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The design of vaulted structures is living a true renaissance thanks to the computer aided 

graphic statics. The fundamental work, mostly done by Block, have brought a series of 

computer tool for the research of the vault form by analyzing the thrust network lines. 

This thesis firstly explores the load-carrying efficiency of different piercing pattern of a 

simple vault, generated by RhinoVault. As a main result, from FEM analysis, the more 

stable pattern was found in the uniform distribution of 29 holes along the diagonals. As a 

second stage, the more suitable tessellation of the voussoirs was examined to guarantee 

both equilibrium and manufacturing. Planes and surfaces map were employed to create a 

3D printed mould system where to pour concrete and realize the bricks. Realized elements 

were assembled to create a table scale model of the vault.
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1. Introduction 

In this thesis I want to sponsor an architecture and design philosophy in which geometry, 

sustainability and structural requirements work together to follow what nature teaches us: 

to optimize ourselves to survive, to optimize ourselves to be fit, to optimize ourselves to 

be healthy for us and for the ones who interact with us and for our planet, optimize 

ourselves to be an example.  

Masonry structure are natural structures. As wood, they come from the earth and elevates 

from it to build spaces and volumes. This exhibits a warm and classic architecture, 

somehow familiar in its way. However, there is no reason why a masonry structure can’t 

be modern or innovative. The examples of the last years, and the new attention to this 

building typology, have evidenced their continuous potential to be an actual architectural 

solution. Digital Fabrication and Additive Manufacturing have opened a new area of 

possibilities, from eco-sustainability and easy construction, to transparency. 

The main object of this work is to take a first step in a direction where a design tool for 

latticed masonry shells would be developed, starting from a given topology and obtaining 

the optimized grid and stiffness. 

First of all, a look and an overview on historical aspects of Form Finding is led, with a 

focus on the most important architects and engineers who developed the building 

philosophy of the resistance by shape, the compression-only structures design and the 

introduction of numerical approaches with computers in the design process in the last 

decades.  

After, a brief description of modern form finding techniques is presented showing how 

modern designers approach Form Finding. The objective of the chapter is to show that 

Form Finding has to be seen as a fundamental part of the whole design process, not only 

as a first conceptual and preliminary phase. 

The central part of the thesis deal with a theoretical case study where compression-only 

pierced shell geometries are designed with the Thrust Network Analysis developed by 

Philippe Block.  
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The shape of the vaults is reached through the value variation of some chosen parameters: 

lowering degree and piercing pattern. After, global structural stability analysis has been 

made varying: the previous parameters values, slenderness and load-cases. 

In the end, one of the analyzed pierced vaults is chosen and a scaled prototype is realized 

with the help of Additive Manufacturing techniques.
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2. An Historical Approach to Form Finding 

During centuries from the classical age until nowadays, the most important example of 

form finding was always around us: the arch. This structural element represents one of 

the biggest discoveries of the building history of mankind. For the first time, a structure 

doesn’t have to carry loads because of its material characteristics; it’s the shape that 

determine if the structural element will be able to carry loads or not. 

“Ut pendet continuum flexile, sic stabit contiguum rigidum inversum. As hang the 

flexible line, so but inverted will stand the rigid arch” (Hooke, 1676). This sentence was 

written by Hooke in 1675 as an anagram inside a totally unrelated book: A description of 

Helioscopes and other instruments. The anagram solution was not published until the 

author death but this let us know that he understood that if he could solve the problem of 

the shape of the catenary, he would at the same time found which is the correct shape of 

the perfect arch able to carry load in a compression state. (Heyman, 1998)  

 

Figure 1: Hooke's 1675 book cover of "A Description of Helioscopes and Other Instruments” 

Robert Hooke is defined as the England’s Leonardo Da Vinci, a genius for his time. “He 

was among the world’s leading talents in designing and making scientific instruments 

and clocks, mechanical engineering, material science, and structural mechanics, as well 

as astronomy, microscopy, chemistry, biology, physics, surveying and architecture” 
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(Addis, 2007). Hooke was a good friend of Christopher Wren and they became building 

designers together by accident when they were called to restore and rebuild the heart of 

London after the terrible fire in 1666. “They were the first building designers who had a 

good mathematical and scientific understanding of forces, derived from their work at the 

Royal Society. They used to work with mathematical model to represent the complexity of 

the planetary motion so they turned this knowledge into the building design” (Addis, 

2007). 

Hooke’s anagram explains why masonry construction or arches and domes developed in 

such an incredible way across the last two thousand years of history mostly when 

structural analysis theory was not born yet and when mathematical theorems were not 

applied to the building design. Centuries of building experience taught, surely with no 

consciousness about it, that since arches and domes are simple compression structures, 

their stability is independent from their scale, and every dimension of a structural model 

can be increased proportionately to erect the real structure. That is way no engineering 

science was necessary in the past to design, model and build pure compression structures: 

that’s all because the stability is only a geometry matter and it is almost independent from 

the stiffness or the strength of the masonry. (Larena, 2009)  

At the time in which Hooke worked, there were big arguments between the most 

important scientists on the scene and not only for scientific reasons. It is impossible to 

leave out Newton from the dissertation. 

 Intellectually, Hooke was probably nearly as able as Newton, and he was 

certainly even more touchy and vain; but in other respects they were men of totally 

different temperaments and interests. […] Newton’s vision of the Universe may 

have been wider than Hooke’s, but his interest in science was much less pratical. 

[…] It is true that Newton became Master of the Mint and did the job well, but it 

seems that his acceptance of the post had a little to do with any desire to apply 

science and a lot to do with the fact that this was a ‘place under Governement’ 

which, in those days, conferred a much higher social position than his fellowship 

of Trinity, not to mention a higher salary. I don’t think he had much time or 

inclination to indulge in the sins of the flesh. In short, Newton was well constituted 

to detest Hooke as a man and to loathe everything he stood for, down to and 
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including elasticity. It so happened that Newton had a good fortune to live od for 

twenty-five years after Hooke died, and he devoted a good deal of this time to 

denigrating Hooke’s memory and the importance of applied science. Since 

Newton had, by then, an almost God-like position in the scientific world, and since 

all this tended to reinforce the social and intellectual tendencies of the age, 

subjects like structures suffered heavily in popularity, even for many years after 

Newton’s death. (Gordon, 1978) 

However, during this period often the statements, like the one secrecy did by Hooke, were 

not fully supported by mathematical proofs and the problem of catenary was one of them. 

At the end of the century seems that Leibniz, Huygens and Bernoulli gave their solution 

to the problem but was only David Gregory in 1697 that published the mathematics. There 

were some mistakes inside the analytical solution but what he wrote was essential for the 

work of Coulomb almost 80 years later: 

In a vertical plane, but in an inverted situation, the chain will preserve its figure 

without falling, and therefore will constitute a very thin arch, or fornix; that is, 

infinitely small rigid and polished spheres disposed in an inverted arch of a 

catenaria will form an arch; no part of which will be thrust outwards of inwards 

by other parts, but, the lowest part remaining firm, it will support itself by means 

of its figure… And, on the contrary, none but the catenaria is the figure of a true 

legitimate arch, or fornix. And when an arch of any other figure is supported, it 

is because in its thickness some catenaria is included. Neither would it be 

sustained if it were very thin, and composed of slippery parts. From Corol. 5 it 

may be collected, by what force an arch, or buttress, press a wall outwardly, to 

which it is applied; for this is the same with that part of the force sustaining the 

chain, which draws according to a horizontal direction. For the force, which in 

the chain drwas inwards, in an arch equal to the chain drives outwards. […] 

Gregory asserts that if any thrust line can be found lying within the masonry, then 

the arch will stand. (Heyman, 1998) 

One of the first and most important application of the anagram comes from Wren and it 

is displayed in Saint Paul’s Cathedral. The building is one of the masterpiece where the 

weight of a huge building can be addressed from the top to the foundations. “The building 
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even incorporates flying buttresses, though unlike in medieval cathedrals, they are hidden 

from view, as they did not suit the Baroque architectural style. The main structural 

element of this cathedral is a cone made of brick, which carry the weight of the lantern. 

Inside this, and visible from the interior of the cathedral, is a lightweight hemispherical 

brick shell with an oculus” (Addis, 2007) that is supported by the brick cone. For the 

design of the cone, Wren used the principle written by Hooke. So “the most efficient and 

economical shape for the brick cone was calculated to be an elongated, gentle 

paraboloid”. (Addis, 2007) In the hanged model idea, the shape was given by a gravity 

concentrated load in midspan.  

 

Figure 2: (a) The inverted hanging chain in front of the section of the dome of the St. Paul Cathedral in London by 

Christoper Wren (1720) and (b) the architectural section of the building 

A second remarkable example of application of the so called Hooke’s second law, comes 

from Italy and from the dome of St. Peters during the XVIII century. It “had developed 

cracks running up from the drum along generators, and dying out near the crown; these 

meridional cracks divided the dome into portions approximating half spherical lunes 

(orange slices)” (Heyman, 1998). Giovanni Poleni, academic from University of Padova, 

in 1740 was called as consultant after other unsatisfactory designers. He criticized his 

colleagues because the models of collapse they presented, did not correspond to the 

behavior of the dome as indicated by the cracks. He assumed that masonry had large 

compression strength and zero tensile strength that is fair considering what nowadays is 

known about masonry behavior. He divided the dome into fifty lunes and considered the 
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equilibrium of this quasi two dimensional arch tapering to zero thickness at the crown. 

He observed that such an arch would be stable if the line of thrust lay entirely within the 

thickness of the masonry as expected. Defining the shape of a stable arch as the inversion 

of the corresponding hanging catenary, he made a model using weights proportional to 

the distribution of weight in a pair of lunes and the weight of the lantern, and determined 

the shape of the thrust line experimentally. Three years later, Le Seur, Jacquier and 

Boscovich, made a different study of the dome concluding that extra ties were necessary 

for the stability of the dome to contain the horizontal thrusts. Poleni saw their work and 

he agreed with them because of his estimation of the tie force coming from the horizontal 

pull of the hanging chain. (Addis, 2007) (Heyman, 1998) 

 

Figure 3: Poleni's drawing of Hooke's analogy between an arch and a hanging chain, and his analysis of the Dome 

of St-Peter's in Rome (1748) 

“It may point out that the simple catenary is not a parabola, as in many texts both terms 

are used as synonyms; in fact, it has the shape of the hyperbolic cosine.” (Huerta, 

2006)However, Hooke’s second law could also be seen as a precocious statement of the 

Lower Bound Theorem.  

This approach illustrated by Hooke was not widely divulged in continental Europe, but it 

was being mentioned in some French treatises of the XVIII century. In Germany Hubsch 

carries out some research on this idea to demonstrate the uselessness of buttresses during 

the design of a church in the XIX century.  
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“Around 1840, the line of thrust theory is postulated making more rigorous the intuitive 

experimental approach of the English engineers” (Huerta, 2006). Now it was possible to 

calculate and draw a line of thrust without models, using mathematical analysis or 

graphical methods. 

The most important graphical method that attempt to calculate structures using primarily 

graphic methods, is the Graphic Statics. One of the father of this method is Maxwell who, 

between 1864 and 1870, established that for certain trusses, the nodes and polygons 

representing the geometry have reciprocal polygons and nodes in the force domain. 

(Beghini, 2014)  

Graphic statics is easy to apply for one and two dimensional problems to be solved. This 

approach can be extended to the third dimension but it need a very complex geometrical 

procedure. However, some explanations about this method will be presented in the 

following chapters. (Rippmann, 2016) 

A new formal language based on the use of hanging models was only introduced through 

the work of German architect Friedric Gosling and more prominently, through the 

creation of the Catalan architect Antoni Gaudi. 

Gaudi’s work convers all aspects of architecture: layout, ornamentation and stability. He 

also incorporates other arts: sculpture, painting and photography. For Gaudi, structural 

design was an integral part of architectural design from its initial stages. It was not 

restricted to a mere stability check.  

In order to understand the structural component of Gaudi’s architecture, is useful to 

understand the traditional Catalan building methods. The procedures concerned are all 

based on the use of an especially resistant, broad, flat tile an inch thick and 6 by 12 inches 

in area. These tiles courses are usually laminated in a sufficient number of layer in order 

to achieve the desired moment of inertia at any point of interest. Part of the efficiency of 

this masonry building kind derives from the excellence of the tiles, which are frequently 

harder than stone. The character of the mortar employed is crucial. It is quite thick 

occupying the 50 cent of the depth of the masonry. Nowadays the strength of the mortar 

became so high that masonry usually beaks. 
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Traditional building methods and Graphic Static were two of the most important aspects 

that influenced Gaudi’s architecture. Gaudi used the concept of catenary arches in a 

completely original way: to integrate the structural design in the process of architectural 

design.   

“Gaudi used the concept of catenary arches in a completely original way: to integrate 

the structural design in the process of architectural design. It is not a matter of verifying 

the stability of a certain design; it is a matter of projecting, from the start, using stable 

shapes”. (Huerta, 2006) 

Gaudi found catenary and parabolic curves aesthetically pleasant and he used them even 

when he could have used other kinds of shapes. He didn’t want to apply the traditional 

method in which a vault is designed, giving it a certain shape and dimensions and, then, 

its stability is checked using graphic methods; he wanted to apply a design method that 

allowed him to obtain equilibrated forms directly. He devised his own method for creating 

masonry compression structures by extending into three dimensions Robert Hooke’s 

axiom stating that the form of a stable arch is that of an inverted hanging chain. To 

establish the form for the vault of a chapel, Gaudi created a three-dimensional model 

using wires and bags of sand to represent the weight of the masonry elements and canvas 

to visualize the vaults. When inverted, this would give a stable arrangement of masonry 

columns and vaults.   

The architectural projects by Gaudi that hold the greatest interest are two unfinished 

structures: the Colonia Guell chapel and the Church of the Sagrada Familia, on which he 

worked from 1884 until his death in 1926. Although unfinished, “Gaudi’s intentions with 

regard to both buildings are well known from his drawings, models, and photographs, so 

that we can actually study his structural theory and practice as though the two edifices 

had in fact been completed” (Collins, 1963). In particular, the Colonia Guell chapel is the 

one all designed using empirical considerations. The form and the shape of the whole 

structure and of its constituent parts are governed by the material used for their 

construction: masonry. A masonry vaults need to follow as closely as possible the thrust 

network of forces acting on and inside the analyzed structure. Gaudi recovered most of 

his data about materials and their behavior from direct tests. In the standard process he 

needed to use these advices through the subject of graphic statics as usual at the time. The 
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three dimensional forms involved in the process required a very high difficult geometrical 

and analytical approach by means of projective geometry and diagrams very hard to be 

read. So he implemented three dimensional hanging models, funicular models that 

represented the true arches in inverted position. (Collins, 1963) (Huerta, 2006) 

Specifically thinking about the Colonia Guell Chapel is known that this church is part of 

an ambitious industrial complex, in the town of Santa Coloma de Cervello (Barcelona).  

The project starts form Eusebi Guell, owner of a large textile factory; his intention was to 

build a quartier beside Barcelona for the workers of the factory. As great patron of Gaudì, 

he involved the architect in the project in 1890. Guell’s intention was not only to build a 

place for the workers to sleep and rest and live with their family, he wanted to create a 

new living center with its own personality that join social and economic life. So it was 

important for him to build facilities to help develop culture, sport and arts. Also the 

religious component was important for Guell, so he asked Gaudì to design and realize a 

new chapel, instead of the one (too small for the growing population) that could 

accommodate all the inhabitants. 

However, little did Güell imagine that Gaudí would make a proposal as sober, stern and 

radical. The architecture was based on the task of making Güell a place of worship, that 

harmonized with the unconventional architecture of the workers’ homes in Güell´s 

Colony, and with the nearby forest and the slope of the hill where it would be projected. 
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Figure 4: The Crypt of Colonia Guell 

One of the most characteristic features of this construction is undoubtedly its structure. A 

way that comes from a study model that retains, called “stereostatic model or 

polifunicular model” by which Gaudí calculated the structure of the future church. A 

model of the church at 1:10 that grew to more than 4.5 meters high and hung by string 

from the ceiling by two points and the suspending weights were bags of pellets. In this 

way he could draw an inverted bow in the air and Gaudí spent time photographing and he 

then put his drawings of the future arches onto paper, forming the profile of the church. 

Again the modernist genius, whose rule was “with two rulers and a ball of string all the 

architecture is generated”, demonstrated in Güell´s colony’s own physical knowledge of 

gravity and pressure, along with his intuition and experience, helped to create a unique 

structure which was formed as an “experiment” of architectural solutions that were then 

also incorporated into the Sagrada Familia. 
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Figure 5: (a) First stereostatic model for a previous study and (b) Small sacks filled with pellets 

 

Figure 6: Hanging model for the Sagrada Familia 
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Figure 7: View of the Sagrada Familia 

By the beginning of the second half of the 20th century the use of hanging models was 

refined. One of the most important designer of those years working and thinking about 

form finding was the Swiss Heinz Isler. He was one of the father of concrete shell design 

and he was interested in thin shell topic since he was a student. Indeed, he was the only 

one between hundred students to choose a master degree thesis in which he studied thin 

shell.  

Isler is also remarkable for his simple experiment where he showed that straight and flat 

elements were not as efficient as curved ones, indeed a curved plastic element, the one 

used by him, can resist more than 30 times greater load then the same element when it is 

flat. 

It is well known that “the general mathematical theory of shells did little to stimulate 

design; rather, the construction of shells stimulated academics to study the theory.” 

(Billington, 1985). He also used the geometric similarity between hanging structures and 

dome or shell structures. For many years after the heyday of concrete shells in 1950s, he 

has continued to produce concrete shell roofs using an elegant design procedure. He first 

establishes a suitable plan for the roof, then uses a hanging fabric model to generate the 

statically-correct geometry, which he then measures and scales up to generate the 
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dimensions of the finished shell of reinforced concrete. In his remarkable paper New 

Shapes for Shells, presented at the first conference of the in the International Association 

for Shell and Spatial Structures, in Madrid in 1959, Isler proposed three methods of form 

finding. Of these three, he considered the hanging cloth reversed to be the most 

satisfactory and this was the method he used to find the shape of his most iconic works 

such as the roofs of the N1 autobahn service station at Deitingen and the Sicli factory in 

Geneva. The paper concluded with a sketch, by Isler, shown in figure, indicating 39 

potential shell forms and an etc., suggesting that there might be an infinite number yet to 

be discovered.  

 

Figure 8: Isler's examples of the endless forms possible for shells, form his IASS conference paper in 1959 
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“For form finding of his shells Isler loaded the fabric surface with a plaster of his 

own formula developed to maximize mouldability when wet whilst maintaining a 

constant on the curved fabric and minimizing cracking of the drying surface.  

However, Isler also realized the shortcomings of this technique, due to the 

influence of fabric weave and its orientation relative to the boundaries. To 

minimize these effects, for more accurate modelling of the hanging surface, Isler 

employed a selected high-quality latex rubber membrane which has consistent 

isotropic properties”. (Chilton, 2012) 

From the almost potentially infinite shapes that can be found using these form finding 

methods the choice of the shape that will be effectively designed and built by the engineer 

is governed, according to Isler and what he wrote on the blackboard of IASS conference 

in 1959, to some key factors: 

 Functional; 

 Shaping; 

 Artistic expression; 

 Statics; 

 Construction; 

 Cost. 

In the photography that record these words, Isler emphasized shaping and cost. (Chilton, 

2012) 
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Figure 9: Service Station at Deitingen Sud (1968) 

 

Figure 10: Sicli SA Factory in Geneva (1969) 

Hanging models also played a fundamental role in the work of Frei Otto. Otto specialized 

in lightweight tensile and membrane structures, and pioneered advances in structural 

mathematics and civil engineering. He founded the Institute for Lightweight Structures at 
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the University of Stuttgart in 1964 and headed the institute until his retirement as 

university professor. He used physical models as integral part of the process of designing 

cable-net or membrane structures. He developed completely new kind of structures where 

is present a double curvature with a high level of pre-stress to prevent the membrane or 

steel cables form deflecting excessively under snow or wind load, and from vibrating or 

flapping in a wind. To design his structures, he developed a completely new design and 

manufacturing process: the soap film models. Those models presented the greatest 

technical challenge because no one ever made bubbles up to a meter across that would 

last long enough to be studied and measured. It was very difficult to be accurate enough 

in the measurement because that model has to scaled up to almost hundred times to 

become the real structures and in the up scaled situation, the solution has to satisfy the 

requirements of the fabric and cable manufacturers. This design method let Otto to build 

the cable net roof of the German Pavillon at Expo 67 in Montreal and the 135 metres 

cable-net roof over the stadium at the 1972 Munich Olympics.  

 

Figure 11: German Pavillon at Expo 67 in Montreal 
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Jӧrg Schlaich, project leader at Leonhardt & Andrӓ, the structural firm of the project, 

doubted the precision of the physical models, and pushed for the development of 

computational methods for the analysis and cutting pattern generation. During this phase 

Linkwitz proposed to measure the models precisely applying close range 

photogrammetric methods which would allow for a simultaneous determination of the 3-

D geometry of the model without touching it. Also from this analysis it was realized that 

the models were by no means precise enough to derive the cutting pattern for an equal 

mesh cable net made from steel. In 1971 Linkwitz and Schek discovered a new 

formulation of the figure of equilibrium of forces, the force-density formulation. They 

realized that this was more appropriate for solving the problem, especially that of finding 

good initial geometry. The general formulation of the static equilibrium problem as 

mathematical relation between geometry and inner forces is non-linear and has to be 

solved iteratively. To solve the problem was studied a mathematical trick: the forces in 

action were substituted by the ratio between force and length of the element; this ratio is 

called force density and let the designer to write linear equilibrium equations to solve the 

system that now is all linear and lightweight and fast from a computational point of view. 

The system became again non-linear when constraints are imposed to the structure. In 

this case the system is solved through gradient-based methods such as the Gauss-Newton 

method. This method, called from that time Force Density Method (FDM), was the one 

used to calculate in a numerical way the geometry of the Olympic roof and some years 

later of the Multihalle in Mannheim.  

Each set of force density values creates a unique equilibrium form and the potential of 

this approach for form finding on the computer enabled the optimization of equilibrium 

geometry, but did not yet offer an alternative for the model-based design and for finding 

process. (Grundig, Moncrieff, Singer, & Strobel, 2000) (Lachauer, 2015) 
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Figure 12: cable-net roof over the stadium at the 1972 Munich Olympics 

Frei Otto’s model studies were not restricted to tensile structures. He and his research 

teams looked at every possible form of structure. His particular fascination, however, was 

with forms generated in nature and the natural world was always an inspiration for Otto 

during his career. Thinking about that, it is easy to understand that he was fascinated by 

what Hooke wrote in his anagram and by the design approach Gaudi had for his main 

structures. Otto was so interested in Gaudi’s works that he also made a reconstruction of 

the hanging model of the crypt of Colonia Guell by the Catalan architect. (Addis, 2007) 

According to this, one of the most important structure designed and built by Frei Otto was 

the Multihalle in Mannheim in Germany, realized in 1975 as exhibition building for the 

Garden Festival. Even if in 1970s the computers were already born, computational 

analysis was still in its childhood. That’s way a physical model, a hanging one, was create 

to design the Multihalle. 
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Two companies were involved in the realization of the physical model: Mutschler & 

Partners and Atelier Warmbronn. The first company was the architecual firm of the 

project while the second one was the Frei Otto’s own company.  They realized a small 

suspended chain model of the structure under design process: the chosen scale for the 

model was 1:500 and it was created during a workshop leaded by Otto by himself in 

Warmbronn in Germany. They used wire thread spread all over the surface area of the 

model in order to find the approximate length and width of the gridshell. 

In designer’s mind those threads would represents the wooden “branches” forming the 

gridshell in the final structure. The suspended model was found as a good representation 

for the Mannheim Multihalle behavior because, always thinking about Hooke’s second 

law, it was put under entirely tensile forces only coming from self-weight. It is important 

to consider that in a lightweight structure like this one, the self-weight is only a little and 

negligible percentage of the whole forces field involving the gridshell; snow and wind 

are two of the most important conditioning forces acting on the structure but in order to 

find the form, considering self-weight or, in general, gravitational loads, is instead a good 

solution both in the early and the advanced phases of the project. In this situation, all the 

forces acting on the surface are transmitted only by means of axial forces. Applying 

Hooke’s teaching and inverting the suspended model, bending moments will always be 

null and all the internal forces that were fully in tension become fully in compression. 

During design phases of the Multihalle, this was very important because wooden lathes 

can resist axial forces well because the forces act along the axis of the beam but are poor 

at resisting shear forces that act in orthogonal direction with regard to the axis of the 

beam.  
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Figure 13: Multihalle Mannheim 

During the realization of the hanging chain model, the designers knew that the 

representation of the real structure in scale couldn’t be able to consider every single 

element of the real structure both grid and node. They needed to find a way to scale up 

well to real size the model and all the considerations coming from the analysis. They 

decided to represent only one grid element instead of three of them.  

“The wire mesh was created using surprisingly simple materials: it consisted only of a 

wire rod with hooks at both ends approximately 15 millimeters in length, and a wire ring 

approximately 2.5 millimeters in diameter. While the wire represented the timber beams 

of the gridshell the rings represented the nodal joints. This arrangement of chain elements 

allowed the production of a mesh of any size, and also ensured that the angles could be 

freely displaced. This angular freedom provides the possibility to produce either a curved 

or planar form using this quadrangular equal-meshed net. Once the net was completed 

to the approximate proportions, it was suspended on a final framework which consisted 

of brass support columns, plexiglass, and brass wire boundaries. The edge lengths were 

then adjusted to fix any minor inconsistencies in the form of the smooth domes. The next 

step was using the model to realize the fully formed structure”.  (Mihalik, Tan, & 

Zengeza, 2013) 
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Figure 14: Hanging Model for Multihalle Mannheim 

To ensure that neither would occur, a computer analysis of the structure was undertaken 

by the engineers at Arup’s firm. The computer model of the roof was simplified like the 

physical one. The analysis revealed the likelihood that the shell would indeed buckle in 

some places, and it was decided to increases its resistance to buckling by using two 

orthogonal grids of laths. Despite the thicker gridshell, the building is surely one of the 

boldest structures even constructed and, though originally intended as a temporary 

building, is still in use.
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3. An Overview of Structural Form Finding 

Methods 

Form finding can be defined as the “forward process in which parameters are explicitly 

directly controlled to find an optimal geometry of a structure which is in static 

equilibrium with a design loading” (Adriaenssens, Block, Veenendaal, & Williams, 

2014)  

To find the right or even just one feasible form for a structure or a membrane or a double 

curved surface the designer could use both physical and numerical methods. Physical 

models were used a lot during the past decades before the rise of personal computers. 

They deal with the construction, in scale, of the structure object of the design process. As 

written in the previous chapter, they could be realized with different methodologies 

develop during the centuries starting from the Hooke’s second law, passing through 

Gaudi’s hanging models, Isler’s physical models and theories about concrete shells, until 

Frey Otto and his soap film models for the search of the minimal surface for in-tension 

structures and his hanging models. Remarkable is the procedure used by Isler of the 

membranes hanged and covered by his own made elastic rubber that let the designer to 

fix the form after the initial wet membranes got dry. This method is used also nowadays 

in wind tunnels to study particular kind of membranes’ deformations.  

Numerical methods for form finding are the most applied design approaches for 

membrane structures even if they are governed by compressive or tensile state of stress. 

Sometimes physical and numerical methods are used both. First the numerical one is 

applied to find the geometry of the structure and after the physical model is realized but 

only to represent the chosen shape; this choice reduce a lot costs of experimental tests 

during the design process. Through numerical representation is possible to create the 

desired shape of the structure function of constraints, both structural and geometrical 

ones, and of stresses supposed. Different numerical methods are implemented nowadays, 

both linear and non-linear. (Casagrande, 2011)  

“By the early 1980s, the speed of computer had increased sufficiently for complex 

iterative calculations to become feasible [This let the designer to use numerical 
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models and numerical form finding methods in the design not only as a test or a 

scientific experiment but as integrative part of the design process] 

The designer first inputs the approximate surface geometry of a membrane, its 

support conditions and the elastic properties of the membrane material. The 

computer then analyzes the structure and finds the equilibrium form, if there is 

one, for the given input conditions. If this form is not what the designer wanted, 

the input conditions can be altered and the new equilibrium shape calculated. This 

highly interactive approach to form-finding effectively gives the designer the 

feeling of experimenting with a physical model in the real world. Not only do such 

programs find the equilibrium form, they can compute the stresses in the 

membrane. this allows the identification of areas that are overstressed, 

understressed, or unstressed in one direction, leading the membrature to 

wrinkle”. (Addis, 2007)  

“In the last five decades several methods of form finding have been developed. Earlier 

methods were typically applied to discrete cable-net structures and extended by later 

methods to surface elements for membrane structures. It is possible to categorize 

these in three main families: 

 Stiffness matrix methods are based on using the standard elastic and 

geometric stiffness matrices. These methods are among the oldest form finding 

methods and are adapted from structural analysis; 

 Geometric stiffness methods are material independent, with only a geometric 

stiffness. In several cases, starting with the force density method, the ratio of 

force to length is a central unit in the mathematics. Several later methods are 

presented as generalizations or extensions of the force density method, 

introduced in the previous chapter, independent of element type, often 

discussing prescription of forces rather than force densities. 

 Dynamic equilibrium methods solve the problem of dynamic equilibrium to arrive at 

a steady-state solution, equivalent to the static solution of static equilibrium.” (Block 

& Veenendaal, 2012)  

“An overview and comparison of structural form finding methods has been presented by 

Veenendal and Block. Their research discusses and compares the methods of form finding 
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through three design examples. […] Their work focuses on the process of which the 

methods find the form with respect to factors such as time and number of iterations. In 

addition, they present the potential development of new and hybrid methods based on the 

results.” (Bertin, 2013)  

In the following sections will be presented the most important numerical methods used 

by designers during the form finding process. 

3.1.  Force Density Method 

The Force Density Method (FDM) is one of the most used form finding methods for the 

design of shells, membranes and cable net structures. The procedure of the method has 

been developed by Schek and Linkwitz between 1971 and 1974 (years of their scientific 

publications about the topic) with regard to the stadium roof in Munich for Olympic 

Games of 1972. The first and most important idea that is important to remind is that this 

method is one of the first studied to be used with a computer.  

The authors of the method had to deal with a very high non-linear problem as the stadium 

roof was.  

The following analytical explanation of the method is the translation from italian of 

Introduzione all’analisi automatica di sistemi strutturali composti da funi, book written 

by E. Casagrande in 2011. 

The method relies on the assumption that the ratio of tension force to length of each cable 

can be constant, transforming a system of non-linear equations to a set of linear equations 

which can be solved directly. To better explain how the FDM works, is solved an easy 

example of cable-net structure. 
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Figure 15: Cable-net structure scheme 

The simple structure has 5 structural nodes and one of them is free subjected to a random 

force set (Px, Py, Pz) and 4 pre-stressed elements subjected to a pre-stress force Ti. The 

equilibrium equations are written with regards to the node 5; they are written for each bar 

and for each principal direction with the help of director cosins: 

(𝑥𝑝 − 𝑥𝑛)

𝐿𝑚
=

𝐿𝑚𝑥

𝐿𝑚
= 𝑐𝑥 

(𝑦𝑝 − 𝑦𝑛)

𝐿𝑚
=

𝐿𝑚𝑦

𝐿𝑚
= 𝑐𝑦 

(𝑧𝑝 − 𝑧𝑛)

𝐿𝑚
=

𝐿𝑚𝑧

𝐿𝑚
= 𝑐𝑧 

The bars are all connected to free node so the equilibrium equations for each direction 

can be written as follows: 

𝑇1 ∙ 𝑐𝑥1 + 𝑇2 ∙ 𝑐𝑥2 + 𝑇3 ∙ 𝑐𝑥3 + 𝑇4 ∙ 𝑐𝑥4 = 𝑃𝑥 

𝑇1 ∙ 𝑐𝑦1 + 𝑇2 ∙ 𝑐𝑦2 + 𝑇3 ∙ 𝑐𝑦3 + 𝑇4 ∙ 𝑐𝑦4 = 𝑃𝑦 
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𝑇1 ∙ 𝑐𝑧1 + 𝑇2 ∙ 𝑐𝑧2 + 𝑇3 ∙ 𝑐𝑧3 + 𝑇4 ∙ 𝑐𝑧4 = 𝑃𝑧 

The step after deal with the substitution of the first three equations in the latter three 

obtaining: 

𝑇1 ∙
(𝑥5 − 𝑥1)

𝐿1
+ 𝑇2 ∙

(𝑥5 − 𝑥2)

𝐿2
+ 𝑇3 ∙

(𝑥5 − 𝑥3)

𝐿3
+ 𝑇4 ∙

(𝑥5 − 𝑥4)

𝐿4
= 𝑃𝑥 

𝑇1 ∙
(𝑦5 − 𝑦1)

𝐿1
+ 𝑇2 ∙

(𝑦5 − 𝑦2)

𝐿2
+ 𝑇3 ∙

(𝑦5 − 𝑦3)

𝐿3
+ 𝑇4 ∙

(𝑦5 − 𝑦4)

𝐿4
= 𝑃𝑦 

𝑇1 ∙
(𝑧5 − 𝑧1)

𝐿1
+ 𝑇2 ∙

(𝑧5 − 𝑧2)

𝐿2
+ 𝑇3 ∙

(𝑧5 − 𝑧3)

𝐿3
+ 𝑇4 ∙

(𝑧5 − 𝑧4)

𝐿4
= 𝑃𝑧 

The system is non-linear because the element lengths are directly dependent to the 

extreme nodes coordinates of the row which they are connected. Now is introduced the 

constant term, called force density coming from the ratio between the tension of the 

element and its own length: 

𝑞𝑚 =
𝑇𝑚

𝐿𝑚
 

In this way, the previous system can be written as follows: 

𝑞1 ∙ (𝑥5 − 𝑥1) + 𝑞2 ∙ (𝑥5 − 𝑥2) + 𝑞3 ∙ (𝑥5 − 𝑥3) + 𝑞4 ∙ (𝑥5 − 𝑥4) = 𝑃𝑥 

𝑞1 ∙ (𝑦5 − 𝑦1) + 𝑞2 ∙ (𝑦5 − 𝑦2) + 𝑞3 ∙ (𝑦5 − 𝑦3) + 𝑞4 ∙ (𝑦5 − 𝑦4) = 𝑃𝑦 

𝑞1 ∙ (𝑧5 − 𝑧1) + 𝑞2 ∙ (𝑧5 − 𝑧2) + 𝑞3 ∙ (𝑧5 − 𝑧3) + 𝑞4 ∙ (𝑧5 − 𝑧4) = 𝑃𝑧 

The system written as above is linear in the unknown qm.  

The same problem is now exposed from a matrix point of view in order to extend the 

solution also to more complicated problems. 

For the generic element length: 

𝐿𝑚𝑥 =  𝑥𝑝 − 𝑥𝑛 = [1 − 1] ∙ |
𝑥𝑝

𝑥𝑛
| = [𝐶𝑠] ∙ [𝑋] 

Using this notation the projected length of each element in the three principal directions 

can be summed up as follow: 
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[𝐿𝑚𝑥] = [𝐶𝑠] ∙ [𝑋] 

[𝐿𝑚𝑦] = [𝐶𝑠] ∙ [𝑌] 

[𝐿𝑚𝑧] = [𝐶𝑠] ∙ [𝑍] 

Q is the diagonal matrix containing the density force values. So the equilibrium equations 

of each single bar can be written in the following system: 

[𝑄𝑚𝑥] = [𝑄] ∙ [𝐿𝑚𝑥] 

[𝑄𝑚𝑦] = [𝑄] ∙ [𝐿𝑚𝑦] 

[𝑄𝑚𝑧] = [𝑄] ∙ [𝐿𝑚𝑧] 

And the global system of equilibrium equations for each free node is: 

∑ 𝑄𝑚𝑥 = 𝑃𝑥 

∑ 𝑄𝑚𝑦 = 𝑃𝑦 

∑ 𝑄𝑚𝑧 = 𝑃𝑧 

The following step is to substitute the value of [Qmi] inside the sum that can be written as 

[𝐶]𝑇; the equilibrium is found as: 

[𝐶]𝑇 ∙ [𝑄] ∙ [𝐶] ∙ [𝑋] = 𝑃𝑖 

It is also possible to separate the matrix [C] in two parts: the first one will contain the 

constraints nodes while the latter the free ones. 

The Force Density Method is one of the easiest methods for form finding processes for 

membrane structures and in particular cable-net structures. The computer has to work 

only with linear systems so the method is lightweight from a computational point of view. 

However, with this method the value of the forces Ti of the single element is not known 

a priori because all the algorithm work with the ratio, with the force density (that are 

coefficients). This procedure gives back a system, a shape, a structure which tensional 

state is unknown. So this method can be applied in a functional way only if the designer 

has a good experience because he determines the shape of the structure acting on 
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coefficient without physical relations. Initial values for these force densities need to be 

chosen for the first-order form-finding. There is nothing that informs the user on how to 

distribute the forces to obtain a desired three-dimensional shape. There is also no option 

to constrain a solution to a predefined solution space. Often the shape of the structure is 

imposed by architectural or functional constraints. When this happens, the designer needs 

to understand that the equilibrium values of the force densities are found in an iterative 

optimization process. (Southern, 2011) (Casagrande, 2011) (Rippmann, 2016) (Block, 

Thrust Network Analysis: Exploring Three.dimensional Equilibrium, 2009) 

3.2.  Dynamic Relaxation Method 

Differential equations can describe nearly all systems undergoing change. They are 

ubiquitous in science and engineering as well as economics, social science, biology, 

business, health care, etc. Many mathematicians have studied the nature of these 

equations for hundreds of years and there are many well developed solution techniques. 

Often, systems described by differential equations are so complex, or the systems that 

they describe are so large, that a purely analytical solution to the equations is not tractable. 

It is in these complex systems where computer simulations and numerical methods are 

useful. 

Dynamic Relaxation Method systems modify the form-finding problem into a dynamic 

problem. They simulate the behavior of physical form-finding experiments, such as 

network of hanging chains or a soap bubble experiment. The method uses a network of 

linear elements with simulated elastic behavior, initial rest length and lumped, nodal 

masses.  Dynamic Relaxation is mostly used to improve given input shapes, but does not 

allow the designer to easily interact with the optimization process. The basis methodology 

of dynamic relaxation is a numerical discretization of the structural form into a particle 

spring system.  The dynamic relaxation method was created without the dynamic 

interpretation to solve mathematical equations with the finite difference method. Only 

later the method was introduced to dynamic characteristics to help the solution of 

engineering problems and not only mathematical problems anymore. the first applications 

of the method were on linear problems but the growth of computer processor and the 

specific characteristics of the analytical solution, let the method to be implemented and 
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applied also for non-linear applications. In this way it was possible to use it for form 

finding processes.  

Dynamic relaxation method was initially used for structural analysis in in different 

engineering fields because the solution is found without complex operations on stiffness 

matrix. 

The following analytical explanation of the method is the translation from italian of 

Introduzione all’analisi automatica di sistemi strutturali composti da funi, book written 

by E. Casagrande in 2011. 

The method finds the equilibrium of a structural system with masses, concentrated on 

nodes. They move like a harmonic system with damping around the equilibrium position. 

The equation which rule the motion of the node I in a generic direction d is: 

𝑷𝑖𝑑 = [∑ 𝑲𝛿]
𝑖𝑑

+ 𝑴𝑖𝑑𝛿"𝑖𝑑 + 𝑪𝛿′𝑖𝑑 

P is the external loads array, the first term of the second part of the equation is the internal 

forces array, M is the masses array and C is the viscous damping coefficient. δ variables 

are respectively the nodal vectors of accelerations (‘’), velocities (‘) and displacements. 

After the introduction of the main equation, the residual array is introduced from the 

difference between the external loads array and the internal forces array. This difference 

creates a motion of the system based on the following relation: 

𝑹𝑖𝑑 = 𝑷𝑖𝑑 − [∑ 𝑲𝛿]
𝑖𝑑

= 𝑴𝑖𝑑𝛿"𝑖𝑑 + 𝑪𝛿′𝑖𝑑 

the structural system reaches the equilibrium condition when the residual array tends to 

zero. The equation can be approximated with finite differences method if the acceleration 

term is considered as the ratio between velocity and time lapse. n is the time lapse in 

which the calculus is done: 

𝑹𝑖𝑑
𝑛 = 𝑴𝑖𝑑

𝛿
𝑖𝑑

′𝑛+
1
2 − 𝛿

𝑖𝑑

′𝑛−
1
2

∆𝑡
+ 𝑪

𝛿
𝑖𝑑

′𝑛+
1
2 − 𝛿

𝑖𝑑

′𝑛−
1
2

2
 

Pointing out velocity terms: 
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𝛿
𝑖𝑑

′𝑛+
1
2 = 𝛿

𝑖𝑑

′𝑛−
1
2 ∙

𝑴𝑖𝑑

∆𝑡 −
𝑪
2

𝑴𝑖𝑑

∆𝑡 +
𝑪
2

+
𝑹𝑖𝑑

𝑛

𝑴𝑖𝑑

∆𝑡 +
𝑪
2

 

With the velocity definition written as above, the displacements at time n+1 can be found 

as: 

𝛿𝑖𝑑
𝑛+1 = 𝛿𝑖𝑑

𝑛 + 𝛿
𝑖𝑑

′𝑛+
1
2∆𝑡 

The method repeats the last but one equation in an iterative way in order to determine the 

displacements arrray until the difference between internal and external loads, becomes 

lower than a fixed value, a tolerance. 

The dynamic relaxation method stability is conditioned, according to the previous 

equations, by time lapse, arrays containing mass terms (M) and damping coefficients (C). 

These variables are necessary because the method goal is to find the system’s equilibrium 

position and not to follow the dynamic behavior of the structure. It is important to 

determine clever time lapses and M and C values in order to have a stable behavior and 

a sure convergence of the method. The initial values to assign to variables were analyzed 

in different studies. Some of those results are written in the following section. 

 Time Lapse 

Time Lapse parameter is very important because it could influence both stability behavior 

and computational speed. Indeed, if this parameter is changed, nodes relative speeds and 

nodes relative displacements will be subjected to big variations and also the evaluation of 

kinetic energy will be strongly influenced. Two schemes for time lapse choice are 

analyzed: constant time lapse and Qiang procedure.  

 Constant time lapse 

The constant time lapse assumption is the most used method. According to Underwood 

in his Dynamic relaxation in computational method for transient analysis, the time lapse 

has to be: 

∆𝑡 ≤
2

𝑝𝑚𝑎𝑥
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Assuming p as the maximum value of structure time period. The period is function of the 

stiffness matrix and mass matrix according to the following expression: 

𝑝 = √
𝑲

𝑴
 

Where K is the structure stiffness matrix and M represents the masses concentrated in the 

nodes. According to Underwood, the value should have to be included between 1 and 1.1, 

but for sake of simplicity often the value 1.0 is used. However, values a bit higher than 

one return a better convergence of the solution. 

 Qiang procedure 

This method is presented by Shizhong in his An Adaptive dynamic relaxation method for 

non-linear problems and it is founded on Rayleigh wave’s theory and the minimum time 

period of the structure. For each iteration, time lapse is given by the following relation: 

∆𝑡 =
2

√1 + 𝑝0

 

This scheme is usually applied for non-linear solving problems; indeed, the time lapse 

value changes every iteration. 

 Mass 

Another important parameter which is able to influence the dynamic relaxation method 

is the mass acting in order to understand nodes speed and the kinetic energy of the whole 

system.  

Four solutions to write the mass matrix are presented: 

 Unary mass; 

 Mass proportional to the stiffness; 

 Mass proportional to the sum of absolute values; 

 Gerschgorin method. 

 Unary mass 

The matrix M is built multiplying by identity matrix I a numerical coefficient g: 

𝑴 = 𝑔𝑰 
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This method is easy to be implemented but it is not the best one for form finding processes 

because matrix mass is kept constant for every iteration: that means a bigger number of 

iterations and more time necessary to solve the problem. 

 Mass proportional to the stiffness 

In this method the mass matrix is built as a multiple of the stiffness matrix: 

𝑴 = 𝑔𝑲 

The method is very close to the first one but with better performances from a 

computational point of view; indeed, for each iteration, the mass is subjected to a variation 

proportional to the stiffness variation. This process ensures a faster convergence of the 

solution. 

 Mass proportional to the sum of absolute values 

In this scheme the mass matrix M is determined as the sum of the absolute values of every 

row of the stiffness matrix K: 

𝑚𝑖𝑖 = ∑ |𝑘𝑖𝑗|

𝑛𝑑𝑜𝑓

𝑗=1

 

It is clear that bigger is the number of degrees of freedom of the structure, more is the 

computational time for the form finding process. The increase in the operations number 

is compensated by a bigger numerical stability of the whole process because of the 

continue updating of the matrix each iteration. The big disadvantage is that for this 

scheme, is necessary to upload the whole stiffness matrix of the structure. 

 Gerschgorin method 

This method, unlike the previous three, is created from mathematical basis. It is very 

efficient, mostly for non-linear analysis: 

𝑚𝑖𝑖 ≥
1

4
∆𝑡2 ∑ |𝑘𝑖𝑗|

𝑛

𝑗=1

 

 Damping coefficient 

The damping coefficient C is one of the other most important parameters of the analysis 

which influence a lot the numerical stability and the convergence of the dynamic 
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relaxation method. Many researches has been done to find the best way to decide a value 

for this coefficient and most of all are based on Rayleigh theories. 

 Dynamic method 

This method is presented by W.J. Lewis in his Tension Structures – Form and Behavior; 

according to his job, the method comes from a structural system composed by one mass 

and a spring. N is the number of iterations composing a complete oscillation cycle, m is 

the system mass and f is the fundamental frequency of the system. With those 

assumptions, the viscous damping coefficient is given by the following relation: 

𝐶 = 4𝜋𝑚𝑓 

The method has big advantages from a computational point of view because the C value 

changes at every iteration. 

 Underwood Method 

The Underwood method tries to evaluate the variable c. the coefficient is then found as 

the product of the coefficient end the matrix mass: 

𝑐𝑛 = 2 {
𝒙𝑛

𝑇𝑲𝑛𝒙𝑛

𝒙𝑛
𝑇𝑴𝑛𝒙𝑛

}

1
2

 

The M of the expression is evaluated with the Gerschgorin method, while Kn is the 

diagonal matrix defined as follow: 

𝐾𝑛
𝑖 =

𝐹𝑖(𝑥𝑛) − 𝐹𝑖(𝑥𝑛 − 1)

∆𝑡 ∙ 𝑥
𝑖

′𝑛−
1
2

 

Where Fi is the node i internal force. This method is used a lot in the non-linear analysis 

because guarantees a fast convergence of the solution. 

 Dynamic relaxation method with kinetic energy 

The dynamic relaxation method can be implemented with some differences using kinetic 

energy. In this case at every iterative step the kinetic energy is calculated and when the 

maximum value is reached, the velocity array is initialized to zero and a new iterative 

step begins. 
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The equation can be written as: 

𝑹𝑖𝑑 = 𝑴𝑖𝑑𝛿"𝑖𝑑 

The acceleration terms are written with finite difference method: 

𝑹𝑖𝑑
𝑛 = 𝑴𝑖𝑑

𝛿
𝑖𝑑

′𝑛+
1
2 − 𝛿

𝑖𝑑

′𝑛−
1
2

∆𝑡
 

The relations that give back the velocity and displacements can be written as: 

𝛿
𝑖𝑑

′𝑛+
1
2 = 𝛿

𝑖𝑑

′𝑛−
1
2 +

𝑹𝑖𝑑
𝑛

𝑴𝑖𝑑
∆𝑡 

𝛿𝑖𝑑
𝑛+1 = 𝛿𝑖𝑑

𝑛 + 𝛿
𝑖𝑑

′𝑛+
1
2∆𝑡 

When the kinetic energy comes to the maximum value, the velocity array is set to zero 

and the operative procedure restart from the last found layout. The kinetic energy peak is 

found from the comparison between the KE at i iteration with KE at i-1 iteration. Indeed, 

if the last value is lower it means that the peak has been overpassed.  
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Figure 16: Dynamic Relaxation Method Flow Chart 
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3.3.  Particle-Spring System 

Force Density Method and Dynamic Relaxation Method are very useful to solve structural 

problems where is necessary to find the equilibrium position of a structural network 

subjected to a well-known system of internal and external forces and/or when pre-stressed 

load states are present. When the typical form finding problem is assigned for structure 

that has to be in a fully compression or tension state of stresses under self-weight or 

gravitational loads, those two approaches seems to be not very suitable. The best 

representative example is the one of the suspended hanging chain model. 

During the years, researchers tried also to apply Finite Element Analysis to the world of 

form finding but without success. This happened because of the presence of big 

displacements while the system is moving trying to find his equilibrium position. Big 

displacements in this environment are the cause for numerical instabilities and the results 

can’t be correct also because all the theory of Finite Element Analysis is based on small 

displacements. The Finite Element Analysis is not able to represent in the correct way 

those situations so also that way was abandoned for form finding process.  

Witnesses of this situation are both Axel Killian and John Ochsendorf at MIT. They 

developed a new methodology for form finding based on the previous Dynamic 

Relaxation method but able to represent the stress state of a structure fully in compression 

or in tension. 

Their goal was to represent by numerical and computational perspectives, the behavior of 

a physical model like the ones created in the past for the design of some of the most 

important shell structures of the last two centuries. As illustrated in the previous chapter, 

architects and engineers as Gaudì, Isler, Otto were used to design their structure with 

hanging models.  

Killian and Oschendorf knew that a method developed in the computers world and most 

of all in the Computer Aided Design environment would be able to represent and model 

hanging structure under various loading conditions and evaluate their behavior in real 

time. So Particle Spring System was created. 

“Particle-spring systems are based on lumped masses, called particles, which are 

connected by linear elastic springs. Each spring is assigned a constant axial stiffness, an 
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initial length, and a damping coefficient. Springs generate a force when displaced from 

their rest length. External forces can be applied to the particles, as in the case of 

gravitational acceleration.” (Kilian & Ochsendorf, 2005) 

If the initial geometry of the particle spring system is known, two principal approaches 

can be applied to find the equilibrium: implicit and explicit solvers. 

Killian and Oschendorf observed that implicit solvers are more useful to solve structural 

problems. they are more stable, from a numerical point of view, considering the high 

spring stiffness used in the model to minimize the initial strain of the spring length at the 

beginning of the solving procedure. Using high spring stiffness small changes in length 

value will be observed while the solver is working and in the final condition. Small 

changes are not easy to be recognized and evaluated by an explicit solver that could return 

a wrong solution for the problem. That’s why implicit solvers have to be preferred for the 

structural form finding process. The two researchers of MIT developed their method 

using the Runge-Kutta solver aiming to reach the equilibrium of each particle.  

“Each particle in the system has a position, a velocity, and a variable mass, as 

well as a summarized vector for all the forces acting on it. A force in the particle-

spring system can be applied to a particle based on the force vectors direction 

and magnitude. Alternatively, the magnitude of the force can be calculated using 

a function as in the case of springs. Springs are mass-less connectors between two 

particles that exercise a force on the particles based on the spring’s offset from 

its rest length. Particles can be restrained in any dimension, so it is 

straightforward to add supports by restraining the displacement vectors of an 

individual particle.” (Kilian & Ochsendorf, 2005) 

When the solving procedure starts, the system is not in equilibrium and all the process is 

governed by the motion of the springs and the mass nodes trying to find their equilibrium 

position. The particle-springs movement goes on until the internal equilibrium of the 

forces is found or the analysis is interrupted.  

A good way to help the system to reach the equilibrium is the application of a damping 

coefficient to each spring or with other methods if more useful. Often can be applied by 
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the developer of the system termination criteria for the solver: a tolerance value for nodes 

velocity, for instance. 

Killian and Ochsendorf presented in their paper some examples about their new method 

that was implemented on a Java code developed by Greenwald in 2003 to apply the 

method on a CAD environment.  

They also affirmed that the method is useful for three-dimensional structure: that’s 

because also for those kind of structure is possible to use the term funicular in order to 

consider a structure in compression or tension only state of stress under a given loading. 

This situation is a little bit harder to be solved because the problem is more complex 

because of the multiple load paths which are possible. Multiple load paths indeed, means 

multiple possible forms for the structure. This is possible because only by changing the 

rest length or the stiffness of a single spring, the whole shape of the structure under loads 

will be different.  

Trying to understand the conclusions made by Killian and Ochsendorf it is possible to 

say that this new method is useful because is possible to have real time results of the 

analysis and also is possible to see step by step every change in the structure and in the 

supposed solution both during the solving procedure and after a change in the system 

stiffness or in the variation of the rest length of a spring.  

The Particle Spring System can be also seen as an application of the Lower Bound 

Theorem because it is always able to find the equilibrium of the structure under a given 

loading combination. As known from the structural analysis, this means that the given 

loading conditions is lower than the collapse condition so we are sure that the found shape 

will be stable even if it is not the most optimized solution. The method is also useful for 

the designer because it let him to better understand in an intuitive way how the structure 

works, which is the flow forces and which could be the optimal shape for his structure.  

One of the biggest disadvantage of the method is its computational weight. It could be 

expensive, from a computational point of view, for a desktop computer if the nodes 

number is bigger than one thousand. The method still works but it could be hard to see 

results in real time, losing one of the most important qualities of the method because the 

designer isn’t able to understand step by step what is happening to the structure while it 
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is finding its equilibrium condition and it will be hard for him to interact with the structure 

under motion. 

3.4.  Thrust Network Analysis 

In order to understand the Thrust Network Analysis is fundamental to introduce some 

concept about graphical methods and in particular about Graphic Static.  

Since the Ancient times, the classical age, the gothic period and so on, a lot of heuristic 

and geometrical design methods were applied by architects and builder to realize 

structures and also to experiment with spectacular works like the gothic cathedrals during 

the Middle Age. All those buildings weren’t realized with the support of analytical 

theories or knowledge. Everything was known form experience, from word of mouth 

between generations of builders or textbook full of drawings.  

The most important graphical method, developed in the second half of the XIX century 

is the Graphic Statics. This method was initially developed by Karl Culmann, professor 

of Civil Engineering at the Swiss Federal Institute of Technology (ETH) in Zurich, 

between the 1864 and 1866 with the publication of his work Die Graphische Statik where 

he summed up all the work made by his predecessors in the previous centuries. His 

method is based on third Newton’s law and he used a graphical representation of internal 

and external forces acting in and on the structure, considering both magnitude and 

direction. 

The method presented is composed by two principal diagram called form diagram and 

force diagram. The first diagram represents, in a two-dimensional world, the geometry of 

the structure including its external loads while the second one represents the equilibrium 

of the forces. 

Matthias Rippman, in his doctoral thesis in 2016, summed up three general but 

fundamental characteristics of the two diagrams: 

“The relation between form and fore diagrams is called reciprocal (Maxwell,1864), 

having the following topological, geometrical and structural properties: 

 The form and force diagrams are dual figures, i.e. both diagrams have the 

same number of edges, and each node with a valency higher than one in one 
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diagram corresponds to a space, formed by a polygon of edges, in the other, 

and vice versa; 

 Each edge e in the form diagram has a corresponding edge e*, parallel to 

edge e, in the force diagram; 

 The length of edge e* in the force diagram is, at a chosen scale, equal to the 

magnitude of axial force in edge e in the form diagram.” (Rippmann, 2016) 

If the two diagrams are built following the previous indications, the reciprocal 

relationship guarantee the in-plane static equilibrium of all internal loads. It is important 

to remind that if the structure is statically indeterminate, more than one reciprocal 

diagrams are present for the same form diagram.  

The graphic statics, for its own representation, can be used in a bidirectional way: it is 

possible to  

“construct the force diagram from the form diagram or apply the inverse process 

and construct parts of the form diagram from an intended force diagram. [this 

fact can also be interpreted as:] 

“structural analysis of determinate structures is conducted by drawing the form 

diagram, and subsequently constructing the force diagram; structural design or 

form finding is conducted by constructing the geometry of the structure form 

chosen constraints of the force diagram”. (Lachauer, 2015) 

This consciousness about graphic static was the main input for the birth of the Thrust 

Network Analysis by Philippe Block and John Oschendorf only a few years later the 

invention of the Particle Spring System. They studied this method not only to design new 

structures in a compression-only or tension-only state of stress but also for the analysis 

of historic structures in unreinforced masonry. 

Within this method, Block uses reciprocal diagrams in order to relate the geometry of the 

three dimensional equilibrium networks to the internal forces present inside the structure. 

They used an algorithm similar than the one used for the Force Density Method because 

they understood that was important to linearize the constraints in order to take into 

account the high indeterminacy of the problem included in funicular structures. 
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In the following rows, the most important assumption necessary for the Thrust Network 

Analysis are written directly from the Doctoral Thesis work by Philippe Block where the 

method is presented: 

“assumption b) and c) are specific for masonry: 

a) The structural action of the vault is represented by a discrete network of forces 

with discrete loads applied at the vertices […]; 

b) A compression only solution in equilibrium with the applied loads and contained 

within the vault’s geometry represents a valid, i.e. stable, equilibrium state of 

vault […]; 

c) Masonry has no tensile capacity; sliding does not occur; and the stresses are low 

enough so that crushing does not occur (infinite compression is assumed) […]; 

d) All loads need to be vertical. 

 

Figure 17: Relationship between the compression equilibrium shape, the thrust network (G), its planar projection 

(primal grid  Γ) and the reciprocal diagram (dual grid  Γ*) 

 “ . (Block, Thrust Network Analysis: Exploring Three.dimensional Equilibrium, 2009) 

Every time Block refers to equilibrium structures or solutions he is referring to 

compression funicular structure in equilibrium with the external applied loads only by 

means of compressive or axial forces, without any internal bending. 

One of the rule imposed by Block to apply his method is the constraint of only vertical 

loads to be applied to the analyzed structure. Matthias Rippmann in his doctoral thesis 
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affirm that the equilibrium problem can be solved if we divide the solving procedure in 

two main steps: 

 STEP 1: Solution of the so called “horizontal equilibrium”; 

 STEP 2: Solution of the “vertical equilibrium”. 

These two steps are also the ones used in the tool developed by Block Research Group at 

ETH in Zurich, called Rhino VAULT, implemented to use the Thrust Network Analysis. 

The tool, a plug-in for Rhinoceros, will be explained in detail in the following chapters 

of this Thesis. 

The first step of the analysis is introduced because one observation is done: the vertical 

loads will be not present in the form diagram if it is considered as the horizontal projection 

of the thrust network G, as can be seen in the previous figure. Therefore, the in-plane 

equilibrium of the form diagram can be also considered as the horizontal equilibrium of 

G and this is not dependent by the applied vertical loads. The magnitude of the external 

loads is given by a scale factor of the force diagram: in this way for a given force diagram 

in equilibrium with the respective form diagram, and considering a given scale factor, a 

unique thrust network G, in equilibrium with the external loads, can be found for the 

given supports vertices. 

The presented approach let the designer to manipulate different and multiple degrees of 

freedom as the ones described in the figure taken by Rippmann’s thesis: 
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Figure 18: Modification of the design parameters in TNA: (a) Modification of the layout of forces represented by Γ; 
(b) (re-)distribution of the (horizontal) forces represented by Γ*; (c) the vertical rise of the equilibrium network G, 

inversely proportional to scale of Γ*; (d) the definition of supports and the heights in G. (Rippmann, 2016) 

Block, in his thesis, gave an overview of the main steps to do to complete the solving 

procedure of form finding: 

 Construction of the primal grid Γ: the designer has to think at his structure as if it 

is composed by a network of forces representing a possible load paths acting 

throughout the structure; 
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 Formulation of nodal height constraints: the solution can be found if a solution 

space is defined; this means a definition of a sort of masonry vault’s transversal 

section with regard to values of extrados and intrados; 

 Attribution of nodal loads: always remember the rule of the method that constrain 

the designer to apply only vertical loads, nodal loads have to be applied to the 

structure: both representing self-weight and live loads; 

 Formulation of the nodal constraints about vertical equilibrium: there are a 

defined number of branches converging in every node of the network and they must 

be in equilibrium. The forces acting through them are written in function of the own 

length of every one of them in the form diagram, the unknown components of the 

force diagram and the previously defined nodal heights; 

 Generation of the force diagram: the force diagram is created following the rules 

of reciprocal diagrams and applying the desired scale factor; 

 Linearization of the constraints: Block uses a linear optimization of the constraints 

in order to be able to solve only by means of linear equations, the form finding 

problem; 

 Solution for the G grid using linear optimization: the solution is found using the 

analytical procedure illustrated in Block’s doctoral thesis; 

 Update of the dual grid: the solution found with the linear optimization has to be 

checked by the designer and often it is not satisfactory. The constraints will be updated 

and the dual grids could be manipulated. The process is done in an iterative way until 

a satisfactory solution is found. 

In particular, when the designer manipulates the diagrams, he is explicitly manipulating 

the distribution of forces acting throughout the network. That’s why the network created 

on the vault is only a hypothesis of load path between the infinite paths possible. This 

manipulation, indirectly, is also changing the stiffness of single parts of the structure and 

this is independent from the choice of material. 

“all internal vertices need to be in horizontal equilibrium, which is guaranteed if, for 

edges coming together at internal vertices in Γ, their corresponding edges in Γ* form 

closed polygons, representing closed polygons of force vectors […]. In other words, to 
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guarantee equilibrium solutions, it is necessary that all corresponding edges in Γ and Γ* 

are parallel.” (Rippmann, 2016) 

A lot more could be written about Thrust Network Analysis but for specific and more 

complete explanation about the method, it suggested to refer to the original texts written 

by Block and his collaborators during the last decade.
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4. Form Finding and Linear Buckling Load 

Analysis for Pierced Vaults: A Case Study  

During the last decades several form finding methods were presented and shown. Each 

one has got its own strength and its own weakness different tool by tool. In the previous 

chapters of this work their histories and their own characteristics were illustrated.  

It is important to understand that the form finding process is not an aesthetic, artistic, 

philosophic approach used for the early design phases to create some new and upsetting 

shape. It is not a support for the fantasy or the intuition of the architect or the engineer to 

discover shapes never supposed.  

The form finding process has to be seen as an important step for the structural analysis 

and design of the final structure. It helps to explore the universe of shape solutions that a 

shell could assume to accomplish its structural objective. If a funicular structure is 

searched, a form finding method will be able to guarantee a pure membrane stress state 

in compression under self-weight or, generally speaking, a good structural shape already 

in an early design phase. 

With this approach all the constraints coming from the architectural design (height, 

surface to be covered, openings and supports numbers) and from geometrical or building 

constraints like obstacles or support positions and so on, are converted into design drivers, 

enabling flexible and innovative design solutions. The other important skill necessary for 

a form finding method is the speed and intuitiveness in order to help designer in the 

solutions universe exploration.  

Scope of this chapter is to analyze different pierced funicular structures and to compare 

them in order to understand the best holes’ pattern which return a structure with the 

desired thickness and pierced area percentage. This goal has to be reach considering a 

masonry structure. 

The structures analyzed, in masonry, have to be funicular shells with membrane stress 

state in compression because they are assumed to have no bending or traction strength. 

The initial design shape is discovered by mean of the Thrust Network Analysis. The 

method, illustrated in the previous chapter, is the most intuitive and flexible tool to 
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develop the following analysis. Graphical methods and Graphic Statics give to the form 

finding process high flexibility and intuitiveness.  

The method is very comfortable for this study because it is easy to interact with the form 

of the future structure and its flow of forces. The tool that implement the TNA lets the 

user to freely change openings number, shape and dimension. Smoothing techniques 

presents inside the tool guarantee that holes don’t generate big stress concentration next 

their boundary. 

The study begins with the choice of the perimeter the shell structure will cover. It is 

known that the funicular shell will present a double curvature so surely her projection on 

the horizontal plane will have a shape like the one supposed. It is important to notice that 

the shape drawn is only a first trial and it will be changed during the form finding process 

in order to achieve the horizontal and vertical equilibrium. The second step of the analysis 

is made using the tool released by the Block Research Group which implement the Thrust 

Network Analysis for practical applications. With the tool the shape of the shells is found; 

for each shell, the same height is imposed considering three different lowering conditions.  

In the form finding phase 4 pattern are considered. What does it mean? 

The same shell structure, first found with the TNA, will be modified creating holes in 

different number and positions on the surface; the openings number is an increasing 

variable different step by step and scheme by scheme.  

The following step of the study will take place exporting each found shell structure in a 

Finite Element environment in order to discover how stresses behave in the different 

conditions present. Indeed, each of the structure will be structural analyzed considering 5 

different constant thickness values. It will be also checked if the found shape respect the 

most important dogma of the study: the structure is characterized by a compression-only 

stress state. This is checked looking at the eccentricities of the axial forces respect to the 

transverse section.  

This Finite Element Analysis step of the study is developed in LUSAS analyst 

environment. 

The comparison between different structures belonging to the same pattern is governed 

by the equivalent Von Mises stress. This value will be illustrated in function of the 
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thickness of the structures and in function of the percentage of holed area related to the 

total area of the shell surface. Only a little number of vaults are analyzed in this step 

because the goal is only to validate the form finding theory applied.  

The main part of the analysis, however is not lead thinking about the tension state of 

compression. A linear buckling load analysis is done.  

To understand why this kind of analysis is necessary, in the following lines is quoted 

David Bushnell, one of the leader in Buckling of Shells, from the introduction in the 

article published in 1981: 

“In order to produce efficient, reliable designs and to avoid unexpected catastrophic 

failure of structures of which thin shells are important components, the engineer must 

understand the physics of shell buckling. […] To the laymen buckling is a mysterious, 

perhaps even awe-inspiring, phenomenon that transforms objects originally imbued with 

symmetrical beauty into junk.” (Bushnell, 1981)  

The shells belonging to the different patterns will be loaded by uniformly distributed 

loads representing dead load and variable or accidental loads and a linear buckling 

analysis is done in the Finite Element modeling environment. The buckling load is found, 

for each structure considering different work cases: three lowering degree values, five 

slenderness values, 4 hole patterns and symmetrical and anti-symmetrical load conditions. 

The results are commented in the following sections but the complete dossier of graphs 

and values tables is presented as attachment at the end of the work. 
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4.1. Rhino VAULT 

The TNA is applied by mean of the tool developed by Block Research Group: Rhino 

VAULT. The algorithm is developed as a free plug-in for Rhinoceros V4 and V5. The 

Graphical User Interface let the designer to interact with the reciprocal diagrams and to 

control all the form finding procedure. The tool was implemented by Lorenz Lachauer 

and Philippe Block in 2011 with the first release for Rhinoceros in 2012.  The latest 

releases use RhinoScript for the graphical interface features but a lot of component of the 

algorithm are written in C# and Python programming languages and some processes 

could be manually controlled working on the software’s Application Programming 

Interface (API). The structure of Rhino VAULT is based on the typical Thrust Network 

Analysis approach; the following flowchart try to resume this process. It is better 

illustrated in Matthias Rippmann’s Doctoral Thesis Funicular Shell Design: Geometric 

Approaches to Form Finding and Fabrication of Discrete Funicular Structures. 

 

Figure 19:TNA-based form finding framework showing the key operations and corresponding Rhino 

VAULT buttons: initialization process, modification of the design parameters, computing the horizontal 

and vertical equilibrium (Rippmann, 2016) 
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The method implemented with Rhino VAULT uses the two most important element of 

Graphic Static: the form and force diagram. The TNA was explained in the previous 

chapter but it is important to remember the principle that lead the whole method: the form 

and force diagram are in horizontal equilibrium when the corresponding edges in both 

diagrams are parallel and properly oriented. Furthermore, for a given horizontal 

projection (the form diagram) and the equilibrium of the horizontal force components and 

their scale factor, a unique thrust network, in equilibrium with the given loading, is then 

found for the given support vertices, which represents the shape of the compression-only 

structure. 

In other words, the form diagram gives a representation of the boundary conditions of the 

structure analyzed and its plan’s dimensions while the force diagram defines the 

horizontal force components in the structure, and how they are proportionally 

distributed/related. Rhino VAULT was specifically developed to help designer letting 

him to interact with the equilibrium process manipulating the two diagrams in a 

bidirectional and interactive manner. 

Rhino VAULT is not a stand-alone software but it is implemented in the Rhinoceros 

environment so it uses the same CAD and the same general user interface. Using the tool 

is possible by mean of the typical toolbar layout like all the commons commands present 

in Rhinoceros. 

 

Figure 20: The Rhino VAULT toolbar 

The different options given by the tool are now described trying to help to better 

understand how the tool works: 

 _rvInitiate: when Rhinoceros is opened, the library that included all the 

Rhino VAULT is not already loaded so if the user needs to start a form finding 

process is necessary to initiate the tool: in this way libraries are loaded and the 

software can be used; 
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 _rvSettings: this command button opens a window where is possible to 

change particular issues of the plugin. In this way it is allowed, for instance, to 

choose if visualize the thrust network mesh scheme or the color diagrams about 

the force magnitude present inside the different parts of the found structure. 

Furthermore, is possible to change some calculations parameters like the number 

of the process iterations during form finding;  

 

Figure 21: The default settings to control the different commands of Rhino VAULT 

 _rvForm: this command is used after the definition of an untrimmed surface 

by the user. That surface must represent the projection of the perimeter of the final 

structure. The command interacts with the CAD environment and generate an 

initial projection of the layout of forces in plan. The user can choose freely the 

topology of the layout including open-edges. The final nodes of these chosen-to-

be open edges will remain their position and thus represent support of the 

structure. This form diagram can also be drawn completely manually, with the 

help of Rhinoceros commands or external drawing software. It is important to 

remember that the tool works only if there are not present overlappings or 

duplicate edges and that all edges are assigned to the 01_FormEdges layer. 

Indeed, it is important to notice that every single object used to visualize and store 

the most recent Rhino VAULT result is assigned to a specific layer. This process 
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is completely automatic and controlled by the plugin but it is important not to play 

with these layers and to keep them clean and free from each element that is not 

linked with a specific Rhino VAULT definition; 

 

Figure 22: Default layer structure of Rhino VAULT inside the Rhinoceros CAD's environment 

 _rvFormTri: this command is similar than the previous one; in this case it is 

possible to automatically generate a form diagram whose pattern is made of 

triangular elements and not quadrangular like the default procedure.  This 

command is not used a lot also because it slows down a lot the computational 

speed of the whole process because it introduces more nodes than the default 

options so for the same surface a bigger number of equations need to be solved 

and the result is not better than using the default command. A triangular based 

form diagram could be useful to describe flow of forces difficult to be represented 

with the quadrangular scheme; 

 _rvDual: this command button generates a dual diagram for the defined form 

diagram. It could be seen as the first force diagram representation trial. To 

generate it, the software generates an initial rotate dual network that is obviously 

not the equilibrated force diagram. This means that between the two diagrams 

vectors are not parallel and oriented in the right direction. The tool shows the 

edges that are not in equilibrium and shows the specific angle deviation. Bigger 

are the values of the angle deviation, more difficult will be the research for the 

horizontal equilibrium state. In particular conditions, it is impossible to find the 
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equilibrated condition with a specific number of the iteration of the TNA 

algorithm. It is suggested to manually control those big values operating on the 

two diagrams before the algorithm starts to work; Rhino VAULT tool helps the 

user in this procedure because critical angle deviation values for the equilibrium 

are represented in red; 

 _rvRelax: often could be important to improve the distribution of vertices in 

the form or force diagram such that connected edges form smoother, more 

continuous paths. The way in which every node or edge is involved in this process 

could be controlled through the command button _rvModify illustrated below. 

This happens because is possible to change the virtual inertia of the elements, 

deciding which are the elements that have to move and how much; 

 _rvModify: inside this command button is possible to find several tools 

useful to modify and manipulate both form and force diagrams and also the thrust 

network after the form finding process is completed. Some of those tools involve 

geometrical features: the two diagrams can be scaled and/or moved, both the 

whole diagrams or part of them. It is also possible to manipulate the supports 

changing their height or projecting them onto an existing surface or mesh. It also 

possible to design supports that guarantee only vertical thrust. A very important 

function, used a lot for the analysis object of this section, is the one that let the 

user to define openings in the structures. This is possible because the tool basically 

changes the applied loads of the nodes surrounding the opening. One of the last 

important tools implemented by this command is the one that changes the inertia 

of individual nodes affecting both the relax function and the horizontal 

equilibrium research; 

 _rvHorizontal: with this command button the research for horizontal 

equilibrium is done. The procedure can be weighted to give priority to the 

geometry of either form or force diagram. Practically, this means that one can 

choose which diagram will be adapted less during the solving process that 

enforces parallelity; 
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 _rvVertical: is used to find a thrust network by solving the vertical 

equilibrium based on the computed horizontal equilibrium.  The vertical 

equilibrium of the forces ensures a compression-only solution under dominant 

self-weight. The solution can be visualized by a network of lines, pipes and a 

continuous mesh. If the vertical equilibrium fails to fully compute the thrust 

network will be shown in red. 

4.2.  Starting Attributes 

Before the illustration of the whole procedure followed for this study, the 4 patterns used 

to generate increasing number of openings onto the surface for different lowering 

conditions of the founded funicular shell structure are presented. The flow of forces 

discretization level is known from the application of Thrust Network Analysis by mean 

of Rhino VAULT: the holes’ pattern has to be create with respect to this discretization. 

Each hole in the first trial form diagram is create deleting an area corresponding to 2x2 

quadrangular elements as it can be seen in the following figure: 

 

Figure 23: portion of a trial form diagram before form finding and before the hole creation 
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Figure 24: portion of a trial form diagram before form finding - in yellow the edges that have to be 

deleted to create a new hole 

 

Figure 25: portion of a trial form diagram before form finding and after the creation of the hole from a 

2x2 quadrangular element area 
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To define the pattern some rule has to be imposed: 

 The distance between two holes has to be at least of 1 quadrangular element; 

 The position of the holes respects the symmetry of the starting geometry shape; 

 The distance between a hole and one of the boundaries has to be at least of 2 

quadrangular elements. 

Because of the discretization used for the definition of the form diagram, the chosen 

dimension (using as measure unit the quadrangular element) of the holes and the defined 

rules, the larger grid of holes that could be generated is made by 7x7 holes, that means a 

total maximum number of 49 holes. 

4 patterns are created. 

The choice of the patterns is not randomly realized. In a first phase of the study, only the 

first of them was generated. The first hole in the center was placed thinking about the 

Pantheon’s Dome in Rome where is known that the central circular hole helps to drop 

down the stress concentration in the central and higher fraction of the dome. The other 

holes were placed trying to keep the geometrical and structural symmetry of the original 

shape, the one without holes, from the center towards the boundary edges of the 

structures, filling with holes, step by step, the surface. 

The second and third patterns are generated to observe the behavior of the structures if 

the central hole is created only in a second time. Numerical results revealed that this 

curiosity was justified. The two patterns are different from each other because in the holes 

grow in number from boundaries towards the center following two different paths. After 

the central hole is placed the holes fill the shell surface. 

For a serviceable state load condition numerical results shew that the third pattern seemed 

to be the best one, but it was also clear that the central hole was truly helpful from a 

structural and strength point of view. Indeed, the Pattern 4 is generated very close to the 

third one but with two main differences: the openings filling path is inverted and is 

changed the path after the 13th hole. 

In the next pages are illustrated with schematic representations, the 4 chosen patterns. In 

the attachments are also reported figures representing the patterns and consequently all 
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the found structures after the form finding process trying to help to figure the reader out 

the real shape of the analyzed shells. 

4.3. Opening Patterns 

 Pattern 1 

 

 Pattern 2 
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 Pattern 3 

 

 Pattern 4 
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4.4. Form Finding Process 

The case study does not have any kind of constraint by geometrical or structural point of 

view because the study is not made for a real structure subjected to all design phases. For 

this reason, all the geometrical data and input and furthermore, number and nature of 

constraints, number of openings, material characteristics, structure thickness and so on 

are all arbitrary in order to give the as most general interpretation as possible of the 

obtained values and results. 

However, the study is done to give a practical contribute to real design of structures. The 

geometry of the structure is think to let it suitable as a temporary structure like an 

exhibition pavilion, auditorium, concert hall and so on or also as a stable structure. 

The selected area to be covered is a square with sides of 16 meters. The maximum height 

of the new shell structure will be 2.5, 5 or 7.5 meters in function of the lowering degree 

considered and this values has to be reached in the center of the covered area. The 

structure will be supported only in 4 points at the 4 square corners. The structure will 

present a compression-only state of stress for gravitational loads so it will follow the 

ancient principle of the catenaria in three dimensions that means that the shell will present 

a double curvature shape after the form finding process.  

 

Figure 26: Perimeter of the covered area 
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It is obvious that this perimeter could not be considered as the projection of the perimeter 

of the final shell structure also thinking about it as a first trial. Keeping the 4 corner points 

steady, a new trial perimeter is generated. The chosen shape would be more similar to the 

3-D catenary solution. It is illustrated in the next figure: 

 

Figure 27: the trial projection on horizontal plane of the funicular shell structure 

The illustrated shape is not an arbitrary choice but comes from the projection of the shell 

structure found with the Particle Spring System during the study of the behavior of that 

form finding method and illustrated in Appendix A. It was observed that the horizontal 

projection of the hanging model has a shape very similar to the one used now.  

The perimeter is drawn directly in Rhinoceros 3-D CAD environment; in this way the 

drawing is already ready to be subjected to form finding process with Rhino VAULT. 

Every side of the original square is considered as a curve governed by a second order 

equation, a parabola, described by the position of three points: the initial, the final and the 

middle curve one. The shape in the figure is obtained moving each middle curve point 

towards the center of the square of 6 meters. 

All the steps are presented with regard to the structure with thirteen holes of the third 

pattern with maximum height of 5 meters; this is true also for numerical results and 

values. However, as written previously, the whole results will be illustrated at the end of 
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this dissertation as attachment. This choice wants to help understanding the following 

steps. 

After Rhino VAULT’s library is loaded by Rhinoceros, the obtained shape is selected to 

generate the form diagram used in the TNA. The selected surface has been divided in a 

25x25 quadrangular grid: this means that each side is subdivided in 24 segments. 

 

Figure 28: first trial form diagram for the 13 Holes' shell of the pattern 3 

In the figure is shown how this first trial form diagram is made. It is important to focus 

on the corners of this diagram. Few branches-like segments are present. This is explained 

because the forces may go to a number of discrete supports, such as columns or buttresses. 

If we have considered a punctual support for the shell structure at each corner, the 

algorithm would not have been able to find the horizontal equilibrium regardless of all 

the other parameters and/or variables. Adding these supports let the algorithm to find the 

convergence. 
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Figure 29: Support conditions – Detail 

The tool creates a force diagram that doesn’t respect the horizontal equilibrium. It could 

be seen as a first trial, a break point to start the equilibrium condition research. The default 

setting creates it from a rotation of 90 degrees of the lines composing the edges of the 

initial form diagram. Unsupported boundaries of a funicular structure form a three-

dimensional edge arch. The horizontal forces in the unsupported edge arches are 

represented in the force diagram by fan-shaped set of edges converging in one vertex. As 

written above, the framework allows for the creation of irregular openings in complexly 

shaped funicular networks. Openings are generally represented by faces in the form 

diagram with more than four vertices. These openings comprise a funicular polygon in 

the form diagram for the horizontal thrust applied to it. These funicular polygons can be 

seen in the force diagram because of the Graphic statics’ rules. In the form diagram an 

opening must be represented by a convex face; this result in a star-like configuration of 

corresponding edges in the force diagram. It is obvious that more circular-like is the 

openings in the form diagram, less accentuated will be the stress concentration around the 

hole’s boundaries. 
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Figure 30: Initial Form and Force diagram 

The intial Force Diagram does not represent the equilibrate state but the plugin let the 

user know which are the edges that present a direction angle deviation bigger than a 

tolerange angle (imposed by user) that means which are the edges that, for a given 

tolerance, are not parallel in the form and force diagram. In the form diagram these info 

are also available; in this way is easier for the designer to understand which would be the 

critical edges that could determine a non convergence of the solution. The developers of 

the software suggest always to check if there are edges with too much big deviation angles 

and to manually modify them. For instance, a deviation angle bigger than 100° may 

doesn’t’ allow the sytem to reach the convergence of the horizontal equilibrium. 
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Figure 31: Initial Force diagram - In evidence the direction angle deviations between same edges in form 

and force diagram 

The following step of the study is the relax of the form diagram. This function was 

presented during the description of the tool commands. The framework lets the users to 

operate on the form of the two diagrams in order to smooth the shape of the edges. This 

could be useful if seems difficult to find a convergence to horizontal equilibrium.  

Laplacian mesh smoothing techniques, applied to existing form diagrams, are used to 

improve the distribution of vertices in the form diagram such that connected edges form 

smoother, more continuous load paths […]. The smoothing method is extended such that 

individual vertices and/or constrain vertices to lie on user-defined guide curves to form 

unsupported edge arch or opening geometries. (Rippmann, 2016) 

During this process is possible to assign different value of inertia to every single point or 

edge. This allows for a smart control of the relaxing movements of the diagrams. This 



78 

 

function is included inside the command button _rvModify. Every edge or points weight 

is assigned with a parametric value included between 0 and 1. Weight 0 for a point means 

that point will not move during relax phase; weight 1 for a point means that point has no 

inertia and it is completely free to move. This is the default condition for the points.  

In the case study value 0 is assigned to the support points while a value 0.15 is assigned 

to the boundary edges points. This value has been chosen to let the form of the diagram 

to be smoothened without change too much the initial shape.  

 

Figure 32: using _rvModify/ConstraintNodes 

The openings boundaries were not constrained during relax phase. This has been done 

because in this way the holes would smooth their shape in order to guarantee a lower 

stress concentration when the funicular shell structure would be found. 

Next figure shows the relaxed form diagram and his relative force diagram: 
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Figure 33: Relaxed form diagram and its relative force diagram 

The resulting diagram is not only smoothened but the edges of the form and the force 

diagram present deviation angle values smaller than before the process. 

After this operation, the form and the force diagrams are ready to be subjected to the real 

form finding process. The horizontal equilibrium is found variating the shape only of the 

force diagram. The equilibrium is found for every structure analyzed with a different 

number of iterations. For the structure used to illustrate the study reached convergence 

after 399 iterations. In the next figure is represented the force diagram in equilibrium: 
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Figure 34: Force Diagram after the Horizontal Equilibrium is reached 

The following step is the search for vertical equilibrium, second most important step of 

the Thrust Network Analysis. Remembering that for a given horizontal projection and 

equilibrium of the horizontal force components and a given scale of the force diagram (1 

for the case study) a unique thrust network, in equilibrium with the given loading is found 

for the given support vertices, the form finding process is now completed. 

Also in this case, such as for the horizontal equilibrium research, the equilibrium is found 

after a different number of iterations, different case by case. The height of the found 

structure is always function of the scale of the force diagram. Indeed, the found funicular 

structure is the only one in equilibrium if the scale of the diagram is equal to 1. 
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Figure 35: Shell Structure from TNA 

The structure found with the TNA and represented above has not the height desired: it is 

only 3.03 meters high. To reach the 5 meters desired and imposed for the case study it is 

necessary to change the scale factor of the force diagram.  

The sets of external loads are not defined for this form finding process. According to 

Block (Block, Thrust Network Analysis: Exploring Three-dimensional Equilibrium, 

2009) the problem in analysis is not linear but the TNA works solving systems of linear 

equations. However, is not possible to find an exact proportion between scale factor and 

height of the funicular shell.  

In an iterative way, the different values for all the shells were found. For instance, the 

scale factors for the vaults 5 meters tall are represented in the following tables: 
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PATTERN 1 PATTERN 2 PATTERN 3 PATTERN 4 

No Hole 0.7515 No Hole 0.7515 No Hole 0.7515 No Hole 0.7515 

1 Hole 0.746 4 Holes 0.712 4 Holes 0.719 1 Hole 0.746 

5 Holes 0.6658 8 Holes 0.669 8 Holes 0.6877 5 Holes 0.673 

9 Holes 0.618 12 Holes 0.615 12 Holes 0.636 9 Holes 0.63254 

13 Holes 0.586 13 Holes 0.588 13 Holes 0.614 13 Holes 0.614 

25 Holes 0.488 33 Holes 0.488 33 Holes 0.504 17 Holes 0.565 

29 Holes 0.461 45 Holes 0.399 45 Holes 0.4035 29 Holes 0.474 

49 Holes 0.36 49 Holes 0.36 49 Holes 0.36 49 Holes 0.36 

Table 1: Scale Factor Table 

The application of those factors ends the form finding process. All the structures present 

now the right height value and they could be analyzed with a Finite Element Solver to 

understand how the pierces condition the global stability of the structures. 
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4.5. Pierced Vaults Structural Analysis  

The second main step of the study is about the structural analysis of the found funicular 

shells.  

In this paragraph two different approaches are present. The first one is about the analysis 

of some of the structures looking at their Von Mises stresses under serviceability load 

conditions while the second one, the most important one, is about the linear buckling load 

analysis. In that case, more load conditions are included considering both symmetrical 

and anti-symmetrical load-cases. Three lowering degree conditions are introduced in 

order to better understand the behavior of the structures.  

In the following sections all the conditions are described to be applied for the first 

approach analysis. The specific conditions applied for the second one are introduced in 

the specific paragraph about buckling analysis. 

The analysis is done by mean of a Finite Element Solver: LUSAS 15.1 in its academic 

version.  As written in the User Manual: LUSAS is an associative feature-based Modeller. 

The model geometry is entered in terms of features which are discretized into finite 

elements in order to perform the analysis. The finite elements are the computational 

answer to designer question: What would happen if I did this to my new design and I need 

to answer only by means of nature schematization?  

Carpinteri wrote in his Scienza delle Costruzioni 2: the finite element method is a 

discretization method; instead of the displacements continuous function, the problem 

unknowns are the displacements of a finite points number. It is also an interpolation 

method because after the displacements of the nodes are determined, the method tie them 

with as most regular as possible functions. (Carpinteri, 1992) 

Increasing the discretization of the features will usually result in an increase in accuracy 

of the solution, but with a corresponding increase in solution time and disk space required. 

The features in LUSAS form a hierarchy, that is Volumes are comprised of Surfaces, 

which in turn are made up of Lines of Combined Lines, which are defined by Points. 

The model is a graphical representation of geometric features as points, lines, surfaces, 

volumes and assigned attributes as materials, loading, supports and mesh. 
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Describing how the study has been done, the same shell structure used for the form 

finding process will be considered.  

Only the structures 5 meters tall are considered in this first structural analysis phase. 

The geometry of the structure has been exported as a .dxf file from Rhinoceros to the 

CAD environment in order to trim the structure: only a quarter of the structure is 

considered for the structural analysis. The geometry exported from Rhinoceros are not 

points and lines but the triangular mesh generated by Rhino VAULT at the end of the 

form finding process. That mesh illustrated in the figure below, is composed by triangular 

elements; the discretization is made up on the original discretization of the form diagram; 

in this way higher is the level of the discretization of the form diagram in the early stages 

of the process, higher will be the number of mesh. 

 

Figure 36: 1/4 of the shell structure - in evidence the mesh discretization made up by Rhino VAULT 

  The presented geometry has been imported in the LUSAS 3-D CAD environment. 

LUSAS recognize the geometry imported but all the lines composing the mesh in the .dxf 

file were not interpreted by the software as surface and/or mesh element. User has to 

create all the surface elements in order to assign the desired surface finite element to every 

single mesh element which the imported geometry is made up.  
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4.5.1. Mesh Element 

The TSL6 finite element has been chosen for the structural analysis. It is a semiloof 

triangular element and its characteristics are described according to LUSAS’ User 

Manual: 

 

Figure 37: Semiloof element - TSL6 

 Element Group: Shells; 

 Element Subgroup: Semiloof shells; 

 Element description: a family of shell elements for the analysis of arbitrarily 

curved shell geometries, including multiple branched junctions. The elements can 

accommodate generally curved geometry with varying thickness and anisotropic 

and composite material properties. The element formulation takes account of both 

membrane and flexural deformations. As required by thin shell theory, transverse 

shearing deformations are excluded; 

 Number of Nodes: 6 anticlockwise; 

 Freedoms: U, V, W: at corner nodes. U, V, W, θ1, θ2: (loof rotations) at mid-side 

nodes; 

 Node coordinates: X, Y, Z at each node. 

All the other properties about this element are well described in the cited LUSAS’ User 

Manual. 

4.5.2. Geometric Attributes 

The other geometrical feature necessary to the Modeller to understand how the structure 

is characterized in the three dimensions is the thickness of the shell elements. 5 thickness 

values were initialized: 
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 𝑡1 = 30 𝑐𝑚; 

 𝑡2 = 25 𝑐𝑚; 

 𝑡3 = 20 𝑐𝑚; 

 𝑡4 = 15 𝑐𝑚; 

 𝑡5 = 10 𝑐𝑚. 

4.5.3. Material Attributes 

Referring to Italian D.M. 17/01/2018 Aggiornamento delle Nuove Norme Teniche Per Le 

Costruzioni, the material for the structure has been chosen, a masonry kind obviously. As 

the other parameters, also the mechanical characteristics of masonry are arbitrarily 

chosen. The chosen kind is referred to a common building situation with isotropic 

characteristics. 

The following mechanical characteristics refer to Table C8 A.2.1 of the Circolare 2 

febbraio 2009, n. 617 – Istruzioni per l’applicazione delle “Nuove norme tecniche per le 

costruzioni” di cui al D.M.14 gennaio 2008: 

MASONRY KIND: SEMI-SOLID BRICKS AND CEMENT 

MORTAR 

fm 6,5 [Mpa] E 4550 [Mpa] 

τ0 0,28 [Mpa] G 1137,5 [Mpa] 

γ 15 [kN/m3]       

Table 2: mechanical characteristics of the selected masonry kind 

4.5.4. Supports 

As exploited in a previous section, the structure is supported in its four corners. For 

equilibrium reasons these supports are not considered as punctual ones but they are 

composed by four different points simulating a sort of buttress. Also for this situation, as 

for instance for the material attributes, the choice of the support condition is arbitrary with 

respect to the correct number of degrees of freedom. For the case study a simply supported 

condition has been selected. Indeed, the 4 four points present in the reduced scheme for 

the structural analysis have displacements in the three principal direction kept locked. 

The analyzed structure is only ¼ of the real one. That happens because it is exploited its 

geometrical and loading-system symmetry. Additional constraints are necessary to have 
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the same structural behavior between the figure’s model and the “complete” one. There 

are present two kind of constraints: 

 Translation in X direction fixed and rotation about Y-axis fixed; 

 Translation in Y direction fixed and rotation about X-axis fixed. 

 

Figure 38: Support attributes description 

4.5.5. Loads Attributes 

In order to analyze the structure, some loads need to be applied. The density of the chosen 

materials is about 15 kN/m3 and the self-weight of the structure was not applied as a load 

divided the square area but as a concentrated load at the top of the structure with a value 

equal to half of the effective resultant thinking about a thickness of 15 cm. this value has 

been chosen in order to consider always the same load for every structure allowing a 

comparison based on the same initial load data. Indeed, the different shapes due to the 

different holes would have totally different and incomparable results due to the different 

loads and mass quantity distribution. Only half of the resultant is considered because a 

concentrated load with a modulus equal to the resultant has bigger effects on shell’s 

behavior, totally unrealistic; with the value that has been chosen, the author tried to 

represent a more representative case. However, loads value are not the central core of the 

analysis; they are only useful to let the comparison to be done. Furthermore, the same 

reasoning has been done for live loads considering a load divided by square meters of 1.5 

kN/m2. 



88 

 

The total area of the shell surface without openings is: 114.92 m2. The resultant applied 

for self-weight and live loads, considering half of their real value, are: 

 𝑃 =
𝛾∙𝑡∙𝐴

2
=

15∙0.15∙114.92

2
= 129.3 𝑘𝑁; 

 𝑄 =
𝑞𝐴

2
=

1.5∙114.92

2
= 86.19 𝑘𝑁. 

These two are the concentrated loads applied at the structures. Obviously their application 

takes into account the symmetry of the problem. For the structures, like the one 

represented above, the loads are applied at the nodes distributed on the boundary of the 

opening. No load cases or loads combination has been done. 
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4.5.6. Post Processing Phase 

The stress state analysis was one of the first step made during the develop of the work so 

only a few of the whole number of analyzed structures is considered. In particular, the 

structures with maximum height of 5 meters and with symmetric load conditions were 

analyzed. First of all is done an evaluation on the eccentricity of the loads in order to 

understand if the Thrust Network Analysis return the right behavior. This control 

confirmed the validity of the method but is not included in this work.  

The main parameter of the post processing phase is the Von Mises stress: 

[(𝜎1
2 + 𝜎2

2 + 𝜎3
2) − (𝜎1𝜎2 + 𝜎1𝜎2 + 𝜎2𝜎3)] = 𝜎𝑉𝑀

2  

There are present 4 different patterns including 8 funicular structures each one. Each 

structure has been analyzed changing its thickness through 5 different values and the 

results are shown by the help of graphics 

In the next pages are presented two kind of graphics: 

 the Von Mises stress is illustrated in function of the thickness of the funicular shell 

structure; one function checks with an opening’s percentage of the structure; 

 the Von Mises stress is illustrated in function of the opening’s percentage of the 

structure; one function checks with a thickness value of the funicular shell 

structure. 

The stress used and visualized in the graphics is the highest value through all the nodes 

of the structure 
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 Pattern 1 

 

Figure 39: Pattern 1 - Graphic 1 

t [cm] 30 25 20 15 10 

σid [Mpa] 

No Hole 3.52 3.87 5.89 10.07 21.03 

1 Hole 1.94 2.36 2.96 4.83 9.68 

5 Holes 3.78 5.17 7.57 12.25 23.57 

9 Holes 5.01 6.70 9.43 14.53 27.35 

13 Holes 4.19 5.45 7.40 11.17 21.17 

25 Holes 5.08 7.02 10.41 17.12 33.89 

29 Holes 4.77 6.46 9.29 14.56 26.20 

49 Holes 5.36 7.38 10.89 17.88 35.44 

Table 3: Von Mises Stresses 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

V
O

N
 M

IS
E

S
 E

Q
U

IV
A

L
E

N
T

 S
T

R
E

S
S

 [
M

P
A

]

THICKNESS [CM]

No Hole 1 Hole 5 Holes 9 Holes

13 Holes 25 Holes 29 Holes 49 Holes



91 

 

 

Figure 40: Pattern 1 - Graphic 2 

Pierced Area Percentage 

No Hole 0 [%] 

1 Hole 0.79 [%] 

5 Holes 5.34 [%] 

9 Holes 9.32 [%] 

13 Holes 13.46 [%] 

25 Holes 25.34 [%] 

29 Holes 29.08 [%] 

49 Holes 45.46 [%] 

Table 4: Pierced Area Percentage 
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 Pattern 2 

 

Figure 41: Pattern 2 - Graphic 1 

t [cm] 30 25 20 15 10 

σid 

No Hole 3.52 3.87 5.89 10.07 21.03 

4 Holes 2.87 4.00 5.98 9.99 20.27 

8 Holes 3.58 4.92 7.46 12.69 26.56 

12 Holes 7.60 10.53 15.60 25.53 49.65 

13 Holes 3.85 5.27 7.70 12.45 24.15 

33 Holes 3.84 5.25 7.69 12.52 24.60 

45 Holes 4.52 5.86 8.04 12.03 23.66 

49 Holes 5.36 7.38 10.89 17.88 35.44 

Table 5: Von Mises Stresses  
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Figure 42: Graphic 2 - Pattern 2 

Pierced Area Percentage 

No Hole 0 [%] 

4 Holes 4.39 [%] 

8 Holes 9.03 [%] 

12 Holes 13.1 [%] 

13 Holes 13.94 [%] 

33 Holes 32.46 [%] 

45 Holes 42.5 [%] 

49 Holes 45.46 [%] 

Table 6: Pierced Area Percentage 
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 Pattern 3 

 

Figure 43: Graphic 1 - Pattern 3 

t [cm] 30 25 20 15 10 

σid 

No Hole 3.52 3.87 5.89 10.07 21.03 

4 Holes 3.42 4.84 7.39 12.69 26.77 

8 Holes 3.43 4.85 7.41 12.73 26.89 

12 Holes 2.92 4.03 5.94 9.66 18.59 

13 Holes 2.00 2.69 3.86 6.16 11.87 

33 Holes 2.13 2.61 3.73 5.98 11.72 

45 Holes 2.93 3.91 5.57 8.79 16.46 

49 Holes 5.36 7.38 10.89 17.88 35.44 

Table 7: Von Mises stresses 
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Figure 44: Graphic 2 - Pattern 3 

Pierced Area Percentage 

No Hole 0 [%] 

4 Holes 4.35 [%] 

8 Holes 8.81 [%] 

12 Holes 13.03 [%] 

13 Holes 13.8 [%] 

33 Holes 32.6 [%] 

45 Holes 42.6 [%] 

49 Holes 45.46 [%] 

Table 8: Pierced Area Percentage 
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 Pattern 4 

 

Figure 45: Graphic 1 - Pattern 4 

t [cm] 30 25 20 15 10 

σid 

No Hole 3.52 3.87 5.89 10.07 21.03 

1 Hole 1.94 2.36 2.96 4.83 9.68 

5 Holes 2.53 3.43 4.94 7.89 15.61 

9 Holes 2.06 2.75 3.92 6.15 11.80 

13 Holes 2.00 2.69 3.86 6.16 11.87 

17 Holes 5.61 7.49 10.53 16.02 27.85 

29 Holes 3.71 5.05 7.30 11.61 22.56 

49 Holes 5.36 7.38 10.89 17.88 35.44 

Table 9: Von Mises stresses 
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Figure 46: Graphic 2 - Pattern 4 

Pierced Area Percentage 

No Hole 0 [%] 

1 Hole 0.79 [%] 

5 Holes 5.4 [%] 

9 Holes 9.76 [%] 

13 Holes 13.8 [%] 

17 Holes 17.6 [%] 

33 Holes 29.04 [%] 

49 Holes 45.46 [%] 

Table 10: Pierced Area Percentage 
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the results of the analysis let some considerations to be done: 

 The stress trend with the decrease of the thickness is almost the same for every 

pattern; 

 The funicular shell structure without openings is not the one with the lowest stress 

values; that means that if openings are placed with the right number and position 

can ensure a lower stress level inside the shell structure than the solution without 

them;  

 For pattern 1 and 4 the shell structure with 1 hole, placed in the center of the 

structure, is the one with the lowest level of stress; 

 Pattern 4 is the scheme in which the biggest number of points curve lie under a 

value of 6.5 MPa, the strength of the masonry kind selected; 

 For Pattern 2 the solution with 12 holes, placed with a cross like scheme but 

without a central opening, has stress values bigger than the solution with 49 holes; 

 For pattern 2, the step that involves the presence of the central opening, drop down 

the stresses inside the structure until the no-openings structure stress level; 

 For pattern 3, the step that involves the presence of the central opening, drop down 

the stresses inside the structure until values lower than the ones in the solution 

without openings; for this pattern, with the central opening, the solution with a 

openings percentage lower than the one of the structure with 49 holes, are 

characterized by stress values lower than the one without openings. 

The contour plots of the Von Mises stresses of every funicular shell structures are kept in 

the Attachments together with  
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4.6. Linear Buckling Load Analysis 

“To most laymen the word ‘buckling’ evokes an image of failure of a structure 

which has been compressed in some way. Pictures and perhaps sounds come to 

mind of sudden, catastrophic collapse involving very large deformations. From a 

scientific and engineering point of view, however, the interesting phases of 

buckling phenomena generally occur before the deformations are very large 

when, to the unaided eye, the structure appears to be undeformed or only slightly 

deformed.” (Bushnell, 1981) 

The goal of this analysis is to find the value of the first load multiplier that cause the 

elastic equilibrium instability of the structures and them deformed shape in order to 

understand which are the possible collapse mechanisms. 

The reason why this analysis is done can be summarized again in the words of David 

Bushnell: 

“The property of thinness of a shell wall has a consequence […]: The membrane 

stiffness is in in general several orders of magnitude greater than the bending 

stiffness. A thin shell can adsorb a great deal of membrane strain energy without 

deforming too much. It must deform much more in order to adsorb an equivalent 

amount of bending strain energy. If the shell is loaded in such a way that most of 

its strain energy is in the form of membrane compression, and if there is a way 

that this stored-up membrane energy can be converted into bending energy, the 

shell may fail rather dramatically in a process called ‘buckling’ as it exchanges 

its membrane energy for bending energy. Very large deflections are generally 

required to convert a given amount of membrane energy into bending energy. The 

way in which buckling occurs depends on how the shell is loaded and on its 

geometrical and material properties. The prebuckling process is often nonlinear 

if there is a reasonably large percentage of bending energy being stored in the 

shell throughout the loading history.” (Bushnell, 1981) 

From an analytical point of view, the analysis is lead as taught by the Structural Analysis. 

As written by Alberto Carpinteri in his Scienza delle Costruzioni: considering a discrete 
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system characterized by n degrees of freedom, and the Finite Element Model is the perfect 

example, the elastic equilibrium stability problem can always be written as: 

([𝐾] − 𝜆[𝐾𝑔]){𝛿} = {0} 

Where: 

 [𝐾] is the elastic stiffness matrix; 

 [𝐾𝑔] is the geometric stiffness matrix; 

 {𝛿} is the nodal displacements vector; 

 𝜆  is a load multiplier that grows in a proportional way. 

The eigenvalues of the problem can be found from the following condition: 

𝐷𝑒𝑡([𝐾] − 𝜆[𝐾𝑔]) = 0 

The minimal eigenvalue found is called critical loads multiplier and it is related with 

the collapse solicitation for the structure. (Carpinteri, 1992) 

With the LUSAS modeler and solver is possible to do a Buckling Analysis. It is important 

to notice that the analysis is a linear one. The problem has got big non-linearity features, 

both geometrical and mechanical, but for a general interpretation of the global stability 

behavior, the analysis offered by LUSAS is considered enough. 

Indeed, a linear buckling analysis can be considered as a useful technique applied to 

relatively stiff structure to estimate the maximum load that can be supported prior to 

structural instability or collapse.  

LUSAS Modeller manual gives the conditions applied by the software. It assumes that 

the stiffness matrix does not change prior to buckling, and that the stress stiffness matrix 

is simply a multiple of its initial values as explained by the previous equations. With these 

assumption, the linear buckling analysis can only be used to predict the load level at which 

a structure becomes unstable and pre-buckling displacements and their effects are 

negligible. The linear problem is solved only after the assemblage process of the stiffness 

matrix and the software prescribe that only elements with geometric non-linear capability 

can be used in a linear buckling analysis: this is respected by the case study because the 

TSL6 element used for the mesh definition has got geometric nonlinear capability. 
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The buckling load for a mode is obtained by multiplying the actual magnitude of the 

applied loading by the eigenvalue found. 

Absolute displacement output is not available from the analysis but it is shown in a 

normalized state so the eigenvectors are normalized to unity with the maximum 

translational displacement degree of freedom is set to one. 

As written in the introduction of this paragraph, the structures analyzed are the same used 

for the stress analysis under concentrated loads. However, the linear buckling analysis is 

feasible by the LUSAS Solver only if distributed loads are applied on the model.  

In order to understand better the behavior of these kind of structures, different situations 

are analyzed. It is explored the behavior through the load condition (symmetrical or anti-

symmetrical) and lowering condition (three different cases) variation.  

The lowering degree is defined as: 

𝑅 =
𝐷

𝐻
 

Where: 

 𝐻 is the maximum height of the structure counted from the support quote; 

 𝐷 is the structure principal diagonal of the projection on the horizontal plane. 

As written three different lowering conditions are analyzed: 

𝑅1 =
24

5
= 4.8         𝑅2 =

24

2.5
= 9.6          𝑅3 =

24

7.5
= 3.2   

𝑅1 is about the already shown structures, while in order to be able to analyzed the 

structures characterized by 𝑅2 and 𝑅3 it is necessary to repeat all the form finding process 

as explained in the previous sections: the input data are the same with the only difference 

of the height modifiable changing the scale of the force diagram when the Thrust Network 

Analysis is applied. 

It is useful, for the interpretation of the analysis result, to get how slenderness is defined 

during the study: 

𝜂 =
𝐷

𝑡
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Where: 

 t is the thickness of the cross section of the shell structure. 

5 thickness values are defined for the case study so 5 slenderness values are present: 

t η 

[m] [-] 

0.3 80 

0.25 96 

0.2 120 

0.15 160 

0.1 240 
Table 11: slenderness values 

Two different conditions are also analyzed about load-cases. It is important to remind that 

the case study is about a structure with geometrical symmetry and consequently all the 

considerations and results are about this construction typology. However, the first load-

case is the symmetrical one in which all the vertical loads are applied as gravity uniformly 

distributed loads all over the upper surface of the shell structure with z-axis direction. The 

second load-case is the anti-symmetrical one where only the dead load is applied as 

gravity uniformly distributed load all over the upper surface; the anti-symmetrical case is 

generated because of the application of variable or accidental loads as uniformly 

distributes loads only on a half of the upper surface of the shell structures. Both the loads 

of the second load-case have to be considered as applied with z-axis direction. 

In the following figure is shown the model of the structure for symmetrical loads: 

 

Figure 47: structural model for symmetrical load condition 
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The second load case and condition has to be modeled in a different way than the first in 

order to be analyzed in the right way from the LUSAS Modeller and Solver, for 𝑅1, 𝑅2 

and 𝑅2 geometries. It is not enough to model only a quarter loaded part of the structure to 

represent the anti-symmetrical load-case anymore.  

As shown in the following figure, a half of the structure has to be modeled in the Finite 

Element Modeler environment. The whole modeled structure is loaded by self-weight of 

the structure but only a half part of it, so a quarter part of the whole one, is subjected to 

live loads. 

 

Figure 48: Structural model for anti-symmetrical load condition 

The load considered and applied on the structure are: 

 Self-weight or Dead load: the value of the uniformly distributed load is function 

of the slenderness of the shell structure and of the material density. In this case 

study a masonry kind with 15 kN/m3 density is used. Both for symmetrical case 

and anti-symmetrical one this load is applied on the whole upper surface of the 

structure. 

 Live Loads: the upper surface of the shell analyzed is not designed thinking about 

people on it so the only one gravitational live load applicable is the snow one. A 

value of 1.5 kN/m2 is considered. The value is think for a structure built in Italy 
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in Zone I as defined from the D.M. 17/01/2018. Live loads are the ones that govern 

the symmetrical or anti-symmetrical condition for the structure. 

The support conditions are the same illustrated in the previous paragraph and they 

considered the structure as hinged at the four corners.  

In the next part of the section results coming from the structural analysis done with 

LUSAS Modeller and Solver are reported.  

They are illustrated from two different point of view. The first one is composed by tables: 

 Critical load multiplier (λ) for the current load-case, function of the slenderness 

of the structure; 

 Critical live load resultant: is the resultant of the loads that is possible to apply 

to the structure, without considering self-weight, in incipient buckling conditions; 

 Critical uniformly distributed live load: is the maximum uniformly distributed 

load that is possible to apply to the structure, without considering self-weight, in 

incipient buckling conditions. 

The second one is composed by graphics where the previous critical values are visualized 

in function of the holed area percentage. 

The values in the tables and in the graphics are all normalized respect to the referring 

maximum values of each lowering degree condition that are: 

 Maximum critical load multiplier: 

𝜆𝑚𝑎𝑥,𝑅1
= 27.85 

𝜆𝑚𝑎𝑥,𝑅2
= 12.59 

𝜆𝑚𝑎𝑥,𝑅3
= 33.83 

 Maximum critical live load resultant: 

𝐹𝑚𝑎𝑥,𝑅1
= 13665 𝑘𝑁 

𝐹𝑚𝑎𝑥,𝑅2
= 6241 𝑘𝑁 

𝐹𝑚𝑎𝑥,𝑅3
= 17853 𝑘𝑁 
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 Maximum uniformly distributed live load: 

𝑞𝑚𝑎𝑥,𝑅1
= 163 𝑘𝑁/𝑚2 

𝑞𝑚𝑎𝑥,𝑅2
= 71 𝑘𝑁/𝑚2 

𝑞𝑚𝑎𝑥,𝑅3
= 198.5 𝑘𝑁/𝑚2 

All the graphics and the values obtained from the buckling load analysis are included in 

this paper as attachment. In this section one example of them is presented: 
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The two graphs are representative of the structure with lowering value of 3.2 (the 7.5 

meters high one case), slenderness equal to 80 (the 30 cm thick one case) and considering 

a symmetrical load condition.  

Each line represents one of the 4 patterns and each point represents one structure 

subjected to linear buckling load analysis. 

From the analysis of the results of the R1 lowering condition case it is possible to do some 

considerations: 

 For every shell structure, when the central hole is generated, the relative structure 

is always more stable than the previous one both from the critical load and critical 

load multiplier point of view; 

 Shell structures belonging to the Pattern 1 seem to be always more stable, both 

from the critical load and critical load multiplier point of view, than all the others. 

This situation seems to be independent from the holed area percentage; 

 For pattern 1, that seems to be the best performer one, in the equilibrium elastic 

stability world, presents growing or sub-constant critical values for a holed area 

percentage lower than more or less 30%. It means that the structure has a better 

behavior if the holed areas are placed in the central part, the highest one, as far as 

possible from the edges and/or the constrained areas.  

 An intuitive behavior can be confirmed by the analysis. Indeed, the most 

unfavorable conditions, always from the stability point of view, are generated 

when the slenderness and the holed area percentage grow and, as written above, 

when the distance from the edges and from the constrained area decrease; 

 It is important to notice that even for the worst condition, the critical load 

multiplier is always bigger than 1: it means that, for the analyzed structures, each 

one is stable for the serviceable loads conditions. The lowest values belong to the 

shell structure with 8 holes of  Pattern 3 with a slenderness of 𝜂 = 240 and anti-

symmetrical load conditions and is 

𝜆 = 2.71; 
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 The behavior trend of the critical uniformly distributed live load is always very 

similar to the critical load multiplier one and not to the critical live load resultant 

one. 

The results coming from the two other lowering conditions are very close to the ones 

done above with some differences: 

 Higher is the shell structure and so lower is the lowering value Ri, higher are the 

critical values both in term of load multiplier and uniformly distributed live load; 

 Also for the worst condition, that means lowering value equal to 9.6 and 

slenderness equal to 240, the load multiplier is always bigger than one and the 

structures can be considered stable for serviceable load conditions; 

 For lowering condition with value 9.6 for symmetric load conditions it’s possible 

to see, through the graph analysis, a different behavior respect to all the other 

cases. Indeed, for slenderness smaller than 240, the curves have not the trend 

expected. The reason come from the modest height of the shell respect to its planar 

dimension that is cause of very high horizontal forces and reaction that are 

dangerous for structures like the one analyzed. The curves trend returns to be the 

known one for a slenderness value of 240 that means that in that case the weight 

of the structures and the applicable live loads are not higher enough to create a 

situation like the one described just above. 

The analyzed case is only a study case and it has not the claim to represent the general 

behavior of compression only structure realized from a Form finding process. Indeed, no 

automatic algorithms were employed to create and analyze each structure in each load 

condition but all the process was hand controlled and realized. However, 720 different 

shell structures were analyzed, and the amount of data started to be too big to be an 

integrated part of the work and this is the reason because them are kept as attachments. 

Furthermore, it is essential to give as a sort of solution, a smart representation of the 

results. Two graphs, illustrated in the next pages, were created to sum up all the analyses 

and they let the reader to explore the best found solution in function of the different 

parameters considered by the authors or directly chosen by the reader itself. 
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In order to better understand the following output some considerations are necessary: 

 D is the diagonal of the horizontal squared projection of the shell structure; 

 h is the maximum shell height; 

 D/h is the lowering value and it is the value represented on the y-axis so three 

values are considered; 

 Slenderness is the η considered and it is the value represented on the x-axis so 

five values are considered; 

 The first graphic is referred to the critical load multiplier while the second one is 

referred to the critical live load resultant always considering that values without 

the self-weight of the structure so it represents the effective applicable load 

resultant to the structure; 

 Circles with different radius values are present in the graphics. A number is 

present beside each circle and it is included between 0 and 1. This number, and 

consequently the circle dimensions, represents the value of the referring variable 

(critical load multiplier or critical live load resultant) normalized to the maximum 

one considering each lowering condition. This means that for each lowering 

condition it is present a structure with value equal to 1; 

 The circles may have different colors representing the pattern which the values 

illustrated are referred to; 

 Beside every circle is present a text line in which is written the shell structure that 

is represented by the circle and the number; 

 Since different collapse mechanisms are present, also this feature is indicated in 

the output. 

In the next two diagrams are also put in evidence the different mechanisms of collapse 

that characterize the structure when the load assumes its critical value. For the case 

studied two different mechanisms are present. The first one is the most general one and 

it is the one expected from everyone who want to load a structure like those with vertical 

loads and it is the one presented in the next figure. The quarter of shell represented in the 

image is only a general example for whole the structures which present this mechanism 

that are included in the light blue polygon in the graphics. This collapse mechanism can 

be identified with the name Mec A. 
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Figure 49: Mec A. Example for the first Mechanism of Collapse 

The second mechanism occurs only for two of the whole number of examples presented 

in the two graphics and it is the one presented in the next figure as Mec B. in the graphics 

the structures characterized by Mec B are included in the red polygon. 

 

Figure 50: Mec B: Example for the second Mechanism of collapse 

Even if not represented as one of the most stable case, it is important to notice that for 

anti-symmetrical loads it is possible to identify another mechanism of collapse. The one 

presented in the next figure and called Mec C. this mechanism of collapse is the one 

expected under the load conditions described above. In function of the slenderness and of 

the lowering condition the absolute magnitude of the deformed shape in collapse incipient 

conditions is not the same. In the figure is represented only a general example to better 

understand the shape of the so called Mec C. 
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Figure 51: Mec C: Example for the second Mechanism of collapse 
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5. Scaled Prototype Realization 

In the previous chapters of this work the focus was on form finding methods applied to 

think, draw and design funicular shapes. Numerical methods let the designer to interact 

with complex geometries impossible to deal with in the physical model environment. 

Indeed, before the so called digital revolution the only way to study and manage the 

complexity of building projects was to divide them into individual parts trying to 

assemble them together only after in a following phase of the design process. Only a few 

number of architects and designers, such as Heinz Isler or Antoni Gaudì, were able to 

manage those complex shapes like the ones illustrated in this work and in literature 

without the help of contemporary CNC (Computer Numerical Control) processes.  

A second great challenge is represented by the fabrication through discrete elements of 

the studied and designed geometries. In particular, this challenge is characterized by the 

condition that oblige to create a structure where discrete elements remain unconnected 

after the building construction. This constrain involve higher requirements than the ones 

used for structures where the elements are mechanically connected in order to create stiff 

surfaces. The first fundamental and most important requirement is the only-compression 

stress state when self-weight and external loads act on the structure. It affects a lot the 

design of the tessellation geometry. Furthermore, it is important to remind that the 

voussoirs will have low/negligible tensile and high compressive strength. To ensure 

structural stability is impossible to realize the vaults if it will not act purely in 

compression. 

However, the relevant constraint for the fabrication process can be summed up in: 

 Architectural and tectonic requirements: they include all the considerations 

that influence the overall shape also in function of the tessellation geometry and 

the surface texture and finish; 

 Structural requirements: they need a design process the guarantee the static 

equilibrium of the final funicular shape. They determine the slenderness of the 

shell in order to avoid global buckling. To avoid in-plane sliding failure between 

discrete elements is fundamental that all the contact faces are orthogonal to the 

local force flow; in this way the friction resistance could be present because it is 
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proportional to normal forces. The voussoirs geometry has to be designed to 

ensure that contact faces are aligned normal to the force flow.  

“A good tessellation geometry provides the necessary interlocking 

between blocks such that they form a stable, three-dimensional structural 

surface. This strategy creates, for example, a staggered stretcher bond. 

[…] Finally, interlocking featrues at the interface between neighbouring 

voussoirs are necessary to prevent local out-of-plane sliding”; 

(Rippmann, 2016) 

 Fabrication requirements: they are function of the construction material and its 

production processes. 

Based on the previous consideration, in this chapter the design and the fabrication of a 

scaled prototype of a pierced vault is realized. The goal is to validate the global stability 

analysis illustrated in the previous chapter and to illustrate the link between design and 

fabrication processes. The prototype is realized with cement blocks casted into 3d printed 

formworks representing the voussoirs geometry coming from the tessellation pattern 

design. Furthermore, considering the construction phases, a falsework made by cardboard 

sheets is realized. 

5.1. The Geometry 

Based on the two final diagrams reported at the end of the previous chapter, one of the 

vaults is chosen to be realized as a scaled prototype. The main parameter which leads the 

choice is the critical load multiplier and the referring diagram is the first one. The vault 

chosen is the one with the higher value of the critical load multiplier between the 

structures with a slenderness value of 80 and a lowering degree value of 3.2. This mean 

that the pierced vault is the one with 49 holes and a pierced area percentage of 45.08 %, 

7.5 meters tall and with uniform transverse section thickness of 30 cm. 
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Figure 52: Geometry representation of the chosen vault from the Rhino VAULT output 

The representation scale chosen, arbitrarily, is 1/16 in order to have the plan side 

dimension almost equal to 1 m. Consequently, the prototype will be 46,9 cm tall and it 

will have a uniform transverse section thickness of 18.75 mm.  

5.2. First Tessellation Pattern Trial 

Masonry structures have been realized for thousand years and skilled masons were 

capable to find the right tessellation pattern even for even the most complex shapes and 

structures. Based on this long history and on the requirements described in the previous 

section, three relevant features can be defined according to Rippmann doctoral thesis: 

 “Voussoirs should be aligned such that the load-transferring contact faces as 

perpendicular as possible to the local ‘force flow’ to prevent sliding failure; 

 The tessellation pattern should be staggered or similarly laid out to ensure an 

interlocking voussoir arrangement; 

 The size of voussoirs should be as uniform as possible over the entirety of the 

surface.” (Rippmann, 2016) 
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In order to design a first tessellation pattern trial, the form diagram of the resulting 

geometry coming from the form finding process is considered. 

 

Figure 53: final form diagram of the chosen vault 

The quadrangular grid could also be seen as the discretization of the flow force due to 

external vertical loads, so it has been used to design the tessellation pattern. Taking 

advantage of the double symmetry of the geometry, only a quarter of the vault is 

considered for the voussoirs geometry design. 
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Figure 54: first tessellation patten trial 

The designed pattern is drawn on the middle surface of the vaults; this happens because 

the Thrust Network Analysis return the middle surface geometry of the structure after the 

form finding process. Therefore, is necessary to represent the real 3D volume of the vault 

to design the blocks geometry.  

Grasshopper 3d represent the best tool to deal with the problem. The software, native 

inside Rhinoceros code and environment, let the designer to approach problems from an 

algorithmic and parametric point of view. More explanations about this tool are illustrated 

in the Appendix A of the work. 

In figure 39 are represented the Grasshopper 3D components used to create the volume 

of the vault from its middle surface: 
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Figure 55: Grasshopper 3D code for the vault's volume representation 

The first component Brep contain the geometry of the vault. The term Brep represent a 

geometrical parameter defined as a non-abstract class that allows the programmer to 

create a shape consisting of multiple and/or trimmed surfaces. A Brep maintains many 

lists of geometric entities, including faces, edges, trims, loops and vertices. All of these 

are associated with each other via topological relationships. Indeed, the vault’s geometry 

is represented as a polysurface in the Rhinoceros CAD environment and it is seen as a 

Brep from Grasshopper. 

The second component convert the Brep element in a Mesh element. This step is 

necessary because the components that create the volume of the selected geometry 

manage only Mesh elements. These components are included in a suite called 

Weaverbird. 

Weaverbird is a topological modeler that contains many of the known subdivision and 

transformation operators, readily usable by designers. Instead of doing the work 

repeatedly, or sometimes using complicated scripts, this plug-in reconstructs the shape, 

subdivides any mesh, even made by polylines, and helps preparing for fabrication. 

In particular, the Weaverbird’s Mesh Thicken component, computes a new mesh as a 

closed solid from a starting offsettable and oriented mesh. Indeed, setting the Distance 

parameter on 0.15 m and -0.15m, it was possible to find the volume of the vault above 

and below its middle surface. The results are presented in figure 40a and 40b. 

The last component represented in figure 39 join the two meshes created into 1 closed 

Mesh.  
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Figure 56: geometry of the vault before Grasshopper 3d, including the first tessellation pattern trial (a) and geometry 

of the vault after Weaverbird's Mesh Thicken (b) 

In the following step, the voussoirs are created from the obtained 3D geometry of the 

vault. The closed mesh representing the structure is divided into its line components 

through Weaverbird’s Mesh Edges component inside Grasshopper 3D environment. 

Starting from the tessellation pattern illustrated above, the volume of each block is pulled 

out from the complete geometry of the structure, ordered with a numerical code and 

classified. 

 

Figure 57: Example of Pulled out Voussoir - Block n.45 

The complete voussoirs’ classification is illustrated in figure 42. The numerical code 

starts from the number 08 because the first seven blocks were joint together in order to 

create the base of the structure.   
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Figure 58: Voussoirs' classification and codification 

 

Figure 59: Base element 
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Figure 60: Voussoirs' classification and codification 

5.3.  Voussoirs Fabrication 

The designed voussoirs, scaled to the prototype dimension have to be fabricated and 

assembled together to build the vault’s prototype. In the last section their geometry has 

been designed paying attention to their contact faces that have to be normal to the local 

force flow.  

The voussoirs have to be realized in cement so a mould system has to be designed for the 

casting. The material choice, that has got a high density value, comes from the necessity 

to have the as big self-weight as possible to materialize the compression between contact 

faces in order to have enough friction contribute to keep the blocks aligned.  

The real challenge in the formworks realization is that they need a high geometrical 

accuracy and they are quite small: they are only 18.75 mm tall and their plan’s dimension 

are variable between less than 2 cm and almost 5-6 cm.   

The Additive Manufacturing technology has been chosen to realize them.  

The term Additive Manufacturing references technologies that grow three-dimensional 

objects one superfine layer at a time. Each successive layer bonds to the preceding layer 
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of melted or partially melted material. It is possible to use different substances for layering 

material, including metal powder, thermoplastics, ceramics, composites, glass and even 

edibles like chocolate. 

Objects are digitally defined by computer-aided-design (CAD) software that is used to 

create .stl files that essentially slice the object into ultra-thin layers. This information 

guides the path of a nozzle or print head as it precisely deposits material upon the 

preceding layer. Or, a laser or electron beam selectively melts or partially melts in a bed 

of powdered material. As materials cool or are cured, they fuse together to form a three-

dimensional object. 

This technology is composed essentially by three steps: 

 Creation of a digital 3D model. Some criteria are present to divide digital models 

in printable or unprintable ones. The main one is that they have to be represented 

by a closed mesh; 

 Conversion of the digital model into a coded based machine-readable format. The 

most common file extension is the .stl (Standard Tessellation Language).  

“This file format is supported by many other software packages; it is 

widely used for rapid prototyping and computer-aided manufacturing. 

STL files describe only the surface geometry of a three dimensional object 

without any representation of color, texture or other common CAD model 

attributes. The STL format specifies both ASCII and binary 

representations. Binary files are more common, since they are more 

compact. An STL file describes a raw unstructured triangulated surface by 

the unit normal and vertices (ordered by the right-hand rule) of the 

triangles using a three-dimensional Cartesian coordinate system.” 

(Ciobota, 2012) 

 3D printing the object. 

Stereolithography (SLA), Selective Laser Sintering (SLS) and Fuse Deposition Modeling 

(FDM) are three of the most popular 3D printing techniques. FDM is the technology 

chosen to realize the formworks. 



123 

 

“FDM printing was developed in 1988 by Scott Crump. FDM printers form geometry 

by melting plastic filament and depositing thin layers additively on a platform. The 

FDM printers […] require support structures for overhanging parts. Some FDM 

printers can print multiple materials, in this way supports can be printed in a material 

that is easy to remove; such as water soluble filament. FDM printers use two types of 

plastic; ABS [the Lego plastic], or an organic version: PLA” (Tedeschi, 2014) 

The formwork has to be designed from the block geometry using the same GH-code 

(Grasshopper Code) used to create the volume of the vault. However, some difference is 

present. First of all, for each block only the lateral surface has to be considered and 

modelled as a polysurface and converted by Grasshopper in a mesh element.  

 

Figure 61: Example of a CAD formwork model for GH-code - Block n.97 

Referring to Figure 39 where the GH-code is shown, the Distance parameters is now set 

with the value of 0.002. It means that the designed formwork will be 2 mm thick. 
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Figure 62: Example of a 3D formwork model ready to be exported and printed - Block n. 97 

 

The designed formwork is represented in Rhinoceros CAD Environment as a closed mesh 

element so it is suitable to be exported as a STL file. 

In order to be printed with the FDM technology the STL file needs to be elaborate by one 

of the freeware commercial softwares available on internet that process the digital model 

changing different parameters useful for the desired object realization: Ultimaker Cura 

Software and Makerbot Print are the two software chosen in function of the different 3d 

printers used for the Additive Manufacturing process. 

The most relevant parameters set up for the 3D printing process are: 

 Filament material: PLA; 

 Filament diameter: 1.75 mm; 

 Layer Height: 0.2 mm; 

 Fill density: 30 %; 

 Print Speed: 80 – 150 mm/s; 

 Printing temperature: 215 °C. 

Regarding the four base elements, they have not been realized in cement and their 

geometry has been directly fabricated with the FDM technique with the same settings of 

the formwork elements.  
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Figure 63: 3D printing of the bases 

 

Figure 64: 3D printing of a formwork – Block n.97 
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Figure 65: 3D printing of a formwork – Block n.45 

The following step of the fabrication process, at the end of the formworks 3D printing 

dealt with the casting of the cement and the final realization of the voussoirs. This 

operation took place in the Mastrlab inside the Department of Structural and Geotechnical 

Engineering of the Politecnico di Torino. There the cement was mixed with water with a 

ratio almost equal to  

𝑎

𝑐
≅ 0.4 

This value guarantees a good workability of the mixture and the block after demoulding 

operations return a block with good mechanical characteristics. During casting 

operations, a higher ratio value has been tested but the demoulded voussoir were too much 

brittle and not suitable for the vault realization. 

It is important to notice that the moulds made with PLA material own good elastic 

characteristics but they are also very stiff and it was impossible to demould the brick 

without break them or the brick itself. Furthermore, the formworks needed to be recycled 

for at least three times in order to realize all the blocks of the four parts of the vaults. The 

problem has been solved dividing them into two different parts; these two parts were 
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mechanically jointed for casting operations, deassembled in the demoulding phase and 

jointed again for a new cast. 

The following pictures try to help better understanding what has been explained in the 

last paragraph: 

 

Figure 66: Formworks assembled and positioned for cast operations 
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Figure 67: voussoirs after the cast 

 

Figure 68: Demoulding operation 
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Figure 69: The voussoirs at the end of the fabrication process 

5.4. Falsework Fabrication 

From the first roman arch to the most important domes built during the centuries, 

falseworks have always been an integrated part of the project. They are essential for 

structures realization in a building step where they are not able to support themselves and 

external loads. Furthermore, sometimes the falsework design become as important as the 

structure design itself. 

Also for the vault’s prototype realization, a falsework has to be designed and fabricated. 

The solution found for the prototype can’t be considered suitable for the 1:1 scaled vault. 

Indeed, different issues, materials required and fabrication systems lead to solutions 

incompatible for the two cases. 

In this paragraph, only the prototype’s falsework is discussed and the 1:1 solution will be 

matter of future studies. 

The most important issues considered during design phases were that the falsework: 

 has to follow the intrados shape of the vault with the as most precise geometry as 

possible; 
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 has to be realized with poor material: it can’t be as expensive as the vault because 

it is only a temporary structure; 

 has to be stable enough to carry all the prototype’s self-weight and all the other 

external loads acting on it during construction phases; 

 needs to be removed at the end of the construction and during the removal 

operation it is fundamental to avoid damages to the already built vault. 

A solution considering fixed support cardboards has been realized and its design has been 

developed into the Rhinoceros 3D CAD environment. The result is represented in the 

following picture: 

 

Figura 1: 3D falsework concept design 

The falsework is composed by 37 cardboard sheets in each direction with a variable inter-

axis of almost 2 cm. That distance has been designed in order to avoid the drop of one or 

more blocks from the top of the falsework during the construction. Every sheet represents 

the intersection between a vertical plane and the intrados of the vault and they have been 

found using Rhinoceros features. The falsework has got a base of 77.2x77.2 cm and it is 

26 cm tall. Every cardboard sheet is characterized by 37 cuts used to join each sheet to 

the other. This connection solution is illustrated in the following pictures. 



131 

 

 

Figure 70: Falsework connection system example 

            

            

Figure 71: falsework construction phases 
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Figure 72: the ended cardboard falsework 

The realized falsework lays on a plywood panel 10 mm thick and with a base equal to the 

falsework one. All the structure is supported in 4 points by mean of 4 threaded bars. The 

right height of the flasework is ensured rotating the threaded bars.  

The falsework supporting system has been designed in order to solve the fourth issue 

presented previously: the falsework has to be removed at the end of the vault construction. 

Indeed, the threaded bars, the threaded holes in the plywood panel where the bars are 

inserted and the whole falsework are designed and dimensioned for this reason.  

At the end of the construction, the plywood panel goes down through the contemporary 

rotation of the threaded bars until the top of the falsework is lower than the boundary 

arches of the vaults. Finally, the falsework is extracted.  
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Figure 73: the falsework positioned on the plywood panel supported by 4 threaded bars 

5.4.1. Constraints Fabrication 

The structural self-weight and the external loads acting on the vault come to the ground 

through the 4 base supports. The structure is compressed-only by definition, so at the base 

the reaction will have the same direction of the local flow forces. Furthermore, the support 

reaction has to be stronger enough to guarantee the stability of the structure, so a 

constraint has to be designed and realized. 

A squared plywood panel 1 cm thick and 112,7 cm wide is used as base for the whole 

prototype. At its corners, the base elements need to be placed and right there the base 

constraints have to fabricated. 4 plywood boxes 14x14x6.3 cm are assembled as elevation 

for the structure. This solution creates the additive height needed by the falsework to be 

extracted. 

Two little plywood panels 15 cm high have been placed at the external corner of each 

box. With the help of the vinyl glue, all these elements were joint together.  

The thrust coming from the base element is counteracted by the two panels at the corner 

of the box. The overturning of the base support and the static equilibrium is guarantee 
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from eight steel brackets, two at each corner, which connect the structural system 

composed by box and panels to the base panel. 

 

Figure 74: Base of the Prototype fabrication - At each corner is present the  base element constraint 

 

Figure 75: Base constraint detail 
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Unfortunately, it was not possible to place and lock the bottom face of the base element 

perfectly adherent to the upper face of the constraint plywood box. That means that there 

the structural hinge is not present and the base element Is free to rotate around its 

supporting point. For this reason, a tie system made by string has been placed avoiding 

the rotation of the base element.  

 

Figure 76: The tie system 
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5.5. Construction Phases Scheme  

In this chapter, the prototype construction phases are shown through some illustration 

from the 3D model realized with Rhinoceros. 

 

Figure 77: 1st Step - Base plywood panel and Constraints fabrication 

 

Figure 78: 2nd Step - threaded bars and falsework panel positioning 
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Figure 79: 3rd Step - Cardboard falsework positioning and height adjustement 

 

Figure 80: 4th Step - Vault fabrication through the voussoirs assembly 
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Figure 81: 5th Step - the falsework is casted off  through the contemporary rotation of the four threaded bars 

 

Figure 82: 6th Step - the falsework is removed and the prototype is ready 
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5.6. Second Tessellation Pattern Trial 

When the construction phase started and the first voussoirs have been positioned, a 

serious problem about the tessellation pattern design came out. Indeed, the blocks placed 

on the boundary edges of the vault started to slide along their contact faces. That happens 

for two main reasons: the first one is the very low compressive stress that acts during 

construction phases that is not able to create a friction force between the blocks strong 

enough to keep the voussoirs aligned. The second main reason is the load-transferring 

contact faces design of the blocks of the boundary edges. Despite they are designed and 

realized perpendicular to the local force flow, their geometrical orientation is favorable 

to sliding phenomena for low compressive stresses. The issue is visible in the following 

pictures: 

 

Figure 83: Sliding surfaces detail 1 
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Figure 84: Sliding surfaces detail 2 

The problem has been solved through the partial tessellation pattern design variation. 

Indeed, a complementary part of the base has been designed in Rhinoceros and 3D printed 

while the blocks which present a favorable sliding contact surface were redesigned 

changing the geometrical orientation of the dangerous surfaces in order to prevent new 

sliding phenomena. 

            

Figure 85: Base element complementary part fabrication 
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Figure 86: Redesigned  voussoirs represented in the 3D CAD environment 

However, the most important problem has not been solved because the friction force 

between the contact surfaces is not strong enough to keep the blocks perfectly aligned 

and in their own position even if they are staggered and properly laid out. A shear key 

introduction between the voussoirs seems to be the fittest solution for the sliding surfaces 

problem. Even if it was not possible to be applied for every block, rubber bands has been 

placed between the blocks of the boundary edges. They let the voussoirs able to move 

and slide but the ones connected to each other simulate the presence of a bigger voussoir 

which presents a shear key able to avoid sliding phenomena. In the end, in order to handle 

the inaccuracies due to the model fabrication, rubber pieces were placed and the 

compression state of stress of the vault has been reached. 
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Figure 87: Prototype realization – picture 1 

 

Figure 88: Prototype realization - picture 2 
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Figure 89: Prototype realization - picture 3 

 

Figure 90: Ended prototype construction 



144 

 

 

Figure 91: The ended prototype during falsework removal phase – picture 1 

 

Figure 92: The ended prototype during falsework removal phase – picture 2 

 

Figure 93: The ended prototype during falsework removal phase – picture 3 
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Figure 94: The ended prototype during falsework removal phase – picture 4 

 

Figure 95: The scaled prototype
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6. Conclusions 

Thinking about a new design process and approach where Form Finding and Additive 

Manufacturing could be the leading tools in the design of Free Form structures and most 

of all in compression-only latticed masonry shell structures, the results coming from this 

work show how these methods could really be the most useful instruments. However, 

only a first step in the overall developing process has been done. 

The leading numerical form finding techniques has been analyzed and the Thrust Network 

Analysis seems to be the optimal solution. Indeed, it return a compression-only three-

dimensional structure shape only by mean of a geometrical method, the Graphic Statics, 

based on easier bi-dimensional rules. This approach, more intuitive than analytical ones, 

has been implemented directly as a plug-in into Rhinoceros environment delivering to 

engineers and architects a tool able to answer to any requirement from a topological and 

geometrical point of view.   

A case study has been created in order to validate form finding results and to analyze the 

static equilibrium of the designed pierced vaults. The influence of different parameters 

on structural stability has been shown through a global linear buckling load analysis and 

through the comparison between the outputs of those analysis. Two final diagrams have 

been realized showing the most stable solutions from a Critical Load Multiplier and 

Critical Buckling Load Resultant point of view. 720 different linear buckling load 

analysis has been realized with the Lusas FEM Solver varying slenderness, lowering 

degree, piercing pattern and load-case conditions. Outputs evidence how the vaults with 

13 holes considering the Pattern 1, is the most stable solution from the Critical Buckling 

Load Resultant point of view, while 29 holes solution, always considering the Pattern 1, 

is the most stable one from the Critical Load Multiplier point of view. However, for 

slenderness equal to 80, lowering degree equal to 3.2 and symmetrical load conditions, 

the 49 holes solution becomes the most stable solution. 

Another fundamental challenge for the development of the proposed design approach is 

the tessellation pattern design and the voussoirs design and fabrication. The most 

important rules that have to be considered are the ones written by Rippmann (Rippmann, 

2016) in his work and , thinking about future researches about the topic, it is clear that in 
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this phase of the design process  the architect or the engineer will always need to  

contribute with his experience and his knowledge  in order to find a fit solution in the 

tessellation pattern design unattainable by a software . 

The FDM printing technique can be considered as a useful instrument in the bricks 

fabrication. Indeed, this technology is very useful to realize formworks where a 

millimeter accuracy is necessary for cast bricks realized with stone material. Furthermore, 

it is also perfect to realize the whole block. This 3D printing technique let the designer to 

produce them with different densities and different materials, that means different 

mechanical characteristics, always considering a sub-millimeter accuracy of the printed 

voussoir. Moreover, this second solution is great when shear keys needed to be realized 

in order to avoid sliding surfaces phenomena. 

A specific introduction of a parametric approach with tool as Grasshopper 3D is 

fundamental thinking about future development of the proposed design method; together 

with Structural Optimization, algorithms like Genetic Algorithms will radically change 

the designer  overtures to the vault project because from  a given topology he will be able 

to obtain a latticed masonry shell with the optimized grid and stiffness; this will be 

possible only setting some initial fundamental geometrical and structural parameters. 

However, after the scaled prototype realization, the first future step will be the analysis 

of the dynamic equilibrium of the vault under seismic action through a shake table 

machine. Two main factors will be considered during these analysis: number and 

inclination of contact faces. All the tests will be done considering previous FEM analysis 

on the modal modes of the vault. The vault, designed only for vertical loads, will be also 

probably tested considering an isolation system. During the analysis a monitoring system 

composed by optical fibers will be directly applied on the vault to study structure strains 

under seismic actions comparing the obtained values with FEM results. 

The scaled prototype realization, evidenced that shear keys are a very important help in 

the vault construction.  Indeed, one of the future development of this research will be the 

study of the optimal shear keys design in order to provide the as best as possible 

interlocking between the voussoirs. Furthermore, the shear keys will be used as 

fundamental element in the design of self-supported vaulted structures. 
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This work and all its future developments present a lot of possible application in the 

research field and in the building landscape. Vaults realized with this approach could be 

used, for instance, in Shelter Design. They are sustainable structures both from an 

economical and environmental point of view because of the fabrication techniques 

considered and because they could be realized with stone material.  

Moreover, this design and building approach could be the solution in lunar and mars 

constructions where is impossible to use classical building techniques and to carry over 

there the building machines used on Earth and where it is necessary to use only stone 

materials present on those ground. 





151 

 

APPENDIX A 

The Particle Spring System created by Killian and Ochsendorf can be easily implemented 

in a parametric or algorithmic modeling environment.  

This approach is born when architects and engineers had to face problems like form 

finding. Indeed, the conventional drawing can be considered as an additive process where 

the complexity of the concept and the goal of the designer is reach by mean of addition 

and overlaps of completely different signs and symbols on paper. the additive process is 

driven by the additive logic that is submitted to two main limits: the act of drawing does 

not allow the creation interrelations between the different entities involved. The second 

limit is given by the exclusion of physically relevant aspects that rule the form generation 

in nature and in the real word, not on a paper. The Computer Aided Design is, from this 

point of view only the translation of the additive logic from paper and analogical world 

to the digital one. 

The first and most important designers involved with form finding such as Gaudì, Isler, 

Otto and others looked to self-formation processes in nature as a way to organize 

buildings and the traditional drawing techniques were not able to help them in the process. 

This can be one reasons that explain why they relied on physical models: soap films 

looking for minimal surfaces and hanging models looking for compression-only vaults. 

The passage to the parametric and algorithmic modeling techniques happened form the 

1980’s when computers started to have enough computational power to face those kind 

of problems. in order to understand this modeling technique is important to remind that 

is necessary to exceed the additive logic using editing and programming technique inside 

the designing software. This type of modeling relies on algorithms. 

It is known that algorithms can also lead to geometries and not only to mathematical only 

results. If an editor is implemented inside a CAD environment, for instance, it is possible 

to create 3D geometries simply by manipulating the standard set of primitives provided 

by the software or defined by a sequence of instructions. The easiest example is 

represented by the line that can be seen in two ways: as a sign on a paper or in the CAD; 

as defined by two points, the start and the end of the line ones. Each point is defined by 
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three coordinates in the reference system {x,y,z}. the procedures that make this possible 

have to be expressed in a specific program language that produces two outputs:  

 The algorithm; 

 The output of the algorithm constituted by the desired geometries. 

“The final output is not just a ‘digital sign’ but it can be considered as an interactive 

digital model responding to variations in the input by manipulating the entire system” 

(Tedeschi, 2014)  

In the last years the software developers understood that is was necessary to create a 

scripting that could be accessible to users with little or no programming skills. So they 

invented editing environments in which the programming process is leaded by the same 

visual objects usually used to create algorithms: node diagrams. 

The technique, so called visual scripting, is based on two main working environments 

that generates the two outputs written above; a visual editor and a 3D modeling 

environment are present. As output for this process the designer is able to interact with a 

parametric diagram, visual expression of the algorithm, and the parametric 2D or 3D 

geometry coming from the solution of the algorithm. The parameters are the most 

important element of the “equation” because they allow the designer to interact with the 

geometry by mean of an intuitive logic approach based on their variation and 

manipulation. 

Associative models that explore different configurations through control of the input 

parameters can be found using parametric diagrams. 
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A.1  Grasshopper 3D 

The world of algorithmic modeling is dominated by Grasshopper, the most popular and 

advanced tool available nowadays. The software is not a standalone application but is 

designed as a plug-in for Rhinoceros. It is an editor based on all the principles described 

before born in 2007 with the Explicit History name from the work of David Rutten at 

Robert McNeel & Associates (the company which release Rhinoceros). The actual name 

of the tool was established only the year after, in 2008. During these years the community 

of users and developers grew a lot and involves students, professionals and academics. If 

the user has got a Rhinoceros license, the Grasshopper plug-in is free and it runs on the 

version 5.0 or higher of the software.  

Grasshopper is become the leading tool in the algorithmic modeling landscape not only 

for its own editing capacities but also thanks to different environmental situations that 

can be sum up as follow: 

 Wide, dynamic and growing community: one of the most important skills of this 

tool is the presence of a network of users that share challenging problems, 

knowledge, discoveries, helping each other in the growth of the common 

knowledge of the formal exploration and this is possible directly from the tool’s 

official download internet site: www.grasshopper3d.com; 

 Constant Updating: updating and improvements are often available on the web 

and bug fixing and new features are usually based on users feedbacks. 

 Ecosystem: Grasshopper is not a close environment but a wide set of plug in is 

always available on the official internet site and is common that those application 

are developed from independent programmers, users of the tool themselves; 

 Software and hardware interaction: one of the biggest potentiality of the plug in 

is the capability to interact with other software and also with hardware 

components: for instance, Microsoft Excel, Adobe Photoshop, Autodesk Revit, 

Arduino, Kinect and so on. Moreover, the interaction is not only about file 

compatibility and interchange, but also about real time interaction between the 

algorithmic modeling environment and the external world. 

As described in the general description of the algorithmic modeling environment, 

Grasshopper editor is composed by a window that works in parallel with the 3D-modeling 

http://www.grasshopper3d.com/
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environment of Rhinoceros using it to interact with geometries and to see how the 

algorithm is working. 

The algorithms created with Grasshopper are node diagrams made of connected 

components. It is obvious that the connections have to be properly designed in order to 

follow the logic sequence of step in the modeling process. The components are created to 

represent: primitives such as points, curve and surfaces; geometric operations and other 

categories. They are grouped in several tabs each organized in panels. 

The algorithms are created in the editor window in the so-called “canvas”: there the 

components are placed by the designer and properly connected. 

In order to better understand how the Particle Spring System can be implemented with 

Grasshopper a little explanation about how components work is given. 

The components can be divided in three principal categories: 

 Standard Components: they perform operations on data. It means they receives 

a set of data as input which is processed to generate an output. In the next figure 

is shown, as example, the component that generate a point in the 3D-modeling 

environment of Rhinoceros: 

 

A 1: Standard Component example 

 Input Components: they provide data such as numbers, colours etc, which can 

be modified by the user. They do not expect input data. The following figure 

represents the standard panel of Grasshopper where are present the input 

components available for the user: 
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A 2: Input components 

 Container Components: they can collect data in several ways and often are used 

as input for other components; they are characterized by a black-hexagonal icon. 

In order to build algorithms, Grasshopper uses wired connections to set data between 

components; in this way wires conduct data from the output of a component to the input 

of another component. 

 

A 3: Wired connection example 

It is important to remember that the wires connect only the output of a component with 

the input of a one that does not precede it in the logical stream.  

“the data stream can be imagined as a fluid that flows through the components from left 

to right.” (Tedeschi, 2014) 
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A.2 Digital Simulation – Particle-Spring System 

In this paragraph will be discussed how to implement the Particle Spring System in 

Grasshopper environment. How the method work has been shown in chapter 2 of this 

work, so here is only exposed the procedure to apply it for the form finding of a 

compression only structure. 

The strength of Grasshopper in the improvement of the Particle Spring System is that 

usually the typical software packages which solve the procedure are not integrated with 

a CAD or a 3D-modeling environment. David Rutten’s tool, instead, exploit its 

“ecosystem” to develop an instrument able to interact with the “external CAD world”.  

Daniel Piker and his team developed and released Kangaroo, a physics based particle 

spring system engine, easy to use, designer oriented and fully integrated in Grasshopper 

environment. 

Quoting Daniel Piker’s words: 

“Like the reversal of gravity to find ideal forms for masonry arches, I think an 

environment which allows the designer to play, to flip and twist the Laws of 

Nature, to cross the wires and combine forces in a way that might be impossible 

in the real world – all within an easy but powerful visual programming 

environment and with rapid feedback – could make a fertile ground for the growth 

of powerful and exciting new techniques. 

Kangaroo is designed to be extensible to include several other types of forces, 

such as electrostatics – as I worked with before in Jellyfish. These different forces 

could then be applied simultaneously in various combinations. Other things I 

might also add at some point include collisions and friction. 

This becomes something like a sandbox game – Virtual worlds which behave 

according to the laws of physics we intuitively recognise.” 

One of the most interesting features of Kangaroo is that allows the designer to interact 

with form also during simulations, in real time through two interaction methods: 

 Direct Interaction: the designer directly manages anchor points, spring 

properties and forces; 

https://spacesymmetrystructure.wordpress.com/2009/10/22/jellyfish-for-rhino/


157 

 

 Parametric Interaction: the most important one. The properties are 

parametrically linked to other parts of the 3D model. 

The workflow followed by the algorithm can be summarized in the following flow chart: 

 

A 4: Particle-Spring System algorithm 

The specific explanation of each part of the diagram is explained with the example of a 

compression only structure which form has been found from this algorithm. 

The first step is the choice of the area that will be covered by the structure after the form 

finding process. A squared area of 10x10 m is chosen for this application and a surface 

object is created in the 3D modeling environment (Rhinoceros). 
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A 5: Base Surface 

 The selected surface will become a NURBS surface that will represent the structure after 

the form finding. Non Uniform Rational Basis Spline (NURBS) is a mathematical model 

commonly used in computer graphics for generating and representing curves and 

surfaces.  

In order to represent the membrane behavior of the future structure is necessary to define 

a grid of springs. The most common technique is to convert the NURBS surface in a 

mesh. Then the edges and the vertices are extracted to turn into springs and particles. 

The following figure describe the visual diagram used in Grasshopper to discretize the 

input surface and after the discretized object in output is reported. 
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A 6: Discretization GH-code 

 

A 7: Discretized surface 

before the description of the following step of the simulation is important to evidence and 

explain how the component that convert line into springs works. 

The component name is “Springs From Lines” and is present in the Kangaroo plug-in. It 

was created following the Hooke’s law: 

“displacements or size of the deformation of a body (treated as a spring) is directly 

proportional to the deforming force or load.” (Tedeschi, 2014) 

𝐹 = 𝑘𝑥 

With: 

 𝐹 applied force; 
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 𝑘 positive constant called stiffness which value depends on material and cross 

sectional geometric properties of the elastic body. 

 𝑥 is the deformation, the change in length of the body. 

The algorithm in Grasshopper sees the line as a single spring with specific features that 

have to be precisely described from the designer to the component in order to have a 

correct interpretation of the right mechanical behavior of the future spring. 

 

A 8: Kangaroo's spring component 

 Connection: with this term the component asks as input the lines that have to be 

considered as springs from Kangaroo during the simulation; 

 Stiffness: is the k term of the Hooke’s law equation. The higher is the value of 

this number, the lower will be the deformation of the structure under a force 

applied with the same value; 

 Damping: this term has not the same meaning of the one in dynamic analysis of 

the structures but it only represents the deformation velocity without influence on 

the final shape structure; 

 Rest Length: is the length that each line, or spring, reaches when the load is 

removed. If the rest length is the same of the start length, perfectly elastic behavior 

of the element is achieved. In the other cases, the length difference is an index of 

the presence of pre-tension inside the element if the rest length is smaller than the 

start length or the presence of a relaxation of the element if the rest length is bigger 

than the start length; 

 Upper/lower cutoff: sets limits for the springs to operate, below or above 

respectively; 

 Plasticity: the maximum elastic deformation. 



161 

 

Forces are applied as vectors applied at the nodes of the model in z direction where is 

supposed that the mass are concentrated. In the algorithm they are applied with positive 

sign so they are directed upward. This choice has been done in order to find the shape of 

a structure already overturned as the Hooke’s second law teaches us. 

 

A 9: Force definition GH-code 

The chosen anchor points are the corners of the input surface and are identified by 

Grasshopper using the following components: 

 

A 10: Anchor points definition GH-code 

At the end the model ready for the form finding process is formed by a membrane, 

anchored at its corners deformed by nodal forces directed along z axis and resisted by 

spring with a stiffness value. 

 

A 11: Kangaroo's Particle-spring system component 
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Double-clicking the Boolean toggle switching from True to False initiates the membrane 

simulation. If the minimal surface is the goal of the form finding process is possible to 

obtain it pointing to 0 the rest length of the springs.  

As explained in the previous chapters the simulation ends, from a theoretical point of 

view, when the kinetic energy of the system reaches the zero values. With this simulation 

the energy converges to zero and the designer can stop the engine when the kinetic energy 

is contained under a desired tolerance value.  

 During the simulation is possible to interact with the model and the algorithm changing 

stiffness of the springs, damping, rest length, forces values, anchor points and so on 

paying attention that some errors can occur if “the points are not returned to their original 

position before stopping and starting a new simulation”. (Tedeschi, 2014) 

It is not possible to change the mesh discretization while the simulation is running. 

At the end, a shape for the structure is found and, for the example presented, the result is 

the one reported in the following figure: 

 

A 12: Vault shape after form finding process 

The presented shape guarantees a compression-only structure under gravitational loads. 

This affirmation is verified by the structural analysis. If the geometry is imported in a 

Finite Element modeling environment and meshed with shell elements, under vertical 
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loads the eccentricity of the loads is always contained in few millimeters (considering a 

thickness of the shell structure of about 30 cm).  

In general, is very important to remind what prof. Adriaenssens wrote in her article: 

“during the form finding process the values of all numerical quantities (EA and load) are 

arbitrary since it is only their ratios that effect the shape.” (Richardson, Adriaenssens, 

Coelho, & Bouillard, 2013)  

This example and this treatment evidence that if a designer need to solve form finding 

problems knowing only some initial geometrical parameters, with Grasshopper and 

Kangaroo, it will be able to create and handle his own tool which results are reliable and 

very useful for the following and more detailed design phases.
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LOAD MULTIPLIER: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.674 0.498 0.346 0.218 0.115 

1 Hole 0.695 0.514 0.357 0.223 0.117 

5 Holes 0.745 0.551 0.383 0.240 0.126 

9 Holes 0.803 0.597 0.417 0.264 0.141 

13 Holes 0.849 0.633 0.442 0.280 0.149 

25 Holes 0.955 0.715 0.501 0.317 0.168 

29 Holes 1.000 0.744 0.518 0.324 0.169 

49 Holes 0.972 0.715 0.483 0.287 0.136 

 

PATTERN 2 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.674 0.498 0.346 0.218 0.115 

4 Holes 0.712 0.526 0.366 0.229 0.120 

8 Holes 0.750 0.553 0.383 0.239 0.124 

12 Holes 0.811 0.600 0.416 0.260 0.136 

13 Holes 0.837 0.620 0.431 0.270 0.141 

33 Holes 0.871 0.639 0.435 0.262 0.126 

45 Holes 0.922 0.676 0.456 0.270 0.127 

49 Holes 0.972 0.715 0.483 0.287 0.136 

 

PATTERN 3 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.674 0.498 0.346 0.218 0.115 

4 Holes 0.657 0.478 0.325 0.198 0.100 

8 Holes 0.682 0.496 0.336 0.204 0.102 

12 Holes 0.731 0.532 0.361 0.219 0.110 

13 Holes 0.752 0.548 0.372 0.227 0.114 

33 Holes 0.815 0.599 0.408 0.245 0.116 

45 Holes 0.909 0.665 0.449 0.266 0.125 

49 Holes 0.972 0.715 0.483 0.287 0.136 
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PATTERN 4 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.674 0.498 0.346 0.218 0.115 

1 Hole 0.657 0.478 0.325 0.198 0.100 

5 Holes 0.740 0.548 0.380 0.238 0.125 

9 Holes 0.763 0.566 0.393 0.247 0.130 

13 Holes 0.752 0.548 0.372 0.227 0.114 

17 Holes 0.814 0.595 0.406 0.248 0.127 

29 Holes 0.949 0.696 0.475 0.290 0.146 

49 Holes 0.972 0.715 0.483 0.287 0.136 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.506 0.402 0.301 0.203 0.111 

1 Hole 0.521 0.414 0.310 0.207 0.113 

5 Holes 0.569 0.451 0.335 0.223 0.121 

9 Holes 0.618 0.490 0.364 0.243 0.133 

13 Holes 0.658 0.520 0.385 0.256 0.140 

25 Holes 0.796 0.619 0.450 0.292 0.157 

29 Holes 0.831 0.641 0.461 0.296 0.158 

49 Holes 0.855 0.636 0.436 0.264 0.128 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.506 0.402 0.301 0.203 0.111 

4 Holes 0.531 0.422 0.315 0.210 0.114 

8 Holes 0.564 0.445 0.329 0.217 0.115 

12 Holes 0.616 0.485 0.358 0.235 0.125 

13 Holes 0.640 0.504 0.372 0.244 0.130 

33 Holes 0.702 0.541 0.384 0.237 0.114 

45 Holes 0.797 0.596 0.409 0.246 0.118 

49 Holes 0.855 0.636 0.436 0.264 0.128 
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PATTERN 3 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.506 0.402 0.301 0.203 0.111 

4 Holes 0.489 0.389 0.288 0.189 0.098 

8 Holes 0.514 0.405 0.296 0.191 0.097 

12 Holes 0.552 0.433 0.315 0.202 0.103 

13 Holes 0.570 0.447 0.326 0.209 0.107 

33 Holes 0.678 0.520 0.366 0.224 0.107 

45 Holes 0.787 0.588 0.403 0.242 0.116 

49 Holes 0.855 0.636 0.436 0.264 0.128 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.506 0.402 0.301 0.203 0.111 

1 Hole 0.521 0.414 0.310 0.207 0.113 

5 Holes 0.564 0.447 0.332 0.220 0.119 

9 Holes 0.600 0.473 0.349 0.230 0.124 

13 Holes 0.570 0.447 0.326 0.209 0.107 

17 Holes 0.621 0.486 0.353 0.226 0.116 

29 Holes 0.735 0.566 0.404 0.255 0.130 

49 Holes 0.855 0.636 0.436 0.264 0.128 

 

LIVE LOAD RESULTANT: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.910 0.581 0.340 0.172 0.068 

1 Hole 0.932 0.596 0.348 0.176 0.069 

5 Holes 0.955 0.612 0.358 0.182 0.072 

9 Holes 0.989 0.637 0.376 0.193 0.078 

13 Holes 1.000 0.646 0.382 0.197 0.080 

25 Holes 0.974 0.632 0.375 0.194 0.079 

29 Holes 0.970 0.627 0.369 0.188 0.075 

49 Holes 0.724 0.462 0.264 0.127 0.045 
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PATTERN 2 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.910 0.581 0.340 0.172 0.068 

4 Holes 0.921 0.589 0.344 0.174 0.069 

8 Holes 0.924 0.590 0.344 0.174 0.068 

12 Holes 0.958 0.614 0.359 0.182 0.072 

13 Holes 0.980 0.629 0.369 0.188 0.074 

33 Holes 0.801 0.510 0.293 0.143 0.051 

45 Holes 0.724 0.460 0.262 0.126 0.044 

49 Holes 0.724 0.462 0.264 0.127 0.045 

 

PATTERN 3 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.910 0.581 0.340 0.172 0.068 

4 Holes 0.848 0.532 0.303 0.148 0.055 

8 Holes 0.840 0.527 0.300 0.146 0.054 

12 Holes 0.861 0.541 0.309 0.151 0.056 

13 Holes 0.879 0.554 0.317 0.155 0.058 

33 Holes 0.747 0.475 0.273 0.132 0.047 

45 Holes 0.712 0.452 0.257 0.123 0.043 

49 Holes 0.724 0.462 0.264 0.127 0.045 

 

PATTERN 4 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.910 0.581 0.340 0.172 0.068 

4 Holes 0.879 0.552 0.315 0.154 0.057 

8 Holes 0.948 0.607 0.355 0.180 0.071 

12 Holes 0.933 0.599 0.351 0.179 0.071 

13 Holes 0.879 0.554 0.317 0.155 0.058 

33 Holes 0.911 0.577 0.332 0.164 0.063 

45 Holes 0.919 0.585 0.337 0.167 0.064 

49 Holes 0.724 0.462 0.264 0.127 0.045 
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PATTERN 1 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.673 0.463 0.292 0.159 0.065 

1 Hole 0.689 0.474 0.299 0.162 0.066 

5 Holes 0.721 0.495 0.311 0.167 0.068 

9 Holes 0.754 0.518 0.325 0.176 0.073 

13 Holes 0.767 0.526 0.329 0.178 0.074 

25 Holes 0.807 0.545 0.335 0.178 0.073 

29 Holes 0.801 0.537 0.326 0.171 0.070 

49 Holes 0.634 0.409 0.237 0.116 0.042 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.673 0.463 0.292 0.159 0.065 

4 Holes 0.677 0.466 0.293 0.159 0.064 

8 Holes 0.686 0.469 0.293 0.156 0.062 

12 Holes 0.719 0.491 0.306 0.163 0.066 

13 Holes 0.742 0.507 0.315 0.168 0.068 

33 Holes 0.641 0.428 0.256 0.128 0.046 

45 Holes 0.622 0.403 0.234 0.114 0.040 

49 Holes 0.634 0.409 0.237 0.116 0.042 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.673 0.463 0.292 0.159 0.065 

4 Holes 0.621 0.427 0.266 0.140 0.054 

8 Holes 0.624 0.425 0.262 0.136 0.051 

12 Holes 0.642 0.436 0.267 0.138 0.052 

13 Holes 0.658 0.447 0.274 0.142 0.054 

33 Holes 0.617 0.410 0.243 0.120 0.042 

45 Holes 0.613 0.397 0.229 0.111 0.040 

49 Holes 0.634 0.409 0.237 0.116 0.042 
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PATTERN 4 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.673 0.463 0.292 0.159 0.065 

4 Holes 0.689 0.474 0.299 0.162 0.066 

8 Holes 0.714 0.490 0.307 0.165 0.067 

12 Holes 0.726 0.496 0.309 0.165 0.067 

13 Holes 0.658 0.447 0.274 0.142 0.054 

33 Holes 0.688 0.466 0.286 0.148 0.057 

45 Holes 0.706 0.472 0.284 0.146 0.056 

49 Holes 0.634 0.409 0.237 0.116 0.042 

 

UNIFORMLY DISTRIBUTED LIVE LOAD: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.665 0.425 0.248 0.126 0.050 

1 Hole 0.687 0.439 0.256 0.130 0.051 

5 Holes 0.738 0.473 0.277 0.140 0.056 

9 Holes 0.797 0.514 0.303 0.156 0.063 

13 Holes 0.845 0.546 0.323 0.166 0.068 

25 Holes 0.954 0.619 0.368 0.190 0.077 

29 Holes 1.000 0.646 0.381 0.194 0.078 

49 Holes 0.971 0.619 0.354 0.171 0.061 

 

PATTERN 2 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.665 0.425 0.248 0.126 0.050 

4 Holes 0.704 0.450 0.263 0.133 0.053 

8 Holes 0.743 0.474 0.277 0.140 0.054 

12 Holes 0.806 0.516 0.302 0.153 0.061 

13 Holes 0.833 0.535 0.314 0.160 0.063 

33 Holes 0.868 0.552 0.317 0.155 0.056 

45 Holes 0.920 0.585 0.333 0.160 0.056 

49 Holes 0.971 0.619 0.354 0.171 0.061 
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PATTERN 3 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.665 0.425 0.248 0.126 0.050 

4 Holes 0.648 0.407 0.232 0.113 0.042 

8 Holes 0.673 0.423 0.240 0.117 0.043 

12 Holes 0.724 0.455 0.260 0.127 0.047 

13 Holes 0.745 0.470 0.269 0.132 0.049 

33 Holes 0.810 0.515 0.296 0.143 0.051 

45 Holes 0.907 0.575 0.327 0.157 0.055 

49 Holes 0.971 0.619 0.354 0.171 0.061 

 

PATTERN 4 – SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.665 0.425 0.248 0.126 0.050 

4 Holes 0.648 0.407 0.232 0.113 0.042 

8 Holes 0.733 0.469 0.274 0.139 0.055 

12 Holes 0.756 0.485 0.285 0.145 0.058 

13 Holes 0.745 0.470 0.269 0.132 0.049 

33 Holes 0.808 0.512 0.294 0.146 0.056 

45 Holes 0.947 0.603 0.348 0.172 0.066 

49 Holes 0.971 0.619 0.354 0.171 0.061 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.492 0.339 0.213 0.116 0.048 

1 Hole 0.508 0.350 0.220 0.119 0.049 

5 Holes 0.557 0.382 0.240 0.129 0.053 

9 Holes 0.608 0.418 0.262 0.142 0.059 

13 Holes 0.648 0.444 0.278 0.150 0.063 

25 Holes 0.790 0.534 0.328 0.174 0.071 

29 Holes 0.826 0.554 0.337 0.176 0.072 

49 Holes 0.851 0.549 0.318 0.155 0.056 
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PATTERN 2 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.492 0.339 0.213 0.116 0.048 

4 Holes 0.518 0.356 0.224 0.121 0.049 

8 Holes 0.552 0.377 0.235 0.125 0.050 

12 Holes 0.605 0.413 0.257 0.137 0.055 

13 Holes 0.630 0.431 0.268 0.143 0.058 

33 Holes 0.694 0.464 0.277 0.139 0.049 

45 Holes 0.791 0.513 0.297 0.144 0.051 

49 Holes 0.851 0.549 0.318 0.155 0.056 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.492 0.339 0.213 0.116 0.048 

4 Holes 0.475 0.326 0.203 0.107 0.041 

8 Holes 0.500 0.341 0.210 0.109 0.041 

12 Holes 0.539 0.366 0.225 0.116 0.044 

13 Holes 0.558 0.379 0.233 0.120 0.046 

33 Holes 0.669 0.444 0.264 0.130 0.046 

45 Holes 0.781 0.505 0.292 0.142 0.050 

49 Holes 0.851 0.549 0.318 0.155 0.056 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R1 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.492 0.339 0.213 0.116 0.048 

4 Holes 0.508 0.350 0.220 0.119 0.049 

8 Holes 0.552 0.379 0.238 0.128 0.052 

12 Holes 0.589 0.402 0.250 0.134 0.054 

13 Holes 0.558 0.379 0.233 0.120 0.046 

33 Holes 0.610 0.414 0.254 0.131 0.050 

45 Holes 0.727 0.486 0.293 0.150 0.058 

49 Holes 0.851 0.549 0.318 0.155 0.056 
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LOAD MULTIPLIER: GRAPHICS 
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LIVE LOAD RESULTANT: GRAPHICS 
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UNIFORMLY DISTRIBUTED LIVE LOAD: GRAPHICS 
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LOAD MULTIPLIER: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.359 0.251 0.163 0.095 0.045 

1 Hole 0.361 0.254 0.166 0.097 0.046 

5 Holes 0.397 0.281 0.184 0.107 0.051 

9 Holes 0.422 0.301 0.198 0.116 0.056 

13 Holes 0.374 0.315 0.209 0.124 0.060 

25 Holes 0.369 0.321 0.227 0.136 0.066 

29 Holes 0.335 0.286 0.238 0.142 0.067 

49 Holes 0.312 0.266 0.214 0.129 0.060 

 

PATTERN 2 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.359 0.251 0.163 0.095 0.045 

4 Holes 0.377 0.265 0.172 0.100 0.048 

8 Holes 0.285 0.233 0.179 0.104 0.049 

12 Holes 0.245 0.201 0.163 0.115 0.055 

13 Holes 0.280 0.234 0.191 0.121 0.057 

33 Holes 0.257 0.214 0.175 0.121 0.055 

45 Holes 0.274 0.230 0.189 0.123 0.056 

49 Holes 0.312 0.266 0.214 0.129 0.060 

 

PATTERN 3 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.359 0.251 0.163 0.095 0.045 

4 Holes 0.361 0.251 0.161 0.092 0.042 

8 Holes 0.367 0.256 0.165 0.094 0.043 

12 Holes 0.391 0.273 0.176 0.100 0.046 

13 Holes 0.404 0.283 0.183 0.104 0.048 

33 Holes 0.318 0.268 0.193 0.113 0.052 

45 Holes 0.267 0.225 0.185 0.121 0.055 

49 Holes 0.312 0.266 0.214 0.129 0.060 
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PATTERN 4 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.359 0.251 0.163 0.095 0.045 

1 Hole 0.361 0.254 0.166 0.097 0.046 

5 Holes 0.396 0.279 0.182 0.106 0.051 

9 Holes 0.400 0.282 0.185 0.107 0.051 

13 Holes 0.404 0.283 0.183 0.104 0.048 

17 Holes 0.429 0.305 0.199 0.114 0.052 

29 Holes 0.452 0.337 0.229 0.136 0.063 

49 Holes 0.312 0.266 0.214 0.129 0.060 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.232 0.174 0.124 0.081 0.043 

1 Hole 0.233 0.176 0.127 0.084 0.045 

5 Holes 0.265 0.199 0.143 0.093 0.049 

9 Holes 0.289 0.218 0.155 0.101 0.053 

13 Holes 0.315 0.237 0.169 0.109 0.057 

25 Holes 0.389 0.293 0.206 0.130 0.065 

29 Holes 0.413 0.310 0.217 0.134 0.066 

49 Holes 0.418 0.311 0.211 0.125 0.058 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.232 0.174 0.124 0.081 0.043 

4 Holes 0.245 0.183 0.131 0.085 0.045 

8 Holes 0.258 0.193 0.137 0.089 0.046 

12 Holes 0.288 0.217 0.154 0.099 0.051 

13 Holes 0.303 0.229 0.163 0.104 0.054 

33 Holes 0.321 0.244 0.173 0.108 0.052 

45 Holes 0.390 0.291 0.199 0.118 0.055 

49 Holes 0.418 0.311 0.211 0.125 0.058 
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PATTERN 3 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.232 0.174 0.124 0.081 0.043 

4 Holes 0.213 0.162 0.117 0.076 0.040 

8 Holes 0.225 0.171 0.122 0.079 0.041 

12 Holes 0.244 0.185 0.132 0.085 0.043 

13 Holes 0.255 0.193 0.138 0.089 0.045 

33 Holes 0.312 0.237 0.168 0.105 0.050 

45 Holes 0.381 0.285 0.196 0.117 0.054 

49 Holes 0.418 0.311 0.211 0.125 0.058 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.232 0.174 0.124 0.081 0.043 

1 Hole 0.233 0.176 0.127 0.084 0.045 

5 Holes 0.263 0.197 0.141 0.092 0.048 

9 Holes 0.279 0.210 0.149 0.096 0.050 

13 Holes 0.255 0.193 0.138 0.089 0.045 

17 Holes 0.282 0.213 0.152 0.097 0.049 

29 Holes 0.360 0.271 0.191 0.119 0.059 

49 Holes 0.418 0.311 0.211 0.125 0.058 

 

LIVE LOAD RESULTANT: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.427 0.254 0.134 0.059 0.018 

1 Hole 0.424 0.254 0.135 0.060 0.018 

5 Holes 0.449 0.271 0.145 0.065 0.020 

9 Holes 0.457 0.278 0.151 0.068 0.022 

13 Holes 0.381 0.278 0.153 0.070 0.023 

25 Holes 0.323 0.244 0.144 0.068 0.023 

29 Holes 0.277 0.204 0.144 0.067 0.022 

49 Holes 0.196 0.145 0.098 0.046 0.014 
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PATTERN 2 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.427 0.254 0.134 0.059 0.018 

4 Holes 0.430 0.257 0.137 0.060 0.018 

8 Holes 0.302 0.212 0.136 0.060 0.018 

12 Holes 0.242 0.171 0.116 0.065 0.020 

13 Holes 0.278 0.200 0.137 0.068 0.022 

33 Holes 0.198 0.142 0.097 0.053 0.016 

45 Holes 0.180 0.130 0.090 0.046 0.014 

49 Holes 0.196 0.145 0.098 0.046 0.014 

 

PATTERN 3 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.427 0.254 0.134 0.059 0.018 

4 Holes 0.410 0.242 0.126 0.054 0.015 

8 Holes 0.399 0.236 0.124 0.053 0.015 

12 Holes 0.406 0.241 0.127 0.055 0.015 

13 Holes 0.416 0.248 0.132 0.057 0.016 

33 Holes 0.251 0.182 0.109 0.049 0.015 

45 Holes 0.175 0.127 0.088 0.045 0.013 

49 Holes 0.196 0.145 0.098 0.046 0.014 

 

PATTERN 4 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.427 0.254 0.134 0.059 0.018 

1 Hole 0.424 0.254 0.135 0.060 0.018 

5 Holes 0.447 0.268 0.144 0.064 0.020 

9 Holes 0.431 0.259 0.139 0.062 0.019 

13 Holes 0.416 0.248 0.132 0.057 0.016 

17 Holes 0.422 0.257 0.138 0.061 0.018 

29 Holes 0.382 0.245 0.138 0.064 0.020 

49 Holes 0.196 0.145 0.098 0.046 0.014 
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PATTERN 1 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.264 0.167 0.097 0.048 0.016 

1 Hole 0.263 0.168 0.098 0.049 0.017 

5 Holes 0.288 0.184 0.108 0.054 0.019 

9 Holes 0.303 0.194 0.114 0.057 0.020 

13 Holes 0.316 0.204 0.120 0.060 0.022 

25 Holes 0.341 0.221 0.129 0.064 0.022 

29 Holes 0.346 0.223 0.130 0.063 0.022 

49 Holes 0.269 0.172 0.097 0.045 0.014 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.264 0.167 0.097 0.048 0.016 

4 Holes 0.267 0.170 0.098 0.049 0.017 

8 Holes 0.270 0.171 0.099 0.049 0.017 

12 Holes 0.290 0.186 0.108 0.054 0.018 

13 Holes 0.303 0.195 0.114 0.057 0.020 

33 Holes 0.253 0.164 0.096 0.046 0.015 

45 Holes 0.264 0.169 0.096 0.044 0.013 

49 Holes 0.269 0.172 0.097 0.045 0.014 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.264 0.167 0.097 0.048 0.016 

4 Holes 0.229 0.147 0.086 0.042 0.014 

8 Holes 0.233 0.149 0.087 0.042 0.013 

12 Holes 0.242 0.155 0.090 0.044 0.014 

13 Holes 0.251 0.161 0.094 0.046 0.015 

33 Holes 0.246 0.159 0.093 0.045 0.014 

45 Holes 0.258 0.166 0.094 0.043 0.013 

49 Holes 0.269 0.172 0.097 0.045 0.014 
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PATTERN 4 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.264 0.167 0.097 0.048 0.016 

1 Hole 0.263 0.168 0.098 0.049 0.017 

5 Holes 0.286 0.182 0.106 0.053 0.018 

9 Holes 0.290 0.186 0.108 0.054 0.018 

13 Holes 0.251 0.161 0.094 0.046 0.015 

17 Holes 0.267 0.172 0.101 0.050 0.016 

29 Holes 0.299 0.193 0.113 0.055 0.018 

49 Holes 0.269 0.172 0.097 0.045 0.014 

 

UNIFORMLY DISTRIBUTED LIVE LOAD: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.341 0.203 0.107 0.047 0.014 

1 Hole 0.343 0.205 0.109 0.048 0.015 

5 Holes 0.381 0.229 0.123 0.055 0.017 

9 Holes 0.406 0.247 0.134 0.061 0.019 

13 Holes 0.356 0.260 0.143 0.066 0.021 

25 Holes 0.352 0.266 0.157 0.074 0.025 

29 Holes 0.317 0.234 0.165 0.077 0.025 

49 Holes 0.293 0.216 0.147 0.069 0.021 

 

PATTERN 2 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.341 0.203 0.107 0.047 0.014 

4 Holes 0.360 0.215 0.114 0.051 0.015 

8 Holes 0.266 0.187 0.120 0.053 0.016 

12 Holes 0.224 0.158 0.107 0.060 0.019 

13 Holes 0.260 0.187 0.129 0.064 0.020 

33 Holes 0.236 0.170 0.116 0.064 0.019 

45 Holes 0.254 0.184 0.127 0.065 0.020 

49 Holes 0.293 0.216 0.147 0.069 0.021 
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PATTERN 3 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.341 0.203 0.107 0.047 0.014 

4 Holes 0.343 0.202 0.106 0.045 0.012 

8 Holes 0.350 0.207 0.109 0.046 0.013 

12 Holes 0.374 0.223 0.117 0.051 0.014 

13 Holes 0.388 0.232 0.123 0.053 0.015 

33 Holes 0.299 0.217 0.130 0.059 0.018 

45 Holes 0.247 0.179 0.124 0.064 0.019 

49 Holes 0.293 0.216 0.147 0.069 0.021 

 

PATTERN 4 – SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.341 0.203 0.107 0.047 0.014 

1 Hole 0.343 0.205 0.109 0.048 0.015 

5 Holes 0.379 0.227 0.122 0.054 0.017 

9 Holes 0.384 0.231 0.124 0.055 0.017 

13 Holes 0.388 0.232 0.123 0.053 0.015 

17 Holes 0.414 0.251 0.135 0.060 0.018 

29 Holes 0.437 0.280 0.158 0.073 0.023 

49 Holes 0.293 0.216 0.147 0.069 0.021 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.211 0.134 0.077 0.038 0.013 

1 Hole 0.212 0.135 0.080 0.040 0.014 

5 Holes 0.244 0.156 0.091 0.046 0.016 

9 Holes 0.269 0.173 0.101 0.051 0.018 

13 Holes 0.296 0.190 0.112 0.056 0.020 

25 Holes 0.372 0.240 0.141 0.069 0.024 

29 Holes 0.397 0.256 0.148 0.072 0.025 

49 Holes 0.402 0.256 0.144 0.067 0.021 
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PATTERN 2 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.211 0.134 0.077 0.038 0.013 

4 Holes 0.224 0.142 0.082 0.041 0.014 

8 Holes 0.237 0.150 0.087 0.043 0.015 

12 Holes 0.269 0.172 0.100 0.050 0.017 

13 Holes 0.284 0.183 0.107 0.053 0.019 

33 Holes 0.303 0.196 0.115 0.056 0.018 

45 Holes 0.373 0.239 0.135 0.062 0.019 

49 Holes 0.402 0.256 0.144 0.067 0.021 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.211 0.134 0.077 0.038 0.013 

4 Holes 0.192 0.123 0.071 0.035 0.011 

8 Holes 0.204 0.130 0.076 0.037 0.012 

12 Holes 0.223 0.143 0.083 0.041 0.013 

13 Holes 0.234 0.150 0.088 0.043 0.014 

33 Holes 0.293 0.190 0.111 0.054 0.017 

45 Holes 0.364 0.234 0.133 0.061 0.018 

49 Holes 0.402 0.256 0.144 0.067 0.021 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R2 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.211 0.134 0.077 0.038 0.013 

1 Hole 0.212 0.135 0.080 0.040 0.014 

5 Holes 0.242 0.155 0.090 0.045 0.016 

9 Holes 0.259 0.165 0.096 0.048 0.016 

13 Holes 0.234 0.150 0.088 0.043 0.014 

17 Holes 0.262 0.169 0.099 0.049 0.016 

29 Holes 0.342 0.221 0.129 0.063 0.021 

49 Holes 0.402 0.256 0.144 0.067 0.021 
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LOAD MULTIPLIER: TABLES 
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LIVE LOAD RESULTANT: GRAPHICS 
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UNIFORMLY DISTRIBUTED LIVE LOAD: GRAPHICS 
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LOAD MULTIPLIER: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.664 0.504 0.361 0.237 0.136 

1 Hole 0.662 0.501 0.357 0.233 0.132 

5 Holes 0.717 0.545 0.391 0.258 0.149 

9 Holes 0.761 0.581 0.419 0.278 0.162 

13 Holes 0.804 0.615 0.445 0.297 0.173 

25 Holes 0.911 0.695 0.500 0.328 0.184 

29 Holes 0.957 0.728 0.521 0.339 0.186 

49 Holes 1.000 0.740 0.506 0.309 0.154 

 

PATTERN 2 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.664 0.504 0.361 0.237 0.136 

4 Holes 0.706 0.537 0.384 0.252 0.145 

8 Holes 0.748 0.569 0.409 0.270 0.156 

12 Holes 0.790 0.602 0.434 0.287 0.165 

13 Holes 0.806 0.615 0.444 0.295 0.171 

33 Holes 0.862 0.644 0.448 0.277 0.138 

45 Holes 0.952 0.704 0.483 0.296 0.148 

49 Holes 1.000 0.740 0.506 0.309 0.154 

 

PATTERN 3 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.664 0.504 0.361 0.237 0.136 

4 Holes 0.627 0.467 0.326 0.207 0.112 

8 Holes 0.654 0.486 0.338 0.213 0.114 

12 Holes 0.694 0.515 0.357 0.225 0.120 

13 Holes 0.706 0.524 0.364 0.229 0.122 

33 Holes 0.824 0.614 0.424 0.261 0.130 

45 Holes 0.933 0.689 0.471 0.286 0.142 

49 Holes 1.000 0.740 0.506 0.309 0.154 
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PATTERN 4 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.664 0.504 0.361 0.237 0.136 

1 Hole 0.662 0.501 0.357 0.233 0.132 

5 Holes 0.717 0.545 0.391 0.257 0.148 

9 Holes 0.741 0.563 0.403 0.264 0.150 

13 Holes 0.706 0.524 0.364 0.229 0.122 

17 Holes 0.753 0.561 0.392 0.249 0.135 

29 Holes 0.894 0.668 0.467 0.295 0.158 

49 Holes 1.000 0.740 0.506 0.309 0.154 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.519 0.421 0.322 0.223 0.129 

1 Hole 0.527 0.425 0.323 0.221 0.126 

5 Holes 0.563 0.456 0.349 0.242 0.140 

9 Holes 0.601 0.487 0.371 0.257 0.149 

13 Holes 0.638 0.515 0.392 0.270 0.156 

25 Holes 0.756 0.597 0.442 0.295 0.165 

29 Holes 0.792 0.622 0.455 0.301 0.166 

49 Holes 0.852 0.641 0.447 0.278 0.142 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.519 0.421 0.322 0.223 0.129 

4 Holes 0.546 0.443 0.338 0.233 0.134 

8 Holes 0.581 0.469 0.357 0.246 0.141 

12 Holes 0.620 0.499 0.378 0.258 0.147 

13 Holes 0.632 0.510 0.387 0.265 0.151 

33 Holes 0.715 0.553 0.394 0.246 0.123 

45 Holes 0.808 0.610 0.425 0.263 0.134 

49 Holes 0.852 0.641 0.447 0.278 0.142 
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PATTERN 3 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.519 0.421 0.322 0.223 0.129 

4 Holes 0.512 0.411 0.307 0.205 0.111 

8 Holes 0.536 0.426 0.314 0.205 0.109 

12 Holes 0.567 0.449 0.329 0.214 0.113 

13 Holes 0.578 0.457 0.335 0.218 0.115 

33 Holes 0.697 0.537 0.380 0.236 0.117 

45 Holes 0.798 0.600 0.416 0.257 0.131 

49 Holes 0.852 0.641 0.447 0.278 0.142 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

λ/ λmax [-] 

No Hole 0.519 0.421 0.322 0.223 0.129 

1 Hole 0.527 0.425 0.323 0.221 0.126 

5 Holes 0.563 0.455 0.347 0.240 0.139 

9 Holes 0.595 0.477 0.359 0.244 0.138 

13 Holes 0.578 0.457 0.335 0.218 0.115 

17 Holes 0.619 0.489 0.358 0.234 0.124 

29 Holes 0.720 0.560 0.405 0.260 0.137 

49 Holes 0.852 0.641 0.447 0.278 0.142 

 

LIVE LOAD RESULTANT: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.943 0.621 0.376 0.202 0.089 

1 Hole 0.929 0.609 0.367 0.195 0.085 

5 Holes 0.976 0.645 0.392 0.211 0.095 

9 Holes 0.993 0.658 0.402 0.219 0.099 

13 Holes 1.000 0.664 0.408 0.223 0.101 

25 Holes 0.977 0.648 0.396 0.213 0.093 

29 Holes 0.977 0.647 0.393 0.210 0.089 

49 Holes 0.789 0.507 0.294 0.147 0.056 
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PATTERN 2 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.943 0.621 0.376 0.202 0.089 

4 Holes 0.960 0.633 0.384 0.206 0.091 

8 Holes 0.970 0.641 0.390 0.211 0.094 

12 Holes 0.981 0.650 0.397 0.215 0.096 

13 Holes 0.997 0.662 0.405 0.221 0.099 

33 Holes 0.836 0.543 0.319 0.161 0.061 

45 Holes 0.790 0.508 0.296 0.148 0.057 

49 Holes 0.789 0.507 0.294 0.147 0.056 

 

PATTERN 3 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.943 0.621 0.376 0.202 0.089 

4 Holes 0.847 0.547 0.322 0.166 0.068 

8 Holes 0.843 0.542 0.318 0.162 0.066 

12 Holes 0.856 0.550 0.323 0.165 0.067 

13 Holes 0.866 0.558 0.327 0.167 0.068 

33 Holes 0.796 0.515 0.301 0.151 0.057 

45 Holes 0.769 0.493 0.286 0.141 0.054 

49 Holes 0.789 0.507 0.294 0.147 0.056 

 

PATTERN 4 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.943 0.621 0.376 0.202 0.089 

1 Hole 0.929 0.609 0.367 0.195 0.085 

5 Holes 0.971 0.641 0.389 0.210 0.093 

9 Holes 0.957 0.631 0.382 0.205 0.090 

13 Holes 0.866 0.558 0.327 0.167 0.068 

17 Holes 0.886 0.573 0.338 0.175 0.073 

29 Holes 0.911 0.591 0.350 0.181 0.075 

49 Holes 0.789 0.507 0.294 0.147 0.056 
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PATTERN 1 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.730 0.514 0.333 0.188 0.084 

1 Hole 0.732 0.513 0.330 0.184 0.080 

5 Holes 0.759 0.535 0.347 0.197 0.088 

9 Holes 0.778 0.548 0.354 0.201 0.090 

13 Holes 0.788 0.553 0.357 0.202 0.090 

25 Holes 0.807 0.554 0.348 0.191 0.082 

29 Holes 0.805 0.549 0.341 0.185 0.079 

49 Holes 0.670 0.438 0.259 0.131 0.052 

 

PATTERN 2 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.730 0.514 0.333 0.188 0.084 

4 Holes 0.735 0.518 0.335 0.189 0.084 

8 Holes 0.746 0.524 0.338 0.190 0.085 

12 Holes 0.764 0.535 0.343 0.192 0.084 

13 Holes 0.776 0.544 0.350 0.197 0.087 

33 Holes 0.689 0.463 0.279 0.142 0.054 

45 Holes 0.668 0.438 0.258 0.130 0.051 

49 Holes 0.670 0.438 0.259 0.131 0.052 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.730 0.514 0.333 0.188 0.084 

4 Holes 0.686 0.478 0.302 0.164 0.067 

8 Holes 0.685 0.472 0.294 0.156 0.063 

12 Holes 0.694 0.477 0.295 0.156 0.062 

13 Holes 0.704 0.483 0.300 0.159 0.064 

33 Holes 0.670 0.448 0.268 0.135 0.051 

45 Holes 0.655 0.428 0.251 0.126 0.049 

49 Holes 0.670 0.438 0.259 0.131 0.052 
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PATTERN 4 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

F/Fmax [-] 

No Hole 0.730 0.514 0.333 0.188 0.084 

1 Hole 0.732 0.513 0.330 0.184 0.080 

5 Holes 0.756 0.531 0.343 0.194 0.087 

9 Holes 0.763 0.531 0.339 0.188 0.082 

13 Holes 0.704 0.483 0.300 0.159 0.064 

17 Holes 0.724 0.496 0.308 0.164 0.066 

29 Holes 0.730 0.493 0.302 0.159 0.064 

49 Holes 0.670 0.438 0.259 0.131 0.052 

 

UNIFORMLY DISTRIBUTED LIVE LOAD: TABLES 

PATTERN 1 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.656 0.432 0.262 0.140 0.062 

1 Hole 0.655 0.429 0.259 0.138 0.060 

5 Holes 0.710 0.469 0.285 0.154 0.069 

9 Holes 0.756 0.501 0.306 0.167 0.075 

13 Holes 0.800 0.531 0.326 0.178 0.081 

25 Holes 0.909 0.603 0.368 0.199 0.087 

29 Holes 0.956 0.632 0.384 0.205 0.088 

49 Holes 1.000 0.643 0.373 0.186 0.071 

 

PATTERN 2 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.656 0.432 0.262 0.140 0.062 

4 Holes 0.700 0.461 0.280 0.150 0.066 

8 Holes 0.742 0.491 0.299 0.161 0.072 

12 Holes 0.785 0.520 0.317 0.172 0.077 

13 Holes 0.801 0.532 0.326 0.177 0.080 

33 Holes 0.859 0.558 0.328 0.166 0.063 

45 Holes 0.950 0.611 0.356 0.178 0.068 

49 Holes 1.000 0.643 0.373 0.186 0.071 
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PATTERN 3 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.656 0.432 0.262 0.140 0.062 

4 Holes 0.619 0.399 0.235 0.121 0.050 

8 Holes 0.647 0.416 0.244 0.125 0.051 

12 Holes 0.687 0.442 0.259 0.132 0.054 

13 Holes 0.699 0.450 0.264 0.135 0.055 

33 Holes 0.820 0.530 0.310 0.156 0.059 

45 Holes 0.932 0.598 0.346 0.171 0.065 

49 Holes 1.000 0.643 0.373 0.186 0.071 

 

PATTERN 4 – SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.656 0.432 0.262 0.140 0.062 

1 Hole 0.655 0.429 0.259 0.138 0.060 

5 Holes 0.710 0.469 0.285 0.153 0.068 

9 Holes 0.735 0.484 0.294 0.157 0.069 

13 Holes 0.699 0.450 0.264 0.135 0.055 

17 Holes 0.747 0.483 0.285 0.148 0.061 

29 Holes 0.892 0.579 0.343 0.177 0.073 

49 Holes 1.000 0.643 0.373 0.186 0.071 

 

PATTERN 1 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.508 0.358 0.232 0.131 0.058 

1 Hole 0.516 0.362 0.232 0.130 0.057 

5 Holes 0.553 0.389 0.252 0.143 0.064 

9 Holes 0.592 0.417 0.270 0.153 0.069 

13 Holes 0.630 0.442 0.285 0.161 0.072 

25 Holes 0.750 0.516 0.324 0.177 0.077 

29 Holes 0.788 0.537 0.334 0.181 0.077 

49 Holes 0.849 0.555 0.328 0.166 0.065 
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PATTERN 2 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.508 0.358 0.232 0.131 0.058 

4 Holes 0.535 0.377 0.244 0.138 0.061 

8 Holes 0.571 0.401 0.259 0.146 0.065 

12 Holes 0.611 0.428 0.275 0.154 0.068 

13 Holes 0.624 0.437 0.281 0.158 0.070 

33 Holes 0.708 0.476 0.287 0.146 0.055 

45 Holes 0.804 0.527 0.311 0.157 0.061 

49 Holes 0.849 0.555 0.328 0.166 0.065 

 

PATTERN 3 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.508 0.358 0.232 0.131 0.058 

4 Holes 0.501 0.349 0.221 0.119 0.049 

8 Holes 0.525 0.362 0.225 0.120 0.048 

12 Holes 0.557 0.383 0.237 0.125 0.050 

13 Holes 0.568 0.390 0.242 0.128 0.051 

33 Holes 0.690 0.461 0.276 0.139 0.052 

45 Holes 0.793 0.518 0.304 0.153 0.059 

49 Holes 0.849 0.555 0.328 0.166 0.065 

 

PATTERN 4 – ANTI-SYMMETRICAL LOAD – R3 

η [-] 80 96 120 160 240 

q/qmax[-] 

No Hole 0.508 0.358 0.232 0.131 0.058 

1 Hole 0.516 0.362 0.232 0.130 0.057 

5 Holes 0.553 0.388 0.251 0.142 0.063 

9 Holes 0.586 0.408 0.260 0.145 0.063 

13 Holes 0.568 0.390 0.242 0.128 0.051 

17 Holes 0.611 0.418 0.259 0.138 0.056 

29 Holes 0.714 0.483 0.295 0.155 0.063 

49 Holes 0.849 0.555 0.328 0.166 0.065 
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LOAD MULTIPLIER: GRAPHICS 
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LIVE LOAD RESULTANT: GRAPHICS 
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UNIFORMLY DISTRIBUTED LIVE LOAD: GRAPHICS 
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