and proven. Given the tedious notation, we will
consider:

|v| = |v1|+ |v2|+

10

Chemical Reaction Networks

and
Ỹ (u) := Y (u)− u

the Poisson process Y centered with respect to its mean, called centered or compounded
Poisson process.

Theorem 1.3.1 (Etemadi’s inequality). Let X1, . . . , Xn be independent random variables
and let Sk := X1 + . . . + Xk the partial sum. Then for every α ≥ 0 it is true that:

IP
5

max
0≤k≤n

|Sk| ≥ 3α

6
≤ max

0≤k≤n
IP [|Sk| ≥ α] .

The proof is in [?].

Lemma 1.3.1 (Poisson law of large numbers). Let Ỹ be a unit-rate Poisson process. It
is true for all v ≥ 0 that:

lim
V →∞

sup
u≤v

---- 1
V

Ỹ (V u)
---- = 0, a.s..

Remark 1.3.1. The lemma just stated is a uniform version of the law of large numbers
for centered Poisson processes; indeed, neglecting the upper limit, one would have:

lim
V →∞

1
V
|Y (V u)| ≤ lim

V →∞

1
V

(|Y (u)− 0|+ |Y (2u)− Y (u)|+ . . . + |Y (V u)− Y ((V − 1)u)|)

= lim
V →∞

1
V

V −1Ø
i=0
|Y ((i + 1)u)− (i + 1)u− Y (iu) + iu|

= lim
V →∞

1
V

V −1Ø
i=0
|Y ((i + 1)u)− Y (iu)− u| = 0

which turns out to be a regular law of large numbers for centered Poisson processes.

Proof. Let us consider the stochastic process 1
V Ỹ (V u). Firstly, let us prove that Ỹ (t) is

a continuous-time martingale.

(i) Y (t) is adapted to {Y (s)}s≤t by assumption, and thus the process Ỹ (t) will also be
adapted as it is a deterministic translation of an adapted process.

(ii) E[|Ỹ (t)|] ≤ E[|Y (t)|+ |t|] = 2t <∞.

(iii)

E[Ỹ (t)− Ỹ (s)|Ỹ (s)] = E[Y (t)− t− Y (s) + s|Y (s)]
= E[Y (t)− Y (s)|Y (s)]− (t + s)
= E[Y (t)− Y (s)]− (t + s)
= (t− s)− (t− s) = 0.

11

Chemical Reaction Networks

Let us define:

Ξh
j :=

2jhÛ
i=0

;
i

2j

<

so that Ξh
0 = {0, 1, . . . , h}, Ξh

1 = {0, 1/2, 1, . . . , h}, Ξh
2 = {0, 1/4, 1/2, 3/4, 1, . . . , h}. So

limj→∞ Ξh
j is dense in [0, h]. Since Ỹ has almost surely right-continuous trajectories, then

for all v > 0, for all V ∈ N:

sup
u<v
|Ỹ (V u)| = lim

j→∞
max
u∈Ξv

j

|Ỹ (V u)| a.s..

It is true that Ξh
j ⊂ Ξh

j+1 for all j. Therefore, by continuity of the probability measure:

IP
5
sup
u<v
|Ỹ (V u)| > V ε

6
= IP

C
lim

j→∞
max
u∈Ξv

j

|Ỹ (V u)| > V ε

D

= lim
j→∞

IP
C
max
u∈Ξv

j

|Ỹ (V u)| > V ε

D
.

Since Ỹ is a translated jump process, it can be considered as a partial sum of random
variables. Hence Etemadi’s inequality 1.3.1 can be applied:

IP
C
max
u∈Ξv

j

|Ỹ (V u)| > V ε

D
≤ 3 max

u∈Ξv
j

IP
5
|Ỹ (V u)| > V ε

3

6
.

and so:
IP
5
sup
u<v
|Ỹ (V u)| > V ε

6
≤ 3 lim

j→∞
max
u∈Ξv

j

IP
5
|Ỹ (V u)| > V ε

3

6
.

For all 0 < u < v and for all β ∈ (0,1):

IP
5
|Ỹ (V u)| > V ε

3

6
≤ IP

5
Ỹ (V u) >

V ε

3

6
+ IP

5
−Ỹ (V u) >

V ε

3

6
= IP

5
Ỹ (V u) >

V ε

3

6
+ IP

5
−Ỹ (V u) >

V ε

3

6
= IP

5
eV β−1Ỹ (V u) > e

V β ε
3

6
+ IP

5
e−V β−1Ỹ (V u) > e

V β ε
3

6
.

Markov’s inequality states that if X is a non-negative process then IP[X ≥ a] ≤ E[X]
a .

Applying it we have that:

IP
5
|Ỹ (V u)| > V ε

3

6
≤ e− V β ε

3

1
E
è
eV β−1Ỹ (V u)

é
+ E

è
e−V β−1Ỹ (V u)

é2
= e− V β ε

3

1
E
è
eV β−1Y (V u)

é
e−vβu + E

è
e−V β−1Y (V u)

é
eV βu

2
.

12

Chemical Reaction Networks

The moment generating function of the Poisson distribution is E[etY] = eλ(et−1), from
which:

IP
5
|Ỹ (V u)| > V ε

3

6
≤ e− V β ε

3

A
e

V u

1
eV β−1 −1

2
e−V βu + e

V u

1
e−V β−1 −1

2
eV βu

B

= e− V β ε
3

A
e

V u

1
eV β−1 −1−V β−1

2
+ e

V u

1
e−V β−1 −1+V β−1

2B

≤ 2e− V β ε
3 e

V u

1
eV β−1 −1−V β−1

2
.

Since as V →∞ then V β−1 → 0 it is possible using Taylor’s expansion of eV β−1 to write:

eV β−1 − V β−1 − 1 = V 2β−2

2 eV β−1 + o(V 2β−2)

and so:

IP
5
|Ỹ (V u)| > V ε

3

6
≤ 2e− V β ε

3 eV u V 2β−2
2 eV β−1

≤ 2e− V β ε
3 eV v V 2β−2

2 eV β−1

≤ 2e− V β ε
3 eV v V 2β−2

2 e.

Choosing β = 1
2 :

IP
5
|Ỹ (V u)| > V ε

3

6
≤ 2e−

√
V ε
3 e

ve
2 .

So:

IP
5
sup
u<v
|Ỹ (V u)| > V ε

6
≤ 6 lim

j→∞
max
u∈Ξv

j

e−
√

V ε
3 e

ve
2

= 6e−
√

V ε
3 + ve

2 .

Therefore as V →∞ then IP
è
supu<v |Ỹ (V u)| > V ε

é
→ 0, hence the thesis.

Theorem 1.3.2. Suppose K ⊂ E ⊂ RL
+ compact such that:

MØ
k=1
|ζk| sup

x∈K
λV

k (x) <∞ (1.6)

and that it exists MK > 0 such that:

|F (x)− F (y)| ≤MK |x− y| , x, y ∈ K.

Let x be a solution to the problem 1.5, and let XV be a stochastic process satisfying 1.4
such that limV →∞ XV (0) = x(0). Then for all T ≥ 0 it is true that:

lim
V →∞

sup
t≤T

---XV (t)− x(t)
--- = 0 a.s.. (1.7)

13

Chemical Reaction Networks

Proof. It is worth noting that the assumption of the existence of a global solution for
the problem 1.5 is justified by the hypothesis of Lipschitz continuity of the function F in
the theorem statement and by the continuity of the reaction rates. These, in addition to
ensuring existence, also guarantee the global uniqueness of the solution x.

Given T ≥ 0, λV
k (x(T)) depends only on the values of x in a small temporal neigh-

borhood preceding T , given the Markovian nature of the process. Therefore, the validity
of
qM

k=1 |ζk| supx∈K λV
k (x) < ∞ depends only on the values {x(t) : t ≤ T}. Let us fix a

point x ∈ E, then there exists a compact K ⊂ E such that x ∈ E. Hence it is true that
1.6. Therefore this holds for all x ∈ E and it is permissible to take the weak condition:

MØ
k=1
|ζk| λ̄V

k <∞

where λ̄V
k := supx∈E λV

k (x).

Since for all K ⊂ E it exists MK > 0 such that it holds |F (x)− F (y)| ≤ MK |x− y|
for every x, y ∈ K, then it exists M ≥ maxK⊂E MK such that it is true that:

|F (x)− F (y)| ≤M |x− y| , x, y ∈ E.

Denoting Ỹk(u) := Yk(u)− u as the centered Poisson process Yk with respect to its mean,
XV can be expressed in the form:

XV (t) = XV (0) + 1
V

MØ
k=1

3
Ỹk

3Ú t

0
λV

k (XV (s)) ds

4
+
Ú t

0
λV

k (XV (s)) ds

4
ζk

= XV (0) + 1
V

MØ
k=1

Ỹk

3Ú t

0
λV

k (XV (s)) ds

4
+
Ú t

0

A
MØ

k=1
ζk

λV
k (XV (s))

V

B
ds

= XV (0) + 1
V

MØ
k=1

Ỹk

3Ú t

0
λV

k (XV (s)) ds

4
+
Ú t

0
F (XV (s)) ds.

14

Chemical Reaction Networks

It is trivial how F
1s t

0 X(s) ds
2

=
s t

0 F (X(s)) ds for X = XV or X = x. So:

---XV (t)− x(t)
--- =

----XV (t)−
3

x(0) +
Ú t

0
F (x(s)) ds

4
+

+ XV (0)−XV (0) + F

3Ú t

0
XV (s) ds

4
− F

3Ú t

0
XV (s) ds

4----
=
----XV (0)− x(0) + XV (t)−XV (0)−

Ú t

0
F (XV (s)) ds+

+ F

3Ú t

0
XV (s) ds

4
−
Ú t

0
F (x(s)) ds

≤
---XV (0)− x(0)

---+ ----XV (t)−XV (0)−
Ú t

0
F (XV (s)) ds

----+
+
----F 3Ú t

0
XV (s) ds

4
− F

3Ú t

0
x(s) ds

4----
≤
---XV (0)− x(0)

---+ ----XV (t)−XV (0)−
Ú t

0
F (XV (s)) ds

----+
+ M

----Ú t

0
XV (s) ds−

Ú t

0
x(s) ds

≤
---XV (0)− x(0)

---+ ----XV (t)−XV (0)−
Ú t

0
F (XV (s)) ds

----+
+ M

Ú t

0

---XV (s)− x(s)
--- ds.

Let us define:

εV (T) := sup
t≤T

----XV (t)−XV (0)−
Ú t

0
F (XV (s)) ds

Therefore:

---XV (t)− x(t)
--- ≤ ---XV (0)− x(0)

---+ εV (t) + M

Ú t

0

---XV (s)− x(s)
--- ds.

and applying Gronwall’s Lemma we have that:

---XV (t)− x(t)
--- ≤ 1---XV (0)− x(0)

---+ εV (t)
2

eMt. (1.8)

15

Chemical Reaction Networks

Coming back to the definition of εV :

εV (T) := sup
t≤T

----XV (t)−XV (0)−
Ú t

0
F (XV (s)) ds

= sup

t≤T

----- 1
V

MØ
k=1

Ỹk

3Ú t

0
λV

k (XV (s)) ds

4
ζk

≤ sup

t≤T

1
V

MØ
k=1

----Ỹk

3Ú t

0
λV

k (XV (s)) ds

4
ζk

≤ sup

t≤T

1
V

MØ
k=1

----Ỹk

3Ú t

0
λV

k (XV (s)) ds

4---- |ζk|

≤ sup
t≤T

1
V

MØ
k=1

3----Yk

3Ú t

0
λV

k (XV (s)) ds

4----+ ----− Ú t

0
λV

k (XV (s)) ds

----4 |ζk|

= sup
t≤T

1
V

MØ
k=1

3
Yk

3Ú t

0
λV

k (XV (s)) ds

4
+
Ú t

0
λV

k (XV (s)) ds

4
|ζk|

≤ 1
V

MØ
k=1

A
Yk

AÚ T

0
λ̄V

k ds

B
+
Ú T

0
λ̄V

k ds

B
|ζk|

= 1
V

MØ
k=1

1
Yk

1
λ̄V

k T
2

+ λ̄V
k T
2
|ζk|

Let us choose u = 1
V

s t
0 λk(XV (s)) ds and v = 1

V

s T
0 λk(XV (s)) and let us notice that

for t ≤ T it is true that u ≤ v. Then applying Lemma 1.3.1 we have:

lim
V →∞

εV (T) = lim
V →∞

sup
t≤T

1
V

MØ
k=1

----Ỹk

3Ú t

0
λV

k (XV (s)) ds

4---- |ζk|

=
MØ

k=1

A
lim

V →∞
sup
t≤T

1
V

----Ỹk

3Ú t

0
λV

k (XV (s)) ds

4----
B
|ζk|

= 0.

Taking the superior limit over t ≤ T and considering the limit for V → ∞ for both
terms of 1.8, we have:

lim
V →∞

sup
t≤T

---XV (t)− x(t)
--- ≤ lim

V →∞
sup
t≤T

1---XV (0)− x(0)
---+ εV (t)

2
eMt = 0

hence the thesis.

This allows simulating with approximate methods stochastic processes based on Chem-
ical Reaction Networks and confirming their validity.

16

Part II

Simulation methods for
Chemical Reaction Network

17

Chapter 2

Exact methods: Gillespie
algorithm

Exact simulation methods allow the direct simulation of Markov chains without approx-
imations. One of the most commonly used exact methods in the simulation of Chemical
Reaction Networks is the Gillespie method.

Let X be the continuous-time Markov chain subject to simulation, and let {Tj}j be its
transition times. We define the embedded discrete-time Markov chain Zj = X(Tj), which,
along with the waiting times {Wj}j := {Tj+1−Tj}j (exponentially distributed), provides
a complete description of the dynamics of the chain X.

The Gillespie algorithm or Stochastic Simulation Algorithm (SSA), popularized by D.
Gillespie [5], is designed to simulate the new state of the chain by determining which
reaction will be triggered first and the corresponding waiting time before that reaction
takes place.

Considering a transition time Tj , it is evident that each reaction occurs with a probabil-
ity directly proportional to the corresponding propensity function in the state x = X(Tj).
Normalizing this probability with respect to the sum of all reaction rates, the probability
that the triggered reaction at time Tj is the l-th one is given by:

λl(x)qM
k=1 λk(x)

where λl(x) denotes the propensity function for the l-th reaction at the state x such that
X(Tj) = x.

What is left to point out is the stochastic computation of the waiting time for the next
reaction to be triggered: this waiting time is the expected value of the minimum among
all the waiting times for every reaction to occur. It is relevant to note that the waiting
times are exponentially distributed with parameter λk(x) where x = X(Tj). So, denoting

18

Exact methods: Gillespie algorithm

by W̃1, W̃2, . . . , W̃M the waiting times associated for every reaction to occur and by Wj+1
the minimum of this times, assuming that those waiting times are mutually independent,
we have:

IP[Wj+1 ≥ t] =
MÙ

k=1
IP[W̃k ≥ t]

=
MÙ

k=1
e−λk(x)·t

= e−
!qM

k=1 λk(x)
"

·t

from which it emerges that Wj+1 ∼ Exponential
1qM

k=1 λk(x)
2
.

A realization of this random variable, denoted as τ , is then generated, yielding the subse-
quent jump time tj+1 = tj + τ .

This is the basic idea behind the Gillespie algorithm:

Algorithm 2.1 Gillespie algorithm
Consider a Chemical Reaction Network with propensity functions λk and reaction
vectors ζk for k = 1, . . . , M . Initialize j = 0, t0 = 0 and X(t0) = x0.
Repeat the following steps until tj ≥ tmax:

1: For all k = 1, . . . , M compute the reaction rates λk(xj);
2: Compute λ̄(xj) :=

qM
k=1 λk(xj);

3: Compute the next jump time:
a: Generate r1, the realization of a random variable following an exponential distri-
bution with parameter λ̄(xj);
b: Update the time: tj+1 ← tj + r1;

4: Compute which reaction will be triggered:
a: Generate r2, the realization of a random variable following a uniform distribution
between 0 and λ̄(xj);
b: Find µ ∈ {1, . . . , M} such that:

µ−1Ø
k=1

λk(xj) ≤ r2 ≤
µØ

k=1
λk(xj);

the reaction µ is the triggered one;
5: Update the state: xj+1 = xj + ζµ;
6: j ← j + 1.

19

Chapter 3

Approximated methods:
τ-leaping method

In highly complex systems, such as many biochemical systems, exact methods for simu-
lating Chemical Reaction Networks become computationally expensive. This is because
the number of realizations of generated random variables scales linearly with the number
of reactions that have occurred. Conditioned on X(t) = x, the expected waiting time for
the next reaction is ∆t = 1/

q
k λk(x); for a high abundance of particles, reaction rates

become very high, and thus ∆t ≪ 1, resulting in prohibitively increased costs.

In [9], Gillespie introduced an approximate and accelerated variant of the Stochastic
Simulation Algorithm (SSA) called the τ -leaping method. Reaction times recorded using
the Gillespie algorithm have both advantages and disadvantages: while they provide a
high level of detail and precision, they come with a significant computational cost and
often result in numerous events being stored unnecessarily. The τ -leaping approach aims
to address this issue by partitioning the temporal axis of the process history into con-
tiguous intervals. Freezing the reaction rates as their at the initial time of an interval
and calculating the number of times reactions occur in the latter allows proposing an
interval-reaction pair for updating the state, a concept known as a leap.
The method is named after the time interval, namely τ .

It has been previously shown that it is possible to write:

X(t + τ) = X(t) +
MØ

k=1
Yk

3Ú t+τ

t
λk(X(s)) ds

4
ζk.

Assuming that in the time window (t, t + τ) a reduced number of reactions occur, it
seems logic to consider the propensity functions as approximately constant during the

20

Approximated methods: τ -leaping method

time interval. So:

X(t + τ) = X(t) +
MØ

k=1
Yk

3Ú t+τ

t
λk(X(s)) ds

4
ζk

= X(t) +
MØ

k=1
Yk ([(t + τ)− t] · λk(X(t))) ζk

= X(t) +
MØ

k=1
Yk (τ · λk(X(t))) ζk.

The latter assumption is crucial for the use of the τ -leaping method and is called the
leap condition. This assumption is what relates the classical τ -leaping method to the
Euler method for solving integrals or differential equations, which is why it will be later
referred to as Euler τ -leaping.

The simplest version of the algorithm chooses τ as a constant. The algorithm follows:

Algorithm 3.1 τ -leaping algorithm
Consider a Chemical Reaction Network with propensity functions λk and reaction
vectors ζk for k = 1, . . . , m. Choose a fixed value for τ and initialize j = 0, t0 = 0 and
X(t0) = x0.
Repeat the following steps until tj ≥ tmax:

1: For all k = 1, . . . , M compute the reaction rates λk(xj);
2: Generate nk, the realization of a random variable following a Poisson distribution with

parameter λk(xj) · τ ;
3: Update the time: tj+1 = tj + τ ;
4: Update the state: xj+1 = xj +

qM
k=1 nk · ζµ;

5: j ← j + 1.

Clearly, the closer τ gets to an actual reaction time, the more the approximate method
approaches the exact one, leading to a more accurate but at the same time slower simula-
tion. Additionally, since reaction rates are computed at time tj but used over the interval
(tj , tj + τ), it is possible to compute more reactions than the theoretically possible ones,
resulting in negative particle counts. Indeed, choosing a larger τ would violate the leap
condition, leading to a coarser approximation.

Possible improvements to the algorithm are outlined below.

3.1 Adaptive time interval for τ-leaping method
In [9], a mathematical form of the leap condition is presented. Let Nk be the random
variable that accounts for the number of times the k-th reaction has been triggered in the
time interval (tj , tj + τ), let ε such that 0 < ε ≪ 1 be a control parameter. Suppose we

21

Approximated methods: τ -leaping method

are in state xj . Define λ̄(xj) =
qM

k=1 λk(xj). So:

|∆λk(xj)| :=
-----λk

A
xj +

MØ
k=1

Nkζk

B
− λk(xj)

----- ≤ ελ̄(xj), ∀k = 1, . . . , M. (3.1)

The actual meaning is that the relative change of the reaction rates with respect to the
sum of all the rates has to be very small in order to consider the approximation of the
reaction rates as their evaluation at the beginning of the time interval valid.
It might be more straightforward to consider using λk(xj) in the second term, but this
poses issues if the reaction rate is very close to zero due to a deficiency of reactants in the
k-th reaction, since this would result in never accepting a leap.

By fixing the control parameter ε it is possible to find the maximum time interval τ
that satisfies the leap condition [10]. However, since Nk are random variables, there is no
guarantee that the condition is satisfied, leading to the need to repeat the leap.

Therefore, we define:

fkk′(x) :=
LØ

i=1

∂λk(x)
∂x[i] ζk′ [i]

µk(x) :=
MØ

k′=1
fkk′(x)λk′(x)

σ2
k(x) :=

MØ
k′=1

f2
kk′(x)λk′(x)

and we require that the random variable ∆λk(xj) must almost surely take values in:

[τµk(xj)−
ñ

τσ2
k(xj), τµk(xj) +

ñ
τσ2

k(xj)],

In order to satisfy the leap condition, this interval must be a subset of:

[−ελ̄(xj), ελ̄(xj)].

We then impose:
|τµk(xj)| ≤ ελ̄(xj) and

√
τσk(xj) ≤ ελ̄(xj) (3.2)

resulting in:

τ = min
k=1,...,M

I
ελ̄(xj)
|µk(xj)|

,
ε2λ̄2(xj)
σ2

k(xj)

J
. (3.3)

In [11], the above has been revisited to make an improvement. It is observed that
reaction rates change by at least a minimal amount. For example, if it is a unimolecular
reaction with λk = κkxi, then this minimal amount will be κk, considering xi is a natural
number. Therefore, 3.1 is modified to:

|∆λk(xj)| ≤ max{ελk(xj), κk} (3.4)

22

Approximated methods: τ -leaping method

this leading to:

τ ′ := min
k=1,...,M

I
max{ελk(xj), κk}

|µk(xj)|
,
max{ελk(xj), κk}2

σ2
k(xj)

J
.

Nonetheless, the scientific community exploited the difficulty to compute µk(xj) and
σ2

k(xj). The order of a reaction is the sum of the stoichiometric coefficients of the re-
actants in the reaction. It’s called highest order of reaction HOR(i) with respect to the
species i the maximum of all the orders of reaction in which the species i appears as a
reactant. Analyzing the different type of reaction and reflecting on their linear, quadratic
or cubic behavior, it is possible to simplify the computation of µk(xj) and σ2

k(xj). This
was theorized in [10].The leap condition has been reconsidered based on the variation of
the number of particles: this must be at most one unit per species and at most εXi(tj)/gi

where gi is defined as follows:

(i) if HOR(i) = 1, take gi = 1;

(ii) if HOR(i) = 2 and each reaction requires at most 1 particle of the i-th species, take
gi = 2;

(iii) if HOR(i) = 2 and there is a reaction that requires 2 particles of the i-th species,
take gi = 2 + 1/(x[i]− 1);

(iv) if HOR(i) = 3 and each reaction requires at most 1 particle of the i-th species, take
gi = 3;

(v) if HOR(i) = 3 and there is a reaction that requires 2 particles of the i-th species,
take gi = 3 + 1

2(x[i]−1) ;

(vi) if HOR(i) = 3 and there is a reaction that requires 3 particles of the i-th species,
take gi = 3 + 1

x[i]−1 + 2
x[i]−2 ;

(vii) reactions with more than three reactants are extremely rare and so not taken into
account.

Even though, for reactions with more than two reactants, these coefficients need to be
computed for each leap, this computational effort is still lower compared to finding the
maximum value that satisfies 3.1.

Starting from 3.4 and applying the insights gained so far, we obtain:

|∆Xj [i]| ≤ max{εxj [i]/gi, 1} (3.5)

As seen before, it is possible to write ∆Xj [i] =
qM

k=1 Nkζk[i]; so:

E[∆Xj [i]] =
MØ

k=1
E[Nk]ζk[i] = τ

MØ
k=1

λk(xj)ζk[i];

Var[∆Xj [i]] =
MØ

k=1
Var[Nk]ζk[i]2 = τ

MØ
k=1

λk(xj)ζk[i]2.

23

Approximated methods: τ -leaping method

Analogously to what was seen for τ ′, the following are defined:

µ̂i(x) :=
MØ

k=1
ζk[i] · λk(x);

σ̂2
i (x) :=

MØ
k=1

ζk[i]2 · λk(x);

Therefore:
τ ′′ := min

i=1,...,L

I
max{εx[i]/gi,1}
|µ̂i(x)| ,

max{εx[i]/gi,1}2

σ̂2
i (x)

J
. (3.6)

This will be the adaptive step-size used for the results obtained in Chapter 4 and
Chapter 5.

3.2 τ-leaping method with Post-Leap Check
Despite the choice of the adaptive time interval 3.6, there are known cases in which the
τ -leaping procedure described has still led to negative values of the chain [14] [15]. For
this reason, Tian and Burrage [16] and Chatterjee and Vlachos [14] have developed an
alternative approach: if the concentration of a species approaches zero, the process will no
longer be simulated using Poisson random variables but instead using binomial random
variables. In fact, it is sufficient to calculate the maximum number of times reaction k
can occur in the current state and set it as the parameter for the binomial distribution,
which cannot take values greater than this maximum due to its limited domain.

In [15], an alternative proposal suggests choosing an integer nc between 2 and 20 and
dividing the reactions into two distinct groups: non-critical reactions, for which more than
nc events are possible in the current state of the reactants, and critical reactions, for which
the number of possible events in the current state is less than nc. The algorithm performs
a Gillespie method for critical reactions and a τ -leaping method for non-critical reactions;
if a negative value is obtained, the leap is rejected and repeated.

Despite the validity of such methods from a simulation perspective, those method
changes the actual distribution of the sample path and they may implement leaps that
lead to negative values. This implies that the leap condition is violated, and it is not only
a symptom of how this occurs near 0 but also an indication of how it happens even when
the chain has highly positive values without showing any sign.

In [17], Anderson indeed proposes a simulation method for Chemical Reaction Net-
works based on the τ -leaping method introduced by Gillespie [10]. Most importantly, this
method never violates the leap condition 3.1.

It has been proven that the internal times are mutually independent, and the incre-
ments are independent of the current state of the system [7]. Given the state X(s) = z,

24

Approximated methods: τ -leaping method

we recall the definition of internal time Tk(t) =
s t

0 λk(x) ds and define Ck := Yk(Tk(t))
as the number of times the k-th reaction has been triggered until time t; Nk is, in-
stead, the realization of a Poisson random variable with parameter τλk(X(Tk(t))), rep-
resenting the number of times the k-th reaction has been triggered in the time interval
(Tk, Tk +λk(X(Tk))τ). The state of the system at time t+τ can thus be approximated by
X(t + τ) ≈ X(t) +

qM
k=1 Nkζk, while Yk(t + λk(X(Tk))τ) = Ck + Nk. At this point, it is

necessary to check whether the proposed leap violates the leap condition or not: if indeed
the leap is rejected, then choose τ ∗ < τ and repeat the procedure with a slight variation.

Theorem 3.2.1. Let Y (t) be a Poisson process with parameter λ and let 0 ≤ s < u < t.
Then it is true:

Y (u)− Y (s) |Y (t) = a, Y (s) = b ∼ Binomial
3

a− b,
u− s

t− s

4
.

Proof. Without loss of generality, it can be assumed that s = 0 and Y (0) = 0; for t > u > 0
we have that Y (t) = N . Then:

IP[Y (u)− Y (s) = j|Y (t) = N, Y (s) = 0] = IP[Y (u) = j|Y (t) = N]
= IP[Y (u) = j, Y (t) = N]/IP[Y (t) = N]
= IP[Y (t) = N |Y (u) = j]IP[Y (u) = j]/IP[Y (t) = N]
= IP[Y (t)− Y (u) = N − j]IP[Y (u) = j]/IP[Y (t) = N]

= e−λ(t−u)(λ(t− u))N−j

(N − j)!
e−λu(λu)j

j!
N !

e−λt(λt)N

= N !
j!(N − j)!e

−λ(t−u+u−t)λN−j+j−N

3
t− u

t

4N−j 3u

t

4j

=
A

N

j

B3
u

t

4j 3
1− u

t

4N−j

Therefore, it is legitimate to write, with λk = λk(X(Tk)), that:

Yk(Tk + λkτ ∗)− Yk(Tk) |Y (Tk) = Ck, Y (Tk + λkτ) = Nk + Ck ∼ Binomial
3

Nk,
τ ∗

τ

4
.

Hence, it is sufficient to simulate this distribution and to check that it satisfies the leap
condition. If the leap is again rejected, we save the number of initiations in (Tk, Tk +λkτ ∗),
choose τ ∗∗ < τ∗, and we simulate the binomial distribution, but conditioning on Yk(Tk)
and Yk(Tk + λkτ ∗), since increments of the Poisson processes are mutually independent.
We repeat this process until a leap is accepted.

It remains to clarify how to choose the time interval τ :

• if the leap is rejected then the time interval is reduced by multiplying it by p such
that 0 < p < 1;

• if the leap is accepted and:

25

Approximated methods: τ -leaping method

– if the leap would have been accepted even using 3
4ε as control parameter then

the time interval is increased by raising it to the power of q such that 0 < q < 1;
– if the leap would have been rejected using 3

4ε as control parameter then the time
interval is reduced by multiplying it by p∗ such that 0 < p < p∗ < 1.

By doing so, if the leap condition is widely satisfied, the interval is increased, whereas
if the leap condition is violated or if its satisfaction depends closely on the chosen control
parameter, a safety margin is maintained, effectively reducing the interval. This selection
mechanism is advantageous in terms of computational cost: indeed, it is illogical to find
the maximum interval satisfying the leap condition when it depends strictly on an arbi-
trarily chosen control parameter.

New notation is introduced: for each Poisson process Yk, an associated matrix Sk is
defined; the first column contains the internal times of the chain in ascending order, and
the second column contains the number of initiations up to the corresponding internal
time from the first column. Thus, Yk(Sk(i,1)) = Sk(i,2). Additionally, the first row of
Sk always contains the internal time Tk = Sk(1,2) related to the last accepted leap, and
Ck = Yk(Tk) = Sk(1,2).

From the above considerations, the following algorithm is derived:

@algorithm 3.2 τ -leaping algorithm with Post-Leap Check
Consider a Chemical Reaction Network with reaction rates λk and reaction vectors ζk

for k = 1, . . . , M with initial condition X(t0) = x0 where t0 = 0. Initialize Tk = Ck =
0 for all k = 1, . . . , M ; so Sk = [0,0]. Fix 0 < ε≪ 1, 0 < p < p∗ < 1, 0 < q < 1.

1: Compute τ as in 3.6;
Repeat the following steps until t ≥ tmax or λ̄(x) ≤ 0:

2: Let Bk be the number of rows of Sk;
3: If λk(X(Tk))τ + Tk ≥ Sk(Bk,1):

a: Generate

Nk ∼ Poisson (Tk + λk(x)τ − Sk(Bk,1)) + Sk(Bk,2)− Ck;

b: Let rowk = Bk;
4: Otherwise:

a: Find Ik such that:

Sk(Ik − 1,1) ≤ Tk + λk(x)τ < Sk(Ik,1)

meaning the internal times already saved, among which the new leap is placed;
b: Compute:

r = Tk + λk(x)τ − Sk(Ik − 1,1)
Sk(Ik,1)− Sk(Ik − 1,1) ;

c: Generate:

Nk ∼ Binomial (Sk(Ik,2)− Sk(Ik − 1,2), r) + Sk(Ik − 1,2)− Ck;

26

Approximated methods: τ -leaping method

d: Let rowk = Ik − 1;
5: Check if the leap condition 3.5 is verified;
6: If the leap verifies 3.5:

a: Update Sk: all rows of Sk with an index less than or equal to rowk are eliminated,
and all rows from rowk + 1 to Bk are moved to the beginning of the matrix. Add a
new initial row [Tk + λk(x)τ, Ck + Nk] to the matrix;
b: Update time t← t + τ ;
c: Update Tk ← Tk + λk(x)τ e Ck ← Ck + Nk;
d: Update τ : if 3.5 is satisfied also for 3ε/4, then τ ← τ q; otherwise τ = p∗τ ;
e: Update the state x← x +

qM
k=1 Nkζk;

7: If the leap does not satisfy 3.5:
a: Update Sk:add the row [Tk + λk(x)τ, Ck + Nk] between the rows with indices rowk

and rowk + 1 in Sk, with the convention that if rowk = Bk, the row is simply added
at the end of the matrix;
b: Update τ ← pτ .

3.3 MidPoint correction
In [18], it is investigated how, as τ → 0, the expected value and variance of the Euler
τ -leaping method have a local truncation error with respect to an exact method of order
O(τ 2). Furthermore, in [19], it is described how, as τ → 0, the Euler τ -leaping method
has a strong approximation error in 2-norm of order 1

2 . However, such studies have
been conducted for τ → 0. For this values the use of approximate methods becomes
inconvenient: indeed, these methods are useful only if the time interval under consideration
is much larger than the time between two reactions, i.e., if:

τ ≫ 1qM
k=1 λk(x)

. (3.7)

given the state x = X(t). If the underlying idea of the Euler τ -leaping method is to treat
the reaction rates λk(x) as constants in the time interval (t, t+ τ), it would certainly seem
more accurate to evaluate the reaction rates to be used in (t, t+τ) by approximating what
the state might be at the midpoint of the interval, namely:

ρ(x) = x + τ

2

MØ
k=1

λk(x)ζk. (3.8)

This method is the so called MidPoint τ -leaping method and it assumes that the under-
lying differential equations of the Chemical Reaction Network are more closely followed.

It is noteworthy that ρ(x) is nothing but the second-order approximation of X(t + τ),
while X(t + τ) ≈ X(t) is the first-order approximation. In [18] and [19], this method
was not considered because, for τ → 0, the MidPoint correction term τ

2
qM

k=1 λk(X(t))ζk,
of order O(τ 2), is neglected and has no real numerical effect. In [20], it is shown that
for values of τ satisfying 3.7, on the other hand, the MidPoint correction has a reducing

27

Approximated methods: τ -leaping method

effect on the strong approximation error compared to an exact method. The analysis
is conducted for fixed τ , but it is easy to imagine how this can bring about significant
improvements even in the case of adaptive time interval.

28

Part III

Application of the methods

29

The computations were carried out using an Intel Core i7 (7th generation) processor
with 16GB of RAM. The processor used is quad-core and supports Hyper-Threading, al-
lowing each core to handle two threads simultaneously, resulting in a total of eight logical
threads. The base frequency of the processor is approximately 2.8 GHz with the ability
to reach higher speeds through Turbo Boost.

All code and algorithm implementations were developed using the Julia programming
language, version 1.9.3. Julia was chosen for its high performance, crucial for achieving ef-
ficient and fast computations in the context of stochastic process simulation. Additionally,
Julia’s syntax and parallel computing capabilities facilitated the development of scalable
and optimized code for this study. The Random.jl library was used for the generation of
pseudo-random numbers.

30

Chapter 4

Application to Lotka-Volterra
model

4.1 Introduction to the model
The Lotka-Volterra model (1925-26) [12] [13], also known as the prey-predator model,
describes the dynamics of an ecosystem where only two animal species interact: a prey
and a predator. In its simplest form, the model is described by a system of first-order
nonlinear differential equations: I

ẋ = αx− βxy

ẏ = δxy − γy
, (4.1)

where x is the prey concentration, y is the predator concentration, α is the constant birth
rate of preys, β is the constant death rate of preys due to predators, δ is the constant
birth rate of predators if there is prey availability, and γ is the constant death rate of
predators.

These equations generate oscillations in the concentrations of prey and predator, de-
layed among themselves, and whose form changes with variations in the system’s rate
constants.

Based on 4.1 it is possible to derive a Chemical Reaction Network:

X
κ1−→ 2X

X + Y
κ2−→ Y

X + Y
κ3−→ 2Y

Y
κ4−→ ∅

(4.2)

Particularly, the first reaction models the reproduction of prey, the second the consump-
tion of prey by predators, the third the reproduction of predators in the presence of preys,

31

Application to Lotka-Volterra model

and the fourth the death of predators. Using the definition in 1.5, one can construct from
4.2 a system of first-order ordinary differential equations, which will be:I

ẋ = κ1x− (κ2 + κ3)xy

ẏ = κ3xy − κ4y
, (4.3)

The comparison between this equations and the Lotka-Volterra model 4.1 leads to the
conclusion that the latter can be described by the Chemical Reaction Network 4.2 under
the assumption that κ1 = α, κ2 = β−δ, κ3 = δ, κ4 = γ. The resulting Chemical Reaction
Network is:

X
α−→ 2X

X + Y
β−δ−−→ Y

X + Y
δ−→ 2Y

Y
γ−→ ∅

(4.4)

From here, the reaction rates can be derived:

λ1(x, y) = αx;
λ2(x, y) = (β − δ)xy;
λ3(x, y) = δxy;
λ4(x, y) = γy;

and the reaction vectors:

ζ1 = (1,0); ζ2 = (−1,0); ζ3 = (−1,1); ζ4 = (0,−1).

As previously outlined, it is possible to determine a deterministic solution of this model
through the analysis of the associated differential equations. Therefore, it has been used
as a reference parameter to assess the effectiveness of the simulation methods that will
be discussed in the course of the analysis. This possibility stems from a result illustrated
in theorem 1.3.2. To achieve this, it is necessary to scale the simulated processes through
classical scaling, and thus, the following are adopted:

αV = α; (β − δ)V = β − δ

V
; δV = δ

V
; γV = γ;

and XV (0) = x(0) where x(0) is the initial condition of the deterministic problem. Clearly,
since the simulations are based on the number of particles, to obtain the concentrations
plot, and thus to XV , it is necessary to divide the ordinates by V .

The model used for the following simulations is determined by the choice of constants:
α = 2.0, β = 0.5, δ = 0.2, γ = 2.0.

The choice of the Lotka-Volterra model given the aforementioned parameter selection
is not arbitrary: the deterministic solution of such a model indeed exhibits significant

32

Application to Lotka-Volterra model

oscillations in the concentrations of prey and predators, even approaching the extinction
of the system. This places considerable stress on the implemented algorithms as it is highly
probable that, without appropriate controls, counts may become negative. Furthermore,
this allows for the observation of system extinctions due to stochastic fluctuations rather
than the deterministic model, which does not undergo extinction under any condition.

4.2 Computational times and error analysis

Simulations will be terminated upon reaching the predetermined maximum time. In order
to assess the efficiency of the algorithms, the average computational times will be com-
puted over 104 simulations, except for the Gillespie algorithm for V = 106, 107, 108, where
the average will be based on 102 simulations. This approach is adopted to mitigate the
prolonged computational duration that may arise while maintaining a statistical repre-
sentativeness of the algorithm’s performance in specific scenarios.

Regarding the error measure, in the theory of stochastic processes, it is not straight-
forward to define error, as there is no uniquely correct simulation, and each simulation
from the same choice of method and parameters can yield different results. In this con-
text, errors related to the expectations of processes are considered, with the widely used
concept of strong approximation error : denoting XV as the exact process simulated using
the Gillespie method and ZV as the approximated process simulated using τ -leaping, this
error is defined as:

sup
t≤T

E||XV (t)− ZV (t)||. (4.5)

In the simulations, the choice was made to use the Euclidean norm, but this selection is
not crucial, as the discussion aims only to make comparisons between norms and not to
use them in an absolute sense.

For each parameter choice and each approximated algorithm, the values of the chain
at times 2.5, 5.0, 7.5, and 10.0 were recorded in each simulations. Through Monte Carlo
approximation, the expected value and, consequently, the strong approximation error were
estimated.

4.3 Application of the Gillespie algorithm

The Gillespie algorithm 2.1 is applied to the Lotka-Volterra model 4.2 just introduced
for various orders of the volumetric term V . The results are presented below. The
deterministic solutions of 4.1 for prey and predator concentrations are indicated in red
and blue, respectively, while the 8 stochastic simulations obtained through the examined
method are represented in black.

33

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.1: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
102.

(a) Preys. (b) Predators.

Figure 4.2: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
103.

(a) Preys. (b) Predators.

Figure 4.3: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
104.

34

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.4: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
105.

(a) Preys. (b) Predators.

Figure 4.5: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
106.

(a) Preys. (b) Predators.

Figure 4.6: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
107.

35

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.7: Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1, V =
108.

Note that in Figure 4.1, multiple simulations reach extinction, meaning a null number
of prey and predators. In [21], it is demonstrated that a system like the one under con-
sideration almost certainly reaches extinction, and the estimated time for this to happen
scales with the volumetric term. Therefore, it is justified that by increasing this term
while keeping the observation time window constant, extinctions of the system were no
longer observed.

Figure 4.8: Absolute error in Euclidean norm of Gillespie algorithm simulations with
respect to the deterministic solution for V = 103, 104, 105, 106.

The absolute error of the Gillespie algorithm simulations in Euclidean norm with re-
spect to the deterministic solution tends to increase over time. This is easily explainable

36

Application to Lotka-Volterra model

by the stochastic nature of the simulations and the increasing uncertainty as time moves
away from the initial moment at t = 0. In particular, the algorithm produces error spikes
when the distributions of prey and predators also exhibit spikes: this is due to the fact
that we are discussing about the absolute error, not the relative one that is not defined
in two dimensions.

It is then observed that the increase in the volumetric term V leads to a significant
reduction in the error, effectively demonstrating a convergence of stochastic simulations to
the deterministic solution as V → ∞. This convergence stabilizes the examined method
as it satisfies the hypothesis of theorem 1.3.2.

The average computational times for V = 10, 102, . . . , 108 are reported. These values
are averaged over 104 simulations for V = 102, 103, 104, 105, while they are averaged over
102 simulations for V = 106, 107, and over 10 simulations for V = 108 in order to avoid
simulation times on the order of weeks.

Gillespie
V Time (s)
102 0.045679700
103 0.379188065
104 3.565226987
105 36.24783459
106 374.4950714
107 3781.803827
108 38931.06881

Table 4.1: Average computational times of the Gillespie simulations on the Lotka-Volterra
model 4.2 for V = 102, . . . ,108.

The increase in computational time exhibits a linear relationship with the variable V ,
resulting in a significant increase in computational costs for high orders of magnitude. This
phenomenon compromises the validity of simulations, making them hardly distinguishable
in terms of time from the conduct of a physical experiment, when applicable. Simulations
for V = 10 , V = 108,109, . . . are not reported due to the fact that computational times
were so long that an simulation end was never observed.

4.4 Application of the τ-leaping algorithm with fixed
time interval

The τ -leaping algorithm with fixed time interval 3.1 is applied to the Lotka-Volterra model
4.2. τ = 10−3 was chosen as higher values of τ often resulted in simulation failures. The
results for various values of the volumetric term V are presented below.

37

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.9: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3, V = 103.

(a) Preys. (b) Predators.

Figure 4.10: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3 and MidPoint correction, V = 103.

(a) Preys. (b) Predators.

Figure 4.11: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time interval with
τ = 10−3, MidPoint τ -leaping with fixed time interval with τ = 10−3, V = 103.

38

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.12: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3, V = 104.

(a) Preys. (b) Predators.

Figure 4.13: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3 and MidPoint correction, V = 104.

(a) Preys. (b) Predators.

Figure 4.14: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time interval with
τ = 10−3, MidPoint τ -leaping with fixed time interval with τ = 10−3, V = 104.

39

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.15: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3, V = 105.

(a) Preys. (b) Predators.

Figure 4.16: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3 and MidPoint correction, V = 105.

(a) Preys. (b) Predators.

Figure 4.17: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time interval with
τ = 10−3, MidPoint τ -leaping with fixed time interval with τ = 10−3, V = 105.

40

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.18: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3, V = 106.

(a) Preys. (b) Predators.

Figure 4.19: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−3 and MidPoint correction, V = 106.

(a) Preys. (b) Predators.

Figure 4.20: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time interval with
τ = 10−3, MidPoint τ -leaping with fixed time interval with τ = 10−3, V = 106.

41

Application to Lotka-Volterra model

It is observed that, especially for high values of V , the empirical distribution of X(10.0)
obtained by τ -leaping with a fixed time interval and MidPoint correction is closer to the
empirical distribution obtained by Gillespie, with respect to the one without MidPoint
correction.

The average computational times and the strong approximation errors for t = 2.5, 5.0,
7.5, 10.0 for V = 10,102, . . . ,108 are reported. The term fail refers to combinations of
parameters that led to negative population values with high frequency.

τ -leaping with fixed time interval τ - Euler
V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0
10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.01465353 3.461051e0 8.269607e-1 2.275599e0 6.539465e0
104 0,01303461 1.087444e0 2.704530e-1 6.918767e-1 2.275183e0
105 0.01604792 4.014836e-1 1.292330e-1 3.508865e-1 1.295386e0
106 0.01583959 2.551641e-1 1.211298e-1 3.371656e-1 1.286854e0
107 0.01408372 2.682280e-1 1.196079e-1 3.293710e-1 1.233607e0
108 0.01547784 2.565012e-1 1.164233e-1 3.257434e-1 1.247894e0

Table 4.2: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with fixed time interval 3.1 τ = 10−3.

τ -leaping with fixed time interval τ - MidPoint
V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0
10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.01362476 3.393591e0 8.057146e-1 2.1237710e0 6.512625e0
104 0,01443733 1.056784e0 2.565367e-1 6.200809e-1 2.107579e0
105 0.01447899 3.526097e-1 1.969130e-1 1.969130e-1 6.731810e-1
106 0.01419684 1.463284e-1 6.847297e-2 6.847297e-2 2.255723e-1
107 0.01370139 1.268111e-1 8.475225e-3 2.389180e-2 1.098159e-1
108 0.01348307 1.292627e-1 1.402189e-3 2.997006e-3 1.288219e-2

Table 4.3: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with fixed time interval 3.1 τ = 10−3 and MidPoint correction.

It is evident that the computational times are much lower compared to those observed
in simulations using the Gillespie algorithm, and they do not scale with the volumetric
term V . This is crucial when choosing approximate algorithms over exact ones when
simulating at high cardinalities.

42

Application to Lotka-Volterra model

It is also noteworthy that the MidPoint correction has computational costs similar to
the standard model. Regarding strong approximation errors, it is observed that not only
is the upper limit on t = 2.5, 5.0, 7.5, and 10.0 for the MidPoint correction lower compared
to the standard, but the error is overall lower point-wise.

A simulation for τ = 10−1 and V = 102 is shown.

(a) Preys. (b) Predators.

Figure 4.21: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
fixed time interval τ = 10−1, V = 102.

One can observe how the 8 simulations of the prey concentration have taken negative
values, leading to a halt in the algorithm. This signifies that a choice of τ that is excessively
high, especially at low orders of magnitude of the volumetric term, results in a failure of
the τ -leaping method. This is attributed to the fact that the regular τ -leaping algorithm
does not verify the physical feasibility of the number of jumps.

4.5 Application of the τ-leaping algorithm with adap-
tive time interval

The τ -leaping algorithm 3.1 with adaptive time step 3.6 is applied to the Lotka-Volterra
model 4.2. A value of ε = 10−2 has been chosen. The results for various values of the
volumetric term V are presented below.

43

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.22: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval, ε = 10−2, V = 103.

(a) Preys. (b) Predators.

Figure 4.23: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval and MidPoint correction, ε = 10−2, V = 103.

(a) Preys. (b) Predators.

Figure 4.24: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive time interval,
MidPoint τ -leaping with adaptive time interval, ε = 10−2, V = 106.

44

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.25: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval, ε = 10−2, V = 104.

(a) Preys. (b) Predators.

Figure 4.26: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval and MidPoint correction, ε = 10−2, V = 104.

(a) Preys. (b) Predators.

Figure 4.27: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive time interval,
MidPoint τ -leaping with adaptive time interval, ε = 10−2, V = 104.

45

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.28: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval, ε = 10−2, V = 105.

(a) Preys. (b) Predators.

Figure 4.29: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval and MidPoint correction, ε = 10−2, V = 105.

(a) Preys. (b) Predators.

Figure 4.30: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive time interval,
MidPoint τ -leaping with adaptive time interval, ε = 10−2, V = 105.

46

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.31: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval, ε = 10−2, V = 106.

(a) Preys. (b) Predators.

Figure 4.32: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1 with
adaptive time interval and MidPoint correction, ε = 10−2, V = 106.

(a) Preys. (b) Predators.

Figure 4.33: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive time interval,
MidPoint τ -leaping with adaptive time interval, ε = 10−2, V = 106.

47

Application to Lotka-Volterra model

The average computational times and the strong approximation errors for t = 2.5, 5.0,
7.5, 10.0 for V = 10,102, . . . ,108 are reported. The term fail refers to combinations of
parameters that led to negative population values with high frequency.

τ -leaping with adaptive time interval - Euler
ε V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0

0.1

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.003200257 2.103752e1 1.446424e0 7.536107e0 1.000413e1
104 0.003021609 2.102419e1 1.392425e0 6.749721e0 9.644569e0
105 0.004595978 2.100862e1 1.391601e0 6.689032e0 9.638542e0
106 0.002546805 2.012689e1 1.336975e0 6.392649e0 9.249814e0
107 0.002495197 2.095918e1 1.365134e0 6.671666e0 9.640396e0
108 0.002675172 2.094016e1 1.358010e0 6.744318e0 9.610727e0

0.01

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.027805727 3.765126e0 8.166304e-1 2.253756e0 6.426305e0
104 0.026921315 1.472067e0 2.871497e-1 7.474322e-1 2.363945e0
105 0.026535232 1.712616e0 1.715337e-1 4.518428e-1 1.516631e0
106 0.025641159 1.169923e0 1.611955e-1 4.260573-1 1.443968e0
107 0.022165885 1.717408e0 1.640898e-1 4.405615e-1 1.454628e0
108 0.020437094 1.679761e0 1.652254e-1 4.345715e-1 1.469610e0

0.001

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.203382034 3.425626e0 8.223270e-1 2.167364e0 6.554215e0
104 0.280973714 1.066236e1 2.569309e-2 6.237021e-1 2.106967e0
105 0.240279234 3.365998e-1 8.306790e-2 1.999507e-1 6.814724e-1
106 0.234305969 9.549171e-2 2.598128e-2 6.259181e-2 2.321038e-1
107 0.261152711 4.654829e-2 1.254434e-2 3.078268e-2 1.162662e-1
108 0.247715237 4.019459e-2 1.206370e-2 2.995567e-2 1.321693e-1

Table 4.4: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with adaptive time interval 3.6, ε = 10−2.

τ -leaping with adaptive time interval - MidPoint
ε V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0

0.1

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.002675172 1.421412e1 8.662844e-1 2.623644e0 6.287537e3
104 0.002749225 1.420064e1 5.121107e-1 1.364222e0 2.601878e4
105 0.002821282 1.420244e1 4.982743e-1 1.308117e0 2.117086e5
106 0.002752515 1.418349e1 5.075525e-1 1.332186e0 2.152854e0
107 0.002680988 1.406517e1 5.097661e-1 1.325454e0 2.120821e0

48

Application to Lotka-Volterra model

108 0.002681654 1.410891e1 5.295950e-1 1.297305e0 2.235005e0

0.01

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.027984626 3.632804e0 8.123871e-1 2.253756e0 6.497984e0
104 0.025224371 1.472067e0 2.601647e-1 6.383087e-1 2.098968e0
105 0.025887036 1.159338e0 9.065453e-2 2.163132e-1 6.907420e-1
106 0.027734828 1.169923e0 5.381461e-2 1.173005e-1 2.769983-1
107 0.027654741 1.155430e0 4.582078e-2 1.003836e-1 1.940517e-1
108 0,024704109 1.145194e0 4.878444e-2 9.598947e-2 2.297867e-1

0.001

10 fail fail fail fail fail
102 fail fail fail fail fail
103 0.224051787 3.372500e0 8.177261e-1 2.140431e0 6.518575e0
104 0.313424703 1.057398e0 2.553920e-1 6.174357e-1 2.094241e0
105 0.265579655 3.363535e-1 8.133263e-2 1.954903e-1 6.701169e-1
106 0.298377177 1.059487-1 2.542036e-2 6.037334e-2 2.127593e-1
107 0,262956461 4.439571e-2 8.836932e-3 2.125995e-2 6.763700e-2
108 0,285288223 1.367134e-2 1.983025e-3 6.113851e-3 2.369861e-2

Table 4.5: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with adaptive time interval 3.6 and MidPoint correction,
ε = 10−2.

49

Application to Lotka-Volterra model

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 4.34: Analysis of the strong approximation error and average computational times
of the τ -leaping method 3.1 with adaptive step size 3.6 using ε = 0.1, 0.01, 0.001 in relation
to the order of the volumetric term V .

From the initial analysis of computational times, similarly to the case of a fixed time
interval, no clear relationship with the volumetric term V emerges. Instead, an inverse
proportionality with the control parameter ε is highlighted. This implies that relaxing
the leap condition control leads to significantly faster simulations compared to an exact
approach, such as that implemented with the Gillespie algorithm.

Furthermore, it is noteworthy that the implementation of the MidPoint correction does
not significantly impact the method’s performance, demonstrating a negligible increase in
computational times. Additionally, the MidPoint correction leads to improvements in
terms of strong approximation error in all cases. Therefore, when applying the τ -leaping
algorithm, it is always advantageous to incorporate the MidPoint correction.

50

Application to Lotka-Volterra model

4.6 Application of the τ-leaping algorithm with Post-
Leap Check

The τ -leaping algorithm with Post-Leap Check 3.2 is applied to the Lotka-Volterra model
4.2.

Since this model relies on the choice of four parameters ε, p, p∗, q, a Grid Search al-
gorithm was applied to evaluate average computational times and strong approximation
errors generated by the τ -leaping algorithm with Post-Leap Check for every possible com-
bination of parameters (clearly excluding combinations where p∗ < p). The choices where
from with ε ∈ {0.001, 0.01, 0.1}, p ∈ {0.1, . . . ,0.9}, p∗ ∈ {0.1, . . . ,0.9}, q ∈ {0.1, . . . ,0.9}.
This led to the selection of the following parameters:

ε = 0.01; p = 0.1; p∗ = 0.5; q = 0.7

These were chosen in order to maintain reasonable computational times, albeit higher
than the standard τ -leaping algorithm, yet yielding smaller strong approximation errors.
Indeed, the control parameter ε being small enforces the validity of the leap condition,
and the algorithm ensures that this condition is not violated, resulting in longer times due
to the intrinsic matrix handling of the algorithm. However, it also leads to a simulation
closer to the exact one.

The decision was made to use these parameters indiscriminately for every value of
the volumetric term V , even though their selection is based solely on simulations with
V = 104. This choice stems from the observation that computational times do not vary
significantly across orders of magnitude of the volumetric term. Additionally, while errors
decrease with an increase in V , the relative ordering of errors concerning other parameter
choices remains relatively consistent.

It has been observed that combinations of parameters involving ε = 0.001, high values
of p, and low values of q result in computational times on the order of hours. Despite
offering slight improvements in terms of strong approximation errors, these improvements
do not justify the excessive increase in computational times.

The results for various values of the volumetric term V are presented below.

51

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.35: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 103.

(a) Preys. (b) Predators.

Figure 4.36: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 103.

(a) Preys. (b) Predators.

Figure 4.37: Occurrences of the number of preys and predators in t = 10.0 from 104 sim-
ulations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check, MidPoint
τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 103.

52

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.38: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 104.

(a) Preys. (b) Predators.

Figure 4.39: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 104.

(a) Preys. (b) Predators.

Figure 4.40: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check 3.2,
MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 104.

53

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.41: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 105.

(a) Preys. (b) Predators.

Figure 4.42: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 105.

(a) Preys. (b) Predators.

Figure 4.43: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check 3.2,
MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 105.

54

Application to Lotka-Volterra model

(a) Preys. (b) Predators.

Figure 4.44: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 106.

(a) Preys. (b) Predators.

Figure 4.45: Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 106.

(a) Preys. (b) Predators.

Figure 4.46: Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check 3.2,
MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 106.

55

Application to Lotka-Volterra model

The average computational times and the strong approximation errors for t = 2.5, 5.0,
7.5, 10.0 for V = 10,102, . . . ,108 are reported. The term fail refers to combinations of
parameters that led to negative population values with high frequency.

τ -leaping with Post-Leap Check - Euler
V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0
10 slow slow slow slow slow
102 0.97296929 6.634224e0 1.991173e0 1.877346e0 1.081297e1
103 0.67334203 3.996273e0 8.467086e-1 2.340372e0 6.498901e0
104 0.57612039 1.573623e0 2.664989e-1 6.558222e-1 2.159355e0
105 0.64573776 1.311412e0 1.189543e-1 2.959635e-1 9.046285e-1
106 0.49575222 1.360226e0 2.384205e-1 5.621524e-1 1.294613e0
107 0.49477867 1.308779e0 1.075110e-1 2.681420e-1 7.913229e-1
108 0.49677709 1.337845e0 1.130042e-1 2.825580e-1 8.489548e-1

Table 4.6: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with Post-Leap Check 3.2, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7.

τ -leaping with Post-Leap Check - MidPoint
V Time(s) Error 2.5 Error 5.0 Error 7.5 Error 10.0
10 slow slow slow slow slow
102 0.49485696 1.519825e1 2.156039e0 8.496327e0 1.197000e1
103 0.50541004 3.405076e0 7.514808e-1 1.927938e0 6.855707e0
104 0.50075953 1.803287e0 2.624639e-1 6.563208e-1 2.114483e0
105 0.52118702 1.128817e0 8.565933e-2 2.036075e-1 5.929277e-1
106 0.49915973 1.183073e0 1.907087e-1 4.159442e-1 7.840760e-1
107 0.57256692 1.164460e0 5.496103e-2 1.189239e-1 1.997243e-1
108 0.49456155 1.158743e0 5.348339e-2 1.167743e-1 2.084621e-1

Table 4.7: Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-Volterra model
4.2 by τ -leaping algorithm with Post-Leap Check 3.2 and MidPoint correction, ε = 10−2,
p = 0.1, p∗ = 0.5, q = 0.7.

The decision has been made to compare the τ -leaping model with Post-Leap Check
using optimized parameters ε = 0.01, p = 0.1, p∗ = 0.5, q = 0.7 against the τ -leaping
method with the same control parameter ε = 0.01.

56

Application to Lotka-Volterra model

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 4.47: Analysis of the strong approximation error and average computational times
of the τ -leaping method with Post-Leap Check 3.2 using ε = 10−2, p = 0.1, p∗ = 0.5,
q = 0.7 and of the τ -leaping method 3.1 with adaptive time interval 3.6 using ε = 10−2

in relation to the order of the volumetric term V .

The pink area indicates the values of the volumetric term that brought to a failure of
the τ -leap algorithm 3.1; in those cases the usage of the τ -leaping algorithm with Post-
Leap Check was mandatory.

It is evident that the τ -leaping algorithm with Post-Leap Check brings about signif-
icant improvements in terms of strong approximation error compared to the τ -leaping
algorithm with adaptive step size. Once again, the MidPoint correction is observed to

57

Application to Lotka-Volterra model

enhance the method in terms of strong approximation error without significantly affecting
computational time, making it an optimal addition. However, it is also noted that there
are no substantial differences between τ -leaping with MidPoint correction and τ -leaping
with Post-Leap Check and MidPoint correction. This result is closely tied to the specific
case studied and may not be generalized universally.

Regarding computational costs, however, a significant increase in terms of time is
observed compared to the version 3.1 of the τ -leaping algorithm.

58

Chapter 5

Application to the case study
of nucleation and growth of
gold nanoparticles

5.1 Introduction to the case study
Colloidal gold is a colloidal suspension (particles ranging from 88 nm to 1µm in a con-
tinuous dispersing substance) of nano and sub-microparticles of gold in a fluid, typically
water. Depending on the concentration of gold and the size of the particles, the colloid
exhibits different colors and properties.

The synthesis of such a colloid is often conducted in a liquid through the reduction
of chloroauric acid: the latter is dissolved in the chosen liquid, and while it is stirred, a
reducing agent is added, causing the reduction of Au+3 ions to neutral gold atoms. When
the solution becomes supersaturated and gold atoms precipitate to the bottom, they at-
tach to existing ones, forming gold nanoparticles. The addition of stabilizing agents can
interrupt the formation of larger-sized particles.

Numerous are the applications of colloidal gold:

• The bacterium Bacillus cereus, when coated with gold nanoparticles with a poly-L-
lysine film and subsequently washed with nitric acid, not only survives but also has
its surface positively charged. When placed in a humid environment, these bacteria
absorb water, swell their membrane, and allow the passage of current. [22]

• Colloidal gold has proven to play a significant role in the therapy for rheumatoid
arthritis [23] [24]: in dogs, introducing a gold bead implant near the arthritic hip
joint considerably reduces pain. [25]

• A therapy involving colloidal gold and microwaves is currently under in vitro study
to combat Alzheimer’s disease: irradiating a region injected with gold nanoparticles

59

Application to the case study of nucleation and growth of gold nanoparticles

with microwaves could enable the destruction of beta-amyloid plaques. [26]

• The use of gold nanoparticles for drug delivery is well-known, such as in the transport
of paclitaxel (taxol). Nanoparticle capsules have proven to be unrecognizable by
the reticuloendothelial system, allowing drug absorption without being digested by
macrophages. [27]

• There are numerous applications for the detection and ablation of cancerous tissues
that are challenging to reach. [28]

5.2 Formulation of the model
A model is intended to be formulated to describe the aggregation of nanoparticles, where
the objective is to monitor the various sizes formed and the number of nanoparticles for
each size.

In [29], LaMer and Dinegar initially developed a model concerning the formation of
monodisperse particles in hydrodispersions. A more comprehensive investigation focusing
on gold nanoparticles is presented in [30]. From these studies and subsequent ones, it is
apparent that, assuming the presence of L gold nanoparticle monomers, denoted as M ,
two processes are feasible:

1. Nucleation, that is m monomers aggregate to form a nanoparticle of size m, denoted
as Pm;

2. Growth, that is a monomer M and a nanoparticle Pi aggregate in order to form a
nanoparticle of size i + 1, denoted as Pi+1.

The natural progression involves constructing a Chemical Reaction Network that mod-
els the processes of nucleation and growth of nanoparticles:

mM
ν−→ Pm

M + Pi
γ−→ Pi+1, i = m, . . . , L− 1

(5.1)

Let X0 represent the count of monomers, and Xi the count of nanoparticles of size i.
From here, the nucleation rate and growth rates can be derived:

λ0(X0, X1, . . . , XL) = νX0(X0 − 1) . . . (X0 −m + 1);
λi(X0, X1, . . . , XL) = γX0Xi; i = m, . . . , L− 1

and the reaction vectors:

ζ0 = (−m,0, . . . , 0, 1, 0, . . . , 0); ζi = (−1,0, . . . , 0,−1, 1, 0, . . . , 0).

In the environment of Classical Scaling we adopt:

νV = νV 1−m; γV = γ

V
.

The model used for the simulations is determined by the following choice of constants:
ν = 1.0, γ = 5.0.

60

Application to the case study of nucleation and growth of gold nanoparticles

5.3 Application of the Gillespie algorithm in Classi-
cal Scaling

The Gillespie algorithm 2.1 is applied to the model 5.1 just introduced. Simulations are
carried out until the depletion of monomers, as this results in the impossibility of any
further reaction, leading to the system reaching a state of stasis.

These simulations are computationally demanding in terms of memory, as they require
storing O(V) reaction rates. To mitigate this memory demand, it has been observed that
simulations results in a high concentration of small-sized nanoparticles, albeit still smaller
than the size ⌈V 1

4 ⌉. Therefore, the storage has been restricted up to this size.

Regarding the reduction of computational times, it became evident that in the initial
moments, there were not many sizes created, leading to null reaction rates. Therefore,
starting from a null vector, only reaction rates involving present sizes were computed,
significantly expediting the computation. Additionally, operations on integers were con-
sistently prioritized before multiplication by rational constants to minimize computational
times.

The results for various values of the volumetric term V are presented below.

Figure 5.1: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 102.

61

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.2: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 103.

Figure 5.3: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 104.

62

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.4: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 105.

Figure 5.5: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 106.

63

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.6: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 107.

Figure 5.7: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 108.

In the initial phases, where the concentration of monomers is high and that of nanopar-
ticles is low or zero, the probability of nucleation is of the order of O(V), while that of

64

Application to the case study of nucleation and growth of gold nanoparticles

growth is O(1). Therefore, in classical scaling, a high concentration of small-sized nanopar-
ticles is obtained because, initially, many more nucleation reactions take place than growth
reactions. Specifically, there were nanoparticles up to size 10 for almost all the simula-
tions, with the highest frequency detected for nanoparticles of size 3. The number of
nanoparticles decreases with its size.

The average computational times are reported for V = 10, 102, . . . , 108: these values are
averaged over 102 simulations for V = 10, 102, 103, 104, 105, 106, while they are averaged
over 8 simulations for V = 107, 108 to avoid simulation times on the order of weeks.

Gillespie
V Time (s)
10 0.000549565
102 0.000479183
103 0.002146539
104 0.018651545
105 0.165757263
106 1.917495600
107 22.73620908
108 221.6518369

Table 5.1: Average computational times over 102 simulations of the model 5.1 in Classical
Scaling by Gillespie algorithm 2.1 for various orders of the volumetric term V .

A clear increase in computational costs is observed with the increase in the volumetric
term. These costs become substantial from V = 107, necessitating the implementation of
approximate methods.

5.4 Application of the τ-leaping algorithm with Post-
Leap Check in Classical Scaling

The application of the τ -leaping method 3.1, both with a fixed and adaptive time inter-
val, leads to failure as the chain takes negative values. This is attributed to the limited
presence of nanoparticles in the initial moments, often resulting in leap calculations as-
suming a greater number of nanoparticles. Therefore, the implementation of the τ -leaping
algorithm with Post-Leap Check 3.2 becomes necessary, even though the failure of the τ -
leaping algorithm predicts a high leap rejection frequency. This not only slows down
simulations but also necessitates the allocation of a high number of rows for the matrices
Sk.

Once again, the cost and memory reductions used for the Gillespie algorithm have
been applied, with additional attention given to excluding elements related to nucleation
from matrices and vectors. Nucleation elements, being frequently accessed, are saved in

65

Application to the case study of nucleation and growth of gold nanoparticles

separate variables.

Given that this model relies on the choice of four parameters ε, p, p∗, q, a Grid Search
algorithm has been applied to evaluate average computational times and strong approxi-
mation errors generated by the τ -leaping algorithm with Post-Leap Check for every pos-
sible combination of parameters (clearly excluding combinations where p∗ < p). The Grid
Search algorithm was utilized with volumetric term V = 105 since choosing lower values
would let the results be affected by stochastic fluctuations. Subsequent simulations were
not conducted for different values of V . This decision was based on the observation that
the parameters obtained for V = 105showed minimal deviation in both average computa-
tional times and approximation errors with respect to the optimal for other values of V .

The choices were from ε ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, p ∈ {0.1, . . . , 0.9}, p∗ ∈ {0.1, . . . , 0.9},
q ∈ {0.1, . . . , 0.9}. Lower values of ε were not considered due to resulting in extremely
long computational times. The following combinations have been considered:

• ε = 0.5; p = 0.4; p∗ = 0.6; q = 0.7 that produces the minimum strong approxima-
tion error: in particular, with an error of 0.000299450353 and average computational
time of 1.55548255 s;

• ε = 0.9; p = 0.5; p∗ = 0.6; q = 0.9 that produces the minimum average compu-
tational time: in particular, with an error of 0.001125269015 and average computa-
tional time of 0.27303400 s;

• ε = 0.6; p = 0.3; p∗ = 0.4; q = 0.7 that represents the trade-off minimum between
average computational time and strong approximation error: in particular, with an
error of 0.0003077198 and average computational time of 0.82081245 s.

Given the minimal difference in strong approximation error but the significant difference
in computational time, the combination chosen for application is:

ε = 0.6; p = 0.3; p∗ = 0.4; q = 0.7.

Additionally, it’s evident that the primary factor influencing the process is the control
parameter ε. Lower values of ε lead to quicker computations but less precise approxima-
tions, while higher values have the opposite effect. In contrast, variables such as p, p∗,
and q have a minimal impact on computation time. Therefore, a strategic approach to
speeding up the Grid Search algorithm involves first assessing the significance of ε and
then focusing on optimizing p, p∗, and q while maintaining ε at a fixed value.

The results for various values of the volumetric term V are presented below.

66

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.8: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 103.

Figure 5.9: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 104.

67

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.10: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 105.

Figure 5.11: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 106.

68

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.12: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 107.

Figure 5.13: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 108.

The strong approximation error must be calculated over times that can maximize it.
The error is been measured at 20%, 40%, 60%, 80% approximately of the process, in order

69

Application to the case study of nucleation and growth of gold nanoparticles

to obtain a larger error. The numerical results are presented below.

τ -leaping con Post-Leap Check - Classical
V Time(s) Error 1 Error 2 Error 3 Error 4
10 slow slow slow slow slow
102 slow slow slow slow slow
103 0.11413710 7.625987e-1 5.913493e-1 4.049775e-1 2.150800e-1
104 0.08159760 1.890966e-1 1.782911e-1 1.764731e-1 1.760963e-1
105 0.22753717 1.183649e-3 6.882457e-4 1.154328e-3 1.442629e-3
106 1.04771119 1.390977e-4 3.503079e-4 4.860772e-4 4.948556e-4
107 4.35526904 8.320920e-5 2.131956e-4 3.325669e-4 4.948556e-4
108 23.9310644 4.548330e-5 5.649034e-5 1.905854e-4 8.434429e-5

Table 5.2: Average computational times and strong approximation errors for V =
10,102, . . . ,108 over 102 simulations of model 5.1 in Classical Scaling by τ -leaping with
Post-Leap Check 3.2.

70

Application to the case study of nucleation and growth of gold nanoparticles

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 5.14: Analysis of the strong approximation error and average computational times
of the simulations of model 5.1 in Classical Scaling by the τ -leaping method with Post-
Leap Check 3.2 using ε = 0.6, p = 0.3, p∗ = 0.4, q = 0.7 in relation to the order of the
volumetric term V .

The simulation results for V = 10, 102 using the τ -leaping algorithm with Post-Leap
Check are not reported as the simulations never produced results due to exceedingly high
computational times.

Looking at plot 5.14, it is easily observable that the error, as expected, decreases with
the volumetric term. This is in agreement with theorem 1.3.2. Meanwhile, from the com-
putational time graph, it is evident that the Gillespie algorithm is faster than the τ -leaping

71

Application to the case study of nucleation and growth of gold nanoparticles

algorithm with Post-Leap Check up to V = 105, beyond which it is more advantageous
to use the approximate method.

It has also been decided not to test the MidPoint correction on this case study since
it presupposes the resolution, at least numerically, of the differential equations of the de-
terministic problem. As previously discussed, the analytical treatment of this problem is
potentially impossible.

It’s of particular interest the distribution of the different nanoparticles in size at the end
of the process: therefore, the expected errors in Euclidean norm of the final distribution
obtained via τ -leaping method with Post-Leap Checks with respect to the one obtained
via Gillespie method are computed.

Expect errors
V
10 slow
102 slow
103 1.913321e-2
104 5.305929e-3
105 1.649143e-3
106 5.671941e-4
107 2.656721e-4
108 1.810236e-4

Table 5.3: Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for various orders
of the volumetric term V .

Figure 5.15: Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for various orders
of the volumetric term V .

72

Application to the case study of nucleation and growth of gold nanoparticles

The final approximation is valid due to the small value of the expected error.

5.5 Application of the Multinomial algorithm in Clas-
sical Scaling

Given the highly distinctive nature of model 5.1, a specific method has been devised to
simulate it based on the multinomial distribution, hence referred to as the Multinomial
method. The underlying concept of this algorithm is that a functional indicator of the
maximum number of possible reactions is the current number of monomers: indeed, in
each state, there can be at most ⌊X0/m⌋ nucleations and at most X0 growths. Thus,
denoting as p0 = 1− e−λ0(X(t))·τ the probability of there being at least one nucleation in
the time window (t, t + τ), the number of nucleations is distributed as a binomial random
variable with n = ⌊X0(t)/m⌋ and p = p0. The remaining monomers can either be utilized
in nucleations or remain unused. Let pk = 1−e−λk(X(t))·τ be the probability of observing at
least one growth of the nanoparticles of size k in the time window (t, t+τ). Let N = {Ni}i

be the vector of the number of growths of particles of size i in the time window (t, t + τ),
which will be distributed as a multinomial random vector with parameters n = X0(t)−N0,
representing the number of remaining monomers, and p = [p1, . . . , pV −1, 1 −

qV −1
k=1 pk]

where the last term indicates the probability for a monomer to be unused. Hence the
algorithm:

Algorithm 5.1 Multinomial algorithm
Consider V monomers. Choose a fixed value for τ and initialize j = 0, t0 = 0 and
X(t0) = (V,0, . . . ,0).
Repeat the following steps while X0(tj) > 0:

1: Compute the nucleation rate λ0(xj) and the growth rates λ1(xj), . . . , λV −1(xj);
2: Generate N0, the number of nucleations, as:

N0 ∼ Binomial
3
⌊X0(tj)

m
⌋, 1− e−λ0·τ

4
;

3: Compute:

p =
C
1− e−λ1(xj)·τ , . . . , 1− e−λV −1(xj)·τ , 1−

V −1Ø
k=1

pi

D
4: Generate N , the number of growths, as:

N ∼ Multinomial (X0(tj)−N0, p) ;

5: Nk ← min{Nk, Xk(xj)}, k = 1, . . . V − 1;
6: Update the time: tj+1 = tj + τ ;
7: Update the state: X0(tj+1) = X0(tj)−m ·N0−

qV −1
k=1 Nk, Xm(tj+1) = Xm(tj) + N0−

Nm, Xi(tj+1) = Xi(tj)−Ni +Ni−1, i = m+1, . . . , V −1, XV (tj+1) = XV (tj)+NV −1;
8: j ← j + 1.

73

Application to the case study of nucleation and growth of gold nanoparticles

The only parameter to adjust is the time interval, denoted as τ : a strong dependence
of performance on the time interval has been observed. Clearly, it is expected that as τ
decreases, the computational cost increases while the error decreases. Therefore, for each
V , a time interval was chosen that achieves a good trade-off between average computa-
tional time and strong approximation error, with particular attention given to finding a
model that could compete with the Gillespie method.

Figure 5.16: Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 10, τ = 10−3.

74

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.17: Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 102, τ = 10−4.

Figure 5.18: Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 103, τ = 10−5.

75

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.19: Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 104, τ = 10−6.

Figure 5.20: Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 105, τ = 10−7.

76

Application to the case study of nucleation and growth of gold nanoparticles

Multinomial - Classical
V Time(s) Error 1 Error 2 Error 3 Error 4
10 0.00471041 7.000000e-1 0.000000e0 7.603453e-2 1.082531e-1
102 0.15252837 4.495464e-2 2.797855e-2 4.464329e-2 7.817042e-2
103 2.13661898 1.281227e-2 1.328002e-2 3.330558e-2 7.099911e-2
104 23.0073423 1.120983e-2 1.052616e-2 2.943947e-2 6.698095e-2
105 327.856395 1.969799e-2 1.077690e-2 2.877598e-2 6.501643e-2
106

107 slow slow slow slow slow
108 slow slow slow slow slow

Table 5.4: Average computational times and strong approximation errors for V =
10,102, . . . ,108 over 8 simulations of model 5.1 in Classical Scaling by Multinomial al-
gorithm 5.1.

77

Application to the case study of nucleation and growth of gold nanoparticles

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 5.21: Comparison of the strong approximation error and average computational
times of the simulations of model 5.1 in Classical Scaling by the τ -leaping method with
Post-Leap Check 3.2 and by Multinomial method 5.1 in relation to the order of the
volumetric term V .

It is immediately noticeable how the multinomial method is slower than the Gillespie
method for every analyzed V , thus offering no advantage. In fact, its use is also disad-
vantageous due to the introduction of error. It is interesting to note that despite the
higher error compared to the τ -leaping method with Post-Leap Checks, this error tends
to decrease as the volumetric term V increases, further confirming Theorem 1.3.2.

78

Application to the case study of nucleation and growth of gold nanoparticles

5.6 Application of the Gillespie algorithm in Alter-
native Scaling

The results obtained so far are interesting from a computational perspective but not
from the perspective of the simulation outcome itself. Much more interesting results are
obtained in environments where the probabilities of nucleation and growth are of the same
order already in the initial phase. Therefore, an alternative scaling is proposed:

νV = ν · V 1−m; γV = γ.

This allows for reaction rates, both for nucleation and growth, to be of the order of O(V).
It is observed that in this scaling, the convergence result to the deterministic solution
stated in 1.3 is no longer valid. However, this is not significant as the system of differen-
tial equations associated with the problem is potentially infinite, making it impossible to
find a deterministic solution even computationally.

The alternative scaling is applied to the model, and simulations are conducted using
the Gillespie algorithm. Below are the results for various values of the volumetric term
V .

Figure 5.22: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 102.

79

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.23: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 103.

Figure 5.24: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 104.

80

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.25: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 105.

Figure 5.26: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 106.

81

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.27: Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scaling,
V = 107.

In this case, the results are very different from what was observed in Classical Scaling.
Since already in the early instants, the probability of observing nucleation and that of
observing growth were of the same order, nanoparticles had more opportunities for growth
compared to Classical Scaling. This led to a maximum created size that increases with
V and is overall larger than 10, the maximum created size in Classical Scaling. Clearly,
as the sum of sizes of each nanoparticle is constant with respect to V , increasing the
maximum created size decreases the peak of the number of particles of the same size,
which changes from being of the order of V to being around 10, regardless of the value of
the volumetric term.

Gillespie
V Time (s)
10 0.000711507
102 0.001295547
103 0.010353837
104 0.250507800
105 6.193990864
106 184.9025709
107 6112.358574

Table 5.5: Average computational times over 102 simulations of the model 5.1 in Alterna-
tive Scaling by Gillespie algorithm 2.1 for various orders of the volumetric term V .

It is observed that in this case, the increase in computational times is much more

82

Application to the case study of nucleation and growth of gold nanoparticles

rapid with the increase in the volumetric term. This is primarily due to the fact that the
maximum size created will be much larger than that for the Classical Scaling case: indeed
this scaling allowed only for a reduction in memory storage to the order of O(V 1

2).

5.7 Application of the τ-leaping algorithm with Post-
Leap Check in Alternative Scaling

Given that this model is based on the choice of four parameters ε, p, p∗, q, a Grid Search
algorithm has been applied, again and similarly to the classical scaling, to evaluate av-
erage computational times and strong approximation errors generated by the τ -leaping
algorithm with Post-Leap Check for every possible combination of parameters (exclud-
ing combinations where p∗ < p).The values were taken from ε ∈ {0.5 0.6, 0.7, 0.8, 0.9},
p ∈ {0.1, . . . , 0.9}, p∗ ∈ {0.1, . . . , 0.9}, q ∈ {0.1, . . . , 0.9}. The following combinations
were considered:

• ε = 0.9; p = 0.4; p∗ = 0.6; q = 0.9 which produces the minimum strong ap-
proximation error, specifically with an error of 0.000329 and an average time of
32.504616250 s;

• ε = 0.9; p = 0.3; p∗ = 0.6; q = 0.9 which produces the minimum average time,
specifically with an error of 0.000329348 and an average time of 26.34556735 s.

Given the minimal difference in strong approximation error, the combination was chosen:

ε = 0.9; p = 0.3; p∗ = 0.6; q = 0.9

which results in much lower computational times. It resulted odd that almost all the
combinations result in strong errors of the same order, while heavily differing in compu-
tational times.

Following the simulations for various values of the volumetric term V are reported.

83

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.28: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 103.

Figure 5.29: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 104.

84

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.30: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 105.

Figure 5.31: Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 106.

To calculate the strong approximation error of the τ -leaping method with Post-Leap
Check compared to the Gillespie algorithm, a study was conducted on the actual maximum

85

Application to the case study of nucleation and growth of gold nanoparticles

time at which the monomers are depleted. Four internal moments were chosen between
0.0 and this maximum time.

τ -leaping with Post-Leap Check - Alternative
V Time(s) Error 1 Error 2 Error 3 Error 4
10 slow slow slow slow slow
102 slow slow slow slow slow
103 0.120402702 7.774963e-3 9.170888e-3 9.873224e-3 1.015499e-2
104 1.645742570 1.536668e-3 1.793654e-3 1.916876e-3 1.930803e-3
105 30.42989161 2.925356e-4 3.283135e-4 3.458503e-4 3.385290e-4
106 715.9502806 4.938355e-5 5.798645e-5 6.010340e-5 6.374605e-5
107 slow slow slow slow slow

Table 5.6: Average computational times and strong approximation errors for V =
10,102, . . . ,106 over 102 simulations of model 5.1 in Alternative Scaling by τ -leaping with
Post-Leap Check 3.2.

86

Application to the case study of nucleation and growth of gold nanoparticles

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 5.32: Analysis of the strong approximation error and average computational times
of the simulations of model 5.1 in Alternative Scaling by the τ -leaping method with Post-
Leap Check 3.2 using ε = 0.9, p = 0.3, p∗ = 0.6, q = 0.9 in relation to the order of the
volumetric term V .

In the context of simulating model 5.1 under Alternative Scaling, it is evident from
figure 5.32 that the τ -leaping method with Post-Leap Check consistently demonstrates
inferior performance compared to the Gillespie method. This inferiority manifests as the
approximated method has an actual non-zero strong approximation error while yielding
longer mean computational times with respect to the exact method.

87

Application to the case study of nucleation and growth of gold nanoparticles

Furthermore, examination of plot 5.32 reveals a trend wherein the strong approxima-
tion error tends to diminish with escalating volumetric term V . However, it’s imperative
to note that this observation does not guarantee convergence of simulations conducted
via the τ -leaping method with Post-Leap Checks in comparison to those executed by the
Gillespie method, as the hypotheses outlined in 1.3.2 are not satisfied.

Analogously, analysis of the expected error in the Euclidean norm of simulations con-
ducted via the τ -leaping method with Post-Leap Check, relative to simulations conducted
via the Gillespie method, yields insights into their comparative performance.

Expect errors
V Time (s)
10 slow
102 slow
103 1.011814e-2
104 1.887261e-3
105 3.416598e-4
106 6.059664e-5
107 slow

Table 5.7: Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for various orders
of the volumetric term V .

Figure 5.33: Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for various orders
of the volumetric term V .

The final approximation is valid due to the small value of the expected error.

88

Application to the case study of nucleation and growth of gold nanoparticles

5.8 Application of the Multinomial algorithm in Al-
ternative Scaling

The multinomial method is used to simulate model 5.1. The results for various values of
the volumetric term V are presented below.

Figure 5.34: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 101, τ = 10−3.

89

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.35: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 102, τ = 10−4.

Figure 5.36: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 103, τ = 10−5.

90

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.37: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 104, τ = 10−7.

Figure 5.38: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 105, τ = 10−9.

91

Application to the case study of nucleation and growth of gold nanoparticles

Figure 5.39: Simulations of the model 5.1 by Multinomial algorithm in Alternative Scaling,
V = 106, τ = 10−10.

Multinomial - Alternative
V Time(s) Error 1 Error 2 Error 3 Error 4
10 0.00190420 7.000000e-1 0.000000e0 2.591081e-1 1.276369e-1
102 0.01410978 5.922169e-2 5.131680e-2 5.850676e-2 5.179846e-2
103 0.02502164 4.661666e-2 4.033766e-2 4.513285e-2 2.887287e-2
104 1.26597972 1.125122e-2 1.350050e-2 1.253056e-2 7.961538e-3
105 148.544128 3.223722e-3 4.681665e-3 4.685433e-3 1.803056e-3
106 108.264683 3.278800e-3 4.111521e-3 5.090381e-3 5.112922e-3
107 slow slow slow slow slow

Table 5.8: Average computational times and strong approximation errors for V =
10,102, . . . ,107 over 8 simulations of model 5.1 in Alternative Scaling by Multinomial
algorithm.

92

Application to the case study of nucleation and growth of gold nanoparticles

(a) Strong Error Analysis.

(b) Time Analysis.

Figure 5.40: Comparison of the strong approximation error and average computational
times of the simulations of model 5.1 in Alternative Scaling by the τ -leaping method
with Post-Leap Check 3.2 and by Multinomial method 5.1 in relation to the order of the
volumetric term V .

The computational costs of the multinomial method are similar to those of the τ -leaping
method with Post-Leap Checks. However, it exhibits a higher level of strong approxima-
tion error. Nevertheless, for V > 106, the computational time of the multinomial method
is observed to be lower than that of the Gillespie method. Moreover, the error tends to
stabilize at low levels, rendering the multinomial method an effective simulation approach
for scenarios with high cardinalities.

93

Bibliography

[1] P. Waage and C. Guldberg, “Studier over affiniteten forhandlinger,” VIdenskabs-
Selskabet i ChrIstIana, vol. 35, pp. 111–120, 01 1864.

[2] C. M. Guldberg and P. Waage, “Ueber die chemische affinität. § 1. einleitung,” Jour-
nal für Praktische Chemie, vol. 19, no. 1, pp. 69–114, 1879.

[3] F. J. M. Horn and R. Jackson, “General mass action kinetics,” Archive for Rational
Mechanics and Analysis, vol. 47, pp. 81–116, 1972.

[4] M. Feinberg, “Complex balancing in general kinetic systems,” Archive for Rational
Mechanics and Analysis, vol. 49, pp. 187–194, 01 1972.

[5] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” The
Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

[6] T. G. Kurtz, “Representations of markov processes as multiparameter time changes,”
The Annals of Probability, vol. 8, no. 4, pp. 682–715, 1980.

[7] D. Anderson and T. Kurtz, Stochastic Analysis of Biochemical Systems. Springer
International Publishing, 2015.

[8] S. N. Ethier and T. G. Kurtz, Markov processes – characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathemat-
ical Statistics, John Wiley & Sons Inc., 1986.

[9] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically reacting
systems,” The Journal of Chemical Physics, vol. 115, pp. 1716–1733, 07 2001.

[10] D. T. Gillespie and L. R. Petzold, “Improved leap-size selection for accelerated
stochastic simulation,” The Journal of Chemical Physics, vol. 119, pp. 8229–8234,
10 2003.

[11] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Efficient step size selection for the tau-
leaping simulation method,” The Journal of Chemical Physics, vol. 124, p. 044109,
01 2006.

[12] A. J. Lotka, “Analytical note on certain rhythmic relations in organic systems,”
Proceedings of the National Academy of Sciences, vol. 6, no. 7, pp. 410–415, 1920.

94

BIBLIOGRAPHY

[13] V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali con-
viventi. Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Societá
anonima tipografica "Leonardo da Vinci", 1927.

[14] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis, “Binomial distribution
based tau-leap accelerated stochastic simulation,” The Journal of Chemical Physics,
vol. 122, p. 024112, 12 2004.

[15] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Avoiding negative populations in explicit
Poisson tau-leaping,” The Journal of Chemical Physics, vol. 123, p. 054104, 08 2005.

[16] T. Tian and K. Burrage, “Binomial leap methods for simulating stochastic chemical
kinetics,” The Journal of Chemical Physics, vol. 121, pp. 10356–10364, 11 2004.

[17] D. F. Anderson, “Incorporating postleap checks in tau-leaping,” The Journal of
Chemical Physics, vol. 128, Feb. 2008.

[18] M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie, “Consistency and stability of tau-
leaping schemes for chemical reaction systems,” Society for Industrial and Applied
Mathematics, vol. 4, pp. 867–895, 01 2005.

[19] T. Li, “Analysis of explicit tau-leaping schemes for simulating chemically reacting
systems,” Multiscale Modeling & Simulation, vol. 6, no. 2, pp. 417–436, 2007.

[20] D. F. Anderson, A. Ganguly, and T. G. Kurtz, “Error analysis of tau-leap simulation
methods,” The Annals of Applied Probability, vol. 21, Dec. 2011.

[21] D. Anderson, G. Enciso, and M. Johnston, “Stochastic analysis of biochemical reac-
tion networks with absolute concentration robustness,” Journal of the Royal Society,
Interface / the Royal Society, vol. 11, p. 20130943, 04 2014.

[22] V. Berry and R. F. Saraf, “Self-assembly of nanoparticles on live bacterium: An
avenue to fabricate electronic devices,” Angewandte Chemie International Edition,
vol. 44, no. 41, pp. 6668–6673, 2005.

[23] C. Tsai, A. Shiau, S. Chen, Y. Chen, P. Cheng, M. Chang, D. Chen, C. Chou,
C. Wang, and C. Wu, “Amelioration of collagen-induced arthritis in rats by
nanogold,” Arthritis & Rheumatism, vol. 56, no. 2, pp. 544–554, 2007.

[24] J. N. Swanson, “Repeated Colloidal Gold Tests in Rheumatoid Arthritis,” Ann
Rheum Dis, vol. 8, pp. 232–237, Sep 1949.

[25] G. T. Jaeger, S. Larsen, N. li, and L. Moe, “Two years follow-up study of the pain-
relieving effect of gold bead implantation in dogs with hip-joint arthritis,” Acta Vet
Scand, vol. 49, p. 9, Mar 2007.

[26] N. authors listed, “Gold is newest weapon in battle against Alzheimer’s,” Health
News, vol. 12, p. 10, Mar 2006.

95

BIBLIOGRAPHY

[27] J. D. Gibson, B. P. Khanal, and E. R. Zubarev, “Paclitaxel-functionalized gold
nanoparticles,” J Am Chem Soc, vol. 129, pp. 11653–11661, Sep 2007.

[28] X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang,
A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic
detection with surface-enhanced Raman nanoparticle tags,” Nat Biotechnol, vol. 26,
pp. 83–90, Jan 2008.

[29] V. K. LaMer and R. H. Dinegar, “Theory, production and mechanism of formation of
monodispersed hydrosols,” Journal of the American Chemical Society, vol. 72, no. 11,
pp. 4847–4854, 1950.

[30] J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth
processes in the synthesis of colloidal gold,” Discuss. Faraday Soc., vol. 11, pp. 55–75,
1951.

96

List of Figures

4.1 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 102. 34

4.2 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 103. 34

4.3 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 104. 34

4.4 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 105. 35

4.5 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 106. 35

4.6 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 107. 35

4.7 Simulations of the Lotka-Volterra model 4.2 by Gillespie algorithm 2.1,
V = 108. 36

4.8 Absolute error in Euclidean norm of Gillespie algorithm simulations with
respect to the deterministic solution for V = 103, 104, 105, 106. 36

4.9 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3, V = 103. 38

4.10 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3 and MidPoint correction, V = 103. 38

4.11 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time
interval with τ = 10−3, MidPoint τ -leaping with fixed time interval with
τ = 10−3, V = 103. 38

4.12 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3, V = 104. 39

4.13 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3 and MidPoint correction, V = 104. 39

4.14 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time
interval with τ = 10−3, MidPoint τ -leaping with fixed time interval with
τ = 10−3, V = 104. 39

97

LIST OF FIGURES

4.15 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3, V = 105. 40

4.16 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3 and MidPoint correction, V = 105. 40

4.17 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time
interval with τ = 10−3, MidPoint τ -leaping with fixed time interval with
τ = 10−3, V = 105. 40

4.18 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3, V = 106. 41

4.19 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−3 and MidPoint correction, V = 106. 41

4.20 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with fixed time
interval with τ = 10−3, MidPoint τ -leaping with fixed time interval with
τ = 10−3, V = 106. 41

4.21 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with fixed time interval τ = 10−1, V = 102. 43

4.22 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval, ε = 10−2, V = 103. 44

4.23 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval and MidPoint correction, ε = 10−2, V = 103. . 44

4.24 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive
time interval, MidPoint τ -leaping with adaptive time interval, ε = 10−2,
V = 106. 44

4.25 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval, ε = 10−2, V = 104. 45

4.26 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval and MidPoint correction, ε = 10−2, V = 104. . 45

4.27 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive
time interval, MidPoint τ -leaping with adaptive time interval, ε = 10−2,
V = 104. 45

4.28 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval, ε = 10−2, V = 105. 46

4.29 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval and MidPoint correction, ε = 10−2, V = 105. . 46

4.30 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive
time interval, MidPoint τ -leaping with adaptive time interval, ε = 10−2,
V = 105. 46

4.31 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval, ε = 10−2, V = 106. 47

98

LIST OF FIGURES

4.32 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm 3.1
with adaptive time interval and MidPoint correction, ε = 10−2, V = 106. . 47

4.33 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with adaptive
time interval, MidPoint τ -leaping with adaptive time interval, ε = 10−2,
V = 106. 47

4.34 Analysis of the strong approximation error and average computational
times of the τ -leaping method 3.1 with adaptive step size 3.6 using ε =
0.1, 0.01, 0.001 in relation to the order of the volumetric term V 50

4.35 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 103. 52

4.36 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q =
0.7, V = 103. 52

4.37 Occurrences of the number of preys and predators in t = 10.0 from 104

simulations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap
Check, MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ =
0.5, q = 0.7, V = 103. 52

4.38 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 104. 53

4.39 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q =
0.7, V = 104. 53

4.40 Occurrences of the number of preys and predators in t = 10.0 from 104 simu-
lations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check
3.2, MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ =
0.5, q = 0.7, V = 104. 53

4.41 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 105. 54

4.42 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q =
0.7, V = 105. 54

4.43 Occurrences of the number of preys and predators in t = 10.0 from 104 simu-
lations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check
3.2, MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ =
0.5, q = 0.7, V = 105. 54

4.44 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7, V = 106. 55

4.45 Simulations of the Lotka-Volterra model 4.2 by τ -leaping algorithm with
Post-Leap Check and MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q =
0.7, V = 106. 55

4.46 Occurrences of the number of preys and predators in t = 10.0 from 104 simu-
lations of the Gillespie algorithm 2.1, Euler τ -leaping with Post-Leap Check
3.2, MidPoint τ -leaping with Post-Leap Check, ε = 10−2, p = 0.1, p∗ =
0.5, q = 0.7, V = 106. 55

99

LIST OF FIGURES

4.47 Analysis of the strong approximation error and average computational
times of the τ -leaping method with Post-Leap Check 3.2 using ε = 10−2,
p = 0.1, p∗ = 0.5, q = 0.7 and of the τ -leaping method 3.1 with adaptive
time interval 3.6 using ε = 10−2 in relation to the order of the volumetric
term V . 57

5.1 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 102. 61

5.2 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 103. 62

5.3 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 104. 62

5.4 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 105. 63

5.5 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 106. 63

5.6 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 107. 64

5.7 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Classical Scaling,
V = 108. 64

5.8 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 103. 67

5.9 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 104. 67

5.10 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 105. 68

5.11 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 106. 68

5.12 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 107. 69

5.13 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Classical Scaling, V = 108. 69

5.14 Analysis of the strong approximation error and average computational
times of the simulations of model 5.1 in Classical Scaling by the τ -leaping
method with Post-Leap Check 3.2 using ε = 0.6, p = 0.3, p∗ = 0.4, q = 0.7
in relation to the order of the volumetric term V 71

5.15 Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for
various orders of the volumetric term V . 72

5.16 Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 10, τ = 10−3. 74

5.17 Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 102, τ = 10−4. 75

5.18 Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 103, τ = 10−5. 75

100

LIST OF FIGURES

5.19 Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 104, τ = 10−6. 76

5.20 Simulations of the model 5.1 by Multinomial algorithm in Classical Scaling,
V = 105, τ = 10−7. 76

5.21 Comparison of the strong approximation error and average computational
times of the simulations of model 5.1 in Classical Scaling by the τ -leaping
method with Post-Leap Check 3.2 and by Multinomial method 5.1 in rela-
tion to the order of the volumetric term V 78

5.22 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 102. 79

5.23 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 103. 80

5.24 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 104. 80

5.25 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 105. 81

5.26 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 106. 81

5.27 Simulations of the model 5.1 by Gillespie algorithm 2.1 in Alternative Scal-
ing, V = 107. 82

5.28 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 103. 84

5.29 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 104. 84

5.30 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 105. 85

5.31 Simulations of the model 5.1 by τ -leaping algorithm with Post-Leap Check
3.2 in Alternative Scaling, V = 106. 85

5.32 Analysis of the strong approximation error and average computational
times of the simulations of model 5.1 in Alternative Scaling by the τ -leaping
method with Post-Leap Check 3.2 using ε = 0.9, p = 0.3, p∗ = 0.6, q = 0.9
in relation to the order of the volumetric term V 87

5.33 Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for
various orders of the volumetric term V . 88

5.34 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 101, τ = 10−3. 89

5.35 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 102, τ = 10−4. 90

5.36 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 103, τ = 10−5. 90

5.37 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 104, τ = 10−7. 91

5.38 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 105, τ = 10−9. 91

101

List of Figures

5.39 Simulations of the model 5.1 by Multinomial algorithm in Alternative Scal-
ing, V = 106, τ = 10−10. 92

5.40 Comparison of the strong approximation error and average computational
times of the simulations of model 5.1 in Alternative Scaling by the τ -leaping
method with Post-Leap Check 3.2 and by Multinomial method 5.1 in rela-
tion to the order of the volumetric term V 93

102

List of Tables

4.1 Average computational times of the Gillespie simulations on the Lotka-
Volterra model 4.2 for V = 102, . . . ,108. 37

4.2 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with fixed time interval 3.1
τ = 10−3. 42

4.3 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with fixed time interval 3.1
τ = 10−3 and MidPoint correction. 42

4.4 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with adaptive time interval 3.6,
ε = 10−2. 48

4.5 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with adaptive time interval 3.6
and MidPoint correction, ε = 10−2. 49

4.6 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with Post-Leap Check 3.2, ε =
10−2, p = 0.1, p∗ = 0.5, q = 0.7. 56

4.7 Average computational times and strong approximation errors for t =
2.5, 5.0, 7.5, 10.0 for V = 10,102, . . . ,108 over 104 simulations of the Lotka-
Volterra model 4.2 by τ -leaping algorithm with Post-Leap Check 3.2 and
MidPoint correction, ε = 10−2, p = 0.1, p∗ = 0.5, q = 0.7. 56

5.1 Average computational times over 102 simulations of the model 5.1 in Clas-
sical Scaling by Gillespie algorithm 2.1 for various orders of the volumetric
term V . 65

5.2 Average computational times and strong approximation errors for V =
10,102, . . . ,108 over 102 simulations of model 5.1 in Classical Scaling by
τ -leaping with Post-Leap Check 3.2. 70

103

List of Tables

5.3 Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for
various orders of the volumetric term V . 72

5.4 Average computational times and strong approximation errors for V =
10,102, . . . ,108 over 8 simulations of model 5.1 in Classical Scaling by Multi-
nomial algorithm 5.1. 77

5.5 Average computational times over 102 simulations of the model 5.1 in Alter-
native Scaling by Gillespie algorithm 2.1 for various orders of the volumetric
term V . 82

5.6 Average computational times and strong approximation errors for V =
10,102, . . . ,106 over 102 simulations of model 5.1 in Alternative Scaling by
τ -leaping with Post-Leap Check 3.2. 86

5.7 Expected errors of simulations of the model 5.1 by τ -leaping method with
Post-Leap Check 3.2 compared to simulations by Gillespie method 2.1 for
various orders of the volumetric term V . 88

5.8 Average computational times and strong approximation errors for V =
10,102, . . . ,107 over 8 simulations of model 5.1 in Alternative Scaling by
Multinomial algorithm. 92

104

Lists of algorithms

2.1 Gillespie algorithm . 19
3.1 τ -leaping algorithm . 21
3.2 τ -leaping algorithm with Post-Leap Check 26
5.1 Multinomial algorithm . 73

105

Acknowledgements

É doveroso e al contempo un piacere per me ringraziare le persone che hanno contribuito
a questo percorso.

Ringrazio il prof. Enrico Bibbona per la sua esperta guida nella stesura di questo
lavoro e per il supporto durante il processo di studio.

Ringrazio Mamma, Papà e Giuseppe perchè

106

	Introduction
	I Preliminary concepts
	Chemical Reaction Networks
	Introduction to Chemical Reaction Networks
	Results on stochastic processes based on Chemical Reaction Networks
	Classical Scaling

	II Simulation methods for Chemical Reaction Network
	Exact methods: Gillespie algorithm
	Approximated methods: tau-leaping method
	Adaptive time interval for tau-leaping method
	tau-leaping method with Post-Leap Check
	MidPoint correction

	III Application of the methods
	Application to Lotka-Volterra model
	Introduction to the model
	Computational times and error analysis
	Application of the Gillespie algorithm
	Application of the tau-leaping algorithm with fixed time interval
	Application of the tau-leaping algorithm with adaptive time interval
	Application of the tau-leaping algorithm with Post-Leap Check

	Application to the case study of nucleation and growth of gold nanoparticles
	Introduction to the case study
	Formulation of the model
	Application of the Gillespie algorithm in Classical Scaling
	Application of the tau-leaping algorithm with Post-Leap Check in Classical Scaling
	Application of the Multinomial algorithm in Classical Scaling
	Application of the Gillespie algorithm in Alternative Scaling
	Application of the tau-leaping algorithm with Post-Leap Check in Alternative Scaling
	Application of the Multinomial algorithm in Alternative Scaling

	Bibliography
	List of Figures
	List of Tables

