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Abstract

This work explores two aspects of the motion of particles inside a turbulent fluid flow:
relative dispersion and Lagrangian correlations. These are studied experimentally,
by means of custom-made miniaturized radiosondes launched in clusters to obtain
data about the turbulence in the atmospheric boundary layer, and numerically,
by means of Direct Numerical Simulations of a cloud’s border region, modeled
as a turbulent mixing layer in which the advected Lagrangian particles are water
droplets.

Relative dispersion is one of the open problems of fluid turbulence, concerning
how fast particles are spread apart by the fluid flow. The relevant theoretical
framework is Kolmogorov’s and Obukhov’s K41 theory, but this only holds for the
case of stationary, homogeneous, isotropic turbulence. However, real flows rarely
hold these properties, and thus studies of dispersion far from these ideal conditions
are necessary both for theoretical insight into real turbulence and for correct
modelling of real-world phenomena and forecasting. Our experimental results are
compared with those from K41, in terms of the exponents and coefficients found for
the dispersion laws, and deviations are found that can be explained in terms of the
inhomogeneities inherently contained in atmospheric turbulence. On the numerical
side, preliminary studies are conducted on the currently available simulations, that
lack the necessary features to allow for definitive investigation, in order to pave the
way for newer upcoming simulations.

Lagrangian correlations are a far less explored branch in the study of turbu-
lence, and while some specific studies have been conducted there is no solid and
widely recognized theoretical framework to interpret them. We thus present novel
results about these quantities both for velocity components, which are what most
studies investigate, and other relevant quantities for the cases of the cloud border
simulations and the radiosondes released in the atmosphere. Symmetrically with
respect to the discussion on dispersion, results on Lagrangian correlations see a
stronger contribution from the numerical simulations.
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Introduction

I have always been interested in atmoshperic phenomena. Their scale and their
beauty appealed to me. Still, it was not a fascination I consciously realised: I just
thought it was cool when it rained. Then, towards the end of my Bachelor’s, I was
considering enrolling in the Physics of Complex Systems Master’s program, and
as one does I was trying to imagine what exactly I might end up studying if I did
decide to take that path, since it is an area of physics less easy to conceptualize
then, say, particle physics. One day, all of a sudden and quite by chance, possibly
stirred by the vision of some distant cumulus formation, a thought popped up in
my head: “Hey, clouds are probably a pretty complex system. It would be fun to
study those.”.

I could not know at the time, but as a matter of fact I hit the nail quite square
on its head with that naive realisation. When I approached Prof. Tordella to have
more information about her research and the activities of her group I still had little
idea of what the study of clouds actually entailed, as there were no courses in my
curriculum that went any deeper than a couple paragraphs into it. Specifically,
although a posteriori it may seem obvious, I was not fully ready for how tight
the bond between the study of clouds and fluid dynamics really is. That a bond
should exist was clear enough, clouds being made up of fluids moving through
a fluids (with the exception of ice in high clouds, but those still arise from the
freezing of water vapor mixed with air, so the point remains), but one aspect of it
could not but escape me: it is not only with fluid mechanics in general that cloud
dynamics are coupled, but specifically with turbulent fluid motion. There is a
popular science article by Bodenschatz et al. [1] whose title does a rather complete
job of summing up what research both old and new has discovered about this link:
“Can we understand clouds without turbulence?”. The implied answer, obviously, is
“No”. For this reason I unexpectedly had to dive into the wild world of turbulence
theory, which I already knew to be among the paramount examples of complexity
in physical systems. Luckily, I quickly found that turbulence interested me just as
much as clouds did, and therefore working on their relationship proved to be an
extremely satisfying experience. However, the theory of turbulence comes in a great
many flavors (in fact virtually all flavors of scientific endeavors), and as is often the
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Introduction

case with very fundamental problems the more theoretical parts of the research
in this field have become difficult to reconcile with applications. While obviously
important, the sort of idealised version of turbulence that is used to investigate it
at the fundamental level proves only partially valid when the need is to understand
the impact of real-world turbulence on various phenomena. This is mostly due to
the fact that the best framework for the theoretical studies, namely homogeneous,
isotropic turbulence (HIT), is but a model for real turbulence, which in the great
majority of cases cannot display neither homogeneity nor isotropy. This issue will
be relayed more thoroughly in Chapter 1, but is noted here in passing to provide a
justification for the fact that when needing to investigate the relationship between
real turbulence and the phenomena taking place inside it the purely theoretical
tools are very seldom used. Rather, they provide a measure for comparison with
the results that are obtained, and should be employed as a foundation on which to
build more concrete models.

With pure theory having to be put aside, two methods of investigation remain
available: numerical simulation and experimental studies. Most of the past works
by Prof. Tordella’s group were numerical in nature, so when I joined I was prepared
for some type of computational effort. More recently though, a new avenue had
been opened thanks to an H2020 project by the name of COMPLETE. The group
started developing an innovative experimental setup for atmospheric measurements
aimed at cloud research, based around the deployment of miniaturized radiosonde
clusters. By its nature in-field experimental work requires a lot of manpower, and
therefore despite not being my main source of interest at that time I happily took
part in the organisation of the first free-flight launch of the sondes. It was so
that the experimental type of investigation started to grow on me, and I slowly
appreciated more and more how complementary computational and experimental
research are. Obviously enough both have their strengths and their weaknesses,
but at the beginning I had not quite realised that in many instances what proves
hard in one case is easy in the other. For a while then I just went with the flow and
participated in the development of both the experimental and the numerical sides
of the work. Because of their intersection, though, it felt unfair to only include one
of the two in the final account of my work, namely this thesis. It was thus decided
to include both, in an effort to highlight the importance of each approach.

At this point, I should start to be more precise about both the simulations that
were employed to obtain the numerical results and the aforementioned experimental
setup. They will each be presented in full detail in their respective chapters, but
a shorter account may be given here for the reader that might still be deciding
whether those are worth reading. First and foremost I should specify that I did not
run any new simulations myself (this might hopefully change soon, as told in the
Conclusions chapter), as computational fluid dynamics is notoriously extremely
expensive in terms of computational resources and performing new runs requires

2



Introduction

a somewhat lengthy process of approval from the institutions that may provide
such resources. Rather, I performed novel post-processing analysis on the datasets
obtained from the most recent simulations run by the group shortly before my
arrival. These simulations are Direct Numerical Simulations of the fluid flow and
water droplets dynamics at the border of a cloud. This has been identified as a
region worthy of interest owing precisely to the inhomogeneity of the turbulence
therein, due to the fact that clouds, broadly speaking, are more turbulent than
the clear air surrounding them. The experimental setup, instead, consists of the
radiosondes, attached to fixed-size helium balloons for neutral buoyancy at a
predefined altitude, in communication with one or more ground stations for data
reception. The sondes are to be released in clusters, which is a crucial aspect of
the methodology: indeed, many measurements all over the world are performed
by means of single sondes, which are unable to provide same-time, different-space
point information, necessary to understand the structure and statistical behavior
of the turbulent flow.

With this rough explanation of the methods in place we can now discuss exactly
which aspects of turbulence have been investigated. In doing this we should keep in
mind our ultimate goal: understand how turbulence impacts the behavior of clouds.
This is because, at the basic level of modelling, clouds can be seen as systems that
are advected by the turbulence, and in more than one sense. At the microscopic
level this should be quite intuitive: water droplets or ice crystals are carried around
by the air flow. At the level of intermediate scales, though, this is also true: this
interpretation is given by what is called “parcel theory”, which basically treats
small portions of air as if they were particles moving in a fluid. This has its
applications, as exposed in Chapter 2, but for now it simply serves the purpose of
illustrating the fact that we are interested in how turbulence transports whatever
the fluid may contain. The adjective for this type of studies is “Lagrangian”,
which refers to the Lagrangian approach to fluid mechanics, meaning an approach
focusing on describing the behavior of the fluid particles, contrasted by the Eulerian
approach that treats the fluid as a field (and is in fact the most commonly used).
In this thesis, two problems in Lagrangian turbulence are included, reflective of
the direction in which we are developing the research. One is often considered
to be among the central issues in the field, as well as of turbulence at large; the
other instead has so far not been looked into as deeply by the community, and is
only recently surfacing in a few newer studies. This sort of juxtaposition was not
necessarily intended, but it provides for a nice parallel.

The first one is the problem of relative dispersion. The question as its core is,
simply put: “How are particles spread apart by turbulent flow?”. We will be more
precise in the following, but this will suffice for now. The reason why it is held
in such high consideration is that there is a particularly nice result that answers
the question for the case of HIT, called the Richardson-Obukhov law. Despite
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its simplicity and elegance, this result has never received definitive confirmation
even in its simple framework, which explains its status as a core issue. The second
one, instead, is the topic of Lagrangian correlations. What this means is the study
of the time and space dependence of correlation functions of various quantities
as they evolve over Lagrangian trajectories of particles. Their importance, other
than fundamental theoretical investigation, lies mostly in the modelling of various
Lagrangian aspects of turbulence, but their research has long been hindered by the
inherent difficulties of carrying out Lagrangian measurements. Our environments,
both computational and experimental, provide instead a convenient context in this
sense.

Some words should be spent on the experiments that allowed us to obtain the
datasets that lead to the results presented here. They were performed during our
participation in the Wessex Convection (WESCON) 2023 experimental campaign,
organised by the British Met Office. For 5 days we were kindly taken care of and
aided by the folks at the Chilbolton Observatory, where we carried out two separate
cluster launches with 7 and 10 sondes respectively. A special thanks must go to
Darcy Ladd, Jeremy Price and Chris Walden , who have been our main points of
contact with the British research apparatus and whose contribution has been (and
hopefully will continue to be) crucial in the success of our experiments and their
analysis. Of course they were not alone, and my thanks are extended to all other
people that helped us both during our permanence in England and afterwards.

One last piece of information before coming to the content of the thesis: the
results about relative dispersion, both the experimental ones and the preliminary
computational work, were presented in two separate sections both by me and Shah-
bozbek Abdunabiev at the 18th European Turbulence Conference on September
5th 2023, in Valencia (which incidentally also turned out to be the last European
Turbulence Conference, since starting in 2024 it will be merged with the European
Fluid Mechanics Conference to give rise to the European Fluid Dynamics Confer-
ence). My thanks in this case goes to the lead organizer Prof. Sergio Hoyas, as
well as to all the people at the Universitat Politècnica de València that made this
event an extremely fun experience for all of us to attend.

We can finally come to the matter at hand and illustrate the structure of my
work:

Chapter 1 contains a brief account of the theoretical framework that is necessary
to understand the subsequent results and appreciate their relevance. Some space
is given to the Kolmogorov-Obukhov theory of turbulence, which allows us to
then step comfortably into relative dispersion. Finally the concept of Lagrangian
correlation is introduced.

Chapter 2 starts with a very condensed summary of the principal aspects of
cloud physics, focusing on the ones that are necessary to discuss the numerical
simulations of cloud borders, which are presented right after. Along with their
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general aspects some results that have been achieved so far thanks to those same
simulations are also illustrated, to further justify our interest in this special region
of a cloud’s body.

Chapter 3 is the last preparatory chapter, and it gives a complete overview of
the experimental setup. All of the components of the sondes are listed and the
rationale behind their design explained, along with an account of many tests that
have been conducted to ascertain their viability as measurement tools.

Chapter 4 relates the results in the matter of relative dispersion. Most of the
chapter is taken up by the experimental results which are presented for the two
Chilbolton launches separately. The numerical results follow, which for reasons
that will be discussed at the beginning of the appropriate section mostly consist in
a preliminary analysis, and serve as a stepping stone for upcoming studies.

Lastly, Chapter 5 relates the results for Lagrangian correlations. In this case
numerical results come first, the simulations serving as an ideal ground for this
type of analysis. Then the experimental results close the discussion. Importantly,
Lagrangian correlations are most often computed for the velocity components of
particles, whereas I present results for other characterising quantities as well.

While many results are shown, much work remains to be done on both fronts
discussed, and many more results are on their way as I write these lines. Unfor-
tunately, time is a deciding factor in how much can fit into a Master’s Degree
thesis work, and as a matter of fact one can imagine that if I wanted to include
all possible future developments stemming from the illustrated results this thesis
would probably never be concluded. For this reason, in the Conclusions I did my
best to give an overlook of the direction the research here presented is moving
towards in the near future, so that the interested reader may be able to be on the
lookout for future updates.
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Chapter 1

Turbent flow and particles

The aim of this chapter is to provide the necessary background to contextualise
the subsequent results. Naturally, the immense topic of turbulence has to be shrunk
to a very serius degree in order to fit in an introductory chapter. We will therefore
limit ourselves to the very backbone of the theory, meaning the elements that it
fundamentally relies on combined with the specific topics of our interest.

We will begin with an overview of what turbulence actually is and its main
characteristics. Then we will skip a chapter that is often found at the very beginning
of turbulence textbooks: the semiempirical theories. While obviously extremely
important in many areas of science and engineering, they are beyond the scope of
this work, in that they often deal with specific practical problems rather than with
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some underlying physical content (this is of course a broad, and thus only partially
correct, statement: the two thing are clearly related). We will instead discuss the
theory developed by Kolmogorov, and in parallel by Obukhov, that focuses on
the fundamental structure of turbulence, and by some simple assumptions is able
to derive some impressively deep results. From this we will move on to the topic
of turbulent relative dispersion, real core of our discussion, and illustrate some
of its key aspects as well as shortcomings. Finally we will illustrate the topic of
Lagrangian correlations, which remains so far somewhat elusive when compared to
the body of work discussing other topics in turbulence.

1.1 General features of turbulence
Turbulent flow exists in opposition to laminar flow. The latter is characterised
by order and smoothness, whereas the former is characterised by disorder, in the
form of very strong fluctuations in the flow velocity (and, by extensions, of many
other measurable quantities). The nondeterministic and nonlinear nature of these
fluctuations has basically spawned the whole field of research: why do they arise?
Can we say anything at all about the resulting flow? How do we deal with them?

As said, the last question is mostly the concern of the semiempirical theories:
the problem is far too complicated and far too pervasive to wait for a full solution
before it is dealt with in applications, and so many methods have come up to deal
with it even without knowing everything that lies beneath. The first question,
while interesting even at a fundamental level, obviously has many and lengthy
answers, that are provided by the studies in dynamic instability of the flow. We
will mostly focus on the question in the middle: what does turbulence look like,
and what can we know about it once it’s there? This implicitly states that we will
position ourselves far from the moment where the flow first becomes unstable, in a
regime commonly referred to as fully developed turbulence.

To keep the discussion tidy, let us first state the problem a bit more formally,
limiting ourselves to the case of incompressible fluids (as we will do throughout this
thesis). Given a set of boundary conditions, the problem of turbulence amounts to
finding the probability distribution P (dω) in the phase space of turbulent flow Ω,
in which each point represents an instance of the solenoidal velocity field u⃗(x⃗, t)
(meaning vector fields that satisfy the equations of fluid mechanics) [2]. This is
obviously a huge task, and indeed it remains unsolved. Because of its complexity,
much work has went into solving small parts of it: rather than solving the full
distribution, the focus is usually on finding its first few moments.

With all this in mind we can start to take a look at the features of turbulent flow.
The most obvious one for any onlooker is the presence, amidst the aforementioned
disorder, of spiraling structures that can be clearly identified. These are called
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eddies, and are indeed at the core of turbulent motion. These eddies appear to span
a very wide range of scales: while looking at a certain flow the largest ones will
typically be of the size of the domain in which the flow is confined, and these will
contain others that are smaller and smaller down to a scale that is much smaller
than the size of the domain. The largest vortices arise due to instabilities in the
mean flow, and they generate the smaller ones by loss of stability in their own
flow, and so on to the smallest scale, which by definition must then be stable.
The parameter that describes this stability (or lack thereof) is the well known
adimensional quantity Re = UL

ν
, called the Reynolds number. Here U is the typical

scale of flow velocity for the flow as seen at the spatial scale L, and ν is the
kinematic viscosity of the fluid. Thus the Reynolds number expresses the balance
between the inertial forces in the fluid and its viscosity. Roughly speaking, the
higher the Reynolds number, the more unstable the flow and so the more developed
the turbulence, although the exact value at which the transition starts to occur
depends on the exact flow we are considering. In the context of the hierarchy of
eddies, then, it must be true that at large scales the viscosity plays a very marginal
role, so much so that it can be neglected. The Reynolds number then decreases by
descending in the length scale of the vortices, down to the smallest scale that, by
being stable, indicates that the viscosity has a strong enough effect as to prevent
the further breakdown of the flow. Because viscosity is what determines energy
dissipation in a fluid this leaves us with the following picture: energy is injected in
the largest scales of turbulence by the mean flow; this induces an energy cascade
that runs from the largest scales through the smaller ones, down to the point in
which viscosity becomes prevalent again and the energy is dissipated. At this point
it would be unfair, especially in a thesis partially focusing on relative dispersion,
not to include the celebrated poem by Richardson, that elegantly encapsulates
what we have described so far:

Big whirls have little whirls,
Which feed on their velocity;

And little whirls have lesser whirls,
And so on to viscosity

(in the molecular sense)

This simple intuition has a very powerful consequence: while the large scales
will be affected by the boundary conditions, and the small scales by the viscosity
of the specific fluid, we expect (and indeed observe, at least in some ways) the
intermediate scales to present a universal behavior. This leads to a division of all
possible scales into different ranges. Calling L the spatial scale of the domain in
which the flow is embedded and η the scale of the smallest eddies we will have
the following partition: scales ℓ ∼ L will belong to the energy range; scales such
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that η ≪ ℓ ≪ L will belong to the inertial range; scales ℓ ∼ η will belong to the
dissipation range.

The last concept we introduce before delving into Kolmogorov’s theory of
turbulence is needed as a bridge towards it, and it is the idea of considering a field
of homogeneous and isotropic turbulence. This framework was first introduced by
G.I. Taylor, and has proven extremely useful in the process of making the study
of turbulence theoretically approachable (and constitutes the de facto standard
in the study of turbulence by statistical physics means). It amounts to assuming
that the probability distributions of fluid mechanical quantities are invariant under
orthogonal transformations of a system of three-dimensional coordinates [2]. Simply
stated, the statistical landscape for our flow will be the same irrespective of the
specific point in the domain or the specific direction we look in. We can express
this in terms of the velocity correlation functions, which are the main quantity
used to characterise the structure of turbulence, as [3]

⟨uα(x)uβ(x′)⟩ = fαβ(|x − x′|) = fβα(|x − x′|) (1.1)

where fαβ is just some generic function that depends on direction, as specified by
the order of the velocity component indeces. Clearly this is an assumption that can
only ever hope to be valid at sufficiently small scales ℓ ≪ L, as boundary conditions
inherently introduce inhomogeneities. Even then it is obvious that most real flows
(as we will see later) are quite far from being homogeneous and isotropic, but the
approximation is still a highly regarded mathematical tool for the investigation of
some fundamental, basic statistical properties of turbulence. This is partly due to
the fact that, for sufficiently high Reynolds numbers, many types of flow can be
considered to be locally homogeneous and isotropic, thus allowing us to disregard
the boundary conditions altogether. This is, once again, only valid until sufficiently
small scales are considered. If a system presents inhomogeneities of any kind at
scales of order lin, the assumption will only hold for ℓ ≪ lin, irrespective of the fact
that we may be far from the walls of the domain.

1.2 The Kolmogorov - Obukhov scaling theory
Often referred to simply as K41 theory, the Kolmogorov-Obukhov theory is the
framework that has given to the research community some of the most dearly held
and most highly regarded results about turbulence. In its simplicity, it was able to
discover some laws that now constitutes some of the reference points for turbulence
theory. This nonetheless, it has had and, up to a point, still has its detractors,
and it can be said that consensus over its validity has not quite been reached. As
fascinating as it is, we must keep in mind that turbulence flow structure, which is
really what most of the results are about, is not quite the focus of this work. We
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will therefore try to abstain from listing all points of controversy, and to stick to
the results that are useful for our discussion.

Because of its importance, this piece of theory is treated more or less deeply in
most books about turbulence. Aside for the two original papers by Kolmogorov [4]
[5] and one by Obukhov [6], our dicussion will loosely draw from the second volume
of the hallmark book by Monin and Yaglom [7], two books by David McComb
[8] [3] with more of a theoretical focus, and the well-known Landau and Lifshitz
volume on fluid mechanics[9].

1.2.1 Choice of parameters and similarity hypotheses
As stated above, the context in which K41 is developed is homogeneous isotropic
turbulence. Since it was still a relatively new concept, Kolmogorov originally
formulated it in terms of local homogeneity and isotropy, as well as implicitly
introducing the additional constraint of stationarity. The assumption then is that
we are looking at scales (Kolmogorov refers to the “observation scale” for the
phenomenon) much smaller then the scale of the mean motion, and we’re doing
so for times much smaller then the characteristic mean motion time L/U . We
can then assume that the scales we are looking at have “forgotten” the effect of
the mean motion and satisfy our hypotheses. While these considerations might
be important for certain types of experimental work, from the theoretical point
of view it has become much more common to employ homogeneous isotropic
(stationary) turbulence purely as a mathematical mean to study the fundamental
properties of the turbulent field. Thus we can simply imagine an infinite field of
stationary turbulence characterised by the same statistical properties as those of
real turbulence far from the length scales of the domain walls, in a way forgetting
about the boundary conditions. The two approaches are largely equivalent for the
present discussion.

In the described landscape we would like to isolate those parameters that the
probability distribution of the velocity field depends on. Specifically we now focus
on velocity differences:

v⃗(r⃗, τ) = u⃗(x⃗0 + r⃗, t0 + τ) − u⃗(x0, t0) (1.2)

with respect to some reference point ant time x0, t0 (the previous paragraph
amounts to saying r ≪ L, τ ≪ L/U). Because we are discarding boundary
conditions, the only way in which the larger scales can influence the smaller ones is
by means of the energy dissipation rate ε̄. This is the energy that flows from the
top down in the “eddy cascade” from the previous section, and it flows from the
energetic scales all the way down to the smallest possible ones, where the dissipation
into heat actually happens. In addition to this, we should consider the properties
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of the specific fluid that is set into motion, which in the case of incompressible
fluids amount to the density ρ and the kinematic viscosity ν. However, since the
velocities do not depend on the chosen units of mass, the distributions for v⃗(r⃗, τ)
cannot depend on ρ. This leads to the formulation of the first Kolmogorov
similarity hypothesis:

For homogeneous, isotropic turbulence at sufficiently high Reynolds numbers, the
probability distributions for the relative velocities v⃗(r⃗, τ ) are uniquely defined by the

values of ε̄ and ν.

This simple but sophisticated assumption allows us, just on dimensional grounds,
to determine many of the quantities that may interest us when dealing with turbulent
flow. First and foremost, we can give an expression for the length scale of the
smallest eddies, at which viscosity stabilises the flow and takes over to dissipate
the energy. The unique combination of ε̄ and ν that has the dimensions of length is

η =
A

ν3

ε̄

B 1
4

(1.3)

and this is related to a velocity scale and a time scale:

vη = (νε̄) 1
4 τη =

3
ν

ε̄

4 1
2

(1.4)

We can use these quantities to build a dimensionless distribution from the
relative velocities:

w⃗(ξ⃗, s) = v⃗(ξ⃗, sτη)
vη

(1.5)

and we expect these to be universal. The first hypothesis can then be reformu-
lated in a second version:

For the case of homogeneous, isotropic turbulence at high enough Reynolds
numbers, the probability distributions for the adimensional random field w⃗(ξ⃗, s) are

the same for all flows.

It is easy to show the dependence of the Kolmogorov length scale on the Reynolds
number of the flow:

η ∼ L · Re− 3
4 (1.6)

Intuitively enough, the larger the Reynolds number, meaning the larger the
dominance of the inertial forces over viscosity, the smaller sized eddies we will find
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in the flow. This is the basis a second hypothesis: let us consider a situation in
which the flow possesses a large enough inertial range, meaning a sufficiently wide
range of scales in between the energetic, mean flow scales and η. On a strictly
theoretical level, this amounts to adding a η → 0 limit to the already considered
L → ∞ limit. For any scale ℓ in this range, we expect the corresponding Reynolds
number Reℓ = ℓvℓ/ν to be very large, which is to say that the viscosity should be
negligible. Indeed, once again on theoretical terms, an η → 0 limit can be obtained
from a Re → ∞ limit, according to the behavior shown above. We then arrive to
the second Kolmogorov similarity hypothesis:

For the case of homogeneous, isotropic turbulence, the probability distributions for
the relative velocities v⃗(r⃗, τ) in the inertial subrange of scales are uniquely defined

by the value of ε̄.

With these two statements in mind, we can now move on to deriving equations
for other important quantities.

1.2.2 Structure functions
Structure functions are a particular kind of two-point correlation function for the
flow field. Specifically, they are correlation functions for the (powers of the) velocity
differences between space points:

Sn(r) = ⟨[u(x⃗ + rx̂) − u(x⃗)]n⟩ (1.7)

where x̂ is the modulus 1 vector in the direction of the displacement between
the two points for which Sn is being computed and the velocities u at the two
points are taken along this direction. Indeed this is actually the definition of the
longitudinal structure functions, and we could also define an analogous quantity in
the transverse direction, but their discussion is a bit outside our scope. Because
we are restricting our attention to homogeneous isotropic turbulence, the above
equation reduces to

Sn(r) = ⟨[u(r) − u(0)]n⟩ (1.8)

Using the second similarity hypothesis, in the inertial range we expect the structure
functions to depend only on ε̄ in addition to r. Dimensional analysis then brings
us straightforwardly to the second great result of K41, concerning the form of the
second order structure functions:

S2(r) = C2ε̄
2/3r2/3 (1.9)

This is usually called the “two-thirds law”. C2 was thought by Kolmogorov to
be a universal constant, and since then there has been rather solid experimental
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verification of this [8]. It is also to be noted that, due to the hypotheses we are
working under, “constant” can simply mean “independent of ε̄, ν and r”.

A second result can be obtained for structure functions, linking those of second
and third order. The starting point is the Kármán-Howart equation, which for
structure functions takes the form:

−2
3 ε̄ − 1

2
∂S2

∂t
= 1

6r4
∂

∂r
(r4S3) − ν

r4
∂

∂r

A
r4 ∂S2

∂r

B
(1.10)

Thanks to stationarity we can (exactly) neglect the time derivative:
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We can then manipulate the equation further as:
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∂r
(1.13)

S3(r) = −4
5 ε̄r + 6ν

∂S2

∂r
(1.14)

This result is still exact under our hypotheses, and indeed gives the behavior of
third order structure functions in terms of the derivative of those of second order.
Then, in the inertial range, we can assume the viscosity term to be negligible, and
we find

S3(r) ≃ −4
5 ε̄r (1.15)

Which is known as the four-fifths law. Again, experimental verification so far
has strongly leaned in favor of this result.

One point to be made about this result is that, since the KHE is an equation
for the conservation of energy, we would expect a term describing the forcing that
keeps the turbulence active to appear. Because the equation is local in the scale r
though we can assume the forcing to act at the large scales and to be focusing on
the small ones. This is also coherent with our infinite domain assumption.

1.2.3 Energy spectrum
What is probably the most recognizable result of the K41 theory is the behavior of
the energy distribution in Fourier space. The quantity under study is the density
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function E(k) defined by

E =
Ú ∞

0
E(k)dk (1.16)

By using again the first Kolmogorov hypothesis we can easily use dimensional
arguments to find a scaling form for it:

E(k) = ν5/4ε̄1/4f(kη) (1.17)

Where f is some (adimensional) universal function. Then applying the second
hypothesis, meaning limiting the discussion to the inertial range, we know that the
dependence on the viscosity should vanish, implying that the spectrum would take
the form:

E(k) = C1ε̄
2/3k−5/3 (1.18)

Known as the “five-thirds law”.As said, this is by far the most highly regarded
result of K41, as it has been experimentally and numerically verified with good
agreement in a number of different contexts. This is not to say that it does not
have its good amount of criticism, much like the whole of K41, but the discussion
of such criticism would be too much of a digression. Suffice it to say that most of
the research community holds this result quite dearly and, should one find very
large deviations from it in the course of their work, some eyebrows would definitely
raise, whether for good or for bad.

Because it has been looked at abundantly, the general form of the energy
spectrum across wavenumber ranges has itself become a very recognizable feature
of turbulent flow. Qualitatively speaking, it goes as shown in Fig.1.1. A first region
is seen at the low k (meaning large l) scales, where usually the forcing takes place.
This is the energy range from earlier. Then we enter the inertial range and observe
the five-thirds law. Finally, at the very large k’s where viscosity comes back into
the picture and we enter the dissipation range, the energy dips further until the
smallest eddies are reached.

1.2.4 Turbulent diffusion coefficient
This last paragraph serves as a convenient segue towards the next section. At the
very end of his 1941 paper [6], Obukhov shortly takes notice of the fact that the
dimensional theory developed so far by Kolmogorov and him can be applied to
the issue of the turbulent dispersion of particles. An effective turbulent dispersion
coefficient F would have dimensions [F ] = [L]2[T]−1. In the inertial range we expect
this coefficient to only be dependent on the scale over which the polluting particles
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Figure 1.1: Energy spectrum of a fluid in turbulent motion in logarithmic space.

are distributed, ℓ, and, as should by now be clear, the energy dissipation rate ε̄.
The only possible combination of these quantities that yields proper dimensions is

F (ℓ) ∼ ε̄1/3ℓ4/3 (1.19)

In the upcoming section we will study this in much more detail and understand
what prompted Obukhov to add this remark at all, starting with the pioneering
and long wrongfully neglected work of Richardson.

1.3 Turbulent relative dispersion
With the previous result we can start to venture into one of the main topics of
this thesis work. The core question underlying the field of turbulent dispersion is:
how are particles advected by the turbulent flow? Given, as we have explained,
that the nature of turbulence is stochastic and that we study and measure it as
such, what can we say about the stochastic process that is the resulting motion
of particles moving with the fluid? If we then focus on the reciprocal motion of
particles, rather then their absolute displacement with respect to some fixed frame
of reference, we can say that we are dealing with “relative” dispersion. This means
that what interests us is fundamentally the distance in between the particles at
different points in time. It should be mentioned that the earliest work in turbulent
dispersion was carried out by G.I. Taylor, in his theory that is often studied in
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basic Fluid Mechanics courses, but his perspective was somewhat different. As
important as it was and is, we will bypass its discussion as it does not strictly
relate to how the field of relative dispersion evolved and is treated today.

At this point I believe it necessary to be specific about the distinction in the
two approaches usually seen in opposition in the context of fluid dynamics. The
most commonly adopted in most fields is the Eulerian one, which is also the one we
implicitly adopted so far: the fluid is treated as a field by specifying the velocity at
each point in the domain. The second one, which is actually conceptually more
immediate, is the Lagrangian one: we look at the positions and velocities of specific
particles in the fluid by describing their trajectories. The Eurlerian approach came
second chronologically, but it allowed for a much more comprehensive and compact
treatment of fluid dynamics. Still, for some areas, the Lagrangian view (they are
also sometimes called frames of reference, although they don’t quite match the
proper definition) is very useful, if not necessary. Clearly, the current issue of
particle displacements is one of them. Importantly, the definition of “particle” here
is quite loose: we might be tracking a single molecule of fluid (more in theory
than in practice), or a small volume of fluid that we choose to regard as a small
indivisible unit for the purpose of our analysis (sometimes also called a parcel), or
still we might be looking at particles that are suspended in the fluid but do not
actually belong to it and are being transported by its motion. As far as experiments
go, this last one is by far the most likely scenario.

Let us then start to unravel the issue at hand by introducing the field as it was
introduced historically by Lewis Richardson in his 1926 paper [10]. Although it
was in many ways preliminary to the more rigorous work that came afterwards, it
contains some bright intuitions about the nature of the phenomenon in addition to
introducing the formalism apt to study the problem. The discussion in this section
is mostly based on the two famous reviews by Sawford [11] and Salazar and Collins
[12], as well as the material contained in the already mentioned second volume of
the book by Monin and Yaglom [7]. More specific papers will be cited as the need
arise.

1.3.1 Richardson formalism: distance-neighbor-graph
The original question Richardson was investigating when he started formalising this
issue was the spreading of clouds (either of water droplets or contaminants) about
their center of mass in the atmosphere. The commonplace empirical observation
is that a puff starting out in a certain contained volume and let loose in the
atmosphere will quickly expand, as the particles that make it up are spread apart
by the flow. This happens at a much faster rate then would be justified by molecular
diffusion. The first intuition Richardson had was of attributing this to the turbulent
eddies that make up the flow of atmospheric air: as particles spread apart, even
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just by molecular diffusion if they start out extremely close, they enter different
eddies and are carried away by them. According to the concept of eddie hierarchy
we have introduced, their separation will increase at a faster and faster rate as they
grow apart because it will be influenced by eddies of larger and larger scale. We
then need a framework to study this phenomenon to understand how fast they are
spread by this mechanism.

The quantity Richardson first defined is intended to be “a statistic for clusters”.
Let us assume that we marked some number of particles N that we keep track of,
and let us label them by capital letters. Now let us also take some arbitrary length
measure h. The choice of this parameter is effectively of some influence in the
analysis, but for now let us assume it is chosen adequately. We define An,n+1 as the
number of particles whose distance ℓ from A fall in the range nh ≤ ℓ ≤ (n + 1)h.
We then define Qn,n+1 as the mean of this quantity over all marked particles:

Qn,n+1 = 1
N

(An,n+1 + Bn,n+1 + Cn,n+1 + ...) (1.20)

Q, meant as the ordered set of Qn,n+1 quantities (one can think of an array in
computational terms), is named Distance-Neighbor Graph, and lies at the core
of Richardson’s analysis. A plot of an example of this quantity computed from one
of the simulations described in the next chapter is shown in Fig. 1.2. Richardson
originally explained the derivation with particles placed on an oriented line, which
is why his plots are for both positive and negative ℓ values, but in the 3D treatment
ℓ just has the meaning of a distance and is always positive. The plots are mirrored
for visual convenience (it is also true that even in the 1D oriented line case the
plots are always symmetric).

Richardson then proceeds to take the continuum limit of Q(ℓ, t). He gives a
definition in terms of scalar field of concentration, but to keep the discussion lean
we will just call it for what it is: a probability density function of the separation
distances between the particles in the marked cluster. We will follow along his work
and call this continuous version q(ℓ, t) in lower case. The next step is to look for
an equation that may describe the evolution of this quantity. Coherently with the
topic at hand, and by noting that the space integral of q is a conserved quantity,
we can expect this equation to be a non-Fickian diffusion equation like

∂q

∂t
= ∂

∂ℓ

A
F (ℓ)∂q

∂ℓ

B
(1.21)

The key feature of this equation is the dispersion coefficient F (ℓ), which carries
a dependency on the separation distance. Specifically, according to the deductions
above, it should be an increasing function of ℓ. This is where Richardson’s genius
really struck: he gathered what data there was available at the time on atmospheric
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1.3 – Turbulent relative dispersion

Figure 1.2: Distance-neighbour graph and its evolution in time (not normalised,
hence the high values). Values obtained in the context of the simulation of a cloud
top border, see Chapter 2.

dispersion at a wide range of scales (as the reader can imagine, it was not much)
and tried to interpolate it to get a power-law scaling of F (ℓ). What he got was

F ∼ ℓ4/3 (1.22)

We can should immediately recognize the same length scaling as derived thanks
to similarity theory in the previous section. Obviously the chronological order of
these results is reversed: Richardson achieved it based on observations in 1926,
some fifteen years before the development of the Kolmogorov-Obukhov theory, and
therefore did not yet have the tools to interpret it on a theoretical basis. In his
paper cited above at the end of the section, Obukhov was addressing Richardson’s
empirical law and confirming it on the grounds of the recent theory. Considered
how Richardson achieved his result, this was really quite remarkable.

We should now have all the tools in place to move on to the modern field of
relative dispersion. Although the core questions remained the same (as, in fact,
they have not fully been answered almost 100 years later), a lot was added to it
and effort was put into trying to test both the original results and the outcomes of
these additions.
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1.3.2 Modern approach: scaling theory
It has become common to refer to relative dispersion as “two-particle dispersion”.
This highlights the fact that we are focusing on statistics of the separation in
between particle pairs. Indeed, the consideration of statistics based on more than
two particles introduces a whole new array of problems [13] which will not be dealt
with in our cases.

With the above diffusion-like equation in mind, we can recover Obukhov’s result
for the dispersion coefficient

F (ℓ) = k0ε̄
1/3ℓ4/3 (1.23)

where we have now also included the dimensionless proportionality constant k0,
and use it to get a solution for a point source. This comes in the form

q(ℓ, t) = A

A
1

π⟨ℓ2⟩

B3/2

exp
−

A
Bℓ2

⟨ℓ2⟩

B1/3
 (1.24)

where A and B are just numerical factors. This solution implies a behavior for
the mean square separation like

⟨ℓ2⟩ = gε̄t3 (1.25)

where g is called the Richardson constant. This last result is among the most
relevant ones for the investigation of relative dispersion, and is called Richardson-
Obukhov law. It is obviously related to the law for F (ℓ) by the fact that F (ℓ) =
d⟨ℓ2⟩/dt, so looking at the two quantities is broadly speaking equivalent.

This is approximately where Richardson’s original theory runs its course, and
we can start adding to it on one side and understanding its limitations on the
other. After the contributions by Obukhov it was Batchelor [14] who famously
developed the field through a more detailed application of K41, and he did so in
two ways. Specifically, he noted that at short times the dispersion should depend
on the initial separation between the particles through the flow structure functions.
This leads to the combined result

⟨(ℓ − ℓ0)2⟩ ≃


11
3 C2(ε̄ℓ0)2/3t2 fort ≪ tB

gε̄t3 fortB ≪ t ≪ TL

(1.26)

where TL is the Lagrangian integral time scale (see next section) and tB is a
newly introduced time scale before which the initial separation plays a role, named
the Batchelor time. By dimensional arguments it can be seen that tB = ℓ

2/3
0 ε̄−1/3.
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Batchelor’s second contribution [15] was analysing relative dispersion in the
dissipation subrange. We have so far put a lot of stress on the fact that we wanted
to focus on the supposedly self-similar inertial range, which is supposed to give
universal behaviors, but we will include the results for the dissipation subrange
for reasons that will be clear in following chapters. Simply put, the mean square
separation’s evolution is described by

d⟨ℓ2⟩
dt

= ⟨ℓ⃗(t) · w⃗(t)⟩ (1.27)

where w⃗(t) is the relative velocity between two particles. If the separation
between them is in the dissipation subrange scales we can expand the velocity in
Taylor series and stop at the first order (on account of them being close, in terms
of turbulent fluctuations), getting w⃗(t) = ℓ⃗(t) · ∇u⃗. As a consequence we arrive,
for the dissipation range, at the very different law

⟨ℓ2⟩ = ℓ2
0 exp(ξt) (1.28)

This completes the classical theoretical ground for turbulent relative dispersion.
While it might appear simple on the surface, it is actually rich in nuance and more
or less hidden problems, which is why to this day it remains a very active field of
research. As a last subsection we will discuss some of these more faceted aspects.

1.3.3 Refinements, criticism and recognized results
The first and most obvious specification to be made is that, while a lot of literature
on relative dispersion focuses on the laws that describe the behavior of either the
mean square separation or the dispersion coefficient, the only quantity that fully
describes the dispersion process is q(ℓ, t). Indeed, ⟨ℓ2⟩ is just a moment of the
distribution, and several distributions can result in the same behavior of ⟨ℓ2⟩. In
general, if we take the diffusion equation for q(ℓ, t) as a given, the solution will be
determined by the expression for K that we use. We can extend K to also be a
function of time by writing K(ℓ, t) = k0ε̄

atbℓc and note that any combination of a,
b and c satisfying the system

2b + 3c = 4
a + c

2 = 1
(1.29)

will satisfy the requirements of K41 and also implies ⟨ℓ2⟩ = gε̄t3. Conversely, the
distributions solving the resulting diffusion equation will take on rather different
forms.
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In second, we have to address the assumption we just made: that the process
is governed by a diffusion equation. Indeed, implicit in the derivation of diffusion
equations is the fact that the underlying mechanism that induces the random
motion, in this case the turbulent flow, should be characterised by short (ideally
point-like, think of the derivation of the diffusion equation in terms of random
walks) time correlations [16]. This is not the case for fluid turbulence, and as
such it may very well be that a diffusion equation is not best suited to describe
the process. Specifically, it might be necessary to take into account non-local
effects. Various avenues have been tried over the last decades, almost all of them
sharing the ⟨ℓ2⟩ ∼ t3 result but leading to different forms of q(ℓ, t). Some of the
examples provided in the sources already cited are somewhat dated, so a more
recent treatment of non-locality can be found for example in the work of Malik and
Hussain [17].

So how did the theory stand up to tests so far? As said, experimental verification
of relative dispersion is rather complicated. First of all, turbulence in the outside
world will never be isotropic or homogeneous. We are bound to have to deal
with the effects of thermal stratification, energetic inhomogeneities, geometric
anisotropies and all the like. On the flip side, laboratory experiments are always
limited to the relatively low Reynolds numbers achievable. Still, all this has not
stopped many groups (including us, since experimental investigation is a large
portion of the work described in the later chapters) from trying to tackle the
task. Similar considerations can be made for numerical studies: while it is easy
to generate exactly homogeneous isotropic turbulence in this case, the Reynolds
number achievable are generally still lower than in laboratory experiments, and
it should be remembered that one of the hypotheses underlying K41 is basically
of Re → ∞. The challenge then is resolving the intertial range of scales (see the
appropriate section in Chapter 4). All this results in the fact that, although many
groups are working on the topic, consensus has been reached over very few aspects,
if any.

Among the ones that at this point in time seem to be more or less proven is
the value of g, the Richardson constant. Although obviously there is no unique
exact value found in laboratory experiments, many of them have obtained values
very close to 0.5 (Ott and Mann [18], Berg et al. [19]). Similar values have been
found by early direct numerical simulations (Boffetta and Sokolov [16], Biferale et
al. [20], Sawford et al. [21]), with some studies presenting slightly larger values.

As far as in-field experiments are concerned, probably the most notable one
was the EOLE experiment carried out in 1971 reaching into early 1972. 480 large
balloons were tracked for a long period of time and this lead to an identification
first of an exponential regime and then to a R-O one. It should be noted, for
reasons that become clear in the following chapter, that these large balloons are
hardly ideal tools for investigation of turbulent flows, owing to their large inertia.
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They can still be considered valuable for extremely large-scale experiments such as
this one.

This concludes our short introduction to the topic of turbulent relative dispersion.
The key takeaway is this: while theory provides us with some important results, care
should be taken when applying it to the real world and its far-from-ideal conditions.
We will deal with this aspect again later, when I present our experimental results.
For now we can move on to the final theoretical topic, to lay the groundwork for
the second set of results.

1.4 Lagrangian correlations
As a last section in this chapter we briefly introduce the second quantity that
we will investigate in the later chapters, namely Lagrangian correlations. Their
treatment in the literature is once again quite differentiated, possibly even more
so than the preceding topics. I will base my discussion mostly on two papers, by
James M. Wallace [22] and He et al. [23], which are the only reviews I managed
to find that offer a relatively complete overview of the various aspects of this
field, whereas most articles are rather specialised, often adopting slightly different
definitions or parameters for observations to suit their purposes. The abundance
of material is mostly related to the fact that correlations, although we have not
discussed them in these terms before, are arguably the most important part
of turbulence modeling for numerical applications. Indeed, to account for its
statistical nature, virtually all techniques used to deal with turbulence at the
practical level (in fields such as engineering) rely on an exact solution of mean
flows in parallel to some approximations for the statistical terms (namely so-
called Reynolds-Averaged Navier-Stokes models) or on an exact solution of large
vortices with some approximations accounting for the smaller ones at a probabilistic
level (called LES, for Large Eddy Simulations). These approximations are called
“closures”, and being statistical models they depend on some parameters, which
generally speaking include velocity correlations. In the field of “particle-laden”
turbulence these correlations need to be Lagrangian in nature, to properly mirror
the motion of the particles.

Historically speaking, Lagrangian correlations started to be looked at much more
closely thanks to the development by Robert Kraichnan of his direct interaction
approximation (DIA). This is a theoretical approach that relies on some rather
strong assumptions to attempt to derive a closure for Navier-Stokes equations
describing fully developed, homogeneous, isotropic turbulence. This theory had the
macroscopic issue of yielding an energy spectrum power law of type E(k) ∼ k−3/2.
At the time of Kraichnan’s first paper, i.e. 1959, Kolmogorov’s 5/3 prediction had
not yet received much confirmation, so the DIA theory hung on for a while, but
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Kraichnan was forced to revise it when experimental results started popping up
that displayed the K41 spectrum. He then modified DIA by focusing on Lagrangian
velocities, which he defined in a sort of hybrid fashion as v(x⃗, s; t): this means
that v is the velocity at time t of a particle that was in position x⃗ at time s. This
updated version was dubbed Lagrangian History Direct Interaction Approximation
(LHDIA), and it managed to display a 5/3 spectrum. In spite of this, many issues
remained unaddressed, and the very assumptions at the core of the theory are still
a matter of debate today. Some further improvements were developed, but the
results involve extremely complicated equations that need serious simplification to
be be tackled. Because of all this, approaching the subject from the theoretical
standpoint remains a challenge that is oftentimes excessive with respect to the
results.

The experimental approach has for a long time remained almost as problematic,
as Lagrangian quantities are inherently hard to measure. Only recently has the
situation improved thanks to the development of specialised tools such as 3D
particle tracking. One notable study that takes advantage of this technology is the
one by Oliveira et al. [24]: in a series of papers describing their experiment they
investigated, among other aspects, Lagrangian correlations, at the considerable
Reynolds number of 10300. They found good overlap with numerical simulations.
These obviously still remain the preferential tool for this kind of analysis, as they
most promptly provide access to Lagrangian-type datasets. It is important to stress,
though, that there does not appear to be any kind of consensus in the matter of
Lagrangian correlations, meaning some important result having at least enough of
foundation and recognition to serve as a reference for new studies (such as may be
the Richardson-Obukhov law in the case of dispersion). The functional form itself
is not certain: many papers report exponential evolution in time, but many do not.

Because of all of the above, we will try to be as practical as possible and focus
on the very basics. The quantity at the core of our analysis will be a normalised
version of the correlation function, which is the Pearson correlation coefficient:

RL(x⃗, τ) = ⟨Vi(x⃗, t0)Vj(x⃗ + r⃗(t0 + τ), t0 + τ)⟩ñ
⟨V 2

i (x⃗, t0)⟩
ñ

⟨V 2
j (x⃗ + r⃗(t0 + τ), t0 + τ)⟩

(1.30)

where Vα are velocity components, and r⃗(t0 + τ) is the displacement of the
particle after a time interval τ . As usual, in the case of stationary, homogeneous,
isotropic turbulence the correlation coefficient is independent of the initial position
and the initial time, so that effectively the only controlling parameter is τ . We kept
all dependencies in the formula since in our cases, instead, they will be relevant.
We also stress, at odds with some definitions found in the literature (including [22]),
that the velocities V (x⃗, t) are the Lagrangian velocities of the particles forming
our ensemble, and not Eulerian velocities at the particle’s location. This is due to
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the fact that, while the interest of many authors lies in the particles that make
up the fluid, and as such Eulerian and Lagrangian velocities coincide at a certain
point in space, we will deal with massive particles suspended in the fluid, with their
own inertia, that in general might have a different velocity than the surrounding
fluid. Moreover, the definition given here only refers to velocity components, as
indeed these are the correlation functions that most of the theory focuses on,
but in principle the correlation coefficient can be defined for any quantity that a
Lagrangian particle moving with the flow might be characterised by. In the related
chapter we will give a more general definition that reflects this fact.

Once we have the correlation coefficient we can define another quantity which is
usually employed to actually parameterise the correlations, the Lagrangian integral
time scale:

TL =
Ú ∞

0
RL(x⃗, τ)dτ (1.31)

This is a measure of how quickly correlations decay in time, and it is again
important to underline that, while often this is considered a global quantity of the
flow, in our case it keeps a space dependence. Its relationship with the Eulerian
integral time scale is another common topic of research. The general consensus
so far seems to be that the Lagrangian scale is larger than the Eulerian one,
meaning that correlations decay more slowly while following a particle, but the
exact relationship is far from a solved problem. Again, in Chapter 5 we will discuss
this quantity further, to attempt to make its computation viable in our simulations.

This brief last section concludes the first part of the theoretical introduction
necessary for the discussion of the results achieved in the various aspects of
turbulence described above. We can now move to a somewhat more specific
description of the context in which these results were obtained.
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Chapter 2

Simulation and
phenomenology of a cloud
border region

This chapter deals with the various results that have been obtained by the group
of Prof. Tordella in the context of the direct numerical simulation of clouds at the
small scale. These are the subject of a few recent (as well as less recent, as far as
the DNS code is concerned) papers, all published in the years shortly preceding
the start of my thesis work.
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The reason why the group chose to focus on the region of the cloud bordering
the clear air around it is that, despite the fact that the phenomena taking place
in the bulk of clouds are themselves far from trivial, this specific region presents
some interesting peculiarities. Specifically, it is a known fact that the turbulence
inside clouds is more intense than that around them. The exact reason is still a
matter of speculation: the most immediate phenomenon that surely contributes
to this is the release of latent heat that occurs during the condensation of water
vapor, but a variety of others are still under investigation. Whatever the reasons
may be, the implication is that the border between a cloud and the clear air is
to be modelled as a turbulent mixing layer. A lengthy discussion about mixing
layers would require more than can be afforded here in terms of both time and
space, so for the moment we will just say that they are interesting to different
areas of fluid dynamics for different reasons, but to us there is one that stands out
from the others: due to the nature of the mixing layer, the turbulence inside it
is by definition inhomogeneous and anisotropic. These qualities depart from the
“idealised” description that is often used for turbulence, as explained in Chapter 1,
and allow us to study the effect of intermittency both on the flow itself and on the
various physical properties and phenomena that might occur inside it.

The chapter will have the following structure: in the first section I will attempt
to give a very summarised account of cloud physics, which is of course as broad
a subject as one can imagine, but I will make an effort to limit the discussion to
those part of the theory that should provide the reader with the tools necessary
to appreciate the modelling choices and the results that will follow; in the second
section I will describe the simulations that have been carried out of the cloud
border region, which are the ones that were used both for the results presented in
the past papers and for the ones presented in the current work; finally, in the third
section, I will summarise the past results, so as to show the interesting phenomena
that have been analysed so far and hopefully justify our interest in pursuing the
matter further.

2.1 Cloud physics in a nutshell
As said, many books can be and have been written on the topic of cloud physics.
This is not only due to the variety of perspectives that can be used to approach
many broad subjects, but also to the intrinsic complexity that all atmospheric
phenomena possess, clouds and precipitation being perhaps the most prominent
example of this. Here I will try to shrink the whole subject to only those part that
will allow for a good understanding of the relevance of our choices and results, as
well as to the parts that are generally most widely accepted as solid and verified
(which cannot be said for all of them). It is inevitable that the matter will suffer

28



2.1 – Cloud physics in a nutshell

a considerable simplification, but I trust that my selection will provide a good
enough picture to carry on smoothly with the discussion.

Most of the topics I will cover are basic enough that their presentation has been
sort of “standardised” over the years, so they can be found in very similar fashions
in various sources. I used as reference mostly three books: the one by Pruppacher
and Klett [25], which has become a bit of a standard reference for cloud physics;
the more concise book by Rogers and Yau [26]; the more recent one by Wang [27].

At the most basic level, clouds are suspensions of water particles in air. These
particles can be in the form of liquid water or of ice, depending partially on the
temperature at which the clouds form but also on some other parameters. While
many of their features are similar the discussion is generally separated for the two
types of clouds, and we will stick to the type containing only liquid water droplets.
These are generally referred to as “warm clouds”. They form in the atmosphere
thanks to some portions of warm, moist air raising to altitudes at which the local
temperature, being lower than the one the air started at, brings the water vapor
inside the air beyond the point of saturation and thus induces condensation. We
will thus begin by looking at the model describing this process, often called “parcel
theory”.

2.1.1 Parcel theory for atmospheric supersaturation
Let us start by considering a parcel of air containing no moisture at all, which we
will call “dry”. This dry air parcel, at a certain point, starts to rise up. It may be
purely due to buoyancy forces related to its density (or equivalently temperature) or
to some slow updraft, but once the movement is started we assume buoyancy to be
the only remaining force on the parcel. We will assume two other things: that the
ascent is faster than the typical timescale of heat exchange between the parcel and
the ambient air surrounding it, and that no ambient air will mix with the parcel.
Thus our parcel is, in first a approximation, a closed system, and what we are
describing will have the characteristics of an adiabatic process. What will happen
to it while it rises is that it will encounter lower and lower ambient pressures, and
so it will expand. Intuitively we know that this will cause the temperature in the
parcel to fall. At the same time, along with the pressure, the temperature also
decreases while moving to higher altitudes in the atmosphere, and so the buoyancy
of the air parcel will change as it goes up. The question then becomes: will the
air parcel’s temperature lower fast enough to, at some point, stop its ascent by
encountering levels of the atmosphere warmer than itself? Or will it lower more
slowly than the ambient temperature, thus causing the parcel to rise indefinitely?

Let us start by using the first law of thermodynamics. Since we are discussing
an adiabatic process, it reads
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dQ = 0 = CvdT + PdV (2.1)
Where dQ would be the heat exchange, which in our case is null, Cv is the heat

capacity of air at constant volume, and T, P and V are temperature, pressure
and volume. This shows quantitatively that because dV is positive, dT must be
negative. Since we are not interested in the extensivity of the quantities at play,
let us divide everything by the parcel mass m. This will turn the equation into the
similar form

dQ = 0 = cvdT + Pdv (2.2)
Where we have defined the specific heat cv = Cv/m and the specific volume

v = V/m. Next we should keep in mind that, for the purpose of this simple model,
the air in the atmoshpere can be considered to be in hydrostatic equilibrium,
meaning that its pressure will satisfy the equation

dP = −ρagdz (2.3)
ρa being the air density, g the gravitational acceleration and dz the displacement

along the vertical direction. How can we relate the two laws above? By supposing
(with good reason) that the air behave as an ideal gas, we can use the ideal gas
law in the form:

Pv = RaT (2.4)
Where Ra is the dry air gas constant. By differentiating this expression we get

Pdv + vdP = RadT (2.5)
and plugging this into 2.2

cvdT + RadT − vdP = 0 (2.6)
cpdT − vdP = 0 (2.7)

Where cp is now the specific heat at constant pressure. Substituting the pressure
differential from the hydrostatic equilibrium equation we finally get a form for the
temperature variation with height of the air parcel

Γd = −dT

dz
= g

cp

(2.8)

which we call ”dry adiabatic lapse rate”. It is important to keep in mind that
this is the temperature variation with altitude of the air parcel, which we are going
to compare with a similar quantity defined for the atmosphere around it:
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γ = −∂T

∂z
(2.9)

As said above, the parcel will keep rising as long as it is lighter than the air
around it, and because the pressure of the parcel is always assumed to be the
same as the environmental pressure this amounts to saying that it will rise as long
as it hotter than the air around it. This is what is meant when talking about
“atmospheric stability”: the atmosphere is said to be stable if the ascent of a warm
air parcel will be damped and stopped by the environmental temperature gradient,
and unstable in the opposite case. In terms of the lapse rated we just derived, the
stability conditions read:

γ < Γd STABLE (2.10)
γ = Γd NEUTRAL (2.11)
γ > Γd UNSTABLE (2.12)

At this point we have to turn back to the beginning and ask: why bother with
a parcel of dry air if what we are trying to describe is the formation of clouds,
which necessarily requires water vapor? As it turns out, had we considered a moist
parcel of air, meaning one containing some amount of water vapor, the discussion
would have been rather similar if somewhat more convoluted, to account for the
necessary corrections. The main one that has to be considered is the effect of latent
heat: once the water vapor in the parcel reaches (and goes beyond) saturation, it
will start to condensate, and this causes the release of heat. Due to this effect the
temperature drop in the moist parcel is actually slower than in the dry parcel. Still,
at the end we obtain a quantity analogous to Γd, called ”pseudoadiabatic lapse
rate” with symbol Γs, that incorporates all the necessary corrections and can be
substituted in the stability condition. Importantly, according to the explanation
above, we always have Γs < Γd.

We can now turn to the analyses of the process just mentioned: the condensation
of water vapor, once saturation is reached (or rather supersaturation), to form
water droplets. Once again, we will focus on water droplets despite the fact that
water vapor sometimes aggregates directly to ice particles, in which case we would
talk about deposition rather than condensation.

2.1.2 Water vapor at equilibrium with droplets
The process of condensation starts on a few aggregates of water molecules known
as nuclei, which gives to their formation the name of nucleation, and have to
start this subsection by drawing an important distinction. Water vapor can
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condensate in two different ways: homogeneous nucleation happens by simple
collision of water molecules which may find it energetically convenient to stick
together, and progressively form groups that will serve as the condensation nuclei;
heterogeneous nucleation, instead, happens in the presence of small particles of
other substances, known as aerosols, onto which water molecules latch and that
play the role of kickstarting the droplets. In heterogeneous nucleation the term
”nuclei” is thus usually referred to the aerosol mixed in with the water vapor. Now,
while homogeneous nucleation can and does occur, in reality it requires saturations
of several hundred percents to give rise to appreciable droplets. What takes place
in the atmosphere is, virtually always, heterogeneous nucleation. The types of
aerosols that can serve as cloud condensation nuclei (often abbreviated CCN) are
quite varied and still a matter of abundant research, but for what concerns us it
should be sufficient to make the distinction between soluble and insoluble aerosols:
while the first ones greatly facilitate condensation, the second ones can even impair
it.

Let us now take a closer look to the equilibrium between liquid water and water
vapor at saturation. If we have a simple closed container of water it is described
by the well known Clausius-Clapeyron equation:

desat

dT
= Le

T (vV − vW ) (2.13)

where esat is the saturation vapor pressure of water, Le is the condensation-
evaporation latent heat, vV and vW are the molar volumes of the vapor and the
liquid water and T is of course the temperature. In the case of cloud droplets there
are two aspects that this equation fails to capture. The first one is the effect of
curvature at the interface between the two phases, known as the Kelvin effect. In
droplets surface tension induces a pressure difference between the liquid and the
vapor that satisfies

PW − PV = 2σ

R
(2.14)

where σ is the surface tension and R is the droplet radius. Secondly, as mentioned
above, we are interested in the case in which water condensates on soluble aerosol,
as that is the most likely (if not almost only) mechanism that leads to cloud
formation. This implies that the water will tend to dissolve the aerosol particle, and
this impacts the saturation vapor pressure (which is known as the Raoult effect).
Naively put, the saturation pressure is lower for a solution than for pure water due
to the solute occupying some of the surface of the liquid phase. The influence of the
solute is described at the thermodynamic level by the activity parameter ak, which
specifically acts on the chemical potential of the k-th component of a system. Both
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2.1 – Cloud physics in a nutshell

of these effects can be incorporated in the derivation of the Clausius-Clapeyron
equation, which we will skip as it becomes somewhat cumbersome although not
especially difficult, and what is obtained is called the generalised Clausius-Clapeyron
equation which reads:

−(hV,0 − hW,0)
T 2 dT + (vV,0 − vW,0)

T
dPV − 2vW,0

T
d
3

σ

R

4
+ Rgd ln

3
aV

aW

4
= 0 (2.15)

where the only new quantities are hV,0 and hW,0 which are molar entalpies. The
0 subscript refers to the case of pure substances. It is easy to see that the first
two terms are the ones in the standard Clausius-Clapeyron equation, and the ones
following bring the contribution of the Kelvin and Raoult effects respectively.

Once we have this, let us analyse the equilibrium between the two phases by
supposing it was reached without changing to pressure or water vapor, i.e. imposing
dPV = dT = 0. This leaves us with the simpler expression

−2vW,0

T
d
3

σ

R

4
+ Rgd ln

3
aV

aW

4
= 0 (2.16)

Because in general the amount of water vapor mixed with the air will be small
with respect to the total gaseous mass we can approximate the activity in terms of
partial pressure aV ≃ esat,W /P . Then upon integration we get

−2vW,0

T

Ú a

∞
d
3

σ

R

4
+ Rg

Ú esat,R

esat,∞
d ln

3
esat,0

P

4
− Rg

Ú aW

e1
d ln aW = 0 (2.17)
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3
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R

4
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A
esat,R
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B
− Rg ln aW = 0 (2.18)

esat,R

esat,∞
= aW exp

A
2vW σ

RgTR

B
(2.19)

The final expression is known as the Köhler equation, and it is the fundamental
result for the equilibrium of water vapor in atmospheric clouds. The fraction at the
left-hand side is usually called saturation ratio with symbol SV W (or sometimes just
S, but we will later use S simply for the supersaturation). The plot of the Köhler
equation with respect to the droplet radius is known as the Köhler curve, which
generally differs for the amount and type of solute but whose general behavior is
given in Fig. 2.1. As can be seen the curve displays a maximum, and is to be
interpreted in the following way: up until reaching the argument of the maximum,
known as critical radius RC , the radius of the droplets increases with the saturation
ratio (a notable feature is that, thanks to the Raoult effect, small droplets are in
equilibrium with subsaturated air); once the critical radius is overcome, droplets of
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larger radius will be at equilibrium with lower amounts of supersaturation. This
means that past the critical radius water vapor will keep flowing to the droplets,
depleting the air until the saturation point. For this reason the droplets that
reach the critical radius are usually described as activated. We will now see how
this growth occurs, and then explain why, past a certain point, the mechanism of
coalescence tends to take over.

Figure 2.1: Köhler curve (solid black) for droplets formed on hydrosoluble aerosol.
The Kelvin curve plotted in dashed black allows us to appreciate the influence of
the Raoult effect: in the absence of aerosol, small droplets require very high values
of saturation to form and be stable.

2.1.3 Growth of water droplets by diffusion
In the first phase of their growth droplets acquire new water molecules by simple
diffusion. All this means is that the vapor molecules, floating around in the air
parcel under discussion, sometimes will encounter a droplet and remain attached
to it. We will go through a very simple (yet effective) description of this process in
an exact way, but we will keep it relatively short as in reality, as we will see later,
the numerical simulation of cloud droplets relies on an approximation that allows
to compute the size variations more readily.
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2.1 – Cloud physics in a nutshell

Let us start by considering a single, static droplet in a field of water vapor, and
by calling n(r) the concentration of water vapor molecules at a distance r from the
center of the droplet. This quantity must satisfy a diffusion equation

∂n

∂t
= D∇2n (2.20)

D being the diffusion coefficient. If we imagine to be considering an infinitesimal
increase (or decrease) in size of the droplet we can approximate the process as
being stationary, meaning that we ignore the time variation of the concentration.
This easily leads to a solution by imposing boundary conditions n(r → ∞) = n0,
corresponding to the ambient concentration, and n(r → R) = nR the concentration
at the surface of the droplet:

n(r) = n0 − R

r
(n0 − nR) (2.21)

Because the flux of molecules to the droplet surface is D(∂n/∂r)r=R we can
easily write the rate of mass increase of the droplet as

dm

dt
= 4πR2D

A
∂n

∂r

B
r=R

m0 (2.22)

where m0 is the mass of a single water molecule. By using the above solution
for n(r) we finally get

dm

dt
= 4πR2D (n0 − nR) m0 (2.23)

Of course, to complete the picture, we would have to couple this equation
with one accounting for the influence of condensation (or evaporation) on the
temperature through latent heat release (or absorption), which in turn influences
the saturation. This doesn’t lead us much further in terms of understanding the
process though, and as said usually approximations are employed to account for
all the various effects. One additional fact worth mentioning is that this short
discussion has focused on a single droplet, by in real clouds the droplet population
competing for the same limited supply of water vapor introduces some serious and
non-negligible limitations in the growth process. In fact, we need to account for
the variation of the saturation ratio by means of an equation of type

dSV W

dt
= P + C (2.24)

where P is a term accounting for saturation production due to updraft and C
accounts for depletion due to condensation (generally C < 0). The derivation of
the two terms is rather involved and will be skipped, but we will see later that
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the form of this equation will be analysed in the turbulent setting and will yield
some interesting results. We can then proceed by supposing that some number of
droplets have reached a stable size by diffusional growth and have started (although
truthfully they never stopped at all) to move around the newly formed cloud.

2.1.4 Collision and coalescence
Very simply put, coalescence happens when two droplets collide and, as a result,
merge. Until at least some drops have reached a considerable radius (of the order
of around 10-20 µm), the collisions between drops are rather negligible and the
mechanism of coalescence does not impact the droplet spectrum (which is the
distribution of droplets as a function of size, usually parametrised by radii). After
this point though it starts to become prevalent and quickly overcomes diffusional
growth. There are a number of ways of treating coalescence, mostly of a statistical
nature, for obvious reasons. In the case of our simulations, though, this mechanism
is incorporated in the droplet population in a very direct way, without the use of
statistical models. For this reason we will not delve on the modelling of coalescence,
as interesting as it is, but will just discuss two parameters that are important to
consider to understand the choices made in the simulations.

The first one is called collision efficiency, and is a product of the fact that
water droplets are moving inside a fluid field rather than in empty space. When
we think of gas particles, for examples, the collisions between them occur with
certainty if their trajectories intersect, since there is nothing in between to prevent
it. Clouds droplets, during their motion, change the flow field around them, and
because of this may actually not come into contact even if their trajectories seemed
to be intersecting before they got close. The governing parameter to determine
the probability of collision between two drops is the ratio of the radii, and various
efforts have been done to determine this dependency. The field was basically started
thanks to the superposition method introduced by Irving Langmuir and used in
the calculations of two papers often cited for dataset references, by Lin and Lee[28]
and Schlamp et al[29].

The second parameter is the coalescence efficiency, which measures the prob-
ability of two drops actually merging together after colliding. In general, other
than coalescing, they might simply bounce out of the collision or partially merge
temporarily and then separate again. For cloud droplets, though, these two events
seem to constitute a rather minute fraction of the outcomes of collisions, such
that the coalescence efficiency is often approximated to 1. Sometimes the two
parameters are defined as a single one called collection efficiency, which is simply
their product.

One important fact to highlight is that most classic studies on the collection
efficiency do not actually account for turbulence effects. All they consider is the
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2.2 – Simulation of a cloud-clear air interface

buoyancy effect that accounts for the different fall speeds of droplets of different
radii. It is only recently that the influence of turbulence has started to be considered,
which is the context in which our research fits.

2.2 Simulation of a cloud-clear air interface
With the previous section I hope to have cleared the way for the more specific
topics to come. This one will be devoted to the description of the domain that the
numerical experiments of this work and the recent papers mentioned at the start
of the chapter have been carried out into.

The region that is simulated is the border between a cloud and the surrounding
droplet-free air, generally called clear air. The reasons for the interest in this specific
portion of a cloud’s body are mostly contained in its turbulent characteristics.
Because of the difference in the flow of the two region (more on this shortly), it
it a turbulent mixing layer. Like many other topics touched upon so far, mixing
layer theory is a whole large branch in and of itself, full of theoretical aspects
and practical applications. For our purposes, the interest lies in the fact that it
is an instance of anisotropic turbulence. This anisotropy makes it so that cloud
droplets experience very different phenomena with respect to what they might
experience in the bulk of the cloud: mixing with dry air, intermittency of the flow
and relevant scalar fields, stratification effects among others. A characterization of
the anisotropy in our specific domain was given by Tordella and Iovieno using an
earlier version of the same code used for the present simulation. The important
metrics to analyse when looking at anisotropy at intermittency are the skewness
and the kurtosis of the distribution of whatever physical quantity we are probing,
which is why they will appear in a number of subsequent plots. Let us now look
deeper into the two components that the simulation is comprised of: the Eulerian
fields and the Lagrangian droplets.

2.2.1 Fields simulation: velocity, temperature, water vapor
A visualization of the computational domain can be seen in Fig. 2.2 A portion of
the cloud interface region is modeled as a parallelipiped made of two stacked cubes
with a size of 512x512x512 points, amounting to 0.512x0.512x0.512 m. This means
the resolution is of 1 mm, which in turn means that the smallest possible scale to be
resolved will be of about 0.5 mm. One cube contains the cloud part, and the other
the clear air. As the title introduces, the Eulerian part of the simulation works by
simultaneous, direct solution of equations for five fields: three velocity components,
temperature and water vapor concentration. A big part of the modeling consists
of how these fields are initialized. The reason why this juxtaposition gives rise
to a mixing layer is that clouds have been found to usually contain more intense
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(a) (b)

Figure 2.2: (a) Geometry of the computational domain. (b) Visualization of
the vapor concentration in the cloud portion of the domain. Plots for the kinetic
energy, vapor density and temperature. [30]

turbulence than the surrounding air (as already mentioned i the previous section).
To introduce this aspect in the simulation, the same velocity field is initialized for
both cloud and clear-air cubes, but the values for the cloud part are then multiplied
by a constant. This has the important outcome of limiting the inhomogeneity of
the flow to just the kinetic energy content while leaving the turbulent integral scale
unaltered. Similarly, the temperature in the cloud is initialised to be higher, and
the same for the water vapor concentration (which is above saturation in the cloud).
All values are chosen to reflect the best available measurements for these quantities
in real clouds. The two cubes are initially generated separately as homogeneous
regions, then a narrow hyperbolic tangent type of function is superimposed to
the values so as to smooth out the border in between the two. It is important
to underline that the turbulence will be freely decaying, meaning that no forcing
will be applied to the flow (this is one more way in which this situation differs
from the stationary turbulence from Chapter 1). Fig. 2.3 gives an overview of the
initial values for the some of the quantities just listed, as well as their temporal
evolution.

The DNS code used is an iteration of a code that has been in development since
2001, when it was first published [32]. The full equations it solves are incompressible
Navier-Stokes in the Boussinesq approximation for buoyancy for the flow, plus two

38



2.2 – Simulation of a cloud-clear air interface

Figure 2.3: Spatial and temporal evolution for kinetic energy and dissipation rate
in the computational domain [30]. (d) includes plots for the Kolmogorov length η
[31].

for the scalar fields (Einstein notation is adopted):
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where ui are the velocity components, ρ0 is known as Boussinesq density and
it is the mean air density at an altitude of 1 km, p is the pressure field, ν is the
kinematic viscosity of air, T is temperature, κ the thermal diffusion coefficient, L
the latent heat of condensation-evaporation, cp the specific heat air, ρv the vapor
concentration and finally D the molecular diffusion coefficient. As can be seen,
the scalar fields are transported passively. It is important to remember that, for
numerical reasons, periodic boundary conditions are used, which should make us
wary about the values of the fields near borders, especially the top and bottom
ones. B and Cd are the buoyancy and condensation terms, respectively. B has the
typical Boussinesq form

B = g
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T − ⟨T ⟩z

⟨T ⟩z

+
3

ma
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− 1
4

ρv − ρ0

ρ0

B
(2.29)

g being gravitational acceleration, ma and mv are the molar masses for air and
vapor and the ⟨·⟩z averages are taken over planes perpendicular to the z axis (which
is the direction of anisotropy). The condensation term is somewhat delicate in
that is is actually properly defined in the Lagrangian frame of the droplets, since
condensation occurs at their position. To incorporate it into the Eulerian equations
we have to transform the Lagrangian information about droplet growth into a field.
This is done by means of the expression

Cd(xn, t) = 1
∆x3

dMw(xn, t)
dt

= 4πρw

∆x3

NnØ
j=1

R2
j (t)dRj(t)

dt
(2.30)

xn refers to the n-th cell in the computational domain, and correspondingly
Mw(xn, t) is the total amount of liquid water in that cell at time t. ∆x3 is the cell
volume. j is a counter that runs over all droplets inside the cell being considered,
the number of which is Nn. Rj is the radius of the j-th droplet. With this, we can
move to the other reference frame and introduce the droplet population.
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2.2 – Simulation of a cloud-clear air interface

2.2.2 Droplet simulation: Lagrangian dynamics and growth
Simulations were run with two different types of droplet populations: monodisperse,
meaning that all droplets start with the same radius, and polydisperse, meaning
that the population is initialised to a wider spectrum of radii. As mentioned earlier,
there is no definitive consensus on the droplet size distribution in real atmospheric
clouds, and therefore the two extremes were chosen for inspection: the monodisperse
distribution being delta-peaked on a given value, and the polydisperse one being
uniform in mass (meaning that each radius interval contains the same water mass,
implying in turn that small droplets are much more numerous). The monodisperse
distribution may seem very unlikely to correspond to a real instance, but it is
worth studying for at least two reasons: first, it has been the one used in many
past studies from a variety of authors, and as such it allows for result comparison;
secondly, it is not impossible for some mechanisms operating in the early phases
of cloud formation to have a uniforming effect on droplet radii, thus bringing the
spectrum closer to a monodisperse one. The total liquid water content was also
chosen to correspond to real cloud measurements, and then distributed on the
two droplets populations. This results in 8 × 106 droplets in the monodisperse
simulations, and a number of comparable magnitude in the polydisperse ones. Each
droplet is given an identification number, three position components, three velocity
components and a radius value

The motion of each i-th droplet is given by simple dynamic equations:

dX⃗i

dt
= V⃗i (2.31)

dV⃗i

dt
= u⃗(X⃗i, t) − V⃗i

τi

+
A

1 − ρ0

ρw

B
g⃗ (2.32)

where obviously X⃗i and V⃗i are the position and velocity, and τi is a timescale
that allows to keep into account drag, defined as

τi = 2
9

ρw

ρ0

R2
i

ν
(2.33)

We note that the transport of the droplets is also passive, meaning that they do
not modify the flow field at all.

As anticipated, the diffusional growth of droplets is regulated by Köhler’s theory.
As it was introduced theoretically in the dedicated subsection, though, it is rather
cumbersome to implement numerically. It has then become a standard to use an
approximated version of the theory, that still deals with all the same effects. It is
summed up by the equation for the radius growth rate:
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Where S is the supersaturation, whose value is derived from the vapor mixing
ratio, rd is the dry particle radius that describes the amount of solute in the droplet,
and A and B are the terms that account for curvature and solute effects, respectively.
There is some literature available to choose these parameters appropriately, which
was employed in our case to choose the values A = 1.15 · 10−7 and B = 0.7 · 10−18.

The last mechanism to cover is the coalescence of particles. The implementation
is quite straightforward: whenever the distance between two particles becomes
smaller than the sum of their radii the particles coalesce, meaning that a new
drop is born with a volume equal to the sum of the volumes. In view of the
preceding discussion it should be clear what this implies in terms of stochastic
process parameters: indirectly, both the collision efficiency and the coalescence
efficiency are set to one. This constitutes one way in which the modelling slightly
simplifies reality, in that we know that such a value is not quite accurate. The
choice is justified by the fact that the code is already rather complex and running
time is a major concern, so each new calculation needs to be evaluated in terms of
what it adds to the results. In this case, the intent of the simulations is to capture
behaviors of turbulent flows and droplet populations, and specifically to compare
these behaviors in the bulk of the cloud and in the mixing region. It is apparent
that if we had considered a lower coalescence efficiency, put keeping it the same
in both regions, these behavior would have changed as far as absolute values are
concerned, but not in terms of their relationship. A practical example: we will
see shortly that in the mixing region droplets are more prone to collision, and by
extension to coalescence. If the collision or the coalescence efficiency were lower
than one, we would find a lower number of collisions overall, but they would still
be more in the mixing region proportionally. One effect that may be investigated
in the future is the possibility for these parameters to take different values in the
two regions, but it was beyond the scope of these simulations.

With all of this said, the context for the achieved results should be clear, and
we can move on to looking at what has been seen from these simulations so far.

2.3 Results so far: cloud top boundary
phenomenology

The title of the section gives one first specification: the results obtained in terms
of water droplet dynamics were obtained by looking at simulations in which the
cloud portion is the one on the bottom, corresponding to what would be the top
region of a cloud. This is important to mention, and to differentiate with respect
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to the bottom of the cloud, because of stratification effects. Like some other topics
touched on so far, a discussion of fluid stratification in the atmosphere would
lead us too far astray, and will therefore be put aside, but suffice it to say that
stratified turbulence is a whole field of research in and of itself and the influence
of density-temperature-buoyancy interplay is extremely relevant to atmospheric
phenomena. A study of these effects in a region analogous to our was carried out by
Gallana et al.[33] by using the same code illustrated above but excluding particles,
which allowed them to achieve a larger domain size of 1024 × 1024 × 2048.

The results I am going to illustrate were the subjects of two very recent papers,
by Golshan et al. (2021) [31] and Fossà et al. (2022) [30]. For convenience we will
proceed in chronological order, starting with a discussion on the dynamics of the
droplet size spectrum.

2.3.1 Acceleration of droplet population dynamics
The first effect we are going to look at is the differentiated dynamics that the
droplet populations go through in the mixing region with respect to the cloud bulk.
As a reminder, the monodisperse distribution is initialised with all droplets having
a radius of 15 µm, whereas the polydisperse distribution is uniform over mass and
results in a radius distribution spanning from 0.6 µmto 30 µm.

The temporal evolution for the two populations is displayed in figures 2.4 and
2.5. We can immediately identify some key features.

Let us start by considering the monodisperse population. In both regions the
initial delta-like peak at 15 µmmostly spreads towards lower values, which is the
sign of evaporation. This is very clearly happening at a faster rate in the mixing
region, which just by inspection can be seen to be much larger at the final times.
In addition to this spreading peak there is a smaller peak at much larger R values,
which is due to droplet coalescence. It is apparent that in the mixing region also
the coalescence-related part appears much wider than in the cloud bulk, thanks to
a wider variety of droplet sizes being able to collide and generate new droplets.

For the polydisperse population, instead, the opposite effect seems to take place.
While in the cloud region the original distribution shows very little variation, in the
mixing a shrinking is observed. The effect is obviously not drastic, but we should
remember that we are only observing the system for what amounts to few seconds.
If a prolonged observation were to confirm this trend as continuing similarly it
could well lead to a considerable peaking of the distribution. Additionally, in the
mixing condensation is severely limited, so that coalescence is by far the main
growth mechanism.

So it looks like the two initial populations tend to evolve rather differently,
and the mixing at the interface region exacerbates these behaviors. We would
then like to have a measure of the relative evolution for the two populations in
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Figure 2.4: Temporal evolution of droplet populations with a monodisperse initial
distribution. Top plots represent number density, bottom plots the mass density
[31].

both regions. Since one distribution is spreading while the other is shrinking
(in terms of ”width”, which in quantitative terms means standard deviation), by
interpolating the evolution for the standard deviation and equating the resulting
laws we can deduce how long it would take for the two distributions to achieve
the same standard deviation value. The result is that in the cloud region this
would take about 100τ0 (τ0 is the eddy turnover time, a turbulent time-scale often
employed in simulations to describe quantities in terms of simulation parameters
rather then absolute dimensions). In the mixing region a much smaller value is
found: 18τ0, meaning a more than five-fold speed-up. Notably, this is in spite of
the fact that the turbulent energy in the mixing region is much smaller (something
that will be important in the next subsection as well).

2.3.2 Time and space-dependent collision kernel
I purposefully skipped a discussion of stochastic models that describe the collision
coalescence process, because it would have been excessively time-consuming to
go through and it would not have been justified by sufficient pertinence with the
subject at hand. To explain the next result, though, I will have to go back on
my word at least partially to introduce the quantity in the title, the collision
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Figure 2.5: Temporal evolution of droplet populations with a polydisperse initial
distribution. Top plots represent number density, bottom plots the mass density
[31].

kernel. Suppose we are trying to describe droplet growth in terms of the stochastic
evolution of a size distribution function f(R), it will satisfy an equation of the
Boltzmann type, with terms accounting for all various sources and sinks of droplets
of radius R (see for example [34]). It will then contain a term describing the
coalescence of particles of radii r1 and r2 to form one of radius r, which will look
something like

Ú r

0

Ú r

0
Γ(r1, r2)f(r1)f(r2)dr1dr2 (2.35)

with the constraint that the volume of the two colliding droplets should sum
up to the volume of the droplet of radius r. Γ(r1, r2) is the collision kernel, which
is a parameter that describes (very roughly speaking) the probability for two
droplets of radii r1 and r2 to collide and coalesce (indeed, it is also called collection
kernel, coherently with the terminology already introduced). In most well known
literature the collision kernel is defined by a constant value, because those studies
are generally carried out for stationary, homogeneous isotropic turbulence. We can
then try to extend the concept to our case of time-decaying and inhomogeneous
turbulence by computing the collision kernel as
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ΓF S(r1, r2, t, V ) = Ncoll

n1n2

V

t2 − t1
(2.36)

where FS indicates the flow structure, meaning either homogeneous or inhomo-
geneous, t is a time label that indicates the time interval [t1, t2], V is a certain
volume selected for counting, Ncoll is the number of collisions between droplets of
radii r1 and r2, and n1 and n2 are the number of droplets having radii r1 and r2
(clearly, because of the small probability of two droplets having exactly the same
radius, some sort of binning has to be employed). The result of the analyses can be
appreciated in figures 2.6 and 2.7. The two axes in the plots contain the radii of
the colliding particles, whereas the color mapping shows the value of the collision
kernel. The simulation time was divided in three parts, stacked vertically in the
figures, and the left and right plots show values for the mixing and cloud regions,
respectively.

The difference between the two initial populations is quite plain to see: due
to the fact discussed above, namely that similarly sized drops are less likely to
collide, there are many parts of the plots of the monodisperse distribution left
white, meaning that no collisions happened at all. The plots for the polydisperse
distribution are much richer in that sense. In both cases, though, it is clear
that the values in the interface region are much higher than in the cloud bulk,
for the same radius pairs. As mentioned above, this is in contrast to the lower
turbulence intensity in this region, so the result is somewhat counter-intuitive. As
a quantitative measure, in the monodisperse case the number density of collisions
decreases by 76% throughout the transient, alongside a decay in kinetic energy
by 92%. In comparison, in the interface region the collision number density only
decreases by 50%, with a similar energetic decay of 86%. It is then reasonable to
imagine that there may be some correlation between the anisotropic properties of
the flow and the number of collisions. In this regard, one more result can be given
from the simulations: Fig. 2.8 shows the Pearson correlation coefficient between
moments of the velocity spatial derivative in the anisotropic direction (which, as we
said, are a measure of the anisotropy) and the number of collisions for both cloud
bulk and interface regions. While the values oscillate around 0 for the bulk region,
in the interface even quite high values are reached. This aspect will of course need
further development, as it is quite hard to characterise, but the perspective seems
promising.

2.3.3 Microphysical timescales
The next result that I will quickly illustrate relates to the parametrisation of cloud
phenomena. This is one of, if not the, major concerns of cloud physics as far as
wheather forecasting is concerned. Indeed, we are very far from the day in which
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clouds will be inserted in numerical models at full resolution at the particle level
(if such a day should ever come), and they are therefore treated on a stochastic
basis by means of parameters. Among the interesting parameters to choose and use
are time-scales. They are already widely used in turbulence studies, and we have
encountered some of them so far. Analogously, they can be defined for different
processes that take place in cloud droplet populations. We will define a few of
them and then take a look at their behavior in the simulations described.

First we introduce the phase relaxation time, τphase. This is the time scale
that describes the evolution of the supersaturation field and is defined as τphase =
(4πκvNR̄)−1, with N the total number of droplets and R̄ the average radius. Second
is the evaporation time scale, defined as the time it would take for a droplet of radius
R to completely evaporate in a subsaturated environment at S0 < 0. Numerically
it is τevap = −R2/KsS0. Note that this timescale is only defined in subsaturated
regions. We can therefore define a similar one for the process of condensation,
defined in regions above the saturation point. We define a τcond as the time it would
take for a droplet of radius R to achieve a radius of 2R, i.e. τcond = 3R2/2KsS0.
Finally, we want to define a time that inherently takes into account the fact that
in our region both saturation and integral radius (defined as NR̄) fluctuate, and
therefore all processes occur concurrently. We call this time scale τreact, and we
define it as the shortest time before a droplet has either completely evaporated or
the parcel in which it is located has become supersaturated.

In Fig. 2.9 the behavior of the time scales, averaged along planes perpendicular
to the anisotropic direction, is displayed. The interesting feature is that there is a
point, inside the mixing layer, in which the timescales seem to converge to very
similar values. This gives hope that the various processes may be parametrised by
a single time scale, thus reducing the modelling complexity.

2.3.4 Supersaturation balance
The fourth and last result I want to discuss relates to the supersaturation balance
equation, which was introduced in section 2.1.3. There it was written in terms of
saturation ratio, but the two quantities are easily related since supersaturation is
just the excess vapor concentration beyond the saturation point. The equation
that was introduced was

dS

dt
= P + C (2.37)

As explained term P accounts for supersaturation production thanks to updraft,
and therefore in our case is null. Term C instead accounts for supersaturation
absorption by the condensation process, and in our case is written as C = −S/τphase.
Since P = 0, we should expect that dS/dt − C ≃ 0. By inspection of Fig. 2.10 it is
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evident that, most noticeably in the mixing region, the two terms do not actually
balance out, and some additional effect is generating supersaturation fluctuations.
This is most promptly identified in the turbulent, intermittent nature of the fluid
motion. The balance equation then assumes the new form, which is given in terms
of the usual planar averages to reflect the analysis along the direction of anisotropy:

dS

dt
+ S

τphase

= Pt (2.38)

The form of Pt is obviously hard to pin down exactly. By observing that the
new term is most active in the most highly intermittent region, though, we can
deduce that it will be somehow related to the quantities that characterise this
intermittency. It is reasonable to put forward the idea that, for example, we
might have Pt ∼ covS,∂ui/∂xi

. Two velocity derivatives are plotted alongside the
production term in fig. 2.10. To validate this hypothesis, like in the previous
subsection, the most immediate tool is given by the Pearson correlation coefficient.
We generally need to be wary of low correlation coefficient values, as the Pearson
coefficient is only able to capture linear correlations, but high values are usually
a good indicator. Indeed, as can be seen in Fig. 2.11, the values are quite high,
meaning that some sort of linear correlation between the production term and the
covariance described can be expected. In red in the figure is plotted the factor that
the covariance would need to be multiplied by to obtain the computed production
term, K.

This concludes the discussion about the latest results obtained for the simulations.
We can now move on and take a look at the experimental tools that complete the
picture of our most recent studies and observations.
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2.3 – Results so far: cloud top boundary phenomenology

Figure 2.6: Time and space-dependent values for the collision kernel in the
monodisperse initial population case. On the left are the values for the interface
region, on the right for the cloud bulk. Time evolution can be observed in three
steps from top to bottom [31].
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Figure 2.7: Time and space-dependent values for the collision kernel in the
polydisperse initial population case. On the left are the values for the interface
region, on the right for the cloud bulk. Time evolution can be observed in three
steps from top to bottom [31].
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2.3 – Results so far: cloud top boundary phenomenology

Figure 2.8: Pearson correlation coefficient between standard deviation (σ), skew-
ness (S) and kurtosis (K) of the spatial derivative in the anisotropic x3 direction of
the corresponding velocity component and the number of collisions throughout the
transient [31].
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Figure 2.9: Plots for the spatial variation of microphysical timescales inside cloud
top border simulations at times close to the starting and ending points, along with
supersaturation plots [30].
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2.3 – Results so far: cloud top boundary phenomenology

Figure 2.10: Excess in the balance of supersaturation evolution terms, alongside
covariances of the supersaturation S and velocity spatial derivatives [30].
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Figure 2.11: Correlation coefficients (blue) between the turbulent supersaturation
production term and its proposed forms in terms of covariances. Multiplicative
constant (red) that would be required for the proposed term to account for numerical
values [30].
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Chapter 3

Experimental setup:
radiosonde cluster

In this chapter I will present the tools that were used in the experimental
part of the work we conducted (and are currently conducting). (As presented in
the introduction,) These consist in a cluster of free-floating transceivers carried
by helium balloons, one or more ground stations for data reception, and a post-
processing machine for data elaboration and storage (see Fig. 3.1). Because the
focus of this thesis is not the project and development of these tools themselves,
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Experimental setup: radiosonde cluster

Figure 3.1: Experimental setup for radiosonde usage [35].

but rather their application to the investigation of the physics of turbulence and
the attained results, I will mostly try to limit the scope of the discussion to the
relevant information: what the radiosondes are built for, what they are capable of,
and the tests they went through to ascertain their usability. The chapter will then
be structured as follows: I will start by describing the sondes and their components;
then I will show the first tests that were conducted in lab to validate the sensors
in very controlled conditions; then we will move to the field by taking a look at
similar tests conducted out in the open with the help of other industry-established
sondes commonly used in meteorological telemetry; after this we will look at the
comparison of some measurements taken by the sondes in cluster, to check them
for consistency; finally we will discuss the balloons, which are a crucial part of the
design to ensure that the displacement measurements are valid.

3.1 Idea and main requirements
Atmospheric measurements are continuously carried out in most of the world, in
the great majority of cases for the purpose of weather forecasting. A great variety
of tools are employed for these measurements: weather ground stations with sensors
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for virtually all relevant quantities, radars and lidars for remote measurement of
wind velocities and some cloud and hydrometeor properties (among other possible
applications), satellites for large scale imaging and, most relevantly to us, weather
balloons. Generally speaking, these are very large balloons with very heavy
electronic circuits attached to them that are built to be as robust as possible and
to provide reliable, consistent measurements for atmospheric profiling. What these
are not built for, however, is the measurement of turbulence properties. Indeed,
their size and weight makes them unable to adequately follow the air flow in its
characteristic turbulent behavior, and as such they cannot be used for the kind of
research our group has devised. Additionally, because of their rather high cost, the
launching of large clusters of them would have prohibitively high prices, which just
goes to underline the need for a new tool.

Indeed, the main characteristic of the tool to be developed was to be launched
in clusters. As I hopefully made clear in Chapter 1, when looking at turbulence the
interest lies in the fluctuations of physical quantities. These fluctuations are both
in time and space, and as such there is a need to measure the same quantities at
several different points in the flow. This is commonly done in lab settings with fixed
point sensor arrays, and to a lesser degree it can be done in the atmosphere. When
the object of investigation becomes the Lagrangian properties of turbulence, though,
the measurement has to be performed by passively following the flow. With all
this in mind, it should be intuitive to understand which are the core requirements
that were set before development. First and foremost, the sondes should be small
and light. The two clearly go together: as will be explained in detail later, the
size of the balloon (which is obviously much larger then the sonde) depends on
the desired floating altitude and on the payload, i.e. the radiosonde weight. The
circuit which makes up the device has thus been reduced to the very bare bones in
order to diminish the weight as much as possible, and more optimization is on its
way in future prototypes.

Regarding the sensors, there is a great variety of potentially interesting quantities.
Because the project is still moving its first steps, though, the current versions
of the sondes are limited to measuring position, velocity, acceleration and then
temperature, pressure and humidity. This allows to keep the weight in check, and
to make operation as smooth as possible. As far as position is concerned, the ideal
would be to have an uncertainty close to the size of the balloons. With current
technology, though, this is virtually impossible, and we have to accept the accuracy
of GPS sensors, of the order of few meters (more on this later). For temperature, the
focus at the time of development was the study of warm clouds, so a temperature
range of 0° C to ∼30° should be sufficient. Luckily, most sensors provide a much
wider range, so that poses no problems. For pressure, the range of interest is about
400 mbar to 1100 mbar. Humidity is obviously the most problematic quantity: the
required range is 0% to 100%, but ideally even beyond this, as supersaturation
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is one of the key players in cloud formation. Unfortunately, there are no sensors
that can detect supersaturation. The next best thing is to try estimating it by
combining the readings of different quantities, which is among the future todos,
when the launches will actually target clouds.

One unfortunate factor that also impacts the design is, as mentioned above,
cost. The reason is twofold: on one head, just realistically, experiments could not
be conducted if the cost were too high, so it is necessary to keep it contained no
matter what; on the other hand though, the prospective applications of the new
technology and methodology could potentially make it palatable for industries.
Indeed, while to us they are experimental tools to probe atmospheric turbulence,
they could be used in many other contexts such as environmental monitoring in
cities, pollution control, weather prediction and the like. This obviously requires
them to be comparatively affordable, both to make them fit in the budget of
institutions and companies usually carrying out these tasks and because they would
be required in large amounts.

Lastly, environmental concerns are to be taken into account. At a time in which
climate consequences of human behavior are becoming more and more evident, it
was decided to try and reduce the impact of the sondes as much as possible, since
they are not meant to be recovered after use. We thus looked for biodegradable
materials to build them out of. The main issue is with the balloons, due to their
size, but in the future there is an intention to look for valid alternatives for the
circuit board as well. The solution adopted for the balloons will be detailed in the
appropriate section.

3.2 The radiosondes
This section is devoted to the description of the radiosonde component and their
characteristics. As can be seen in 3.2, in their current form the sondes are made
up of nothing other then the electronic circuit connecting the components and the
board on which they are mounted. There is good reason for this: any additional
casing or non-functional feature would increase the weight and become counter
productive.

Control unit This is the heart of the circuit, where all the data processing
happens and where the signals from the various sensors are managed. The current
versions of the probes mount the ATmega328 microcontroller from Microchip, with
dimensions 9 mm x 9 mm x 1 mm at a weight of 70 mg. The required supply
voltage range is 1.8 - 5.5 V, the temperature range is -40 - +85 °C and it also
features a power-saving mode.
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(a) (b)

Figure 3.2: (a) Complete setup of one radiosonde with its MaterBi balloon. (b)
Radiosonde and connected battery [35].

Figure 3.3: Block diagram of the radiosonde components [36].
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Communication system For sonde - ground communications the LoRa tech-
nology was adopted. This is a modulation technique which is most commonly
implemented in the framework of the LORAWAN protocol. In our case, instead,
it was used to create a private network suiting the purposes of our system. The
on-board component implementing the technology is the RFM95 module from
HopeRF. One of the most prominent features of LoRa is its low power requirement,
essential for us to keep battery size small. The chip requires a voltage range of 1.8
- 3.7 V, it has a working temperature range of -20 - +70 °C and features, aside for
sleep and idle modes, three different transmit modes at +7 dBm, +13 dBm and
+20 dBm output powers.

Antennas The boards mount two different antennas, one outputting the collected
data to the ground stations and the other for reception of tracking data from
satellites. The first one is 5 mm x 3 mm x 0.5 mm and the second one is 3.2 mm
x 1.6 mm x 0.5 mm, and both are linearly polarized. Shielding was implemented
to ensure minimal interference, and an L-type matching network was adopted for
both to maximise power delivery. Additionally, both antennas were tuned to the
appropriate working frequencies of 868 MHz and 1575 MHz respectively. The
matching yielded very good results, which are summarised in the table below.

Frequency Initial S11 Final S11

868 MHz -0.56 dB -21.09
1575 MHz -1.22 -23.09

(Briefly speaking, S11 is the component of the scattering matrix for the circuit -
antenna system that describes how much power the antenna reflects back at the
circuit. Simply put, the value should be as low as possible to ensure most of the
power is delivered to the antenna.)

Sensors For the measurement of physical quantity it is nowadays commonplace
to adopt several-in-1 integrated solutions, which are particularly convenient and
offer easy data manipulation off the shelf. For this project the BME280 sensor from
Bosch was adopted. It offers temperature, pressure and relative humidity readings
and, once again, keeps power consumption basically as low as possible. The size is
of 2.5 mm x 2.5 mm x 0.93 mm, the required voltage is 1.2 - 3.6 V. The ranges
it should be able to capture are 0% to 100% RH for relative humidity, 300 hPa
to 1100 hPa for pressure, and -40 °c to +85 °C for temperature, with respective
uncertainties of ±3% RH, ±1 hPa and ±1 °C.
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Tracking There are two components that have the purpose of giving information
about positioning. One is an inertial measurement unit (IMU), meaning a sensor
that provides relative displacement and rotation information, and the other is
a GNSS (Global Satellite Navigation System) receiver similar to those found in
smarthphones and navigation systems. The selected IMU is the LSM9DS1 by
STMicroelectronics, dimensions of 3.5 mm x 3 mm x 1 mm, supply voltage range
of 1.9 - 3.6 V. This sensor provides readings on acceleration, angular rate and also
magnetic field. The GNSS receiver is the ZOE-M8B by u-blox. The size is of
4.5 mm x 4.5 mm x 1 mm and the required voltage range is 1.71 - 1.89 V. Once
again, one of the reasons to choose this particular sensor was the availability of a
power saving mode (Super-E) that allows to optimise battery consumption. The
input the GNSS is also aided by a low noise amplifier to optimise performance.
The accuracy provided by the GNSS is of 2.5 m in the standard operational mode
(called continuous mode) and of 3.5 m and 4 m in the two power saving modes
(Super-E and Super-E power save).

Power supply It should be clear by now that battery capacity is one of the key
issues to be dealt with in the design. A balance needs to be struck between the
weight and the capacity, since we would like to acquire signals for as long a time
as possible. The batteries used for the launches described in this work weigh 8
grams (more than the sonde itself), and has a nominal capacity of 125 mAh. While
future prototypes of the sonde are going to shave more weight off of it (the one
being developed at the moment weighs just 3 grams), the battery weight remains
problematic as the power density is roughly fixed.

3.3 Balloons
The balloons are, as of yet and maybe surprisingly, the most problematic part of the
system. This is due to the fact that, despite their apparent simplicity, many issues
concur to making their production particularly delicate. Chiefly, the balloon’s
volume needs to remain constant, so as to make sure that the base altitude at which
they float does not vary and their motion is dictated only by the air flow rather
then by buoyancy effects. This rules out all expanding materials that are most
commonly used for weather balloons such as latex. Secondly, as mentioned before,
there is a desire to keep the whole project as environmentally friendly as possible,
and while some sources of pollution are hard to replace (such as the batteries)
the balloons constitute a large portion of material that can be replaced by some
sustainable option. This section explains the steps that went into the design and
that are currently taken for production of the balloons used in some of the launches.
It is important to note, though, that due to the aforementioned issues production
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remains problematic, forcing us for the time being to also rely on some off-the-shelf
Mylar balloons that, while not biodegradable, have excellent performance in terms
of helium retention and durability.

Material An in-depth study of the material to make the balloons out of has
been conducted at the early stages of the project [37]. Specifically, after some
initial research to pick possible candidates, two relatively available materials were
compared: MaterBi and PLA. Ultimately MaterBi performed best, especially as
pertains to durability, as PLA reacted poorly to pressure increments, which during
an atmospheric flight are to be expected. In the same study some coatings to
be applied on top of the MaterBi are also tested. This is due to the fact that
biodegradable materials, unsurprisingly, do not hold up well to moisture, and since
the final goal is to use the sondes for measurements in cloud a way must be found to
improve performance under this aspect. It was found that a spray coating of SiO2
nanoparticles helped greatly with both hydrophobicity and helium impermeability.

Design A number of Master and PhD students have, by now, contributed to the
design of the balloons, which goes hand in hand with their production. The current
version consists of 4 sheets of MaterBi cut in the shape as displayed in Fig.3.4. On
the left side is the neck in which helium is injected to fill the balloon. The wedge
protruding on the right side is my own personal contribution: before this part was
added the four sheets would be attached to a circular additional piece of MaterBi,
serving as a sort of “hat” at the top. The cutting of a differently shaped piece,
though, as well as the attachment, was rather encumbering during production. I
thus got rid of it and adopted these extra slices of material that, by being layered
on top of each other, allow to close the top of the balloon without the need for a
cap.

The most delicate aspect of design is, of course, the sizing. There is a convenient
formula to be used in this case:

Vb = mr + mb

ρa − ρg

= mr + mb

ρa(1 − Mg/Ma) , (3.1)

Here Vb is the volume required for the balloon to lift to a given altitude a payload
of mass mr, while having itself a mass of mb, when filled with a gas of molar mass
Mg and surrounded by air of molar mass Ma and density ρa at the target altitude
(equivalently, ρg is the density of the gas inside the balloon at the same altitude).
Obviously enough, for circular balloons this can also be expressed in terms of radius,
and Fig. 3.5 sums up the requirement in a plot for various payloads.

For our case, in which the probe attached to a battery weighs 17.5 grams and
we want to keep the altitude between 1000 m and 2000 m, it is evident that the
radius should be around ∼20 cm.
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Figure 3.4: Current design of MaterBi “petals” for production of biodegradable
balloons.

Figure 3.5: Plot that links balloon radius to the attainable altitude for different
values of the payload mr, considering MaterBi as the balloon material [35].

Production By far the most problematic aspect as far as the balloons are
concerned is the actual production. Because they are completely customised
research tools there is, as of yet, no automatised production method, and they have
been entirely crafted by hand. This involves procuring MaterBi in the form of a
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large double-layered sheet, tracing the petal shape from a cut-out, cutting it, and
then welding it all together by using a plastic welder, meaning a small heated wheel
to be run across the edge of the material to fuse the petals. The temperature of the
wheel, though, is not originally intended for use with biodegradable plastics, and
therefore is much too high for use directly on MaterBi. Various solutions have been
adopted to circumvent this problem, the latest one being the interposition of a layer
of Teflon between the wheel and the balloons during welding. Still, the operation
puts a lot of stress on the MaterBi sheets, and tears are almost unavoidable. These
can usually be fixed with the help of tape and the like, but other times can be hard
to identify and present a significant issues. Additionally, as is often true for manual
work, it can be hard to keep the production at a sufficient level of consistency and
exactness. For our application an apparently tiny difference in the balloon radius
can make for a rather noticeable difference in floating altitude. All this, together
with the considerable time it takes to go through the manual process, has led us
to explore the possible avenues of automation. These remain a challenge for the
future, and have two major problems to solve: the first one is the fact that the
current structure of the balloons is not particularly suitable for industrial automatic
production, but at the same time it is not trivial to modify it in a way that keeps
the desired characteristics; secondly, once again, cost becomes very much a factor,
since this type of highly customised work necessitates the construction of specially
manufactured tools that are far from cheap.

3.4 Lab tests
Once the components were chosen, and the first sondes assembled, some tests were
carried out under heavily controlled conditions to determine their accuracy. We
will briefly relate them to show that the sondes generally yield good readings and
the components work well within the overall systems.

3.4.1 Temperature and humidity tests
The PHT sensor was tested at the Applied Thermodynamics Laboratory in the
INRiM (Italian National Metrology Institute) facilities. They provided access to a
climatic chamber (model Kambic KK190 CHLT) that offers precise control over
the quantities of interest. The probes were tested against high-precision tools
calibrated at INRiM: Pt100 sensors paired with a FLUKE 1594 thermometer for
temperature and a Delta Ohm sensor for relative humidity. To get a sense of the
average performance of the probes three of them were used at the same time.

Fig. 3.6 sums up the main temperature test. While keeping the humidity
constant at RH = 30%, the initial temperature is set at T = +24 °C. It is then
dropped to -5 °C and kept constant for an hour. After this time, increments of 5
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°C and 10 °C are applied until reaching T = 10 °C. Each step is against held for
an hour, which is necessary for the system to stabilise at the desired temperature
(some overshoot can indeed be seen when the temperature is first raised). As can
be seen, the probe sensors follow the variations quite truthfully.

Figure 3.6: Temperature test of implemented sensors inside the climatic chamber.
Humidity is kept constant at RH = 30% while temperature is increased from -5 °C
to 10 °C. [36]

A similar procedure was followed for relative humidity measurements. The
temperature was kept constant at T = 30 °C, and the humidity was increasingly
set to 10% RH, 20% RH, 40% RH and 60% RH, holding each value for about 30
minutes. The quantitative results for bot tests are reported in the two tables 3.1
and 3.2.

Sonde 1 Sonde 1 Sonde 1
Temp. set
point [°C]

Ref. sensor
T [°C]

Mean
[°C]

Mean er-
ror[°C]

Mean
[°C]

Mean er-
ror[°C]

Mean
[°C]

Mean er-
ror[°C]

-5 -5.063 -5.31 0.25 -5.30 0.24 -5.25 0.18
0 0.002 -0.25 0.25 -0.23 0.23 -0.17 0.18
10 9.878 9.82 0.065 9.75 0.13 9.74 0.13

Table 3.1: Results of temperature comparative test of the implemented sensors
carried out inside INRiM climate chamber, see Figure 3.6. [36]

The outcome of the tests is roughly within the expectation according to the
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Sonde 1 Sonde 1 Sonde 1
Humidity
set point
[%RH]

Ref. sensor
RH [%RH]

Mean
[%RH]

Mean er-
ror[%RH]

Mean
[%RH]

Mean er-
ror[%RH]

Mean
[%RH]

Mean er-
ror[%RH]

10 10.50 13.12 2.62 14.74 4.24 14.16 3.66
20 19.75 19.85 0.09 21.35 1.60 21.09 1.34
40 37.68 35.31 2.37 35.64 2.04 36.06 1.62
60 59.70 56.13 3.57 54.53 5.17 55.69 4.01

Table 3.2: Results of humidity comparative test of the implemented sensors
carried out inside INRiM climate chamber. [36]

data provided by manufacturers. In most cases, the temperature accuracy is within
±1 °C and for humidity within ±3% RH. The anomalies in the humidity readings
will be confirmed by the other tests, which show that this sensor can sometimes
suffer from some inaccuracy.

3.4.2 Position
A very simple test was also conducted to make sure the GNSS receiver would be
suitable for our application. Its positioning data was compared to the one of a
smartphone by walking around our university campus while acquiring data for both.
The test showed good agreement between the two. Of course, this comparison is
less strict then the previous one, as the smartphone chip is not necessarily more
accurate then the sonde one, but it confirmed that the GNSS component was well
integrated in the sonde design and is usable for our experiment. Fig. 3.7 shows the
overlap between the two readings for latitude and longitude.

3.5 In-field tests
This section is devoted to the various tests that were conducted directly on the
field. It is divided in two subsections: the first one will deal with tests in which
some reference instrumentation is used to compare the readings from a sonde; the
second one will show some readings from a cluster of sondes, thus allowing to check
for consistency among them.

3.5.1 Sondes vs. other instruments
On three occasions we have had the precious opportunity of attaching one of
our boards to weather balloons used by national institutions performing routine
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Figure 3.7: Comparison between a smartphone GPS signal and our GNSS receiver,
test carried out by simultaneous movement of the two devices on Politecnico grounds.
[36]

atmospheric profiling through dedicated probes. The first two were at Levaldigi
Airport, Cuneo, Italy (October 2020 and June 2021), whereas the (at the moment
of writing) latest one was in Chilbolton Observatory, UK (July 2023), while taking
part in the Wessex Convection Campaign (more or it later). During the first launch
in Levaldigi some interference was observed, likely due to attaching our sonde
directly to the other one. While some results from that launch are available, I have
excluded them from the present discussion for the sake of brevity, believing that
the results from the more successful launches will prove satisfactory. The Levaldigi
launch was paired with a Vaisala RS41-SG sonde and the Chilbolton one was with
a Vaisala RS41-SGP, two very similar models.

The first result pertains to the efficacy of data transmission from the sondes to
the ground stations. The data travels in small packets that the sondes send out
at regular intervals. Not all these packets reach the stations, and the amount of
them that can be successfully received is obviously a function of distance but much
more so of the presence of obstacles. The presence of several ground stations is
itself already a measure to combat packet loss through oversampling, which proved
quite valuable in the Chilbolton cluster launches. Interpolation is then used in
post-processing to compensate for missing packets. Fig. 3.8 shows the number of
packets received as a function of time and altitude for the 2021 dual launch.

During the Chilbolton dual launch, with clear weather and an unobstructed
field of operation, we were able to keep receiving packets up to a distance of more
than 34 km during the Chilbolton dual launch (Fig. 3.9). This greatly exceeds
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(a) (b)

Figure 3.8: Number of packets received during the 2021 Levaldigi dual launch as
a function of (a) time and (b) altitude. [36]

expectations when using the LoRa technology, and is very promising for future
cluster launches. The true challenge will be to make signal transmission robust
against more adverse weather and liquid water content of clouds.

Figure 3.9: Trajectory of the 2023 Vaisala-COMPLETE dual launch in Chilbolton,
UK.

Moving on to position and velocity measurements, Fig. 3.10 shows the measured
position from the Vaisala and our sonde for the 2021 launch. The reason for the
jagged behavior of the Vaisala trajectory is the lower resolution of its latitude
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and longitude readings, which also impacts the error computation. For longitude,
latitude and altitude measurements the RMSE was found to be 2.97e-4 degrees,
3.7e-4 degrees, and 22.3 m.

(a) (b)

Figure 3.10: Comparison of position readings for the 2021 Levaldigi dual launch.
Our radiosonde is marked as COMPLETE. The inset plot in (b) shows the difference
between the two readings for a selected time range. [35]

Fig. 3.11 provides instead a comparison of wind speed readings. Again, the
agreement is reasonable, although some overshoot and undershoot can be detected
at some points. I chose to include also Fig. mostly because it is the first occasion
to see the five-thirds law in action in our experimental context. Of course, due to
the noisy nature of the dataset, it is debatable whether a 5/3 power law is truly the
best fit, but as explained in Chapter 1 we should remember that, since the range
of turbulence scales visited by the sondes is far from isotropic and homogeneous,
we have in principle no reason to believe it would be.

The results of the comparison for temperature, pressure and humidity measure-
ments are shown in Fig. 3.12, once again in reference to the Levaldigi launch. By
inspection, while the pressure seems to pose no huge problems for our sensor, there
are some unwanted features in the temperature and humidity plots.

We see that, after an altitude of about 4000 m, the detected temperature for our
probe starts to get considerably higher than the Vaisala readings. This problem
is further explored in Fig. 3.13. As the panels on the left highlight, there is an
intrisic offset that needs to be accounted for, since our temperature readings show
a constant temperature bias of a few degrees. However, even after correcting this
bias, in both launches there is a linear increase in the measured temperature with
respect to the reference. The current hypothesis is that this effect is due to solar
irradiance. Indeed, this is a known factor to be accounted for in atmospheric
measurement, and Vaisala corrects for it in its readings, whereas we have not yet
had the opportunity to put in place a counterbalance for this phenomenon.
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(a) (b)

Figure 3.11: (a) Comparison of wind speed readings for the 2021 Levaldigi dual
launch. Our radiosonde is marked as COMPLETE, and the raw data is indicated by
the blue dots, while the red line is given by interpolation (some of the over/under-
shoot is an artifact of the interpolation, whereas some is an actual feature of the
dataset. (b) Power spectrum from the velocity readings of the probes. [35]

As concerns the humidity readings, we can see that they seem to lag behind the
reference ones, being unable to cover the full extent of the variations. This is a
known issue with these humidity sensors, which suffer from a slow response time.
Additionally, the humidity measurement is carried out through a small vent hole in
the PHT sensor, that needs proper air flow through it to perform correctly. During
flight it is hard to ensure such a condition, even though the positioning of the hole
was carefully picked during the circuit design. It is possible to somewhat correct
these issues through a posteriori compensation, but the employment of different
sensors is also being considered for future prototypes.

3.5.2 Cluster tests
This last portion of the chapter is dedicated to a brief illustration of some early
measurements of the quantities listed so far during collection of data from several
sondes. Aside for informal, desktop tests, this has been done three times before
the two Chilbolton launches: twice by keeping the sondes tethered to the ground
to avoid losing them, and once in free flight. The first tethered tests were carried
out at one of the INRiM facilities, and the second one took place in the same spot
that later hosted the first launch: the Astronomical Observatory of Valle d’Aosta
(OAVdA), located in Saint Barthelemy, Italy.

Fig. 3.14 sums up the results of the first tethered launch at INRiM. Five probes
were turned on and their readings compared to those of a Vaisala WXT510 weather
station, before releasing them above the facility. The panels on the left show the
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(a) (b)

(c)

Figure 3.12: Temperature, Pressure and Humidity comparison for the Levaldigi
Vaisala-COMPLETE dual launch. [35]

performed check, which yielded average RMSDs of 0.065 hPa for pressure, 3.57%
RH for humidity and 1.21 °C for temperature. These are in good agreement (much
lower for pressure, slightly higher for humidity and temperature) with producer
specifications. The panels on the right show the quantities as measured by the
sondes during tethered flight. The sondes were kept relatively close, so we expect
trends to show a similar behavior, but the differences shown are also to be expected.

To avoid repetitions I will skip the discussion of the second tethered set of
tests at OAVdA, as it was mostly a preliminary step to prepare for the first free
launch. We can then move on directly to the free launch itself. Before release
the sondes were checked against portable INRiM instrumentation, which gave
us an opportunity to confirm the aforementioned effect of solar radiation on our
temperature readings. It is visible in Fig. 3.15: our probes, attached to a fence and
ready for launching, are shown alongside three Pt100 thermometers. Two of them
had no protection against solar irradiance (USH 1 and USH 2), just like our sondes,
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Experimental setup: radiosonde cluster

Chilbolton, UK. July 6th, 2023. COMPLETE probe was directly fastened to Vaisala RS-41 SGP probe with a
scotch tape, possible heating from RS41-SGP.

(a) (b) (c)

Levaldigi Airport, Cuneo, Italy. June 9th, 2021. COMPLETE probe attached with a 80-cm long wire to RS41-SG.
No heating from RS41-SG.

(d) (e) (f)

Figure 3.13: Comparison between two dual launches with different configurations
of attachment of the Vaisala and COMPLETE sondes. The larger error experienced
in the Chilbolton launch by our sensors may be due to heating from the other
sonde. [35]

whereas a third one was provided with a solar shield (SH). The effect is evident:
the green connected triangles positioned a few degrees below all other lines are the
readings from the shielded sensor, whereas the readings from our probes generally
agree well with the unprotected ones. The average difference, as computed between
shielded and unshielded reference sensors, was of 1.28 °C. The gray area in the left
half distinguishes the moment in which the sondes were tied to the fence from the
moment we picked them up, preparing for launch, but kept the checks going.

After these initial tests the sondes were finally released. Their position is tracked
in Fig 3.16, whereas the readings for temperature and humidity in time are shown
in Fig. 3.17. We were able to receive data for about 35 minutes, although many of
the sondes stopped earlier. As the Chilbolton launches will show, the environment
in which the launches are performed influences the reception quite strongly. In
this first case the sondes were quickly carried above some of the lower mountain

72



3.5 – In-field tests

Figure 3.14: Left: Comparison of readings from multiple sondes and a Vaisala
weather station at INRiM facilities. Right: Readings from a cluster of radiosondes
in a tethered launch. [35]

crests surrounding the observatory by updraft currents, subsequently disappearing
behind the rocky landscape and thus, in some instances, losing signal.

The last interesting result I want to include pertains, once again, to the measured
power spectrum. Fig. 3.18 shows the spectrum as measured by three of our
sondes. Once again, the five-thirds rule seems like a very reasonable estimation,
although everything said above regarding the spectrum computed from the Vaisala-
COMPLETE dual launch also applies here.
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Figure 3.15: Comparison of readings from radiosonde cluster and reference sensors
provided by INRiM. In yellow and purple (Ref USH 1 and Ref USH 2) reference
sensors without shielding from solar radiation, and in green (Ref SH) sensor with
shielding. It is clear that solar radiation has a considerable effect on the readings,
and the sondes are in good agreement with the unshielded sensors. [35]
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Figure 3.16: Trajectories of all sondes during the 2022 OAVdA cluster launch,
with the color map indicating altitude. [35]

Figure 3.17: Temperature and humidity readings of all sondes for the 2022
OAVdA cluster launch. [35]

75



Experimental setup: radiosonde cluster

Figure 3.18: Energy spectra for 3 probes as computed from the OAVdA launch
dataset. Dotted lines are power laws plotted for reference. [35]
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Chapter 4

Results on relative
dispersion

This chapter gathers the results we have achieved in the investigation of relative
dispersion. On the experimental front these have been achieved by means of the
radiosondes described in Chapter 3. On the numerical side, as we will see, the
analyses is mostly preliminary and serves as a preparation for further work to
be carried out on longer simulations that are being prepared as I am writing
these lines. The common goal for both methods is the study of dispersion in a
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context far from the homogeneous isotropic turbulence in which it was described in
Chapter 1. There are two main reasons for this. Because it is largely unexplored
territory, both agreement and disagreement with the theoretical, K41-based theory
can be ground for some interesting development: in case of agreement, which is
obviously hardly expected, it would allow either for the relaxation of some K41
hypotheses or for a simplification of the treatment of inhomogeneous flows; in case
of disagreement, which a priori is much more likely, it would allow for some insight
into the behavior of particles in realistic flows, with implications for modelling
and technological applications. Indeed, as we have somewhat touched on at a
few points in the previous chapters, most of the real-world forecasting is based
on dispersion models rather then a rigorous application of any theory or equation
solving, so this prospective is just as important as theoretical advances. We will
start by describing the experimental results, and then analyse the situation for the
numerical simulations.

As already mentioned, the experiments were carried out in the context of the
Wessex Convection (WESCON) campaign organised by the British Met Office. This
was a large scale experimental campaign that took place in the summer months
of 2023, and involved a large number of both British and foreign researchers with
the main goal of improving atmospheric forecasting models by means of in-field
measurements. From the 3rd to the 7th of July 2023 we were hosted by the
Chilbolton Observatory, one of the facilities taking part in the campaign, and there
we carried out two launches of radiosonde clusters, as well as a dual launch paired
with a Vaisala radiosonde as already described in Chapter 3. It should be kept in
mind that, while very valuable datasets were extracted, these are in some respect
still preliminary launches, as some of the experimental steps that make up the
launch procedure still need to be properly adjusted. For one, the sondes in their
current configuration are not suitable for in-cloud measurements, as they are still
sensitive to humidity and most of all to the presence of liquid water. While some
ways to work around this limitation have been studied and mentioned in Chapter
3, they were not yet in place at the time of these launches. As such, the study
involves relative dispersion in the atmospheric boundary layer (ABL) rather then
in clouds. Secondly, the main source of uncertainty that we seek to overcome in
the future is the composition of the balloon fleet and its inflation. Indeed, the
logistical complications of carrying out an experiment far away from our main
research facility are many and sometimes not fully in our control. They particularly
struck in one instance: we came to Chilbolton bringing with us a custom built
electronic valve that, by connecting to the helium tanks kindly provided by the
Observatory, would have allowed us to a good degree of certainty to inject the exact
same amount of helium in each balloon, thus guaranteeing that they have the same
buoyancy. Unfortunately, due to a communication error, the fitting on the tank
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4.1 – Experimental results: Launch 1

and on the valve was actually different, and we were therefore unable to employ it.
The balloons were thus filled by hand, and although they are non-expandable some
slight margin of uncertainty in their buoyancy is to be expected, although hard to
quantify. Hopefully the next launch, which will make use of the valve, will provide
some further insight.

Despite these setbacks, the results are rich and present many interesting features.
Let us now begin with a description of launch 1 and its outcomes.

4.1 Experimental results: Launch 1

Figure 4.1: Map of the July 5th launch at Chilbolton observatory with cluster
trajectories.

Launch 1 was performed on July 5th, 2023. The actual launch took place at 13:52,
but preparations started in the morning: each sonde is tested for operation, the
balloons are inflated and tested for leakage, and then the sondes are secured to them.
We selected the 5th as the first day of launch since it was an Intense Observation
Period (IOP) of the Wescon campaign. This meant that each hour, starting in
the early morning, a Vaisala radiosonde was launched for vertical atmospheric
profiling. This allowed us to enact our plan for data packet oversampling: one of
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the receiver stations would remain fixed at the Observatory, while a second one
would be displaced at a point about 10 km away in the direction of the wind at the
expected cruising altitude for the sondes (measured by the Vaisala launch). This
would allow us to gather more data for some period of time, while both receivers
were active, and then follow the sondes for longer when they would be too far
for the receiver in Chilbolton. However, this plan actually evolved shortly before
launch. I was part of the team that moved to the second location, and we were
unable to receive any of the test packets sent before launching. Lacking confidence
in our estimation of the sondes’ trajectory, we switched to our second option: we
went back to the observatory and left on car after the launch, following the sondes.
The secondary fixed station thus changed to a mobile station. For a short time we
were able to follow the sondes by sight, and after that we relied on the number of
packets we were receiving (checked by inspection on a computer monitor) and on
wind information provided by the Vaisala launches to pinpoint the right direction.
This indeed turned out to be effective in prolonging the lifetime of the experiment.
In fact, the spatial extension of the data we were able to receive is remarkable for a
system utilizing LoRa technology, as can be seen in Fig. 4.1. The overall maximum
distance from the stationary ground station was in excess of 44 km. Fig. 4.2 also
visualizes the trajectory and spreading of the sonde cluster along the North, East
and up directions.

(a) (b) (c)

Figure 4.2: Spreading of the sondes in the three directions North, East and up.
Launch 1.

Before coming to the actual dispersion results, I will spend some words to
illustrate some environmental features that played a role in the outcome of the
launch. Because we are working in the field, it is important to check for what the
experimental ground actually looks like.

4.1.1 Environmental characterisation
Among the advantages of carrying out our launches in the context of a larger
experimental campaign is the wide availability of data from other sources about
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a wide variety of different quantities. In fact, much of this data still has to be
analysed by us after recently gaining access to the Jasmin repository, where most
of it is stored in its raw form, but some characterization is already possible thanks
to figures provided by Chris Walden, from NCAS, and to processed data found on
the Cloudnet website, an open database that gathers a subset of the measurements
performed daily by instruments spread in various sites around Europe and the
British islands. Among them, the Chilbolton observatory is home to a lot of
instrumentation for atmospheric monitoring, the most prominent of which is a 25
m-diameter antenna, and it continually provides atmospheric data for the purpose
of weather forecasting (as well as other scientific endeavors).

Figure 4.3: Wind profiling by the Chilbolton radar instrumentation on July 5th,
day of our first launch. Launch time was ∼13:52. Top plot shows updraft, bottom
plot shows horizontal wind speed and direction, the direction being identified by
the orientation of the L shapes.
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Figure 4.3 shows the updraft (top) and horizontal wind velocity (bottom) above
Chilbolton throughout the whole day, as measured by the radar instrumentation.
The color mapping identifies wind intensity in both plots, whereas the L-shaped
marks on the bottom plot identify the wind direction and are to be read as if
seen from a top view. On this specific day the wind was blowing to the east at a
moderate speed, and inspection of the wind direction at the time of launch at an
altitude around the 1000 m mark matches with the direction of the sondes’ path as
displayed in the map above. Ideally we would have liked wind at the ground level
to be completely absent, as the moment of launch is particularly delicate, but we
quickly found out from real-time forecasts that we would not have such a condition
at any point in the day. This did indeed cause a couple of sondes to crash shortly
after launch.

Figure 4.4: Measurements from the Vaisala sonde launched during the July 5th
IOP. Sonde launched at 14:00, approximately 8 minutes after our cluster launch.

Fig. 4.4 shows the quantities measured by one of the Vaisala sondes launched
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for the IOP. The 14:00 sonde was selected as the closest to the time of our launch.
We have readings for temperature, humidity and wind speed. This last one is still
the most interesting to us for now, and it displays the characteristic boundary
layer behavior. The humidity reading is related to the next figure: while it is
overall rather high up until about 2500 m, the spikes toward the 100% value may
indicate the presence of supersaturation (which as we already know is not directly
measurable). Fig. 4.5 shows that, despite the possible presence of supersaturation
or values really close to it, only some mild condensation must have been taking
place at the time of our launch. Indeed, the figure plots the values of “cloud fraction”
against height and time above the Chilbolton Observatory area. Rather then the
measurement by a single piece of instrumentation, this is a model-based quantity
that compiles data from various instruments and makes some inference about how
cloudy the area is. The modeling software is the Integrated Forecasting System
(IFS) by the European Centre for Medium-Range Weather Forecasts (ECMWF).
The current iteration of this model was implemented shortly before our experiments,
on July 23rd, 2023.

Figure 4.5: Fraction of area above the Chilbolton observatory occupied by clouds
as modeled by the ECMWF IFS forecast [38].

So, despite the high measured humidity, the sky was quite clear at the time of
launch, with at most some partial condensation around 3000 m, much higher then
our sondes reached. The temperature plot shows no particular irregularities, with
an overall standard linear behavior.

4.1.2 Dispersion results
Both launches were planned to be performed with 10 radiosondes. Unfortunately,
as mentioned above, during in-field experiments the teams’ plans are bound to
clash with the plans of the environment, as careful as one may be. Indeed, at the
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moment of launch as throughout the whole day, gusts of wind were blowing at
ground level. While not especially strong (as shown by the plots above), these
were strong enough as to disrupt the departure of a few sondes. Out of the 10
released, 3 did not make it very far: two were pushed to the ground by wind at the
time of release, and one crashed into a line of trees some hundreds of meters away
from the observatory. This left us with 7 active sondes, meaning 21 pairs to form
our two-particle dispersion ensemble. Clearly this is an intermediate value: it is
enough to get some significant averaging, but it also is not the tens of thousands
of pairs that can be tracked in numerical simulation. This leads us to the next
point: launch 1 took place at 13:52, and the sonde that was followed the longest
was sonde 7, that stopped responding at 15:15, so almost one and a half hours past
launch time. Most stopped responding after a little more then one hour, but sonde
5 stopped the earliest at 14:36. This means that a choice needs to be made: either
we discard sonde 5 from the analysis to keep the longer time frame while reducing
our ensemble size, or we include it at the price of some minutes. At this ensemble
size, though, discarding it would rob us of 6 pairs out of 21, meaning almost 30%
of the total. It was then decided to keep it, and the resulting time frame is of 41:30
minutes or 2490 seconds . One additional important remark is that at the very
beginning of the dataset very scattered values of the position are found, most likely
due to the initialization of the GNSS sensor, and the analyses is therefore started a
few minutes after the launch itself. The initial value for the mean distance is thus
of 322 m (which we can compare to the maximum relative distance we measured
at the end of the flight, 2819 m).

The next point I want to discuss is in fact the dataset itself. Since this thesis
includes both results for numerical simulation and for experiments, it should be
remarked that the datasets emerging from these two types of investigation differ
greatly. While often massive and somewhat cumbersome, numerical simulation
datasets are extremely tidy: a fixed number of time instances are available, at
which all flow and particle quantities are equally available. Experimental datasets,
instead, are all but tidy. As said in Chapter 3, each sonde communicates with the
receiver through packets. The current receivers are all single-channel, meaning they
can only receive one packet at a time. This in and of itself introduces a source
of uncertainty when considering pair-related quantities: in the raw dataset the
quantities are measured at slightly different times in between sondes. In addition,
many packets just go missing, which can happen for a number of reasons (refer
to Fig. 3.8). This means that some method needs to be put in place to clean
the dataset and have synchronous values that can be compared. In our case this
consists of linear interpolation: from the raw dataset, consisting single-sonde data
packets all at different times, we obtain a dataset that has one set of values for
each sonde at 10 second intervals.

We can finally start illustrating the results. As a first visualization, we can take
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a look at the separation distance distribution Q as the one shown in Chapter 1 in
Fig. 1.2. This is shown in Fig. 4.6, with time evolution at intervals of 6:40 min.
For this visualization h = 100m was selected as the most representative value, but
with the current sample size it is obvious that the figure is quite crude. A better
visualization can be once again recovered by means of interpolation, combined with
color mapping. These are illustrated in Fig. 4.7 for different h values. Here the
dispersion pattern can clearly be observed, and the influence of the choice of h is
also much clearer: it should be chosen as small as possible, but large enough for
each ℓ interval to contain a significant number of particles (which again, in our
case is only appreciable thanks to interpolation).

Figure 4.6: Distance-neighbor graph time evolution for the experimental dataset
of launch 1. Not normalized. Size of intervals h = 100m (refer to Chapter 1).

Coming to the more quantitative results, as is the praxis when looking for a
power-law behavior, we can plot ⟨ℓ2⟩ on a logarithmic plot against time and expect
to see a straight line, whose angular coefficient will indicate the exponent of the
power law and the y-axis intercept the multiplicative constant. This is shown
in Fig. 4.8. It is clear that two different regimes appear, the first one featuring
some unexpected behavior. Not only does the average separation seem to remain
almost constant for quite some time, at a certain point it even seems to diminish
by a considerable amount. At this stage it is difficult to characterise this spurious
behavior. As can be seen in the map in Fig. 4.1 the sondes, while spreading
apart, still remain trapped in some kind of coherent flow structure that leads
them all in the same direction virtually throughout the flight. Thus, it is not
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(a) (b)

(c)

Figure 4.7: Interpolated distance-neighbor graph color-map visualizations. The
vertical axis indicates the distance intervals, the horizontal axis is time, and the
color indicates the number of sondes as given by interpolation.

impossible that before spreading apart enough to start being separated by larger
vortices they would be advected in such a way as to lower their average distance.
In particular, two specific sondes could end up very close and lower the average
significantly. At the same time, a physical explanation is not the only possible one.
At the moment of launch the sondes started changing position rather abruptly, as
described in the previous section, due to some wind being present at ground level.
This might have made it necessary for the GNSS sensors to readjust for some time,
influencing the dataset. Indeed the behavior regularises at about the 400 seconds
mark, meaning after about 7 minutes, which is not an unreasonable time for the
GNSS to experience problems. Based solely on a single launch it is not possible to
say for certain what the real cause for this behavior is.

Regardless, we can just identify this as a different regime, produced by either
physical or technical causes, and focus on the next one, which instead presents
itself as an approximately straight line. A plot of the isolated second regime is
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Figure 4.8: Logarithmic plot of the mean square separation distance in time,
launch 1. 21 sonde pairs.

shown in Fig. 4.9. While the power law behavior is evident, a second noisy feature
can be observed at the center of the plot, which is once again hard to characterise.
In this case, though, a technical issue seems more likely, as the exact same regime
as before the noisy drop is recovered right after it.

At this point the most basic method forward would be linear fitting on the
logarithmic plot. However this procedure is somewhat outdated, as many non-linear
fitting algorithms exist that yield much better results. I used a MatLab function
performing non-linear regression by means of an iterative least squares method.
The results are shown in picture Fig. 4.10. The emerging power law, with the
fitted values, looks like

⟨ℓ2⟩ = (5.21 · 10−5) t3.2819 (4.1)
Let us now elaborate on it. First of all we would like to compare this to the

R-O law from Chapter 1, which is ⟨ℓ2⟩ = gε̄t3. Clearly our exponent is not very
far from the R-O one. The coefficient is slightly harder to analyse, since we need
information about the average dissipation in the air flow. One point to stress once
again here is that for the R-O law the context is the K41 theory, which is thoroughly
based on the assumption of stationary, homogeneous, isotropic turbulence. As is
evident from the wind speed plots above, this is very far from our conditions. As it
relates to the issue of the coefficient specifically, in HIT ε̄ is a global quantity that
characterises the whole flow, because despite the possible turbulent fluctuations in ϵ
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Figure 4.9: Logarithmic plot of the mean square separation distance in time,
launch 1, power-law regime only. Cut-off time for the first, spurious regime set at
470 seconds to eliminate all sources of uncertainty. 21 sonde pairs.

(i.e. the instantaneous energy dissipation, not averaged) the fluctuations themselves
are homogeneous in the domain. Conversely, being related to the kinetic energy,
ϵ will vary greatly during the sondes’ flight, not only in the form of turbulent
fluctuations but in terms of overall mean value as well. ε̄, then, carries a lot less
meaning then in the HIT case, and the comparison is bound to be imperfect. In
addition to all this, ε̄ is not an easy quantity to calculate in-field. We can estimate
it by computing the energy spectrum from the sondes’ velocities and inverting the
K41 relation:

ε̄ =
A

k5/3E(k)
C1

B
(4.2)

For this launch we get a value of order 10−2. The Richardson constant g, as
explained in Chapter 1, is estimated to be of order 10−1. Even accounting for the
relatively low accuracy on the ε̄ estimation, we are still two orders of magnitude
away from the factor we found by fitting. It is then evident that some other
mechanism is at play, as could be expected from the extensive discussion about
the limitations of K41.
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Figure 4.10: Power-law fitting of the mean separation distance in time. Exponent,
coefficient and Relative Root Mean Square Error are reported under the legend.
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4.2 Experimental results: Launch 2

Figure 4.11: Map of the July 6th launch at Chilbolton observatory with cluster
trajectories.

Launch 2 took place the day after the first one, on July 6th, 2023. Launch
time was 13:30: we wanted to keep the time of day as consistent as possible in
between the two launches, but forecasting displayed a threat of bad weather later
during the day, and since we were leaving on the 7th we could not afford to miss
the launch. This time we directly adopted the moving secondary station strategy,
but with an improvement: rather then relying on wind information from the latest
Vaisala launch for the direction of the probes, I manually checked their coordinates
as they came in through the user interface of the receiver and plugged it into my
smartphone’s maps application. This gave us real-time positions to work with and
we were able to more accurately pursue them. Indeed, the range extended even
further then in the first launch: the furthest sondes were followed for more than 53
km.
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Let us once again take a look at what the atmospheric surroundings looked like
during our launch, and then inspect the dispersion results.

(a) (b) (c)

Figure 4.12: Spreading of the sondes in the three directions North, East and up.
Chilbolton, Launch 2.

4.2.1 Environmental characterisation
We will use the same plots as in the corresponding section for launch 1. We start
with the wind profiling radar measurements in Fig. 4.13. By inspecting the top
plot we can see that a spot of strong updraft can be identified at the low altitudes.
However, this did not seem to particularly influence the sondes, as we actually
measured a slower ascent with respect to the first launch. Wind intensity was
slightly lower than during the first launch, whereas the direction this time was very
different, at almost a 90° angle.

Fig. 4.14 shows measurements taken by a Vaisala sonde launch that was
performed at 11 am. Unfortunately July 6th was not an IOP, so measurements
closer to our launch were unavailable. With respect to the first launch a point
of stronger thermal inversion can be identified, but it is at an altitude that our
sondes did not reach, at around 2300 m. In the altitude range that we did reach
the temperature profile is quite similar to the previous day, which is good for
consistency with respect to stratification effects. The humidity profile, though
rising more slowly, holds consistently high values in the range just above the 1500
m mark up to about 2250 m. Comparing this with the modelled cloud fraction in
Fig. 4.15 we can confirm that in this range clouds were present, so humidity was
likely higher than 100%. It is possible that our highest flying sonde entered the
bottom portion of a cloud towards the endof its flight, but for the majority of the
measurement they were all in clear air.

4.2.2 Dispersion results
We can now illustrate the results of the second launch. This time the launch was
comprised of 12 sondes at the start, but two stopped shortly after their release, so
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Figure 4.13: Wind profiling by the Chilbolton radar instrumentation on July 6th
(Launch 2). Launch time was ∼13:45. Top: color map indicates updraft. Bottom:
color map indicates horizontal wind speed, L shapes indicate wind direction in
compass coordinates, i.e. upwards being north and right being east. [39]

the analyses is carried out on 10. This gives 45 pairs, meaning more than double
the pairs of the previous launch. The period of observation was also longer: as per
the map the observation lasted almost two hours. Like for the previous launch,
though, this is not true for all sondes, and the viable time frame for dispersion
analysis had to be shrunk accordingly. The resulting interval was of 1:23:30 or 5010
seconds, again more than double that of the previous launch. In this second case
as well the first part of the position dataset was completely scattered, and thus
the analyses is carried out starting a few minutes after launch, so that the initial
average distance is 278 m.

As above, we can start by visualizing Q with the slightly higher number of
sondes. The plots in Figg. 4.16 and 4.17 show the standard plot and the color map,
respectively. The biggest difference can be seen in the line plot, that at 10 sondes
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Figure 4.14: Measurements from the Vaisala sonde launched on July 6th at 11:00.
Launch time was 13:30, but no closer launches were available due to July 6th not
being included in an IOP.

Figure 4.15: Fraction of area above the Chilbolton observatory occupied by clouds
as modeled by the ECMWF IFS forecast [39].

is starting to appear more regular, although we are far from the smoothness found
in the simulations.
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Figure 4.16: Distance-neighbor graph time evolution for the experimental dataset
of launch 2. Not normalized. Size of intervals h = 100m (refer to Chapter 1).

At this point we can take a look at the logarithmic plot, once again expecting a
straight line. This is where surprise strikes: Fig 4.18 looks nothing like a straight
line. Such a behavior on a log-plot is much more indicative of an exponential law.
We can choose to disregard this fact and perform power law fitting all the same,
and the results are not quite as terrible as the logarithmic plot would seem to
indicate. They are shown in Fig. 4.19. First of all, while it is too compressed to
be clearly seen in the logarithmic plot, we can identify a spike in the mean square
distance that, much like the dip in the plot of launch 1, is hard to characterize
but is likely due to an instrumental error. Putting that aside, we can see that the
RRMSE is quite low. The exponent α, though, now departs more significantly
from the K41 value and is approaching 4. At the same time, the coefficient m
is getting really quite low at an order of magnitude of 10−7. While, as said, we
do not expect these values to exactly reflect K41, such a low coefficient makes us
suspicious as to whether we would be justified in our power law fitting, in addition
to the inspection of the log-plot.

We can then easily repeat the fitting procedure by using an exponential function
instead, which is shown in Fig. 4.20. This results in a significantly better fit, as the
lower RRMSE testifies. As is clear from the discussion of Chapter 1, though, an
exponential behavior is something unexpected in this range. In spite of this, it seems

94



4.2 – Experimental results: Launch 2

(a) (b)

(c)

Figure 4.17: Interpolated distance-neighbor graph color-map visualizations for
launch 2. The vertical axis indicates the distance intervals, the horizontal axis is
time, and the color indicates the number of sondes as given by interpolation.

to be the best guess for the fitting of this launch’s results, and we therefore have
to take into account the possibility that this exponential law might capture some
features of the flow in which the sondes were embedded. Obviously the potential
reasons for this behavior are numerous, and one single experiment displaying it is
not enough to say anything conclusive. Still, we can try get a better idea of what
could be happening, or at least of method of figuring out some possible avenues for
investigation.

As the reader may remember, while in the inertial range we expect the mean
square separation to follow a power law, there is another range in which an
exponential behavior is predicted: the dissipation range. It would be clearly wrong
to imagine that our measurements would fall in the dissipation range, but there is
another possibility that should be tested in case such measurements were confirmed
by further experiments. As opposed to distinguishing between dissipation range
and inertial range we can draw the distinction between smooth and non-smooth
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Figure 4.18: Logarithmic plot of the mean square separation distance in time,
launch 2. 45 sonde pairs. A straight line would be expected, since we expect a
power-law behavior, but instead we find a more exponential-like curve.

velocity fields (this is the version adopted in the already meantioned paper by
Falkovich et al. [13]). Given the scaling of velocity differences with the distance as

|u(R⃗1) − u(R⃗2)| ∼ |R⃗1 − R⃗2|δ (4.3)

where R⃗1 and R⃗2 are two points in space, a smooth velocity field corresponds to
the case δ = 1, whereas a non-smooth velocity fields corresponds to all values δ < 1.
It is then true that the dissipation range of scales corresponds to a locally smooth
velocity field, whereas the inertial range is characterised by non-smoothness, but
the focus on this characteristic is more general. It could then be possible that
the flow that advected the sondes during their flight might, at some level, display
smooth characteristics. This, in general, is quite hard to check, as parallel Eulerian
measurements are needed, and they should be performed at various scales. Indeed,
it is clear that not all scales will be smooth, as Reynolds numbers in the atmosphere
are incompatible with this hypothesis. If, however, some sort of “large-scale
smoothness” could be detected, this would remain a possible avenue to explain the
observed behavior. As pertains to the coefficient and exponent, C would be just
the mean square separation at the start of the observation, and this is coherent
with the actual value 2782 = 7.72 · 104, where the error is simply due to the fitting.
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Figure 4.19: Power-law fitting of the mean separation distance in time for
Chilbolton Launch 2. Exponent, coefficient and Relative Root Mean Square Error
are reported under the legend.

The coefficient at exponent, γ, obviously has units of inverse time and its reciprocal,
which we can call τγ , is a time scale that should be characteristic of the process. In
our case its value is τγ = 1055 s, or 17.5 minutes.

We will now have a brief discussion of the results before moving to the numerical
studies.

4.2.3 Discussion of the results
As mentioned at the beginning of the chapter, these were respectively the second
and third free-flight sonde launches. Because of this it should be restated that it is
early to say anything conclusive about the results. Despite this, we can still engage
in some analysis to at least form some expectations about the possible outcome of
future experiments. First of all, a comment on the numerical side is in order: since,
as said, the analysis starts when the sondes are still some distance apart, we might
have expected a fit of type ⟨ℓ2⟩ = mtα +R, with R the initial separation, to be more
accurate. However, due the fact that the data spans several orders of magnitude,
the addition of this third parameter introduces convergence issues in the regression
algorithm. It was then decided to leave it out, as the predicted parameters produce
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Figure 4.20: Exponential fitting of the mean separation distance in time for
Chilbolton Launch 2. Exponent coefficient, multiplicative coefficient and Relative
Root Mean Square Error are reported under the legend.

a rather satisfying agreement of the power law with the data. Secondly, in light
of the previous paragraph, it should be noted that the two observed behaviors,
meaning the power law from the first launch and exponential from the second,
do not necessarily contradict each other. Indeed it is possible for the speculated
smooth characteristics of the flow to only have been present in the second launch.
More in general, even if the real motivation differed from the smoothness argument,
it is possible that it influenced the second launch differently from the first one. In
this regard, a great deal of information is needed to adequately characterize the
flow. To a certain extent this will be possible to carry out thanks to the access we
were granted to the Jasmin database, where a large number of the measurements
performed during the Wescon campaign is stored. It is not fully clear what type of
characterisation is appropriate, though, and more research is needed to understand
what causes might underlie the observations. This, of course, is coupled to the
need for more, larger and longer similar observations. The COMPLETE project is
continuing development, and the next launches are already being scheduled. At the
present scale, the Chilbolton launches already pushed the limits of our capabilities,
greatly surpassing our expectations as far as observation time and distance are
concerned. To upscale the next experiments there will be a need for more receiver
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stations, with better tools to ensure the possibility of following the sondes as
long as they keep transmitting. This links to the next necessary development:
smaller sondes, which are already in the prototyping stage, and improved energetic
efficiency. Indeed, it is estimated that in the current configurations the sondes are
able to transmit data for a little more than 2 hours. As laid out in this chapter
the second launch was already near this limit, and it is possible that even if we
had been able to remain in the sondes’ transmission range for longer the batteries
would have simply run out. We will go into slightly deeper detail regarding future
prospectives in the conclusion.

One last comment, more theoretical in nature, concerns the assumptions that the
performed fitting implies. Indeed, when fitting to both power law and exponential,
the basic assumption is that there is a single factor in the formula for ⟨ℓ2⟩that is
time dependent. This, in general, may not be true. Let us take, as an example,
the usual case of homogeneous isotropic turbulence, but let us relax the hypothesis
of stationarity. In the absence of forcing, the kinetic energy will decay, and
consequently so will ε̄(t), the usual control parameter, where now we specify that
the averaging is performed either as an ensemble average or in space, the two being
analogous thanks to HIT hypothesis, but the value will be time dependent. For
the sake of simplification, let us postulate that ⟨ℓ2⟩still only depends on ε̄ and t,
meaning no new mechanism is introduced by the decay. At each time instant, the
infinitesimal increment in ⟨ℓ2⟩will depend on the current value of ε̄(t), which would
significantly alter the overall behavior even if an explicit t3 were to be kept. This
kind of behavior would not be captured by our fitting. This means that, if we are to
accept the laws we have found by fitting the data, the only quantities that should
be considered when trying to define the various factors in terms of physical meaning
are quantities that remain constant in time. Additionally, because we are not
referring to local, Eulerian measurements but rather to Lagrangian measurements
that explore a large domain, the quantities should also be global, meaning constant
in space, or they would inherit an implicit dependence on time. If this simplification
is not found to be acceptable, the process would need to be described in terms of a
differential equation keeping track of the time variation of all relevant quantities,
which would likely result in a solution deprived of self-similarity.

This officially concludes our presentation of the experimental results as far as
relative dispersion is concerned. We can now move on to describing a similar
analysis carried out in the cloud numerical simulations, and its limitations.

4.3 Numerical results: preparatory analysis
The second set of results on relative dispersion actually constitutes a starting point
for future studies to be carried out on simulations that are currently being set
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up, both in terms of code updating and of resource gathering. Indeed, the ones
that are currently at our disposal are not suited for this kind of analysis, for two
separate reasons.

The first one relates to the intensity of the turbulence found in them. As was
stated many times, the turbulent regime we would like to access is the inertial
range, which means that we must have a broad spectrum of resolved scales in our
simulation. The parameter that allows us to measure how many scales we are able
to resolve is the Taylor scale Reynolds number, Reλ, which is obviously related
to the Taylor length scale λ. This length scale indicates the scale at which the
transition from the energy-containing scales to the inertial range happens. If it
is too small, and by extension if so is Reλ, the inertial range is not adequately
resolved, and the energetic scales basically give immediate way to the dissipation
range. Conversely, the higher Reλ, the more developed the inertial range. As
touched upon shortly in first chapter, obtaining high Reynolds numbers is one of
the main challenges currently limiting computational fluid dynamics. Raising it
by very little greatly increases the computational cost of the simulations, and the
highest currently achievable Reλ is of the order of ∼ 1000 . In their already cited
paper, Malik and Hussein [17] argue that this is the bear minimum value at which
one can hope to find real R-O scaling. At the same time, many of the seemingly
promising results listed in Chapter 1 were obtained for lower Reλ, but the point
remains that there is a need for higher and higher values. To the already hard task
of simulating high Reλ flows, our simulations add many intrinsically heavy task: not
only are we simulating the flow, but also an order of 107 particles with their growth
dynamics, along with two scalar fields. This makes it all the more problematic for
us to reach the desired range, and indeed in the past simulations Reλ was set at
values around 50, not high enough to resolve the inertial range. The chief strategy
to increase this value is to augment the resolution of the computational domain:
this allows for increasing the number of scales that are possible to resolve, thus
allowing for the necessary increase in the kinetic energy .

On a second front, the current simulations are also somewhat too short to
adequately perform dispersion analysis, and this also relates to the results in the
next chapter. As far as physical time goes, the longest ones span about 2.7 s. The
preferred indication in computational fluid dynamics though is the adimensional
quantity t/τ0, where τ0 is the large eddy turnover time, meaning the time scale
related to the large scales of the turbulence. Our simulations span about 8 eddy
turnover times. By comparison, we can estimate the eddy turnover time of our
experiments to be in the vicinity of 50 s, meaning that the measurements span a
range of 40 to 80 eddy turnover times. This has lead us to start organising new
runs that will have the purpose of continuing these previous simulations, by using
the current final configurations as initial conditions.

While these further simulations are under way, we can start looking at the current
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ones under the light of relative dispersion, to form a better idea of how the analysis
can be carried out. The reader can refer to Chapter 2 for a detailed description of
their various aspects. Briefly stated, we compare the same quantities for the cases
of monodisperse and polydisperse initial droplet population distribution, and for
the cases of stable and unstable stratification. A monodisperse and stable-stratified
simulation if as of now not available, and is in fact in the to-dos for the upcoming
ones. In the first section we will look at some visualisations that are analogous to
those shown for the experiments, and in the second one we will check first-hand
what the outcome of the low Reλ value is on the ⟨ℓ2⟩behavior.

4.3.1 Visualizations
To start, we highlight that the differences we would like to detect are in the
behavior of the mean separation in the cloud bulk, modeled as an HIT region,
and its behavior in the mixing region, localized in the middle of the domain and
expanding in time. For this reason, our analysis starts by extracting a subset of
the particles localised in a small volume in the desired regions. This is done by
specifying the size of the volume, which will be a cube, and its location. The
location of all particles at the starting time is then parsed, and the ones whose
position is included in our volume are added to a hashset which will enable us to
follow them throughout their motion. This obviously implies that the larger the
initial volume, the larger the number of droplets in the hashset. Fig 4.21 shows
the “marked” particles at their initial position and their evolution in time. We
note that there is a stark difference in the behavior of the monodisperse population
and that of the polydisperse one: in the polydisperse case the larger droplets
sink considerably towards the bottom, due to their larger weight. This is useful
information for assigning priority to the future simulations: while the monodisperse
case may be more idealised, it might be more suited for an analysis of dispersion
that highlights the effects of turbulence over those of buoyancy.

We can then easily compute relative distances and track them over time, which
gives us Q(ℓ, t). As said in the first chapter and repeated in passing in this one,
the choice of h (the length that makes up the various “bins” of Q, since it is a
discretised distribution) plays a role in how significant the distribution will be:
choose it too small and most bins will contain an equally low number of particles,
thus flattening the distribution; choose it too big and the distribution will become
very jagged, with sharp features that make it harder to interpret. Some trial and
error allowed us to find that, as long as the starting volume is small, keeping h
of the same order as its linear dimension is a good compromise. The Q plots in
Fig. 4.22 start giving us an idea of the problems listed above: by visual inspection
we can see that they can hardly be said to be expanding at an accelerated rate,
as the R-O law would predict. At the same time some differences in between
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(a) (b) (c)

Figure 4.21: Plots of the droplet positions in time in the cloud top boundary
simulations. Plots given for the currently available combinations of initial droplet
populations and thermal stratification: monodisperse unstable (right), polydisperse
unstable (middle), polydisperse stable (right).
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them can be detected, which perk up our interest in pursuing the matter further.
Most prominently we see that the initially monodisperse populations expand at
a slower rate, which is certainly due to the presence of very small droplets in the
polydisperse cases which more readily follow the fluid flow thanks to the lower
inertia. Secondly, although the effect is not extreme, the distributions relative to
the mixing region do seem to spread slightly faster. This can also be observed in
the previous Fig. 4.21, although there it is even more difficult to quantify.

4.3.2 Mean square separation
This last observation is confirmed by the computation of ⟨ℓ2⟩, plotted in Fig. 4.23.
As we can seen, not much trace of turbulent contribution can be detected, and
the behavior appears mostly linear. As said above, for now it is also computed
for a small time window, in addition to the small Reλ value, so that even if some
superlinear behavior were present we would only be able to plot it for a short
duration and thus possibly not identify it as such.

What these plots allow us to confirm though is that the mixing region seems
to keep up with the cloud bulk in terms of transport, which is at odds with the
fact that the kinetic energy contained in it is lower. In the monodisperse case
the line relative to the mixing very clearly takes over after just a couple eddy
turnover times, and in the stable polydisperse case we can start to see the same
thing happening towards the end of the simulation. Another interesting observation
is that, as we might expect on theoretical grounds, the stability configuration of the
domain impacts transport: if we check the final separation values, in the unstable
polydisperse case they are upwards of 180 cm2 whereas in the stable case they are
shy of 150 cm2.

This brings us to the end of the discussion of our results in the topic of relative
dispersion. As I hope I made clear there is much room for future development, and
some of the possible routes towards it I will outline in the Conclusions chapter. We
can now move on to the second main topic, that will see a much more prevalent
role of the numerical simulations.
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Figure 4.22: Q plots time evolution for the available combinations of stability
conditions and initial droplet populations. Left plots are for droplets starting in
the cloud bulk, right plots are for droplets starting in the mixing layer at the cloud
border.
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(a) (b)

(c)

Figure 4.23: Mean square separation for the available combinations of stability
conditions and initial droplet populations. Plots for droplets starting both in the
cloud bulk (blue) and in the mixing region (red).
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Chapter 5

Results on Lagrangian
correlations

In this last chapter we will analyse the behavior of Lagrangian correlations of a
variety of quantities in both the numerical and experimental datasets that have
been described. As outlined in Chapter 1, a far thinner framework is available for
comparison in this case. This implies an obvious difficulty in the interpretation of
the results, since there is no unique result comparable to the Richardson-Obukhov
law of relative dispersion that one might try to stack against their own findings. If
this is true for velocity correlations, it is even truer for the Lagrangian correlations
of other quantities. Indeed, suppose that the Lagrangian trajectory of a particle
being advected by some fluid flow can be characterised by properties {f1, ... , fN},
some of which are properties of the particle (such as velocities and mass) and some
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of which may be local properties of the fluid (such as humidity, or any other scalar
concentration). Then, departing from most of the literature, which only focuses
on velocities as reported in Section 1.4, we can define a more general Lagrangian
correlation coefficient as:

R
(fifj)
L (x⃗, τ) = ⟨fi(x⃗,t0)fj(x⃗+r⃗(t0+τ),t0+τ)⟩−⟨fi(x⃗,t0)⟩⟨fj(x⃗+r⃗(t0+τ),t0+τ)⟩√

⟨f2
i (x⃗,t0)⟩−⟨fi(x⃗,t0)⟩2

√
⟨f2

j (x⃗+r⃗(t0+τ),t0+τ)⟩−⟨fj(x⃗+r⃗(t0+τ),t0+τ)⟩2

(5.1)
This is important to the cases we are analysing because we are not only interested

in the turbulent flow, fully defined in terms of velocities, but also in its interplay
with the phenomenology of the atmosphere at large and of clouds specifically, which
are clearly dependent on many other quantities.

Clearly, while the correlation coefficients are a quantitative measure, their
behavior in time can hardly serve as a parameter, both in terms of modelling and
in terms of comparison. For this reason, the Lagrangian time scale was introduced
(refer again to Section 1.4). The definition, though, is given with the assumption
that the correlations decay to 0 rapidly enough, so that their integral between 0
and infinity will be convergent. As we will see, we will not find this to always be
the case. Additionally we have to deal with the fact that our simulations are not
long enough to make a some over the while time domain a good approximation
of an integral to infinity. It is therefore more convenient, to allow for a proper
comparison in between the various cases, to define a Lagrangian time scale that is
cut short up to some n-th eddy turnover time τ0:

T
(n)
fifj

(x⃗) =
Ú nτ0

0
R

(fifj)
L (x⃗, τ) dτ (5.2)

where once again we highlight that in some of the cases relevant to us the space
dependence will remain, specifically to contrast the cloud bulk and the mixing
region. The n value that was selected to illustrate the present results is 4, as it is
the largest number that is common to all simulations.

We will start by looking at the numerical simulations. Contrarily to the case
of relative dispersion, these are a much more suitable environment with respect
to the radiosonde launches in their current form. Indeed, a great importance is
put on the initial value of fi, and a noisy dataset can make this value much less
significant than in the fully deterministic case of the simulations. We will see the
effect of this in the section dedicated to the experiments, and we will discuss one
possible avenue to circumvent the problem.
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5.1 Numerical results

In the numerical simulations, which were described in detail in Chapter 2, the goal
will be to compare the correlations inside the cloud bulk, modeled as a region of
homogeneous and isotropic turbulence, with the correlations inside the mixing layer
formed at the interface with the clear air, which instead displays anisotropy along
the vertical axis. Results will be provided for three different kinds of cloud-clear
air border region simulation, which consist of the different matching of two initial
conditions: droplet population and thermal stability. The initial droplet population
has been outlined in detail in Chapter 2, but we quickly recall that the two options
consist in a monodisperse population, in which all droplets in the cloud portion of
the domain are initialized to a radius of 15 µm, and a polydisperse population, in
which initial radii span the range 0.6 - 30 µm. The stability instead relates to the
direction of the temperature gradient, and while it is clearly related to the stability
defined in the context of parcel theory from Section 2.1.1 it is somewhat more
general: a fluid region with thermal inhomogeneities is stable when the thermal
gradient points upwards, meaning that the colder and denser region is below the
hotter one so that buoyancy effects will not induce any convection, and unstable
in the opposite case. At the present moment simulations are available for the
three cases of polydisperse and stable, polydisperse and unstable and monodisperse
unstable. The monodisperse stable case is missing, and is already included in a
simulation project currently submitted for approval at CINECA, the facility that
has provided computational resources for the ones we do have. We should therefore
be able to report on it shortly, but it will have to be excluded from this thesis.
Each configuration is interesting for its own reasons, in addition to the comparisons
we can draw in between them. The order of presentation is thus mostly arbitrary.

At this point a brief comment should be made on the datasets used for the
computation of the results presented in the upcoming subsections. In the case of
the preliminary dispersion studies droplets were extracted (tantamount to saying
“marked”) from the total amount present in the simulations based on them starting
out at the first time instance inside a selected volume. This was done for one volume
at the center of the cloud region and one volume at the center of the mixing region,
so that the evolution of the two volumes could be compared. As far as Lagrangian
correlations studies are concerned, though, this setup is flawed: because they start
out very close to one another there is an increased probability of the droplets
behaving similarly in regards to the observed quantities, thus introducing spurious
correlations that do not get filtered out by the ensemble averaging. Because of this
I modified the extraction procedure so as to extract five volumes instead of one,
distributed according to Figure 5.1 along the x and y axes (which are the isotropic
axes in the simulations). These volumes were then used to mark droplets starting
out at z (the axis along which the anisotropy is imposed) values corresponding
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to the center of the cloud region and to the center of the mixing region. The
volumes are cubical, with a side of 2 cm. This resulted in numbers of particles
in between 2000 and 3000 in each dataset, meaning the five volumes. The exact
number obviously depends on the simulation and z position, since the initial particle
position is randomized homogeneously in the cloud region. Additionally, it should
be kept in mind that some droplets completely evaporate before the end of the
simulated time. To ensure consistency in the ensemble size only particles present
at the final time were kept from the extracted datasets.

Figure 5.1: Distribution along homogeneous axes of the particles used for La-
grangian correlations computation. Five cubic volumes with a side of 2 cm were
selected, and then droplets starting out inside these volumes were selected for
inhomogeneous axis z values corresponding to the center of the cloud region and
the center of the mixing region.

A second type of ensemble averaging was also put in place: because the behavior
of the correlations inside a single simulation depends on the underlying velocity
field, simulations with the same population and stability conditions but different
initial velocity fields were used for averaging of the correlation coefficients, thus
reducing the effect of the specific simulation on the overall values. Specifically, four
simulations of the monodisperse unstable cased were available, and three of the
polydisperse unstable case. Unfortunately the polydisperse stable case was only
used in one simulation, and the difference in behavior with respect to the other
two cases will be noticeable. Ideally even more simulations could be used, but in
our case of decaying turbulence it is especially expensive: because the energy does
not remain constant, we cannot simply take an instant after the initial one and
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used droplets marked at that time for averaging, as you could potentially do in the
case of HIT, as one we would be comparing particles starting out in very different
conditions.

In the numerical discussion we will include results on correlations for five
quantities: velocity components, droplet radius and droplet growth rate. These
are chosen because they are properties of the particles themselves, and as such
are all saved in the same dataset when extracting the chosen droplets from the
simulations. A future step will be to also extract temperature and water vapor
density information along the Lagrangian trajectories, but this requires an algorithm
that will fetch the quantities from their own binary file based on the Lagrangian
trajectories. This is, once again, already in the works, but can unfortunately not
make it into the present discussion.

5.1.1 Monodisperse distribution, unstable stratification
We will start out with the initial monodisperse droplet distribution case, with
unstable thermal stratification conditions. Figure 5.2 is a visualisation of the
trajectories of 30 randomly extracted particles from one of the datasets used in the
averaging. Owing to the comparatively large size of the droplets we can see that
gravity has a rather strong effect on the mean displacement, and most droplets
tend to sink towards the bottom of the domain. Figure 5.3 is the first quantitative
result, namely the velocity component autocorrelations. We can see that, despite
the ensemble averaging procedures, some seemingly spurious behaviors remain,
most evident in the autocorrelation of the velocity along y. Indeed we would
expect the velocities along x and y to behave almost exactly in the same way,
since there is no anisotropy that differentiates between the two. As said above,
this is likely due to the initial conditions used for the simulations (one should
remember that even homogeneous, isotropic turbulence is only such on average,
since locally and instantaneously the flow structure may well be anisotropic) . With
these caveats in mind, thus allowing for some leeway, we can see that the decay
appears approximately exponential. We can observe that there is an inversion in
the behavior of the autocorrelation of w, the velocity along z: it is the fastest
decaying function in the cloud region, whereas it is the slowest one in the mixing
up until about 2 eddy turnover times, a time by which all three components have
decayed to low values. Indeed, T (4)

ww is the one that is overall most affected by
moving from the cloud region to the mixing layer: its variation is more than then
twice the variation in either T (4)

uu (varying by about 0.7) or T (4)
vv (varying of just

about 0.25). Interestingly, the changes in T (4)
uu and T (4)

vv go in opposite directions,
with the first one increasing and the second one decreasing. Since there is nothing
intrinsic to the flow that should cause this difference, this is a further hint of the
dependence of the correlations on the initial conditions. An important note is that
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Figure 5.2: Visualization of the trajectories of 30 randomly marked particles
starting out in the five initial volumes in the case of monodisperse population,
unstable stratification.

the behavior of the v autocorrelations is rather odd, in that at a certain point
it becomes negative. While this probably amounts to one of the issues discussed
above, having to do with the initial condition dependence of the correlations, it
forces us to make a decision about the computation of T (4)

vv : if we keep the negative
values the Lagrangian time scale will actually appear to be shorter due to some
negative values being added to it after about 1.2τ0. For this reason it was decided
to actually integrate (i.e. sum, as far as the actual computation is concerned)
the absolute value of R

(vv)
L , so as to keep into account both positive and negative

correlations. It is hard to implement any better solution at the moment, since the
actual origin of the unusual behavior is not known. All the same is true, to a lesser
degree, also for R

(ww)
L .

We can then introduce the quite novel results about the radius and growth rate
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Figure 5.3: Lagrangian autocorrelations for velocity components in the monodis-
perse population, unstable stratification case.

autocorrelations, which are plotted in Figure 5.4. As we will learn in the next
section, the monodisperse population provides a much more ideal environment as far
as radius correlation computation is concerned, and partly also for the growth rate
autocorrelations. Their behavior looks quite regular, and the differences between
the cloud region and the mixing are plain to see: in the cloud we observe what
looks like a simple exponential decay for both quantities, analogous to the velocity
autocorrelations; in the mixing, instead, both functions decay much more slowly,
and would likely require a rather large amount of eddy turnover times to approach
0, but they also display the rapid decay only after a brief initial interval in which
the slope is much more gentle. This means that the mixing does not only affect the
speed of the decay but also the functional shape of the correlations. The slower
descent is obviously reflected in the values of T

(4)
RR and T

(4)
GRGR, both approximately

doubling. When looking at this result one aspect should be kept in mind: these
correlations carry no information about the coalescence process, since the growth
rate is only computed from the Köhler theory for the condensation/evaporation
process.

5.1.2 Polydisperse distribution, unstable stratification
Moving to the polydisperse distribution, we again visualise the motion of 30 random
particles in Figure 5.5. We can see that the downwards motion is less generalised,
owing to the presence of smaller particles that are less affected by gravity. Figure
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Figure 5.4: Lagrangian autocorrelations for radius and growth rate in the monodis-
perse population, unstable stratification case.

MU Cloud Mixing
T (4)

uu 0.5298 0.6302
T (4)

vv 0.6804 0.6373
T (4)

ww 0.4409 0.7191

MU Cloud Mixing
T

(4)
RR 1.1061 2.1223

T
(4)
GRGR 0.5043 1.1669

Table 5.1: Lagrangian time scales for velocity components, radius and growth
rate autocorrelations in the monodisperse population, unstable stratification case

5.6 shows the velocity component autocorrelations. The overall behavior is similar
to the monodisperse case, again displaying a seemingly exponential decay. However,
an effect can be easily identified that was not present before: some correlations
seem to relax to values different from 0, specifically correlations of u and w in
the cloud bulk and only of w in the mixing region. We will discuss this more in
the dedicated section after all results have been presented, but it is an interesting
feature that will need to be investigated further. By inspecting the Lagrangian
Time scale values, we can see that the value of T (4)

vv decreases significantly in the
mixing, due to the fact that it actually decays to zero rather than to a higher value.
The increase in T (4)

uu in the mixing region is quite similar to the monodisperse case.
T (4)

ww slightly decreases in the mixing, at odds with the monodisperse case in which
it grew significantly.

The autocorrelations for radius and growth rate are, in this case, quite a bit
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Figure 5.5: Visualization of the trajectories of 30 randomly marked particles
starting out in the five initial volumes in the case of polydisperse population,
unstable stratification.

more problematic. Indeed, we can see that the autocorrelations for the radius
remain basically squeezed very near 1 both in the mixing and the cloud, even
though we know for a fact that the radii are changing, and especially for the smaller
droplets they change a great deal more than in the monodisperse case. The odd
behavior of the correlation coefficient stems, in fact, from the large spread of the
size distribution. Indeed, the current treatment of the correlations sees the various
radii simply as different instances of a single random variable. The variations in
time in radius of each single droplet are, then, very much smaller than the standard
deviation of the size distribution itself, and this leads to the effect that radii seem
to remain very correlated in time despite the fact that they may vary considerably,
and certainly much more than in the monodisperse case. How to deal with this issue
is not obvious. One possibility would be by binning of the radii into groups that
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Figure 5.6: Lagrangian autocorrelations for velocity components in the polydis-
perse population, unstable stratification case.

have a similar starting value and check for an initial-radius-dependent correlation
coefficient. Because the variations are small though, there are very few droplets in
the dataset starting with radii that are close enough in value, and thus averaging
would become problem because of sample sizes. Obviously the most direct way
around this would be to increase the whole dataset size, but a rather considerable
number of particles would have to be taken for this to work. More on this will
come in the section dedicated to the discussion.

The autocorrelations for the growth rate, however, despite featuring a similar
issue in the cloud region, shows a decay that is rather similar to the monodisperse
case in the mixing, displaying the mild initial slope and the exponential decay
afterwards. This stark difference is quite surprising, and will need some further
analysis to be fully understood, but at a first level might be attributed to the fact
that in the cloud, while fluctuations in the vapor concentration field are present, the
local values always remain quite high. In the mixing, instead, the entrainment of
dry air causes the droplets to come in contact with regions of very low concentration,
which induces a much more rapid change in the growth rate

5.1.3 Polydisperse distribution, stable stratification
The last case we can deal with is that of polydisperse initial droplet distribution
and stable thermal stratification. Because convection along the vertical axis is
suppressed by the stratification effect, we expect upwards transport of droplets
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Figure 5.7: Lagrangian autocorrelations for radius and growth rate in the poly-
disperse population, unstable stratification case.

PU Cloud Mixing
T (4)

uu 0.7657 0.8524
T (4)

vv 0.9174 0.4640
T (4)

ww 0.9527 0.8887

PU Cloud Mixing
T

(4)
RR 4.0349 4.0364

T
(4)
GRGR 3.9392 1.2531

Table 5.2: Lagrangian time scales for velocity components, radius and growth
rate autocorrelations in the polydisperse population, unstable stratification case

to be reduced. Indeed, in the visualisation in Figure 5.8, when compared to the
unstable case, does show droplets that seem on average to be less prone to move
towards the clear air (it should be stated again that, since these are just a few
droplets and not the entire dataset, these visualizations should not be taken at face
value and are only meant to help illustrate the domain). As said in the preamble,
currently only one simulation is available for the stable configuration, and thus it
was not possible to perform ensemble averaging over different initial flow fields.
This is clearly reflected in the behavior of the velocity autocorrelations shown in
Figure 5.9: while the general exponential trend does appear, their curves are a lot
less smooth. This makes it even harder to draw conclusions about their decay, but
still some features do seem relevant. By comparing the Lagrangian time scales in
table 5.3 we see that the trends are the same as in the polydisperse unstable case,
with only T (4)

uu increasing and the other two decreasing, but the amount by which
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Figure 5.8: Visualization of the trajectories of 30 randomly marked particles
starting out in the five initial volumes in the case of polydisperse population, stable
stratification.

they vary is different: specifically, the decrease in T (4)
ww is much stronger in the

stable case. This can again be interpreted by supposing that velocity components
w are inhibited by the stratification, causing faster decorrelation.

The correlations for radius and growth rate display an overall behavior that is
analogous to the stable case, where the discussion about the problematic nature
of the polydisperse distribution is obviously still valid. The surprising feature is
that in the mixing the growth rate autocorrelations decay even faster than in the
unstable case. This is unexpected, in that the stable configuration should reduce
the entrainment of dry air that was speculated to cause the rapid decorrelation.

This wraps up the presentation of the numerical results. The next section is
dedicated to some discussion and possible interpretations, while the consideration
of possible avenues for development will be given in the Conclusions chapter.
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Figure 5.9: Lagrangian autocorrelations for velocity components in the polydis-
perse population, stable stratification case.

Figure 5.10: Lagrangian autocorrelations for radius and growth rate in the
polydisperse population, stable stratification case.
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PS Cloud Mixing
T (4)

uu 1.0844 1.1157
T (4)

vv 0.6832 0.4340
T (4)

ww 1.1469 0.7491

PS Cloud Mixing
T

(4)
RR 4.0408 4.0350

T
(4)
GRGR 3.9410 0.7164

Table 5.3: Lagrangian time scales for velocity components, radius and growth
rate autocorrelations in the polydisperse population, stable stratification case
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5.1.4 Discussion of results

As stated above, the interpretation of the results given proves much harder than in
the case of relative dispersion. That is itself far from trivial, since the environments
in which they were studied differ greatly form the HIT in which the theoretical
framework for it is developed, but at least such a theoretical framework exists.
In the case of Lagrangian correlations the same cannot be said, and terms for
comparison are rather lacking. Therefore, the results must be analysed chiefly in
view of what we know about our domain, rather than on some general laws that
may or may not be observed.

First and foremost we should address the fact that the correlations do not go
smoothly to zero, and in some cases do not go to zero at all but rather seem to have
some horizontal asymptote at higher values. In stationary homogeneous turbulence
we would not expect this behavior even without any ensemble averaging, since
the persistent randomness of the field would prevent quantities from remaining
correlated (although the decay in a single simulation may still not be smooth). In
this regard the most likely culprit we can identify in our case is that the turbulence
is decaying. Indeed, in decaying turbulence the small vortices are the first to
disappear, and by the end of the transient only much larger ones remain, the
same ones that were previously advecting the small scales. This might explain the
remaining non-zero correlations: as the turbulent field becomes smoother, meaning
as the small scales of the random motion disappear, some correlation remains with
the initial velocities in the form of the large vortices.

Secondly, one interesting observation concerns T (4)
ww. The reason to focus on this

quantity, as mentioned earlier, is that we expect the anisotropy in our domain to
mainly affect quantities along the same axis along which the anisotrpy is found.
By checking the values of T (4)

ww in the mixing region we can see that they are not
too dissimilar, despite the values in the cloud for the various setups differ by a lot
(0.4409 in the monodisperse unstable case versus 1.1469 in the polydisperse stable
case). This suggests that the mixing region and the anisotropy contained in it may
have some converging effect on this time scale. Clearly more simulations are needed
to be able to confirm this fact, and it should be remembered that the length of out
current simulations made it necessary for us to use T

(4)
fifj

as a time scale, whereas
this effect might become more evident by using time scales for larger values of
n (also reminding ourselves that the ideal definition of TL requires integration to
infinity).

We can now move on to the experimental results, which differ greatly from the
numerical ones mostly, as said, because of the current experimental sample size.
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5.2 Experimental results
All necessary information about the experimental setup and the atmospheric condi-
tions in which the launches took place have already been given in the corresponding
sections in Chapter 4, and will therefore not be repeated here. The reader can refer
to those and to Chapter 3 for all technical aspects of the data collection process.
The results will be given for autocorrelations of velocity components and then for
temperature, relative humidity and pressure. Because of this, the temperature,
humidity and pressure measurements have not been shown when illustrating the
launches in Chapter 4, as I preferred to keep only information relevant to position
measurements in that chapter, and will instead be presented here along with the
velocity measurements. The velocity is computed by finite differences using the
position measurements, and not by means of the direct velocity measurements as
obtained through the IMU, as these have been found to be less reliable. They
are given in the East, North, Up reference frame. Again we will separate the two
launches for discussion, although in this case differences in between the two will
not be quite so easy to spot.

5.2.1 Launch 1
For a start, Figure 5.11 displays the velocities of the sondes as computed from
position information. Notice that the plots only extend to 25 eddy turnover times
for improved legibility, as displaying them for the whole duration of the experiment
(about 50 t/τ0) would compress the lines too much, and without providing much
more information: the velocity fluctuations show a similar behavior throughout the
flight, and possible differences would not be noticeable by the naked eye anyway.
Coherently with what we know about the sondes’ trajectory (see map in Figure
4.1), the velocities in the East direction display the largest mean value.

We can then compute autocorrelations for velocity components, which are shown
in Figure 5.12. This clearly shows a much messier behavior than in the numerical
simulations: the plots show very strong oscillations, which do seem to be reducing
in amplitude towards the final time instants but are still quite far from decaying to
zero. These of course are of rather difficult interpretation, and while it is certainly
true that they are probably caused to a large extent by the sample size we should
remember that these are still the result of some averaging and thus may potentially
include some physical insight. One possible observation is that the oscillations
appear to span many different wavelengths but they are not simple noise. Therefore,
while the overall decay seems to escape the analyses at the current sample size, it
may be possible to create a link between these oscillations and the nature of the
underlying flow.

Figure 5.13 shows the measurements for temperature, humidity and pressure
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(a) (b)

(c)

Figure 5.11: Velocities of the sondes along the three directions East, North and
Up in the first Launch carried out in Chilbolton.

for each sonde. This serves as a visualization to make sure that no outliers are
to be found in the data. This is obviously not by chance, as outlier removal
procedures are in place to clean the dataset before usage for any type of analysis,
but it is important to check the regularity of the measurements to confirm that the
upcoming correlations do not owe their weird shape to any measurement errors.
Indeed, the autocorrelations are plotted in Figure 5.14, and they also show some
strongly oscillatory behavior. Additionally, all of them abundantly explore the
region of negative correlations while seeming to start rising again towards the end
of the measurement period. Somewhat surprisingly the pressure curve does seem
quite smooth. These negative correlations would mean that initial higher values for
each of the quantities imply smaller values during the middle stages of the flight,
which is not a very intuitive result (especially considering that the sondes started
out at very similar measured values for all quantities concerned.

All of this makes it very hard to make any definitive statement about the nature
of the Lagrangian autocorrelations computed from the measurements, and forces
us to think of possible ways to extract more information from the datasets, short of
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Figure 5.12: Velocity components autocorrelations from Launch 1 in Chilbolton.

repeating the experiments with more sondes, which is obviously the only fully sound
method. One possibility, that should be treated with an abundance of caution
but that we still report here for completeness, is to employ a different kind of
correlation coefficient, much more commonly used in the field of economics. This
is effectively quite a different approach and deserves a moment for explanation.
To distinguish this different approach from the previous (which we underline is
the most appropriate one) we will refer to it as “traslational autocorrelations”, for
reasons that will be clarified shortly.

Putting aside space dependence for the moment, the autocorrelation as computed
until now is a function of time. This is because the initial time is implicitly assumed
to be the initial time of observation, meaning the beginning of the simulation of
of the experiment. The observations that make up our ensemble are the values of
any of the measured quantities picked from all the sondes at the starting time and
then the values from all sondes at all subsequent times. From these correlation
coefficients are computed so that the information we will obtain is the correlation of
the values at any time with those at the initial time. Traslational autocorrelations,
instead, are a function not of time but of a time lag τ , and the ensemble that
concurs to the computation of correlations for a certain value of τ are all pairs of
values of a certain quantity that are a distance τ apart in time. So, for example,
for τ = 1 we will pair values from a single sonde’s measurement at times 1 and 2, 2
and 3, 3 and 4 and so on, and use these pairs for the computation of a correlation
coefficient. The information that this coefficient will convey than is not about the
correlation of values at different times with the initial values, but rather about
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(a) (b)

(c)

Figure 5.13: Temperature, humidity and pressure measurements from all sondes
for Launch 1 in Chilbolton.

the correlation of any value at a given time with a value measured at a distance τ
earlier in time. As italicized above, this means that this correlation function can
be computed from the dataset coming from a single sonde, and that for a long
measurements period the sample size will be large enough to provide a relatively
smooth behavior. In our case this can be further enhanced thanks to averaging
over the results from the various sondes, this obtaining a curve that is, up to
some degree, representative of the whole experient. This point should be stressed:
while the previously discussed autocorrelations reflect how the events occurring
during flight impact the starting values (eventually departing from them), these
traslational autocorrelations average over points distant τ occurring over the whole
measurement period, and as such they do not strictly relate to the initial values
but rather show the average decay of correlations over the whole flight. This means
that, in a way, we are looking at a global quantity, which does not possess the
“resolution” to distinguish between different moments of the experiment since what
matters is the time distance between two points and not the absolute time. In this
sense we say that the time lag is “traslated” over the whole dataset for averaging,
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Figure 5.14: Autocorrelations for temperature, relative humidity and pressure
obtained from the dataset gathered during Launch 1 in Chilbolton1.

hence the name.
Results for these traslational autocorrelations are reported in figures 5.15 and

5.16 for velocity components and temperature, humidity and pressure, respectively.
The colored lines are the autocorrelations coming out of each sonde’s measurements,
whereas the thick black line is the average. As expected, the behavior appears
much smoother, especially for the averaged plots. Overall we seem to observe
again an exponential type of decay, although the velocity along the North direction
seems to enter a linear regime (it is the slowest decaying component, which is
surprising considering that the mean motion is mostly towards the east). The
decorrelations for temperature, humidity and pressure instead show surprising
similarity amongst themselves, with the humidity decaying slightly faster. Here,
an interesting observation is that these scalars show a qualitative similarity with
the decay of the radius and droplet growth rate in the simulations, showing an
initial milder slope before a steeper descent. Of course the effect is minor, and we
should use care in drawing hurried comparisons, but it is still ground for further
inspection.
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Figure 5.15: Traslational autocorrelations for velocity components for Launch 1
in Chilbolton.
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Figure 5.16: Traslational autocorrelations for temperature, humidity and pressure
for Launch 1 in Chilbolton.
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5.2.2 Launch 2
Many of the same considerations made for Launch 1 remain true for Launch 2, so
the discussion will be shorter. Unfortunately the increased number of sondes (10,
against 7 in Launch 1) is not sufficient to provide cleaner values for the standard
autocorrelations, so the traslational autocorrelations are given again at the end.
Figure 5.17 shows the computed velocities for all sondes, and Figure 5.18 the
respective autocorrelations.

(a) (b)

(c)

Figure 5.17: Velocities of the sondes along the three directions East, North and
Up in the second Launch carried out in Chilbolton.

Owing to the longer duration of the experiment we can see somewhat more
clearly that the amplitude of the oscillations seems to be reducing as time goes
by, although they are still rather far from zero. One other observation is that the
wavelength of the largest oscillations seems to be much shorter at earlier times, and
to grow during the duration of the experiment. Again, this is a qualitative statement
based upon visual inspection of the figures, but it is noticeable nonetheless.

Figure 5.19 shows the temperature, humidity and pressure trends for the second
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Figure 5.18: Velocity component autocorrelations from Launch 2 in Chilbolton.

Launch. Temperatures seem to rise quite considerably towards later times, and
relative humidity dispays a more regular behavior with respect to Launch 1. The
visualizations of the measurements prove particularly useful in second case because
a weird feature can be spotted in the autocorrelations for pressure, shown in Figure
5.20. There is a sharp dip in this curve that rises again after just a few eddy
turnover times, without any further strong fluctuations. This figure provides an
interesting comparison with Launch 1, since both pressure and temperature show
radically different behaviors, whereas relative humidity seems more consistent in
between the two.

Exploring traslational autocorrelations for velocities we can see that they appear
quite consistent with Launch 1 (notice that they seem to decay more quickly only
because the plots contain more time lags τ , but for example the approach at zero is
obtained for similar lags). This is interesting if we consider that the conditions for
the two launches were quite dissimilar, as were the results for relative dispersion).

This similarity is not found in the temperature, humidity and pressure correla-
tions, which instead decay more slowly in this second launch.

With this, the presentation of results draws to an end. All that is left are some
conclusive remarks, mostly regarding future outlooks to move forward with the
research presented here.
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(a) (b)

(c)

Figure 5.19: Temperature, humidity and pressure measurements for all sondes
for Launch 2 in Chilbolton.
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Figure 5.20: Autocorrelations for temperature, humidity and pressure from
Launch 2 in Chilbolton.
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Figure 5.21: Traslational autocorrelations for velocity components for Launch 2
in Chilbolton.
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Figure 5.22: Traslational autocorrelations for temperature, humidity and pressure
for Launch 2 in Chilbolton.
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As written a few times throughout the text, drawing conclusions is somewhat of a
challenge at the present time. Indeed, many different results have been presented,
innovative in nature and displaying a variety of unique features. Because of this,
more work will be necessary to make more definitive statements about the observed
phenomena. This is not to underplay the relevance of what has been shown so far,
but rather to highlight that the many interesting observations that were made are
but a peak into the largely mysterious world that is inhomogeneous turbulence,
and therefore they should be used as a launchpad for future investigation. Thus, I
wish to devolve this final chapter to the discussion of the possible avenues that may
lead to more results, or to the confirmation and explanation of the existing ones. I
will do so separately for the experimental and numerical parts, since the issues and
possible improvements are tightly linked to the technology and the approach.

Experimental outlooks

The current experimental setup is far from basic, and already features some rather
advanced characteristics. The main challenge, currently, is its upscaling in order to
perform launches comprising more sondes: as seen, this improves the sample size
for averaging quantities and therefore is among the main predictors in the accuracy
of an experiment. It would be easy, then, to simply say that more money is needed
to buy more sondes and carry out larger experiments and leave it at that. However,
(true as that may be) many aspects of the setup need to be carefully considered
when imagining a larger version of it. In Chilbolton, five people had an actively
operational role in the collection of the dataset, and at the moment of launch a
total of about a dozen helped in the deployment of the sondes. This was for 7
sondes in the first launch and 10 in the second. Additionally, we note that this was
the available number of people, not the optimal number of people. Indeed, a larger
number would have allowed for a more careful and precise handling of the sondes,
inflating of the balloons and releasing of the floating systems. It is then apparent
to see that a launch featuring 20, 30 or 100 sondes would not simply be a matter
of purchasing the materials, but would consist of a complex and delicate operation
that, if not planned down to the very details, would have no hope of success. The
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planning would then have to go hand in hand with the education of the staff,
that should be instructed about at least the basic procedures of preparation and
deployment. After launch, the issue would then be the pursuit of the sondes, which
as told in Chapter 4 was done by car for the WESCON experiments. While this
was the most versatile option at the time, it can be greatly optimized, despite
requiring some definitely non-trivial work. The most crucial improvement would be
the implementation of an interface allowing for immediate real-time monitoring of
the sondes’ position, that would allow the driver to easily follow them along their
flight. In conditions where even slight convection is present the sondes are much
more likely to exit the area of operation of the receiving ground station due to the
wind mean flow rather than due to spreading about the cluster’s center of mass (as
can be clearly seen by the maps in Figg. 4.1 and 4.11) therefore a single moving
station would likely be enough to cover all the necessary distance, but with larger
clusters this may stop being true once a few sondes drastically change direction
due to being swept away by some different atmospheric structure (see for example
Sonde 21 in Fig. 4.11). Depending on the wind conditions several vehicles may be
necessary to avoid seeing a dramatic reduction in sample size at the later times
of the experiment. One yet more ambitious possibility for improvement, which
would be a whole project in and of itself, would be to mount the moving receiver
not on a car but on a drone. In principle, the drone could be programmed to read
the incoming position data and automatically move towards the cluster’s center of
mass, ensuring optimal positioning at all times. This is far easier said than done,
but is worth keeping in mind should the opportunity to develop this idea ever arise.

In second we can discuss the technical improvements that can be made to the
flying system, namely the sondes and the balloons. As said before a new, lighter
prototype of the sondes is already in the works. The reduced weight is indeed
among the main points of improvement, due to the lower inertia and most of all
to the smaller balloons necessary to carry it. The second key issue is the sonde’s
lifespan: as mentioned in previous chapters, all adjustments to the experimental
procedure allowing us to follow the sondes for many hours would be to no avail if the
battery duration is not extended accordingly. Unfortunately this point is obviously
in contrast with the former one: longer lifespan would imply larger batteries, which
would weigh more. The impossibility of having smaller batteries with the same (or
higher) energy storage is due to the power volume density of a material (or of a
technology to be more precise) being a constant, which implies that a battery’s
capacity is unequivocally linked to its size. There are then two possibilities: one is
to optimize the power usage from the components, although these have already
been selected among the most efficient commercially available components; the
other is to use a different battery technology than the currently used lithium-ion.
Power storage research has been rampant over recent years, partly due to the rise
of electric motor vehicles, and a few new technologies seem promising in delivering
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much better performances that the current standard. Just a few days ago at the
moment of writing this the Chinese company Betavolt has announced the first
miniaturized nuclear-powered battery, with a claimed lifespan of over 50 years.
This of course would be an absolute revolution, although we seem to still be far
from consumer-level usage.

Regarding the balloons, their development continues, mostly from the standpoint
of their production rather than of their actual properties. In this case it may be
more appropriate to describe the issue in monetary terms: industrial prototyping
and production ex novo is a costly endeavor, and the price is likely to be a significant
obstacle even when what needs doing is exactly known.

Computational outlooks

I have mentioned in the relevant sections that, after doing abundant use of the
simulations described in this thesis, new ones are now under way thanks to a
recently submitted project that aims at obtaining computational resources from
the CINECA institute. More than running completely new simulations, the idea
behind this project is to extend the datasets stored so far (despite some new
simulations being present in the plan, like the missing monodisperse population,
stable stratification case). The straightforward method will be to plug the final time
instances of the current datasets as initial conditions to the new simulations. The
idea is to reach a number of eddy turnover times closer to the order we obtained
in the experimental datasets, namely about ∼ 40 − 50. This is important for the
Lagrangian correlation studies because, as we saw, the current duration is not
sufficient to observe the full decay of all correlations, which we expect in any case
due to the decay of the turbulent kinetic energy. Concerning the dispersion studies,
instead, although we have no bigger hope to observe the Richardson-Obukhov
regime due to the low Reynold’s number, the longer duration may help us in
identifying any existing superlinear behavior, such as for example the Batchelor t2

regime. Other than the issues discussed in this thesis, longer simulations will also
allow to observe the development the droplet population under other lights, both
old and new.

After the present simulations are extended in this way we may turn to the
possibility of producing new ones. Specifically, as should by now be abundantly
clear, the current ones were not originally intended to produce relative dispersion
studies, and were conceived with very different studies in mind. To study relative
dispersion we have to focus on the key controlling parameters, and adequately
incorporate them in the simulations, all the while making sure not to alter them in
such a way as to deprive them of their original goal (that is modelling a cloud, and
not just some suspension of undefined particles inside some fluid). With this in mind,
the paramount issue is to increase the system’s Reynold’s number. On one side,
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this calls for nothing other than more computational resources: in DNS there is no
way around the fact that equations need to be solved, and this requires processing
power. On the other side though there are many ways to optimize the computation,
both at the level of the specific simulation and at the level of the code used as a
whole. A simulation made for the precise scope of studying relative dispersion could
be run by switching the current droplet populations, that are extremely numerous
and occupy the whole cloud region, for a much smaller population (obviously still
large enough to ensure an appropriate sample size), to be localized in two small
volumes inside the cloud bulk and the mixing regions. The droplet dynamics would
then have a much smaller impact on the computational time, and the resources
formerly allocated to their evolution could be allocated to enlarging the domain
on one side and intensifying the turbulence on the other. As far as general code
efficiency is concerned, instead, one path that seems very promising is to work on
code hybridization, meaning the implementation of libraries that involve the usage
of a GPU in addition to the standard CPU. This is not the right place to delve
deep into the exact advantages this would bring, but simply put it would add one
level of parallelization to the already adopted core-level parallelization, which can
potentially result in a very significant speedup. We (meaning me and one or two
other people in the group, depending on their availability) are currently enrolled in
a Hackaton-type event with the specific purpose of developing GPU-parallelised
code starting from a regular CPU oriented one, which will take place towards the
end of may.

Hopefully I have done a good enough job of conveying the message I had in
mind: much has been done, much needs to be done. The direction is quite clear,
although one of the main lessons I’ve learnt during the course of my work so far is
that the most interesting things are not known at the start. Instead, they pop up
while trying to navigate unknown waters, revealing new paths to tread, should one
be so inclined.
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