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Abstract

In the realm of aeroacoustic applications, precise and detailed analysis of acoustic phenomena
is essential for enhancing the comprehension of aerodynamic sound emission mechanisms and
the design and performance of aerodynamic devices and systems, such as wings and engines.
In this particular context, beamforming is currently receiving significant attention within the
scientific community due to its ability to distinguish and measure acoustic sources through
the use of phased arrays.

This study proposes the development of an innovative UI-based beamforming tool im-
plementing the Generalized Inverse Beamforming (GIBF) technique, which is a promising
method resolving coherent and incoherent sparse source distributions that especially occur in
aerodynamics. This approach is designed to enable accurate and reliable measurements both
in physical wind tunnels and Computational AeroAcoustics (CAA) simulations. Through a
three-dimensional source-to-microphone propagation model, a novel three-dimensional source
reconstruction approach is implemented and applied. To reconstruct the source, only the most
significant eigenmodes are selected by an algorithm that decomposes the Cross-Spectral Ma-
trix (CSM) into eigenvectors. The resulting linear system is then inverted using an iterative
process that aims to promote sparsity by minimizing the L1 norm. Multipoles are all consid-
ered and detected simultaneously, reducing the solution’s dependence on the specific source
model imposed. This approach represents a substantial advancement with respect to the
field’s state-of art, enhancing the explanation of the physics behind the acoustic production.
Furthermore, the propagation model is adjusted to incorporate the effects of convection of
acoustic sources caused by the average flow. Additionally, in wind tunnel measurements, the
presence of a boundary layer between the sources and the laboratory environment, where
pressure measurements are conducted, is taken into account by implementing corrections.

Details on the implementation of GIBF and its practical applications in fictitious and
real-world scenarios are presented, demonstrating its effectiveness in characterizing and in-
terpreting acoustic events. The results showcase the framework’s ability to offer deep insights
into the origin and distribution of acoustic sources, thereby contributing to the enhancement
of aerodynamic performance and noise reduction in various aeronautical applications.
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Chapter1

Introduction

1.1 The importance of reducing aerodynamic noise

Noise caused by the air transportation has garnered a considerable amount of attention
and concern within recent years. This heightened focus can be attributed to the notable
increase in the volume of air traffic, as well as the proximity of airports to urban centers,
thus exacerbating the issue at hand. Aviation noise pollution has consequently emerged as
an environmental and public health concern impacting a substantial number of individuals
residing in Europe.

The field of psychoacoustics, a discipline dedicated to examining the subjective percep-
tion of sound in humans, has shed light on a myriad of pathologies that arise from consistent
and prolonged exposure to aerodynamic noises. These pathologies encompass a range of
detrimental effects, including but not limited to irritability, sleep disturbances, mental and
cardiovascular ailments [1, 2], as well as impaired cognitive functions in children [3], partic-
ularly in the most severe instances.

For this rationale, there exist numerous global regulations [4, 5] that impose limitations on
the sound generated by aeronautical operations, which occur in accordance with the so-called
"balanced approach", which encompasses considering diverse facets:

• Mitigation of noise produced by aircraft, with the explicitly stated objective of dimin-
ishing, by 2050, acoustic discharges by 65% compared to the levels of 2000 [6];

• Management and planning of land usage, wherein the inclusion of noise insulation in
residential structures may also be contemplated;

• Procedures aimed at diminishing noise, exemplified by the profiles of takeoff and landing
during the flight;
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1.2. OBJECTIVES OF THE THESIS

• Restrictions imposed on the operation of airports, particularly during the hours of
darkness, during which solely the most subdued aircraft may operate.

The possibility of reducing noise is strongly linked to knowledge of where it is generated.
This is why having algorithms capable of determining it becomes essential in order to meet
the above-mentioned challenges. Nowadays, this is done through beamforming algorithms,
that exploit the signal processing of phased microphone arrays. In particular, among the
most promising beamforming techniques there are inverse methods, capable of solving the
acoustic field all at the same time hence intrinsically considering interference, a property
that makes them preferable in aeroacoustic analysis.

1.2 Objectives of the thesis

In this work, the author aims to develop a aeroacoustic beamforming tool featuring a graph-
ical interface and implementing the Generalized Inverse Beamforming (GIBF), a inverse
technique proposed by Suzuki [7] to localize and quantify noise sources within a region of
interest. The work is developed on the following key points:

• Implementation of the algorithm in a user-friendly MATLAB app delivering to the
researcher a fast and reliable beamforming analysis;

• Development of a multipole detection algorithm enabling dipole-beamforming;

• Implementation of corrections for convection velocity and shear layer in open-jet wind
tunnel measurements;

• Extension to 3D source imaging;

• Investigation on the effects of regularization on the source strenght quantification;

• Application of the code on benchmarks and real-world measurements.
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Chapter2

Theoretical background

This chapter will be dedicated to the review of theoretical concepts necessary for the under-
standing of the work here presented. The fundamentals of linear acoustics will be exposed in
sec. 2.1, where the acoustic wave equation and its solution, through the use of the Green’s
function formalism, will be derived. In sec. 2.2, the equations of linear acoustics will be re-
written in their frequency-domain formulation. Then, the aerodynamic phenomena behind
the generation of noise will be introduced in sec. 2.3 and formalised through the Lighthill’s
analogy.

2.1 Linear acoustics theory

Sound can be described as the fluctuation of pressure p′ in a fluid over time and space, relative
to an average pressure. This oscillation takes the form of a longitudinal wave that travels
at a finite velocity, typically 340m s−1 in air under standard conditions. The variation in
pressure leads to a corresponding change in fluid velocity u′. Consequently, the propagation
of sound involves an energy transfer. The human ear is capable of perceiving vibrations with
frequencies ranging from 20Hz to 20kHz.

2.1.1 Sound metrics

As effects of noise depend on its amplitude and on the capacity to transfer power to surfaces,
one should quantify noise levels. In noise quantification, root mean square value of the
acoustic pressure p′

RMS is what contributes to sound’s effective amplitude

p′
RMS =

ó
lim

T →∞

1
T

Ú T

0
(p(t) − p0)2 dt (2.1)

3



2.1. LINEAR ACOUSTICS THEORY

Situation SPL
Hearing threshold 0dB
Normal conversation 50dB
Noisy workplace 85dB
Live concert 105dB
Pain threshold 120dB
Jet take-off 140dB

Table 2.1: Typical situations and associated sound pressure levels (SPL) experienced.

The increase in noise level is clearly observed as sound pressure p′ increases. In order to more
accurately measure the magnitude of sound pressure, it is compared on a logarithmic scale
with a reference pressure pREF, which is the minimum pressure detectable by the human ear,
equivalent to 20µPa. This is the definition of sound pressure level (SPL)

SPL = 20 log10

3
p′

RMS
pREF

4
(2.2)

However, the ability of sound to transfer energy through wave motion is not solely depen-
dent on the amplitude of the acoustic pressure. It is a function, in general, of the acoustic
intensity I = p′u′, i.e. time-averaged product of acoustic pressure and velocity. Acoustic
intensity In is hence defined as

In = I · n = 1
T

Ú T

0
p′u′ · n dt (2.3)

On a logarithmic scale, one can define the intensity level (IL) as below:

IL = 10 log10

3
In

IREF

4
(2.4)

where n is the unitary vector normal to the surface and IREF = 10−12W m−2 by convention.
The overall impact of an acoustic source in its surrounding field can be determined by

calculating the acoustic power
PW =

Ú
S

I · n dS (2.5)

where integration has eliminated the dependence on the distance of the receiver, as opposed
to SPL, whose value is a function of the listener’s location. Consequently, the acoustic power
level (PWL) is defined as:

PWL = 10 log10

A
PW

PW,REF

B
(2.6)

with PW,REF = 10−12W.
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2.1. LINEAR ACOUSTICS THEORY

2.1.2 Acoustic wave equation

In acoustic waves, which represent a small perturbation with respect to the pressure of the
medium, the significant length scale is the wavelength λ, and the acoustic Reynolds number
is defined as

Rea = λc0ρ0
µ

(2.7)

Since for a harmonic wave in air at standard temperature, for not too high emission frequen-
cies, we have Rea ≫ 1, viscous effects are negligible in sound propagation. Thus, Euler’s
equations are considered to be appropriate for elucidating acoustic phenomena:


ρt + ∇ · (ρu) = Q(m)

ρ (ut + u · ∇u) = −∇p + ρf

ρT (st + u · ∇s) = Q(w)

(2.8)

where Q(m) is the mass injection per unit time and volume (e.g. the motion of a membrane
can be modeled as a periodic mass injection and subtraction), f is a volume force and Q(w)

is a thermal power injection per unit volume. The equation of state is to be incorporated to
the system (2.8):

p

ρ
= R

M
T (2.9)

Because sound is intended as a relatively small perturbation in the neighbourhood of
reference pressure p0, the following relations can be written

p = p0 + p′

ρ = ρ0 + ρ′

s = s0 + s′

u = u0 + u′

where acoustic quantities are negligible compared to reference values. Therefore, for an
homogeneous medium (p0, ρ0, s0, u0 being constant), in absence of thermal sources (Q(w) = 0),
the Euler’s equations in (2.8) can be linearized as follows, leading to the Linearized Euler’s
equations (LEE) for a homogeneous flow-field:


ρ′

t + u0 · ∇ρ′ + ρ0∇ · u′ = Q(m)

ρ0 (u′
t + u0 · ∇u′) = −∇p′ + ρ0f

ρ0T0 (s′
t + u0 · ∇s′) = 0

(2.10)
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2.1. LINEAR ACOUSTICS THEORY

with the linearized equation of state being valid:

p′

p0
= T ′

T0
+ ρ′

ρ0
(2.11)

Eq. (2.10) can be combined to obtain the convective wave equation for the acoustic
pressure p′(x, t):

1
c2

0

3
∂

∂t
+ u0 · ∇

42
p′(x, t) − ∇2p′(x, t) = ∂

∂t
Q(m)(x, t) − ρ0∇ · f(x, t) (2.12)

When pressure fluctuations propagate in a still fluid (u0 = 0), motion is governed by the
well-known acoustic wave equation:

1
c2

0
p′

tt(x, t) − ∇2p′(x, t) = Q
(m)
t (x, t) − ρ0∇ · f(x, t) (2.13)

The equation above is linear partial differential equation PDE with constant coefficients,
whose solution is generally a sum of wave functions of the type:

p′
i(x, t) = Ai(x − x0,i) cos [g(∥x − x0,i∥ ± c0t) + ϕi] (2.14)

where subscript i denotes a generic wave in the domain and x0,i stands for the point where
the perturbation arises, while ϕi accounts for the phase difference due to different emission
times. These wave functions exhibit the following distinct characteristics:

• When waves pass through one another, they don’t influence each other. This phe-
nomenon is named superposition principle;

• The waves’ propagation speed c0 remains constant and is unaffected by the wave’s
intensity;

• The incident waves sum up with the reflected waves they produced.

The acoustic field cannot be adequately described solely by the wave equation formulated
for p′. The determination of the acoustic velocity u′ corresponding to the acoustic pressure
field requires the coupling of the acoustic momentum equation already shown in eq. (2.10)

ρ0
!
u′

t + u0 · ∇u′" = −∇p′ + ρ0f (2.15)

ultimately leading to the determination of the acoustic intensity I. Indeed, the acoustic
velocity u′ plays a crucial role in determining the acoustic intensity’s magnitude: the more
u′ is significant and in-phase with p′, the greater the acoustic intensity I is, resulting in a
more powered acoustic field. In still fluid conditions (u0 = 0), it is trivial to show that the
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2.1. LINEAR ACOUSTICS THEORY

acoustic velocity field is held by
u′

t = − 1
ρ0

∇p′ + f (2.16)

The acoustic momentum equation (2.16) is frequently adopted to link the vibration of a
surface to the subsequent sound production. In fact, a moving surface can be modeled as a
domain border where a boundary condition applies. This is the case of a loudspeaker : the
acoustic field is hence governed by the homogeneous wave equation (because the domain is
free of physical sources):

1
c2

0
p′

tt(x, t) − ∇2p′(x, t) = 0 in Ω (2.17)

with boundary conditions (representing a non-penetration condition on solid boundaries)

u′ · n = ub · n on ∂Ωb (2.18)

where ∂Ωb stands for the domain’s solid boundary, ub is its local instant velocity and n the
unitary vector locally normal to the surface.

2.1.3 Green’s function and integral solution to the wave equation

The solution of non-homogeneous PDE can be achieved by utilizing the Green’s functions
formalism. Application of this method can be contemplated in the context of solving the
non-homogeneous wave equation (2.13). Notably, the Green’s function exhibits a distinct
dependence on the considered PDE and the associated boundary conditions.

Let L be the wave operator :

L ≡ 1
c2

0

∂2

∂t2 − ∇2 (2.19)

and F (x, t) be the forcing term in eq. (2.13), i.e. the sum of every single contribution on the
right side of the equation. Thus, it is possible to rewrite the wave equation in (2.13) as

L[p′(x, t)] = f(x, t) in Ω (2.20)

with BC:
n · ∇p′ + bp′ = 0 on ∂Ω (2.21)

where ∂Ω represents physical boundaries, that can scatter and emit waves. Theoretically, the
Green’s function G is found as the solution to the associated differential problem:L[G(x, t; y, τ)] = δ(x − y)δ(t − τ) in Ω

n · ∇G + bG = 0 on ∂Ω
(2.22)
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2.1. LINEAR ACOUSTICS THEORY

where δ(x−y) and δ(t−τ) are the Dirac’s function centered in y and τ respectively. Green’s
function G represents the causal response at position x and time t, resulting from an impulse
emitted at time T by a point source located at position y. A Green’s function that satisfies
the conditions surrounding the specific problem being considered is referred to as a tailored
Green’s function G. The calculation of this function is not straightforward, as it relies on the
specific geometry of the domain and the solid walls it encompasses, and it may not always
exist analytically. It enables the formal solution to the differential problem:

p′(x, t) =
Ú +∞

−∞

Ú
Ω

f(y, τ)G(x, t; y, τ)d3ydτ (2.23)

When the Green’s function is known only in the absence of walls, namely free-field Green’s
function G0, the formal solution also involves the evaluation of a surface integral to account
for solid boundaries. In this scenario, the solution can be expressed as follows:

p′(x, t) =
Ú +∞

−∞

Ú
Ω

f(y, τ)G0(x, t; y, τ) d3ydτ

−
Ú +∞

−∞

Ú
∂Ω

!
p′∇G0 − G0∇p′" · n d2ydτ

(2.24)

Green’s function formalism provides a direct and elegant integral solution to the acoustic
problem, because the acoustic free-field Green’s function G0 exists and is well known:


G0(x, t; y, τ) =

δ(t − τ − ∥x−y∥
c0

)
4π∥x − y∥

with t ≥ τ

G0 = 0 with t < τ

(2.25)

When free-field Green’s function G0 employed for solving the acoustic problem in absence of
walls, the expression (2.23) leads to

p′(x, t) =
Ú +∞

−∞

Ú
Ω

f(y, τ)G0(x, t; y, τ) d3ydτ

= 1
4π

Ú
Ωs

f(y, t − ∥x−y∥
c0

)
∥x − y∥

d3y
(2.26)

where Ωs is the source region. In aeroacoustic applications, source is generally non-compact
as it results from spatially distributed, non-coherent sound production mechanisms. There-
fore, eq. (2.26) is frequently applied to simulate the acoustic pressure field when a spatial
distribution of sources (modeled in the forcing term f) perturbs the surroundings. In sec.
2.3.1, this formula will be employed to derive the acoustic free-field response to turbulence,
whose effects are equalised to a spatial distribution of quadrupoles (it will be proven).
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2.2. FREQUENCY-DOMAIN FORMULATION

2.2 Frequency-domain formulation

Given that acoustics frequently addresses periodic signals, which can be conceptualized as a
sum of harmonic functions in accordance with Fourier’s theory, there may arise a curiosity
in examining the acoustic field in terms of frequency. In light of this, when considering a
point source placed in the origin, one can express the resultant acoustic field in the following
manner according to the free-field Green’s function G0:

p′(r, t) = A

r
cos

5
ω

3
t − r

c0

4
+ ϕ

6
(2.27)

where ω is the angular frequency and ϕ is the phase angle, while r = ∥xP −xS∥ is the distance
between the source in xS and the receiver in xP . The expression k = ω

c0
is referred to as wave

number and acts as a sort of spatial frequency. Eq.(2.27) can be seen as the real part of the
complex-valued expression in brackets:

p′(r, t) = Re
;

A

r
e−ikr+iϕeiωt

<
= Re

î
p̂′(r)eiωt

ï
(2.28)

Here eiωt is the phase difference due to passing of time, while p̂′(r) = A
r e−ikr+iϕ is the complex

amplitude that accounts for the wave amplitude decay with distance r and the phase difference
due to ϕ and to wave propagation in space kr. In other words, p̂′(r) represents the Fourier
transform for p′(r, t) when the signal is a pure harmonic of frequency ω.

2.2.1 Governing equations in the frequency domain

One can think of substituting eq. (2.28) in the wave equation (2.13) to obtain

Re
IA

ω2

c2
0

p̂′(x) + ∇2p̂′(x) + iωQ̂(m) − ρ0∇ · f̂
B

eiωt

J
= 0 (2.29)

to ensure its validity, the expression in the brackets should be equaled to zero, resulting in
the so-called non-homogeneous Helmholtz equation:

∇2p̂′(x, ω) + k2p̂′(x, ω) = −iωQ̂(m)(x, ω) + ρ0∇ · f̂(x, ω) (2.30)

where it should be noted that Fourier-transformed quantities in eq. (2.30) are, in general,
functions of both x and ω when dealing with non-harmonic signals. The corresponding
transformed acoustic momentum equation, firstly displayed in eq. (2.16), is

iωû′(x, ω) = − 1
ρ0

∇p̂′(x, ω) + f̂(x, ω) (2.31)

9
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2.2.2 Green’s function in the frequency domain

Even for the Helmholtz equation, an integral solution can be defined based on Green’s formal-
ism, just like it was done for the time-domain non-homogeneous wave equation in eq.(2.23).
The Green’s function for the Helmholtz equation (2.30) Ĝ(x; y) is defined as the solution of:

∇2Ĝ(x; y) + k2Ĝ(x; y) = −δ(x − y) (2.32)

which is, in absence of walls, the free-field Green’s function in the frequency domain:

Ĝ0(x; y) = e−ik∥x−y∥

4π∥x − y∥
(2.33)

Ĝ0 has the useful property of serving as a transfer function for a point source when using
Fourier-transformed quantity, reducing the computation of integrals to simple multiplications.
Assuming the presence of a point source Q̂ in position y0, one can compute the resulting
pressure field p̂(x, ω) as

p̂(x, ω) =
Ú

Ω
G0(x; y)Q̂(ω)δ(y − y0)d3y = Q̂(ω)

4π∥x − y0∥
e−ik∥x−y0∥ (2.34)

A fact that is a considerable advantage and will be exploited in sec. 4.2 to formulate the
acoustic imaging problem into a linear problem to be inverted.

2.3 Sound generated aerodynamically

The noise produced by an aerodynamic flow is physically defined as a pressure (and density,
as consequence) fluctuation occurring within the flow field and travelling through it at a finite
velocity denoted as c, that depends on the local properties of the fluid. Noise arises when the
turbulent eddies, induced by the instability of shear flows, encounter rapid variations in time,
e.g. due to the presence of rigid surfaces or in regions characterized by a high level of flow
mixing and re-organisation of turbulent structures (ref. fig. 2.1). Typical sound production
mechanisms in aerodynamics are:

• vortex-shedding noise, which is the result of quadrupolar sources in the wake of a bluff
body scattering into the far-field, with a dipolar directivity, as a consequence of its
diffraction by the body [8, 9]. A similar phenomenon can also occur at a airfoil’s
trailing edge;

• trailing edge noise, that occurs when boundary-layer disturbances scatter at a trailing
edge [10];

• leading edge noise, that results from the interaction of a airfoil with the upstream
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2.3. SOUND GENERATED AERODYNAMICALLY

turbulence [11];

• jet noise, which arises from the mixing region in a high-velocity jet flow.

Figure 2.1: Sketch representing different contributions to airfoil noise: leading edge noise, trailing edge
noise and boundary layer noise.

2.3.1 Aeroacoustic analogies

Sir. Lighthill [12] was the first to establish a connection between the aerodynamic flow field
and the corresponding acoustic production by identifying the key aerodynamic terms and
incorporating them into an exact acoustic waves equation. This initial achievement was
attained through the direct manipulation of the Navier-Stokes equations without further
assumptions, obtaining:

∂2ρ′

∂t2 − c2
0
∂2ρ′

∂x2
i

= ∂2Tij

∂xi∂xj
(2.35)

where Tij stands for the Lighthill’s stress tensor :

Tij = ρuiuj + (p′ − c2
0ρ′)δij − τij (2.36)

Eq.(2.35), as it is analytically exact, is applicable to all fluid dynamic phenomena. The mo-
tion of the fluid is interpreted as a flow field in which fluctuations (ρ′ and p′, with respect
to ambient quantities ρ0 and p0 respectively) propagate as waves, with a finite propaga-
tion velocity c0 that matches that of the surrounding environment within the propagation
zone. The Lighthill’s tensor serves as an aerodynamic forcing term within the wave equation
and implicitly characterizes all potential occurrences of sound production resulting from the
existing conditions.

The equation cannot be classified as a typical linear acoustics wave equation due to its
generality: the term on the right encompasses the unknown acoustic field and cannot be seen
as a pure source term. Thus, it is not possible to solve the Lighthill’s equation explicitly
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using the Green’s function’s formalism. The conventional methods of linear acoustics can
only be employed if the term on the right can be approximately evaluated and is independent
of the acoustic variables. This can only be accomplished by disregarding certain mechanisms
incorporated in Lighthill’s equation. Assuming:

• low Mach number: M ≪ 1. This condition ensures that action of fluid’s momentum
dominates over thermal effects;

• high Reynolds number: Re ≫ 1, resulting in viscous effects being negligible.

These conditions lead to a simplified expression for the Lighthill stress tensor in eq.(2.36),
known as the Lighthill’s approximation:

Tij ≈ ρ0uiuj (2.37)

where ρ ≈ ρ0 due to assumptions on Mach number. The Lighthill’s tensor can now be
evaluated from the flow field’s solution and represents a proper forcing term for the waves
equation, thereby enabling an integral solution through the Green’s function:

ρ′(x, t) =
Ú +∞

−∞

Ú
Ω

G(x, t; y, τ) ∂2Tij

∂xi∂xj
d3y dτ (2.38)

which represents a far-field approximated solution for the density fluctuations ρ′. In absence
of walls and obstacles, a free-field Green’s function G0 can be adopted, leading to

ρ′(x, t) = 1
c2

0

∂2

∂xi∂xj

Ú
Ω

Tij

1
y, t − ∥x−y∥

c0

2
4π∥x − y∥

d3y (2.39)

which shows that aerodynamic noise in the free-field can be represented as the result of
a spatial distribution of quadrupolar sources. Eq. (2.39) is valid for turbulent isentropic
and incompressible (M ≪ 1) flows in free-field conditions. Eventually, the presence of solid
boundaries can be taken into account following the theory of Curle [13]. Furthermore, Ffwocs
Williams and Hawkings [14] extended the aeroacoustic analogy to include arbitrary convective
motion of the body.

Acoustic analogies are important tools in the prediction of noise of aerodynamic origin
from numerical simulations (DNS/LES), as they allow the aerodynamic solution to be linked
to the acoustic solution generated by it in the far-field. The advantage in their use is the fact
that acoustic analogies represent an integral analytical solution. Therefore, once the source
zone has been integrated, the resulting acoustic field can be evaluated at any point in the
propagation zone, without the need to discretize the latter with a mesh. In contrast, noise
prediction using DNS in the far-field, due to the fine mesh and small time-steps required,
would greatly lengthen the calculation time and would undoubtedly only be possible on
particularly well-equipped computers.
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Figure 2.2: Numerical noise prediction using the FFW-H acoustic analogy. The gray region is dis-
cretized with a fine mesh and DNS or LES are applied so that the aerodynamic field
generating noise is determined. On the boundary surface, fictitious acoustic sources are
collected that, according to the analogy, produce the same far-field acoustic fluctuations
as those produced by aerodynamics within the region. These sources are then propagated
in accordance with the convected wave equation. In this way, the effects of the presence of
moving solid bodies within the grey region are taken into account.

This becomes even more evident when measurements are collected for the purpose of
source imaging. In fact, these require the evaluation of the acoustic field at only a few points,
i.e. the microphones. Therefore, the use of acoustic analogies is definitely the most feasible
approach.
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Chapter3

Fundamentals of Beamforming

This chapter will investigate the basic principles behind the beamforming analysis, which
relies on far-field microphone arrays measurements with the purpose to resolve the acoustic
sources distribution associated with the aerodynamic flow field. To accomplish this task,
Glegg and Devenport’s manual [15] will be employed as theoretical reference.

After a brief introduction on the phased arrays technology in sec. 3.1, the ideas behind ar-
ray processing will be explained in sec. 3.2. Then, the complexities occurring in beamforming
when applied to aeroacoustics will be elucidated in sec. 3.3.

3.1 Phased arrays

In the realm of aeroacoustic measurements, whether conducted within a wind tunnel or as
part of a numerical simulation, the researcher may have the desire to ascertain not only the
overall levels of noise but also the precise location of the sound sources within the motion
field and their interrelated intensity. Specifically, the aim is to simultaneously resolve and
characterize all acoustic sources within the motion field, taking into account their intensity,
emission frequency, and spatial positioning. As an illustrative example, when examining an
airfoil, one may want to separate the sources situated at the leading edge, which give rise to
what is known as leading edge noise, and those found at the trailing edge, responsible for the
occurrence of trailing edge noise (ref. fig. 4.1). In addition, aeroacoustic sources are often
not compact and isolated but sparse and spatially distributed, causing several difficulties and
uncertainties in the reconstruction due to possible interference.

To accomplish this objective, the utilization of phased arrays becomes necessary. By
employing a technique known as beamforming which involves the manipulation of signals
captured in the far field by a set of microphones housed within a suitably shaped support
structure, one can effectively chart the distribution of acoustic sources. This mapping process
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3.2. ARRAY PROCESSING FOR BEAMFORMING

Figure 3.1: Line array of M microphones receiving acoustic waves from a far-field source located in y

relies on a signal propagation model which is dependent upon a variety of factors, including
environmental conditions, the presence of obstacles within the field, the particular type of
sources that are to be included in the analysis, and, in the context of aeroacoustic applications,
the convection influenced by the mean flow velocity.

3.2 Array processing for Beamforming

The underlying concept of phased array is founded upon the observation that every single
acoustic ray follows a different path once emitted by the source. This fact is due to a finite
propagation velocity (namely, the speed of sound c) and results into a phase difference in the
recorded signals between the microphones in the array, which makes the source’s position
become detectable.

In order to gain comprehension about phased arrays, the most elementary scenario which
involves a isolated point source situated in the far field will be examined. It will be demon-
strated how a linear array of microphones is capable of ascertaining both the position and
intensity of said source, and important attributes of the employed array, such as spatial
resolution and aliasing, will be uncovered. Moreover, the delay and sum principle will be
introduced, which allows for the virtual manipulation of the beam direction and serves as
the cornerstone for all beamforming signal processing approaches. Ultimately, the primary
challenges associated with this methodology will be demonstrated, emphasizing its relevance
in aeroacoustic applications.
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3.2.1 Single source in far field

The expression for the far-field acoustic pressure induced by an harmonically pulsing source,
in the frequency domain, is given by

p̂(x) = − iωρ0aeikr

4πr
(3.1)

where a represents the the magnitude of the fictitious volume rate and r = ∥x − y∥ is the
distance between the source at y and the microphone at x, with reference to fig. 3.1. Since
the source is located in the far field, the following approximation can be adopted for the
distance:

r =
....r0 − x · y

r0

.... (3.2)

with r0 = ∥y∥ is the distance of the source from the center of the array, placed in x = (0, 0, 0).
Eq. (3.2) is equivalent to assuming wavefronts to be planar. Each microphone in the array
is located at xm = ((m − 1)∆x − L/2, 0, 0), with L = (M − 1)∆x, resulting in eq. (3.2) to be
specialized for every m microphone in the M -microphones linear array. Since the probes are
placed along the x1 axis:

r(m) = r0 − x
(m)
1 sin θ (3.3)

where θ is the angle between the source and the x2 axis. In eq. (3.3), the latter term is
responsible for the phase difference between the M recorded signals emitted by the source in
y.

It is now possible to write the pressure at each transducer:

p̂(xm) =
A

−iωρ0aeikr0

4πr0

B
e−ik((m−1)∆x−L/2) sin θ (3.4)

As a consequence, the array output can be computed as average of the M Fourier-transformed
recorded signals as displayed below:

p̂t = 1
M

MØ
m=1

p̂(xm) = −iωρ0aeikr0+ i
2 kL sin θ

4πr0

A
1

M

MØ
m=1

e−ik(m−1)∆x sin θ

B
(3.5)

which is a geometric series that can be summed to give

p̂t = −iωρ0aeikr0

4πr0
Φ(kL sin θ) (3.6)

with

Φ(kL sin θ) =
sin
31

2kM∆x sin θ

4
M sin

31
2k∆x sin θ

4 (3.7)

16



3.2. ARRAY PROCESSING FOR BEAMFORMING

-90°

-60°

-30°
0°

30°

60°

90°0 0.5 1

(A)

(a) kL = 11, M = 10

-90°

-60°

-30°
0°

30°

60°

90°0 0.5 1

(B)

(b) kL = 62, M = 10

Figure 3.2: (a): Array sensitivity Φ for different values of kL.

The Φ function, shown in fig. 3.2, is responsible for the modulation of the array output p̂t,
depending on the source angular position θ with respect to the array’s normal direction. If the
source is in front of the array (θ = 0◦), all the microphones record the same in-phase signal
and Φ reaches its maximum value of 1. If θ is increased, signals start to become out-of-phase
and Φ < 1, until it reaches the value of 0 for some angles and starts increasing again.

3.2.2 Spatial aliasing and resolution

Referring to fig. 3.2.b, there is a fundamental ambiguity in identifying the source position: if
the array sensitivity has multiple beams, there can be multiple angles where the array output
reaches a maximum, leading to the problem of spatial aliasing that results in uncertainty
regarding the precise location of the source in a practical situation. Spatial aliasing can be
avoided by ensuring that ∥1

2k∆x sin θ∥ < π
2 , a condition that can be satisfied by imposing

∆x < λ/2 (λ being the acoustic wavelength), which represents a geometrical constraint for
the microphones array.

The spatial resolution of the array is usually associated to the angular or linear width
of the central beam over which the array output drops to 3 dB below its maximum value.
This corresponds to Φ = 0,707, that occurs approximately when kM∆x sin θ = 2.8. In order
to fulfill the conditions set forth by spatial aliasing and spatial resolution, it is imperative
to employ arrays of considerable magnitude and minimal spacing between the transducers,
consequently necessitating a substantial quantity of transducers.

In any circumstance, the wavenumber k assumes a pivotal role in varying the spatial
response of the array so that, under the condition of other variables being equivalent:

• for small k, the strength and number of sidelobes as well as the spatial resolution
diminish, and the central beam gets wider;

• for greater k, the strength and quantity of sidelobes and the spatial resolution increase,
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yet you can attain a multitude of local maxima in acoustic maps. Furthermore, the
possibility of encountering the issue of spatial aliasing remains.

The aforementioned factors ensure that the performance of the beamformer in mapping the
acoustic field accurately is greatly contingent upon the configuration of the array and the
frequency range to be examined.

3.2.3 Array design

To address the challenges arising from spatial aliasing, particularly at high frequencies, and
the need for high resolution at low frequencies, it becomes essential to abandon the idea of
an array of equally spaced microphones.

In essence, one can contemplate an arrangement of microphones with unequally spacing,
incorporating both closely positioned microphones to mitigate aliasing issues and larger aper-
tures to enhance spatial resolution at lower frequencies, all while maintaining a reasonable
number of microphones. This objective can be achieved by employing logarithmically spaced
microphones.

In reality, attempts are made to capture the acoustics of two-dimensional or three-
dimensional areas, requiring the use of a spatial distribution of microphones. Common designs
include circular or rectangular arrays, in which the microphones are embedded in a planar
arrangement. These arrays can be employed individually or in conjunction with arrays of
the same type placed on a normal plane, particularly in the context of three-dimensional
beamforming. Similarly to linear arrays, these configurations also face the challenges of alias-
ing and resolution, which depend on the array’s extension and spacing of the transducers.
However, one notable difference is that the number of microphones can rapidly increase in
these setups, resulting in higher costs. An optimal compromise is offered by planar spiral
arrays [16], that arrange the transducers as follows:

rm = rsehθm (3.8)

where rm and θm are rispectively the radial and the angular position of the m-microphone
and rs is the inner transducer’s radial position, while h is a scaling factor.

3.2.4 Beam steering and Delay&Sum principle

Ideally, one could physically steer the microphone array in pursuit of determining the direction
from which the acoustic waves emit. Although this approach is theoretically feasible, it
lacks the necessary precision. An alternative method involves virtually steering the array to
specific points within the domain to examine potential sources. This is achieved by time-
shifting the signals collected by the microphones, while taking into consideration the phase
difference ϕm = kr(m) that accumulates along the path between the hypothetical source in
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Figure 3.3: Example of spiral array with equally-spaced tranducers along the spiral: rmax = 0,4m,
rs = 0,05m e h = 0,08.

the interrogation area and each individual microphone. If the average of the shifted signals
produces a discernible signal characterized by a non-zero variance p2

t , it indicates the presence
of an acoustic intensity source in the interrogation zone. Referred to as the delay and sum
principle, this concept serves as the basis for various acoustic beamforming algorithms, either
directly or indirectly. In this case, the array’s output when focusing on the hypothetical
source s is calculated as:

p̂t,s = 1
M

MØ
m=1

p̂(xm)eiϕm,s = −iωρ0aeikr0

4πr0
Φ(kL(sin θ − sin θs)) (3.9)

where the m-th microphone’s phase shift ϕm,s for the linear array case depicted in sec. 3.2.1
is

ϕm = k

3
(m − 1)∆x − 1

2L

4
sin θs (3.10)

In eq. 3.10, the value of θs is driven by the choice of the interrogation area when beam-
steering. The signal obtained results to be identical to the array output when the array
points toward the source. The introduced methodology, when applied to a grid of potential
sources obtained by discretizing the acoustic field for analysis, enables the determination of
source magnitudes at each calculation point.

3.3 Beamforming in Aeroacoustics

When acoustic imaging analyses have to be carried out in aeroacoustic problems, especially
when based on wind tunnel measurements, additional criticalities to those normally present
(seen in sec. 3.2.2) come to light. First, it must be said that aerodynamic sources are
rarely monopoles, as this type of source represents the effect of moving membranes capable
of generating a fictitious variation in flow rate over time. More often, aeroacoustic sources
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are idealised as dipoles (representing the response of rigid surfaces to pressure fluctuations
over time [13]) and quadrupoles, a concept through which Lighthill (ref. sec. 2.3.1) modelled
far-field pressure waves given by turbulent fluctuations, shear stresses and entropy variations.
This complicates things modestly, both because it becomes necessary to use arrays capable of
capturing the directionality of these multipolar sources while still fulfilling the requirements of
spatial aliasing and resolution, and because imaging these sources implies modelling acoustic
propagation that is no longer omnidirectional, but takes into account the directionality of the
sources. In the present work, this was done for dipolar sources, which were included in the
beamforming analysis by implementing a transfer function that adequately takes into account
every possible dipole freely oriented in space. In the case of quadripolar sources, however,
the complexity of the acoustic field they generate and the countless existing combinations
make it impossible to go down this route.

Nonetheless, the presence of bodies within the domain can also cause fictitious sources to
appear in the solution, resulting from the reflection of acoustic waves on them, and makes it
theoretically necessary to adopt a propagation model that takes this into account, for example
by using tailored Green’s function, or by placing sources within the domain to simulate the
effect that the presence of the body has in the acoustic field [17].

Another thing that complicates beamforming in the aeroacoustic field is the fact that
the aerodynamically generated noise is referable to a spatial distribution of multiple sources
within the domain of interest, which may interfere with each other and do not make it possible
to apply conventional methods satisfactorily, as these are based on the assumption that the
interrogation region contains the only source within the domain. In this work, this need is
met by introducing the Generalized Inverse Beamforming (GIBF), belonging to the class of
inverse methods, capable of resolving the acoustic field simultaneously, thus modelling the
overall effect of the sources and inherently taking into account the interference that may
occur. Furthermore, the shear layer that envelops aerodynamic models, together with the
background noise that inevitably plagues experimental wind tunnel measurements, make it
necessary to use de-noising techniques to avoid the generation of physically irrelevant, or
nonsensical, solutions.

Finally, unlike traditional beamforming, in aeroacoustics beamforming deals with sources
transported by the average flow velocity, which causes a shift in the source image in the
reconstruction with respect to its actual position. This phenomenon is exacerbated in analyses
based on wind tunnel measurements, where the presence of a shear layer between the acoustic
production region and the microphone array (for obvious reasons) causes the refraction of
travelling acoustic waves. These issues represent additional complexities that will be taken
into account in the sections 4.5,4.6.
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Chapter4

Methodology

In this chapter, the author presents the methodology behind the development of a beam-
forming tool suitable for aeroacoustics based on a inverse technique, namely the Generalized
Inverse Beamforming (GIBF) introduced by Suzuki [7], taking as a starting point the work of
Zamponi [18], who developed the initial codebase and enhanced the algorithm with significant
considerations on the inverse problem’s regularization strategy [18]. After an introduction
on inverse methods and the necessity behind their implementation in sec. 4.1, the source
imaging problem will be formulated as a linear system to be inverted (sec. 4.2). Then, the
eigendecomposition of the cross-spectral matrix, allowing to only consider the most energetic
eigenmodes and separate different sound production mechanisms, will be presented in sec.
4.3. In sec. 4.4, a strategy to extend the tool’s capabilities and permit dipole detection is
explained and applied. Futhermore, corrections for the shifting effect given by flow velocity
convection and the presence of shear layers in open-jet wind tunnel measurements are ac-
counted (sec. 4.5,4.6). In sec. 4.7, the Iterative Re-weigthed Least Squares (IRLS) inversion
algorithm will be elucidated and an extension to 3D domains will be explored in sec. 4.8.

4.1 Introduction to inverse methods

In sec. 3.2.4, it has been demonstrated how the array signals can be processed to acquire
data regarding the existence and strength of an acoustic source within a confined area of a
given discretized domain. Approaches like the one mentioned are built upon the underlying
assumption that the region under investigation may potentially contain the sole source within
the whole domain. This assumption poses a significant constraint in situations where this
fundamental hypothesis fails, as is the case in aeroacoustic analysis, a field known for its
complexities and challenges, as expounded upon in sec. 3.3, foremost among them, the
existence of space-distributed coherent and incoherent sources, e.g. with reference to fig.
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4.1. INTRODUCTION TO INVERSE METHODS

4.1, airfoil noise results from different contributions, namely leading edge noise, trailing edge
noise and boundary layer noise (see sec. 2.3). The necessity to overcome the limitations
highlighted gives rise to a new category of acoustic imaging methods that are suitable for
dealing with these more complex scenarios.

Figure 4.1: Sound map of a airfoil generated with GIBF tool showing the sources responsible for
leading edge noise and trailing edge noise, that can be integrated separately to quantify
their relative contribution to emitted noise.

Included in this category are the inverse methods, which, despite sharing the same acoustic
propagation model between the source and the receiver as the direct methods, possess the
advantage of simultaneously resolving the entire acoustic field. As a result, they are able to
take into consideration the acoustic patterns that can be formed as a result of the presence
of multiple sources, whether they are correlated or uncorrelated, or due to their phase shift,
unveiling the possibility of accurately localize and quantify aeroacoustic sources and even
improving the source map resolution by promoting sparsity in the reconstruction process.
Among these, the Generalized Inverse Beamforming proposed by Suzuki [7] represents a
robust and feasible method that proved significant reliability in source imaging. Therefore,
this technique was adopted as the theoretical basis for the implementation that is carried out
in the present work.

However, these advantages come with quite a few complexities. The fact that inverse
methods have the capability to simultaneously solve all potential sources often leads to the
inversion of an underdetermined linear problem, the solution of which is typically not straight-
forward and heavily reliant on the measurement noise. It is imperative to employ appropriate
mathematical techniques to safeguard against this. Furthermore, there is also a growing de-
mand for computational resources, including increased calculation time for solving large linear
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4.2. INVERSE PROBLEM FORMULATION

Figure 4.2: Scheme of the propagation between the n-th grid point source qn to the m-th microphone.

problems, thereby emphasizing the importance of providing adequate hardware.

4.2 Inverse problem formulation

Discretizing the spatial domain in which acoustic sources can be located can be done by
using a two-dimensional or three-dimensional grid of N points to represent their position.
By knowing the spatial position of the M microphones that receive the signals, the acoustic
pressure (from now on referred to as p for clarity) at the microphone m resulting from the the
monopolar point source n (other possibilities will be explored in sec. 4.4) can be expressed,
in the frequency domain, as:

p̂mn = Amnq̂n (4.1)

in which p̂mn ≡ p̂(xm; xn) represents the acoustic pressure at the m-th microphone caused
by the n-th source (refer to fig. 4.2), q̂n is the Fourier-transformed source strength of the
monopole source placed in grid point xn having units Pa m and Amn is the transfer function
between the n-th source and the m-th microphone and having expression:

Amn = e−ik∥rmn∥

4π∥rmn∥
(4.2)

where rmn = xm − xn, n = 1, ..., N and m = 1, ..., M . Eq. (4.1) can be derived from eq.
(2.34) when dealing with a monopolar point source. In fact, one should easily note that,
for a monopole-like propagation model, Amn corresponds to the free-field Green’s function
G0(xm; xn), here adopted for the sake of simplicity, although a tailored Green’s function can
be applied as well in reverberating environments.
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4.3. CROSS SPECTRAL MATRIX EIGEN-DECOMPOSITION

The inverse formulation of the direct source-microphone propagation problem is grounded
in the modeling of the m-th microphone pressure p̂m generated by the superposition of signals
from all sources at each grid point.

p̂m =
NØ

n=1
p̂mn =

NØ
n=1

Amnq̂n (4.3)

It is summarised in the following linear system:

p̂ = A · q̂ (4.4)

where p̂ = (p̂1, ..., p̂M )T and q̂ = (q̂1, ..., p̂N )T. In most applications, for cost reasons, the
number of microphones M is considerably little compared to the number of grid points N ,
leading the problem to be underdetermined, with a plurality of solutions existing within which
to select the physically most appropriate one. As it is by far the most frequent and realistic,
only the underdetermined case will be handled within the discussion, although the overde-
termined case, even if of minor importance, also exists. The resolution of such problems
necessitates giving a special care to measurement noise, as they demonstrate an extreme sen-
sibility to it. Consequently, when subjected to even a low level of noise, the obtained solution
may diverge significantly from the optimal one, occasionally resulting in solutions devoid
of physical meaning. For these reasons, sometimes the adoption of de-noising techniques
becomes necessary.

In addition, because A matrix is not generally square having dimensions M × N , it is
not invertible. Hence the solution is to be found via direct or iterative methods, depending
on the characteristics one seeks to promote in the solution to be selected. Section 4.7 will be
dedicated to this aspect, where a L1 minimum-norm solution to eq. (4.4) will be sought via
an iterative method, namely the IRLS method.

4.3 Cross Spectral Matrix eigen-decomposition

In eq. (4.4), pressure p̂ results from the superposition of the whole set of sources that
contribute to the exact reconstruction relatively to the chosen propagation model (it is not
exact in the broadest sense since the source reconstruction is subjected to discretization and
to the imposed source model and doesn’t necessarily reflect the physics behind the sound
production mechanism).

To shed light on the different coherent source distributions that constitute specific sound
production mechanisms (e.g. leading edge noise and trailing edge noise) and take into account
only the most relevant ones in source reconstruction, the microphones’ signals are firstly
combined in the cross-spectral matrix Γ, generated by averaging the Fourier-transformed
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4.3. CROSS SPECTRAL MATRIX EIGEN-DECOMPOSITION

sample blocks (in Welch’s method) over time:

Γ = p̂p̂H (4.5)

where p̂ represents the vector of the Fourier-transformed pressure signals and Γ, when eval-
uated for a certain frequency ω∗, is a complex-valued non-negative definite and Hermitian
M × M matrix. Because of its mathematical properties, a eigendecomposition can be per-
formed:

Γω∗ = UΛUH (4.6)

in which U is a unitary matrix containing orthonormal eigenvectors on its columns, Λ is a
diagonal matrix containing eigenvalues λi, and UH is the complex conjugate transpose of U.
This procedure makes it possible to solve different coherent source distributions separately,
since their contribution to recorded noise is summarised by their respective eigenmodes,
representing different coherent sound production mechanisms:

νi =
ð

λiui (4.7)

where νi is the i-th eigenmode, ui is the i-th column vector of U and λi is the corresponding
eigenvalue. Normally, the eigendecomposition of the cross-spectral matrix is known to show-
case only the most important contributions to the pressure recorded by the microphone array,
represented by the greatest eigenvalues, while eigenvalues associated with non-coherent ran-
dom signal noise are generally small in magnitude. Hence, the problem can be reformulated
as:

νi = A · q̂i (4.8)

where q̂i is the vector representing the complex amplitudes of coherent sources (at each of the
N grid points) designed to produce at the M microphones the pressure defined by the i-th
eigenmode νi via the transfer function A. Once the solution to eq. (4.8) is known, because q̂i

is a distribution of coherent sources representing a certain sound production mechanism, the
overall source amplitude Q̂i due to the latter is integrated by straight-summing its elements:

Q̂i =
NØ

n=1
q̂i,n (4.9)

Regarding the total source amplitude Qtot associated with a frequency, the squared-sum is
compulsory because the different eigenmodes result to be incoherent:

Q2
tot =

Ø
i

|Q̂i|2 (4.10)

where subscript i indicates the set of eigenmodes considered.
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4.4. MULTIPOLE DETECTION ALGORITHM

4.3.1 Eigenmodes selection

When eigendecomposition is applied to the CSM, each resulting eigenmode is composed of
coherent sources, thus attributable to a common mechanism of acoustic production. This
raises a question regarding which eigenmodes to consider in the beamforming analysis once
the CSM is decomposed. The problem stated in eq. (4.8) is to be solved for every eigenmode
one assumes to be significant. One possible approach involves comparing the magnitudes of
the eigenvalues, as it is understood that these are associated with the acoustic energy of the
eigenmodes. By computing the eigenvalue λmax with the maximum magnitude, one feasible
approach [19] is to only consider eigenmodes whose relative eigenvalues λi > 0.1 λmax. This
facilitates the automation of the process when automated computation is required.

4.3.2 Noise in measurements

The noise present in measurements can lead to inaccuracies in reconstructing the acoustic
field, particularly when employing inverse methods, often associated with the inversion of
underdetermined linear systems (as mentioned in sec. 4.2). The background and the elec-
tronic instruments, to mention the most common, introduce noise in the microphone-recorded
pressure measurements and thus could make it necessary to apply de-noising techniques to
the resulting CSM in eq. (4.5). Even though the noise can be high, generally it appears to
be uncorrelated from microphone to microphone, hence affecting only the diagonal elements
of the matrix. An effective approach in de-noising is represented by the CSM’s diagonal
removal [15], a procedure which is capable of eliminating the instrumentation noise. While
the diagonal removal does not affect the source localization, it can undermine the source
amplitude reconstruction due to the less data available. However, this problem seems not
to be significant when the number of probes is large. This technique, even if rudimentary,
provides satisfactory results. More precise techiques are also available in literature [20, 21].

4.4 Multipole detection algorithm

The discussion in sec. 4.2 focused on the beamforming of monopolar sources. Nonetheless,
monopolar sources are associated with flow rate fluctuations, such as those resulting from
membrane movements. Conversely, in aeroacoustic scenarios, multipolar sources predomi-
nate, displaying specific directivity and being linked to fluid interactions with rigid surfaces
(dipoles) or the rearrangement of turbulent eddies (quadrupoles).

The expression provided by the eq. (4.4) is general and allows for various selections of
matrix A, representing source-receiver propagation. Therefore, just as the GIBF algorithm
is inherently constructed, there is also the possibility to configure the matrix for modeling
dipolar source-microphone propagation. Liu et al. [22] formulated a transfer function for
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4.5. FORMULATION FOR CONVECTED SOURCES

point dipole sources that exhibits a monopolar decay with distance but also accounts for
directionality:

Amn = e−ikrmn

4π∥rmn∥

5
ζ · rmn

∥rmn∥

6
(4.11)

where rmn = xm − xn and ζ is a unitary vector representing the dipole’s axis. Since the
acoustic field resulting from a dipole is characterized by a well-defined directivity determined
by its axis, unlike monopole, to guarantee a physically significant source reconstruction three
orthogonal dipoles, x-oriented, y-oriented and z-oriented1, are simultaneously considered over-
lapped at each grid point. In addition, it must be bear in mind that formulation in eq. (4.11)
represents a far-field approximation and should be adopted with care when dealing with
real-world problems.

In multipole detection, specifically when aiming to detect dipoles, A has dimensions
M × (3N) and is composed of three sub-matrices Ax, Ay and Az, each of them representing
the acoustic field of a specific axis-aligned dipole. Consequently, also the source-strength
vector q̂ will contain 3N elements organized in three sub-vectors q̂x, q̂y and q̂z representing
the strength of the above-mentioned dipoles at each grid point n. In symbols:

p̂ =
è
Ax Ay Az

é
·


q̂x

q̂y

q̂z

 (4.12)

Considering dipoles oriented in all 3 directions ensures that the acoustic energy detected by
the microphones is sensibly distributed among the sources most likely to have generated that
pressure field.

Finally, it is important to remember that the possibility of mapping the acoustic field
with dipolar sources is strongly linked to the ability of the array employed to capture the
directionality of dipoles in space, and the phase difference between diametrically opposed
receivers. For this reason, multi-dimensional arrays, such as bi-planar or spherical arrays,
will be employed in multipole detection.

4.5 Formulation for convected sources

The transfer function for the monopole point source in eq. (4.2) is based on the free-field
Green’s function in eq. (2.33) that results from the wave equation presented in eq. (2.13).
In aeroacoustic applications, acoustic waves are observed to propagate through a moving
fluid instead of a still one, with a non-negligible velocity u0. As a result, the standard wave
equation may not be applicable for describing wave propagation accurately. Consequently,

1This is not peremptory. Other choices are possible for the dipoles’ orientations, provided that {ζ1, ζ2, ζ3}
constitute a basis for R3
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4.6. SHEAR LAYER CORRECTION FOR WIND TUNNEL MEASUREMENTS

one can consider incorporating the effect of fluid motion by introducing an average velocity
into the equation, i.e. assuming as model the convected wave equation in eq. (2.12), which
can be derived from the LEE (eq. (2.10)). This approach leads to the development of a
convected transfer function Amn [23]:

Amn = e−ikc0∆te

4π
ñ

(M · rmn)2 + β2∥rmn∥2
(4.13)

where M = u0/c0 is the Mach number of the uniform flow, β = (1 − ∥M∥2) 1
2 (only in this

context) and ∆te is the emission time delay, defined as

∆te = 1
cβ2

3
−M · rmn +

ñ
(M · rmn)2 + β2∥rmn∥2

4
(4.14)

Concerning the dipole-beamforming, starting from eq. (4.11) a similar approach is here
proposed, leading to the following formulation:

Amn,ζ = e−ikc0∆te

4π
ñ

(M · rmn)2 + β2∥rmn∥2

5
ζ · rmn

∥rmn∥

6
(4.15)

that is based on the observation that dipole propagation has been modeled with a monopolar
amplitude decay. Eq. (4.15) is not rigorous, as it does not derive from eq. (2.12), but rather
responds to practical needs. This is why it is expected to work well in localization, but not
in the quantification of dipoles.

4.6 Shear layer correction for wind tunnel measurements

When conducting measurements using arrays of microphones within open-jet wind tunnels,
it is deemed advisable to position the microphones external to the airflow, specifically within
the controlled laboratory setting. This spatial arrangement introduces a shear layer between
the acoustic source region and the microphones, leading to refraction of acoustic waves as
they propagate towards the microphone array. Not considering this refraction phenomenon
results in an erroneous spatial shift of the sound sources in the acoustic mappings. Sijtsma
[23] suggested a solution that involves a correction for the Mach number:

Mcorr = M zn − zSL
zn − zm

(4.16)

where zSL is the mean shear layer distance from the grid and Mcorr is intended to be used
in eq. (4.13)(4.15) in place of M. Although finer choices are available in literature [24], the
equation gives satisfactory results for Mach numbers less than 0,25 and for angles between
shear layer and acoustic waves greater than 45◦.
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4.7. ITERATIVE RE-WEIGHTED LEAST SQUARES ALGORITHM

4.7 Iterative Re-weighted Least Squares algorithm

Because, for cost reasonability, the number of microphones M is generally lower than the
number of grid point N , the linear problem stated in eq. (4.8) is generally underdeter-
mined and ill-posed in the sense of Hadamard. Therefore it is not directly invertible but a
minimum-norm solution q̂i is to be selected among an infinite number of solutions satisfying
the equation.

In an aeroacoustic problem, the presence of acoustic sources is confined to specific regions
within the domain, which correspond to solid surfaces or regions where there is significant
mixing and rearrangement of turbulent eddies (a more detailed explanation is given in sec.
2.3,3.3). Consequently, it is desirable to opt for an L1 minimum-norm solution, as these
solutions are designed to concentrate the energy of the solution in a small number of grid
points. This ensures that the majority of the sources have zero amplitude, thereby preserving
the fundamental physics of the problem. Conversely, the minimization of the L2 norm tends to
favor solutions that exhibit a more evenly distributed energy among the grid points, assigning
acoustic sources even in areas where they do not naturally occur.

4.7.1 L2 minimum-norm solution

Following these considerations, one would like to find the L1 minimum-norm solution q̂(1)

(where subscript i is omitted for simplicity) that solves equation (4.8). The problem can be
tackled only iteratively exploiting, for every eigenmode, the L2 minimum-norm solution q̂(2)

to the equation as a starting point and thus considering the regularized problem stated below:

q̂(2) = argmin
î

µ2
R∥q̂∥2

2 + ∥ν − Aq̂∥2
2

ï
(4.17)

where µR represents the Tikhonov’s regularization factor. The addition of µ2
R∥q̂∥2

2 to the
squared residual ∥ν − Aq̂∥2

2 serves as a regularizing contribution, prioritizing smoother solu-
tions over the rapidly varying ones and acting for all intents and purposes as a low-pass filter,
decreasing the condition number. In fact, the inversion of ill-posed, non-regularized problems
is known to amplify the noise intrinsically present in ν, thus leading to non-physical solutions
even when a minimum-norm solution is found.

The issue opens up questions about how to choose the regularization parameter µR.
Suzuki [7] suggested to select it as µ2

R = ε max(eig(AAH)), with ε ranging from 0.1% to 10%
to be chosen in a heuristic manner. However, this procedure proved not to be rigorous [25]
since the choice of µR strongly influences the results. Zamponi [18] pointed out the necessity
to implement an automated selection process for the parameter and compared three different
strategies present in literature suitable to eq. (4.17): Generalized Cross-Validation (GCV),
L-Curve method and Quasi-optimality criterion (based on the work [26] by Hansen). Of
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4.7. ITERATIVE RE-WEIGHTED LEAST SQUARES ALGORITHM

these, the Quasi-optimality criterion was found to perform better in GIBF’s purposes and
is thus implemented in the code. It consists in finding a trade-off between perturbation and
regularization errors in q̂(2) by finding

µR = argmin
I

G(µ) = µ

.....dq̂(2)

dµ

.....
J

(4.18)

a detailed explanation of the three methods is discussed in [27].
Given the regularization parameter µR, the solution to equation (4.17) is provided ana-

lytically:
q̂(2) = AH(AAH + µ2

RI)−1ν (4.19)

4.7.2 L1 norm minimization via IRLS algorithm

As previously stated, q̂(2) represents the starting point for an iterative process aiming to seek
the L1 minimum-norm solution to eq. (4.8), i.e.

q̂(1) = argmin
î

µ2
R∥q̂∥1 + ∥ν − Aq̂∥2

1

ï
(4.20)

where ∥ · ∥1 stands for the 1-norm (sum of the vector’s elements). Here, following Suzuki,
the Iterative Re-weighted least squares (IRLS) algorithm [28] is implemented. The method
consists in computing the α-th iteration as:

q̂α+1 = WαAH(AWαAH + µ2
R,α I)−1ν (4.21)

where Wα = diag(|q̂α,1|, ..., |q̂α,n|) is the diagonal matrix whose components are the ampli-
tudes of the elements in q̂α (the α-th iterate), provided that q̂0 = q̂(2), i.e. the starting
iterate is the L2 minimum-norm solution of eq. (4.8). The iteration process stops when:

• the cost function in eq. (4.20) starts increasing or

• or the iteration counter reaches a pre-defined limit.

At the end, the solution to eq. (4.20) is obtained as q̂(1) ≡ q̂α, where α stands for the last
iteration number. In eq. (4.21), the IRLS regularization parameter µR,α is to be determined
before every iteration, thus the methods introduced for the L2-norm minimization cannot be
applied. Therefore, it is imposed that

µ2
R,α = ε max(eig(AWαAH)) (4.22)

where the regularization parameter µ2
R,α is intended as a fraction of the greatest eigenvalue

of AWαAH via a user-imposed value of ε, ranging from 0.1% to 10%.
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4.8. EXTENSION TO 3D GIBF FOR CAA-BASED BEAMFORMING

4.7.3 Iterative dimensionality reduction

To lighten the memory dedicated to code execution and save computational time, as well as
to promote sparsity, on every α-th iteration a user-defined fraction β (with 0 < β < 1) of the
components of the source-amplitude vector q̂α are kept (those with greater amplitude) while
the smallest ones are discarded and equaled to zero, so that at the α-th iteration, A will have
dimensions M × (βαN) and q̂α will contain βαN elements instead of the original size of N

elements. This process continues until a minimum number of point sources, decided by the
user as a fraction of N , is reached. It is crucial to highlight that the number βαN of non-
discarded sources must not drop beneath the number of microphones M , as the dimensions
would result in the problem in eq. (4.8) being overdetermined, necessitating the application
of a solution algorithm appropriate for such a scenario. Finally, the iterative dimensionality
reduction process is optional and is only motivated by computational needs.

4.7.4 Extension to Lp-norm minimization

The mathematical problems described in eqs. (4.17)(4.20) belong to the class of the opti-
mization problems, in which a solution that minimizes/maximizes a certain cost function is
to be found iteratively in the general case. Precisely, the cost function here involved is of the
kind:

Jp = µ2
R∥q̂∥p

p + ∥ν − Aq̂∥2
p (4.23)

where subscript p here denotes the p-norm of a vector and Jp represents the cost function to
be minimized when the Lp minimum-norm solution to a underdetermined problem (such as
eq. (4.8)) is sought. In compressed sensing problem as GIBF, Lp minimum-norm solutions
q̂(p) with 0 < p < 1 (e.g. p = 0,9) proved to be effective in sparse source recovery, because
of a even greater capacity to promote sparsity in the sound maps with respect to L1-norm
solutions. The IRLS method can be generalized to solve any kind of Jp minimization problem,
leading to the following expression for the α-th iteration towards q̂(p):

q̂α+1 = WαAH(AWαAH + µ2
R,α I)−1ν (4.24)

where, in analogy with eq. (4.21), Wα = diag(|q̂α,1|2−p, ..., |q̂α,n|2−p) is the diagonal matrix
whose components are the amplitudes of the elements in q̂α (the α-th iterate) elevated to
2 − p. Again, the solution to eq. (4.17) can be exploited as the starting iterate.

4.8 Extension to 3D GIBF for CAA-based beamforming

The development of a 3D beamforming method represents a significant advancement in the
field due to its capability to enhance the localization precision of acoustic sources in array
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4.8. EXTENSION TO 3D GIBF FOR CAA-BASED BEAMFORMING

processing applications. Traditional two-dimensional beamforming techniques have limita-
tions in accurately determining the position of sound sources, particularly in scenarios where
sources exist in three-dimensional space or where the environment introduces complex acous-
tic phenomena. By extending beamforming into the third dimension, the system gains the
capability to capture the depth component of sound sources, thus providing a more compre-
hensive spatial understanding.

As stated in sec. 4.1, with respect to conventional beamforming, that lays upon the hy-
pothesis that the resolved source is solely present in the interrogated region, GIBF considers
the whole set of grid-defined acoustic sources at one time, so that its solution distributes
the detected acoustic energy among the user-discretized point sources close to the physical
source, and the source amplitude’s estimation will result from their summation (refer to eq.
(4.9)).

This important property enables the GIBF algorithm to be employed for a 3D point
grid with no further efforts. Since, in the present work, the propagation is modeled source-
to-microphone without any other assumptions on their location, one can easily discretize
a spatial region through a three-dimensional point grid implement a three-dimensional and
solve eq. (4.4) for the source-strength vector q̂, provided that the transfer matrix A is
arranged to model the wave paths of each source-microphone combination.

However, it is important to consider that the algorithm’s ability to capture the depth of
the source position is closely related to the characteristics of the array, which must at least also
extend in the direction of depth, in order to obtain physically relevant solutions. This compli-
cates matters in wind tunnel experimentation, where it is not always possible, for reasons of
cost or lack of space, to have multi-dimensional arrays, reason why 3D beamforming is not
yet common in experiments involving real-world measurements. Instead, multi-dimensional
arrays are easily employed in CAA-based measurements since no line is drawn to the re-
searcher, so that the present approach seems to be more addressed to those, despite being
theoretically suitable to either experimental and numerical investigations.
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Chapter5

Implementation

In this chapter, the implementation of GIBF tool will be examined and its features will be
showcased.

5.1 A MATLAB UI-based app

The development of a GIBF tool was driven by the necessity of enabling fast and reliable
beamforming analysis in aeroacoustic applications and making the results accessible to the
researcher quickly. The implementation had to include a graphical user interface to simplify
the preparation of the calculation and make it guided, so that the user only has to provide
the necessary input for the analysis.

To accomplish these tasks, the author opted for a MATLAB implementation using the
App Designer Toolbox to generate the graphical interface. The code is fully vectorized and
parallelized using the Parallel Computing Toolbox, thus enabling a better CPU usage. It is
organized in tabs to best guide the user through the beamforming procedures.

5.2 TAB: Grid Setup

In this tab, showed in fig. 5.1, the user has the possibility of determining the characteristics
of the source point grid to be used. This is done in terms of the spatial resolution of the
point sources, the extent of the grid and the position of its centre. By specifying the third
dimension, a three-dimensional point grid is generated and a 3D beamforming computation
is automatically queued.
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5.3. TAB: PRE-PROCESSING

Figure 5.1: View of the grid generation tab in GIBF tool.

Parameter Value
Default window size 4096 samples
Windowing method Hamming
Window overlap 50%
Sampling frequency User-defined

Table 5.1: Parameters for the CSM computation using pwelch routine.

5.3 TAB: Pre-processing

In this tab, with reference to fig. 5.2 the user is asked to provide the main inputs for the
computation. Firstly, the microphone recordings can be submitted uploading both the pre-
computed CSM or the time-domain recording of the array’s microphone. In the second case,
the tool is able to calculate the CSM using the Welch’s method via the pwelch MATLAB®

routine, adopting the standard parameters given in table 5.1, where the user only has to
provide the sampling frequency of the microphone recordings and the window size to operate
the FFT. Then, the user has to provide the array’s coordinates in a text file (with the
possibility to adopt a multiple array configuration). The correction for convection velocity can
be accounted for by supplying the free-stream velocity in terms of magnitude and direction,
while the shear layer correction can be added with the Mach correction factor in eq. (4.16).
Finally, the frequency to analyse are asked, with the possibility to opt for a narrow frequency
or a one-third frequency band analysis.

34



5.4. TAB: SETUP SUMMARY

Figure 5.2: View of the pre-processing tab. Here the user is asked to provide the main inputs for the
computation.

5.4 TAB: Setup Summary

This tab (fig. 5.3) is intended to show an overview of the settings used for the analysis the user
intends to run. On the left side, a brief summary of the grid’s and the array’s characteristics
is provided. Additionally, the flow’s free-field conditions for accounting for speed of sound,
convection effects and, eventually, the presence of a shear layer (in wind tunnel applications)
are specified. On the right side, a graphical overview of the computational domain is shown
to allow the user to check the domain’s geometrical features.

5.5 TAB: Inversion Problem

Here (ref. fig. 5.4) the researcher can decide the IRLS parameters for the queued GIBF
analysis. Firstly, the user has to choose between a monopole or a dipole beamforming analysis.
Then, the regularization parameter ε, the reduction factor β and the minimum number of the
non-discarded sources in percentage of the grid point number are tuned. Finally the p-norm
minimization is defined.
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5.5. TAB: INVERSION PROBLEM

Figure 5.3: View of the setup summary tab, where the geometry of the domain is summarized. Sources
are indicated with blue dots while asterisks indicate the two arrays’ microphones, for which
different colors are employed.

Figure 5.4: View of the inversion problem tab, where the user can indicate the IRLS parameters.
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Chapter6

Simulations and benchmarks

To assess the characteristics of the algorithm and the performance of its implementation,
namely the GIBF tool, a series of benchmarks is here reported. As an instructive test
case, the beamforming of a synthetic monopole is run in section 6.1 using a planar array.
Subsequently, in sec. 6.2 the new capabilities afforded by extending beamforming to three-
dimensional grid domains and multipole detection are explored (ref. sec. 4.8,4.4). Finally, in
section 6.3 the GIBF tool is applied to the real-life case of cylinder noise using wind tunnel
measurements, where the corrections studied in sec. 4.5 and 4.6 will be essential.

6.1 Beamforming of a synthetic monopole

The beamforming of a simple synthetic monopole emitting two tonal frequencies is executed.
After adjusting the settings, the code is run and the subsequent sound maps in output are
evaluated. Then, the source quantification is compared with the microphone-recorded SPL
at a reference distance. This benchmark also aims to explore the results’ variations due to
different values of ε, whose selection is not automatic but left to the user. Additionally,
GIBF’s response to noise is investigated.

6.1.1 Benchmark description

The acoustic pressure field of a synthetic monopole located in (0, 0, 0)m is generated numer-
ically, exploiting the following expression for a harmonic monopolar field is:

p′(r, t) = Q

4πr
cos (2πft − kr + ϕ) (6.1)

where Q [Pa m] is the source strength of the monopole, and k = ω
c0

= 2πf
c0

is the wave number
(the speed of sound c0 is assumed to be 340m s−1).
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6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

Here, the monopole is thought to emit the sum of two separate-frequency harmonic waves
with zero phase delay:

p′(r, t) = Q1
4πr

cos (2πf1t − k1r) + Q2
4πr

cos (2πf2t − k2r) (6.2)

The parameters are reported in table 6.1. The signal p′(r, t) in eq. (6.2) is recorded by
a 64-microphones planar array, positioned at a distance of 1m, with a sampling frequency
fS = 7000Hz to be compliant with the Nyquist–Shannon sampling theorem, and in a total of
104 samples collected. To ensure the whole acoustic energy is enclosed in the computational
domain, a 1m×1m grid of resolution 30 sources/m is adopted, and centered on the monopole
sought, i.e., in the axes’ origin. The situation is represented in fig. 6.1.

6.1.2 GIBF settings

Firstly, the CSM matrix must be computed via Welch’s method. A number of 4096 samples
per microphone is considered, and hamming windowing is applied, with a 50% overlap be-
tween them. The whole process is executed under the GIBF tool’s body. As it is obvious,
GIBF tool is set to look for monopolar sources in the 800Hz − 3200Hz frequency range,
so that the A matrix modeling the source-microphone sound propagation is filled with the
elements shown in eq. (4.2). Since the synthetic monopole is believed to be the only source
in the domain, the sole first eigenmode is considered. In particular, a L1 minimum-norm
solution is sought, therefore IRLS algorithm resolving shown in eq. (4.20) is applied, with a
maximum number of iterations of 50 to keep computation times short. After each iteration,
the number of point sources is reduced of a factor (1 − β) = 5% (see sec. 4.7.3), until a
minimum number of N/2 sources is reached, where N is the number of sources given by the
point grid. Regarding the discarded sources, a null amplitude is assigned to them. The L2

regularization factor µR is computed through the quasi-optimality criterion (4.18), while the
L1 regularization factor µR,α = ε max(eig(AWαAH)), with ε chosen heuristically, as stated
in sec. 4.7. After presenting the results, the role of ε in source quantification will be discussed
in sec. 6.1.4.

6.1.3 Results

Fig. 6.2 shows the outcomes of the GIBF tool in the monopole case. Regardless of the
choice of ε, the source localization process always converges to finding a monopole in the
axes’ origin. Hence, the regularization parameter seems not to be crucial in recovering the
source’s position. Rather, it is source-amplitude reconstruction that is most influenced by ε

and thus requires a special care (this aspect will be covered in sec. 6.1.4). To find out the
most appropriate value of ε, the overall source amplitude Q̂ can is recovered by summing the
resolved point sources, as demonstrated in eq. (4.9). Then it is propagated towards the array
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6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

Parameter Symbol Value
Source Amplitude for f1 Q1 4π · 2Pa m
Source Amplitude for f2 Q2 4π · 5Pa m
SPL at 1m for f1 SPL1 92dB
SPL at 1m for f2 SPL2 105dB
Emitted frequency 1 f1 1000Hz
Emitted frequency 1 f2 3000Hz
Sampling frequency fS 7000Hz
Number of samples nS 104

Sampling time tS 1,42s
Array distance rA 1m
Array diameter DA 4,5m
Number of microphones M 64
Number of sources N 900

Table 6.1: Selected parameters for the synthetic monopole simulation.

Grid description
Dimensions 1m × 1m
Plane x − y
Origin (0, 0, 0)m
Resolution 30 sources/m
Number of sources 900

Table 6.2: Characteristics of the computational grid adopted.

Figure 6.1: Computational domain adopted for the simulation, generated within the GIBF tool. The
orange circle stands for the source’s position, while the green markers represent the array’s
64 microphones. Each of the blue dots is a point source the solver takes into account.
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6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

(via the well-known monopolar source-microphone transfer function in eq. (4.2)) and the
resulting SPL trend is compared with the one coming from the central microphone’s signal,
looking for the ε value for which the two of them overlap. The procedure, whose result is
reported in fig. 6.3, led to a optimal value of ε = 10%. It can be seen that, even using the
optimal value of ε, GIBF slightly overestimates the high-frequency peak, a phenomenon that
is frequently encountered. Thus it is not possible to select a value of ε capable to match the
two peaks simultaneously.

6.1.4 Response to regularization factor variations

To obtain insight about the most appropriate regularization factor in IRLS algorithm, a
parametric study on the regularization factor is carried out through the tuning of ε. Several
values of the parameter in the range 0,1% < ε < 10%, as suggested by Suzuki, are considered
to gain comprehension about its role in source quantification, after its minor effect on local-
ization has been proved in sec. 6.1.3. Focusing on the 1000Hz peak, results in fig. 6.4 show
that, even though the obtained SPL trends predicted by GIBF at a distance of 1m approach
the exact value of 92dB given by the array’s central microphone, the proposed method of
selection of ε is not satisfactory and there is a need to introduce a more robust algorithm of
regularization.

6.1.5 Response to noisy measurements

In this section, it will be shown the behaviour of the code with respect to Gaussian ran-
dom background noise in measurements. In general, the linear system in eq. (4.4), when
characterized by measurement noise γ, can be seen as:

p = A · q + γ (6.3)

Since measurement noise is a natural process, i.e. unbiased and normally distributed, γ can
be thought as

γ ∼ N (0, σ2
γ) (6.4)

where N (0, σ2
γ) represents the normal distribution of zero mean and variance σ2

γ . In this
context, σ2

γ is determined through a user-defined signal-to-noise (SNR) ratio:

SNR =
σ2

p

σ2
γ

(6.5)

where σ2
p has been determined as the monopole-generated signal’s variance at the array’s

distance rA:

σ2
p = 1

2

3
Q1

4πrA

42
(6.6)

40



6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

Practically, to generate noisy signals, at each microphone numerically-computed n-th pressure
signal p′

n is summed a random noise contribution γn, by applying the formula:

pn = Q

4πrn
cos (2πft − krn) + γn (6.7)

where
γn ∼ N

A
0,

σ2
p

SNR

B
=
ò

1
SNR

Q

4πrn
· N (0, 1) (6.8)

In contrast to the de-noised case, here the focus is solely on the Q1 monopole, which
radiates at a frequency of 1000Hz. The examination involves the manipulation of the SNR
parameter while maintaining ε = 10% constant, identically to the value that yielded the
most optimal outcome in the scenario without background noise. Fig. 6.5 displays the
results obtained: GIBF tool’s algorithm has no problem in localization of the monopolar
source in the axes’ origin, even when noise level is the highest, i.e. SNR = 1.

Again, the reconstructed source amplitude, given by the sum of the point sources on
the grid, is propagated towards the array and the resulting SPL is compared to the cen-
tral microphone’s SPL distribution over frequency. With reference to fig. 6.6, the GIBF
tool seems to be not particularly disturbed in the basic scenario of an isolated monopole,
when confronted with random background noise during measurements. The presence of the
monopole is still illustrated by the peak observed at 1000Hz. Furthermore, it is apparent
that upholding a regularization parameter identical to that of the de-noised scenario results
in a solution deemed more than satisfactory even amidst noisy conditions, with a peak that
marginally diminishes in the presence of disturbances of a magnitude comparable to that of
the target source, for SNR = 1. Although noise is also present in GIBF’s reconstruction,
it is visibly lower with respect to recorded signal’s one because of its incompatibilities with
meaningful, actual sources.
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6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

GIBF Settings
Norm minimization L1

Reduction factor β 95%
Min. number of sources N/2
Number of eigenmodes 1
µR selection quasi-optimality
ε selection heuristic

Table 6.3: Description of the GIBF settings applied.

(a) f = f1 = 1000Hz (b) f = f2 = 3000Hz

Figure 6.2: Sound maps generated by GIBF tool for the synthetic monopole case, obtained for ε =
10%. Sources are displayed within a dynamic range of 15dB from the greatest point
source. SPL is computed by propagating the reconstructed source towards the array’s
central microphone.

Figure 6.3: Comparison between the central microphone’s SPL distribution over f and the GIBF
solution propagated towards the array, for ε = 10%. The graph shows a perfect overlap
of the two trends.
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6.1. BEAMFORMING OF A SYNTHETIC MONOPOLE

Figure 6.4: Map-integrated peak SPL at f = 1000Hz as a function of regularization parameter ε.
Results show ε having the effect of lowering the retrieved acoustic energy in the GIBF
solution. However, no ε value in the range identified by Suzuki (sec. 4.7) is capable of
returning an adequate SPL estimate.

(a) SNR = 3 (b) SNR = 2 (c) SNR = 1

Figure 6.5: Sound maps computed for f = f1 = 1000Hz and ε = 10% at different SNRs, sorted from
the simplest to the hardest case, and displayed in a dynamic range of 15dB. Even in
presence of a strong noise variance, σ2

γ = σ2
p for the SNR = 1 case, the GIBF’s source

reconstruction appears not to be significantly affected by noise.
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(a) SNR = 3

(b) SNR = 2

(c) SNR = 1

Figure 6.6: Comparison between SPL computed from map-integrated point sources (ε = 10%) and
that from the central microphone’s recording, for different levels of SNR.
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6.2. BEAMFORMING OF TWO FREELY ORIENTED DIPOLES

6.2 Beamforming of two freely oriented dipoles

The aim of the benchmark is to showcase the capability of GIBF in ascertaining the spatial
positioning of a distribution of freely oriented dipoles, a scenario which could make things
difficult for alternative beamforming techniques. Moreover, this task is carried out not solely
on a two-dimensional computational point grid, but also employing a three-dimensional grid.

6.2.1 Benchmark description

Two synthetic dipoles, namely a x-oriented dipole and a y-oriented dipole, positioned in
(0.3, 0, 0)m and (−0.3, 0, 0)m respectively, emit sound waves at a frequency f = 1000Hz.
Their signals at each microphone are numerically generated using the far-field approximation
of a dipole-type acoustic field:

p′(r, t) = Qdip
4π∥r∥

5
ζ · r

∥r∥

6
cos (ωt − k∥r∥) (6.9)

where r = x − x0 is the source-receiver distance vector (dipole being located in x0), ζ is
a unitary vector representing the dipole axis’ orientation, and Qdip is the dipole strength
to be recovered. At the microphones, the linear superposition of the two dipoles’ fields is
observed. The sources’ directivities suggest the adoption of a multi-dimensional microphone
array, that GIBF tool can easily handle. In fact, dealing with a computational environment
enables the use of the most appropriate array geometry without the typical difficulties of
experimentation. Hence, the emitted sound waves are simultaneously recorded by an array
of 80 microphones randomly distributed on a sphere of radius rA = 5m (illustrated in fig.
6.8). In analogy with the monopole case (sec. 6.1), the signal is captured with a sampling
frequency of fS = 7000Hz for a total of 104 samples. Two point grids are considered: a
simple planar 1m × 1m x − y grid and a three-dimensional 1m × 1m × 1m grid, each of them
being centered in (0, 0, 0)m and having resolution 30sources/m. The two grids adopted are
represented in fig. 6.7, while the choices adopted for the simulation parameters are shown in
the tab. 6.4.

6.2.2 GIBF settings

The pre-processing phase to obtain the CSM is the same as sec. 6.1.2. The configurations of
the linear problem inversion algorithm remain consistent with those utilized for the monopole
and are delineated in sec. 6.1.2 providing a comprehensive explanation. Table 6.3 is also avail-
able for readers seeking an overview of these configurations. In this instance, the multipole
detection algorithm (refer to se. 4.4) is enabled, enabling the identification of the location
of freely distributed dipoles with varying directivity in three-dimensional space, attributing
the existence of three overlapping dipoles sources (oriented in the three axes’ directions) to
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Parameter Symbol Value
Dipolar Source Amplitude Qdip 2Pa m
SPL at 5m for f = 1000Hz SPL 61dB
x-dipole’s position x0,x (0.3, 0, 0)m
y-dipole’s position x0,y (−0.3, 0, 0)m
Emitted frequency f 1000Hz
Sampling frequency fS 7000Hz
Number of samples nS 104

Sampling time tS 1,42s
Array distance rA 5m
Number of microphones M 80

Table 6.4: Selected parameters for the synthetic monopole simulation.

(a) 2D-GRID: 1m × 1m x − y grid centered in
(0, 0, 0)m with resolution 30sources/m, 3 × 900
point sources.

(b) 3D-GRID: 1m × 1m × 1m grid centered in
(0, 0, 0)m with resolution 30sources/m, 3×27000
point sources.

Figure 6.7: Representation of the two grids adopted, where blue dots represent the point sources. In
the multipole detection mode, 3 orthogonal dipoles are overlapped on each grid point.
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6.2. BEAMFORMING OF TWO FREELY ORIENTED DIPOLES

each grid point. The examination is executed within the frequency range of 800Hz − 1200Hz,
aligning with the emission spectrum of the sources. Once more, solely the first eigenmode
is taken into account, as it retrieves the acoustic energy of the two dipoles and is enough to
pinpoint their locations.

6.2.3 Results employing a 2D grid

As happened for the monopole case, also in multipole detection for the dipole source recovery
the localization resulted not to be influenced by the choice of regularization parameter ε. As
showed in fig. 6.9, the two dipolar sources are found where they were supposed to be located,
in (0.3, 0, 0)m for the x-oriented dipole and in (−0.3, 0, 0)m for the y-oriented dipole.

Rather it is the source strength quantification that requires ε to be selected carefully since,
as observed in sec. 6.1.3, its value determines the SPL peak value, obtained by summing the
point sources on the map as in (4.9). Results are reported in fig. 6.10. Similarly to what
happened in the monopole case, the findings illustrate the manner in which, in the context
of utilizing a two-dimensional grid, no ε value in the range 0.1% < ε < 10% suggested by
Suzuki demonstrates the ability to completely recover the acoustic energy resulting from the
presence of the two distinct dipoles taken separately, but this time the source strength is
always underestimated. These dipoles exhibit a SPL equivalent to approximately 61dB at
the array’s distance, a value known due to the source amplitude assigned for the simulation.
Consequently, the smallest ε value, ε = 0.1%, capable of allocating the maximum SPL and
achieving a difference of 3Hz from the exact estimation, is selected.

6.2.4 Results employing a 3D grid

When using the three-dimensional grid in 6.7.b, the GIBF tool is capable of reconstructing
the source’s position in a spatial domain. Maintaining the GIBF’s settings unchanged from
the two-dimensional grid case (tab. 6.3), even employing a three-dimensional grid the dipoles’
localization is impeccable, since the two dipoles are showed in their actual position (refer to
6.11). The exploitation of a 3D results to be beneficial also for source-amplitude estimation.
In fact, while the adoption of ε = 0,1% was insufficient to return the whole dipole’s acoustic
energy in the two-dimensional point grid case (sec. 6.2.3), using the three-dimensional point
grid it retrieves a flawless reconstruction of the source amplitude, the SPL at the array’s
distance settling around 61dB (with reference to fig. 6.12, where the SPL distribution over
frequency is reported).
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Figure 6.8: Visualization of the spherical array used for the two dipoles benchmark. The array is
centered on the axes’ origin (represented by the red dot) and its radius rA = 5m. The 80
microphones are randomly distributed on the virtual sphere, allowing complete compre-
hension of the source directivity.

(a) x-oriented dipole (b) y-oriented dipole

Figure 6.9: Sound maps generated by GIBF tool for the two synthetic dipoles case using a two-
dimensinal point grid, obtained for ε = 0.1% in f = 1000Hz. Sources are displayed
within a dynamic range of 15dB from the greatest point source. SPL is computed by
propagating the reconstructed source towards the array microphones in the dipole’s axis
direction, which is the direction of maximum amplitude, at a distance of 5m. The maps
show a fine reconstruction of both the x-oriented and the y-oriented dipole.
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Figure 6.10: Map-integrated peak SPL at f = 1000Hz as a function of regularization parameter ε for
the 2D grid solution. For the dipole case, similarly to the monopole case, ε has the effect
of lowering the retrieved acoustic energy in the GIBF solution. Again, no ε value in the
range identified by Suzuki (sec. 4.7) is capable of returning an adequate SPL estimate.

(a) x-oriented dipole (b) y-oriented dipole

Figure 6.11: Sound maps generated by GIBF tool for the two synthetic dipoles case using a three-
dimensional point grid, obtained for ε = 0.1% in f = 1000Hz. SPL is computed by
propagating the reconstructed source towards the array microphones in the dipole’s axis
direction, which is the direction of maximum amplitude, at a distance of 5m. The maps
show a fine reconstruction of both the x-oriented and the y-oriented dipole.
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Figure 6.12: GIBF’s prediction of the SPL distribution over frequency based on the computed source-
strength, using a three-dimensional grid (the trend is identical between the x and the
y-oriented dipole). One can notice that in this case the peak SPL approaches the SPL =
61dB (calculated with pREF = 20µPa) given by the sources imposed for the benchmark.
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Figure 6.13: Overview of the tested configurations based on the bare and coated cylinders. Credits:
Zamponi et al.

6.3 Beamforming of a coated cylinder’s noise

The investigation of cylinder noise is a critical endeavor in the field of fluid dynamics and
acoustics. It encompasses the study of sound generated by the interaction of fluid flow with
cylindrical structures, which is paramount in various engineering applications, from industrial
machinery to aerospace design. Understanding the sound production mechanisms behind the
cylinder noise can lead to significant advancements in noise reduction strategies, enhancing
the acoustic comfort and reducing the environmental impact of noise pollution.

The noise caused by a cylinder in cross-flow results from the superposition of a broadband
component, associated with the turbulent shear layer enveloping the cylinder, and a tonal
component, referred to as Aeolian tone and due to the well-known vortex shedding, consisting
in the periodic detachment of turbulent eddies at opposite sides of the cylinder. The latter,
which represents the major contribution, is also more controllable and thus several studies
have been conducted in this sense. In particular, porous coatings have been studied extensively
due to the findings about their decisive role in decreasing the Aeolian tone peak in emitted
sound. It has been proved that this phenomenon is related to the partial suppression of the
unsteady motion [29], and is explainable in terms of slip velocity and kinetic energy [30].

Zamponi et al. [8] associated this benefit to the porous coatings’ ability of shifting down-
stream the onset location of the vortex street unsteady motion, point at which the presence
of a quadropolar source can be identified. Hence, the cylinder noise can be explained as
the effect of a quadrupolar source in the wake scattering on the cylinder surface resulting
in a dipolar directivity and to all intents and purposes improving emission efficiency and
increasing perceived noise. In fact, they demonstrated how this effect can be achieved not
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only through the use of porous coatings, but also through the insertion of special tails in
the back of the cylinder, achieving comparable benefits in terms of noise reduction. Here, a
beamforming analysis based on the data collected by Zamponi as part of their research will
be carried out to demonstrate the source shifting effect caused by several configurations, as
showed in fig. 6.13.

6.3.1 Benchmark description

Measurements were carried in the A-tunnel facility in TU Delft, which is a vertical open-jet
wind tunnel placed in a anechoic chamber. The cylinder (d = 0,02m) is placed inside the
chamber and supported by two side plates. With reference to fig. 6.14, reporting the scheme
of the experiment’s arrangement and the reference system adopted, the x-axis is aligned with
the streamwise direction, the z-axis is aligned with the span of the cylinder, and the y-axis
is oriented in order to form a right-handed coordinate system. The origin is placed at the
midspan of the trailing edge of the cylinder. For further information about the characteristics

Figure 6.14: Test section showing the outlet nozzle, side plates, and cylinder specimen, including the
reference system considered for presenting the results. Credits: Zamponi et al.

of the configurations employed, the reader should refer to the original paper.
Regarding the acoustic measurements, they have been conducted using a microphone

array of 64 G.R.A.S. 40 PH analog free-field microphones, each of them having a diameter of
0,007m and a lenght of 0,059m. The array (ref. fig. 6.15) is characterized by an aperture of
around 2m and is arranged in a optimized multi-arm configuration that is oriented parallel
to the x−z plane, with the central microphone is located at (x, y, z) = (5d, 59.25d, −0.25d).
For each configuration, the data have been acquired at a sampling frequency of 102,4kHz
for 20s. For the tests, five free-stream Reynolds numbers have been considered, namely,
Red = 3.4 × 104, 4.1 × 104, 4.8 × 104, 5.4 × 104, 6.8 × 104, corresponding to free-stream flow
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Figure 6.15: Relative position of the microphone array and the test section. The black lines indicate
side plates, nozzle exit, and cylinder leading edge and trailing edge. The central micro-
phone of the array is highlighted in red. Credits: Zamponi et al.

velocities u0 ranging from 25m s−1 to 50m s−1.

6.3.2 Sound pressure levels (SPL) of the central microphone

The overall noise given by the presence of the cylinder can be associated with its effect on
the array’s central microphone, at a distance of 1m, that can be measured in terms of SPL
using a pREF = 20µPa. In figure 6.16, the SPL trends over Strouhal number St = fd

u0
for

different configuration of the cylinder are reported, calculated for Red = 4,1 × 104. It can be
seen that all the configurations considered have a lowering effect on the peak associated with
the aeolian tone. In addition, the peak frequency is lowered, and this appears to be due to the
thickness that the coating introduces to the resulting configuration. The same conclusions
are drawn for the other Reynolds numbers considered in the study.

6.3.3 GIBF settings

CSM matrix has been computed using the data collected at a free-stream velocity u0 =
50m s−1 (corresponding to Red = 6.8×104) with Welch’s method, with blocks of 213 samples,
corresponding to 0.16s, windowed through a Hanning weighting function that has 50% of data
overlap, that results in a spectrum having a frequency resolution of 12.5Hz. The convected
monopole reference solution (see sec. 4.5) is used due to the characteristics of the planar
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Figure 6.16: Absolute SPLs for the bare cylinder and the other cylinder configurations, relative to
Red = 4,1 × 104, as measured by the array’s central microphone, computed for pREF =
20µPa. Credits: Zamponi et al.

Grid description
Dimensions 1m × 1m
Plane x − z
Origin (0, 0, 0)m
Resolution 30 sources/m
Number of sources 900

Table 6.5: Characteristics of the point grid adopted in GIBF tool.

array implemented, that would hardly discern a monopole from a y-dipole. The 1m × 1m
grid employed (described in tab. 6.5 and shown in fig. 6.17) lies on the x − z plane and
features a resolution of 30sources/m, with a total number of 900 point sources. Regarding the
parameters involved in the IRLS inversion algorithm, a L1 norm of the solution is minimized
using a reduction factor of 1 − β = 5% at every iteration until a minimum number of N/2
sources is reached. The value of ε is chosen to best match the resulting SPL of estimation
with the central microphone’s SPL trend. The sound maps in fig. 6.18 are generated for
the bare and the coated cylinder case in the one-third frequency band of f1/3 = 1.6kHz to
showcase the dominant source’s shifting effect caused by the coating, a thing that explains
the peak noise reduction for the coated cylinder observed in fig. 6.16.

6.3.4 Results

The GIBF tool proved to be essential in finding the position of the dominant sources, iden-
tifying an actual shift of the sources downstream in the case of the coated cylinder, which
can explain the lowering of the perceived noise compared to the bare case. This can be seen
well in the figure 6.18, where the dominant sources in the wake are observed on location
x/d = 2.5 for the baseline cylinder (a) and on x/d = 7.5 for the coated one. These positions
roughly correspond to the onset locations of the vortex shedding motion and thus represent
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6.3. BEAMFORMING OF A COATED CYLINDER’S NOISE

Figure 6.17: Visualization of the point grid employed for the beamforming analysis. Parameters are
described in tab. 6.5.

(a) Bare cylinder (b) Coated cylinder (80PPI)

Figure 6.18: GIBF source reconstruction (ε = 10%) using monopole formulation. Sound maps for
(a) the baseline and (b) the cylinder uniformly coated with metal foam at f1/3 = 1,6kHz
and Red = 6,8 × 104, St = 0,64 computed with a reference pressure of 20µPa

high flow-mixing regions (due to shear layer instabilities), which explains the noise emission.
The ability of porous coatings and other devices to delay the onset of these instabilities fur-
ther downstream results in a less intense scattering of acoustic waves on the cylinder, which
results in a less efficient noise generation mechanism.

Regarding the reconstruction of the source strength, it resulted to be unsatisfactory due
to an overestimation of SPL values (ref. fig. 6.19), even when using the largest regularisation
parameter ε = 10% in the range given by Suzuki. This emphasizes the necessity for a more
robust regularisation procedure when using the GIBF tool to separate and quantify source
contributions.
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6.3. BEAMFORMING OF A COATED CYLINDER’S NOISE

Figure 6.19: GIBF prediction of cylinder’s emitted noise for the two configurations based on the prop-
agation of map-integrated resolved sources, obtained for ε = 10%. One can notice that
GIBF predicted noise substantially follows the trends of the measured spectra reported
in fig. 6.16, but definetely exceedes them in value, with a +5dB increase.
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Chapter7

Concluding remarks

A source imaging tool for Aeroacoustic applications, based on the Generalized Inverse Beam-
forming (GIBF) technique, has been successfully developed and implemented in a fully vec-
torized and parallelized MATLAB application equipped with a graphical interface. The tool
has proven to effectively address the challenges associated with aeroacoustic measurements,
both in wind tunnel environments and numerical simulations (CAA).

The adoption of GIBF has enabled overcoming the limitations of conventional beam-
forming, which relies on the assumption that the interrogation region solely contains sources
within the domain—a hypothesis that becomes invalid when dealing with aeroacoustic prob-
lems. This was achieved by simultaneously solving for all sources in the acoustic field, inher-
ently accounting for interference arising from the presence of spatial distributions of coherent
and incoherent sources. Moreover, the ability to promote spatial sparsity in the solution
through Lp norm minimization has facilitated the generation of highly resolved and easily
integrable acoustic maps.

Regarding wind tunnel measurements, the propagation of acoustic sources has been for-
mulated to consider the convection of sources due to the mean flow velocity and the presence
of the shear layer in open-jet configurations. In addition to these benefits, concerning mea-
surements based on CAA simulations, they have been maximized by implementing a formu-
lation for the source-receiver propagation that is fully three-dimensional, thereby enabling
3D beamforming in spatial domains through multidimensional microphone arrays.

Furthermore, alongside monopole beamforming, dipole-beamforming has been introduced
through a novel multipole detection algorithm, which, when applicable with the microphone
array, has yielded excellent results in terms of localizing freely oriented dipoles in space.

In conclusion, GIBF tool definitely proved to be an important instrument for acoustic
imaging purposes, always delivering a fine reconstruction of the source distribution. However,
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the regularization strategy adopted for the inverse problem, based on heuristic selection of a
regularization parameter, has not yielded satisfactory results. It consistently overestimated
(monopole-beamforming) or underestimated (dipole-beamforming) the peak SPL value pre-
dicted by GIBF in every benchmark, although accurately reproducing SPL spectra with
varying frequencies.

A feasible approach for solving the issue could be represented by the iterative Bayesian
Focusing (iBF) proposed by Antoni [31], that, based on statistical considerations, allows for
informing the solver about regions where sources might be located. This strategy has proven
capable of providing excellent results in terms of resolution and quantification, making it
suitable for implementation as a future development of the GIBF tool.
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