
POLITECNICO DI TORINO
Master’s degree in Management Engineering

Academic Year 2022/2023

Melody harmonization through Integer
programming

Supervisor

Prof. Fabio SALASSA

Prof. Elena RENER

Candidate

Marco ZOLLO

April 2024

Abstract

This work presents a model that utilizes exact combinatorial optimization methods
to generate the harmonization of a given four-four melody in the key of C major/A
from a proposed set of chords. A linear programming formulation has been
developed with the objective of identifying the most favorable sequence of chords
from a given set. This is achieved by considering a matrix of transition costs based
on rules of harmony theory and commonly used chord progressions in Pop music.
The resulting musical accompaniment is integrated with the melody and visualized
using MuseScore4.

To assess the model’s outputs, a comparison has been conducted between the
chords used in well-known songs and the chords chosen by the model for those
songs. If developed, the proposed model could serve as an educational tool for
composers and provide support in discovering new ideas for accompaniment to
complement their melodies.

1

ACKNOWLEDGMENTS

Table of Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Problem . 7
1.3 Methodology . 8
1.4 State of art . 9

1.4.1 Machine Learning . 10
1.4.2 Genetic Algorithms . 10
1.4.3 Rule Based . 11
1.4.4 Markov Models . 11
1.4.5 Optimization Problem . 12

1.5 Tools for Music Generation . 12
1.6 Outline . 18

2 Background in Music Theory 19
2.1 Introduction to Musical Harmony 19
2.2 C Major Scale Construction . 19

2.2.1 Relative Minor Scale . 20
2.2.2 A Harmonic Minor Scale . 21
2.2.3 A Melodic Minor Scale . 21

2.3 Constructing Chords from Scales 22
2.3.1 Triads . 22
2.3.2 Seventh Chords . 23
2.3.3 Inversion Chords . 25
2.3.4 Dominant Seventh Chords and Substitutions 25

2.4 Cadences . 26

3 Mathematical Model 28
3.1 The idea . 28
3.2 Mixed Integer programming . 29
3.3 Variable . 30

3.3.1 Time index . 30

3

Table of Contents

3.3.2 Dummy Nodes . 31
3.4 Parameters . 33
3.5 Objective Function and Constraints 36
3.6 Next Steps in Model Development 37

4 WorkFlow and PseudoCode 39
4.1 Intro . 39

4.1.1 MIP . 39
4.1.2 Gurobi . 40
4.1.3 Music21 . 40

4.2 Workflow and Pseudo-Code . 40

5 Testing and Results 47
5.1 Introduction to testing . 47

5.1.1 Song selection and input data analysis 47
5.1.2 Testing parameters . 48

5.2 1th song testing - Someone like You 49
5.2.1 Set 2 . 50
5.2.2 Set 3 . 51
5.2.3 Set 4 . 52

5.3 2nd song testing - My Way . 53
5.4 3rd song testing - I will Survive . 58
5.5 Result analysis and discussion . 65

List of Figures 77

4

Chapter 1

Introduction

1.1 Motivation

The generation of music through artificial intelligence tools and composition using
algorithms has garnered significant interest in recent times. The availability of
digital computing has greatly expedited the exploration of algorithmic composition
systems. This increase in research is driven by a combination of curiosity and
efforts to analyze and this field of research.

This work is driven by the recognition that automatically generated guitar solos
can serve as a valuable resource for composers facing the challenge of generating a
chord progression into their musical pieces, without an in-depth understanding of
the instrument.

The main intent of this work is to delve into the possibility that mixed-integer
programming can emerge as a valid tool for addressing the complexity of melodic
harmonization. The primary objective is to gain a comprehensive understanding of
the effectiveness of this methodology, clearly highlighting its inherent limitations
and advantages in comparison to other well-established musical techniques. The
decision to focus on mixed-integer programming stems from the ambition to explore
new perspectives within the realm of algorithmic composition, specifically honing
in on its adaptability to the context of melodic harmonization. In this context, the
analysis of the limitations and advantages of mixed-integer programming emerges
as a fundamental step towards a comprehensive examination of this melodic
harmonization methodology.

For composers unfamiliar with harmony theory, this technology offers a creative
solution, using the potential of automated generation to decide a chord progression
for the melody given by users. Furthermore, our motivation extends to the educa-
tional realm, where automatically generated chords becomes a potent pedagogical
aid. This work envisions assisting amateur musicians in understanding musical

6

Introduction

theory in a more practical way.

1.2 Problem
This document addresses the harmonization of melodies, a key challenge in the
field of music generation. The primary goal is to generate a coherent sequence of
chords that complements a given sequence of input notes through the resolution of
an optimization problem. In formulating the model and subsequently solving it
using Python programming, various issues were encountered, and some of them
are discussed below. It is noteworthy that the problem was modeled by drawing
parallels to a minimum path problem.

• Rhythmic Limits: Setting rhythmic limits presents a delicate challenge. Decid-
ing on the time signature for the model is the initial step, with the difficulty
lying in the fact that using only 4/4 time significantly restricts rhythmic
harmonization possibilities. Additionally, determining the number of chords
per measure and their durations adds complexity.

• Choice of Key or Mode: Choosing the musical key or mode for the model poses
another challenge. In our approach, we introduced specific constraints, confin-
ing the harmonic context to the C major scale and its relative minors. This
decision simplifies the problem’s complexity, directing attention to a specific
harmonic context with a clear and universally recognized chord structure.

• Weight Assignment for Edges: Determining the weights assigned to edges
connecting chords in the graph, representing harmonic progressions, required
significant effort. These choices, though based on musical conventions, lack
objectively valid rules. Imbalanced weightings could hinder the model’s ability
to find interesting harmonic solutions.

• Handling XML Music Files: Implementing the mathematical model into a
functional application posed significant challenges. Managing musical XML
files, specifically extracting melody from these files, and subsequently writing
the generated chords onto them for user display required intricate handling of
libraries.

• Testing Phase: One of the critical operations was the testing phase. This
is because, given that the theory of harmony is not guided by objectively
valid rules, evaluating the compositions generated by the model becomes
highly complex and subjective. For a given composition, it could be positively
assessed by one person and negatively by another, depending on individual
taste.

7

Introduction

In summary, while formulating the mathematical model posed challenges in con-
straint selection, rhythmic considerations, and harmonic conventions, implementing
the model as a functional application introduced additional complexities in handling
musical XML files and how to write the costrains defined in the mathematical model.
Addressing these challenges required a nuanced and comprehensive approach to
ensure effective melody harmonization.

1.3 Methodology

Our strategy involves conceptualizing the melody harmonization as an optimization
problem. Chords are represented by nodes within a graph, framing the harmoniza-
tion task as the one of finding a minimum path in a weighted graph.

The idea of structuring the problem in this way, rather than using machine
learning algorithms, is inspired by a few earlier papers that tackled music generation
through combinatorial optimization, specifically referencing works such as "Describ-
ing Global Musical Structures by Integer Programming on Musical Patterns" and
"Generating guitar solos by Integer Programming” [1]. In the latter, guitar solos
are generated from a set of solo segments, known as licks. The model, in this case,
adds selected licks through the search for a minimum path, generating a melody
for a predefined chord progression, particularly a 12-bar blues in C major. In our
work, we essentially address the opposite problem: choosing chords to accompany
a melody that is not fixed, as it is input by the user. The harmonic context in
which the model is designed is limited to the C major scale, its relative natural,
harmonic, and melodic minors. The model’s functionality can be easily applied
to all keys by transposing the chords. Let’s look more specifically at the methods
used to approach the model formulation, translation into programming language
and testing phases. The optimization problem is formulated as a minimum path
problem, where nodes represent chosen chords at various time instances, and edges
represent transition costs between chords at specific time points. Transition costs
are stored in matrices, where the element (i, j) represents the cost from chord i to j.
The objective is to minimize the cost function by selecting the most favorable chord
progression. Preprocessing involves choosing individual transition costs based on
tonal music theory rules. About the coding, the model translation into Python
was accomplished using the MIP library, allowing us to encode and solve the
optimization problem efficiently. We transformed the mathematical model into
executable code, utilizing specialized solvers for optimal outcomes. Simultaneously,
we read the user-input melody from a file in Python and incorporated chosen chords
using the Music-21 library [2]. This process involved seamlessly modifying the
existing melody to align with both theoretical principles and user preferences. The

8

Introduction

integration of tonal music theory rules ensured the model’s compatibility with mu-
sical conventions, facilitating the generation of harmonizations in a straightforward
and effective manner.

Then, the testing phase involved a systematic and iterative approach, focusing
on well-known musical pieces to evaluate the model’s effectiveness in real-world
scenarios. Melodies were extracted from selected pieces, serving as input for the
model to generate harmonizations. Comparative analyses were then conducted,
where the model-generated harmonizations were compared with the original ac-
companiments of the chosen test pieces. Specifically, tests were conducted for each
piece of music, varying the model parameters to identify the optimal solutions and
understand their impact on the model’s performance.

1.4 State of art
In this chapter, our aim is to provide a comprehensive overview of the multifaceted
challenges inherent in the field of music generation. We will delve into the intri-
cate components of the music generation problem, encompassing the creation of
harmonies, melodies, and rhythmic structures. Furthermore, we will explore the
diverse technologies employed in the realm of music generation, shedding light on
the tools and methodologies that play pivotal roles in the creative process.

Our discussion will extend to an examination of the most significant studies and
software applications within this domain.

Through this exploration, we aim to offer a nuanced understanding of the state of
the art, encompassing the varied dimensions of music generation and the influential
studies and software shaping its trajectory.

The field of music generation has witnessed significant advancements in re-
cent years, driven by a diverse array of methodologies aimed at unraveling the
complexities of automatic composition.

The scope of automatic music generation is very broad and there are many
aspects of it that can be addressed; the main challenges faced in this area are the
following:

• Melody generation constitutes one of the earliest aspects of music subject
to automatic creation. When considering the problem of music generation,
the simplest form of this exercise that comes to mind is the composition
of monophonic melodies without accompaniment. Anyway, in most melody
generation systems, the goal is to compose melodies with characteristics similar
to a chosen style, such as Western tonal music or free jazz or melodies for a
certain chord progression.

• Harmony generation refers to the simultaneous sounding of different pitches
to create chords and chord progressions. Generating harmonic progressions

9

Introduction

automatically is another popular aspect of music generation, particularly when
aiming to complement a given melody or fit within a specific musical genre.

• Rhythm generation involves the creation of rhythmic patterns without direct
human intervention. This process is crucial in music composition, as rhythm
forms the backbone of musical structure and provides the framework for
melodic and harmonic elements to interact.

In the field of music generation, beyond addressing specific challenges in harmony,
melody, and rhythm generation, there may be additional distinct problems to tackle.
Alternatively, in some cases, efforts are made to address the combination of various
subproblems.

In addition to the various sub-problems, there is an additional distinction to
highlight. In the realm of automatic music generation, the described sub-problems
or combinations thereof are addressed through different methodologies outlined
below.

1.4.1 Machine Learning
In the context of music generation involves extracting new musical elements from
existing musical data. Advanced models incorporate sophisticated musical features
such as pitch contour and rhythmic patterns. In addition to conventional tasks like
prediction, classification, and translation, deep learning is increasingly recognized
as a viable option for music generation. This is evident in projects leveraging deep
learning’s capabilities to automatically learn musical styles from diverse musical
pieces, enabling the generation of samples. However, the direct application of
deep learning to music generation presents challenges related to control, structure,
creativity, and interactivity.

This technique relies on artificial neural networks with multiple layers processing
complex abstraction levels automatically extracted from the data. The evolution
has led to the widespread use of networks like LSTM and Generative Adversarial
Networks (GANs) to address specific challenges in music generation.

While these architectures are powerful, they often lack direct control over the
generation process and operate autonomously without human interaction. The
direct implementation of deep learning can result in content that mimics the training
dataset without showcasing true creativity. This poses challenges in understanding
the exact functioning of the generation process and controlling the system’s output.

1.4.2 Genetic Algorithms
Genetic algorithms, also known as evolutionary algorithms, simulate the natural
evolutionary process by starting with an initial population of random solutions to an

10

Introduction

optimization problem. The individuals in the initial population, which in our case
are random solutions to the specific problem of music generation we are addressing,
undergo evaluation. Often, assessing musical quality, or "fitness," poses an intrinsic
challenge, as precisely defining what constitutes an optimal composition can be
complex. The next step is the so-called Crossover: here, the selected "individuals"
following the evaluation are indeed "crossed." This step simulates natural genetic
crossover. In some individuals of the new generation, random mutations occur.
This process introduces random variations in the solutions, contributing to genetic
diversity. The new generation of individuals replaces the previous population, and
the preceding steps of "Evaluation" and Crossover are repeated for a certain number
of iterations (fixed or variable) until an acceptable final solution is achieved.

1.4.3 Rule Based
An algorithm of this type follows a series of predetermined musical rules to create
compositions. This approach is based on formalizing the rules of music theory that
guide the compositional process. Hiller and Isaacson (1957) are pioneers in this ap-
proach, and their systems adhere to strict musical rules for generating compositions,
as seen in the model by Schottstaedt (1984) for counterpoint generation.

The rule-based algorithm in music generation can be implemented in various
ways, often combining rules with optimization techniques to ensure adherence to
all rules during the creative process. These systems may start from initial material,
such as existing musical sequences or random inputs, which are then refined through
the application of musical rules.

Rules can be implemented using Constraint Programming, a declarative approach
well-suited for describing music theory rules. The complexity in designing such
systems lies in the need to encode a significant number of rules, balancing formal
definition and stylistic variety. Additionally, there is a challenge in finding the
right balance between adding rules to better fit the modeled style and limiting
restrictions to be more open to various musical styles.

This approach can lead to more efficient exploratory creativity, although it may
limit the variety of the output due to the imposition of specific constraints.

1.4.4 Markov Models
It is a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event.

In the musical context, Markov chains serve as a tool for modeling the sequential
transition between musical notes or events. These stochastic processes, characterized
by a finite number of states, define the transition between states through a transition

11

Introduction

matrix. The probabilities of transitioning from one state to another are based on
the relative frequencies in the musical corpus used for training.

The introduction of an n-order approach allows the influence of the last n states
on the probability of the next transition, adding greater complexity to the modeling
of musical sequences.

Despite their fundamental effectiveness in the sequential representation of music,
the use of Markov chains can sometimes result in repetitive and less creative
outcomes, especially with higher orders. Nevertheless, the integration of Markov
chains with other techniques at higher structural levels, as seen in the generation
of entire compositions, can contribute to more intricate and creative results.

1.4.5 Optimization Problem
The optimization approach in music generation treats composition as a combinato-
rial optimization problem, providing significant advantages in setting constraints
on long-term musical structure and cadences. This methodology combines opti-
mization techniques with in-depth knowledge of music theory to impose a broader
structure, such as the 12-bar blues, and specific constraints on musical cadences.
This approach effectively models music generation by incorporating complex musi-
cal rules, contributing to defining a more coherent and musically satisfying outcome.
The fusion of optimization and theoretical knowledge opens up new creative possi-
bilities, allowing exploration of a wide range of musical constraints and guiding the
generation process toward musically meaningful results.

Each approach brings a unique set of tools and insights to the forefront, contribut-
ing to a rich tapestry of methods designed to address the multifaceted challenges
inherent in music generation. These techniques are not mutually exclusive and can
be combined in various ways to create innovative music generation systems that
contribute to the evolving landscape of musical creativity.

1.5 Tools for Music Generation
In the evolution of music, machine learning, optimization techniques, genetic algo-
rithms, and rule-based approaches have played a significant role in the development
of tools capable of generating solutions to the sub-problems of musical generation:

• Melody generation;

• Rhythm generation

• Harmony generation.

12

Introduction

These tools, or models, employ a variety of techniques and technologies to create
unique musical compositions. Below, we will explore some of these tools, examining
how they work and how they have influenced the field of music generation.

The following list of tools has been compiled with gratitude to the following
papers that provide an in-depth analysis of the state-of-the-art in music generation:

• Functional Taxonomy of Music Generation Systems [3]

• Computational Creativity and Music Generation Systems: An Introduction
to the State of the Art [4]

• A Systematic Review of Artificial Intelligence-based Music Generation: Scope,
Applications, and Future Trends [5]

• A Survey of AI Music Generation Tools and Models [6]

• The Pinkerton model, also called the "Banal Tune Maker," was developed by
Pinkerton in 1956 [7] to generate melodies inspired by existing nursery rhymes.
It utilized Markov models, analyzing transitions between notes in a corpus of
39 children’s melodies to create a transition matrix. This matrix represented
the probabilities of transitioning between different musical states, such as
notes in the diatonic major scale of C and symbols for pauses or sustained
notes.
During melody generation, the model followed a random walk process, selecting
the next note based on the probabilities defined in the transition matrix. How-
ever, the Pinkerton model’s simplistic approach, where each note’s probability
depends solely on the preceding note, resulted in melodies lacking complexity
and originality. Despite its early use of Markov models, the Pinkerton model’s
limitations highlight the need for more sophisticated techniques to generate
musically interesting melodies.

• GenJam is an interactive genetic algorithm designed for learning jazz improvi-
sation [8]. It employs two hierarchically correlated populations to represent
melodic ideas at both the measure and phrase levels. These populations evolve
through tournament selection, single-point crossover, musically significant
mutation, and replacement with a 50% generational gap. The fitness of in-
dividual measures and phrases derives from real-time feedback provided by
a human mentor while GenJam improvises, accompanied by a synthesized
rhythm section.
GenJam has been utilized in live performances under the name Al Biles Virtual
Quintet, featuring the author on trumpet and GenJam playing a variety of
synthesized instruments. Together, they perform a repertoire spanning over 90

13

Introduction

compositions in various jazz, Latin, and new age styles. Recent enhancements
include a pitch-to-MIDI capability, enabling GenJam to listen to a human
soloist, map their four-bar phrases to GenJam’s genetic representation, apply
selected mutation operators to these phrases, and play them in real-time while
exchanging quarters or eighths with a human soloist. This makes GenJam
genuinely interactive both during training and performances.

• The Marques Music Generator aims to autonomously produce high-quality
musical compositions without external user intervention, starting sequences,
or subjective feedback [9]. It utilizes algorithmic composition methods derived
from the study of rules followed by human composers, incorporating evolu-
tionary algorithms, specifically a variant known as "Familial Competition."
The algorithm begins with a random population in the search space, applying
crossovers and mutations to create new individuals (children) that are eval-
uated against their parents. The two best individuals proceed to the next
generation. This process continues until a predefined fitness value is achieved
or a set number of iterations is reached, enhancing the effectiveness compared
to standard genetic algorithms.

• The "Melisma Stochastic Melody Generator" is an advanced tool for generating
melodies using artificial intelligence [6]. It incorporates randomness into
the melody creation process through a stochastic process, allowing for the
generation of unique tunes each time. Users can customize the specifications for
the tune generation at various levels, providing a high degree of personalization.
The generator uses a fitness function to evaluate the quality of the melodies it
generates. This function is based on musical rules and principles, ensuring that
the generated melodies are musically coherent. An evolutionary algorithm,
which mimics the process of natural evolution, is used to evolve and optimize
the melodies over time. The generator continues to iterate and improve upon
the melodies until it achieves a satisfactory level of fitness or until a certain
number of iterations have been completed. In essence, the Melisma Stochastic
Melody Generator combines artificial intelligence and music theory to create
unique and pleasing melodies from scratch.

• MorpheuS is an automatic music generation system that addresses the chal-
lenge of creating music with long-term structure. It uses advanced pattern
detection techniques to identify repeated sequences in a given example piece of
music (the template). These patterns represent recurring musical structures.
The identified patterns are then used to constrain the process of generating
a new polyphonic composition. In other words, MorpheuS relies on existing
patterns to create new coherent musical parts [10]. The music generation

14

Introduction

process is guided by an efficient optimization algorithm called “variable neigh-
borhood search”, which uses a mathematical tension model as its objective
function. Tonal tension is a musical concept related to harmonic stability and
instability. MorpheuS also has the capability to generate music based on a
specific tension profile, allowing it to create musical parts that fit different
emotions or situations, such as in game or film music contexts. Compositions
generated by MorpheuS have been performed in live concerts. In summary,
MorpheuS combines pattern analysis, optimization, and tension models to
create structured and engaging music. It’s an intriguing tool for composers
and those interested in exploring new creative possibilities in music.

• The Continuator is a system developed by François Pachet at the Sony
Computer Science Laboratory in Paris, which operates based on Markov
models[11] . This system represents a significant advancement in the field, as
it successfully bridges the gap between two traditionally incompatible types
of musical systems: interactive musical systems and music imitation systems.
Interactive musical systems, while engaging for the user, have historically been
limited in their ability to generate stylistically consistent material. On the
other hand, music imitation systems, though capable of producing stylisti-
cally consistent material, are fundamentally not interactive. However, the
Continuator manages to combine the strengths of both types of systems.
The Continuator enhances the technical abilities of musicians by providing
them with stylistically consistent material that the system learns automatically.
This is achieved by constructing operational representations of musical styles
in real-time. The system employs a Markov model of musical styles, enhanced
to handle musical elements such as rhythm, beat, harmony, and imprecision.
Consequently, the Continuator can learn and generate music in any style, both
autonomously and as continuations of the musician’s input, or as support for
interactive improvisation.
Furthermore, the design of the Continuator opens up new possibilities for
collaborative musical play. The system has been tested in various real-world
contexts, demonstrating its practical applicability and effectiveness. For
example, in a study at the University of Bologna where the use of this system
was introduced to children, positive educational effects were observed[12].
In conclusion, the Continuator represents a significant step forward in the
field of music generation, offering a unique combination of interactivity and
stylistic consistency that sets it apart from other systems.

• MuseNet, a project by OpenAI, represents a state-of-the-art technology in the
field of music generation [13]. It employs a deep neural network to generate
musical compositions, capable of creating 4-minute compositions with up

15

Introduction

to 10 different instruments, and can blend styles ranging from country to
Mozart to the Beatles. Rather than being explicitly programmed with our
understanding of music, MuseNet has discovered patterns of harmony, rhythm,
and style by learning to predict the next token in hundreds of thousands of
MIDI files. It utilizes the same general unsupervised technology as GPT-2, a
large-scale transformer model trained to predict the next token in a sequence,
whether it’s audio or text. However, MuseNet does have limitations. For
instance, the instruments you request are strong suggestions, not requirements.
MuseNet generates each note by calculating probabilities over all possible notes
and instruments, and while it shifts to make your instrument choices more
likely, there’s always a chance it might choose something else. MuseNet also
struggles with unusual pairings of styles and instruments, such as Chopin with
bass and drums. Despite these limitations, MuseNet represents a significant
advancement in the application of AI for music generation.

• Riffusion is an artificial intelligence model that generates music using spectro-
grams, visual representations of sound [14]. These spectrograms are generated
by an image synthesis model called Stable Diffusion 1.5, which has been
adapted to work with sound.

Once the model generates the spectrogram, Riffusion converts it into an audio
file using an inverse Fourier transformation. This process transforms the image
of sound into real audio that we can listen to.

Riffusion can also create new musical compositions by combining different
sounds together. This is done using a feature of the Stable Diffusion model
called img2img, which allows interpolation between different images (or in
this case, sounds).

Finally, although the audio files generated by Riffusion are usually short,
the model can create longer compositions by stringing together these short
segments. It is a tool that can be used to explore new forms of musical
expression.

• MUSICGEN is an artificial intelligence model designed for high-quality music
generation based on textual descriptions, such as "90s rock song with a guitar
riff [15]. The model leverages recent advancements in self-supervised audio
representation learning, sequential modeling, and audio synthesis. To address
the challenges of music generation, MUSICGEN represents audio signals
as multiple streams of discrete tokens, allowing for both high-quality audio
generation and effective audio modeling. The model produces coherent and
high-quality music, considering both the provided textual description and the
desired melodic structure.

16

Introduction

• CHORAL is an expert system created by Kemal Ebcioglu for harmonizing
four-part chorales in the style of J.S. Bach through a Rule-based alghoritm [16].
With over 270 rules expressed in a first-order predicate calculus, CHORAL uses
a rule-based approach to make decisions in chorale harmonization. It considers
chordal structure, individual melodic lines, and voice leading, employing an
intelligent backtracking method. The system is implemented in the BSL
programming language, designed specifically for CHORAL. This approach
ensures coherent harmonizations consistent with Bach’s style.

• Magenta is designed to handle the entire music composition process. Lever-
aging advanced techniques such as recurrent neural networks and generative
adversarial networks, Magenta has the capability to compose original music
spanning various genres and styles[17].
Magenta is not limited to melody generation; it can also create harmonies and
rhythms, allowing it to generate complete songs autonomously. Additionally,
Magenta can harmonize melodies, generate chord progressions, and create
rhythmic patterns suitable for different musical contexts. Its interactive tools
enable real-time collaboration between users and the AI model, empowering
users to influence the direction of music generation.
Overall, Magenta represents a significant advancement in the field of music
composition through artificial intelligence. By integrating cutting-edge ma-
chine learning algorithms with interactive user interfaces, Magenta expands
the possibilities of creative expression in music composition.

• The APOPCALEAPS system is a pop music generation system that utilizes
probability rules implemented in CHRiSM, a high-level programming language
specifically designed for writing constraint solvers [18]. It assigns a chord per
measure and models the chord sequence as a simple Markov chain. Transition
probabilities are set manually based on personal taste and experience but can
also be learned automatically from examples. The input specifies the key and
the number of measures, and the chord sequence in the output is encoded as
constraints mchord(X, C), where C is the chord for measure X. If a piece is in
a major key, the first and last measures get the "C major" chord, whereas if it
is in a minor key, they get "A minor" chords.

• The "Piano Impainting" application is based on machine learning technolo-
gies, specifically on linear encoder-decoder transformers. This allows PIA to
efficiently restore missing regions in a piano performance.

• "MidiNet" is a network designed for music generation in the symbolic domain.
It employs neural networks to transform random noise input into a musical
output [19]. This process is guided by a generative model that aims to mimic

17

Introduction

the training data. This enables the model to generate melodies from scratch,
follow a chord sequence, or be conditioned on the melody of preceding bars.

• JamBot is an artificial intelligence tool that creates polyphonic music, meaning
music involving multiple notes played simultaneously [20].
It is based on a technology called LSTM (Long Short-Term Memory), a type
of artificial neural network used for machine learning. JamBot operates in
two phases: first, it predicts a chord progression based on a chord embedding,
which is a numerical representation of chords. Subsequently, it generates
polyphonic music based on the predicted chord progression.

• The "Pop Music Transformer" is a machine learning model developed for
generating pop music compositions for the piano [21]. During the generation
process, the model produces a complete musical composition that includes
both the melody and chord structure. Additionally, the model provides
controllability over local tempo changes and chord progression, offering a
certain degree of flexibility and variety in the generated music.

1.6 Outline
This outline give a structure to the subsequent chapters and their respective
topic. The second chapter aims to explain harmonization theory essential for
comprehending the project. The third chapter delves into the idea behind the
mathematical model and show its structure. Additionally, it outlines the specific
components and methodologies used in shaping the model as variables, target
function etc. The fourth chapter is dedicated to explaining the translation of the
mathematical model into Python and also, how to handle musical files through
Python libraries. This section focuses into the practical implementation of the
model, emphasizing the coding aspects and the utilization of Python-based tools
for effective execution. Moving on to the fifth chapter, the focus shifts to testing
the model and presenting the results of harmonizing well-known musical pieces.
A comparative analysis with the original compositions is conducted, showcasing
the effectiveness and performance of the model. These tests involve systematic
variations of the model’s parameters, providing a comprehensive evaluation of its
adaptability and outcomes.

18

Chapter 2

Background in Music
Theory

2.1 Introduction to Musical Harmony
This chapter delves into the foundational aspects of tonal harmonic theory to provide
a theoretical framework essential for comprehending the underlying motivations
behind constructing the model. As outlined in the previous section, the central
aim of this paper is to find a methodology for harmonizing a melody supplied
by the user. In musical terms, a "melody" is defined as a sequential arrangement
of individual notes, creating a linear progression. Melodies play a crucial role in
shaping the character and emotional impact of a piece of music. They are typically
the most recognizable musical element in a piece of music, providing a sense of
structure, identity, and emotional expression. The harmonization of a melody refers
to the process of combining chords and melody. The combination of these two
elements add complexity and unique overall sound to the song. The result of this
process is influenced by the following factors: 1. Relationship between harmony
and chords; 2. Progression of chords and cadences.

In the exploration of musical harmony and the harmonization of melodies, it is
necessary to understand the fundamental elements of chords and scales. In this
work, the application works using exclusively C major scale, which is the starting
point to harmonization of a melody.

2.2 C Major Scale Construction
In this section, the construction of the C major scale will be discussed. This scale
acts as a fundamental framework, guiding our understanding of musical harmony.

19

Background in Music Theory

Constructed with a specific formula:

• (Whole−Whole−Half −Whole−Whole−Whole−Half)

In music theory, a half step (H) represents the distance of one semitone. It is the
smallest interval in traditional Western music. For example, moving from C to C#
or from E to F on the piano involves a half step. If we consider the piano keyboard,
moving from one key to the very next key – white or black – constitutes a half
step. A whole step (W) corresponds to the distance of two semitones. So, when
we apply the formula to construct the C major scale we are essentially defining
the sequence of intervals in terms of semitones [22]. The figure below shows the
resulting sequence of notes.

Figure 2.1: C major scale with his formula

The C major scale, with its pure and unambiguous tonal structure, provides a
solid starting point for our exploration. By delving into the intervals between each
note, we lay the groundwork for understanding how chords can be built and how
harmonic progressions can be shaped. This fundamental knowledge of the C major
scale will prove essential as we navigate the complexities of harmonizing melodies
in the subsequent chapters.

2.2.1 Relative Minor Scale
Minor scales, intricately linked to their major counterparts, add a layer of richness
to our exploration of harmonization. The process of deriving minor scales from
major scales unveils a fascinating interplay of tones and intervals. Applying the
formula:

• (Whole−Half −Whole−Whole−Half −Whole−Whole)

to A results in the creation of the A minor scale: A, B, C, D, E, F, G, A [22].

Figure 2.2: A minor scale, relative minor of C major scale

20

Background in Music Theory

Despite the altered order of notes, a clear connection emerges between the A
minor scale and the C major scale. This relationship exemplifies the harmonic
duality between major and minor scales. The harmonic richness introduced by
minor scales sets the stage for our exploration of chord construction and the
subsequent harmonization of user-provided melodies.

The model has been further enriched by the harmonic and melodic A minor
scales.

2.2.2 A Harmonic Minor Scale
The A harmonic minor scale introduces an impactful alteration to the natural
minor scale. This modification occurs by raising the seventh degree of the scale by a
semitone. In the case of the A harmonic minor scale, the G is elevated to G#. This
adjustment creates a distinctive and somewhat exotic tonal flavor, enhancing the
model’s capacity for harmonic diversity. The harmonic minor scale is particularly
valuable in creating tension and building anticipation, adding layers of complexity
to chord progressions[23].

Figure 2.3: A Harmonic minor notes

2.2.3 A Melodic Minor Scale
Similarly, the A melodic minor scale contributes another dimension to our harmonic
exploration. This scale alters the sixth and seventh degrees compared to the natural
minor scale. Both the F and G are raised by a semitone when ascending, reverting
to their natural positions when descending [23].

By including both the melodic variations of the A scale our model expands the
range of tonal options it can explore.

Figure 2.4: A Melodic Minor Scale

21

Background in Music Theory

2.3 Constructing Chords from Scales
The process explained in this paragraph is the one of constructing chords from the
C major scales. Chords are defined as simultaneous combinations of three or more
notes that are played together to create a sound. In music theory, chords serve
as the basic building blocks of harmony and are crucial for creating the overall
tonal structure of a musical piece. Since this work has the aim to add a chord
progression to a given melody, it is crucial to understand how they are constructed
and how chords are related to single notes.

2.3.1 Triads
The simplest class of chords employed by the model are the “triads”; as suggested
by the name are constructed using three notes played simultaneously. The process
of constructing triad involves superimposing notes with specific interval distances.
To form triads, a precise process based on the structure of the reference scale, in
our case, the C major scale, is followed. For each chord, a starting note is selected,
often called the "root" of the chord, and from this note, two third intervals are
added. The first third interval determines whether the chord will be major or
minor. If the third interval consists of two whole tones, a major chord is obtained.
If the interval is composed of a tone and a half, a minor chord is obtained. The
second third interval, added to the note resulting from the application of the first
interval, determines the fifth of the chord. The fifth can be "perfect" (an interval of
three and a half tones from the root), "augmented" (an interval of four tones), or
"diminished" (an interval of three tones).

Figure 2.5: A harmonic minor chords

Major Triad

The major triad, with its root, major third, and perfect fifth, emanates a bright and
uplifting sound. Known for its sense of stability and consonance, the major triad
is often associated with positive and joyful musical expressions. Its harmonically

22

Background in Music Theory

rich quality contributes to a feeling of resolution and completeness, making it a
foundational element in various musical genres.

Minor Triad

In contrast, the minor triad, formed by the root, minor third, and perfect fifth,
carries a more subdued and introspective character. The minor third introduces an
element of tension, evoking emotions ranging from melancholy to contemplation.
Minor triads are frequently employed to convey complex and nuanced feelings,
adding depth and emotional diversity to musical compositions [22].

Sus4 Triad

The "Sus4" triad, featuring the root, perfect fourth, and perfect fifth, introduces a
sense of suspension and ambiguity to the harmonic landscape. The absence of the
third creates an open, unresolved quality, often described as having a "suspended" or
"floating" sound. "Sus4" chords are versatile, providing a departure from traditional
major or minor tonalities and offering a platform for creative and experimental
musical exploration.

Triads exhibiting a minor third and a diminished fifth fall into the category
of "diminished" chords. It is characterized by a unique and distinct sound that
can be described as tense, unstable, and dissonant. In major scales, a consistent
pattern emerges in the formation of chords based on each degree. Specifically, on
the 1st, 4th, and 5th degrees, major chords are invariably constructed. On the
2nd, 3rd, and 6th degrees, minor chords are consistently formed. Notably, the 7th
degree gives rise to a diminished chord. Taking the specific example of C major,
the chords are: C major, F major, G major, D minor, E minor, A minor, and B
diminished. The same chords can be obtained doing the same process with the A
minor scale [22].

Figure 2.6: Sus4 triad in C major

2.3.2 Seventh Chords
Similar to triads, the "seventh chords" constitute a more complex class of chords
utilized by the model. To construct seventh chords, the same foundational process

23

Background in Music Theory

is applied, but with the incorporation of an additional interval. For each chord,
a starting note, referred to as the "root," is chosen, and from this note, two third
intervals are added as well as a seventh interval [22] .

The process of adding a seventh interval to triads results in the formation of
three distinct types of seventh chords:

• The major seventh chord which are characterized by the root, major third,
perfect fifth, and major seventh;

• The minor seventh chord, formed by the root, minor third, perfect fifth, and
minor seventh;

• The dominant seventh chord, with its root, major third, perfect fifth, and
minor seventh. Its distinct sound often leads to resolutions

• The diminished seventh chord, featuring the root, minor third, diminished
fifth, and diminished seventh. It is characterized by dissonant and unstable
quality.

Their qualities contribute to the overall richness and diversity of harmonic
expressions in our model. In a major scale, specific degrees give rise to different types
of seventh chords, adding depth and sophistication to the harmonic palette. On
the 1st and 4th degrees, major seventh chords are formed, characterized by a major
seventh interval. The 5th degree yields the dominant seventh chord, recognized
for its pivotal role in creating tension and leading to resolutions. Meanwhile, the
2nd, 3rd, and 6th degrees consistently generate minor seventh chords, contributing
a milder and introspective quality. The 7th degree results in the formation of
half-diminished seventh chords, known for their distinctive semi-diminished sound.

In the context of the C major scale, this translates to the creation of specific
seventh chords:

• The 1st degree (C) forms a major seventh chord (Cmaj7).

• The 4th degree (F) also produces a major seventh chord (Fmaj7).

• The 5th degree (G) gives rise to a dominant seventh chord (G7).

• The 2nd degree (D), 3rd degree (E), and 6th degree (A) contribute minor
seventh chords (Dm7, Em7, Am7).

• The 7th degree (B) generates a half-diminished seventh chord (Bm7b5), infus-
ing a touch of tension and complexity into the harmonic landscape.

24

Background in Music Theory

Figure 2.7: Seventh chords in C major

2.3.3 Inversion Chords
The inversion of a chord with the seventh, fifth, and third at the bass is a harmonic
technique that involves rearranging the order of notes within the chord In these
chords, the lowest note is not the root, creating a diverse harmonic effect. For
example, let’s consider a C major chord in its root position, consisting of the notes
C (root), E (third), and G (fifth). In the inversion with the third at the bass, the
order becomes E (root), G (fifth), and C (third). In the inversion with the fifth at
the bass, the order becomes G (root), C (third), and E (fifth). Now, considering
a C major seventh chord (Cmaj7) in its root position, composed of the notes C
(root), E (third), G (fifth), and B (seventh). In the inversion with the seventh at
the bass, the order becomes B (root), C (seventh), E (third), and G (fifth)[23].

2.3.4 Dominant Seventh Chords and Substitutions
The last typology of chords that have been used for this work are Dominant Seventh
one. In music theory, the use go this chords is often associated with the concept
of "temporary modulation," meaning a momentary change of key in the piece of
music. In this case, the additional chords are C7, D7, E7. The reason for these
substitutions is explained below:

The inclusion of D7 in a C major progression is justified through the concept of
a "secondary dominant." In this context, the G chord is reinterpreted not as the V
degree of the C major scale but rather as the I degree of a G major scale. The fifth
degree (V) of the G major scale aligns precisely with the seventh dominant chord,
D7. Doing the same process with F major chord, C major dominant seventh is
found.

The use of the E7 chord is justified by the use of the harmonic minor scale
within our model. This variation from the natural minor scale ensures that, just
like in the major scale, a dominant seventh chord is formed on the V degree, namely
E7. The harmonic tension created by these types of chords generally prepares the
ear for resolution to their respective I degree. Next paragraphs will discuss how
chords played consecutively create tension and resolution. The figure below show
A minor harmonic chords, E7 included[24].

25

Background in Music Theory

Figure 2.8: C major chords

2.4 Cadences
An important aspect to keep in mind is the relationship that chords have with
each other when played in sequence. This is what is called a cadence, and it has
an impact on the tension of a piece of music. This aspect has a significant impact
on the perception and emotion of a musical piece. They influence the harmonic
structure and contribute to creating tension and resolution, providing direction
and coherence within the composition.

To better understand the software implementation choices, the cadences taken
into consideration are explained below:

• The Perfect Authentic Cadence produces a greater sense of conclusion and
consists of the succession of the dominant seventh chord (G7), which creates
tension, and the I chord (C), which, when preceded by the V chord, gives
a strong sense of resolution to the piece. A similar effect is achieved by
the succession of the V chord of the harmonic minor scale and the chord
constructed on the I grade (E7 —>Am). In fact, in this scale, the VII degree
is raised by a semitone, creating a resolution of tension similar to that of the
major scale. The same effect is obtained playing the following chord pairs: C7
- F and D7-G using the concept of "Secondary Dominant" explained in the
previous chapter.

• The Imperfect Authentic Cadence is the succession of the VII and I chords.
These lead to a strong sense of resolution, especially when the note C and B
semi-diminished chord sounds together.

• A "Half Cadence" is any chord progression that goes to V (G7): most common
ones are I-V, ii-V, and IV-V. It creates a weak point of pause and can be
imagined as the comma of spoken language.

• The "Plagal Cadence" in C major scale uses the progression from IV to I, which
means F to C. The feeling given is similar to that of an authentic cadence but
softer.

• The "Deceptive Cadence," instead, follows the V chord with a chord other
than the I chord. The listener would expect the C major chord, but a different
one arrives, creating an unexpected sound.

26

Background in Music Theory

Figure 2.9: Cadences representation on music sheet.

Seen that this chord cadences can be found in the most common chords pro-
gression, the model use those element to decide which chords to use for a certain
bar of the melody. The second factor taken in consideration by the model is the
relationship between chords and melody. In particular, to have a chords progression
coherent with the melody, chords which containing it are preferred. The next
chapter is dedicated to describing those element and, more in general how the
model works[24].

Transposition

Everything we have discussed up until now including the creation of the C /A scale
the development of chords and cadences can be applied to other scales as well using
transposition. Transposition is a core concept, in music theory that allows us to
shift a passage or musical sequence from one key to another while preserving the
structure and relationships, between the notes.

27

Chapter 3

Mathematical Model

3.1 The idea

Before proceeding with the analysis of the various components of the model, it
is important to understand the underlying idea that guided its structuring. The
goal of the structured model is to choose a sequence of chords that adhere to the
rules of harmonization explained in the [music chapter] and, at the same time, are
coherent with the melody provided as input by the user. Specifically, the aim is
to select a number of chords equal to the number of beats entered by the user.
Assigning a chord to each beat, in an amount equivalent to the entered beats,
is a simplified way of achieving this objective. It is worth noting that a Mixed
Integer programming model has been chosen to solve this type of problem. As
mentioned earlier, the use of this solution is not very common in this research
field; however, due to some similarities with the study conducted in the document
"Generating guitar solos by integer programming" [1] this approach was chosen.
In the cited article, a minimum path problem is solved, where each node in the
graph represents a portion of a solo, referred to as a "lick." A weight is assigned to
each edge connecting the "licks," influencing the model’s choice in minimizing the
objective function and selecting a series of nodes to create the complete solo. In the
context of this model, the transition cost matrix plays a crucial role in the coherent
selection of chord sequences. This matrix is not merely a series of numerical values
but incorporates the valuable informational content derived from harmony theory.
This theoretical knowledge enables the model to assess and choose chord sequences
that are inherently coherent with the given melody. Harmonic rules and commonly
used chord progressions in music theory, integrated into the cost matrix, serve as a
guide for the model, facilitating the generation of accompaniments that adhere to
the harmonic conventions of popular music. This fusion of theoretical knowledge
and combinatorial optimization algorithms contributes to the model’s ability to

28

Mathematical Model

create meaningful and musically satisfying harmonizations. Despite the peculiar
difficulties inherent in the harmonization problem, a similar idea has been adopted
to address it.

In the case of the melody harmonization:

• The nodes in the graph represent the chords of the accompaniment that could
be chosen by the model;

• The edges represent the cost of transitioning from one chord to another.

In the cost decision-making process, it is crucial to carefully consider the parameters
that influence the evaluation of transitions between chords. One of the main
challenges is determining how to assign weights to different types of harmonic
transitions. In particular, we will have two parameters with distinct functions, both
of which, nevertheless, modify transition costs. One parameter will be dedicated to
penalizing or favoring specific progressions, while the other will prioritize chords
that better align with the melody in terms of the number of shared notes between
the melody and the chord itself.

The flexibility of these parameters allows the model to adapt to various types of
musical compositions and user preferences. Experimentation and optimization of
these parameters are integral parts of the model’s development journey. The main
difficulty arises from the need to somehow connect these two elements to achieve a
sequence of chords that is not only interesting but also coherent with the melody
provided by the user.

3.2 Mixed Integer programming
This paragraph is useful to better understand the instrument that has been chosen
to solve the problem of melody harmonization. Mixed Integer programming is a
mathematical approach used to optimize a linear objective function subject to a
set of linear constraints. In particular, LP involves making decisions about the
allocation of resources to maximize or minimize a specific goal. The component of
a Mixed Integer programming Model are the following:

• Decision Variables represent the quantities under consideration within the
problem, exerting influence on the overall objective.

• The Objective Function is a linear equation which represent the goal, aiming
either to maximize profits or minimize costs. It functions as the guiding metric
in decision-making, reflecting the desired outcome.

• Constraints are relationships imposing restrictions on feasible values of decision
variables.

29

Mathematical Model

The minimum path problem, often formulated as "find the shortest path between
two points in a weighted graph," can be modeled through a system of linear
equations, which is characteristic of LP problems. In this context, the objective
function can be defined as the minimization of the sum of the edge weights along
the selected path, and constraints can ensure the connectivity and consistency
of the path. In the next paragraphs it will be explained how the minimum path
problem has been used to model the problem of melody harmonization.

3.3 Variable
In this paragraph, we delve into the central aspect of the problem by defining the
variables used to structure the model. Despite its complexity, the mathematical
model developed to address the problem at hand involves only two key variables,
each serving a specific role. Let’s analyze these variables in detail, highlighting
their significance and their contribution to solving the problem.

Binary Variables x[i][j][t] :

• If this variable has a value of 1, then the edge i —> j is included in the solution
at time t.

• Conversely, it has a value of 0. This type of variable is essential for modeling
the decision to select or exclude a specific edge at time "t".

Continuous Variables p[i][j][t]:

• The continuous variables p[i][j][t] represent the weight associated with the
edge i —> j at time t.

• The use of variables structured in this manner allows for modeling the impor-
tance of edges in the graph dynamically, varying over time based on specific
considerations. These weights reflect the "preference" for traversing a specific
edge at time t, influenced by the user-inserted melody. Specifically, lower
weights indicate better edges.

3.3.1 Time index
In the quest for a solution, each beat of the melody provided by the user necessitates
the inclusion of a chord. This implies that, having chosen to use edges as variables
in the model, there must be one for each transition from one beat to another. In
the context of the mathematical model, the time index "t" represents a continuous
time span connecting beat (or instant) k-1 to beat k. Instead of being a specific

30

Mathematical Model

Figure 3.1: Four bar melody in the key of C major

moment in time, "t" delineates the temporal interval during which the transition
from one beat to another occurs.

In the example shown in the figure, there are four beats. This might lead to
the assumption that the number of instances of the variable "t" is equal to three.
However, in reality, there are two additional edges necessary for modeling: the edge
representing the transition from before the beginning of the piece to the first beat
and the edge representing the transition from the last (fourth) beat to the graph’s
closure. This means that, in this case, "t" equals five. More generally, the number
of instances of the variable "t" varies linearly with the number of beats "k" in the
melody provided by the user according to the following equation:

t = k + 1 (3.1)

3.3.2 Dummy Nodes
In the context of graph theory, a "dummy node" is a fictitious node introduced for
specific purposes, such as simplifying the structure of a graph or facilitating certain
operations. These nodes do not represent real elements of the system under study
but are used to add structure or facilitate the calculation of optimal solutions.

Within the model, two additional dummy nodes have been introduced: the
initial dummy node and the final dummy node. These nodes do not represent
physical elements of the original graph but have been strategically included to
facilitate mathematical modeling.

The initial dummy node serves to represent the concept that before the selected
chord in the first beat, there are no other chords, but rather a dummy node
representing the beginning of the accompaniment. It is connected to other nodes
only through outgoing edges.

Similarly, the final dummy node represents the conclusion of the accompaniment
and, in particular, the fact that after the selected chord in the last beat, there are
no other chords. Unlike the "initial node," it is connected to other nodes in the
graph only through incoming edges.

Considering the previous example:

• T = 0 represents the time span connecting the initial dummy node and the

31

Mathematical Model

first beat;

Figure 3.2: Fake starting node to start the graph

• T = 4 represents the time span connecting the last beat to the final dummy
node.

Figure 3.3: Fake starting node to start the graph

Once these dummy nodes are defined, the previously explained variables can be
encapsulated in matrices. Specifically, it is not sufficient to define a single matrix "P"
for weights and a matrix "X" with binary variables. For both mentioned variables,
a number of matrices equal to k + 1 must be defined. This need arises from the
fact that the edges connecting generic chords "i" and "j" should not have the same

32

Mathematical Model

weight regardless of the beats during the transition. Instead, the weights must
change over time based on the melody provided by the user. The next paragraph
presents the operations that modify these matrices before the model is solved.

3.4 Parameters
Before proceeding with the explanation of constraints and the objective function,
it is essential to examine the preprocessing phase, a crucial step that adds a level
of complexity to our approach. This adaptation of matrices, and so of the edges’
weight, is fundamental to ensure that the model takes into account the specific
characteristics of the melody, thereby contributing to generating chord sequences
that organically integrate with the melodic progression. The operations that modify
the cost of the matrix can be divided into two distinct operations:

• The first part of the preprocessing can be expressed as the incorporation of
harmonic preferences into the model. The goal is to modify the weights of the
edges to express a preference for the harmonic progressions explained earlier.
It is important to emphasize that preferring a sequence of two chords i; j
means assigning a lower cost to the edge connecting them, i.e., p[i][j][t]. In
this phase, the modification of costs is independent of t and is carried out in
the same way for each matrix. Next section will underline which arch weigth
will be decreased.

Chord matrix

In general, when choosing a chord progression we aim for tensions and resolu-
tions, and it is based on this general rule that the weights assigned to each arc
in the graph have been determined. The aim of this paragraph is to show the
chords data-set and to explain the weight that has been chosen for every arch
between couple of chords. The table below shows all chords that have been
used in this model, also explained in the paragraph “Constructing chord from
the paragraph”. To begin, each possible arch has been assigned a standardized
weight of 50.
The weights of the standard arches are then decreased or increased by a factor
that is a parameter, called "bonus_chord_progression". This will be later
take on different values to observe how its value influences harmonization. As
the weight of an arch is increased, it becomes less likely to be included in the
solution. Vice versa, for arches whose weight is decreased, they become more
likely to be included in the solution.
The following arches have been penalized:

33

Mathematical Model

Figure 3.4: Chords included in the model & their notes

– Arches towards semi-diminished and diminished B chords. In fact, the
excessively unstable and tense nature of these chords makes it challenging
to incorporate them into a tonal accompaniment. For this reason, a
decision was made to penalize these arches. Nevertheless, it is still
possible for the model to use these chords in cases where the melody
specifically calls for them.

– Arches connecting identical chords but with different inversions have been
penalized. This decision aims to prevent overly similar chords from being
selected consecutively, avoiding repetitiveness and a lack of tension in the
accompaniment.

To choose the arcs to prioritize through the weight bonus, we relied on the
authentic, plagal, half, and deceptive cadences explained earlier. Additionally,
the decision was influenced by the frequency of certain harmonic progressions.
For this reason, the following arches have been favored:

– Arches which refers to cadences described before as Authentic and Plagal
etc.

– Arches involved in the most common progression shown in the table below;
– Arches between secondary dominant chords and their I grade and the

arch connecting the V grade of minor harmonic scale and A minor;

After this process, the matrix has significant differences with the starting one.

• The second part of pre-processing involves modifying the weights of chords
based on the melody. To regulate this aspect, the decision was made to operate

34

Mathematical Model

Figure 3.5: Berklee College of Music’s Website - Most common chords progressions
[25]

as follows: the weight is decreased based on the number of notes in the melody
that are also part of the analyzed chord.

An example is useful to explain this second modification to the matrix:
Suppose the user’s melody consists of the notes C - E - F - D in the first beat,

and let’s consider the C major chord. As explained earlier, the edges connecting the
initial dummy node to the chord played during the first beat belong to the matrix
with t=0. The C major chord is represented by index j = 1, and the dummy node
by index 0. Consequently, we modify the following edge: p[0][1][0]. In the proposed
example, the melody notes also present in the C major chord, composed of the
triad C - E - G, are C and E. The cost is then reduced by the following factor:

• (Number − of − notes− in− common) ∗ (MelodyBonus)

The "Melody Bonus" is a quantitative indication of the preference given to
chords containing a certain number of melody notes. It does not have a predefined
value, as one of the objectives of this document is to analyze the various results
provided by the software based on the modification of preprocessing parameters.
To construct the matrix for use within the model, a matrix with equal weights
is first created. Subsequently, these two operations are performed, and then the
model is solved. It is important to underline that the preprocessing operations
described are performed by setting parameters manually and are not automatic

35

Mathematical Model

operations. Essentially, the parameter related to the first preprocessing operation
adjusts the importance of considering well-known cadences and chord progressions.
The parameter concerning the melody, on the other hand, increases or decreases
the fit between the chords the model chooses based on the melody. It is important
to consider these two factors because incorrect settings can lead to inconsistent
functioning of the model compared to the previously described musical rules.

3.5 Objective Function and Constraints
In this section, the key components of the optimization model, outlining both the
objective function and the constraints will be analyzed. The objective function
embodies the goal of the model. Instead constraints delineate the permissible
solutions by imposing specific conditions. Together, the objective function and
constraints guides the model towards generating optimal solutions within the
defined problem space.

The objective function of this model is designed to minimize the overall cost
associated with the selection of chords at different time instances. It is defined as
the sum of the products of the binary variables x[i][j][t] with the weights p[i][j][t]
for all edges i —> j and all times t. It is important to note that the matrix used is
the one on which preprocessing operations have already been performed.

min
xijt

nØ
i=1

mØ
j=1

kØ
t=1

xijt · pijt (3.2)

This optimization criterion aims to select a sequence of chords that minimizes
the total cost of the path through the harmonic graph’s edges, weighted by their
respective preferences.

The following are the constraints to ensure a coherent solution:
The duration constraint limits the number of selectable edges in the solution,

ensuring that only one edge is chosen for each time step t. Specifically, for each t,
the summation of x over i and j is strictly equal to one.

nØ
i=1

mØ
j=1

xijt = 1 for each t (3.3)

The "Starting Constraint" ensures that the initial dummy node is chosen as the
starting point of the graph. It is defined by the following equation:

mØ
j=1

x0,j,0 = 1 (3.4)

36

Mathematical Model

The requirement that the sum of all edges at t=0 with the starting node as
the initial dummy node must be strictly equal to one, combined with the previous
constraint, ensures that only one transition starts from dummy node "0."

The "Ending Constraint," similar to the starting constraint, ensures that the
model’s chosen path ends on the final dummy node.

nØ
i=1

xi,n+1,n = 1 (3.5)

Let "n" be the total number of nodes, and "k" be the number of time instances.
The equation defined here ensures that the only type of edge selectable at the last
time instance is the one that terminates at the final dummy node.

The "Exclusion Constraint" defines a transition of chords that should not be
chosen by the model:

∀t ∈ {1, 2, . . . , k}, (i = j =⇒ xijt = 0) (3.6)
In this specific case, the constraint prohibits the possibility of transitioning from

a generic chord to itself at any time "t." This constraint has been added because,
in the case of repetitive melodies, it prevents the same chord from being chosen for
two or more consecutive beats.

The flow constraint ensures that for each intermediate node, the inflow is equal
to the outflow, ensuring path connectivity. Simply put, if at t = k an edge to chord
"j" is chosen, the next time instance must necessarily choose an edge starting from
node "j."

mØ
j=1

xijt −
nØ

i=1
xjit = 0

This equation means that, if in a certain t, model choose the edge i ; j, in the
next t, it has to choose and edge that is leaving from "j" to other nodes. On the
other side, if the model does not choose i ; j as an arch, then no edges leaving from
"j" can be used.

These constraints, along with the objective function, constitute the mixed integer
programming model that is solved to obtain the optimal sequence of chords.

3.6 Next Steps in Model Development
To maintain a suitable level of complexity for the purpose of this document, various
limitations have been introduced. The following are listed and explained:

• The model operates exclusively with the C major scale and its relative minor.
This requires the user to transpose their melody to C, and after obtaining
chords from the model, transpose them back to the original key. Even in the

37

Mathematical Model

testing chapter, this led to the selection of pieces only in this key. It could
have been extended to work with other major scales, allowing the model to
analyze melodies in different keys.

• The model is limited to working only with 4/4 time signatures. While complex
rhythmic indications are excluded from our scope, the inability to use simple
time signatures like 3/4, 2/4, 6/8, and 12/8 is limiting. These time signatures
are common in various musical genres and could enhance the model’s versatility.

• The model does not consider all possible harmonic solutions even within the C
major scale, such as 9th, 11th, and 13th chords. Additionally, not all inversion
chords are taken into account, only the most frequent ones in the context
of light music. Including these would have provided more diverse harmonic
possibilities.

• Modulations, including commonly used ones like "Parallel Modulation" and
"Dominant Modulation," are not considered. Harmonizing melodies that do
not remain in the same key throughout could be achieved by incorporating
these modulation techniques.

All the mentioned limitations are retained because, with an increase in the
number of chords, the complexity of managing the edges also escalates and so the
complexity of handling edges’ weight.

38

Chapter 4

WorkFlow and PseudoCode

4.1 Intro
To implement and solve the mathematical model discussed in this document, the
translation into a practical and executable form was carried out using the Python
programming language. The development process took place within the "PyCharm"
integrated development environment (IDE), leveraging its functionalities for efficient
coding and debugging. The realization of the model’s logic and optimization was
facilitated by the utilization of various Python libraries.

4.1.1 MIP
Firstly the Python MIP (Mixed-Integer Linear Programming) library served as a
tool for formulating and solving the optimization model. This library provides a
convenient interface for expressing the objective function, constraints, and transition
costs involved in the model [26].

Key features of the Python MIP library include:

• Objective Function Formulation: The library allows the concise expression of
the objective function, specifying whether the goal is to maximize or minimize
a linear equation.

• Constraint Definition: Constraints, representing relationships and limitations
on decision variables, can be easily defined using the library.

• Binary and Integer Variables: The MIP library supports the declaration of
binary and integer variables, essential for handling decision variables xijt =1 se l’arco (i, j) è nella soluzione al tempo t

0 viceversa

39

WorkFlow and PseudoCode

4.1.2 Gurobi
MIP itself does not include solvers; instead, it interfaces with external solvers to
solve optimization problems. For the actual solution of the formulated optimization
problem, the Gurobi solver was employed. Gurobi is a state-of-the-art optimization
solver renowned for its efficiency and performance, particularly in solving linear pro-
gramming and mixed-integer linear programming problems [<empty citation>].

Key characteristics of the Gurobi solver include:

• Optimization Algorithms: Gurobi incorporates advanced optimization algo-
rithms to efficiently explore the solution space and identify optimal solutions.

• Scalability: Known for its scalability, Gurobi is capable of handling large-scale
linear programming problems with a vast number of decision variables and
constraints.

• Python Interface: Gurobi seamlessly integrates with Python, enabling the use
of Python scripts to interact with and solve optimization problems.

4.1.3 Music21
The software, aiming to receive a melody as input and subsequently generate a
musical accompaniment, requires a means to handle musical files both in input and
output. Specifically, the software utilizes sheet music written in the musicXML
format. To read and manipulate elements of the harmonization, such as sequences
of notes and chords, the music21 library has been employed [2].

The music21 library is a versatile Python tool designed for the manipulation
and analysis of musical data. It enables the reading, writing, and manipulation of
musical scores in musicXML format. Music21 provides advanced functionalities for
extracting musical information, such as notes, chords, melodies, and more, making
it the ideal choice for the analysis and management of musical data within the
context of our software.

4.2 Workflow and Pseudo-Code
The following description outlines the program’s workflow through the use of
pseudocode. This approach allows for conveying the essence of the algorithm
without being constrained by a specific programming language or particular libraries.
It is worth noting that the representation through pseudocode is an intentional
choice to provide a high-level overview independent of the actual implementation.

Pseudocode is an informal programming language that provides a clear and
understandable way to express the algorithm without specifying the syntax of a

40

WorkFlow and PseudoCode

particular programming language. This facilitates an understanding of the workflow
without being influenced by implementation details. In the next section, a brief
description of the workflow using pseudocode will follow, enabling a universal
understanding of the process regardless of the programming language used for
practical implementation.

The program’s operations associated with the pseudocode for their implementa-
tion are listed below:

1. To begin the process, the user is required to provide two essential pieces of
information. Firstly, the software needs the melody file that the user intends
to include. Secondly, the user must specify the number of measures, denoted
as "n," constituting the given melody. In particular, at the line "8", the melody
number of bar is asked to the user.

Algorithm 1 Input del percorso del file MusicXML
1: Input: file_path (string)
2:
3: ▷ Request user to input the path of the MusicXML file
4: file_path ← input("Enter the path of the MusicXML file: ")
5: Input: None
6: Output: num_bars (integer)
7:
8: num_bars_input ← input("Enter the number of measures: ")
9: num_bars ← convert_to_integer(num_bars_input)

2. The software, at this point, knowing this information, should extract from the
file a list of "n" measures that compose the melody. Each element of the list
contains the notes of the nth measure. More precisely, on line number 2, the
first bar of the melody provided by the user is extracted. Subsequently, on line
4, a list of bars is initialized, the length of which is based on the previously
entered number by the user. Starting from line number 5, an iteration is
performed through the bars of the melody. For each bar, starting from line 6,
there is an iteration over the notes belonging to that measure. On line 7, each
note is added to the previously created list. In lines 10 and 11, there is an
iteration over the list to print the notes belonging to the melody.

41

WorkFlow and PseudoCode

Algorithm 2 Read and Print Melody Measures
function ReadAndPrint(file_path, num_measures) ▷ Load the MusicXML
file

2: score← parse(file_path)
part← score.parts[0]

4: measures← [[] for _ in range(num_measures)]
for measure ∈ part.getElementsByClass(stream.Measure)[:num_measures]

do
6: for note ∈ measure.flatten().notes do

measures[measure.number - 1].extend(str(p) for p in note.pitches)
8: end for

end for
10: for i← 1 to num_measures do

Print("Measure", i: measures[i− 1])
12: end for

return measures
end function

3. A total of n + 1 matrices are now created to represent the transition costs
from chord i to chord j for each time instance. In this initial phase, the
transition costs are all set to the same value. It’s important to remember that,
in addition to the chords intended to be inserted as nodes in the graph, the
initial dummy node and the final dummy node must be added. The variable
"standard cost" is a global variable which represent the initial cost of all the
edges. In this way, it will be possible to change that value at any time to
understand the differences in the model’s behavior as this parameter varies.

Algorithm 3 Initialization of Matrix p

p← [[[standard_cost for t in range(k)] for j in range(m)] for i in range(n)]

4. The first preprocessing operation occurs at this point: there is a need to
modify the transition costs of all matrices to make certain chord successions
more or less preferable. The implementation of this phase depends strictly on
the encoding between nodes and chords that has been chosen. The first step,
in the first line, is to iterate over all matrices related to various time instances
defined by different bars. The bonus_progression mentioned in lines 2 and 3
is the parameter that determines how certain edges are favored or penalized.
In the second line, the value of the edge is decremented, favoring its selection
in the model’s output volume. On the other hand, in the third line, this value

42

WorkFlow and PseudoCode

is incremented, penalizing the selection of the edge within the graph.

Algorithm 4 Preprocessing for Transition Costs
1: for t in range(k) do
2: p[i′][j′][t]− = bonus_progression
3: p[i′][j′][t]+ = bonus_progression
4: end for

It is important to underline that if we increase the value, we are penalizing a
transition, and vice versa.

5. The second preprocessing operation, as seen earlier, involves preferring edges
i→ j in which the destination chord (j) contains more notes than the melody.
A comparison between the notes of a certain measure and the notes contained
in chord j is made. For each common note, the weight of the edges ending
in j at that time instance is reduced. The same operation is extended to all
measures and all chords.

Algorithm 5 Modify Cost Matrix
function ModifyCostMatrix(p, k, n, m, reduction_cost, list_of_beats)

Input: p (matrix), k (integer), n (integer), m (integer), reduction_cost
(float), list_of_beats (list)

length← Length(list_of_beats)
for t← 0 to k − 1 do

5: for l← 0 to length− 1 do
if t == l then

for j ← 0 to m− 2 do
if j == 1 then

do← MajorChord() ▷ Create major chord
10: count← CountNotesInChord(do, list_of_beats[l])

for i← 0 to n− 2 do
p[i][j][t] −= count× reduction_cost

end for
end if

15: end for
end if

end for
end for

end function

6. At this point, the model is defined and solved by implementing the objective

43

WorkFlow and PseudoCode

function and constraints on the nodes. The solution is the path between nodes
(chords) that minimizes the cost of the objective function. In particular, at
third line, the objective function is established to minimize the sum of products
between decision variables (x) and their corresponding weights (p) across time
intervals, nodes, and tasks. Then, on lines 5-6, constraints are introduced to
ensure that the path starts from an initial dummy node (node 0). Specifically,
the sum of edges leaving this node in the first time interval (t=0) is set to
be equal to 1, indicating that exactly one edge must leave the initial node.
Similarly, constraints are imposed to ensure that the path reaches the ending
dummy node (node m-1) in the last time interval (t=k-1). The sum of edges
reaching this node is set to be equal to 1, ensuring that exactly one edge must
reach the ending node. Lines 14 to 17 use loops and conditional statements to
set constraints preventing the selection of edges with the same starting and
ending node (i == j). If this condition is met, the corresponding decision
variable is forced to be 0. On lines 21-25 flow constraint is set, ensuring the
conservation of flow between time intervals (t). The "flow constraint" ensures
that if flow arrives at node j at a certain time instance, in the subsequent time
instance, it is mandatory to depart from that specific node. This constraint
reflects the continuity of flow within a network, emphasizing that the flow into
a node in a given time interval should equal the flow out of that node in the
subsequent time interval. This condition maintains a coherent and balanced
flow pattern throughout the optimization model, contributing to the overall
effectiveness and realism of the solution.

44

WorkFlow and PseudoCode

Algorithm 6 Objective and Constraints
Objective:
model.objective← minimize

1qk−1
t=0

qn−1
i=0

qm−1
j=0 x[i][j][t] · p[i][j][t]

2
Constraints:Start on the initial dummy node
model+ = qm−1

j=1 x[0][j][0] == 1
5: Constraints:Finish on the ending dummy node

model+ = qn−1
i=0 x[i][m− 1][k − 1] == 1

for t = 0 to k − 1 do
model+ = qn−1

i=0
qm−1

j=0 x[i][j][t] == 1
end for

10: Constraints:Avoid edges with the same starting and ending chord
for i = 0 to n− 1 do

for j = 0 to m− 1 do
for t = 0 to k − 1 do

if i == j then
15: model+ = x[i][j][t] == 0

end if
end for

end for
end for

20: Flow constraint
for t = 1 to k − 1 do

for i = 0 to n− 1 do
model+ = qm−1

j=0 x[i][j][t] == qm−1
j=0 x[j][i][t− 1]

end for
25: end for

7. The part of code showed below is designed to display the optimal solution of a
mathematical optimization model. Firstly, at lines 2-3, the algorithm creates
an empty list called "solution". Between lines 4 and 19, the algorithm examines
the optimization model (denoted as "model") to determine if any solutions have
been identified, as confirmed by the condition "model.num_solutions > 0." In
the event of a positive outcome, the algorithm initiates a set of nested loops,
starting with the iteration over time intervals (t) from 0 to k-1. Within this
temporal loop, additional nested loops iterate over resources (i) and tasks (j).
For each specific combination of i, j, and t, the algorithm assesses the decision
variable x[i][j][t] within the solution. If the value surpasses or equals 0.99, it
designates the task as part of the optimal solution. During this process, the
algorithm prints a message conveying the scheduling information, specifying
that task j is allocated at time t for resource i. Simultaneously, the task index

45

WorkFlow and PseudoCode

j is appended to the "solution" list, which serves as a dynamic record of the
optimal solution’s composition. At line 20, the algorithm removes the last
element from the "solution" list (using solution.pop()); in fact the last dummy
node is not a chord for the accompaniment, but just an artefact needed for
the model.

Algorithm 7 Display Optimal Solution
1: Output:
2: solution← []
3: if model.num_solutions then
4: Print("Optimal solution found:")
5: for t← 0 to k − 1 do
6: Print("Time interval", t + 1:)
7: for i← 0 to n− 1 do
8: for j ← 0 to m− 1 do
9: if x[i][j][t].x ≥ 0.99 then

10: Print(”x_i_j_t = 1”)
11: Append j to solution
12: end if
13: end for
14: end for
15: end for
16: Print("Objective function value:", model.objective_value)
17: else
18: Print("No optimal solution found.")
19: end if
20: solution.pop()
21: Print(solution)

This pseudocode represents the logic for displaying the optimal solution found
by the model.

8. The final step is to return to the user a file that combines the initially input
melody and the chords chosen by the model.

float

46

Chapter 5

Testing and Results

5.1 Introduction to testing
Testing a model for melodic harmonization poses a unique challenge, as evaluating
the model’s choices cannot rely on objective criteria. The musical interpretation
of the generated accompaniment is inherently subjective, varying from person to
person based on individual preferences and musical experiences. The complexity of
melodic harmonization further complicates the establishment of universal evaluation
standards.

The generated accompaniment may be perceived as excessively repetitive by
one listener, while another might find it characterized by too many tensions and
resolutions. To address this challenge, we have chosen an approach involving
well-known musical pieces. We extract the melody from these songs, represented by
the vocal line, and subject it to our melodic harmonization model. Throughout this
process, we vary the model’s parameters to explore its behavior and understand
how such variations impact the chosen harmonization.

The goal is to compare the harmonization proposed by the model (with vary-
ing parameters) with the original accompaniment of the reference song, possibly
identifying which set of parameters brings the model closest to the original piece.
Through this comparison, we aim to analyze differences, identify potential errors,
and pinpoint similarities. While the evaluation remains somewhat subjective, this
approach provides a more in-depth perspective on the model’s capabilities within
the context of well-known musical pieces.

5.1.1 Song selection and input data analysis
To understand the choice of songs for testing, it’s crucial to recall the limitations
of the model explained in the preceding chapters. Specifically, constraints such

47

Testing and Results

as the requirement for a 4/4 time signature and adherence to the C major scale
compelled us to select songs that align with these characteristics.

Furthermore, to conduct a meaningful comparison, we had to choose songs that,
much like the arrangements generated by the model, feature only one chord per
bar. Moreover, the absence of certain harmonic elements like 9th, 11th, and 13th
chords, as well as more complex modulations, narrows the selection to songs that
aren’t overly intricate in terms of accompaniment. The three songs chosen for the
test are:

• Someone Like You - Adele

• My Way - Frank Sinatra

• I will survive - Gloria Gaynor

The sheet music for these songs was downloaded from the MuseScore website,
from which we also obtained the software to handle the XML files used as input/out-
put for the model. At this point, one final step was required: the accompaniment
part was removed from the sheet music, leaving only the melody.

Before the results of the tests are discussed, it is useful to note that light music
tracks follow the same chord progressions throughout their duration. Our model,
on the other hand, selects chord progressions based on the melody’s progression
and, consequently, tends not to repeat chosen chord patterns. That being said, we
cannot expect the solution proposed by the software to be a sequence of chords
identical to that of the original song. However, with the right parameters, it should
be able to generate a coherent chord progression that complements the song.

5.1.2 Testing parameters
As mentioned earlier, various parameter settings of the model will be used to
conduct the test. As stated before, the edge weights start from a standardized
value, but subsequently, with the pre-processing operations, they are modified
based on two parameters:

• bonus_progression contributing to penalize or favor an edge based on the
predictability of the chord progression it represents;

• bonus_notes influencing the weight of the edge based on the number of melody
notes that are in common with the chord.

In the table below, the pairs of parameters chosen to conduct the test on previously
tested songs appear.

48

Testing and Results

5.2 1th song testing - Someone like You
In order to compare the results of our software testing, it is essential to introduce
the original harmonic structure of the song ’Someone Like You.’ The harmonic
framework is comprised of verses and choruses featuring the chords C Major, E
Minor, A Minor, and F Major; this chord progression is showed in the next figure
5.1.

Figure 5.1: Someone like you - Original chord progression

Before delving into the analysis of each parameter set individually, let’s first
review this table summarizing the results, which will then be examined in detail."

Figure 5.2: Summary of model performance on ’Someone Like You’

49

Testing and Results

Set 1

The first set combination we are evaluating includes a bonus_progression set to
15 and a bonus_note set to 5. Already from the weights, it can be inferred that
this combination is somewhat skewed towards the parameter related to chord
progression rather than the one concerning the melody.

The model’s generated sequence introduces variations in chords, incorporating
E dominant 7th, A minor 7th, F Major and D Dominant 7th. Notably, the model
exhibits a preference for certain chord progressions, particularly the E7 - Am (V-I)
cadence, which is consistently chosen. Additionally, the transition from A minor
to F Major (Am - F) is a recurring choice in both sequences, underscoring its
prevalence in pop chord progressions. This aligns with the model’s tendency to
favor common progressions while strategically avoiding penalized transitions, as
reflected by its lower weights in the model structure. The effect on the model’s
output caused by this set of paramaters can be observed in the figure 5.3 In this

Figure 5.3: Chord progression chosen by the model for Someone Like You - Set 1

manner, for the song ’Someone Like You,’ the model generates chord progressions
that are not at all coherent with the analyzed piece. This occurs because the bonus
assigned to the progression carries an excessively higher weight compared to the
one associated with the melody notes. As a result, the chord progression proceeds
without considering the melody, resulting in a complete disconnect between the
two. Of course, the same result is observed when the bonus_progression is further
increased, even with a proportional increase in the second parameter. "And vice
versa, keeping the first parameter constant and decreasing the bonus_note.

5.2.1 Set 2
The second set combination under evaluation involves a bonus_progression set to
5 and a bonus_note set to 15. In contrast to parameter set number 1, here the
imbalance is towards the bonus related to the melody notes. It is foreseeable that
in this case, the model will tend to select chords that are too similar to each other
sequentially. This occurs because, typically, the melody of a song does not change
significantly from one verse to another, with only small variations. Consequently,
the model consistently chooses the same chords, reflecting this characteristic pattern
in its output.

50

Testing and Results

The model tends to generate chords that are almost identical in succession,
particularly sequences like C/E, C/G, C/E, which we intended to penalize by
assigning increased weights to corresponding edges through the bonus_progression.
However, due to the considerably higher weight assigned to the other parameter,
the penalization applied to certain progressions has little to no effect. In the
figure 5.4, it can be observed the result, in terms of chords produced by the model
on a music sheet. The model tends to generate chords that are almost identical
in succession, particularly sequences like C/E, C/G, C/E, which we intended
to penalize by assigning increased weights to corresponding edges through the
bonus_progression. However, due to the considerably higher weight assigned to
the other parameter, the penalization applied to certain progressions has little to
no effect. We can assert that when the melody parameter outweighs the progression

Figure 5.4: Chord progression chosen by the model for Someone Like You - Set 2

parameter, the model generates a series of repetitive chords, closely following the
melody without considering the ’rules’ regarding cadences that we intend it to
adhere to in the progression.

5.2.2 Set 3
This set of parameters, in comparison to the previous ones, has balanced weights.It
is predictable that this setting will lead to a more balanced chord progression
compared to before. Upon conducting an actual comparison between the chords
produced by the model and the original ones, we observe that the chord progression
produced by the model in start to be similar the the one of original chords. In
particular, in the original accompaniment is composed by the following chords
progression repeated over and over in verses and chorus :

• C - Em - Am - F;

. The first thing to notice is that, every four bar, as in the song, the model uses
C major chords or its inversion as first of the four chords progression.This can
be observed in the first two stanzas represented on the music sheet in figure 5.5
Despite the slight differences in how inversion chords sound, it can still be affirmed
that the first chord of the progression is consistently chosen correctly, except for
this minor difference in the bass note of the chord.

51

Testing and Results

Figure 5.5: Chord progression chosen by the model for Someone Like You - Set 3

As for the third chord of the progression, which in the original song is always
A minor, we can observe that the model replaces it with C/G, A minor 7, C/E.
It is important to note that, even though the A minor 7 chord adds a richer
harmonic color, consisting of the same notes as the A minor chord (A - C - E) with
the addition of the 7th degree (G), it can still be considered suitable. A similar
consideration applies to the C/G chord, which in one instance replaces the A minor
in the original progression: the C/G chord is composed of the notes C - E - G, while
the A minor is formed by A - C - E. Despite these two chords being different, they
are interchangeable within a song, making this substitution satisfactory as well.
However, it is worth noting that a challenge still encountered with these parameter
values is that, at certain points, the chosen chords closely follow the melody and
fail to avoid, as intended, the chord transitions that were meant to be penalized.
Specifically, it still occurs that more than two inversions of the same chord are
played consecutively, such as C/G, C/E, C/G. In addition to not being able to
recreate an arrangement similar to the original, this poses the issue of following a
progression that, in the model’s construction, we aimed to avoid precisely due to
its repetitive and monotonous nature.

5.2.3 Set 4
Among the settings chosen for a more in-depth analysis, this combination of
parameters appears to be the best at balancing the factor related to the melody
and that concerning chord progressions. As seen in the previous pair of parameter
values, in this case as well, the first and third chords of the original progression are
correctly replaced within the model by using chords that are very similar to the
originals. In particular, the C major chord is replaced by some inversions of the
same C major, and the A minor is replaced by A minor 7 or by inversions of C
that still share 2 or more notes with A minor. In addition, in two measures, the F
major, which should be the last chord of the progression, is effectively replaced by
its relative minor, D minor 7. In fact, the F major is composed of the notes F - A -
C, while the D minor 7 consists of D - F - A - C. Having 3 notes in common, these
chords are interchangeable within a progression. This can be observed in the music
sheet produced by the model for the first two stanzas in the figure 5.6

The issue lies in the fact that, in the model’s progression, there are some

52

Testing and Results

Figure 5.6: Chord progression chosen by the model for Someone Like You - Set 3

variations compared to the original sequence of the song. In particular, the
model introduces additional chords such as E Dominant 7th and D Dominant 7th.
Although these chord variations enrich the variety of harmonic colors within the
song, they do not exactly mimic the cadences of the original composition.

5.3 2nd song testing - My Way
The second song chosen for testing is "My Way" by Frank Sinatra; compared to
the previous song, it features a more complex harmonic structure.This chords
progression, is showed on a musical sheet in the figure 5.7.

Figure 5.7: My Way - Original chord progression

In particular, the song begins with a harmonic descent of the octave of C major,
which then becomes a seventh and then a minor seventh with the progression C
major, Cmaj7, and C dominant 7. Subsequently, there is a secondary dominant
substitution with the use of A major 7. This A7 chord is followed by a D minor 7
that imitates the authentic 5-1 cadence like the authentic cadence of the harmonic
minor scale. Then, it moves to G7 (V7), resolving to C major, and repeats the
progression C major, Cmaj7, and C7. The last part of the verse recalls cadences
explained in chapter two, specifically F - C (plagal), G - F (deceptive), and again
F - C.

Before delving into the analysis of each parameter set individually, let’s first
review this table summarizing the results, which will then be examined in detail.

53

Testing and Results

Figure 5.8: Summary of model performance on ’My Way’

Set 1

In the first set of parameters, the bonus_progression has a value of 15, and the
bonus_note has a value of 5. As previously observed, analyzing the first piece
revealed that this combination leads to an imbalanced behavior of the model. In
the case of this piece, the effect is almost the same. The model generates the
following chord pairs:

• E dominant 7 and A minor, as we have seen before, represent the authentic
cadence from the fifth to the first degree of the harmonic minor scale.

• F major to C major, representing the plagal cadence of the C major scale.

• Lastly, the progression from A minor to F major, a chord pair frequently used
in light music, which was favored within the model.

Essentially, the model in this case randomly selects chord pairs that, when
played in succession, may sound acceptable, but they lack coherence with the given
melody.The behavior of the model is clearly visible in the music sheet it produces
with the aforementioned parameters.

54

Testing and Results

Figure 5.9: Chords progression chosen by the model - Set 1

This happens because of a strong imbalance in weights, where the parameter
intended to allow the model to "adapt" the accompaniment to the specific melody
has no effect. It is worth noting that, due to the reasons described, the generated
chords differ from those used in the original piece.

Set 2

The parameter set described in this section is presented as the opposite of set
number 1; similarly to it, the weight set is skewed towards the bonus note. What
happens in this case is that the chord progression closely follows the input melody.
In the first part, instead of selecting the cadence C, Cmaj7, and C7 as in the original
piece, the model opts for two inversions of C major and a Dm7. The inversions of
C major can be considered accurate for the model, while Dm7 is chosen because,
in the second measure, the melody notes precisely match those of this chord.

Subsequently, in the original piece, an Amaj7 is used as a secondary dominant,
and the model manages to predict this, at least with these parameters. In the
original, Amaj7, being a dominant chord, is followed by a Dm7 to create an
authentic cadence. However, the model selects an Fmaj7 instead. This chord is the
relative major of the Dm7 chord, and there isn’t much difference in terms of notes
between them. Hence, they can be interchangeable within a progression.

Later on, the original piece shifts to a G7 dominant chord and then resolves to
Cmaj7. Our model does the same but starting from the next measure. By adhering
too closely to the melody, it deviates from the original chords of the piece from
this point onwards.

Unlike what happened with the first piece, this proportion of parameter values

55

Testing and Results

works better here. In particular, it is almost non-repetitive, and there are no
situations where similar chords are repeated more than twice. We can infer that,
in this case, the melody is less repetitive, and consequently, so are the model’s
choices.

The figure 5.10 below, shows the musical sheet produced by the model when
using the second set of parameter.

Figure 5.10: Chords progression chosen by the model - Set 2

Set 3

The parameter set number three assigns the same value to both bonus_progression
and bonus_note, making it defined as balanced. However, in this piece, the behavior
is not significantly different from parameter set number two.

Analyzing the chords generated by the model, it is observed that throughout the
first stanza, they are the same as those produced by set 2. More specifically, two
of the first three chords of C major from the original piece are correctly generated.
Additionally, here too, the model identifies the presence of a secondary dominant
and an authentic cadence at the end of the first stanza.

Moreover, compared to the previous set, the model successfully imitates the
ending of the second stanza faithfully: the original piece features a sequence of
the fifth and fourth degrees, namely, G7 dominant and F major, followed by the
plagal cadence from F major to C major to close the stanza. Similarly, the model
generates the Gmaj7 dominant chord followed by Dm7; recall that the latter is the
relative minor of the F major chord and can be considered interchangeable with
it. Subsequently, the C major chord is generated to close the stanza in the same
way as the original. As happened in the first tested piece, here too, the balance of

56

Testing and Results

weights makes the model more effective in generating chords more similar to the
original ones. In the score showed in figure 5.11, can be observed more similarity
with the onw in figure 5.7

Figure 5.11: Chords progression chosen by the model - Set 3

Set 4

In the model test on this piece, parameter set number 4 is the one that generated
chords most similar to those belonging to the original accompaniment. Specifically,
regarding the first stanza, it achieves the same results as sets 2 and 3, predicting only
two of the first 3 chords of C major and then using the secondary dominant. It is
worth noting that, to avoid overly repetitive progressions, similar chord progressions
were penalized during the preprocessing stage. This operation ensures that the
model does not choose three consecutive C major chords but inserts another chord
to avoid overly frequent transitions, intentionally made more costly.

As for the parameter set before, in the final part of the second stanza, it utilizes
the following progression: G major, D minor, and C major. Unlike the original
piece, which has F major instead of D minor, parameter set number 4 eliminates
this difference between the model-generated accompaniment and the original one.
In fact, it exactly generates the sequence of the mentioned final 3 chords. This can
be clearly seen observing the original score in figure 5.7 and the one produced by
the model in figure 5.12. Additionally, even the chord preceding this progression,
namely C major, is correctly generated by the model.

57

Testing and Results

Figure 5.12: Chords progression chosen by the model - Set 4

5.4 3rd song testing - I will Survive
The last song chosen for the testing phase is "I Will Survive" by Gloria Gaynor. It
is essentially formed by a eight bar chord progression in the key of A minor, which
is relatively more complex compared to "Someone Like You". This structure repeats
cyclically throughout the duration of the song. In particular, the song presents
the following chord sequence: Am - Dm - G7 - Cmaj7 - Fmaj7 - Bm7b5 - E7 - E7.
This chord progression is represented on a music sheet in the figure 5.13; at the
end of this sequence, it always returns to the initial Am chord. It’s important to
note that we’re analyzing only the first stanzas and not the entire piece. This is
because, given the cyclic nature of the melody and harmonic structure every 8
beats, the model consistently generates the same progression from a certain point
onwards. We can observe that the authentic cadence formed by the succession of

Figure 5.13: I Will Survive Chord Progression

the V chord and the I chord is used multiple times. Between the third and fourth
chords of the progression, there is a transition from G7 to Cmaj7, which are the

58

Testing and Results

fifth and first degrees of the C major scale respectively; furthermore, the last chord,
E7, represents the fifth degree of an A harmonic minor scale and is followed by
an A minor chord, which in this context functions as the tonic (I) chord. Prior to
delving into the individual analysis of each parameter set, let’s begin by reviewing
this table 5.14summarizing the results. Subsequently, we will proceed to examine
them in greater detail. Before proceeding, it’s important to note that in the sheet

Figure 5.14: Summary of model performance on ’I Will Survive’

music images representing the model’s results for the first stanza, two empty bars
are consistently observed. This occurs because at the beginning of the piece, there
are two introductory bars with an E7 arpeggio that lacks accompaniment, resulting
in the first two bars having no chords.

Set 1

Using the first set of parameters on this excerpt with the bonus_progression
having a value of 15, and the bonus_note having a value of 5, the result is not as
unbalanced as in other cases. In particular, the model chooses the following chords
for the first stanza:

• A Minor 7 - F Major - C/G - E Minor - C/E - E Minor 7 - C/G - E Major 7 ;

59

Testing and Results

the result about the first stanza is represented in the figure 5.15

Figure 5.15: Chords progression chosen by the model for the first stanza

Firstly, we notice that the model correctly selects the first chord of the progression,
which is A minor 7. The same can be observed regarding the last chord of the
progression, which is E major 7. Additionally, we recall that in the original
progression, after the initial A minor, there is a D minor 7; in this case, the model
selects F major instead. As seen previously, D minor 7 consists of the notes:

• D - F - A - C ;

F major is also formed by 3 of these notes, namely F, A, and C; consequently, we
can consider this substitution correct from a harmonic and coherence standpoint
of the piece. Regarding the central part of the harmonization, however, this set
of parameters produces different chords compared to the original. The too high
weight of the parameter concerning progressions causes the model to often choose
the same cadences, for example, between the third and fourth chord, fifth and sixth,
seventh and eighth. In the figure 5.16 this problem can be clearly seen and those
below are the chords produced by the model:

• C/G - E minor

• C/E - E minor 7

• C/E - E major 7

This behavior becomes even more evident when observing the second stanza
produced by the model:

• A Minor 7 - F Major - C/G - A Minor 7 - C/E - E Major 7 - C/E - E Major
7;

We can thus conclude that even in this case ??, the parameters of the first set
produce a result that tends not to follow the melody of the piece but rather to
take into account only the progressions. The result in this case seems better only
because the progression of the piece incorporates precisely those cadences that were
previously preferred through preprocessing operations.

60

Testing and Results

Figure 5.16: Chords progression chosen by the model for the second stanza

Set 2

The second set of parameters, as seen previously, is essentially the opposite of the
first. The imbalance in weight leans towards the bonus_note. Concerning the first
stanza, the model produces the following chord sequence:

• A Minor 7 - D Minor - C/G - C/E - Am7 - E Major 7 - C/E - E Major 7.
In the figure 5.17, the resulting score for the first 8 chords is shown, regarding
this parameter setting.

Figure 5.17: Chord progression chosen by the model for the second stanza

We can observe from the musical sheet that, similar to the first set of parameters,
the first and last chords of the progression are correctly predicted by the model.
However, in this case, the model makes another correct prediction:

• The second chord of the original progression, namely D minor 7, is also
generated by the model.

This difference from Set 1 can be attributed to the model’s increased ability to
follow the melody as the bonus_note parameter grows. Observing the figure, it
can be noted that with the aforementioned parameters, the model, in the central
part of the progression, similar to the other tests presented, generates repetitions
of chords one after the other. In particular:

• The third and fourth chords are two inversions of C major, namely C/G and
C/E.

• The fifth and sixth are two E major chords respectively with and without the
seventh.

61

Testing and Results

When the parameter concerning the melody has too high a value compared to the
parameter concerning the cadences, the model generates chords solely based on the
melody. As the melody in this case is repetitive, with some variations excluded, so
are the chords. The model’s behavior under these conditions is confirmed by the
second stanza. This can be observed on the sheet music depicted in the figure 5.18
and resents the following progression:

• A Minor 7 - D Minor 7 - C/G - A Minor 7 - C/E - E Major 7 - C/E - E Major
7.

Figure 5.18: Chord progression chosen by the model for the first stanza

Here too, the first, second, and last chords coincide with the original progression,
but the other chords are incorrect, and once again, the inversion chords of C major
are repeated. It can be concluded that using parameter set number 2 on this piece
results in similar issues, though less pronounced.

Set 3

The third set of parameters in previous tests had improved the model’s behavior. In
this piece, however, the model performs worse compared to sets 1 and 2. Specifically,
for the first stanza, the following chord progression is obtained:

• A minor - D minor 7 - C/G - C/E - F major 7 - E minor 7 - C/E - E major 7.

Figure 5.19: Chord progression chosen by the model for the first stanza - 3rd set

Comparing the score above 5.19, which is generated by the model for the first
stanza, with that of the original progression 5.13, we can notice that the first and
second chords, namely A minor and D minor 7, are correctly generated. The same
applies to the final E major 7 chord of the progression. However, it should be
emphasized that here too the model fails to predict the authentic cadence between

62

Testing and Results

the third and fourth chords, which in the original is given by the succession of G7
and C major 7 chords. Furthermore, the model not only fails to predict the original
chords but also includes two inversions of C major which we intended to penalize.
Additionally, there is another repetition, using two chords with E as the root one
after the other.

• A Minor 7 - F Major - C/G - A Minor 7 - C/E - E Major 7 - C/E - E Major 7

Figure 5.20: Chord progression chosen by the model for the second stanza - 3rd
set

Observing the figure 5.20, we note that similarly to the first stanza, the model
correctly predicts the first and last chords of the original arrangement, namely A
minor and the final E major seventh.

In contrast to the first stanza, here the second chord, which should be a D minor
7, is instead an F major. As explained previously, these two chords share 3 common
notes, and therefore, although F is not the chord in the original accompaniment,
we can consider it a good substitute for D minor. The same concept applies to the
fourth chord; the C major of the original progression is replaced by an A minor 7.
Upon closer analysis of this chord, we see that A minor 7 is formed by the following
notes:

• A - C - E - G

The last three notes are exactly the same as those forming the C major chord,
and for this reason, we can also consider this substitution as partially accurate.

As for the subsequent chords, they are considered incorrect in terms of compar-
ison with the original piece since those produced by the model and those of the
progression are too different.

Set 4

This set of parameters, in previous pieces, consistently yielded better results
compared to other parameter combinations and so it happens in this case . In this
case, the similarity to the original chord progression improve with these parameters.
Analyzing the first and second stanzas more closely, the results are as follows:

63

Testing and Results

• - The first stanza consists of the chords A minor 7 - F major - C/G - C/E - F
major 7 - E minor 7 - C/E - E major 7. This can be observed on the music
sheet below 5.21s

Figure 5.21: Chord progression chosen by the model for the first stanza - 4th set

The first and last chords, as in all other cases, are correctly generated by the
model. Furthermore, as happened previously, the D minor 7 is partially correctly
substituted with the F major chord. However, the model makes two additional
predictions here that increase the similarity with the original accompaniment:

• The third chord is an inversion of the C major chord with G in the bass;
observing figure 5.13, we notice that in the original, there is a G dominant
seventh. Although the chord is not the same, the model remains somewhat
faithful to the bass line.

• As for the fourth chord of the progression, in the original piece, it is a C major
7, and consequently, the model’s choice of C/E can be considered correct.

• The fifth chord of the progression is also correctly generated by the model. In
fact, both in the original and in the produced score, it is an F major 7.

The first stanza is therefore predicted almost entirely correctly by the model. In
the second stanza, however, the model slightly worsens, failing to accurately predict
the following aspects:

• The fourth chord reverts to being an A minor 7 instead of a C major 7,
replicating the error in progression generation that also occurs in set number
3.

• The F major 7 chord, which should be the fifth chord of the progression, is
here replaced by a very different chord, C/E.

To summarize, we can state that, regarding the song "I Will Survive," the results
obtained by testing the various parameter sets are less disparate compared to other
sets. This is due to the number of melody notes relative to other pieces.

64

Testing and Results

Figure 5.22: Chord progression chosen by the model for the second stanza - 4th
set

5.5 Result analysis and discussion
In this section, we will analyze and summarize the results obtained from the
previous tests. Firstly, it is worth noting that the choice of parameters plays a
crucial role in determining the chords generated by the model. Therefore, it can
be said that we are able to modify the behavior of the model and steer it towards
certain choices based on the parameters. Let’s summarize the general behavior of
the model based on the four sets used:

• The results obtained with the first set of parameters, where the bonus_progression
is set to 15 and the bonus_note is set to 5, exhibit a notable imbalance be-
tween the consideration given to chord progressions versus melody notes. This
imbalance is reflected in the generated chord progressions, which prioritize
common progressions while largely disregarding the melody of the piece.
The model tends to favor certain chord progressions, such as the E7 - Am (V-I)
cadence, and frequently incorporates transitions like Am to F Major (Am -
F), which are typical in popular music. However, this preference for common
progressions comes at the expense of coherence with the original melody.
Despite correctly selecting some initial and final chords, the model’s choices
often diverge from the original piece’s harmonization, opting for chord substi-
tutions that may sound acceptable but lack coherence with the melody. For
instance, in some instances, the model replaces chords that are structurally
similar to those in the original progression, emphasizing the importance of
harmonic consistency but neglecting the melodic context.
Overall, the results underscore the need for a balanced consideration of both
chord progressions and melody notes in generating harmonization. In this
particular case, the disproportionate weight assigned to chord progressions
leads to a disconnect between the generated accompaniment and the melody,
resulting in harmonization that deviate significantly from the original piece

• The second set of parameters, where the bonus_progression is set to 5 and
the bonus_note is set to 15, has imbalance towards the bonus related to
melody notes compared to the first set. Consequently, the model tends to

65

Testing and Results

select chords that closely follow the melody, often resulting in sequences of
almost identical chords in succession.
This tendency is observed in the generated chord progressions, where the
model consistently chooses chords that mirror the melody, sometimes at the
expense of adhering to typical chord progressions or cadences. For example,
the model may opt for chord substitutions that align with the melody but
deviate from the original harmonic structure of the piece.
Despite correctly predicting some chords that match the melody, such as
inversions of C major or chords that share common tones with the melody, the
model’s choices can deviate from the original progression, particularly when it
comes to harmonic transitions and cadences.
Overall, the use of parameter set number 2 results in chord progressions that
closely follow the melody but may lack coherence with the original harmonic
structure of the piece. While this approach reduces repetition compared to
the first set, it still presents challenges in accurately harmonizing the melody
while maintaining harmonic consistency.

• In general, the results obtained with the third set of parameters, where both
bonusprogression and bonusnote are set to the same value, indicate a balance
between the weights. This balance was expected to lead to a more uniform
distribution between the consideration given to chord progressions and melodic
notes compared to previous sets. However, comparing the chords generated
by the model with the original ones, several observations can be made.
Firstly, the model’s chord progression begins to resemble the original pro-
gression, but the result varies depending on the piece being analyzed. The
explanation for this behavior can be found in the fact that each piece has
a certain number of melody notes for each beat. The preference for certain
chords assigned to beats based on the melody, as explained earlier, is guided
by the weight assigned to the edges of the graph leading to the chord.
These weights are increased or decreased based on bonusnote, multiplied by the
number of common notes between the chord and the melody. This means that
for pieces with many melody notes per beat, the parameter value must be kept
lower to achieve the same degree of chord penalty or preference. In practice,
to keep the multiplication value bonus_note*common_note constant, if the
latter increases based on the average number of notes within a beat, then the
former must be lowered.
Despite this set enabling the model to more faithfully follow the original
accompaniments, at some points, the model’s choices follow the melody too
closely, resulting in consecutive inversions of the same chord, which was
intended to be avoided due to its repetitive nature. Comparing the performance

66

Testing and Results

of the third set with those of the previous ones, it is evident that while the
balance of weights improves the model’s ability to generate chords more similar
to the original ones, it still lacks in accurately grasping some harmonic aspects
and avoiding repetitive patterns.

• The fourth set of parameters proves to be the best in balancing the factor
related to the melody and that concerning chord progressions. As observed in
the previous parameter values, in this case too, the model correctly substitutes
the first and third chords of the original progression with chords very similar
to the originals.
However, variations in the model’s progression compared to the original song’s
sequence introduce some additional chords. Although these variations enrich
the variety of harmonic colors within the song, they do not exactly reproduce
the cadences of the original composition. Furthermore, in this case, the model
correctly avoids repetitions or sequences of similar chords. Compared to set
number 3, indeed, the bonus_progression penalizing these aspects has been
significantly increased. We can conclude by stating that this set of parameters
effectively imitates the original accompaniments, predicting most of the chords.

Figure 5.23: Set of parameters for testing

The result obtained with the 4 combination of parameters are summarized in figures
5.26,5.24 and 5.27

Indeed, personalized combinations of parameters tailored to each individual
piece are crucial for achieving the best results in automated music generation.
While general trends and insights can be drawn from analyzing the impact of
different parameter sets, the unique characteristics of each musical composition
necessitate a more nuanced approach.

By experimenting with various combinations of parameters and refining them
based on the specific requirements and nuances of the composition at hand, it is
possible to optimize the model’s performance and improve the coherence between

67

Testing and Results

Figure 5.24: Set of parameters for testing

the generated chord progressions and the original melody. Ultimately, the pursuit
of the best result in automated music generation also requires the willingness to
experiment with parameter combinations and iterate on the model’s outputs until
the desired outcome is achieved.

Certainly, the use of optimization techniques for music generation, through
parameter tuning, has proven to enable not only accurate prediction of the original
chords but also the ability to replace them coherently and creatively. This approach
offers a significant advantage as it provides meaningful control over the creative

68

Testing and Results

Figure 5.25: Effects of Different Parameter Sets on the Song ’Someone Like You’

process, allowing users to shape the final outcome according to their personal tastes
and the specific needs of the composition.

The ability to adapt the model’s parameters to the unique characteristics of
each piece allows for a more accurate and sensitive interpretation of the music,
thus contributing to achieving higher-quality results. This level of personalized
control not only promotes fidelity to the original composition but also provides an
opportunity to explore new interpretations and creative variations.

The use of optimization techniques and parameter tuning in automated music

69

Testing and Results

Figure 5.26: Effects of Different Parameter Sets on the Song ’My Way’

generation not only enables good results but also offers flexible and personalized
control over the creative process, allowing users to fully express their artistic vision
and achieve satisfying musical outcomes.

To further improve the model, we could consider extending its functionality to
encompass a wider variety of rhythmic patterns, scales, and chords. Currently, some
of these aspects have not been considered to keep the complexity at a manageable
level. Introducing such elements could allow for a more specific customization of
musical arrangements and enhance the model’s accuracy in predicting the original

70

Testing and Results

Figure 5.27: Effects of Different Parameter Sets on the Song ’I Will Survive’

chords of a song.
Moreover, it would be interesting to involve users in the pre-processing stage,

allowing them to indicate preferred progressions or musical genres. In our case, ca-
dences between certain chords were all treated the same based on the bonus_progression
parameter; however, further personalizing this aspect, such as assigning different
weights for each progression, could more precisely guide the model to better fit
individual user preferences.

Despite the current limitations, it is evident that the model, when properly
parameterized, can structure the accompaniment of the song partially correctly.

71

Testing and Results

This demonstrates both the utility of optimization techniques in this research field
and the potential of this method to achieve highly personalized harmony.

72

Bibliography

[1] Nailson dos Santos Cunha, Anand Subramanian, and Dorien Herremans.
«Generating guitar solos by integer programming». In: () (cit. on pp. 8, 28).

[2] Music21 Documentation. url: https://web.mit.edu/music21/doc/ (cit. on
pp. 8, 40).

[3] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. «A Functional
Taxonomy of Music Generation Systems». In: (Year). Singapore University
of Technology and Design, Agency for Science Technology and Research
(A*STAR) & Queen Mary University of London; University of North Florida;
Queen Mary University of London (cit. on p. 13).

[4] Filippo Carnovalini and Antonio Rodà. «Computational Creativity and Music
Generation Systems: An Introduction to the State of the Art». In: (Year).
Department of Information Engineering, CSC - Centro di Sonologia Com-
putazionale, University of Padova, Padua, Italy (cit. on p. 13).

[5] Miguel Civit, Javier Civit-Masot, Francisco Cuadrado, and Maria J. Escalona.
«A systematic review of artificial intelligence-based music generation: Scope,
applications, and future trends». In: Expert Systems with Applications 209
(2022), p. 118190. issn: 0957-4174. doi: 10.1016/j.eswa.2022.118190. url:
https://www.sciencedirect.com/science/article/pii/S095741742201
3537 (cit. on p. 13).

[6] Yueyue Zhu, Jared Baca, Banafsheh Rekabdar, and Reza Rawassizadeh. «A
Survey of AI Music Generation Tools and Models». In: (2023). August 28,
2023 (cit. on pp. 13, 14).

[7] R. C. Pinkerton. «Information theory and melody». In: Scientific American
194.2 (1956), pp. 77–86 (cit. on p. 13).

[8] John A. Biles. «GenJam: A Genetic Algorithm for Generating Jazz Solos».
In: Information Technology Department, Rochester Institute of Technology
(Year). Associate Professor, jab@cs.rit.edu (cit. on p. 13).

74

https://web.mit.edu/music21/doc/
https://doi.org/10.1016/j.eswa.2022.118190
https://www.sciencedirect.com/science/article/pii/S0957417422013537
https://www.sciencedirect.com/science/article/pii/S0957417422013537

BIBLIOGRAPHY

[9] Manuel Marques, V Oliveira, S Vieira, and AC Rosa. «Music Composition
Using Genetic Evolutionary Algorithms». In: Proceedings of the 2000 Congress
on Evolutionary Computation. CEC00 (Cat. No. 00TH8512). Vol. 1. IEEE.
2000, pp. 714–719 (cit. on p. 14).

[10] Dorien Herremans and Elaine Chew. «MorpheuS: generating structured music
with constrained patterns and tension». In: IEEE Transactions on Affective
Computing (Anno) (cit. on p. 14).

[11] François Pachet. «The Continuator: Musical Interaction With Style». In:
Journal of New Music Research 31.1 (2002), pp. 1–16. issn: 0929-8215 (cit. on
p. 15).

[12] Anna Rita Addessi. «Esperimenti con una macchina musicale Il Continuator
e i bambini di 3-5 anni». In: Ricerche di Pedagogia e Didattica 4.2 (2009).
Didattica e Nuove Tecnologie (cit. on p. 15).

[13] Christine Payne. Musenet. Accessed: 2023-05-15. 2019 (cit. on p. 15).
[14] Seth* Forsgren and Hayk* Martiros. «Riffusion - Stable Diffusion for Real-

Time Music Generation». In: (2022) (cit. on p. 16).
[15] Jean-Pierre Briot and François Pachet. «Music Generation by Deep Learning

– Challenges and Directions». In: (Year) (cit. on p. 16).
[16] Kemal Ebcioglu. «An Expert System for Chorale Harmonization». In: De-

partment of Computer Science, 226 Bell Hall, State University of New York
at Buffalo (1987) (cit. on p. 17).

[17] Google AI. Magenta. Accessed 10 February 2023. n.d. (Cit. on p. 17).
[18] Florian Geiselhart, Frank Raiser, Jon Sneyers, and Thom Frühwirth. «MTSeq:

Multi-touch-enabled CHR-based Music Generation and Manipulation». In:
Proceedings of the International Computer Music Conference. Aug. 2010 (cit.
on p. 17).

[19] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. «MIDINET: A Convolu-
tional Generative Adversarial Network for Symbolic-Domain Music Genera-
tion». In: () (cit. on p. 17).

[20] Gino Brunner, Yuyi Wang, Roger Wattenhofer, and Jonas Wiesendanger.
«JamBot: Music Theory Aware Chord Based Generation of Polyphonic Music
with LSTMs». In: (2023) (cit. on p. 18).

[21] Yi-Hsuan Huang Yu-Siang Yang. «Pop Music Transformer: Beat-based Mod-
eling and Generation of Expressive Pop Piano Compositions». In: (2023)
(cit. on p. 18).

[22] Massimo Varini. Manuale di Armonia e Teoria (cit. on pp. 20, 23, 24).
[23] Andrea Avena. Teoria & Armonia (cit. on pp. 21, 25).

75

BIBLIOGRAPHY

[24] Michael Johnson. Harmony, Composition and Arranging (cit. on pp. 25, 27).
[25] Berklee College of Music. url: https://cloud.info.berklee.edu/berklee

-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_
medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&ga
d_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-
VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB (cit. on p. 35).

[26] Python MIP Documentation. url: https://python-mip.readthedocs.io/
en/latest/ (cit. on p. 39).

76

https://cloud.info.berklee.edu/berklee-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB
https://cloud.info.berklee.edu/berklee-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB
https://cloud.info.berklee.edu/berklee-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB
https://cloud.info.berklee.edu/berklee-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB
https://cloud.info.berklee.edu/berklee-viewbook?campaign_id=7010Z000001ZkLHQA0&utm_source=google&utm_medium=cpc&utm_campaign=bcm-ug-google-ev-pmax-general-brand&gad_source=1&gclid=Cj0KCQiAqsitBhDlARIsAGMR1RjskkFG9OZibduFyYYMr-VguEwDg8ug_NtfGaTpNEnadyp5sEUYR0AaAmP0EALw_wcB
https://python-mip.readthedocs.io/en/latest/
https://python-mip.readthedocs.io/en/latest/

List of Figures

2.1 C major scale with his formula . 20
2.2 A minor scale, relative minor of C major scale 20
2.3 A Harmonic minor notes . 21
2.4 A Melodic Minor Scale . 21
2.5 A harmonic minor chords . 22
2.6 Sus4 triad in C major . 23
2.7 Seventh chords in C major . 25
2.8 C major chords . 26
2.9 Cadences representation on music sheet. 27

3.1 Four bar melody in the key of C major 31
3.2 Fake starting node to start the graph 32
3.3 Fake starting node to start the graph 32
3.4 Chords included in the model & their notes 34
3.5 Berklee College of Music’s Website - Most common chords progres-

sions [25] . 35

5.1 Someone like you - Original chord progression 49
5.2 Summary of model performance on ’Someone Like You’ 49
5.3 Chord progression chosen by the model for Someone Like You - Set 1 50
5.4 Chord progression chosen by the model for Someone Like You - Set 2 51
5.5 Chord progression chosen by the model for Someone Like You - Set 3 52
5.6 Chord progression chosen by the model for Someone Like You - Set 3 53
5.7 My Way - Original chord progression 53
5.8 Summary of model performance on ’My Way’ 54
5.9 Chords progression chosen by the model - Set 1 55
5.10 Chords progression chosen by the model - Set 2 56
5.11 Chords progression chosen by the model - Set 3 57
5.12 Chords progression chosen by the model - Set 4 58
5.13 I Will Survive Chord Progression 58
5.14 Summary of model performance on ’I Will Survive’ 59

77

List of Figures

5.15 Chords progression chosen by the model for the first stanza 60
5.16 Chords progression chosen by the model for the second stanza . . . 61
5.17 Chord progression chosen by the model for the second stanza 61
5.18 Chord progression chosen by the model for the first stanza 62
5.19 Chord progression chosen by the model for the first stanza - 3rd set 62
5.20 Chord progression chosen by the model for the second stanza - 3rd set 63
5.21 Chord progression chosen by the model for the first stanza - 4th set 64
5.22 Chord progression chosen by the model for the second stanza - 4th set 65
5.23 Set of parameters for testing . 67
5.24 Set of parameters for testing . 68
5.25 Effects of Different Parameter Sets on the Song ’Someone Like You’ 69
5.26 Effects of Different Parameter Sets on the Song ’My Way’ 70
5.27 Effects of Different Parameter Sets on the Song ’I Will Survive’ . . 71

78

	Introduction
	Motivation
	Problem
	Methodology
	State of art
	Machine Learning
	Genetic Algorithms
	Rule Based
	Markov Models
	Optimization Problem

	Tools for Music Generation
	Outline

	Background in Music Theory
	Introduction to Musical Harmony
	C Major Scale Construction
	Relative Minor Scale
	A Harmonic Minor Scale
	A Melodic Minor Scale

	Constructing Chords from Scales
	Triads
	Seventh Chords
	Inversion Chords
	Dominant Seventh Chords and Substitutions

	Cadences

	Mathematical Model
	The idea
	Mixed Integer programming
	Variable
	Time index
	Dummy Nodes

	Parameters
	Objective Function and Constraints
	Next Steps in Model Development

	WorkFlow and PseudoCode
	Intro
	MIP
	Gurobi
	Music21

	Workflow and Pseudo-Code

	Testing and Results
	Introduction to testing
	Song selection and input data analysis
	Testing parameters

	1th song testing - Someone like You
	Set 2
	Set 3
	Set 4

	2nd song testing - My Way
	3rd song testing - I will Survive
	Result analysis and discussion

	List of Figures

