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Summary

As Artificial Intelligent systems become more widely used in our daily lives, it’s
crucial to ensure not only their accuracy, but also their fairness.
In this study, I focused on assessing fairness and the possible presence of bias
in systems that address the task of Speech Emotion Recognition (SER). Speech
Emotion Recognition is the process of automatically detecting and understanding
the emotional content conveyed through spoken language. It relies on analyzing
acoustic features of the speech signal, independently of the actual linguistic content.
The experiments were conducted using the only two datasets available in Italian
for this task, Emozionalmente and EMOVO. I implemented the fairness metrics
that are mostly used in literature (Disparate Impact, Statistical Parity, Average
Odds and Equal opportunity) as well as two baselines to run the tests: a Support
Vector Machine (SVM) model, considering two different methods to extract features
(MFCC and MFMC), and a ResNet. Two sensitive attributes were considered
for the analysis, based on the information about the subjects made available by
the datasets: in the experiments carried out using EMOVO, only gender was
considered, while in those using Emozionalmente I was also able to consider age. I
then tested the fairness, using the same metrics, of WavLM, a new transformer
based pre-trained model.
By comparing the results obtained, I was able to verify how different algorithms
use the intrinsic information contained in the audios to obtain the labels, and by
changing the distributions of subjects in the training datasets, I was able to verify
whether and how the training data affect the output in terms of bias. Furthermore,
by performing the experiments on a model that has better accuracy performance
than the baselines, I was also able to draw conclusions about the dependence
between bias and accuracy.
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Chapter 1

Introduction

1.1 Knock Knock project

This thesis is part of the Knock Knock project (KK), which is being developed by
the LINKS Foundation. The overall goal of the Knock Knock project is to develop
and test an innovative method based on digital technologies for facilitating the
placement phase of individuals with autism spectrum disorders in new environments,
in order to help reduce the difficulties and negative experiences that are typically
associated with this type of experience.
KK seeks to integrate, introduce, and experiment with a digital component in the
existing process of including individuals with Autism Spectrum Disorder (ASD)
at Il Margine Cooperative’s new Day Activity Centre (DAC). Through digital
technologies, the person will be able to experience virtual visits from his or her
home (or from a place of choice) in which he or she will gradually make contact
with the physical environments, the planned activities, and the social context he
or she will find at the DAC. In addition to interactive systems, the project aims
to develop and test an Artificial Intelligence (AI) system to recognize and label
emotions experienced by participants in the experiment, with a focus on individuals
on the Autism Spectrum and their families. In its first version, the AI system for
emotion recognition is based on the analysis of para-verbal aspects of speech to
recognize the six primary emotions outlined by Ekman [1] plus neutral state.
The purpose of this system is to contribute to the improvement of services for those
who are affected by ASD, both directly and indirectly. In particular:

• Parents of people with ASD can find support in identifying the "threshold
of emotional non-control", which is very subjective and can involve both
positive and negative emotions. The priority need is to anticipate and mitigate
behavioral crises;
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• Individuals with ASD can benefit from learning to recognize or better distin-
guish their emotions;

• Professionals can use it as an educational tool and for monitoring, if the
system will be designed to make the data it processes available and usable;

• Managers of services for families and people with DSA will be able to implement
a unique and tailored transition management approach.

My thesis is part of this project, having as its goal to verify and quantify the
presence of bias in the emotion recognition system. The idea is to develop a bias
recognition framework that can be applied to all sensitive attributes, including
being an ASD subject or not.

1.2 Emotion Recognition Task
Emotion recognition is the artificial intelligence task aimed at detecting human
emotions from various sources, such as text, speech and facial expressions.
The use of technology to recognize emotions is a fairly recent practice in research,
but it already has various applications. Some areas in which emotion recognizers
are employed are for example call centers assessing customer satisfaction, e-learning
systems, assistive robotics, security agencies, military organizations and many more
[2, 3, 4]. Detecting emotions can be difficult due to their subjective nature, despite
their numerous applications. There is no clear understanding of how to measure or
categorize them.
Recognizing the emotion expressed given an input data is a particular example of
the macro area of classification problems. Given a set of data to provide as input
and a set of possible labels, we want to assign to each instance of the dataset one
of the labels. Both machine learning and deep learning algorithms can be used to
solve problems of this kind, as we will see in the in-depth discussion in chapter 2.
Regardless of the classification model used, it has been seen that using different
data modalities (text, audio, video) at the same time produces better results [5],
however processing numerous forms of data requires technologies and resources that
aren’t always available. In this study I will focus on the task of Speech Emotion
Recognition, which is the recognition of emotions using audio inputs.

1.2.1 Speech Emotion Recognition
Speech Emotion Recognition (SER) is the process of automatically detecting and
understanding the emotional content conveyed through spoken language. It involves
analyzing various acoustic features of the speech signal, such as pitch, intensity,
rhythm, and spectral characteristics, to infer the underlying emotional state of the
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speaker, independently of the actual linguistic content [6].
By ignoring language content, it is possible to create more broadly applicable
models that can identify emotions in a variety of linguistic and cultural contexts.
However, it’s important to note that, even though semantic content is not employed
directly in SER, prosody and other acoustic aspects may still be indirectly impacted
by it [7]. The speaker’s intonation, for example, can be influenced by word choice
and the semantic context of those words, which can then have an impact on how
emotionally charged the speech is perceived to be. For these reasons, in this study
we decided to focus on the speech emotion recognition task using exclusively Italian
language datasets, as you will see in section 4.

1.2.2 Emotion Classification
To properly implement a speech emotion recognition system, we must define
and model emotions precisely. However, the definition of emotions remains a
controversial topic in psychology. The range of emotions that human beings can
experience is in fact very wide, and it is impractical to consider and classify them
all. In the twentieth century, more than ninety definitions of emotion were proposed
[8], and based on these definitions two models have become common in the speech
emotion recognition task: discrete emotional model and dimensional emotional
model.
Discrete emotion theory is based on Ekman’s investigations of the six basic emotions:
anger, disgust, fear, happiness, sadness and surprise. For this theory, all other
emotions are obtained by the combination of the basic ones. We focus on these
emotions because are the ones that appear to be universal across humanity [9]. But
what differentiates basic emotions from other types of emotions? A basic emotion
should be discrete, have a fixed set of neural and bodily expressed components,
and a fixed feeling or motivational component that has been selected for through
longstanding interactions with ecologically valid stimuli [1]. Most of the existing
SER systems, including those used in this work, focus on these basic emotional
categories, adding neutrality to represent states in which no emotion is being
experienced.
Dimensional emotional model is an alternative model that uses a small number of
latent dimensions to characterize emotions, such as valence, arousal, control, power
(Figure 1.1). In this approach, emotions are related to one another in a structured
way rather than being separate. Although it can be useful in categorizing a wider
range of emotions, this approach has several disadvantages and is therefore not
used very often: it is not intuitive, and specific training may be required to classify
each emotion. In addition, some emotions, such as fear and anger, become identical,
while others, like surprise, cannot be defined and may have a positive or negative
valence depending on context.
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Figure 1.1: Dimensional emotional model with examples of emotions

1.2.3 Open problems and challenges

Emotions are complex and subjective experiences, which makes the emotion recog-
nition task particularly challenging.
Since emotion expression varies widely across cultures and languages, it is difficult
to create emotion recognition models that can universally interpret and respond to
diverse emotional signals [7].
In addition, speech often conveys a mix of emotions simultaneously, introducing
ambiguity into the recognition process.
Another problem relates to the contextual information surrounding the speech: in
fact, social cues and the speaker’s past experiences can help identify a particular
emotion more accurately, but these data are not always available and it is not
immediate to integrate them into recognition systems.
When, as in the context of this study, we are also dealing with data from ASD
subjects, the difficulties increase [10, 11]. In fact, when it comes to emotions, it is
said that ASD subjects typically do not express them in ways that regular people
would be able to identify and comprehend. They either do not react emotionally
at all or, on occasion, their emotional reactions may come across as excessive. In
some cases, subjects are also non-verbal or voice is not the primary means by which
they express emotions. It is therefore essential to recognize the limitations of the
technologies used in order to improve them in the best way possible.

4
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1.3 Computational Biases and Fairness
With the rise in popularity of AI systems that affect our daily lives, it is critically
important to make sure they are not only accurate, but also designed to be as
fair as possible. Nowadays, in fact, more and more decisions are controlled by
AI algorithms, and the benefits of using automated decision-making systems are
clear: algorithms are capable of handling and integrating much more data than
a human may grasp, and also of performing complex computations much faster.
One would also expect an automated algorithm to be more objective and fair than
a human being, but unfortunately it is not always like this. These automated
decision-making systems are used in various fields that significantly impact people’s
lives: systems that decide which individual will receive a job, a loan, bail or parole.
For this reason, it is critically important to determine and improve the ethics of
decisions made by these systems.
In the context of decision-making, when we talk about fairness we refer to the
absence of any prejudice or favoritism toward an individual or group based on their
inherent or acquired characteristics [12]. Thus, an unfair algorithm is one whose
decisions are skewed toward a particular group of people. These biased predictions
are usually a direct consequence of hidden biases in data or algorithms.

1.3.1 Causes of Unfairness and Types of Bias
We can identify different causes that lead to unfairness in machine learning [13,
14], and consequently we can talk about different types of biases [12].

• Bias Encoded in Data: human biases are frequently present in training
data. These biases can arise from various sources, such as historical societal
inequalities, human prejudices, or flawed data collection methods. Machine
learning algorithms seek to fit data, and this inevitably will perpetuate existing
biases. In this case we talk about Historical biases and Measurement biases.

• Algorithmic Bias: it refers to the inherent biases present in the design,
development, or deployment of machine learning algorithms. These biases can
lead to unfair or discriminatory outcomes, even if the training data itself is
unbiased. Algorithmic bias can arise from various sources, including the choice
of features, the optimization objectives, or the decision-making processes
embedded within the algorithm.

• Biases caused by "proxy" attributes for sensitive attributes: sensitive
attributes, such race, gender, and age, are often used to distinguish between
privileged and unprivileged groups and should not be used in decision-making.
Proxy attributes are non-sensitive attributes that can be exploited to derive
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sensitive attributes. If the dataset contains proxy attributes, the machine
learning algorithm may make conclusions based on sensitive attributes while
using supposedly legitimate attributes.

1.3.2 Measures of Algorithmic Fairness
Generally speaking, fairness is the absence of any prejudice or favoritism towards
an individual or a group based on their intrinsic or acquired traits.
We can distinguish two types of fairness: group fairness and individual fairness.
Group fairness criteria focuses on ensuring fairness for entire groups or categories
of individuals, typically defined by sensitive attributes such as race, gender, or age.
Individual fairness, on the other hand, focuses on ensuring fairness for individual
individuals, irrespective of their group membership or demographic characteristics,
following the principle that "similar individuals should receive similar treatments".
In this work I will focus on assessing group fairness.
Having an intuitive definition of fairness is not enough because is important to be
able to quantify the level of fairness/unfairness. In section 2 I will present the formal
definitions of algorithmic fairness. The research emphasizes the trade-off between
accuracy and fairness, with higher levels of fairness potentially compromising
accuracy [15, 16, 17]. A fairness-aware algorithm aims to prioritize fairness without
sacrificing accuracy or efficiency.

6



Chapter 2

Related Works

2.1 Speech Emotion Recognition

Speech Emotion Recognition is a speech processing and computational paralinguis-
tics task that seeks to identify and categorize emotions communicated through
spoken language. The purpose is to discern a speaker’s emotional state based on
their speech patterns, which include prosody, pitch, and rhythm. This is a topic
that has been getting a lot of attention lately in literature, and there are several
possible methods to approach it. The approaches differ in both the pre-processing
and feature extraction methods and the classification models used, which range
from machine learning methods to deep learning and transfer learning.
In [18] and [19], the authors identify and discuss several areas of SER, providing
a full overview of existing literature for each, as well as highlighting the current
challenges. The extraction of speech features is an essential step in SER. Acoustic
aspects of speech are classified into two types: prosodic features and spectral
features. Among the prosodic features, the most widely used in the literature are
pitch [20, 21], zero-crossing rate (ZCR) [22] or voice quality features such as jitter
and shimmer. For what concerns spectral features, the most used by researchers
are MFCC [20, 22, 23] or linear prediction cepstral coefficient (LPCC) [23]. An
interesting innovation was proposed by authors in [24]: they introduce the Mel
Frequency Magnitude Coefficient (MFMC), very similar to MFCC but in this case
magnitude spectrum is used instead of energy spectrum and the discrete cosine
transform is not computed. The authors observe that MFMC recognizes emotions
with better accuracy than the traditional spectral features.
[25] provides a comparison among the performance of popular machine-learning
algorithms with several different feature sets, concluding that Support Vector
Machine (SVM) is one of the best performing models. Other machine-learning
classifiers commonly used in literature are Gaussian Mixture Model (GMM) [26]
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and K-Nearest Neighbour (KNN) [27].
Speaking instead of deep neural network classifiers, [28] and [29] present an overview
of the most used deep learning techniques, providing a comparison among their
results on different datasets.
We currently have only two datasets available in Italian for the speech emotion
recognition task (EMOVO [30] and Emozionalmente [31]), and most of the literature
has used EMOVO to produce results on the Italian language. I will now report the
most relevant works in this sense. In [32], authors propose a lightweight Convolu-
tional Neural Network (LCNN) which extracts useful features automatically, and
evaluate the model on several publicly available datasets, reaching an accuracy of
81% on EMOVO. In [33], the authors propose a SER system that uses log-Mels
as an input to our Convolutional Recurrent Global Neural Network (CRGNN). A
Convolutional Neural Network (CNN) is used to extract local invariant features
using log-Mels, followed by a Recurrent Neural Network (RNN) to learn the tem-
poral correlations between multiple time-step local invariant features. Finally, the
most active features are selected using the Global Max Pooling technique. With
this method they obtain an accuracy of 65% on EMOVO. In [34], an algorithm is
proposed that uses deep learning to extract high-level features from raw data with
great accuracy, regardless of language or speakers (male/female) of voice corpora.
The reported emotion identification accuracy outperforms previous studies across
languages and speakers.

2.2 Bias Detection
Preventing bias and discrimination is a long-standing issue in philosophy and
psychology, and recently also in machine learning. However, in order to be able
to fight against discrimination and achieve fairness, it’s important to define what
it means. Prior to computer science, philosophers and psychologists attempted
to define fairness, but the lack of a uniform definition highlights the challenge of
addressing this issue. Diverse cultures have diverse perspectives on fairness, making
it challenging to define a universally accepted standard.
In [35], authors study the 50-year history of fairness definitions in the areas of
education and machine-learning. They compare past and current notions of fairness
along several dimensions, including the fairness criteria, the focus of the criteria, the
relationship of fairness to individuals, groups and subgroups and the mathematical
method for measuring fairness. They analyze the cultural and social contexts that
have influenced these definitions and conclude that, in some cases, earlier definitions
of fairness may be similar or identical to those in present machine learning research,
while in other cases insights into what fairness means and how to measure it have
largely gone overlooked.
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In [36], authors collect the most prominent definitions of fairness in algorithmic
classification problems and explains the rationale behind these definitions, demon-
strating each of them on a single unifying case-study. Their research explains
why the same case can be considered fair according to some definitions and unfair
according to others.
In the next section, I will present the most prominent measures of algorithmic
fairness in machine learning classification tasks [14].

2.2.1 Fairness Metrics
• Disparate Impact Ratio: this measure was designed to mathematically

represent the legal notion of disparate impact. It requires a high ratio between
the positive prediction rates of both groups. This ensures that the proportion
of the positive predictions is similar across groups. Formally is defined as
follows:

P [Ŷ = 1 | S /= 1]
P [Ŷ = 1 | S = 1]

≥ 1 − ϵ (2.1)

S represent the protected attribute, hence S=1 is the privileged group and
S/=1 is the unprivileged one. Ŷ =1 means that the prediction is positive. A
higher value of this measure represents more similar rates across groups and
therefore more fairness.

• Statistical Parity Difference: also known as Demographic Parity Difference,
is very similar to disparate impact but we take the difference instead of the
ratio. Formally is defined as follows:

| P [Ŷ = 1 | S /= 1] − P [Ŷ = 1 | S = 1] |≤ ϵ (2.2)

A lower value of this measure represents better fairness. This metric ensure
that the positive prediction is assigned to the two groups at a similar rate.

• Average Odds Difference: also known as Equalized Odds Difference, com-
putes the difference between the false positive rates (FPRs) and the difference
between the true positive rates (TPRs) of the two groups. Formally is defined
as follows:

| P [Ŷ = 1 | S = 1, Y = 0] − P [Ŷ = 1 | S /= 1, Y = 0] |≤ ϵ (2.3)

| P [Ŷ = 1 | S = 1, Y = 1] − P [Ŷ = 1 | S /= 1, Y = 1] |≤ ϵ (2.4)
Smaller differences between groups indicate better fairness. It is important to
notice that since average odds relies on the actual ground truth (i.e., Y) it
assumes that the base rates of the two groups are representative and were not
obtained in a biased manner.
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• Equal Opportunity Difference: this metric is similar to average odds but
focuses on the true positive rates only. It requires true positive rates (TPRs)
to be similar across groups. Formally is defined as follows:

| P [Ŷ = 1 | S /= 1, Y = 1] − P [Ŷ = 1 | S = 1, Y = 1] |≤ ϵ (2.5)

Also in this case, a smaller difference indicate better fairness. It is important
to note that following the equality in terms of only one type of error (e.g.,
true positives) will increase the disparity in terms of the other error.

2.2.2 Assessment Tools
Researchers have also recently introduced tools for assessing the amount of fairness
in a system, in order to allow people working in the industry to develop fair machine
learning applications in an easier way.
For example Aequitas [37] is an open source bias and fairness audit toolkit that
allows users to test models for several bias and fairness metrics in relation to
multiple population sub-groups. It generates reports for data scientists, machine
learning researchers and policymakers in order to make informed decisions and
prevent harm toward specific groups.
Another toolkit is IBM’s AI Fairness 360 (AIF360) [38], that aims to integrate
fairness research algorithms into industrial settings, establish a benchmark for
evaluating algorithms, and foster collaboration among fairness researchers. The
package provides fairness measurements, explanations, and techniques to reduce
bias in datasets and models. The platform offers an interactive web experience for
line-of-business users, comprehensive documentation, usage guidance, and industry-
specific tutorials to help data scientists and practitioners choose the best tool for
their needs.
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Chapter 3

Methods

In this chapter, I will dive into the technical details of my work.
To begin, I will discuss the step-by-step approach of how I measured fairness,
explaining the implementation of each metric in detail. Next, I will break down
how we created visual plots to make our findings easy to understand. In the second
part of the chapter I will explain the technical details related to the implementation
of the baselines used to obtain the first results, namely SVM and ResNet. Lastly, I
will discuss the features of WavLM, the pre-trained model actually used to carry
out the project and obtain the best results.

3.1 Fairness

3.1.1 Metrics
The focus of this work is to study and quantify the biases that result from using
speech emotion recognition systems. In order to do this, it was necessary to imple-
ment the metrics most commonly used in the literature, but adapting them to the
specific context of this study.
The task we are dealing with is a speech emotion recognition task, that is, a
classification task in which we can assign as a possible output label one of the
six basic emotions of Ekman’s theory: sadness, disgust, fear, anger, joy, surprise,
plus neutrality for the intervals in which no emotion is expressed, for a total of
seven possible labels. Usually, however, when we talk about bias and use metrics
to assess fairness, we are always dealing with binary outputs. In fact, we always
refer to positive outcome and negative outcome as two output alternatives for labels.
For this reason, one of the most significant contributions of this study was to
reformulate the metrics in such a way that they gained meaning in the multiclass
setting in which we are working.
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Below, whenever we refer to a sensitive attribute we are talking about any char-
acteristic or personal trait of an individual that is considered private, protected,
or potentially discriminatory. These attributes often include characteristics such
as race, gender, sexual orientation, religion, disability status, age, socioeconomic
status, ethnicity, and others. In our case, the sensitive attributes considered are
gender and age. In order for these sensitive attributes to gain meaning in talking
about bias, two groups are always identified: a privileged group and a unprivileged
group. This means that the sensitive attribute must always take binary values: in
the case of gender this is immediate, while in the case of age there is a need to
identify a threshold to divide the population into young and old.
I will now illustrate each metric used in detail:

Statistical Parity Difference

This metric measures the difference in favorable outcomes between different demo-
graphic groups, to ensure that the model’s predictions are not biased against any
particular group based on their protected attributes such as race, gender, or age.
This is the general definition, but it cannot be directly applied to our situation
without being redefined, because we do not have a clear description of what a
favorable outcome is. For this reason, we redefine statistical parity difference in
such a way that a value is calculated for each possible emotion, i.e. label. In this
way, we establish that we are talking about favourable outcome when the emotion
we are considering at that moment is assigned.
In this setting, to compute the statistical parity difference for each label we follow
these steps:

1. Creation of a dictionary to store the count of positive predictions for each
label and sensitive attribute value;

2. Computation of the proportion of positive predictions for each label and
sensitive attribute value, by dividing the count by the total number of instances
for the sensitive attribute value we are considering;

3. Calculation of the actual statistical parity difference by subtracting the values
corresponding to the same emotion for the two values of the sensitive attribute.

A Statistical Parity Difference value of 0 indicates that there is no difference
in the rate of favorable outcomes between the privileged and unprivileged groups,
indicating perfect fairness. We extend the concept of fairness to a range of -0.1 to
0.1. A negative value indicates that the privileged group is more likely to receive
favorable outcomes than the unprivileged group, suggesting bias or discrimination.
A positive value indicates that the unprivileged group is more likely to receive
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favorable outcomes than the privileged group, which might also indicate bias or
discrimination, even though in the opposite direction.

Equal Opportunity Difference

This metric requires true positive rates (TPRs), meaning the probability of an
individual with a positive outcome to have a positive prediction, to be similar
across groups. It is computed as the difference of true positive rates between the
unprivileged and the privileged groups. The true positive rate is the ratio of true
positives to the total number of actual positives for a given group. This is the
general definition that we need to rephrase to make it applicable to our setting. In
our case we calculate an equal opportunity difference value for each label and we
talk about positive prediction when the emotion we are considering at that moment
is assigned.
In this setting, to compute equal opportunity difference for each label we follow
these steps:

1. Creation of a dictionary to store predictions and true values separately with
respect to the sensitive attribute;

2. Computation of the recall score (True Positive Rate) for each label separated
by sensitive attribute value;

3. Calculation of the actual equal opportunity difference by subtracting the
values corresponding to the same emotion for the two values of the sensitive
attribute.

An Equal Opportunity Difference value of 0 indicates perfect fairness. We
extend the concept of fairness to a range of -0.1 to 0.1. A negative value indicates
that the privileged group is more likely to receive favorable outcomes than the
unprivileged group, suggesting bias or discrimination. A positive value indicates
that the unprivileged group is more likely to receive favorable outcomes than the
privileged group, which might also indicate bias or discrimination, even though in
the opposite direction.

Average Odds Difference

This metric, also known as equalized odds, is similar to equal opportunity but in
addition to computing the difference between the true positive rates (TPR) of the
two groups, also computes the difference between the false positive rates (FPR). The
average between TPRs differences and FPRs differences is then calculated. Also
in this case we obtain an average odds difference value for each label, considering
a different emotion each time as a positive prediction. To compute average odds
difference for each label we follow the following steps:
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1. Creation of a dictionary to store predictions and true values separately with
respect to the sensitive attribute;

2. Computation of the recall score (True Positive Rate) for each label separated
by sensitive attribute value;

3. Calculation of TPRs difference for each label;

4. Computation of the False Positive Rate for each label separated by sensitive
attribute value, by computing the confusion matrices for each label and
sensitive attribute to extract false positive and true negative values;

5. Calculation of FPRs difference for each label;

6. Calculation of the actual average odds difference by computing the average
between TPRs differences and FPRs differences.

An Average Odds Difference value of 0 indicates perfect fairness. We extend the
concept of fairness to a range of -0.1 to 0.1. A negative value indicates that the
privileged group is more likely to receive favorable outcomes than the unprivileged
group, suggesting bias or discrimination. A positive value indicates that the
unprivileged group is more likely to receive favorable outcomes than the privileged
group, which might also indicate bias or discrimination, even though in the opposite
direction.

Disparate Impact Ratio

This measure was designed to mathematically represent the legal notion of disparate
impact. It is computed as the ratio between the positive prediction rates of both
sensitive groups. This ensures that the proportion of the positive predictions is
similar across groups. As above, we redefine this metric by computing a disparate
impact ratio value for each label, and we talk about positive prediction when the
emotion we are considering at that moment is assigned.
To compute the disparate impact ratio for each label we follow these steps:

1. Creation of a dictionary to store the count of positive predictions for each
label and sensitive attribute value;

2. Computation of the proportion of positive predictions for each label and
sensitive attribute value, by dividing the count by the total number of instances
for the sensitive attribute value we are considering;

3. Calculation of the ratio obtained comparing the two groups.
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A Disparate Impact Ratio value of 1.0 indicates perfect fairness. We extend the
concept of fairness to a range of 0.8 to 1.25. A value less than 1 indicates that the
privileged group is more likely to receive favorable outcomes than the unprivileged
group, suggesting bias or discrimination. A value greater than 1 indicates that the
unprivileged group is more likely to receive favorable outcomes than the privileged
group, which might also indicate bias or discrimination, even though in the opposite
direction.

The implementation of these metrics is available in appendix A.

3.1.2 Plots
To make the results obtained from the metrics easily usable, there is a need to
display the values in an intuitive way. In fact, we get many numbers as output
that are meaningless unless put in a context where their meaning is explained. For
this reason, with the project team, we came up with a visualization of the results
that would be as clear and immediate as possible.
Considering the data we are working with, I decided to visualize the results using
a horizontal histogram. I placed emotion-related labels on the y-axis (neutrality,
surprise, disgust, joy, sadness, fear and anger) and fairness-related information
on the x-axis. Specifically, there are three labels on the x-axis: perfect fairness,
bias toward privileged group, and bias toward unprivileged group. Perfect fairness
corresponds to the value zero for the metrics Statistical Parity difference, Equal
Opportunity difference and Average Odds difference, while it corresponds to the
value 1 for the Disparate Impact metric. In both cases the label is positioned at the
center of the x-axis. We then have on the left the label bias towards privileged group
and on the right the label bias towards unprivileged group. Metrics values for each
emotion are displayed at the end of the histogram column for clarity. As specified
in the previous section, we do not refer only to perfect fairness, but extend the
concept of fairness to a range to make it more applicable in practice. To identify
it in the graph, I have highlighted the corresponding range. In this way if the
histogram bar ends up in the highlighted range we know that we are respecting
fairness otherwise in case it ends up outside we know that we are in the presence
of bias and, thanks to the labels on the x-axis, we also have information about the
direction of the bias.
The colors used to represent emotions with the histogram were chosen with reference
to the model proposed by Ekman in the Atlas of Emotions [39]. Blue (RGB 60
175 175) is used to indicate surprise, green (RGB 100 153 65) is used for disgust,
yellow (RGB 255 255 0) is used for joy, blue (RGB 64 106 173) is used for sadness,
purple (RGB 91 57 136) is used for fear, red (RGB 160 61 62) is used for anger,
and gray (RGB 229 229 229) is used for neutrality, as shown in figure 3.1.

The implementation of the plots is available in appendix B.
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Figure 3.1: Emotion’s colors according to the model proposed by Ekman in the
Atlas of Emotions

3.2 Feature Extraction
When working with audio-type input data, the feature extraction step is necessary
for several reasons:

• Dimensionality reduction: audio signals are tipically high-dimensional.
They contain a huge volume of raw data, which can be computationally
expensive to handle and may result in overfitting when training models.
Feature extraction helps reduce this dimensionality by selecting a subset of
informative features that capture relevant information about the speech signal;

• Discriminative features: not all parts of the audio signal are equally
important for recognizing emotions. Feature extraction allows us to identify
and extract features that are most discriminative for distinguishing between
different emotional states. These features could include characteristics like
pitch, intensity, spectral features, etc., which are known to be correlated with
various emotions;

• Noise robustness: audio signals are often contaminated with noise from
various sources such as background chatter, environmental sounds, or micro-
phone interference. Feature extraction can help in extracting features that
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are robust to noise, thus improving the performance of emotion recognition
systems in real-world environments;

• Model efficiency: extracting meaningful features from the audio signal allows
for more efficient modeling. Models trained on well-selected features tend
to generalize better to unseen data and require less computational resources
during both training and inference phases;

• Interpretability: extracted features often have intuitive interpretations,
making it easier to understand how the model is making predictions. This can
be particularly important in applications where interpretability is necessary.

Overall, feature extraction plays a vital role in Speech Emotion Recognition by
transforming raw audio signals into a more manageable and informative represen-
tation.
For my work, I extracted three types of features based on the model that I then
used to solve the Speech Emotion Recognition task: MFCC, MFMC and Mel
spectrograms. The details are explained below.

3.2.1 Mel-Frequency Cepstral Coefficient
The Mel-Frequency Cepstral Coefficient (MFCC) is the feature most commonly
employed in automatic speech emotion identification systems. It improves speech
accuracy by utilizing human auditory perception. MFCCs are frequently utilized
as features in speech recognition and speaker identification systems because they
effectively reflect the key aspects of speech signals while being robust to differences
in pronunciation, accent, and noise. They encompass both the frequency content
and the temporal dynamics of the signal in a compact representation, making them
useful for a wide range of speech processing applications.
To calculate the MFCC, the following steps are required:

1. Pre-emphasis: the first step in the MFCC calculation is to apply a pre-
emphasis filter to the signal. This filter is applied to emphasize high-frequency
components over low-frequency ones. Voiced spectrum of speech has higher
energy at low frequency than at high frequency so, to balance the spectrum of
voiced sound, it is necessary to improve the energy at high frequencies. In this
work, a pre-emphasis filter with coefficient 0.97 was used, as given in Equation
3.1;

H(z) = 1 − 0.97z−1 (3.1)

2. Framing and Windowing: splitting signals into discrete frames allows for
more stationary signals. Speech must be analyzed over a short period of time
to ensure steady acoustic features. Therefore, the pre-emphasis filtered signal
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is divided into short-time frames. It is critical to choose a frame duration
carefully because if it is too long, the signal properties vary throughout the
frame. On every frame an Hamming window is applied to smooth the signal
and prevent the frames from discontinuities, as defined in Equation 3.2 (N in
the equation is the length of the frame). In this work, a frame duration of 20
ms is used, with 50% window overlapping;

w[n] = 0.54 − 0.46 · cos
3 2πn

N − 1

4
(3.2)

3. Fast Fourier Transform Magnitude Squared: the windowed frames are
then transformed into the frequency domain using the Fast Fourier Trans-
form (FFT) algorithm. This converts the signal from the time domain to
the frequency domain, providing a representation of the signal’s frequency
content. The Fourier transform is computed and then the magnitude squared
is extracted. In this work, I computed the one-dimensional 512-point discrete
Fourier transform and I kept only the first 257 coefficents;

4. Mel Filterbank: next step is applying the Mel Filterbank. The Mel scale
is a nonlinear scale of pitch perception that better approximates the human
auditory system’s response to frequency. The Mel Filterbank consists of a set
of triangular filters spaced evenly on the Mel scale. Each filter is centered at
a specific frequency and covers a certain range of frequencies. The outputs of
these filters represent the energy distribution across different frequency bands;

5. Logarithmic Compression: after passing through the Mel filterbank, the
outputs are transformed using a logarithmic function. This step compresses
the dynamic range of the filterbank outputs and makes the representation
more aligned with human perception of sound intensity;

6. Discrete Cosine Transform: the final step involves applying the Discrete
Cosine Transform (DCT) to the log filterbank energies. The DCT coefficients
represent the spectrum of the signal in a compact form. Typically, only a
subset of the resulting coefficients is retained, as they contain most of the
relevant information about the spectral envelope of the signal. In this work, I
performed the experiments considering three subsets of resulting coefficients:
12, 24 and 30.

3.2.2 Mel-Frequency Magnitude Coefficient
Even though MFCC is the most commonly employed feature, research community
is yet to attain an optimal emotion recognition rate. This can be caused by different
reasons:

18



Methods

• Short time energy is utilized to extract MFCC; however, energy is not a
sufficient feature for large signal levels because it uses square functions;

• The transformation vector for the discrete cosine transform (DCT) contains
all frequencies. If a frequency band is contaminated by any noise factor, it
impacts all the MFCCs;

• If a voiced phoneme is adjacent to an unvoiced phoneme in a frame, the
dominant voiced phoneme will remain in the frame while the unvoiced phoneme
will disappear. This causes information loss in the speech.

These motivations led the authors in [24] to propose a new spectral feature, the
Mel-Frequency Magnitude Coefficient (MFMC), which recognizes the emotions with
better accuracy than the traditional spectral features. The MFMCs are obtained
by modifying the MFCCs extraction process, to overcome the above mentioned
problems.
In particular, MFMC is extracted the same way as that of MFCC with the exception
of two steps: first, magnitude of fast Fourier transform is used instead of magnitude
square. Second, the discrete cosine transform used in the MFCC extraction for the
purpose of decorrelation is excluded. Figure 3.2 shows the two extraction processes.

Figure 3.2: Extraction process of MFCC and MFMC

3.2.3 Mel Spectrograms
A Mel spectrogram, short for Mel-frequency spectrogram, is a visual representation
of the frequency content of a signal over time, where the frequency axis is scaled
according to the mel scale, a perceptual scale of pitches that approximates the
human ear’s response to different frequencies. This type of feature is particularly
useful when we want to use a model for the speech emotion recognition task that
needs an image-type input, such as ResNet.
To calculate the Mel spectrogram, the following steps are required:
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1. Preprocessing: the input audio signal is typically divided into short over-
lapping windows using a technique like the Short-Time Fourier Transform
(STFT). Each window represents a short segment of the signal. A windowing
function (such as the Hamming window) is applied to each segment to reduce
spectral leakage;

2. Frequency Domain Representation: for each windowed segment, the
Fourier Transform is computed to convert the signal from the time domain to
the frequency domain. This results in a representation of the signal in terms
of its frequency components and their respective magnitudes;

3. Mel Filterbank: the Mel filterbank is a set of triangular filters that are
spaced according to the mel scale. The mel scale is a nonlinear scale that
approximates the human auditory system’s perception of pitch. It is based on
psychoacoustic experiments that measured the perceived distances between
tones. The Mel filterbank is applied to the power spectrum obtained from the
Fourier Transform. Each filter in the bank selectively extracts energy from
specific frequency bands;

4. Log Compression: the energy within each mel filter’s frequency band is
summed, and then the logarithm of the sum is taken. This process compresses
the energy values and emphasizes differences in low-energy regions while
compressing high-energy regions. This logarithmic compression helps to mimic
the logarithmic perception of loudness in the human auditory system;

5. Spectrogram Visualization: finally, the results of the log compression
process are arranged over time to form the Mel spectrogram. Each column of
the spectrogram represents a short time segment, and the rows correspond
to different frequency bands defined by the Mel filterbank. The intensity of
each pixel in the spectrogram represents the log energy of the signal within
the corresponding time-frequency bin.

An example of Mel Spectrogram is shown in Figure 3.3.

3.3 Baselines
The implemented fairness metrics were tested on two baselines to verify that they
worked properly. The baselines serve two purposes: to provide a more controllable
and controlled setting in which to test the metrics, as well as to determine whether
bias and accuracy are related. In fact, the literature agrees that the presence of
bias is often a direct consequence of poor learning ability of the models.
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Figure 3.3: Example of Mel Spectrogram

3.3.1 Support Vector Machine
The first baseline I implemented is a classification model using Support Vector
Machine (SVM). As input, I provided two types of data: I conducted experiments
both using MFCCs and using MFCMs.
Support Vector Machine is a supervised machine learning algorithm used for
classification tasks. It works by finding the hyperplane in an N-dimensional space
(N being the number of features) that best separates different classes in the feature
space. But there are numerous hyperplanes that might be used in order to divide
the two classes of data points apart. The objective is to find a plane that has the
maximum margin, i.e the maximum distance between data points of both classes,
so that future data points can be classified with more confidence.
SVM does not inherently allow multiclass classification in its most basic form, it
supports binary classification and separating data points into two classes. But the
algorithm can be extended to the multiclass case by using the same principle after
breaking down the multiclassification problem into multiple binary classification
problems. In this work, we need to apply multiclass SVM.
Briefly, SVM works like this:

1. Data Representation: SVM begins with a set of labeled training data,
where each data point belongs to one class. Each data point is represented as
a feature vector in a high-dimensional space;

2. Handling Non-linear Data: In cases where the data is not linearly separable,
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SVM can still find an optimal separating hyperplane by using kernel functions.
These functions implicitly map the input vectors into a higher-dimensional
space, where the data may be linearly separable. Common kernel functions
include linear, polynomial, radial basis function (RBF), and sigmoid;

3. Optimization: SVM solves a convex optimization problem to find the optimal
hyperplane. The most common formulation is the hinge loss function, which
penalizes misclassifications. Techniques like gradient descent or quadratic
programming are used to solve this optimization problem efficiently;

4. Classification: once the optimal hyperplane is found, SVM can classify new
data points by determining which side of the hyperplane they fall on.

For my experiments, I used the SVC implemented function of sklearn with a linear
kernel. More details about the experiments setting in Chapter 4.

3.3.2 ResNet
The second baseline I implemented, as opposed to the first, is a deep learning
model. In particular, I decided to implement a ResNet.
ResNet, short for "Residual Network", is a deep neural network architecture intro-
duced in [40]. The key innovation of ResNet is the use of residual blocks, which
allow for the training of very deep neural networks (up to hundreds of layers)
without suffering from the vanishing gradient problem. In a traditional neural
network, each layer directly feeds into the next layer. However, in a residual block,
the input to a layer is combined with the output of a previous layer, effectively
creating a "shortcut connection" or a "skip connection." This allows gradients to
flow more directly through the network during training, facilitating the training of
very deep networks.
Because ResNet requires image-type data as input, I used Mel Spectrograms as
features with this baseline. There are several variants of ResNet which differ
in terms of depth (i.e., the number of layers), and in this work I implemented
ResNet-18.
ResNet-18 has a total of 18 layers, including 16 convolutional layers and 2 fully con-
nected layers. It has fewer parameters compared to deeper ResNet variants, making
it more computationally efficient and easier to train on less powerful hardware. I
will now provide a simplified overview of the implemented architecture:

1. Input layer: it accepts RGB images of size 224x224 pixels (Mel Spectro-
grams);

2. Convolutional layer: the network starts with a convolutional layer, with
a kernel size of 7x7, a stride of 2, and a padding of 3, followed by batch
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normalization and ReLU activation. This is followed by a 3x3 max-pooling
layer with a stride of 2;

3. Residual Blocks: ResNet-18 consists of four sets of residual blocks. Each
set contains two basic blocks, making a total of 8 basic blocks in the entire
network. Each basic block consists of two convolutional layers with 3x3 filters,
each followed by batch normalization and ReLU activation. The output of
the second convolutional layer is added to the input of the block through a
shortcut connection;

4. Global Average Pooling: after the last residual block, global average pooling
is applied over the feature maps, resulting in a vector of features for each
image;

5. Fully Connected Layer: finally, a fully connected layer followed by a softmax
activation is used to produce the final class scores.

Figure 3.4 shows a diagram of the ResNet-18 architecture.

Figure 3.4: Diagram of ResNet-18 architecture
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3.4 WavLM
As mentioned in the introduction, this thesis is part of the Knock Knock project
developed by the LINKS Foundation. Therefore, in addition to testing the functions
implemented for detecting bias on baselines, I also tested them on WavLM, which
is the model used for the KK project. By comparing the results obtained from
baselines and WavLM, I was also able to draw conclusions about the relationship
between model bias and accuracy.
WavLM is a pre-trained model proposed in [41] to solve full-stack downstream
speech tasks. It is an adaptable system that efficiently learns universal speech
representations from large amounts of unlabeled speech data and can be applied
to a variety of speech processing tasks. In pre-training, WavLM simultaneously
learns denoising and masked speech prediction. In this way, it maintains the ability
to model speech content through masked speech prediction while simultaneously
enhancing its potential for non-ASR (Automatic Speech Recognition) tasks through
speech denoising.

The model architecture uses the Transformer model as the backbone. It has a
convolutional feature encoder and a Transformer encoder, as seen in Figure 3.5.
Seven blocks of temporal convolution, followed by layer normalization and a GELU
activation layer, make up the convolutional encoder. The temporal convolutions
have 512 channels with strides (5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2),
resulting in each output representing about 25ms of audio strode by 20ms. The
convolutional output representation x is masked as the Transformer input. The
Transformer is equipped with a convolution-based relative position embedding layer
with 128 kernel size and 16 groups at the bottom. In order to enhance the model,
a relative position bias is utilized, which is encoded according to the Transformer
self-attention mechanism’s offset between the "key" and "query".

To fit the model to the speech emotion recognition task, these steps were
followed:

1. an average pooling was performed on the final representations obtained from
the context network;

2. the resulting vector was passed through a ReLU;

3. logits were obtained through a linear layer of dimension emb_dim x n_classes,
where emb_dim is the final dimension of the vectors obtained from WavLM.

A schematic of the modified model is shown in Figure 3.6.
During the training performed to fit the model to our task, the weights of the

context network and those of the added linear layer were finetuned. Instead, the
feature extractor was freezed. Information regarding the datasets used to perform
the training is in the Section 4.3.3.
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Figure 3.5: WavLM architecture
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Figure 3.6: WavLM architecture modified to perform speech emotion rercognition
task
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Chapter 4

Experiments and Results

4.1 Datasets
To carry out the experiments, I used the only two datasets for the speech emotion
recognition task available in the Italian language: EMOVO and Emozional-
mente.
Below are the features of the two datasets in detail, along with a summary table
(Table 4.1) highlighting similarities and differences on the most relevant features.

4.1.1 EMOVO
EMOVO [30] is the first database of emotional speech for the Italian language. It
is a simulated dataset, built from the voices of six actors, three males and three
females with proven expertise, with ages between 23 and 30 years old. The actors
were asked to play 14 sentences simulating 6 emotional states (disgust, fear, anger,
joy, surprise, sadness) plus the neutral state, without delivering explicit emotional
indicators such as laughter or tears, which would distort the recognition test. These
emotions are the well-known Big Six found in most of the literature related to
emotional speech.
The 14 phrases played are the following:

1. Gli operai si alzano presto.

2. I vigili sono muniti di pistola.

3. La cascata fa molto rumore.

4. L’autunno prossimo Tony partirà per la Spagna nella prima metà di ottobre.

5. Ora prendo la felpa di là ed esco per fare una passeggiata.
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6. Un attimo dopo s’è incamminato ... ed è inciampato.

7. Vorrei il numero telefonico del Signor Piatti.

8. La casa forte vuole col pane.

9. La forza trova il passo e l’aglio rosso.

10. Il gatto sta scorrendo nella pera.

11. Insalata pastasciutta coscia d’agnello limoncello.

12. Uno quarantatré dieci mille cinquantasette venti.

13. Sabato sera cosa farà?

14. Porti con te quella cosa?

Sentences 1-7, 13, 14 are semantically neutral, meaning that the semantic value
of the content is emotionally neutral, while sentences 8-10 are nonsense. The
authors decided to use both categories of sentences because if the former can pose a
challenge to the actor to place them in the right emotional state, the latter involve
the risk of being recited in a stereotypical manner, as the actor may not be able to
"hear" as natural. In addition, for the purpose of spectral analysis, the following
basic conditions were satisfied: presence in the sentences of all the phonemes of the
Italian language and presence in every sentence of a fair balance between voiced
and unvoiced consonant.
The recordings were made with professional equipment in the Fondazione Ugo
Bordoni laboratories. The recordings were performed with a sampling frequency of
48 kHz, 16 bit stereo, wav format.
The database is composed of a total of 588 records. For each actor we have 98
sentences, corresponding to 14 sentences spoken in 6 emotional states plus the
neutral one. This results in approximately 10 minutes per actor.

4.1.2 Emozionalmente
Emozionalmente is a crowd-sourced emotional speech corpus presented by authors
in [31] in order to address the gap of Italian-language datasets in speech emotion
recognition literature.
The dataset contains 6902 samples, recorded by 431 non-professional actors, all
italian: 131 males, 299 females and 1 that listed themselves as “other”, with an
average age of 31 years old and a standard deviation of 12. Users were asked to
play one or more sentences taken from a list with an emotion of their choice from
the Big Six (disgust, fear, anger, joy, surprise, sadness plus the neutral state). The
list containing the 18 phrases from which actors could choose is the following:
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1. Gli operai si alzano presto.

2. La cascata fa molto rumore.

3. Vorrei il numero telefonico del Signor Piatti.

4. Non sapevo che fosse in città.

5. L’ho incontrato oggi dopo due anni.

6. Zia Marta ha detto che devo stare a casa sta sera.

7. Ho preso 6 nella verifica di matematica.

8. Tommaso ha detto che dovevo scegliere io cosa fare.

9. Il capo mi ha affidato un altro lavoro.

10. Tornerà a casa presto.

11. Vado in biblioteca.

12. È una notte stellata.

13. Oggi c’è una partita di basket.

14. È impegnato in una riunione.

15. È andato a scuola dopo pranzo.

16. Il cane ha riportato qui la palla.

17. Giovanni parte per Roma domani.

18. Ieri un gatto ha bevuto dalla tazza.

This sentences are constructed ad-hoc to be semantically neutral and easily readable
with different emotional tones. They include everyday vocabulary and all phonemes
of the Italian language. On top of that, three sentences from EMOVO were also
included in the Emozionalmente sentence set.
Each actor performed on average 16 sentences, emotions are expressed uniformly
(986 times each) and every sentence was verbalized 383 times on average. Record-
ings were generally obtained with non-professional equipment, for a total of 26297
seconds. They have 2 channels (stereo), a sample size of 16 bits, and a .wav format.
6839 audio recordings were obtained with a sampling rate of 48 kHz and 63 of
them with 44.1 kHz, depending on the characteristics of the recording device.

In contrast to EMOVO, in Emozionalmente:
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• The actors were not necessarily professionals, but a general audience without
any restrictions on age or gender;

• Actors could perform as many sentence-emotion combinations as they wanted,
but were not required to play all of them;

• Speech was not necessarily recorded with professional equipment, but using
the instrumentation available to the actors;

• Recordings were not done in a noiseless laboratory, but anywhere the actors
wished.

In Table 4.1 there is a comparison between the two datasets.

Table 4.1: Comparison between EMOVO and Emozionalmente

Datasets

EMOVO Emozionalmente

number of files 588 6902

number of actors 6 (3M, 3F) 431 (131M, 299F)

actors background professional non-professional

tipology of dataset simulated simulated

source laboratory crowd-sourcing

equipment professional non-professional

emotions big six + neutral big six + neutral

number of sentences 14 18

balanced yes no

sample size 16 bit stereo 16 bit stereo

format wav wav

sampling frequency 48 kHz 48 kHz and 44.1 kHz

4.2 Sensitive Attributes
The purpose of the experiments is to assess and quantify the presence of bias.
To do this, the metrics outlined in Chapter 3 (statistical parity difference, equal
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opportunity difference, average odds difference and disparate impact ratio) were
considered. In order to calculate the bias we need to consider it with respect to a
sensitive attribute. When we refer to a sensitive attribute we are talking about any
characteristic or personal trait of an individual that is considered private, protected,
or potentially discriminatory. These attributes often include characteristics such
as race, gender, age, religion, and others. In our case, the sensitive attributes
considered are gender and age.
In particular, when we deal with the EMOVO dataset, we only consider gender
as a sensitive attribute because we don’t have in the dataset information about
the age of the participants. There are only two genders present as options in the
dataset (males and females), so I simply converted them to binary mode (females:
0 and males: 1).
In the experiments conducted using the Emozionalmente dataset, on the other
hand, in addition to gender I was able to consider age as a sensitive attribute.
Regarding gender, three options were available: female, male, and other. Since I
need a binary sensitive attribute, I decided to eliminate the instances that presented
"other" as gender and converted the remaining ones to binary (females: 0 and males:
1). The instances that presented "other" as a gender were very few so there was not
much loss of information. With regard to age, however, the situation is different.
In fact, age is a discrete but non-binary attribute and therefore there is a need to
decide on a criterion to make it so. The idea is to divide into two groups, young
and old, but in doing so there is a need to decide on a threshold for making this
division. The decision criteria for threshold are both to maintain logical meaning,
and therefore divide in such a way that the groups of young and old make sense
to common sense, and to have a fairly balanced distribution. As a first step, I
visualized the age distribution, as shown in Figure 4.1. As can be seen, the range
of ages varies from 1 to 79, with a prevalence of individuals in their 20s and 30s.

I therefore decided to consider three possible thresholds:

• Threshold 1: 27. This threshold was chosen because it is the one that divides
the dataset in a more balanced way. In fact, in this way we have 480 young
(0) and 458 old (1);

• Threshold 1: 30. This threshold was chosen because, compared to 27, it is
a more meaningful division according to common sense to divide into young
and old. It should be noted, however, that by dividing in this way the groups
are much more unbalanced: 641 young and 297 old;

• Threshold 1: 40. This last threshold is, in my view, the most meaningful
according to common sense but also the most unbalanced. In fact we have
792 young and 146 old.
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Figure 4.1: Age distribution

In the experiments I considered all three thresholds so as to see if and how the bias
changes based on the division chosen.

4.3 Experiments
In this section I will illustrate the settings for all the conducted experiments,
dividing them according to the model and dataset used.

4.3.1 SVM
The setting of experiments carried out using SVM as a model changes according to
the database used.

EMOVO

EMOVO has a small amount of examples, so I decided to perform the experiments
by applying k-fold cross-validation. In particular, I considered three possible values
of k (5,10 and 15) to see if different configurations of the training dataset would go
to change the bias. For each value of k, I calculated the results for each split for
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accuracy and each of the fairness metrics. To then have final values, I averaged
over all the results obtained from the different splits.
With SVM I considered both MFCC and MFMC as features, and for both I
considered 12, 24 and 30 spectral coefficients. Considering then that I used 3
k-values for k-fold cross-validation for each experiment, for EMOVO with SVM I
have a total of 18 experiments, summarized in Table 4.2

Feature Coefficients K-fold Splits

MFCC
12 5 10 15
24 5 10 15
30 5 10 15

MFMC
12 5 10 15
24 5 10 15
30 5 10 15

Table 4.2: Summary of experiments configuration (SVM using EMOVO)

Emozionalmente

Emozionalmente is a dataset that contains enough examples to be able to do the
classic train and test splits. Therefore, both when I considered gender and age as
sensitive attributes, I divided the dataset into train and test splits and computed
accuracy and values related to fairness metrics.
When I consider gender as a sensitive attribute, I do two different splits: in the
first case, I take 70% of the dataset for training and 30% for testing, stratifying by
emotion. Since Emozionalmente, however, is a very unbalanced dataset in terms
of gender, visualizing the frequency immediately shows the imbalance, as seen in
Figure 4.2.

For this reason, I decided to do another split, such that the training set was
balanced, to see if a balanced training set contributed to better results in terms of
bias. In this case we have a balanced training set but a very unbalanced test set,
as can be seen in Figure 4.3.

So for the gender, considering the two features MFCCs and MFMCs with 12, 24
and 30 spectral coefficients each and doing experiments with both the unbalanced
and balanced training set, I have a total of 12 experiments, summarized in Table
4.3.

When I consider age as a sensitive attribute, I do experiments considering all
three thresholds. Therefore, considering the two features MFCCs and MFMCs
with 12, 24 and 30 spectral coefficients each, I have a total of 18 experiments,
summarized in Table 4.4.
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Figure 4.2: Gender frequency in unbalanced training and test split (Emozional-
mente)

Figure 4.3: Gender frequency in balanced training and test split (Emozionalmente)
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Feature Coefficients Dataset

MFCC
12 unbalanced balanced
24 unbalanced balanced
30 unbalanced balanced

MFMC
12 unbalanced balanced
24 unbalanced balanced
30 unbalanced balanced

Table 4.3: Summary of experiments configuration (SVM using Emozionalmente
and gender)

Feature Coefficients Age threshold

MFCC
12 27 30 40
24 27 30 40
30 27 30 40

MFMC
12 27 30 40
24 27 30 40
30 27 30 40

Table 4.4: Summary of experiments configuration (SVM using Emozionalmente
and age)

4.3.2 ResNet
Even in the case of experiments performed using ResNet as a model, the configura-
tions change depending on the dataset used.

EMOVO

I performed three types of experiments using ResNet as the model and EMOVO as
the dataset.
In the first scenario, I made the dataset split into training, validation, and test split
without taking gender into account. To do the splits, I took 70% of the dataset to
form the training set and of the remaining 30% I used 20% to create the validation
set. However, since EMOVO is a balanced dataset in this respect (the actors are 4
males and 4 females and they all recited the same number of sentences) the splits
are all balanced, as can be seen in Figure 4.4.

I then wanted to test whether the gender distribution in the training set had an
impact on the final bias presented by the model. Therefore, I created two training
sets with different distributions: in one case I created a training set with 70% males
and 30% females and in another case a training set with 70% females and 30%
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Figure 4.4: Gender frequency in training, validation and test balanced splits
(EMOVO)

males. The validation and test sets were created accordingly with the remaining
examples. The frequency of the two genders in the various sets is shown in Figures
4.5 and 4.6.

Figure 4.5: Gender frequency in training, validation and test when considering
training set with 70% males (EMOVO)

In all experiments, the model settings remained the same: I trained the model
for 20 epochs, as a loss function I used a Cross Entropy Loss, and as an optimizer
Adam with a learning rate of 0.0001 and weight decay of 1e-4. I also used a
learning rate scheduler to adaptively adjust the learning rate during training
(ReduceLROnPlateau).
Having performed one experiment with each of the three training set configurations,
I performed a total of 3 experiments using ResNet as the model and EMOVO as
the dataset.

Emozionalmente

In the experiments carried out using Emozionalmente as a dataset and ResNet
as a model, two cases must be distinguished according to the sensitive attribute
considered.
When the sensitive attribute considered is gender, I performed two experiments:
one with an unbalanced training set and one with a balanced training set. The
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Figure 4.6: Gender frequency in training, validation and test when considering
training set with 70% females (EMOVO)

unbalanced training set was obtained by dividing the original dataset without
taking gender into account. However, being an unbalanced dataset in this sense,
the divisions into train, validation, and test also reflect this. Gender frequencies in
the various splits are shown in Figure 4.7. To obtain these splits, I considered 70%
of the original dataset to create the training set and of the remaining 30% I used
20% to create the validation set.

Figure 4.7: Gender frequency in training, validation and test when considering
unbalanced training set (Emozionalmente)

To create a balanced training set, I had to take 70% of the males and 30% of the
females from the original dataset. The validation and test splits were then created
with the remaining data. The gender frequencies in the various splits are shown in
Figure 4.8. Since the dataset is very unbalanced, in creating a balanced training
set we could not consider too many examples and therefore the test split is more
numerous.

In all experiments, the model settings remained the same: I trained the model
for 20 epochs, as a loss function I used a Cross Entropy Loss, and as an optimizer
Adam with a learning rate of 0.0001 and weight decay of 1e-4. I also used a
learning rate scheduler to adaptively adjust the learning rate during training
(ReduceLROnPlateau).
Having performed one experiment with each of the two training set configurations,
I performed a total of 2 experiments using ResNet as the model, Emozionalmente
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Figure 4.8: Gender frequency in training, validation and test when considering
balanced training set (Emozionalmente)

as the dataset and gender as the sensitive attribute.
When the sensitive attribute considered is age, I performed an experiment

considering each of the three thresholds, for a total of 3 experiments. The model
settings in each of the experiments are the same as described above.

4.3.3 WavLM

Experiments using WavLM as a model were carried out using three different
configurations of training and test splits.
In the first setup, an Emozionalmente split was used to fine-tune the model and
the entire EMOVO dataset was used to test it. Emozionalmente was divided into
a train split and a test split without regard to gender distribution. As we have
already mentioned, since Emozionalmente is an unbalanced dataset in this sense,
the training set obtained in this way is unbalanced. In this first configuration,
having used EMOVO as the test dataset, it was possible only to consider gender as
a sensitive attribute.
In the second configuration, the training split obtained from Emozionalmente was
used for fine tuning, and the test set also obtained from Emozionalmente was used
for testing. Because this time the test is done on Emozionalmente, I was able
to consider both gender and age as sensitive attributes. Specifically, I conducted
experiments considering each of the three thresholds considered for age.
In the last setup, I used the balanced training split shown in Figure 4.8 as the
training set, and as a test set the split obtained as a result by putting together
validation and test split of the image. This way I can test whether a balanced
training set positively affects bias, although in order to get a balanced split I had
to consider fewer examples than the original training set.
In total, I performed 6 experiments using WavLM as the model.
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4.4 Results
The objectives of the experiments were as follows: to assess the extent of bias in
the models considered, to evaluate any correlation between bias and accuracy, and
to assess whether a different training set distribution affects bias.

4.4.1 Model Bias
For each of the experiments described in Section 4.3, I calculated the accuracy and
bias results using the four fairness metrics described in Chapter 3: Statistical Parity
Difference, Equal Opportunity Difference, Average Odds Difference and Disparate
Impact Ratio. I produced a plot for each metric and each experiment. The plots
produced can be found in the Appendix C. In Figure 4.9 you can see an example
related to the experiment performed using the EMOVO dataset, the SVM model
with MFCC feature with 24 spectral coefficients and 15 kfold splits.

Figure 4.9: Fairness metric plot example

The plots are constructed in this way: on the x-axis are listed the emotions
considered while on the y-axis we have an indication of the direction of the bias.
The center of the x-axis (indicated by the dashed line) and the yellow-highlighted
area around it indicate the values for which we consider the model fair. When the
bar in the histogram breaks to the left of the yellow-highlighted area we are in
the presence of bias toward what we call the privileged group, while when the bar
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breaks to the right of the yellow-highlighted area we are in the presence of bias
toward what we call the unprivileged group.

In general, the models exhibit bias with respect to all fairness metrics considered.
However, this is most likely related to the very low performance in accuracy, as we
will see in the next section.

4.4.2 Accuracy and Bias
The relationship between accuracy and bias has been mentioned several times in
the literature, and through my experiments I have also seen this: low accuracy
indicates a poor ability of the model to generalize, and this can lead to a focus on
data features that are related to sensitive attributes. Through the experiments, it
was possible to see this trend either by changing the settings of the experiments
while keeping the same model and dataset, or by testing the same dataset on
different models with different performance.
Below I will provide an overview of the most significant results, dividing them
according to the dataset used. To show the results I will use tables and not plots
because it is more immediate that way to notice trends.

EMOVO

I will first discuss the results related to the experiments carried out using SVM as
a model.
Results for experiments conducted using MFCCs as features are shown in Tables
4.5, 4.6 and 4.7. The numbers shown refer to the values obtained using the different
fairness metrics considered. Cells highlighted in yellow indicate values that do not
fall within the fairness range and are therefore considered indicators of bias. We
can immediately see a trend of decreasing bias as accuracy increases. In fact, the
model has higher accuracy as the spectral coefficients considered increase: the first
table (Table 4.5, 12 spectral coefficients) refers to an experiment with 41% accuracy,
the second table (Table 4.6, 24 spectral coefficients) refers to an experiment with
60% accuracy, and the third table (Table 4.7, 30 spectral coefficients) refers to an
experiment with 64% accuracy. Looking at the amount of cells colored yellow, we
can see that this decreases as accuracy increases.

On the other hand, when we consider the results obtained by considering MFMCs
as features, we have much lower accuracies, and this is also reflected in fairness,
as can be seen in Tables 4.8, 4.9 and 4.10. Table 4.8 refers to an experiment with
accuracy of 33%, Table 4.9 to an experiment with accuracy of 41% and Table 4.10
to an experiment with accuracy of 43%. The performance obtained with these
features is therefore much lower than that obtained with MFCCs, and from the
amount of cells colored yellow, it is immediately apparent that the fairness is also
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Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.09 0.1 -0.06 0.06 -0.11 -0.03 -0.06

Equal Op-
portunity

-0.03 0.1 0.03 0.03 0.01 -0.07 -0.03

Average
Odds

-0.07 0.01 0.04 -0.01 0.06 -0.02 0.01

Disparate
Impact

2.22 3.08 0.74 2.33 0.49 0.79 0.75

Table 4.5: MFCC, 5 splits, 12 coefficients

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.01 0.06 -0.03 0.01 0 0 -0.04

Equal Op-
portunity

-0.11 0.1 -0.04 -0.08 0.07 -0.11 -0.08

Average
Odds

-0.07 0.02 -0.01 -0.05 0.04 -0.06 -0.03

Disparate
Impact

1.06 2.21 0.98 1.35 1.05 1.02 0.81

Table 4.6: MFCC, 5 splits, 24 coefficients

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.03 0.02 0.01 0.01 -0.01 0 -0.05

Equal Op-
portunity

-0.19 -0.1 -0.04 -0.1 0.04 -0.05 -0.1

Average
Odds

-0.12 -0.07 -0.03 -0.05 0.02 -0.03 -0.03

Disparate
Impact

1.21 1.48 1.24 1.09 0.98 1.15 0.75

Table 4.7: MFCC, 5 splits, 30 coefficients
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worse. This may confirm the theory that bias is related to accuracy.

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.14 0.06 -0.03 -0.02 -0.06 -0.11 0.02

Equal Op-
portunity

0.32 0.13 0.09 -0.16 0.07 0.01 0.16

Average
Odds

0.22 0.09 0.08 0.09 0.2 0.16 0.13

Disparate
Impact

7.81 0.33 0.59 0.95 0.76 0.6 1.11

Table 4.8: MFMC, 5 splits, 12 coefficients

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.12 0.08 -0.01 -0.05 -0.17 0 0.04

Equal Op-
portunity

0.35 0.1 0.07 -0.14 -0.17 0.23 0.34

Average
Odds

0.22 0.14 0.13 0.16 0.18 0.16 0.22

Disparate
Impact

4.42 3.04 0.94 0.91 0.28 0.98 1.24

Table 4.9: MFMC, 5 splits, 24 coefficients

Even considering the experiments conducted using ResNet and WavLM, the
observed trend continues to be valid. In fact, in the experiment performed using
ResNet I obtain an accuracy of 44%, lower than the best obtained with SVM (64%).
With WavLM I obtain an accuracy of 64%. Tables 4.11 and Table 4.12 show the
values for the fairness metrics in the respective experiments. The amounts of bias
in WavLM are greater than those in SVM for the same accuracy, but the biases in
the ResNet model are more.

Emozionalmente (Gender)

Even in the experiments carried out using Emozionalmente as the dataset and
considering gender as a sensitive attribute, we find the same trend. In this case,
the experiments performed using the SVM model have very low accuracy both
using MFCCs and using MFMCs. In Table 4.13 and Table 4.14 we have the results
for the fairness metrics in the two best experiments (30 spectral coefficients). We
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Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.12 0.05 -0.03 -0.03 -0.15 0 0.03

Equal Op-
portunity

0.34 0.07 0.11 -0.13 -0.04 0.13 0.35

Average
Odds

0.27 0.12 0.1 0.14 0.16 0.15 0.27

Disparate
Impact

3.66 2.14 0.85 1.08 0.34 0.99 1.4

Table 4.10: MFMC, 5 splits, 30 coefficients

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.02 -0.03 -0.2 0.12 0.13 -0.09 0.05

Equal Op-
portunity

0.1 0.13 -0.3 -0.05 0.46 -0.1 0.04

Average
Odds

0.04 0.09 -0.06 -0.04 0.2 0 -0.03

Disparate
Impact

1.14 0.71 0.25 2.08 2.2 0.5 1.47

Table 4.11: ResNet, balanced training set

Gioia Sorpresa Disgusto Rabbia Paura Tristezza Neutralità
Statistical
Parity

0.11 -0.11 -0.08 -0.01 0.05 0.02 0.02

Equal Op-
portunity

0.31 -0.26 -0.29 -0.02 0.1 0.12 0.12

Average
Odds

0.12 -0.09 -0.12 -0.01 0.02 0.06 0.06

Disparate
Impact

3.38 0.45 0.48 0.95 1.44 1.64 1.15

Table 4.12: WavLM, EMOVO test set
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have accuracy of 32% and 31%, respectively, and indeed the amount of bias found
is also broadly the same.

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.09 0.06 -0.02 -0.08 0.02 0 -0.11

Equal Op-
portunity

0.21 0.2 0.05 -0.12 0.22 0.06 -0.11

Average
Odds

0.07 0.08 0.04 -0.03 0.1 0.02 0

Disparate
Impact

2.35 1.59 0.83 0.64 1.59 1.12 0.59

Table 4.13: MFCC, 30 coefficients, unbalanced training set

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.09 0.07 -0.13 -0.01 0.07 0.02 -0.1

Equal Op-
portunity

0.28 0.19 -0.06 -0.07 0.31 0.03 0

Average
Odds

0.11 0.07 0.04 -0.04 0.14 0.01 0.06

Disparate
Impact

2.22 2.04 0.38 0.89 1.73 1.13 0.65

Table 4.14: MFMC, 30 coefficients, unbalanced training set

With this dataset, even using ResNet we have a very low accuracy of 33%
and indeed the amount of bias found is high, as can be seen in Table 4.15. How-
ever, it immediately jumps out when looking at the Table 4.16 that by using a
much better performing model (WavLM which achieves an accuracy of 90% with
Emozionalmente), the biases are almost completely reduced.

4.4.3 Training Set Impact
Another thing this study aims to test is whether there is a correlation between
amount and direction of bias and distribution of the sensitive attribute in the
training set. This kind of study I did by focusing on the gender sensitive attribute.
This is because gender is a "fixed" attribute, inherent in the subject, whereas with
age the threshold is chosen arbitrarily.
Audios produced by males and females are not the same: in general, it can be seen
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Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.01 0.1 -0.07 -0.05 0.05 0 -0.05

Equal Op-
portunity

0.03 0.31 -0.07 -0.11 0.18 0.1 -0.03

Average
Odds

0.02 0.12 0 -0.04 0.07 0.05 0.02

Disparate
Impact

1.07 1.69 0.72 0.59 1.45 1.03 0.66

Table 4.15: ResNet, unbalanced training set

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.01 0 0.01 0.02 0 0 -0.04

Equal Op-
portunity

0.08 0.03 -0.08 0.13 -0.02 -0.02 -0.04

Average
Odds

0.05 0.02 -0.04 0.07 -0.01 -0.02 -0.01

Disparate
Impact

1.12 0.98 1.06 1.15 0.98 1.01 0.79

Table 4.16: WavLM, unbalanced training set
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that female voices have a higher frequency and pitch. The models may therefore
be more inherently able to recognize audio with certain physical characteristics. I
therefore performed experiments by changing the distributions in the training set
to see if and how this had an impact on the results obtained.

EMOVO

Using the EMOVO dataset, I could only do this test using ResNet as a model. In
fact, in the experiments conducted using SVM I do not use a training set but use
the cross validation technique with k-fold splits, and the dataset is too small to do
finetuning on WavLM.
I tested two configurations of the training set for ResNet, in addition to the one
with the balanced dataset: in one case I used a training set that had 70% males
and in the other a training set that had 70%. It should be noted that as a result
the testing set is also unbalanced, having used the remaining data to create it. This
could make the accuracy and fairness metrics values not very reliable.
The first thing we notice is a drop in performance. When we use a balanced training
set, the model gets an accuracy of 44.68%. In contrast, when we use the unbalanced
datasets we get in the case of the dataset with 70% males an accuracy of 36%
and in the case of the dataset with 70% females an accuracy of 38.55%. This may
indicate a poor ability of the model to generalize the available data. In terms of
bias, there are minimal changes in trend. For example, if we consider the Statistical
Parity fairness metric, we can see in Figures 4.10, 4.11 and 4.12 that when we
consider the results obtained with a balanced training set, the biases are directed
equally to the left and right. In contrast, when we consider the male-dominated
training set, the bias is reduced to zero. Using a female-dominated dataset we
notice an increase in bias directed toward the "privileged" group, namely males.
We can therefore conclude that the model "recognizes" as different the audios
produced by females and males, but the results on bias may be irrelevant because
of very low accuracy.

Emozionalmente (Gender)

Emozionalmente, as seen from Figure 4.7, it is a female-dominated dataset. To
test the impact of the training set on the results, I created a balanced training set,
but as can be seen in Figure 4.8, this resulted in fewer training items and a very
unbalanced test set. These elements could make the results obtained unreliable.
In the experiments carried out using SVM and ResNet as models, it can be seen in
the Figures 4.13, 4.13, 4.15 and 4.16 how, when the balanced dataset is used to
perform training, the overall amount of bias decreases. However, no clear trend
in the direction of bias can be recognized. This could be related to the very low
accuracy of the models, all around 30%. Indeed, the biases seem to be turned in
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Figure 4.10: EMOVO, ResNet, balanced training set

Figure 4.11: EMOVO, ResNet, 70% male training set

the direction of the unprivileged group, namely females. This could be related to
an inferior ability of the models in general to work with audio with characteristics
typical of the female voice. It should be noted, however, that when ResNet is used,
there is an increase in accuracy of 6% from using the unbalanced dataset to using
the balanced dataset for training. This could indicate that the use of balanced
dataset helps the generalization capabilities of the model.

I performed two experiments using WavLM as a model: in one case I used the
unbalanced female-dominated training set while in another case I used the balanced
dataset. The first thing we notice is a drop in performance: in fact in the first case
we have an accuracy of 90% while in the second one we have an accuracy of 65%.
This could be caused by the smaller number of examples in the balanced training
set. Regarding bias, we can see in Figures 4.17 and 4.18 that the values that fall
outside the fairness range in the case where we use the balanced dataset are more,
but this is probably related to the lower model accuracy. Regarding the direction of
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Figure 4.12: EMOVO, ResNet, 70% female training set

Figure 4.13: Emozionalmente, SVM, MFCC, 30 coefficients, unbalanced training
set, gender (accuracy: 32.02%)

the biases, we again note that when we use the balanced dataset these increase in
the direction of the unprivileged group, that is, females. The cause of this behavior
could be the much higher number of examples related to female subjects in the
testing set than those related to male subjects. Thus, we have no concrete results
showing the impact of the training set on the amount and direction of bias.
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Figure 4.14: Emozionalmente, SVM, MFCC, 30 coefficients, balanced training
set, gender (accuracy: 31.76%)

Figure 4.15: Emozionalmente, ResNet, unbalanced training set, gender (accuracy:
33.51%)

Emozionalmente (Age)

Regarding the sensitive age attribute, as mentioned earlier I considered three
thresholds to make the division into "young" and "old": 27, 30 and 40. Using
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Figure 4.16: Emozionalmente, ResNet, balanced training set, gender (accuracy:
39.95%)

Figure 4.17: Emozionalmente, WavLM, unbalanced training set, gender (accuracy:
90.07%)

threshold 27 I have the most balanced division, while using threshold 40 I have the
most unbalanced division. Looking at the results obtained we immediately notice
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Figure 4.18: Emozionalmente, WavLM, balanced training set, gender (accuracy:
65.90%)

how, even having very low accuracy values, the biases are very small. This could
be due to the fact that younger or older people do not have very different voice
characteristics, as is the case between males and females, and therefore are treated
equally by the model. Considering the three thresholds is equivalent to considering
in the gender case balanced and unbalanced datasets: when we consider threshold
27 we are dealing with a balanced training set, while when we consider as threshold
30 or 40 we are dealing with unbalanced training sets, predominantly young people.
Looking at the Tables 4.17, 4.18 and 4.19 it is immediately apparent how with
unbalanced datasets the biases increase. However, there are no relevant results on
the direction of the biases.

51



Experiments and Results

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.03 -0.01 0.01 -0.02 0.02 -0.01 -0.01

Equal Op-
portunity

0.01 -0.08 -0.02 -0.02 0.08 0.08 0

Average
Odds

-0.01 -0.04 -0.02 0 0.04 0.04 0.01

Disparate
Impact

1.21 0.9 1.1 0.87 1.23 1.23 0.93

Table 4.17: MFCC, 30 coefficients, age threshold 27

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.02 -0.04 0.03 0.03 0 -0.02 -0.01

Equal Op-
portunity

0.04 -0.17 0.08 0.01 -0.05 0.08 0.04

Average
Odds

0.02 -0.08 0.03 -0.01 -0.02 0.06 0.03

Disparate
Impact

1.15 0.75 1.27 1.18 0.98 0.87 0.94

Table 4.18: MFCC, 30 coefficients, age threshold 30

Joy Surprise Disgust Anger Fear Sadness Neutrality
Statistical
Parity

0.01 -0.06 0.01 0.01 -0.01 0.02 0.02

Equal Op-
portunity

0.07 -0.16 0.03 -0.01 -0.01 0.08 0.06

Average
Odds

0.03 -0.06 0.01 -0.01 0 0.03 0.03

Disparate
Impact

1.1 0.66 1.03 1.18 0.94 1.15 1.12

Table 4.19: MFCC, 30 coefficients, age threshold 40
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Chapter 5

Conclusion

The focus of this work was to study and quantify bias in Speech Emotion Recognition
systems. This was done by implementing four fairness metrics (Statistical Parity
Difference, Equal Opportunity Difference, Average Odds Difference and Disparate
Impact Ratio) by expanding their definition to apply to a multiclass scenario.
Two baselines, SVM and ResNet, were implemented to carry out the tests. Also
a pre-trained model with significantly better performance was used to perform
experiments, WavLM. The tests performed had three purposes: to assess and
quantify the bias of the models considered, to check whether there was a link
between accuracy and bias, and to analyze the impact that the distribution of
sensitive attributes in the training set has on the results.
The results obtained suggest a strong link between accuracy and bias obtained: as
accuracy increases, there is a sharp decrease in bias. This is probably related to the
model’s ability to generalize the available data. Precisely because of this strong link
to accuracy, it was not possible to identify clear trends suggesting a link between
the distribution of the sensitive attribute in the training set and the amount and
direction of bias obtained. In addition to this, the data available to create balanced
or unbalanced datasets were limited, and as a result, the sets used for testing also
had data distributions that may have influenced the results obtained.
Future work could focus on implementing baselines with more satisfactory accuracy
results, but also on expanding the amount of data and datasets available in Italian
for this task.
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Appendix A

Fairness Metrics

1 from c o l l e c t i o n s import d e f a u l t d i c t
2 from sk l ea rn . met r i c s import r e ca l l_s co r e , mult i labe l_confus ion_matr ix
3

4 de f s t a t i s t i c a l _ p a r i t y _ d i f f e r e n c e ( y_true , y_pred , s e n s i t i v e _ a t t r i b u t e
, l a b e l s ) :

5

6 ’ ’ ’
7 y_true : i s the array conta in ing the ground truth
8 y_pred : i s the array conta in ing the pred i c t ed l a b e l s
9 s e n s i t i v e _ a t t r i b u t e : i s an array keeping track o f the s e n s i t i v e

a t t r i b u t e cor respond ing to that in s t ance ( binary )
10 NB: f o r the s e n s i t i v e a t t r i b u t e we l a b e l as 0 the u n p r i v i l e g e d

group and 1 the p r i v i l e g e d group
11 l a b e l s : l i s t with the p o s s i b l e output l a b e l s
12

13 ’ ’ ’
14

15

16 # Ensure the l eng th s o f the input ar rays are the same
17 a s s e r t l en ( y_true ) == len ( y_pred ) == len ( s e n s i t i v e _ a t t r i b u t e ) , "

Input ar rays must have the same length "
18

19 # Create a d i c t i o n a r y to s t o r e p o s i t i v e p r e d i c t i o n s f o r each l a b e l
and s e n s i t i v e a t t r i b u t e va lue

20 p o s i t i v e _ p r e d i c t i o n s = {0 : {key : 0 f o r key in l a b e l s } , 1 : {key : 0
f o r key in l a b e l s }}

21

22 # Count p o s i t i v e p r e d i c t i o n s f o r each l a b e l and s e n s i t i v e a t t r i b u t e
value and s t o r e in the d i c t i o n a r y

23 # p o s i t i v e _ p r e d i c t i o n s = { " 0 " : {" t r i s t e z z a " : 10 , " g i o i a " : 2 , ecc
. . . } , " 1 " : {" t r i s t e z z a " : 4 , " g i o i a " : 5 , ecc . . . } }
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24 f o r i , va lue in enumerate ( s e n s i t i v e _ a t t r i b u t e ) :
25 l a b e l = y_pred [ i ]
26 p o s i t i v e _ p r e d i c t i o n s [ va lue ] [ l a b e l ] += 1
27

28 # Calcu la te the propor t ion o f p o s i t i v e p r e d i c t i o n s f o r each l a b e l
and s e n s i t i v e a t t r i b u t e va lue

29 # propor t i on s = { " 0 " : {" t r i s t e z z a " : 0 . 3 , " g i o i a " : 0 . 1 , ecc . . . } ,
" 1 " : {" t r i s t e z z a " : 0 . 5 , " g i o i a " : 0 . 4 , ecc . . . } }

30 propor t i ons = d e f a u l t d i c t ( d i c t )
31 f o r value , counts in p o s i t i v e _ p r e d i c t i o n s . i tems ( ) :
32 f o r l abe l , count in counts . i tems ( ) :
33 propor t i ons [ va lue ] [ l a b e l ] = count / s e n s i t i v e _ a t t r i b u t e .

count ( va lue )
34

35 # Calcu la te s t a t i s t i c a l pa r i t y d i f f e r e n c e f o r each l a b e l
36 # emot ion_di f f e r ence s = {" t r i s t e z z a " : −0.1 , " g i o i a " : 0 . 4 , ecc . . . }
37 emot ion_di f f e r ence s = {}
38 f o r emotion in l a b e l s :
39 d i f f e r e n c e = propor t i ons [ 0 ] . get ( emotion , 0) − propor t i ons [ 1 ] . get (

emotion , 0)
40 emot ion_di f f e r ence s [ emotion ] = d i f f e r e n c e
41

42 re turn emot ion_di f f e r ence s
43

44

45 ############
46

47

48 de f equa l_opportun i ty_di f f e rence ( y_true , y_pred , s e n s i t i v e _ a t t r i b u t e ,
l a b e l s ) :

49

50 ’ ’ ’
51

52 y_true : i s the array conta in ing the ground truth
53 y_pred : i s the array conta in ing the pred i c t ed l a b e l s
54 s e n s i t i v e _ a t t r i b u t e : i s an array keeping track o f the s e n s i t i v e

a t t r i b u t e cor respond ing to that in s t ance ( binary )
55 NB: f o r the s e n s i t i v e a t t r i b u t e we l a b e l as 0 the u n p r i v i l e g e d

group and 1 the p r i v i l e g e d group
56 l a b e l s : l i s t with the p o s s i b l e output l a b e l s
57 NB: in case we have a d i v i s i o n by 0 we return 0
58

59 ’ ’ ’
60

61

62 # Ensure the l eng th s o f the input ar rays are the same
63 a s s e r t l en ( y_true ) == len ( y_pred ) == len ( s e n s i t i v e _ a t t r i b u t e ) , "

Input ar rays must have the same length "
64
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65 # Create a d i c t i o n a r y to s t o r e y_pred and y_true s e p a r a t e l y with
r e s p e c t to the s e n s i t i v e a t t r i b u t e

66 s e n s i t i v e _ d i c t = {0 : { ’ y_true ’ : [ ] , ’ y_pred ’ : [ ] } ,
67 1 : { ’ y_true ’ : [ ] , ’ y_pred ’ : [ ] } }
68

69 f o r i , va lue in enumerate ( s e n s i t i v e _ a t t r i b u t e ) :
70 t rue_labe l = y_true [ i ]
71 pred i c t ed_labe l = y_pred [ i ]
72 s e n s i t i v e _ d i c t [ va lue ] [ ’ y_true ’ ] . append ( t rue_labe l )
73 s e n s i t i v e _ d i c t [ va lue ] [ ’ y_pred ’ ] . append ( pred i c t ed_labe l )
74

75 # Compute r e c a l l s c o r e ( True P o s i t i v e Rate ) f o r each l a b e l d iv ided
by s e n s i t i v e a t t r i b u t e ( obta in a l i s t with the r e c a l l s c o r e f o r
each l a b e l in l a b e l s )

76 y_true_0 = s e n s i t i v e _ d i c t [ 0 ] [ ’ y_true ’ ]
77 y_pred_0 = s e n s i t i v e _ d i c t [ 0 ] [ ’ y_pred ’ ]
78

79 y_true_1 = s e n s i t i v e _ d i c t [ 1 ] [ ’ y_true ’ ]
80 y_pred_1 = s e n s i t i v e _ d i c t [ 1 ] [ ’ y_pred ’ ]
81

82 r e ca l l_0 = r e c a l l _ s c o r e ( y_true_0 , y_pred_0 , l a b e l s=l a b e l s , average=
None , z e ro_d iv i s i on =0.0)

83 r e ca l l_1 = r e c a l l _ s c o r e ( y_true_1 , y_pred_1 , l a b e l s=l a b e l s , average=
None , z e ro_d iv i s i on =0.0)

84

85 # Create a d i c t i o n a r y to s t o r e the r e c a l l s c o r e f o r each l a b e l
d iv ided by s e n s i t i v e a t t r i b u t e

86 # r e c a l l _ d i c t = { " 0 " : {" t r i s t e z z a " : 0 . 6 , " g i o i a " : 0 . 5 , ecc . . . } ,
" 1 " : {" t r i s t e z z a " : 0 . 4 , " g i o i a " : 0 . 3 , ecc . . . } }

87 r e c a l l _ d i c t = {0 : {} , 1 : {}}
88

89 f o r l abe l , r e ca l l_sco re_va lue in z ip ( l a b e l s , r e ca l l_0 ) :
90 r e c a l l _ d i c t [ 0 ] [ l a b e l ] = reca l l_sco re_va lue
91

92 f o r l abe l , r e ca l l_sco re_va lue in z ip ( l a b e l s , r e ca l l_1 ) :
93 r e c a l l _ d i c t [ 1 ] [ l a b e l ] = reca l l_sco re_va lue
94

95 # Calcu la te equal opportunity d i f f e r e n c e f o r each l a b e l
96 # emot ion_di f f e r ence s = {" t r i s t e z z a " : −0.1 , " g i o i a " : 0 . 4 , ecc . . . }
97 emot ion_di f f e r ence s = {}
98 f o r emotion in l a b e l s :
99 d i f f e r e n c e = r e c a l l _ d i c t [ 0 ] . get ( emotion , 0) − r e c a l l _ d i c t [ 1 ] . get (

emotion , 0)
100 emot ion_di f f e r ence s [ emotion ] = d i f f e r e n c e
101

102 re turn emot ion_di f f e r ence s
103

104

105 ############
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106

107

108 de f average_odds_di f f erence ( y_true , y_pred , s e n s i t i v e _ a t t r i b u t e ,
l a b e l s ) :

109

110 ’ ’ ’
111

112 y_true : i s the array conta in ing the ground truth
113 y_pred : i s the array conta in ing the pred i c t ed l a b e l s
114 s e n s i t i v e _ a t t r i b u t e : i s an array keeping track o f the s e n s i t i v e

a t t r i b u t e cor respond ing to that in s t ance ( binary )
115 NB: f o r the s e n s i t i v e a t t r i b u t e we l a b e l as 0 the u n p r i v i l e g e d

group and 1 the p r i v i l e g e d group
116 l a b e l s : l i s t with the p o s s i b l e output l a b e l s
117

118 ’ ’ ’
119

120 # Ensure the l eng th s o f the input ar rays are the same
121 a s s e r t l en ( y_true ) == len ( y_pred ) == len ( s e n s i t i v e _ a t t r i b u t e ) , "

Input ar rays must have the same length "
122

123 # Create a d i c t i o n a r y to s t o r e y_pred and y_true s e p a r a t e l y with
r e s p e c t to the s e n s i t i v e a t t r i b u t e

124 s e n s i t i v e _ d i c t = {0 : { ’ y_true ’ : [ ] , ’ y_pred ’ : [ ] } ,
125 1 : { ’ y_true ’ : [ ] , ’ y_pred ’ : [ ] } }
126

127 f o r i , va lue in enumerate ( s e n s i t i v e _ a t t r i b u t e ) :
128 t rue_labe l = y_true [ i ]
129 pred i c t ed_labe l = y_pred [ i ]
130 s e n s i t i v e _ d i c t [ va lue ] [ ’ y_true ’ ] . append ( t rue_labe l )
131 s e n s i t i v e _ d i c t [ va lue ] [ ’ y_pred ’ ] . append ( pred i c t ed_labe l )
132

133 # Compute r e c a l l s c o r e ( True P o s i t i v e Rate ) f o r each l a b e l d iv ided
by s e n s i t i v e a t t r i b u t e ( obta in a l i s t with the r e c a l l s c o r e f o r
each l a b e l in l a b e l s )

134 y_true_0 = s e n s i t i v e _ d i c t [ 0 ] [ ’ y_true ’ ]
135 y_pred_0 = s e n s i t i v e _ d i c t [ 0 ] [ ’ y_pred ’ ]
136

137 y_true_1 = s e n s i t i v e _ d i c t [ 1 ] [ ’ y_true ’ ]
138 y_pred_1 = s e n s i t i v e _ d i c t [ 1 ] [ ’ y_pred ’ ]
139

140 r e ca l l_0 = r e c a l l _ s c o r e ( y_true_0 , y_pred_0 , l a b e l s=l a b e l s , average=
None )

141 r e ca l l_1 = r e c a l l _ s c o r e ( y_true_1 , y_pred_1 , l a b e l s=l a b e l s , average=
None )

142

143 # Create a d i c t i o n a r y to s t o r e the r e c a l l s c o r e ( True P o s i t i v e Rate
) f o r each l a b e l d iv ided by s e n s i t i v e a t t r i b u t e
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144 # tpr s = { " 0 " : {" t r i s t e z z a " : 0 . 6 , " g i o i a " : 0 . 5 , ecc . . . } , " 1 " : {"
t r i s t e z z a " : 0 . 4 , " g i o i a " : 0 . 3 , ecc . . . } }

145 tp r s = {0 : {} , 1 : {}}
146

147 f o r l abe l , r e ca l l_sco re_va lue in z ip ( l a b e l s , r e ca l l_0 ) :
148 tp r s [ 0 ] [ l a b e l ] = reca l l_sco re_va lue
149

150 f o r l abe l , r e ca l l_sco re_va lue in z ip ( l a b e l s , r e ca l l_1 ) :
151 tp r s [ 1 ] [ l a b e l ] = reca l l_sco re_va lue
152

153 # Calcu la te TPRs d i f f e r e n c e f o r each l a b e l
154 # t p r s _ d i f f = {" t r i s t e z z a " : −0.1 , " g i o i a " : 0 . 4 , ecc . . . }
155 t p r s _ d i f f = {}
156 f o r emotion in l a b e l s :
157 d i f f e r e n c e = tpr s [ 0 ] . get ( emotion , 0) − tp r s [ 1 ] . get ( emotion , 0)
158 t p r s _ d i f f [ emotion ] = d i f f e r e n c e
159

160 # Store in a d i c t i o n a r y the Fa l se P o s i t i v e Rate
161 # F i r s t we need to compute the con fu s i on matr i ce s f o r each l a b e l

and s e n s t i i v e a t t r i b u t e to ex t r a c t FP and TN va lue s
162 confusion_matrices_0 = mult i labe l_confus ion_matr ix ( y_true_0 ,

y_pred_0 , l a b e l s=l a b e l s )
163 tn_0 , fp_0 = confusion_matrices_0 [ : , 0 , 0 ] , confusion_matrices_0 [ : ,

0 , 1 ]
164

165 confusion_matrices_1 = mult i labe l_confus ion_matr ix ( y_true_1 ,
y_pred_1 , l a b e l s=l a b e l s )

166 tn_1 , fp_1 = confusion_matrices_1 [ : , 0 , 0 ] , confusion_matrices_1 [ : ,
0 , 1 ]

167

168 # Create a d i c t i o n a r y to s t o r e the Fa l se P o s i t i v e Rate f o r each
l a b e l d iv ided by s e n s i t i v e a t t r i b u t e

169 # f p r s = { " 0 " : {" t r i s t e z z a " : 0 . 6 , " g i o i a " : 0 . 5 , ecc . . . } , " 1 " : {"
t r i s t e z z a " : 0 . 4 , " g i o i a " : 0 . 3 , ecc . . . } }

170 f p r s = {0 : {} , 1 : {}}
171

172 f o r l abe l , tn_value , fp_value in z ip ( l a b e l s , tn_0 , fp_0 ) :
173 f p r = fp_value / ( fp_value + tn_value )
174 f p r s [ 0 ] [ l a b e l ] = fp r
175

176 f o r l abe l , tn_value , fp_value in z ip ( l a b e l s , tn_1 , fp_1 ) :
177 f p r = fp_value / ( fp_value + tn_value )
178 f p r s [ 1 ] [ l a b e l ] = fp r
179

180 # Calcu la te FPRs d i f f e r e n c e f o r each l a b e l
181 # f p r s _ d i f f = {" t r i s t e z z a " : −0.1 , " g i o i a " : 0 . 4 , ecc . . . }
182 f p r s _ d i f f = {}
183 f o r emotion in l a b e l s :
184 d i f f e r e n c e = f p r s [ 0 ] . get ( emotion , 0) − f p r s [ 1 ] . get ( emotion , 0)
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185 f p r s _ d i f f [ emotion ] = d i f f e r e n c e
186

187 # Calcu la te the average odds d i f f e r e n c e by computing the average
between TPRs d i f f e r e n c e s and FPRs d i f f e r e n c e s

188 # avg_odds = {" t r i s t e z z a " : 0 . 2 , " g i o i a " : 0 . 3 , ecc . . . }
189 avg_odds = {}
190 f o r emotion in l a b e l s :
191 avg = ( t p r s _ d i f f . get ( emotion , 0) − f p r s _ d i f f . get ( emotion , 0) ) / 2
192 avg_odds [ emotion ] = avg
193

194 re turn avg_odds
195

196

197 ############
198

199

200 de f d isparate_impact_rat io ( y_true , y_pred , s e n s i t i v e _ a t t r i b u t e ,
l a b e l s ) :

201

202 ’ ’ ’
203

204 y_true : i s the array conta in ing the ground truth
205 y_pred : i s the array conta in ing the pred i c t ed l a b e l s
206 s e n s i t i v e _ a t t r i b u t e : i s an array keeping track o f the s e n s i t i v e

a t t r i b u t e cor respond ing to that in s t ance ( binary )
207 NB: f o r the s e n s i t i v e a t t r i b u t e we l a b e l as 0 the u n p r i v i l e g e d

group and 1 the p r i v i l e g e d group
208 l a b e l s : l i s t with the p o s s i b l e output l a b e l s
209 NB: in case we have a d i v i s i o n by 0 we don ’ t compute the r a t i o

but re turn 0
210

211 ’ ’ ’
212

213 # Ensure the l eng th s o f the input ar rays are the same
214 a s s e r t l en ( y_true ) == len ( y_pred ) == len ( s e n s i t i v e _ a t t r i b u t e ) , "

Input ar rays must have the same length "
215

216 # Create a d i c t i o n a r y to s t o r e p o s i t i v e p r e d i c t i o n s f o r each l a b e l
and s e n s i t i v e a t t r i b u t e va lue

217 p o s i t i v e _ p r e d i c t i o n s = {0 : {key : 0 f o r key in l a b e l s } , 1 : {key : 0
f o r key in l a b e l s }}

218

219 # Count p o s i t i v e p r e d i c t i o n s f o r each l a b e l and s e n s i t i v e a t t r i b u t e
value and s t o r e in the d i c t i o n a r y

220 # p o s i t i v e _ p r e d i c t i o n s = { " 0 " : {" t r i s t e z z a " : 10 , " g i o i a " : 2 , ecc
. . . } , " 1 " : {" t r i s t e z z a " : 4 , " g i o i a " : 5 , ecc . . . } }

221 f o r i , va lue in enumerate ( s e n s i t i v e _ a t t r i b u t e ) :
222 l a b e l = y_pred [ i ]
223 p o s i t i v e _ p r e d i c t i o n s [ va lue ] [ l a b e l ] += 1

59



Fairness Metrics

224

225

226 # Calcu la te the propor t ion o f p o s i t i v e p r e d i c t i o n s f o r each l a b e l
and s e n s i t i v e a t t r i b u t e va lue

227 # propor t i on s = { " 0 " : {" t r i s t e z z a " : 0 . 3 , " g i o i a " : 0 . 1 , ecc . . . } ,
" 1 " : {" t r i s t e z z a " : 0 . 5 , " g i o i a " : 0 . 4 , ecc . . . } }

228 propor t i ons = d e f a u l t d i c t ( d i c t )
229 f o r value , counts in p o s i t i v e _ p r e d i c t i o n s . i tems ( ) :
230 f o r l abe l , count in counts . i tems ( ) :
231 propor t i ons [ va lue ] [ l a b e l ] = count / s e n s i t i v e _ a t t r i b u t e .

count ( va lue )
232

233

234 # Compute the r a t i o obta ined comparing the two groups and s t o r e i t
in the d i c t i o n a r y

235 # r a t i o s = {" t r i s t e z z a " : 0 . 4 , " g i o i a " : 0 . 3 , ecc . . . }
236 r a t i o s = {}
237 f o r emotion in l a b e l s :
238 i f p ropor t i on s [ 1 ] . get ( emotion , 0) == 0 :
239 r a t i o = 0
240 e l s e :
241 r a t i o = propor t i ons [ 0 ] . get ( emotion , 0) / propor t i ons [ 1 ] . get (

emotion , 0)
242 r a t i o s [ emotion ] = r a t i o
243

244 re turn r a t i o s
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Plots

1

2 import matp lo t l i b . pyplot as p l t
3

4

5 de f p l o t _ s t a t i s t i c a l _ p a r i t y ( data , datase t ) :
6

7 ’ ’ ’
8

9 data : should be a d i c t i o n a r y
10

11 ’ ’ ’
12

13 emotions = l i s t ( data . keys ( ) )
14 va lue s = l i s t ( data . va lue s ( ) )
15

16 i f da ta se t == ’ emovo ’ :
17 emotion_colors = {
18 ’ g i o i a ’ : ’ go ld ’ ,
19 ’ n e u t r a l i t à ’ : ’ l i g h t g r a y ’ ,
20 ’ rabbia ’ : ’ f i r e b r i c k ’ ,
21 ’ t r i s t e z z a ’ : ’ r oya lb lu e ’ ,
22 ’ d i s gu s to ’ : ’ da rko l i v eg r e en ’ ,
23 ’ s o rp r e sa ’ : ’ t u rquo i s e ’ ,
24 ’ paura ’ : ’ purp le ’ }
25

26 e l i f datase t == ’ emozionalmente ’ :
27 emotion_colors = {
28 ’ joy ’ : ’ go ld ’ ,
29 ’ n e u t r a l i t y ’ : ’ l i g h t g r a y ’ ,
30 ’ anger ’ : ’ f i r e b r i c k ’ ,
31 ’ sadness ’ : ’ r oya lb lu e ’ ,
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32 ’ d i s g u s t ’ : ’ da rko l i v eg r e en ’ ,
33 ’ s u r p r i s e ’ : ’ t u rquo i s e ’ ,
34 ’ f e a r ’ : ’ purp le ’ }
35

36

37 f i g , ax = p l t . subp lo t s ( )
38

39 bars = ax . barh ( emotions , values , c o l o r =[ emotion_colors [ emotion ] f o r
emotion in emotions ] )

40

41 ax . axv l i n e (0 , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ )
42

43 ax . axvspan ( −0.1 , 0 . 1 , alpha =0.3 , c o l o r=’ ye l low ’ , l a b e l=’ Fa i rne s s
range ’ )

44

45 f o r bar , va lue in z ip ( bars , va lue s ) :
46 i f va lue < 0 :
47 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ r i g h t ’ , va=’ cente r ’ )
48 e l s e :
49 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ l e f t ’ , va=’ cente r ’ )
50

51

52 ax . t ex t (0 , −1, ’ Pe r f e c t Fa i rne s s ’ , ha=’ cente r ’ , va=’ cente r ’ , c o l o r=
’ black ’ )

53 ax . t ex t (1 , −1, ’ Bias towards u n p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

54 ax . t ex t (−1 , −1, ’ Bias towards p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

55 # NB: A value o f < 0 i m p l i e s h igher b e n e f i t f o r the p r i v i l e g e d
group and

56 # a value > 0 i m p l i e s h igher b e n e f i t f o r the u n p r i v i l e g e d group
57

58 ax . s e t_y labe l ( ’ Emotions ’ )
59

60 ax . s e t _ t i t l e ( ’ S t a t i s t i c a l pa r i t y d i f f e r e n c e ( per l a b e l ) ’ )
61

62 ax . s e t_xt i ck s ( [ ] )
63

64 ax . set_xlim (−1 , 1)
65

66 ax . l egend ( )
67

68 p l t . show ( )
69

70

71 ##############
72
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73

74 de f plot_equal_opportunity ( data , datase t ) :
75

76 ’ ’ ’
77

78 data : should be a d i c t i o n a r y
79

80 ’ ’ ’
81

82 emotions = l i s t ( data . keys ( ) )
83 va lue s = l i s t ( data . va lue s ( ) )
84

85

86 i f da ta se t == ’ emovo ’ :
87 emotion_colors = {
88 ’ g i o i a ’ : ’ go ld ’ ,
89 ’ n e u t r a l i t à ’ : ’ l i g h t g r a y ’ ,
90 ’ rabbia ’ : ’ f i r e b r i c k ’ ,
91 ’ t r i s t e z z a ’ : ’ r oya lb lu e ’ ,
92 ’ d i s gu s to ’ : ’ da rko l i v eg r e en ’ ,
93 ’ s o rp r e sa ’ : ’ t u rquo i s e ’ ,
94 ’ paura ’ : ’ purp le ’ }
95

96 e l i f datase t == ’ emozionalmente ’ :
97 emotion_colors = {
98 ’ joy ’ : ’ go ld ’ ,
99 ’ n e u t r a l i t y ’ : ’ l i g h t g r a y ’ ,

100 ’ anger ’ : ’ f i r e b r i c k ’ ,
101 ’ sadness ’ : ’ r oya lb lu e ’ ,
102 ’ d i s g u s t ’ : ’ da rko l i v eg r e en ’ ,
103 ’ s u r p r i s e ’ : ’ t u rquo i s e ’ ,
104 ’ f e a r ’ : ’ purp le ’ }
105

106

107 f i g , ax = p l t . subp lo t s ( )
108

109 bars = ax . barh ( emotions , values , c o l o r =[ emotion_colors [ emotion ] f o r
emotion in emotions ] )

110

111 ax . axv l i n e (0 , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ )
112

113 ax . axvspan ( −0.1 , 0 . 1 , alpha =0.3 , c o l o r=’ ye l low ’ , l a b e l=’ Fa i rne s s
range ’ )

114

115 f o r bar , va lue in z ip ( bars , va lue s ) :
116 i f va lue < 0 :
117 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ r i g h t ’ , va=’ cente r ’ )
118 e l s e :
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119 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (
value , 2) } ’ , ha=’ l e f t ’ , va=’ cente r ’ )

120

121

122 ax . t ex t (0 , −1, ’ Pe r f e c t Fa i rne s s ’ , ha=’ cente r ’ , va=’ cente r ’ , c o l o r=
’ black ’ )

123 ax . t ex t (1 , −1, ’ Bias towards u n p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

124 ax . t ex t (−1 , −1, ’ Bias towards p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

125 # NB: A value o f < 0 i m p l i e s h igher b e n e f i t f o r the p r i v i l e g e d
group and

126 # a value > 0 i m p l i e s h igher b e n e f i t f o r the u n p r i v i l e g e d group
127

128 ax . s e t_y labe l ( ’ Emotions ’ )
129

130 ax . s e t _ t i t l e ( ’ Equal opportunity d i f f e r e n c e ( per l a b e l ) ’ )
131

132 ax . s e t_xt i ck s ( [ ] )
133

134 ax . set_xlim (−1 , 1)
135

136 ax . l egend ( )
137

138 p l t . show ( )
139

140

141 ##############
142

143

144 de f plot_average_odds ( data , datase t ) :
145

146 ’ ’ ’
147

148 data : should be a d i c t i o n a r y
149

150 ’ ’ ’
151

152 emotions = l i s t ( data . keys ( ) )
153 va lue s = l i s t ( data . va lue s ( ) )
154

155

156 i f da ta se t == ’ emovo ’ :
157 emotion_colors = {
158 ’ g i o i a ’ : ’ go ld ’ ,
159 ’ n e u t r a l i t à ’ : ’ l i g h t g r a y ’ ,
160 ’ rabbia ’ : ’ f i r e b r i c k ’ ,
161 ’ t r i s t e z z a ’ : ’ r oya lb lu e ’ ,
162 ’ d i s gu s to ’ : ’ da rko l i v eg r e en ’ ,
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163 ’ s o rp r e sa ’ : ’ t u rquo i s e ’ ,
164 ’ paura ’ : ’ purp le ’ }
165

166 e l i f datase t == ’ emozionalmente ’ :
167 emotion_colors = {
168 ’ joy ’ : ’ go ld ’ ,
169 ’ n e u t r a l i t y ’ : ’ l i g h t g r a y ’ ,
170 ’ anger ’ : ’ f i r e b r i c k ’ ,
171 ’ sadness ’ : ’ r oya lb lu e ’ ,
172 ’ d i s g u s t ’ : ’ da rko l i v eg r e en ’ ,
173 ’ s u r p r i s e ’ : ’ t u rquo i s e ’ ,
174 ’ f e a r ’ : ’ purp le ’ }
175

176

177 f i g , ax = p l t . subp lo t s ( )
178

179 bars = ax . barh ( emotions , values , c o l o r =[ emotion_colors [ emotion ] f o r
emotion in emotions ] )

180

181 ax . axv l i n e (0 , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ )
182

183 ax . axvspan ( −0.1 , 0 . 1 , alpha =0.3 , c o l o r=’ ye l low ’ , l a b e l=’ Fa i rne s s
range ’ )

184

185 f o r bar , va lue in z ip ( bars , va lue s ) :
186 i f va lue < 0 :
187 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ r i g h t ’ , va=’ cente r ’ )
188 e l s e :
189 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ l e f t ’ , va=’ cente r ’ )
190

191

192 ax . t ex t (0 , −1, ’ Pe r f e c t Fa i rne s s ’ , ha=’ cente r ’ , va=’ cente r ’ , c o l o r=
’ black ’ )

193 ax . t ex t (1 , −1, ’ Bias towards u n p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

194 ax . t ex t (−1 , −1, ’ Bias towards p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

195 # NB: A value o f < 0 i m p l i e s h igher b e n e f i t f o r the p r i v i l e g e d
group and

196 # a value > 0 i m p l i e s h igher b e n e f i t f o r the u n p r i v i l e g e d group
197

198 ax . s e t_y labe l ( ’ Emotions ’ )
199

200 ax . s e t _ t i t l e ( ’ Average odds d i f f e r e n c e ( per l a b e l ) ’ )
201

202 ax . s e t_xt i ck s ( [ ] )
203
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204 ax . set_xlim (−1 , 1)
205

206 ax . l egend ( )
207

208 p l t . show ( )
209

210

211 ##############
212

213

214 de f plot_disparate_impact ( data , datase t ) :
215

216 ’ ’ ’
217

218 data : should be a d i c t i o n a r y
219

220 ’ ’ ’
221

222 emotions = l i s t ( data . keys ( ) )
223 va lue s = l i s t ( data . va lue s ( ) )
224

225

226 i f da ta se t == ’ emovo ’ :
227 emotion_colors = {
228 ’ g i o i a ’ : ’ go ld ’ ,
229 ’ n e u t r a l i t à ’ : ’ l i g h t g r a y ’ ,
230 ’ rabbia ’ : ’ f i r e b r i c k ’ ,
231 ’ t r i s t e z z a ’ : ’ r oya lb lu e ’ ,
232 ’ d i s gu s to ’ : ’ da rko l i v eg r e en ’ ,
233 ’ s o rp r e sa ’ : ’ t u rquo i s e ’ ,
234 ’ paura ’ : ’ purp le ’ }
235

236 e l i f datase t == ’ emozionalmente ’ :
237 emotion_colors = {
238 ’ joy ’ : ’ go ld ’ ,
239 ’ n e u t r a l i t y ’ : ’ l i g h t g r a y ’ ,
240 ’ anger ’ : ’ f i r e b r i c k ’ ,
241 ’ sadness ’ : ’ r oya lb lu e ’ ,
242 ’ d i s g u s t ’ : ’ da rko l i v eg r e en ’ ,
243 ’ s u r p r i s e ’ : ’ t u rquo i s e ’ ,
244 ’ f e a r ’ : ’ purp le ’ }
245

246 f i g , ax = p l t . subp lo t s ( )
247

248 bars = ax . barh ( emotions , values , c o l o r =[ emotion_colors [ emotion ] f o r
emotion in emotions ] )

249

250 ax . axv l i n e (1 , c o l o r=’ black ’ , l i n e s t y l e=’−− ’ )
251
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252 ax . axvspan ( 0 . 8 , 1 . 25 , alpha =0.3 , c o l o r=’ ye l low ’ , l a b e l=’ Fa i rne s s
range ’ )

253

254 f o r bar , va lue in z ip ( bars , va lue s ) :
255 i f va lue < 0 :
256 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ r i g h t ’ , va=’ cente r ’ )
257 e l s e :
258 ax . t ex t ( value , bar . get_y ( ) + bar . get_height ( ) / 2 , f ’ { round (

value , 2) } ’ , ha=’ l e f t ’ , va=’ cente r ’ )
259

260

261 ax . t ex t (1 , −1, ’ Pe r f e c t Fa i rne s s ’ , ha=’ cente r ’ , va=’ cente r ’ , c o l o r=
’ black ’ )

262 ax . t ex t (2 , −1, ’ Bias towards u n p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

263 ax . t ex t (0 , −1, ’ Bias towards p r i v i l e g e d group ’ , ha=’ cente r ’ , va=’
cente r ’ , c o l o r=’ black ’ )

264 # NB: A value < 1 i m p l i e s h igher b e n e f i t f o r the p r i v i l e g e d group
and

265 # a value >1 i m p l i e s a h igher b e n e f i t f o r the u n p r i v i l e g e d group
266

267 ax . s e t_y labe l ( ’ Emotions ’ )
268

269 ax . s e t _ t i t l e ( ’ Disparate impact ( per l a b e l ) ’ )
270

271 ax . s e t_xt i ck s ( [ ] )
272

273 ax . set_xlim (0 , 2)
274

275 ax . l egend ( )
276

277 p l t . show ( )

67



Appendix C

Fairness Metrics Plots

Figure C.1: EMOVO, SVM, MFCC, 12 coefficients, 5 kfold splits (mean accuracy:
41.14%)
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Figure C.2: EMOVO, SVM, MFCC, 24 coefficients, 5 kfold splits (mean accuracy:
60.19%)

Figure C.3: EMOVO, SVM, MFCC, 30 coefficients, 5 kfold splits (mean accuracy:
64.44%)
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Figure C.4: EMOVO, SVM, MFMC, 12 coefficients, 5 kfold splits (mean accuracy:
33.33%)

Figure C.5: EMOVO, SVM, MFMC, 24 coefficients, 5 kfold splits (mean accuracy:
41.14%)
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Figure C.6: EMOVO, SVM, MFMC, 30 coefficients, 5 kfold splits (mean accuracy:
43.86%)

Figure C.7: EMOVO, ResNet, balanced training set (accuracy: 44.68%)
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Figure C.8: EMOVO, ResNet, 70% male training set (accuracy: 36.01%)

Figure C.9: EMOVO, ResNet, 70% female training set (accuracy: 38.55%)
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Figure C.10: WavLM, Emozionalmente unbalanced training set, EMOVO test
set (accuracy: 64.11%)

Figure C.11: Emozionalmente, SVM, MFCC, 30 coefficients, unbalanced training
set, gender (accuracy: 32.02%)
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Figure C.12: Emozionalmente, SVM, MFCC, 30 coefficients, balanced training
set, gender (accuracy: 31.76%)

Figure C.13: Emozionalmente, SVM, MFMC, 30 coefficients, unbalanced training
set, gender (accuracy: 31.54%)
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Figure C.14: Emozionalmente, SVM, MFMC, 30 coefficients, balanced training
set, gender (accuracy: 30.12%)

Figure C.15: Emozionalmente, ResNet, unbalanced training set, gender (accuracy:
33.51%)
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Figure C.16: Emozionalmente, ResNet, balanced training set, gender (accuracy:
39.95%)

Figure C.17: Emozionalmente, WavLM, unbalanced training set, gender (accuracy:
90.07%)
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Figure C.18: Emozionalmente, WavLM, balanced training set, gender (accuracy:
65.90%)

Figure C.19: Emozionalmente, SVM, MFCC, 30 coefficients, age threshold 27
(accuracy: 33.17%)

77



Fairness Metrics Plots

Figure C.20: Emozionalmente, SVM, MFCC, 30 coefficients, age threshold 30
(accuracy: 33.17%)

Figure C.21: Emozionalmente, SVM, MFCC, 30 coefficients, age threshold 40
(accuracy: 33.17%)
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Figure C.22: Emozionalmente, SVM, MFMC, 30 coefficients, age threshold 27
(accuracy: 31.82%)

Figure C.23: Emozionalmente, SVM, MFMC, 30 coefficients, age threshold 30
(accuracy: 31.82%)
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Figure C.24: Emozionalmente, SVM, MFMC, 30 coefficients, age threshold 40
(accuracy: 31.82%)

Figure C.25: Emozionalmente, ResNet, age threshold 27 (accuracy: 49.69%)
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Figure C.26: Emozionalmente, ResNet, age threshold 30 (accuracy: 49.69%)

Figure C.27: Emozionalmente, ResNet, age threshold 40 (accuracy: 49.69%)
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Figure C.28: Emozionalmente, WavLM, age threshold 27 (accuracy: 90%)

Figure C.29: Emozionalmente, WavLM, age threshold 30 (accuracy: 90%)
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Figure C.30: Emozionalmente, WavLM, age threshold 40 (accuracy: 90%)
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