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Abstract

Rod-ends are mechanical components widely used in various mechanical applications,
such as automotive and aerospace industries. In the aerospace field, they are of
crucial importance for safety as they play a fundamental role in controlling flight
surfaces. They are part of the kinematic chain responsible for moving the flight
surfaces of airplanes or helicopters. Being vital for safety, numerous studies aim to
calculate and measure their wear. In the specific case of this thesis, an analysis is
conducted on a rod-end responsible for moving an airplane’s flight surface. Aircraft
flight control surfaces are essential for maneuverability in flight, allowing aircraft to
perform roll, pitch, and yaw movements. In modeling, rod-ends can be considered
as two concentric spheres with clearance between them. The inner sphere is free
to move and come into contact with the outer sphere. During contact, the two
spheres exchange a force perpendicular to the contact plane, known as the contact
force, and a friction force parallel to the contact plane. The modeling of the contact
force in this thesis utilizes the modeling studied by Lankarani and Nikravesh. The
mechanism used to move the flight surface consists of an actuator, controlled by
a jet-pipe servo-valve, which will actuate a connecting rod-crank mechanism. In
particular, the connecting rod will be responsible for moving the outer ring of the
rod-end. By moving, it will come into contact with the inner sphere, which is
connected to the crank which is connect to the control surface, allowing it to rotate
clockwise or counterclockwise. The modeling of the rod-end and its actuation
system (excluding the actuator) have been the focal points of this thesis. Once the
model was created, the operation of the model was first tested without considering
the presence of the actuator, which was then added later to simulate more realistic
operating conditions and to validate the complete model.
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Chapter 1

Flight control systems
introduction

To control the direction of an aircraft, mobile surfaces, known as control surfaces,
are utilized. Control surfaces are aircraft control systems, which allow to maneuver
the aircraft with precision and reliability. A control system consist of:

• cockpit control

• sensors

• actuators which can be hydraulic, mechanical or electrical

• computers.

Control surfaces are used to deflect the air flow around the aircraft, facilitating
rotations around the plane’s center of mass. Aircraft control system consist in
primary and secondary flight control, in figure number 1.1 the primary control
surfaces are highlighted in red, while the secondary control surfaces are marked in
blue. Primary control surfaces are the ailerons, the elevators and the rudder.

• Ailerons are used to rotate the plane, this movement is commonly referred to
as roll, which describes the angle of this movement. The combination of roll
and yaw (which is an aircraft movement described below) causes the aircraft
to lean into turns. When the pilot want to turn right the right aileron moves
up and the left aileron moves down, this action generates more lift on the
left wing and less lift on the right wing, creating an imbalance in forces that
enables the plane to roll to the right.

• Elevators allow the aircraft to climb or dive by an angle called pitch angle.
To climb the elevators deflect the air flow to force the tail down and nose up
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Flight control systems introduction

Figure 1.1: Control surface in an modern aircraft

Figure 1.2: Roll angle

with an increasing pitch angle. Vice versa, to dive the elevators deflect the air
flow to force the tail up and the nose down with a decreasing pitch angle.

• Rudders turn the aircraft right or left of an angle called yaw angle. The air
flow causes a force which turns the aircraft in the direction of the rudder
deflection. The pilot when he have to turns the plane use at the same time
rudder and ailerons to produce a coordinate turn.

Meanwhile secondary flight controls consist of wing flaps, spoilers and trim systems.

• Flaps are the most common lift devices used in aerospace, they offer the
advantage of achieving both high cruising speeds and low landing speeds, and
they can be extended only when required. These surfaces are attached to edge
of the wing and they increase lift and drag for any angle of attack.

• Spoilers are high drag devices used for reducing lift. they are deployed from
the wing to spoil the smooth airflow. They are used for a more accurate
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Flight control systems introduction

Figure 1.3: Pitch angle

Figure 1.4: Yaw angle

landing and often they are used also for roll control because they eliminated
adverse yaw.

• Trim systems are used to reduce the constant pressure that the pilot have
to maintain on flight controls. They usually consist in a flight deck controls
and small hinged devices attached to the trailing edge of one or more primary
flight control.

The flight control surfaces are essential for maneuvering aircraft and are part of
the so-called flight controls. These controls can be either fully manual or automatic.
Currently, there is a growing trend towards having exclusively automatic flight
controls, although they are also often used in conjunction with manual controls.
Automatic controls allow the pilot to rest and reduce stress during less demanding
flight phases or assist the pilot in maneuvering the aircraft in adverse weather
conditions. The flight phase where automatic controls are primarily used is the
cruise phase, which typically accounts for more than half of the total flight time.
To ensure the correct positioning of flight control surfaces, each aircraft is equipped
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Flight control systems introduction

with sensors that monitor their position, providing visual feedback to the pilot
through dedicated instruments or to the automatic controller when the autopilot is
engaged. A flight control system generally consists of the following elements: pilot
input elements, system output elements, and intervening linkages.

• The pilot input elements, also known as primary flight controls, are the controls
manipulated by the pilot to effect changes. There are three primary flight
controls, corresponding to the main flight control surfaces, known as pitch, roll,
and yaw control. In small aircraft, the pilot has a cockpit at their disposal,
which includes a series of instruments, prominently featuring the aircraft’s
"yoke" and the pedal assembly located below it. The yoke has two modes of
movement: it can be rotated left or right, similar to a steering wheel, to adjust
the ailerons and thus the aircraft’s roll angle. Additionally, the yoke can be
pushed forward or pulled back to adjust the elevator and tilt the aircraft’s
nose up or down. Finally, under the yoke, there is the pedal assembly, whose
movement allows for the adjustment of the rudder and thus the yaw angle.

• The system output elements are the flight surfaces that are controlled to
maneuver the aircraft.

• The intervening linkages are all those elements that enable the actuation of
the flight surfaces through the controls present in the pilot’s cockpit. These
systems can be entirely mechanical, hydraulic, or, the most modern ones,
fly-by-wire.

All the possible intervening linkages are described below:

• Mechanical control systems: the control devices, which are in the aircraft
cockpit, are directly connected to the control surfaces by a systems of rods,
levers, cables and pulleys. According to the pilot control system changes angles
of the control surfaces change in a proportional way, allowing for pitch, roll,
and yaw maneuvers. This system is used only in small aircrafts because the
complexity and the weight of the mechanical flight control system increases
with the size of the aircraft. This system is shown in figure 1.5.

• Hydromechanical control systems: they are used to overcome the limitations
of mechanical systems. The speed boost made more difficult to move the
control surfaces due to the high aerodynamics forces. In these systems there
are two main parts: a mechanical circuit which is very similar as in mechanical
control systems and a hydraulic circuit which aim is to generate a bigger force
in order to be able to move the control surface. The hydraulic circuit main
component consist in a mechanically operated servo-valve. This system is
shown in figure 1.6.
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Flight control systems introduction

Figure 1.5: Mechanical flight control system

Figure 1.6: Hydromechanical flight control system

• Fly by wire control systems: They replaced all the conventional manual flight
controls. The movement of the flight control is converted to an electronic signal
which is transmitted by wire to an electronic interface that converts the signal
to the actuator connected to the control surface. In the electronic interface
there is a computer which is able to read the electronic signal and understand
how to move the actuators to have the control surfaces as the pilot has ordered
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Flight control systems introduction

at the system. The fly-by-wire technology is currently being surpassed by
another technology called "fly-by-light," which utilizes optical fiber. Optical
fiber offers several advantages over traditional electrical wiring, including
immunity to electromagnetic fields commonly found in aircraft, higher data
transmission capacity (essential in modern aircraft where the amount of data
sent to actuators is increasing), lower maintenance costs, and reduced weight,
resulting in lower fuel consumption for the aircraft. The elements that can be
found in both fly-by-wire and fly-by-light systems are shown in figure 1.7.

Figure 1.7: Main element of a fly-by-wire and fly-by-light flight control system
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Chapter 2

Rod-ends introduction

Rod-ends are crucial mechanical components in flight control surfaces, they connect
the actuator with the kinematics of the surface. They are widely used also in
other mechanical applications such as automotive. So they often perform critical
operations which directly impact safety, therefore it’s very important to study them
in order to prevent failure and potential incidents. Before start seeing the failure
modes of rod-ends it’s important to see how they can be subdivided. Although
they may appear all the same at first glance, this it’s not true. Initially they can
be classified into two and three pieces rod-end[1]:

• Two pieces rod-end: the body is formed around the sphere so the race is part
of the body. They are generally less expensive.

• Three pieces rod-end: they have better precision and they are called "aircraft"
rod-ends for the field they are used in. Here the housing is formed around the
sphere and then the housing is forced into the body.

Rod-ends have different failure modes and the most common are[2]:

• Crack opening: a crack is generated in the weak part and, then during the
normal operation of the system, can growth till the complete component
failure.

• Lubricant degradation: this mode lead to metal metal contact which increase
the force friction in the rod-end, due to the increase of the friction the piston
rod can be affected by plastic deformation. There are two different type of
lubrication available[3]:

– grease: provides a lubrication meatus but there may be leakage through
the rod-end.
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Rod-ends introduction

Figure 2.1: Two pieces rod-end Figure 2.2: Three pieces rod-end

– fabric liner: this allow rod-end to be self-lubricated. Normally a first fiber
ensure strength and bounding properties and then a second component
(like polymer) is used to reduce wear and friction.

• Wear of the internal surface: is the most common mode which leads to the
increasing of the backlash. The increasing of the backlash cause an accuracy
reduction in the positioning of the control surface.

• Surface denting.

In literature there are a lot of studies on rod-ends because of their versatility of
use. There are also a lot of articles which investigate the failure causes such their
important role in safety. Below there are some articles regarding studies conducted
in order to provide a brief state of the art.

Before their commissioning rod-ends should be tested in order to understand the
service life time and prevent failure, it’s important to keep in mind that activate
control surfaces of both airplane and helicopters are crucial during the flight. Wang
et al.[4] developed a new testing machine for testing rod-ends used in helicopters.
These particular rod-ends are known as self-lubricating due to their solid lubrication.
In the context of helicopters, rod-ends are utilized to control the movement of
the main rotor. In their work, Wang employs a novel type of life testing machine
based on the 3-(R)RSS-(R)RRS-PS parallel mechanism. The pitch link, which
connects the swash plate to the pitch swing arm, has two rod-ends attached to
its terminal parts, allowing for movement in space. Controlling both pitching
and flapping motion makes the movement of the rod-end complex and diverse.
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Rod-ends introduction

Therefore, a machine capable of evaluating the lifetime of the testing bearing is
essential. To create this testing machine, a mechanism was developed to simulate
the movement that occurs within the main rotor structure, as illustrated in the
figure 2.3. To calculate the lifetime of the tested rod-end and obtain information

Figure 2.3: Scheme of the testing machine

about wear, a temperature sensor is used. This temperature sensor is inserted
inside the connecting pin of the rod-end to measure the temperature at the center
of the system. By monitoring the temperature trend, it becomes possible to identify
excessive wear when the temperature rises abruptly, indicating that the solid
lubricant has been depleted and the testing bearing is at risk of failure.

Figure 2.4: Housing of the temperature sensor
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Rod-ends introduction

Wear in rod-ends is of great significance, and historically, it was a closely
monitored parameter, as evident here [5]. The method for detecting wear was
rudimentary and involved a pin mechanically inserted into the outer ring so that it
could come into contact with the inner ring, as shown in the figure 2.5. The lower

Figure 2.5: Scheme of the pin inserted in the rod-end

end of the pin was made of a softer material, and once the pin no longer protruded,
it indicated that the rod-end needed replacement.

Wear affects not only the function of the movement of the two sphere of the
rod-end but also the operating condition of oil seals as it can be seen form the
article written by Zhang et al[6]. In his work, Zhang studies the operation of
grease-lubricated rod-end seals. The operating conditions of the seals are greatly
influenced by wear and temperature increase. Temperature, as well as vibrations,
are caused by the operation of rod-ends, and in his study, Zhang correlates seal
wear with the performance of rod-ends. The friction between the oil seal and the
rotating ring is the primary factor in the temperature rise.

Another important thing in rod-ends is how the friction reduction between the
two ring is made, as said before the lubrication can be made with grease or can be
solid and for each situation one can be chosen over the other. An example is shown
in the article written by Kim[7]. Kim in his work analyze a rod-end present in the
elevation driving mechanism of a battle tank. For this application rod-end must be
self-lubricated because at very low operating speed it can’t be possible generate the
necessary pressure for a non solid lubrication. The conventional metal spherical
bearing on the race surface has MoS2 as a solid lubricant, but due to the heavy load
and low speed all the coating gets removed lead to a metal to metal contact (shown
in figure 2.6). To replace the conventional steel spherical bearing material was
selected the carbon-phenolic composite material. To avoid the need for machining
and assembly procedures for the composite race, a custom compression mold was
engineered. This mold allowed the direct molding of the composite race onto the
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Rod-ends introduction

Figure 2.6: Damage of the sphere caused by the metal to metal contact

ball’s surface with an exact clearance, eliminating the necessity for machining. This
was crucial as machining the composite material not only increased manufacturing
costs due to excessive tool wear but also compromised the material’s mechanical
properties through fiber breakage.

About the failure modes of rod-end there are a lot of studies and analysis about
failures happened during operating condition in various applications. An example,
happened in aerospace sector, is the analysis conducted by Asi and Yesil[8]. They
examined a failed piston rod-end employed in a hydraulic actuating system for
a civil landing gear. The rod-end under consideration fails due to a stress raiser
owing to an incorrect assembly which leads to a fatigue failure. To underscore the
diverse application of Rod-ends in various industries, there is also a paper written
by Narvydas et al.[9] which talk about a company producing hydraulic cylinders
for live floor installations who reported several failure in the rod-end.
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Figure 2.7: Failed rod-end of the civil landing gear
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Chapter 3

Contact and kinematic
model

Rod-ends can be modeled as spherical joints; in fact, they are spherical joints with
a threaded rod used to connect them to actuators. In this thesis, the modeled
spherical joint has clearance, which means that the two bodies become free to move
relative to each other. Unlike the ideal joint, a spherical joint with clearance does
not constrain any degree of freedom. The dynamics of the joint are controlled by
contact-impact forces, which result from the collision between the connected bodies.
Therefore, this type of joint is also referred to as a ’force-interaction joint.’ These
joints consist of two spheres, one inside the other, where the inner sphere, called
the ’ball,’ can move freely, and the outer sphere is known as the ’socket.’ More
precisely, the ball can have three motion modes[10]:

• Permanent contact or following mode

• Free flight mode

• Impact mode.

In the following and impact mode, the ball and the socket are in contact, and there
is a sliding motion relative to each other. For a clearer understanding, refer to the
figure 3.1.
So a model of a spherical joint should be divided in two parts, a kinematics part

and a contact part, a simple representation of the model is shown in the figure
3.2. The kinematic block is employed to calculate all the parameters necessary for
determining the positions and orientations of both the ball and the socket. These
parameters are essential for assessing whether there is contact and for determining
the magnitude of the forces involved during the contact. As a result, the model
developed for this thesis comprises two kinematic blocks, one for the socket and
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Figure 3.1: Motion modes of a spherical joint with clearance

Figure 3.2: Simple representation of the model

one for the ball, and a contact block. In this section, we will describe the contact
block first, followed by the kinematic blocks, which are identical.

14



Contact and kinematic model

3.1 Contact model
To model a spherical joint, as is shown before, it’s important to understand in which
motion mode the ball is. First of all, it is essential to comprehend the conditions
that lead to contact between the two spheres. These conditions depend on the
clearance and the joint’s eccentricity at any given time. Eccentricity is a vector
that defines the distance between the center of the ball and the center of the socket,
as illustrated in the figure 3.3. The red sphere is the ball and the black sphere is

Figure 3.3: Eccentricity vector

the socket, the eccentricity vector is shown in blue and as can be seen from the
figure 3.3, the magnitude can be calculated as follows:

e =
ñ

(xs − xb)2 + (ys − yb)2 + (zs − zb)2 (3.1)

where the subscript ’s’ indicates the socket and the subscript ’b’ indicates the ball.
If the clearance is defined by ϵ than there is contact when:

FN

> 0 if e ≥ ϵ

= 0 if e < ϵ
(3.2)

With the two spheres in contact, a contact force and a frictional force are developed
as shown in the figure 3.4, for simplicity of representation in 2D. The most simple
theory that describe the contact force is the Hertz theory [11]. The contact analyzed
in the Hertz theory is a problem of non linear elasticity, it means that there isn’t
permanent deformation during contact and the formulation is as follow:

F = Kδn (3.3)

15



Contact and kinematic model

Figure 3.4: Contact and friction force

Where δ is the relative penetration of the two sphere, n is equal to 3/2 since the
contact can be model between two sphere and K is a parameter that depends on
the material property and it’s calculate as follow:

K = 4
3π(σi − σj)

C
Ri −Rj

Ri +Rj

D1/2

(3.4)

where the material parameters σ are:

h = 1 − ν2

πE
(3.5)

ν and E are respectively the Poisson’s Ratio and the Young modulus. Use equation
number (3.3) to calculate the contact force, however, it’s not correct because this
would suggest that there isn’t dissipated energy during the impact process. The
energy loss can be assumed that is caused by a linear damping function, so the
contact force became:

F = Kδn +Dδ̇ (3.6)

where
D = µδn. (3.7)

The parameter µ can be called as "hysteresis damping factor". An impact can
generally be considered to occur in two phases: the compression phase and the
restitution phase. During the compression phase, the two solids deform theirself
along the normal direction, and the relative velocity of the contact point along the
contact direction is reduced to zero. This marks the end of the compression phase
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and the occurrence of maximum compression. Subsequently, the restitution phase
commences and continues until the two solids are separated. Equation number (3.6)
can be employed to describe both phases of an impact, as studied by Lankarani
and Nikravesh[12]. When equation number (3.6) is plotted with penetration on the
x-axis, it results in a hysteresis loop, as depicted in the figure 3.5. In this figure the

Figure 3.5: Hysteretic loop

area of the loop is equal to the energy loss during an impact. So the damping factor
calculated by Lankarani and Nikravesh, which is used in this thesis, is formulated
as follow:

µ = 3K(1 − e2)
4δ̇(−)

(3.8)

where e is a coefficient of restitution which is defined as the ratio of relative
departure velocity to the relative approach velocity of the sphere in the direction of
the contact, δ̇(−) is the initial indentation velocity. All the calculus done to reach
the formulation of the "hysteresis damping factor" of the equation number (3.8)
are shown in the appendix A where a short review of the article in the reference
[12] is done in order to have a motivation of the use of a damping factor which is
not constant.

For the friction force the thesis work carried out by Bertolino[13] is followed. In
his PHD Thesis he presented two models to calculate the friction force, an empirical
model and a lubrication model. For this thesis, the empirical model was selected
due to its lower computational requirements, given that an overly detailed and
complex description of friction was not needed. The empirical model consists of an
a equivalent function which relates the sliding velocity to the friction coefficient.
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The formulation is as follow:

µ =

step(νrel, νst,−(µst − µvνst), νst, µst − µvνst) + µvνrel if 0 ≤ νrel ≤ νst

step(νrel, νst, µst − µvνst, νdyn, µdyn − µvνdyn) + µvνrel if νrel > νst

(3.9)
where the step function is:

step(x, x0, f0, x1, f1) =


f0 + (f1 − f0)

C
3
1
x−x0
x1−x0

22
− 2

1
x−x0
x1−x0

23
D

if x0 < x < x1

f0 if x ≤ x0

f1 if x ≥ x1
(3.10)

νrel is the magnitude of the relative sliding speed, νst is the static friction threshold
speed, νdyn is the dynamic friction threshold speed and µv is the viscous coefficient.
The friction force is so calculated as:

Ffric = µFc (3.11)

where Fc is the contact force found in the equation number (3.6). The magnitude
of the relative sliding speed is calculated as it can be seen in the figure number 3.6
where P is the contact point between the two sphere, ω is the angular velocity and
V is the linear velocity. The sliding speed is the combination of the linear velocity
of the sphere and the tangential velocity caused by the angular velocity, however
the relative speed required to have the friction coefficient is only the the tangential
component so a further step it’s necessary. All the calculus are reported below for
clarity:

v⃗rel = ω⃗ × r⃗ + v⃗ (3.12)
⃗vrel,t = v⃗rel − vreln⃗ (3.13)

The effective sliding velocity is the sliding velocity of the inside sphere minus the
sliding velocity of the outside sphere because the socket is free to move and it’s not
constrained.

3.1.1 Simulink contact model
In this subsection the model made on Simulink is shown in order to see how
the contact equations of the previous section are integrated into the software;
the complete contact model is shown in the figure 3.7. The green box show the
subsystem used to calculate eccentricity and δ of the equation number 3.6 needed
then for the calculation of the "spring" part of the contact force highlight with the
red box. Eccentricity and δ are also inputs for the block used to calculated the
"damping" part of the contact force shown in the blue box. Before adding the two

18



Contact and kinematic model

Figure 3.6: Diagram for calculating the sliding speed

contributions of the contact force, an additional step is required. It is necessary
to ensure that the damping contribution does not generate a contact force when
contact is not actually present. Indeed, even in the absence of contact, a force can
be generated by the difference in velocity between the two spheres. To avoid this
issue, a block has been introduced that returns the minimum value of the two force
contributions. This implies that in the absence of contact, both the spring force
contribution and the damping contribution are null. To express this step in the
form of an equation, see below:

F = kδn + min (cδ̇, kδn) (3.14)

The last two boxes, the purple one and the orange one, represent respectively the
subsystem used to found the relative speed of the two sphere and the subsystem
where the friction force is calculated. So in the purple box there are all the blocks
necessary to compute the relative sliding speed of the equation number 3.12 and
3.13 and in the orange box, instead, there are all the blocks needed to calculate
the friction coefficient, here there is the Lookup-table used to have in Simulink
the friction formulation of the equation number 3.9 and 3.10. It should be noted
that in this model there is one output for the friction force and two output for the
momentum generated by the friction force because the two sphere have different
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Figure 3.7: Simulink contact model

radii. In figure 3.7, once δ is obtained there is a switch which role is to compute
the force only when there is contact, the switch pass the value of δ only when δ > 0
otherwise the switch allow 0 to pass. The expression δ > 0 means the presence of
contact because its formulation is the following according to the equation number
3.2:

δ = e− ϵ (3.15)

δ̇ used in the equation number 3.6 is calculated inside the subsystem highlight
with the blue box. Here there is a subsystem, highlighted in red, where the damping
factor is found (figure 3.8). The subsystem of the damping factor can be seen
in figure 3.9 and 3.10. The system shown in figure 3.10 is used to calculated
δ̇(−) which is the relative velocity the instant just before the impact. The system,
when the contact force is zero, store into the variable "Delta_d0" the value of the
velocity; the value is stored until the contact end, in fact when the contact force is
not zero the switch allow to store for each time step the same value of "Delta_d0".
Then the value of "Delta_d0" is used in the figure 3.9 to calculate the damping
factor subsequently used to calculated the damping part of the contact force.
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Figure 3.8: Damping force subsystem

Figure 3.9: Damping factor block

3.2 Kinematic model
Everything we’ve talked about so far is present in the contact block of the Simulink
model created for this thesis. However, all the outcomes from this block cannot be
achieved without the involvement of a kinematics block. There are two kinematics
blocks in the model, one for each sphere, and they allow for the calculation of
the position and velocity of the solids, which are subsequently used in the contact
block.

All the kinematic quantities for a 3D rigid body can be expressed using two or
more reference systems, usually the body quantities are expressed related to an
inertial frame and to a body frame. An inertial frame is a reference systems that
doesn’t change during time, it’s called also "fixed frame", meanwhile a body frame is
a frame which follow the orientation of the body in the spatial orientation, typically
the origin of the frame is in the center of mass of the body. To make it clear there
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Figure 3.10: Damping factor block

is a representation of the two frame in the figure 3.11 where b̂ is the body frame
and n̂ is the inertial frame. It is important, therefore, to describe the kinematic

Figure 3.11: Inertial and body frame for a 3D body

quantities in both reference systems and be able to pass from one reference system
to the other. To do so, it is necessary to project the mobile reference system onto
the fixed one, as illustrated in the figure 3.12. Mathematically, this is expressed in
the following way:

b̂1 = (b̂1 · n̂1)ü ûú ý
cosα11

n̂1 + (b̂1 · n̂2)ü ûú ý
cosα12

n̂2 + (b̂1 · n̂3)ü ûú ý
cosα13

n̂3 (3.16)

which expressed in vector form became:

b̂1 =
è
cosα11 cosα12 cosα13

é n̂1
n̂2
n̂3

 (3.17)
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Figure 3.12: Projection of the mobile reference system onto the fixed one

Repeating the same steps for b̂2 and b̂3 a matrix is obtained.b̂1

b̂2

b̂3

 =

cosα11 cosα12 cosα13
cosα21 cosα22 cosα23
cosα31 cosα32 cosα33


ü ûú ý

=[C]

n̂1
n̂2
n̂3

 (3.18)

The obtained matrix is called as "direction cosine matrix" or as "rotational matrix".
In equation number 3.18 the matrix is used to pass from the body frame to
the inertial frame, to achieve the reverse step the inverse of the matrix must be
computed which is equal to the transpose matrix [C]−1 = [C]T .î

b̂
ï

=
è
C
é î
n̂
ï

(3.19)

As the matrix in equation number 3.18 is defined, it has nine different entries which
are a lot, so it’s important to parametrize the direction cosine matrix with the
three Euler angles. Euler angles are three successive rotation of the body around
the x,y and z axis, this three rotation allow to define the orientation of the body.
In aerospace the three Euler angles are usually called as Yaw, Pitch and Roll and
correspond respectively to a first rotation around the third axes, a second rotation
around the second axis and a third rotation around the first axis. Each rotation
generates a rotation matrix as it can be seen below. The initial configuration can
be seen in the figure 3.13, here the blue frame is the body frame while the red
frame is the Earth frame, it should be specified that the drawing represents only
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the unit vectors even if they have different lengths which have been made to have
a better view. The first rotation around the third axis change the body frame

Figure 3.13: Body and Earth frame

orientation as in figure 3.14 and this rotation generate the following matrix.

Figure 3.14: Rotation around the third axes


b̂′

1
b̂′

2
b̂′

3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


ü ûú ý

[M3(ψ)]


n̂1
n̂2
n̂3

 (3.20)
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Doing the same steps with the second rotation we obtained the orientation show in
figure 3.15 and the following matrix.

b̂′′
1
b̂′′

2
b̂′′

3

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


ü ûú ý

[M2(θ)]


b̂′

1
b̂′

2
b̂′

3

 (3.21)

Lastly, with the third and last rotation the orientation is figure 3.16 is obtained

Figure 3.15: Rotation around the second axes

and the following matrix describe the rotation.
b̂1

b̂2

b̂3

 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


ü ûú ý

[M1(ϕ)]


b̂′′

1
b̂′′

2
b̂′′

3

 (3.22)

The product of the three rotation matrix obtained with the three rotation generates
a rotation matrix which describe every orientation of the body in the 3D space,
this means also that the product of the three matrix is also the rotational matrix
that can be used to pass from the inertial frame to the body frame; all the calculus
are reported below. î

b̂′
ï

=
è
M3(ψ)

é î
n̂
ï

(3.23)

î
b̂′′
ï

=
è
M2(θ)

é î
b̂′
ï

(3.24)
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Figure 3.16: Rotation around the first axes

î
b̂
ï

=
è
M1(ϕ)

é î
b̂′′
ï

=
è
M1(ϕ)

é è
M2(θ)

é î
b̂′
ï

=
è
M1(ϕ)

é è
M2(θ)

é è
M3(ϕ)

é
ü ûú ý

[C(ψ,θ,ϕ)]

î
n̂
ï (3.25)

Where the [C(ψ, θ, ϕ)] matrix is: cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinϕ− cosϕ sinψ sinψ sin θ sinϕ+ cosϕ cosψ cos θ sinϕ
cosϕ sin θ cosψ + sinϕ sinψ sinψ sin θ cosϕ− sinϕ cosψ cos θ cosϕ

 (3.26)

To calculate kinematics quantities of every body, and, in this case, of the two
sphere, it’s useful to start with Newton’s Second Law q

F⃗ = ma⃗. The forces acting
on the body, as seen before, are the contact and the friction force calculated in the
equation number (3.6) and (3.11), the second one also generate a moment because
it’s not direct towards the center of mass. For a reason that will become clear
later, the forces inputted into the kinematics block are considered in the body-fixed
frame of the ball and the socket. Since the forces are expressed in a body-fixed
frame, the formulation of the Newton’s Second Law is:

F⃗ = m( ˙⃗v + ω⃗ × v⃗) (3.27)

from this can be easily calculated the acceleration in the body frame. Subsequently,
by employing a rotational matrix, which it’s discussed in detail in equation number
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(3.26), both the velocity and position, following integration, can be obtained in the
Earth-fixed frame. It is also important to determine kinematic quantities such as
angular velocity and angular orientation of the body. Angular velocity is utilized in
equation number (3.12) to calculate the sliding speed, while angular orientation will
prove valuable in the upcoming chapter. In 3D bodies, the three angular velocities
projected onto the three planes are interdependent, necessitating the application of
the Euler equation provided below[14]:

˙⃗
Hc = M⃗c (3.28)

Hc is the angular momentum, Mc is the torque vector or moment, the subscript
c indicates that the quantities are calculate respect to the center of mass of the
body, that in this case is generated by the friction force calculated in the equation
number (3.11). The friction force is not direct towards the center of mass of the
sphere so generates a momentum calculated as M⃗c = ⃗Ffric × r⃗; r⃗ is the radius of
the sphere, so there are two different momentum for the two sphere due to the
different radius. The Euler equation usually is written respect to the body frame
so, due to the transport theorem became:

B d

dt
(H⃗c) + Bω⃗ × BH⃗c = BM⃗c (3.29)

here the apex B means that all the quantities are referred to the body-fixed frame,
the angular momentum is equal to:

BH⃗c = B[Ic] Bω⃗ (3.30)

Where I is the inertia matrix. In the end the Euler equation, considering the inertia
as a constant, became as follow:

B[Ic] B ˙⃗ω + Bω⃗ × BH⃗c = BM⃗c (3.31)

In this thesis the moment of inertia of the body are calculated along the principal
axis in order to have an inertia matrix with only the diagonal input, like this:

[I] =

I11 0 0
0 I22 0
0 0 I33

 (3.32)

Having an inertia matrix with only the diagonal input allows to re-write the
equation number 3.31 to have three equation and no more a matrix equation.Ø

Mx = Ixω̇x − (Iy − Iz)ωyωz (3.33)
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Ø
My = Iyω̇y − (Iz − Ix)ωzωx (3.34)Ø
Mz = Izω̇z − (Ix − Iy)ωxωy (3.35)

From the previous equations can be easily found the angular acceleration and, by
integrating one times, the angular velocity; it should be noted that these quantities
are expressed in the body-frame. So it’s necessary to refer the angular velocity
to the Earth-frame and to do this a rotational matrix should be used, but the
rotational matrix change with time due to the angular velocity. So the rotational
kinematic equation has to be used, below there is the matrix form of the equation:

˙ψ(t)
˙θ(t)
˙ϕ(t)

 =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


ü ûú ý
B(ψ,θ,ϕ)

ω1(t)
ω2(t)
ω3(t)

 (3.36)

where the B matrix has to be calculated for a 3-2-1 rotation of the body-frame
respect to the Earth-frame. A rotation 3-2-1 is used and this means having a
rotation around the third axes, then around the second axes and lastly around
the first axes, as in the steps done before to calculate the rotation matrix of the
equation 3.26. The starting situation is the same reported in the figure number 3.13
and The first rotation is around the third axes of angle ψ with an angular velocity
⃗ωB′/N = ψ̇b̂′

3, this rotation is shown in the figure number 3.14 and its rotation
matrix is calculated in the equation 3.20. The second rotation is around the second
axes of angle θ with an angular velocity ⃗ωB′′/B′ = θ̇b̂′′

2, this rotation is shown in the
figure number 3.15 and its rotation matrix is in the equation 3.21. Finally, the third
rotation is around the first axes of angle ϕ with an angular velocity ⃗ωB′′′/B′′ = ϕ̇b̂1,
this rotation is shown in the figure number 3.16 and its rotation matrix is in the
equation number 3.22. The angular velocity is therefore equal to:

⃗ωB/N = ⃗ωB/B′′ + ⃗ωB′′/B′ + ⃗ωB′/N = ψ̇b̂1 + θ̇b̂′′
2 + ˙ψb′

3 (3.37)

expressing all the calculus to the body frame before the rotation, the angular
velocity became:

⃗ωB/N = (− sin ψ̇+ϕ̇)b̂1+(sinϕ cos θψ̇+cos phiθ̇)b̂2+(cosϕ cos θψ̇−sinϕθ̇)b̂3 (3.38)

which in matrix shape is:ω1
ω2
ω3

 =

 − sin θ 0 1
sinϕ cos θ cosϕ 0
cosϕ cos θ − sinϕ 0


ψ̇θ̇
ϕ̇

 (3.39)
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making the inverse of the matrix just written finally it’s possible to found the
matrix cited in the equation number (3.36).ψ̇θ̇

ϕ̇

 =

0 sinϕ
cos θ

cosϕ
cos θ

0 cosϕ − sin phi
1 sinϕ tan θ cosϕ tan θ


ω1
ω2
ω3

 (3.40)

Having the matrix now it’s possible to found the Euler angle, by one integration,
which are used in the following chapter.

3.2.1 Simulink kinematic model
In this subsection the model made on Simulink is shown in order to see how the
kinematic equations of the previous section are integrated in the software; the
complete kinematic model is shown in the figure 3.17, the figure refer to the inner
sphere. In the figure 3.17 each colored box represents an equation which has been

Figure 3.17: Simulink kinematic model

discussed in the previous section. The red box is the implementation on Simulink
of the Newton’s Second Law where the forces are the contact and the friction
forces generated during the contact and a "external" force which is related to the
controlled surface for the inner sphere and to the actuator for the outer sphere.
The forces are expressed in the inertial frame so in order to be elaborated in the
kinematic block they have to be converted in the body frame as it can be seen by
the multiplication with the rotation matrix. The green box represents the Simulink
implementation of the Euler’s equation number 3.31. From this it’s possible to see
that the inertial matrix is diagonal but the calculus are made considering the matrix
form of the Euler’s equation due to the minor computational cost. In this green
box there is a moment called "external moment" which is the moment generated by
the frictional force as it is not applied in the direction of the center of mass. The
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purple box is the implementation of the rotation matrix written in the equation
number 3.26 and the subsystem can be seen in the figure number 3.18. Lastly, the

Figure 3.18: Simulink implementation of the rotation matrix

blue box is the representation of the kinematic differential equation done from the
equation number 3.36, a more detailed image is in the figure number 3.19. All the

Figure 3.19: Kinematic differential equation

other Simulink block that are not highlighted with a colored box are block useful
for the functioning but that are not seen in any equation of the previous section.

3.3 Model validation
Now that all the quantities required to the contact are found it’s necessary to
understand if the model created does work or not. To do this, simple operating
situations are created, this procedure is called "validation". The first thing which
has been validated is the kinematic block. His validation it has be done using
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a block already present in Matalab which is called "6DOF". This block has the
same purpose of the kinematic block creating for this thesis. To comprehend how
the model’s operation works properly the results obtained with the kinematic
block have been compared to the ones obtained by the 6DOF block. For the same
input forces in the two block we are looking for the same results and this is what
happened for the model creating in this work. The first test conducted to verify the

Figure 3.20: 6DOF block

correct functioning of the model is carried out using constant force and moment
inputs. From the kinematics model shown in figure number 3.17, the initial part
where all the forces acting on the two spheres are summed is removed. The same
is done for the sum between the friction-generated moment and the moment due
to the rotational part of the three-dimensional spring (which is explain in the
following chapter), so that the force and moment input are relative to the sum of
forces and moments acting on the body. Therefore, as mentioned, the first test is
performed with constant inputs, specifically using the vector [3,6,9] as input for
both force and moment. The obtained results are shown in Figure number 3.21.
This figure shows the difference between the results of the 6DOF block and those of
the model created for this thesis. The quantities examined are linear position and
linear velocity, angular velocity and, finally, the Euler angles. Regarding the Euler
angles, a clarification is necessary: instead of showing the difference in value for all
three angles, it is decided to create a "magnitude" so that the difference between
the two blocks is grouped under a single value to make the graph reading clearer
and more intuitive. The absolute value of the 3 Euler angles is not important
in this analysis, so applying the "magnitude" does not compromise the quality of
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Figure 3.21: Model validation with a constant input

the analysis. Analyzing the results shown in the figure immediately reveals that
the difference between the two models is very small and therefore negligible; the
peak of precision is reached for the angular velocity, which is identical for both
models. The difference between the quantities is of an order of magnitude much
smaller than the absolute value of the results expected, which is why it is considered
negligible. With a constant force and moment input, the "error" between the two
models tends to increase over time during the simulation, but this is what we
expect because there is an error present at each iteration that adds to the errors
calculated in the previous iterations. Furthermore, the analysis was carried out
over a simulation time of 30 seconds, which is much longer than the one used to
obtain the results of the complete model. A second test was carried out with a
sinusoidal input, the results of which are shown in Figure number 3.22. From the
figure, it can be seen that here too the error has an entirely acceptable order of
magnitude; it can be noted that the error of the various quantities considered is
not monotonically increasing, which may be due to the fact that the sinusoidal
input has both negative and positive forces and the same goes for moments, so it
is likely that the negative part of forces and moments balances the error created by
the positive part. A third test was conducted with a ramp input for both forces
and moments, and the results are shown in Figure number 3.23. As can be seen,
the results are also good for this type of input and take on a much more similar
trend to the constant input, as was easily imaginable.

After seeing that the kinematic part is working properly then the contact should
be tested in fact there may be some errors, for example it’s possible to have that
the two bodies interprenetrate each other as if they are not "solid". Another thing
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Figure 3.22: Model validation with a sinusoidal input

Figure 3.23: Model validation with a ramp input

that may happened is that the two bodies does not interprenetarte but after the
contact the inside sphere start to move in an uncontrolled manner. So the first test
consists of constrain the socket, so he can’t move, and do not apply any forces to
the ball in order to have only the gravity. The ball should move in the direction
of the gravity until it touch the socket and it has to stop there without friction
force and with a constant contact force, it’s possible that little bounces can happen
due to the damping of the contact force. The results of this test are shown in the

33



Contact and kinematic model

figure number 3.24. From the figure can be seen that the Position of the inner

Figure 3.24: Result of the gravity test

sphere changes only along the y-direction, which it’s the gravity direction, with
some "bounces" that are caused by the stiffness and by the damping of the contact
model. The final value of the inner sphere position is 0.0005 m which is the value
of the joint clearance; this means also that the two sphere does not interprenetrate
each other and that they are "solid". From the figure can be also seen that the
friction force is null, as expected, and that the contact force, when the maximum
eccentricity is reached, is equal to only the gravity force which is 0.2 N for a mass
equal to 0.2 kg of the inner sphere. This is the most simple test that should be done
on the model to verify the contact, but it’s also important to do more complicated
test in order to understand if any other problem can happened.

As a more complex test we realize the situation shown in the figure 3.25 (the
difference in diameter between the two spheres has been exaggerated for the sake of
clarity in the illustration), here the socket is constrained with a three-dimensional
spring to the ground in order to have the socket that tends to stay in the initial
position. Instead the ball is connect to a three-dimensional spring where the motion
is applied in one hand. The working principle is the following one:

• A force, which generates a motion, is applied to one hand of the spring connect
to ball,

• The spring transmits motion to the center of the sphere which, in turn, sets
itself in motion,

• The ball is free to move until it comes into contact with the socket,
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• At this point the contact force between the the ball and the socket try to set
the constrained socket in motion

Figure 3.25: Test contact model

The results of this test can be seen in the figure number 3.26, the input position
applied to the free hand of the inner sphere spring is a ramp input. When the ramp
input is applied, the inner sphere start immediately to move and the eccentricity
begin to increase its value, in the zoom box of the first subplot it’s shown how the
spring work. When the eccentricity has not reach the value of the joint clearance
the spring force of the inner sphere goes up and down, in fact the sphere is not
constraint and does not oppose resistance. Then the maximum value of eccentricity
is reached and the outer sphere start to move trying to follow the inner sphere, the
outer sphere spring try to force the outer sphere to stay in the original position
with a negative force.

These two are therefore the two "tests" used to validate the contact model in
this thesis, both has given positive results so the contact model can be considered
validated as also the kinematic model which has been tested with the 6DOF block.
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Figure 3.26: Contact test results with springs
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Chapter 4

Rod-end implementation

In order to simulate the correct working condition of the rod-end there must be
something that sets one of the two spheres in motion, to do this a kinematics is
used. The kinematics lead in motion one of the two sphere, then there will be the
contact force between the two sphere that lead in motion the other sphere. The
choice of the kinematics is done in order to have a simple mechanism which is
easy to analyzed but is also realistic; every airplane has its own mechanism for the
control surface so in this thesis no reference has been made. The only parameter
sought to be respected is the transmission ratio ∆L/∆θ in order to take from a
previous thesis the Simulink model of the dynamics of the actuator and not doing it
from zero. The chosen mechanism is a simple slider-crank mechanism as it shown in
figure number 4.1. The crank is connect to the control surface while the the slider
is an actuator, based on the linear position of the actuator the crank generate an
angle θ which is also the angle of rotation of the control flight surface. To comply
with the constraint imposed by the transmission ratio, the links of the mechanism
are of the following lengths:

• s = 0.11 m which is the length of crank;

• t = 0.38 m which is the length of the frame;

• l = 0.37 m which is the length on the slider with the actuator in the zero
position, the actuator stroke is 0.06 m So as to have a control surface angle
equal to ±35◦.

The mechanism, as it’s defined before, is shown in the figure number 4.2. Looking
the scheme of the mechanism, corresponding to the point P it’s positioned the rod-
end, on the link OP of the scheme there is the actuator which it’s not represented
for a better comprehension. The horizontal line at the right of the point Q is a
schematic representation of the control surface. So, based on the extension of the
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Figure 4.1: Kinematics

Figure 4.2: Scheme of the mechanism
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actuator, positioned on the slider, the angle of the mechanism and the control flight
surface changes. Knowing the length of all three link of the mechanism it’s possible
to find all the angle using the law of cosine as follows:

l2 = t2 + s2 − 2st cos γ

→ γ = arccos
A
t2 + s2 − l2

2st

B (4.1)

s2 = t2 + l2 − 2lt cosα

→ α = arccos
A
l2 + t2 − s2

2lt

B (4.2)

t2 = l2 + s2 − 2ls cos β

→ β = arccos
A
l2 + s2 − t2

2ls

B (4.3)

In order to model the mechanism in a more realistic way, between the links,
the slider and the crank, of the mechanism and the rod-end a three-dimension
spring is inserted, so between the slider and the outer sphere of the rod-end and
between the crank and the inner sphere of the rod-end there is a spring. The
three dimensional spring has both a stiffness factor and a damping factor so in a
more detailed manner it can be represent by a spring and a damping. The spring
it’s called "three dimension" because it has a linear component and a rotational
component. The linear component is insert in order to have not a rigid connection
between the rod-end and the link of the mechanism while the rotational component
is useful to constrain the rotation, around the three axis, of both the sphere of the
joint which without it are free to rotate around their center of mass. A schematic
draw of the connecting spring can be seen in the figure number 4.3. When the

Figure 4.3: Schematic representation of the three dimensional spring

spring contracts or extends, it transmits a force to the rod-end spheres. In this
case, to provide a clearer example, between the outer sphere and the crank, the

39



Rod-end implementation

transmitted force is equal to the stiffness multiplied by the difference in position
between the inner sphere and the end of the crank. To this force is added the
damping multiplied by the difference between the linear velocity of the center of
gravity of the inner sphere and the end of the crank. So the linear force formula
between the inner sphere and the end of the crank is:

Fspring = k(xr − xs) + d(ẋr − ẋs) (4.4)

where k is the stiffness, d is the damping factor, xr and ẋr are respectively the
position and the velocity of the sphere, xs and ẋs are the position and the velocity
at the end of the crank. For the spring which connects the slider with the outer
sphere of the rod-end there is a different situation. In fact, as can be seen from
figure number 4.2, the mechanism used to simulate the behavior of the rod-end is a
two-dimensional mechanism. This would imply that the joint, even though modeled
in three dimensions, functions like a joint modeled in two dimensions. Therefore, to
achieve a "three-dimensional" operation, a decision was made to impose an initial
position of the outer sphere that is offset from the z-axis, which is the axis coming
out of the drawing. In this way, it is expected that the joint will function by
simulating a three-dimensional behavior rather than a two-dimensional one. The
outer sphere is positioned as if there is a small assembly error, so its initial position
is as follows [0; 0; 0.0001] for example (respectively along x, y, and z axes), where
0 indicates a perfect concentric assembly of the two spheres. The assembly error
has been deliberately assumed to be very small and is a hypothetical value. So the
spring force became:

Fspring = k(xr − xl − xi) + d(ẋr − ẋl) (4.5)

where xi is the initial position of the sphere and xl and ẋl are the position and the
speed of the end of the slider. Below is the Simulink diagram used to find the linear
force of both springs. More specifically, in Figure 4.4, there is the diagram for the
spring connecting the actuator to the outer sphere, while in Figure 4.5, there is the
diagram of the spring present on the flight control surface and inner sphere. The
calculation of the force exerted by the spring on the actuator and the outer sphere,
performed using Simulink, has been configured such that compression of the spring
generates a positive force, as highlighted in the diagram. For instance, when the
actuator extends and its position increases towards positive values while keeping
the sphere’s position constant, a positive spring force is obtained. This choice is
motivated by the fact that the force exerted by the spring on the sphere acts as an
external force inducing motion. Therefore, with a positive spring force, the sphere
moves towards higher coordinates, whereas with a negative spring force, it moves
towards lower coordinates. Conversely, examining the Simulink diagram of the
spring between the surface and the inner sphere, it is observed that compression of
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Figure 4.4: Simulink scheme of the actuator-outer sphere spring

Figure 4.5: Simulink scheme of the inner sphere-control surface spring

the spring generates a negative force, whereas the force is positive when the spring
is stretched. When the spring is compressed, the sphere tends to move towards
lower coordinates, hence a negative force has been chosen. Regarding the rotational
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component of the spring, as mentioned earlier, its role is to prevent rotation around
the center of gravity of the rod-end spheres. Exiting the kinematics subsystem
of both spheres, as described in the previous chapter, Euler angles are obtained.
Euler angles correspond to three successive rotations, while for the calculation of
the spring force, the rotation angles, with respect to the three axes describing how
much the sphere has rotated, are required. However, it is possible, by knowing
the Euler angles, to describe the rotation as a "pure" rotation around an axis unit
vector ê of an angle Φ. In the figure number 4.6 can be seen the rotation from the
inertial frame to the body frame, realized with the three successive rotation by
the three Euler angle, that can be described by a "pure" rotation. From the cosine

Figure 4.6: Arbitrary rotation written as a pure rotation

direction matrix, which has the information of the three Euler angle, is possible to
calculate the angle of rotation Φ and the unit vector ê as follows:

Φ = arccos
A

1
2(C11 + C22 + C33 − 1)

B
(4.6)

ê = 1
2 sin Φ

C23 − C32
C31 − C13
C12 − C21

 (4.7)

Now having the angle of rotation around the unit vector ê it’s possible to projecting
the angle to the axis x,y,z to find the rotation of the sphere around the x,y and z
axes. Actually, contrary to what was stated earlier, the two spheres of the rod-end
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must have the ability to rotate around their own center of gravity. By looking at
Figure 4.7, the reason becomes immediately clear. Looking at the figure, it becomes

Figure 4.7: Scheme used to describe the function of the rotational part of the
spring

clear that the two spheres must be able to rotate in order to remain attached to
the actuator and the flight control surface when their inclination changes. In fact,
if the sphere were to remain fixed without rotating, and we consider the viewpoint
above the actuator, we would observe that as the inclination changes, the sphere
actually undergoes clockwise or counterclockwise rotation. The goal is to have no
rotation of the sphere from this reference frame attached to the actuator. Therefore,
it is necessary to apply a clockwise or counterclockwise moment depending on
whether the inclination of the actuator is decreasing or increasing. The same
applies to the inner sphere and the flight control surface. In Figure 4.8, you can see
the implementation in Simulink of what has been described for the outer sphere.
Once the rotation of the sphere due to the applied forces is calculated, using
equations (4.6) and (4.7), the change in the actuator’s inclination angle needs to be
subtracted from the z-coordinate value. The actuator’s rotation angle is subtracted
because, as seen earlier, the sphere must also rotate as the actuator’s inclination
changes. If the sphere, around the z-axis, is rotating counterclockwise and due to
the increase in the actuator’s inclination, a counterclockwise moment is required,
then the counterclockwise rotation possessed by the sphere will already cause
the sphere to rotate to compensate for the increase in the actuator’s inclination.
Therefore, the change in the actuator’s inclination angle is subtracted. The spring
also has a damping component without which it would exhibit unstable behavior.
For implementing the damping part in Simulink, it is necessary to subtract from
the sphere’s rotation velocity the rate at which the actuator’s inclination angle
changes, for the same reasons discussed earlier for the rigid part of the spring.
The implementation in Simulink of the spring connecting the flight control surface
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Figure 4.8: Simulink scheme of the outer sphere momentum

with the inner sphere can be seen in Figure 4.9. The diagram will not be further
commented on since the reasoning is the same as that already discussed for the
spring connecting the actuator with the outer sphere.

Figure 4.9: Simulink scheme of the inner sphere momentum
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After describing the elements that form the mechanism in the figure number 4.2,
let’s now review the logical flow of information that allows simulating the behavior
of the control surface actuation mechanism. First, we start from a resting position
where, except for gravity, there are no other forces acting on the system. The first
step is to impose an extension to the actuator located on the mechanism’s slider.
In the specific case of the model created in Simulink, a velocity for the actuator
extension and retraction is imposed to then derive the position by integrating the
velocity. Once the velocity and position of the actuator are set, the next step is to
understand how the velocity and position at the end of the slider are influenced.
Indeed, the extension or retraction of the actuator always follows the direction of
the slider since it is positioned on it. However, the connecting rod has the ability
to rotate around point O (figure 4.2), so the position and velocity of the end of the
slider, where the spring is attached, do not correspond to the velocity and position
imposed on the actuator. A scheme with for the calculus of the velocity is reported
in the figure number 4.10 and 4.11. In the figure number 4.10 is represent the

Figure 4.10: Scheme of the velocity due to the angular movement of the slider

Figure 4.11: Scheme of the velocity due to the displacement of the actuator

velocity due to the angular velocity of the slider which generate a linear velocity v
at the end of the slider that is divided in the vertical and horizontal component
respectively vy and vx. In the figure number 4.11 is represent the velocity due to
the actuator extension which is the same direction of the slider, also this velocity is
divided into the vertical and horizontal component which are in the same direction
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of the x and y axis. So the vertical velocity at the end of the slider is calculated as
follows:

vx = vh sinα′ + vv cosα′ (4.8)

vy = vh cosα′ + vv sinα′ (4.9)

Regarding the position, instead, the position of the end of the slider relative to point
O is calculated, subtracting the initial position of the end of the slider referenced to
point O in initial conditions. This way, the initial position of the end of the slider
in the Simulink model is considered as the zero position. As can be inferred, the
position and velocity along the z-axis due to the actuator are zero, as the mechanism
is two-dimensional. After finding the position and velocity of the slider, we move on
to the three-dimensional spring that connects the slider to the outer sphere of the
rod-end. Here, as described earlier, the difference in position and velocity generates
a force that will set the sphere in motion. Once the outer sphere comes into contact
with the inner sphere, there will be an exchange of forces that will set the inner
sphere in motion. The inner sphere is connected with a three-dimensional spring
to the crank. The crank, receiving a force from the three-dimensional spring, will
rotate around point Q, causing the flight control surface, being solidly mounted, to
rotate by the same amount as the crank. The force transmitted from the spring
to the crank is a three-dimensional force, directed in space. Therefore, only the
components projected onto the x-y plane are useful for the rotational movement
of the crank, which is constrained to rotation only in the x-y plane. In the figure
number 4.12 is illustrated the force of the spring projected onto the plane x-y acting
on the crank. The force can be divided in two components, one parallel to the
crank and one perpendicular to the crank, and only the component called as F1
generates a rotation of the crank. In the Simulink model, the block where the force
of the three-dimensional spring is calculated returns the force of the spring in the
three directions of the plane. Therefore, starting from the forces along x and y, it
is necessary to find the force component that generates the rotation of the crank, a
scheme is reported in the figure 4.13. The blue vector is the force useful for the
rotation of the crank while the green vector is the spring force along the x-axis, to
pass from the green vector to the blue vector the angle between them has to be
found. To find this angle, the blue and green vectors are translated to the point Q.
In this position, it is easy to see that the angle between the two vectors is equal to
90° minus the ϵ angle. To find the epsilon angle, look at the triangle QR̂P , and
you can see that the ϵ angle is equal to:

ϵ = 90◦ − β − α′ (4.10)

so the angle between the two vector is:

δ = β + α′ (4.11)
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Figure 4.12: Force acting on the crank

Figure 4.13: scheme of the force along y of the spring that generate a rotation of
the crank

and the force component that allow the crank rotation is:

F1 = Fy sin (β + α′) (4.12)

Now the same step should be done with the force along the y-axis as it can be seen
in the figure number 4.14. From the figure can be easily found that the angle θ

47



Rod-end implementation

Figure 4.14: scheme of the force along x of the spring that generate a rotation of
the crank

between the green and the blue vector is equal to:

θ = β + α′ (4.13)

and the force component that allow the crank rotation is:

F1 = Fx cos (β + α′) (4.14)

Now that the spring force has been calculated, it is possible to achieve equilibrium
for the rotation of the crank to find the angle theta by which it rotates. In the initial
analysis, no external force acting on the flight surface is considered. Typically, an
external force due to the air generating pressure and thus a force on the flight
surface during flight should be indicated. Without the presence of the external
force, the free-body diagram of the crank is represented in the figure 4.15. The

Figure 4.15: Equilibrium for the rotation of the crank

force F is the force which it’s calculated with the equation number 4.12 and 4.14,
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the term cθ̇ is a rotational damping of the crank and the terms Iθ̈ and mẍG are
the inertia contributes. The inertia contribute mẍG is positioned with a distance
of s/3 from the point Q, this because the control surface is approximated with a
triangular form as can be seen in the figure number 4.16, and the center of mass
for that type of geometry is positioned there. So the force equilibrium of the crank

Figure 4.16: 3D draw of the flight control surface

around the point Q is as follows:

Fs = mgẍGs/3 + Iθ̈ + cθ̇ (4.15)

where ẍg = θ̈s/3 so the equation becomes:

Fs = mgθ̈s2/9 + Iθ̈ + cθ̇ (4.16)

From this equation is possible to find the value of the angular acceleration of the
crank and so also the value of the angular position of the crank. θ represent the
angle of the deployment of the crank but referred to the initial position, it is not
an absolute angular coordinate. Having the angular position of the crank allows to
find the position of the end of the crank which is useful to compute the spring force
of the three dimensional spring which connects the inner sphere to the crank; to do
this some simple trigonometric calculus are needed. From the figure number 4.17
can be seen the scheme that allows to find the position and the velocity at the end
of the crank. The Cartesian coordinates of the end point of the crank P’ are found
by considering the position when the mechanism is in the initial conditions as the
zero position. To find the Cartesian coordinates necessary for the spring force
calculation, the coordinates of point P are then subtracted from the coordinates
of point P’. In this way, the result will be the ∆x and ∆y of the position between
point P and point P’. The Cartesian coordinates for the point P are calculated
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Figure 4.17: Scheme used to find the position of the end of the crank

respectively for x position e for the y position as follows:

Px = s sin ϵ0 (4.17)

Py = s cos ϵ0 (4.18)

where ϵ0 is calculated with initial condition. The Cartesian coordinates of the point
P’ are:

Px = s sin(ϵ0 + θ) (4.19)

Py = s cos(ϵ0 + θ) (4.20)

So the position of the end of the crank useful for the spring force is the difference
between the x and y position of the two points. The last necessary thing is the
velocity of the point P’ of the crank which is calculated as follows:

vP = θ̇s (4.21)

Now we have all variables needed to run the model and verify the correct working,
all this part it’s written in the following chapter.
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Chapter 5

Model Results

The first part of this chapter is composed of the analysis of the model results. Based
on the results provided by the model, it is necessary to understand, through some
examined quantities, whether the functioning can be considered correct. Within
the model, it has been decided to use a parameter called "Initial condition", which
defines the initial position of the inner sphere of the rod-end. The rod-end, as
constructed in the model, has both spheres initially positioned with their center of
mass at the initial position of [0;0;0]. The "Initial condition" parameter modifies
the initial position of the inner sphere according to our needs; in our case, since
the actuating mechanism is bidimensional with a connecting rod, without this
parameter, the joint would always function as if it were a revolute joint, thus
losing the three-dimensionality of the newly created model. Therefore, the "Initial
condition" parameter will be used to simulate a misalignment along the z-axis,
which can be like an assembly error, in order to observe the 3D behavior of the
model; after all, the model has been created in three dimensions precisely to
evaluate some of these possible scenarios. However, initially, in order to try to
understand if the model works correctly, we put ourselves in the simplest condition
to analyze, namely that with null "initial condition". After validating the results of
the model with these "initial conditions", we will proceed to modify them and see
how the quantities of interest change.

5.1 Model validation
To begin, the position and velocity inputs used to simulate the behavior of the
actuator positioned on the connecting rod of the mechanism are shown. In the
model, the actuator’s velocity is set and then integrated to find the position. It
is important to aim for a velocity function that is "smooth," meaning it does
not have sudden changes in velocity that would lead to force spikes within the
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contact of the rod-end spheres and make the behavior more unstable, which is not a
situation that occurs in reality with the use of an actuator. Similarly, the position
will be a function without discontinuities. The position and velocity inputs are
shown in Figure 5.1, and as can be seen, they adhere to the considerations just
described. Initially, it was decided to verify the system’s operation with only the
actuator extension phase. After examining the position and velocity inputs of the

Figure 5.1: Position and speed input of the actuator

actuator, the first thing to check is the correct functioning of the contact within the
rod-end. It is necessary to see if the contact conditions are correct and if the two
bodies behave as "rigid" without intersecting each other. The proper functioning
of the contact has already been discussed in the previous chapter; however, for
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completeness, a graph showing its behavior is included in this chapter as well.
Figure 5.2 illustrates the variation of eccentricity and the magnitude of the contact
force exchanged between the spheres of the rod-end. The contact force should be

Figure 5.2: Eccentricity and contact force during the simulation

present only when the eccentricity between the two sphere centers exceeds the
clearance value (equal to 0.0005 meters), and as shown in the figure, this is what
happens. Also, from the figure, it can be easily observed that the contact is not
constant but intermittent, which is due to the stiffness and damping parameters
present in equation number (3.6) used in the contact modeling.

To understand if the model operates correctly, we trace the entire kinematic
chain from the actuator extension to the extension of the flight control surface,
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which corresponds to a counterclockwise rotation of the same. Starting from the
actuator, represented simply by a position input in this case, its extension causes
the movement of the outer sphere of the rod-end. The connection between the
rod’s end link and the outer sphere of the rod-end is schematized with a spring, as
seen in the previous chapter. So, first, let’s analyze the force trend of the spring,
depicted in figure 5.3, where the trend of the position input used is also shown.

Figure 5.3: actuator-outer sphere spring force

As defined within the model, when there is compression, meaning the outer
sphere and the end of the rod are brought closer together, the spring force is
positive. Conversely, when the spring is extended, the force is negative. Looking
at the figure, when the position input increases, it indicates that the actuator is
considered to be extending, in this situation, the actuator will displace one end
of the spring while the other end remains stationary, as the sphere is not yet in
motion. The spring therefore tends to compress, resulting in a positive force that
will then drive the movement of the outer sphere of the rod-end. Conversely, during
the retraction phase of the actuator, the end of the spring connected to it will
move in the opposite direction compared to the previous case. Thus, the spring
tends to elongate, generating a negative force that causes the outer sphere to follow
the actuator in its movement. As a consequence of initiating the motion of the
outer sphere, regardless of whether the actuator is extending or retracting, contact
between the two spheres will occur. Once the centers of the spheres surpass an
eccentricity equal to the clearance value, contact is established. To understand
the motion between the two spheres clearly, a polar plot graph is very useful, as
shown in figure 5.4, which illustrates the difference between the positions of the
inner and outer spheres. It displays the path on the xy-plane with a z-coordinate
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Figure 5.4: Polar plot of the relative position of the two spheres

of zero, as the motion of the two spheres occurs only in that plane. From the polar
plot, can be immediately infer the relative motion of the two spheres composing
the rod-end. The contact is represented by reaching a radial coordinate equal to
0.0005, which corresponds to the clearance value of the rod-end, as mentioned
earlier. Additionally, from this plot, it can be observed that the contact between
the two spheres always occurs within a certain angular portion of the circular
crown of possible contact points. This is a crucial factor to control because the
wear of the two spheres will be concentrated in that arc of the circle, leading
to localized wear. As operating hours progress, this will result in a change in
the trajectory that the rod-end can follow, and thus a less precise positioning of
the control surface compared to the initial state. This graph is very illustrative
because it also shows the trend of eccentricity, although less detailed than before,
and here too, one can understand that the contact is not always continuous. To
identify where the most wear is likely to occur, one can calculate a wear indicator
as follows: FN × Vrel, where FN represents the normal force exchanged between the
two spheres (i.e., the contact force), while Vrel is the relative tangential velocity of
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the two spheres (i.e., the speed at which the two spheres slide against each other).
By approximately calculating wear as shown earlier and plotting the results on a
polar plot, one can visually understand where the wear will be concentrated. The
results are shown in Figure 5.5. In the graph, the polar variation of the contact

Figure 5.5: Contact force and a indicator of wear in a polar plot

force has also been included to show that wear is present only in the area where
contact occurs. However, the most significant wear does not necessarily happen
near the zone of maximum contact force. In fact, in the elongation phase of the
actuator, which is the phase where the contact in the polar plot happen on the left,
the maximum wear does not correspond to the maximum contact force, probably
because the relative sliding of the two surfaces in that area is very low. While
during the return phase of the actuator the maximum wear correspond to the
maximum contact force. The polar plot graph shown in Figure 5.4 is also useful
for understanding if the contact force is calculated correctly. Below, in Figure
5.6, the trend of the contact force is shown, and in the same figure, a polar plot
graph is included where the two phases of actuator extension and retraction are
distinctly highlighted with different colors. Throughout the entire extension phase,
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Figure 5.6: Andamento contact force

represented by the blue curve in the polar plot graph, one would expect the x and
y components of the contact force to be positive, and in fact, this is the case. At
the beginning of this phase, the contact force is predominantly along the x-axis,
but then the contribution along the y-axis increases as shown in the polar plot,
indicating movement towards higher angles. As we move towards higher angles,
the influence of the y-axis component increases because it’s important to remember
that the contact force is always perpendicular to the point of contact between the
two spheres.Conversely, during the retraction phase, represented by the red curve,
one would expect the contact force to be negative based solely on the polar plot,
and this trend is confirmed by observing the contact force graph. Finally, the last
component of the kinematic chain to consider is the force exchanged between the
inner sphere and the flight control surface, whose connection is also schematized
with a spring. In the case of the spring connecting the inner sphere with the flight
surface, it generates a positive force when the spring is extended and a negative
force when compressed, as defined in the model. Therefore, during the extension
phase of the actuator, one would expect the spring force to be negative because
the inner sphere will be moved due to contact with the outer sphere, causing the
end of the spring to which it is connected to compress. This compression force will
then cause the flight control surface to move by a certain angle. Conversely, during
the retraction phase of the actuator, the spring will tend to elongate, generating a
positive force. The behavior of the spring just described can be verified in Figure
5.7, where the actuator position input trend is also shown to facilitate following
the previous discussion. One last parameter that should be shown is the trend
of the moments generated by the three-dimensional springs to prevent the sphere
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Figure 5.7: Inner sphere-surface spring force

from rotating around its own axis. The trend of the moment relative to the spring
connected to the outer sphere will be shown in Figure 5.8. The analysis of the
graph will be the same for the moment of the spring connected to the inner sphere,
so it will be omitted. The figure also depicts the trend of the angle relative to

Figure 5.8: Outer spring momentum

the horizontal of the rod on which the actuator is positioned. It’s important to
clarify that a positive moment corresponds to a counterclockwise rotation. From
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the graph, it can be observed that an increase in the inclination angle of the rod
corresponds to a positive moment of the spring, which generates a counterclockwise
rotation. The trend of the moment is correct because, as the inclination angle
of the rod increases, if there were no spring, the sphere would remain stationary
without rotating around its center of rotation. However, in reality, it should rotate
counterclockwise as it is fixed to the rod. In fact, the outer sphere cannot rotate
around its own center of rotation, but it must follow the inclination of the rod
relative to the horizontal. The opposite reasoning applies when the inclination
angle of the rod decreases. In conclusion, it’s important to note that despite all
the graphs above showing the expected results, the model results are not perfect.
There are numerical errors apparent when looking at the components along the
axes of the contact force. As you can see, the contact force has a component along
the z-axis, which should not exist since the contact is in the plane. This can be
considered a numerical error, given the negligible influence of the force along the
z-axis; its magnitude is small, and therefore, its impact on the model results will
also be minor. With the analysis just completed, we cannot yet declare that the

Figure 5.9: Contact force along the three axis
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Figure 5.10: Zoom of the contact force along the three axis

model works correctly conclusively. Although the obtained results are consistent
with expectations and provide a good understanding of the phenomenon under
consideration, further evaluation of the model is necessary to confirm its validity
and accuracy.

5.2 Clearance variation
The first parameter we decided to vary is the clearance within the rod-end. Looking
at Figure 5.2, one might expect that decreasing the clearance could negatively
affect the behavior of the rod-end. Indeed, from the eccentricity graph, it can be
seen that the eccentricity oscillates quite widely, and reducing the clearance might
lead to a "bounce" of the inner sphere within the outer sphere. In other words, it
could happen that after the inner sphere comes into contact with the outer sphere,
it experiences a force so significant that it pushes it into contact with the opposite
part of the outer sphere, thus preventing the correct functioning of the mechanism.
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However, as observed from the results, this does not occur. In fact, the oscillation
of eccentricity decreases as the clearance decreases, as shown in Figure 5.11. With

Figure 5.11: Polar plot with different rod-end clearances

a smaller clearance, the outer sphere has to travel less distance before reaching
contact. Therefore, one would expect the contact to occur earlier compared to a
situation with a larger clearance. The reduced time spent before the first contact
means that the velocity of the outer sphere is lower as the clearance decreases.
This happens because the acceleration of the outer sphere is constant for every
value of the clearance before the first contact occurs. Since the contact happens
earlier for a smaller clearance, this translates to a lower velocity. In Figure 5.12,
you can observe the trend of the acceleration of the outer sphere before contact
as the clearance varies. Having a lower velocity of the sphere results in a lower
contact force, particularly the damping force component. This is because it is
directly dependent on the velocity difference between the two spheres composing
the rod-end. In Figure 5.13, the trend of the component of the contact force due
to damping is shown. Specifically, the force values obtained at the first contact are
highlighted with an arrow as the clearance varies.
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Figure 5.12: Outer sphere acceleration before the first contact

Therefore, having a lower damping force also results in a lower contact force and
thus a smaller penetration between the two spheres. With less penetration between
the two spheres, there will be a smaller oscillation of eccentricity as the clearance
of the rod-end decreases. The graph of the contact force is shown in Figure 5.14,
where, as with the damping force, the force values due to the first contact are
highlighted with arrows as the clearance varies. In combination with the graph
showing the contact force, a plot (Figure 5.15) illustrating how the contact force
decreases with decreasing clearance is included. In particular, the first peak value
of the contact force is considered significant. Additionally, the eccentricity graph
is provided in Figure 5.16 for better understanding, although its trend can be
partially inferred from the polar plot in Figure 5.11. As a final consideration, it’s
necessary to examine how the change in clearance reflects on the positioning of the
flight control surface. With a decrease in clearance, as one might easily imagine,
the outer sphere will come into contact with the inner sphere earlier. Consequently,
the angle θ and hence the position of the flight surface will change earlier (the
actuator will need a smaller elongation to establish contact). This can be observed
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Figure 5.13: Forza dovuta allo smorzamento

Figure 5.14: Contact force with differ-
ent clearance

Figure 5.15: Trend contact force with
different clearance
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Figure 5.16: Rod-end eccentricity with different clearances

in Figure 5.17. It’s observed that the situation with smaller clearance will have
achieved a greater angle of the flight surface. This is because, having initiated
contact earlier, the actuator will have a longer stroke during which the two spheres
are in contact, resulting in a greater movement of the inner sphere of the rod-end.
This is illustrated in the third graph of Figure 5.17. Similarly, it’s evident that
in the situation with smaller clearance, the angle θ decreases earlier compared to
situations with higher clearances. Lastly, in the fourth graph of Figure 5.17, it’s
shown how, upon starting a new ascent phase, the rod-end with less clearance will
always have the flight control surface moving first, just as it did at the beginning,
thus repeating the described cycle.

5.3 "Initial position" variation
Finally, as the last parameter, we decided to vary the initial position of the outer
sphere by modifying the "Initial condition" parameter mentioned at the beginning of
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Figure 5.17: Surface angle with different clearance

the chapter. By altering the initial position, we simulate the behavior of the rod-end
under conditions where the two spheres have not been mounted concentrically, but
rather under conditions where there may have been assembly with some errors, for
example. The initial position of the outer sphere was varied only along the z-axis
exiting the plane to analyze the correct 3D functioning of the model, which so far
has been tested only in the xy-plane. The result of varying the initial z-coordinate
is shown in Figure 5.18, where it can be observed that the three-dimensionality
of the model has been implemented correctly, as the constraint of the sphere is
respected. Other figures that can better clarify the 3D behavior of the model are
Figure 5.19 and Figure 5.20, where the representation on the xy-plane and the
xz-plane of Figure 5.18 is shown. From the 3D decomposition into two planes,
it’s even clearer how the three-dimensionality of the model has been correctly
constructed. From the xy-plane, it can be seen how the trajectory of the inner
sphere becomes narrower as the value of the applied initial condition increases. This
is quite obvious because as the z-coordinate increases, the radius of the circular
crown decreases. From the xz-plane, a particular behavior can be observed as the
z-coordinate increases. The trajectory of the inner sphere remains linear, i.e., it
stays at the same z-level, until it comes into contact with the outer sphere, where
the trajectory bends and tends to follow the curvature of the outer sphere. This
is due to the presence of a contact force that is oriented in space, given that the
contact between the two spheres does not occur at the z-coordinate equal to the
applied "Initial condition."
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Figure 5.18: 3D plot

Figure 5.19: Contact force with differ-
ent clearance

Figure 5.20: Trend contact force with
different clearance
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Chapter 6

Actuator model

The actuator model utilized in this thesis has not been subject of study. However,
since it has been used in simulations and since there will be results displaying
certain parameters, it is necessary to describe at least partially the functioning
of the model. In this chapter the actuator model will be discuss briefly, for more
specific information refer to the article [15] and [16]. The actuator in question is a
hydraulic actuator driven by a jet-pipe servovalve, which is actuated using solenoids.
The position of the actuator’s rod is measured using an LVDT (Linear Variable
Differential Transformer), and subsequently, the sensor feedback is compared with
the input given to the system. Upon finding the error, a PI controller is utilized to
actuate the servovalve. The complete model of the actuator is depicted in Figure
6.1.

6.1 Servovalve
We begin by analyzing the operation of the servovalve in order to proceed as
faithfully as possible in how the information is transmitted within the model. The
servovalve, by definition, consists of two stages: a pilot stage, which in this case is
composed by a torque motor, and a main stage responsible for the movement of the
spool. A schematic diagram of the entire valve can be seen in Figure 6.2. As can be
seen from the figure, the torque motor is actuated by two solenoids positioned on
both sides of the torque motor. When a solenoid is energized, an electromagnetic
flux is created, which interacts with the nearby armature of the torque motor and
the air gap between them, generating a force that tends to reduce the air gap and
thus creating a torque. Specifically, the force generated is called reluctance force
and it is given by the following equation:

F = 1
2
B2

µ
S (6.1)
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Figure 6.1: Simulink actuator model

where B is the magnetic induction, µ is the permeability, and S is the solenoid’s
cross-sectional area. The torque generated by the reluctance force will tend to
rotate the torque motor by a certain angle, but it must overcome some resisting
forces, so a balance in rotation is necessary. In addition to the electromagnetic
torque, there is also the torque due to the resistance opposing the feedback wire.
The feedback wire is connected at one end to the jet-pipe and at the other end to
the spool. In the model, it is represented as a spring, and thus depending on the
position of the jet-pipe Xj, it will generate a resisting torque. Furthermore, the
hinge around which the flapper rotates is modeled with a resisting action, which is
schematized as rotational stiffness and damping, this way of modeling the hinge is
useful to centering the jet-pipe especially in the presence of clearance. We therefore
obtain the following torque equilibrium equation.

Cmg − kfxF − bf ẋj − (xs + xj)kW = JAẍj (6.2)

The quantities in the equation can be seen in Figure 6.2. By dividing the rotating
mass of the system, we can find the acceleration with which the jet-pipe rotates.
Through double integration, we can then find the position Xj of the jet-pipe, which
is responsible for the subsequent actuation of the valve spool. When the jet-pipe
rotates allow the flux to pass through one of the two different command canal
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Figure 6.2: Servovalve scheme

(figure number 6.3) in order to generate pressure on the right or left spool activation.
Once the pressure difference between the two activations of the servovalve spool is

Figure 6.3: Jet-pipe scheme
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found, it is possible to determine the position of the spool. To find the position of
the spool, we need to balance the forces in order to find the spool’s acceleration, and
consequently its speed and position. Firstly, the spool is acted upon by the pressure
from the two activations. In Simulink, the pressure difference is directly multiplied
by the area of the spool on which the pressure acts. Similar to the equilibrium
for the rotation of the jet-pipe, there is also the force due to the feedback wire,
which tends to bring the spool back to its initial position. The resisting force of
the feedback wire is schematized as in Equation (6.2). Finally, as shown in Figure
6.4, when the spool is not in its initial position, the flow pass through it from the
supply to the load and the flow pass through it from the load to the tank also
generate a force on the servo valve spool, as the fluid passing through the servo
valve is under pressure. The equation governing the dynamic equilibrium of the
spool is therefore as follows:

dPAs − (xj − xs)kW + Ffl1 + Ffl2 − Ffr = msẍs (6.3)

where Ffl1 and Ffl2 are the forces due to the flow passing through the valve. Now

Figure 6.4: Spool scheme

that the displacement of the valve spool has been determined, it is necessary to
calculate the fluid flow that will flow into the actuator chambers and, conversely,
into the tank. In general, the spool is seen as a hydraulic Wheatstone bridge
between the supply and the tank, so the pressure drop between the actuator
chambers and the discharge or supply generates a flow which is a function of a
hydraulic resistance. The hydraulic resistance varies depending on the presence
of laminar flow or turbulent flow, but in this case, the hydraulic resistance is
calculated as if there were permanently turbulent flow. We can then calculate the
flow passing through each port of the spool, and as shown in Figure 6.4, the flow
rates into the rear and front chambers of the cylinder will be equal to:

Q1 = Q1v −Q4v (6.4)

70



Actuator model

Q1 = Q3v −Q2v (6.5)

where the flow rates Qiv are calculated as follows:

Qiv = CdiAi

ó
2∆Pi
ρi

(6.6)

6.1.1 Actuator
Once the fluid flow rates into the two chambers of the actuator are obtained, it
is possible to calculate the pressure of the fluid acting on the movable surface of
the actuator, in order to then determine how much the actuator has extended or
retracted. A schematic diagram of the actuator is shown in Figure 6.5. To find the

Figure 6.5: Actuator scheme

pressure acting on the movable surface of the cylinder, the equation of continuity
is applied, which corresponds to:

ρ(
Ø

QIN −
Ø

QOUT ) = dm

dt
= d(ρV )

dt
= V

dρ

dt
+ ρ

dV

dt
(6.7)

The volume of the actuator chambers is not constant but varies over time, and it
is calculated as follows:

V1 = V10 + Acx (6.8)

V2 = V20 − Acx (6.9)

where V10 and V20 are the volumes of the two chambers when the movable surface of
the actuator is positioned at zero. The position of the movable surface is considered
positive when the actuator extends, and thus when the surface moves to the right;
by choosing this direction as positive, the volume surface due to the movement of
the movable surface will be added to chamber 1 and subtracted from chamber 2.
Furthermore, if we have a fluid with a volume V and pressure P , and we reduce
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it by an amount dV , there will be an increase in pressure dP proportional to the
modulus of fluid compressibility β.

dV

V
= −dρ

ρ
= −dP

β
(6.10)

So substituting equations (6.8), (6.9), and (6.10) into equation (6.7), we get the
following equations respectively for chamber 1 and chamber 2:

Q1 − Acẋ = V1

β

dP1

dt
(6.11)

−Q2 + Acẋ = V2

β

dP2

dt
(6.12)

From which it is possible to derive the trend of the pressures acting on the movable
surface of the actuator respectively of chamber 1 and chamber 2. In the equation,
the leakages present in the actuator have been neglected; in fact, part of the fluid
can pass through the seal that separates the two chambers, and there may also
be leakages external to the actuator. All leakages have been considered in the
Simulink model of the actuator, the scheme of this specific part of which is shown in
Figure 6.6. Now that we know the pressures in the two chambers, we can perform

Figure 6.6: Simulink scheme where the pressure of the two chamber of the actuator
is calculated

the dynamic equilibrium of the actuator. A scheme with the acting forces is shown
in Figure 6.7. From the figure, we can derive the dynamic equilibrium, which
corresponds to:

(P1 − P2)Ac −mẍ− γẋ+ Fext = 0 (6.13)
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Figure 6.7: Actuator forces scheme

where γ represents the coefficient of viscous friction. From the equation of equilib-
rium, we can then obtain the acceleration, and then by integrating, we can find
the position of the actuator stem, since it will be the output of the model. The
implementation of the dynamic equilibrium of the actuator in Simulink is shown in
Figure 6.8.

Figure 6.8: Simulink implementation of the dynamic equilibrium of the actuator

6.2 Actuator calibration
Before performing simulations of the model with the actuator, it is necessary to
calibrate it. Actuator has already been calibrated but with a different downstream
system, so the procedure needs to be repeated. To calibrate the actuator, the actu-
ator model is isolated, and to simulate it being connected to the actuation system,
a parameter called "equivalent mass" is introduced. This parameter simulates the
dynamics of the downstream system as if it is connected. The equivalent mass is
added to the movable mass of the actuator and is a way to concentrate the mass and
inertia of the flight control surface directly at the end of the actuator. To do this,
it is necessary to find the transmission ratio of the crank-rocker mechanism used
to move the flight surface. The transmission ratio found for the mechanism in this
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thesis, with the data shown in Chapter 4, is shown in Figure 6.9. As can be seen

Figure 6.9: Gear Ratio

from the figure the transmission ratio is not a constant, in fact the figure doesn’t
show a straight line. This means that an average value of the transmission ratio will
be used to find the equivalent mass, an approximation that will not significantly
affect the results given the nearly linear behavior of the transmission ratio graph.
Once the equivalent mass is calculated using the average transmission ratio just
found, the actuator calibration can proceed. In this thesis, the Ziegler-Nichols
method is used for calibration, which consists of the following steps: a step input
position is applied to the system, and the proportional gain is increased until an
overshoot is obtained in the system’s output. Once the overshoot is achieved, the
integral gain is increased to reduce the steady-state error of the system. In this
work, the values of the integral and proportional gains obtained are respectively
0.02 and 2 A/m. The response obtained with the mentioned gains is shown in
Figure 6.10.
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Figure 6.10: Actuator calibration

6.3 Results with the actuator model
The first step after calibrating the actuator is to verify that the results returned
by the rod-end model are compatible with those of the model with both actuator
and rod-end. Indeed, since the rod-end model has already been validated, it will
serve as a verification function for the correct operation of the model with the
implementation of both the actuator and the rod-end. To do this, the same position
input is provided to both the rod-end model and the model with the actuator
inserted, in order to have the most accurate comparison possible. Since the input
required by the actuator model is position while for the rod-end model it is velocity,
the position and velocity input trends are shown in Figure 6.11 to demonstrate
that they are indeed equal to each other.

No significant difference can be observed between the inputs, so the analysis
of comparison between the two models proceeds. The first graph chosen to be
displayed in Figure 6.12 shows the trend of eccentricity and contact force. This
graph is shown because it is the most significant for the correct operation of the
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Figure 6.11: Position and speed input with and without the actuator

model, and as can be seen, the trend of the model with the actuator reflects the
trend of the model without it. It can be noticed that with the insertion of the

Figure 6.12: Eccentricity and contact force with and without the actuator

actuator, the eccentricity and consequently the contact force exhibit less oscillation.
This is due to the presence of the actuator, which plays a significant damping role
within the entire system. The damping effect of the actuator can also be observed
in the forces of the three-dimensional springs of the mechanism. Indeed, both the
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spring connected to the outer sphere and the spring connected to the inner sphere
exhibit a more damped force. In both cases, at the top of the graphs, one can
observe how the trend of the three components respects the direction of the force.
The graphs of the force of the outer spring and the inner spring are respectively
shown in Figure 6.13 and 6.14. As a final graph, a polar plot showing the reciprocal

Figure 6.13: Outer spring force with and without the actuator

Figure 6.14: Inner spring force with and without the actuator

position of the two spheres is included in Figure 6.15. Once again, the behavior of
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the model with the actuator adheres to the expected trends. Therefore, it can be
concluded that the implementation of the actuator in the model with the rod-end
has been successful. After verifying the correctness of the actuator implementation

Figure 6.15: polar plot with and without the actuator

with the rod-end model, analyses can be conducted varying certain parameters
such as clearance or the application of a force on the flight surface.

6.3.1 Analysis of the model as the rod-end clearance varies
This analysis has already been conducted for the rod-end alone in Chapter 5,
therefore, this section will examine different quantities. Given the presence of
the actuator in this section, we will discuss how the variation of clearance affects
actuator-related quantities such as pressure, flow rate, etc. To perform the analysis
varying the clearance, we decided to proceed backward with the flow of information.
That is, instead of starting from the information of the controller, we start from
the actual result of the entire system, which is generating a movement of the rod
due to a pressure difference between the two chambers of the actuator. Therefore,
the first trend shown is that of the pressure in the rear chamber of the cylinder,
which is the pressure that generates the movement of the rod, shown in Figure
6.16. The pressure in the rear chamber increases during the extension phase of the
actuator and decreases during the retraction phase. From the figure, it is evident
how the pressure trend is influenced by the clearance value of the rod-end. With
smaller clearance values, there are also lower pressures during the extension phase.
This is due to a smaller contact force in the presence of smaller clearance, as seen
in Chapter 5. Therefore, with a smaller contact force between the two spheres,
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Figure 6.16: Rear chamber pressure

a lower pressure is required to allow the rod to extend. In Figure 6.17, you can
observe the trend of the external force acting on the actuator rod, which is also
influenced by the rod-end clearance. Indeed, the external force acting on the rod
is simply the transposition of the contact force between the two spheres observed
by the actuator. The external force in the figure is negative during the extension
phase of the actuator, while it is positive for the retraction phase. The trend of

Figure 6.17: Actuator external force
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the pressure acting in the front chamber of the actuator is also influenced by the
rod-end clearance in the same way as the pressure in the rear chamber, but the
influence of the clearance becomes more evident during the retraction phase of
the rod. In this phase, the pressure in the front chamber can be considered as
"driving." The trend of the pressure in the front chamber of the actuator can be
seen in Figure 6.18, while Figure 6.19 shows the trend of both pressures, with the
pressure in the front chamber represented by the dashed line. This representation
allows us to immediately see the pressure difference responsible for the movement
of the rod. The increase in pressure in the two chambers of the actuator is due to

Figure 6.18: Front chamber pressure

the flow directed by the spool of the servovalve towards the actuator chambers or
towards the reservoir. The trend of the flow towards the rear chamber is shown
in Figure 6.20, where it can be seen that the flow increases during the extension
phase while becoming negative, meaning the flow direction changes, during the
retraction phase because the fluid will move from the actuator chamber to the
system reservoir. There is not a significant difference in the flow trend with varying
rod-end clearance. This is because liquids are nearly incompressible, so even a
small increase in fluid volume results in a considerable increase in pressure in the
actuator chamber. The trend of the flow in the front chamber of the actuator is
opposite to that obtained for the rear chamber. As shown in Figure 6.21, the flow
will be positive during the retraction phase of the actuator, meaning the flow will
go into the chamber, while it will be negative during the extension phase of the
actuator. Finally, the last parameter analyzed in this study is the position of the
spool of the servovalve, the trend of which is shown in Figure 6.22. Just like for the
flow rates, there are no substantial differences in the spool position as the rod-end
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Figure 6.19: Chambers pressure of the actuator

Figure 6.20: Flow rate in the rear chamber

clearance varies, which is expected since the flow rate does not vary significantly.
Indeed, the position of the spool defines the flow rate. Therefore, if the flow rate
varies only slightly, the spool position will also vary only slightly. From the figure,
it can be observed that positive spool positions occur during the extension phase
of the actuator’s rod, while negative spool positions occur during the retraction
phase. Thus, the trend of the spool position closely follows the trend of the flow
rate into the rear chamber of the actuator.
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Figure 6.21: Flow rate in the front chamber

Figure 6.22: Servovalve spool position

6.3.2 Analysis as the applied force varies

The last analysis of the results that we decided to propose concerns the variation
of the external force applied to the flight surface. So far, all the results have been
obtained assuming that there is no air pressure on the flight surface. To have a
more realistic simulation, it is necessary to simulate its influence as well. This
analysis was not performed previously with only the rod-end model because most of
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the damping in the system is due to the presence of an actuator. Therefore, without
it, you would get a more unstable behavior that is harder to analyze. In reality,
instead of applying a force, a moment was applied to the flight surface, first with a
constant value to simplify the situation. Then, a moment proportional to the angle
of the surface was applied. Applying a moment proportional to the angle of the
flight surface is certainly more realistic because the air pressure generated will vary
based on its inclination. First of all, it is necessary to show the trend of the position
and velocity of the actuator, whose trends can be seen in Figure 6.23. The position
output is very similar as the force varies. If you were to zoom in on the curve, you
would see that as the applied moment increases, the maximum position reached by
the actuator decreases. However, this is a minimal difference, approximately three
orders of magnitude less than the actuator extension measurement. For the velocity
trend, you can see that as the applied moment increases, there is more disturbance
present at the beginning of the simulation. This is because the applied moment was
applied in a step function, so the system needs time to settle. Immediately after, it

Figure 6.23: Actuator position and speed with different momentum

is useful to look at the trend of the contact force. In Figure 6.24, you can see the
trend of the magnitude of the contact force for simplicity. However, this is sufficient
to get a clear idea of the influence of the applied moment. From the figure, it can
be seen that the contact force is always present when a constant external moment is
applied. This is because the application of the moment causes the flight surface to
tend to rotate clockwise, immediately bringing the inner sphere into contact with
the outer sphere and remaining in contact until the end of the simulation. Even
when the actuator transitions from the extension phase to the retraction phase,
contact between the two spheres persists. This is because the moment has a greater
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Figure 6.24: Contact force magnitude with different momentum

influence than the inertial force, which would tend to separate the two spheres
during the motion reversal. The behavior just described does not occur with the
moment applied proportionally to the angle of the surface. In this case, the two
spheres remain in contact even after the motion reversal of the actuator. However,
when the angle reaches zero, meaning the surface is in a horizontal position, the
sign of the applied moment reverses. Consequently, the inner sphere moves in the
opposite direction to come into contact with the outer sphere on the other half.
The trend of the sinusoidal applied moment can be seen in Figure 6.25, from which
the sign reversal of the moment is evident. Specifically, the applied moment always
tends to counteract the deployment of the surface. Thus, if the surface rotates
clockwise from the rest position, the applied moment will be counterclockwise and
negative. Conversely, if the surface rotates counterclockwise, the moment will be
clockwise and positive. All that has just been described is confirmed by the polar
plot in Figure 6.26, which shows the relative position of the two spheres. This plot
confirms the continuous presence of contact between the two spheres in the case of
a constant applied moment. At higher applied moments, the only difference is the
presence of greater eccentricity between the two spheres, which was also deducible
from Figure 6.24, corresponding to greater penetration of the two bodies. In the
case of applying a sinusoidal moment, the behavior of the rod end becomes clear
when the applied moment changes sign. Indeed, it can be seen that the contact
between the two spheres occurs in the other half of the outer sphere. The trend seen
in the polar plot is confirmed by examining the force of the spring connected to the
inner sphere and the force of the spring connected to the outer sphere in their three
components. Looking at the trend of the force of the spring connecting the actuator
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Figure 6.25: Sinusoidal momentum applied to the control surface

Figure 6.26: Polar force with different momentum

to the outer sphere in Figure 6.27 (the graph shows the trend obtained in one of the
tests performed with different moments; otherwise, it would be difficult to read), it
can be observed that the component along the x-axis of the force is always positive,
while the component along the y-axis changes sign when the contact between the
two spheres occurs in the upper half of the polar plot. The fact that the force along
the x-axis is always positive also means that the spring is always compressed. The
trend of the force of the spring connecting the inner sphere to the flight surface
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Figure 6.27: Actuator spring force with constant momentum

follows a behavior similar to that of the previous spring. However, the component
along the x-axis will always be negative because, in this case, the compression of
the spring is described by a negative force. The trend of the force can be observed
in Figure number 6.28. In the final analysis, we present the graphs showing where

Figure 6.28: Surface spring force with constant momentum

the wear in the rod-end is localized. Unlike what was seen in Chapter 5, the wear
in the presence of an external force will be located differently. With a constant
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Actuator model

external moment, the wear is only localized in the left part of the polar plot, as the
contact between the two spheres is present only in that area. The trend of wear
can be seen in figure number 6.29. The trend of the contact force and the wear

Figure 6.29: Polar plot with contact force ad a wear indicator

indicator is shown for only one constant moment value because the trend would be
the same; only the magnitude of the contact force and consequently of the wear
indicator would change. However, the maximum value of the contact force, as for
the wear, would be located at the same theta coordinate on the polar plot. It is
interesting to note that in this case, as in the case of Chapter 5, the maximum
wear would not occur at the point where the contact force is maximum.
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Chapter 7

Conclusion

Rod-ends play a crucial role in actuating flight control surfaces, thus modeling
them is essential. Creating a model of the rod-end using any software is highly
beneficial during testing. Initially, during experimentation, simulating the behavior
of the mechanical component virtually proves invaluable, enabling the prompt
identification of major errors and preventing the placement of a rod-end on the
test bench that is already known not to meet test requirements. The aim of this
thesis is to provide a model that simulates the behavior of the rod-end in such
scenarios. The rod-end model developed for this thesis can be deemed universal,
as only a few input parameters need to be altered to obtain a model of a rod-end
with dimensions different from those used in the results section of this paper. The
entire actuation part, including the connecting rod-crank mechanism with the two
three-dimensional springs, is non-standardized in flight control surface actuation
systems. However, the model’s creation allows for the straightforward adjustment
of the kinematic equations describing the position and velocity of the connecting
rod and crank endpoints. The actuator is controlled by a jet-pipe valve, though
control with a flapper-nozzle valve is easily implementable by merely substituting
the jet-pipe equations with the flapper-nozzle equations. In light of this, the created
model can be considered nearly "universal," except for a few modifications required
based on the actuation system used to analyze the rod-end’s behavior. With
that said, undoubtedly, the model can undergo numerous improvements. This
thesis serves as a continuation of a previous thesis where the rod-end model was
two-dimensional, whereas in this thesis, a decision was made to model it in three
dimensions for increased realism. Similar to the previous thesis, this one can also
be expanded in various aspects. A critical aspect lacking in this model is a more
accurate estimation of wear within the rod-end. The results section only includes a
rudimentary method for wear calculation. To enhance the model, a more in-depth
wear calculation could be developed, determining the amount of material removed
and the specific area within the two bodies comprising the rod-end most affected.
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Conclusion

For even more precise modeling, finite element contact modeling could be useful,
providing real-time updates on wear and thus variable rod-end track geometry.
A more thorough wear calculation is undoubtedly a development that could and
should be pursued, as many breakdowns occur due to significant rod-end wear,
leading to the removal of the solid lubricant layer and resulting in metal-to-metal
contact.
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Appendix A

Contact force

In this Appendix the article written by Lankarani e Nikravesh is analyzed; the
contact force is one of the most important things of this thesis so it seemed necessary
to delve deeper into the topic. In this thesis it has be chosen this contact force
model because describe the contact in a more detailed manner as a trade-off, there
is a higher computational costs.

The subject of the article is a so-called external impact, that is when two foreign
bodies collide with each other. During the impact of the bodies there is an energy
transfer process which is model using a parameter called "coefficient of restitution".
This article follows the approach that the contact forces act in a continuous way.
This means that the impact forces should be added to the equation of motion of
the body, which is what is done in this thesis. The development of this contact
force model starts from the Hertz contact model adding a damping contribute; the
dissipated energy during the impact it is assumed to be due that an hysteretic
damping intrinsic of the material of the two bodies which dissipate energy in the
form of heat. Below there are the logical and mathematical steps leading to the
definition of µ the "hysteresis damping factor".

As an example, in the discussion, is considered the contact between two sphere,
as it is shown in the figure A.1; the two spheres have a velocity V (−)

i and V
(−)
j at

Figure A.1: Impact between two spheres
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Contact force

the time t(−) which is the instant immediately before the contact and a velocity
V

(+)
i and V

(+)
j at the time t(+) immediately after the contact. The kinetic energy

balance before and after the contact yields the energy loss during impact.

∆T = T (−) − T (+)

= 1
2mi

Iè
V

(−)
i

é2
−
è
V

(+)
i

é2J
+ 1

2mj

Iè
V

(−)
j

é2
−
è
V

(+)
j

é2J (A.1)

The coefficient of restitution is defined as "the ratio of relative departure velocity
to the relative approach velocity of the spheres in the direction of impact" which in
term of equation is:

e = −
V

(+)
i − V

(+)
j

V
(−)
i − V

(−)
j

(A.2)

The linear momentum along the direction of contact is conserved due to the contact
force is internal to the system.

mi[V (−)
i − V

(+)
i ] +mj[V (−)

j − V
(+)
j ] = 0 (A.3)

So using the three equation number A.1, A.2 and A.3 the three unknown quantities
V

(+)
i , V (+)

j and ∆T can be easily found:

V
(+)
i = 1

mi +mj

CA
mi − emj

B
V

(−)
i + (1 + e)mjV

(−)
j

D
(A.4)

V
(+)
j = 1

mi +mj

CA
mj − emi

B
V

(−)
j + (1 + e)miV

(−)
i

D
(A.5)

∆T = mimj

2(mi +mj)

C
V

(−)
i + V

(−)
j

D2A
1 − e2

B
(A.6)

To perform this contact model formulation it should be evaluate the indentation
velocity δ̇ at any time during all the period of contact. Considering for now only
the first phase of the contact and so only the compression phase the two spheres at
the end of this phase have the same velocity; a part of the initial kinetic energy
of the two sphere is transformed into elastic strain energy and another part is
transformed into the kinetic energy of both the spheres moving towards with the
same velocity, so the energy balance is as follows:

T (−) = T (m) + U (m) (A.7)

where U (m) is the maximum strain energy stored. The equation number A.7 is so:

1
2mi

C
V

(−)
i

D2

+ 1
2mj

C
V

(−)
j

D2

= 1
2(mi +mj)

C
V

(m)
ij

D2

+ Um (A.8)
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Equalizing the equation number A.4 and A.5 the instantaneous velocity at the end
of the compression phase became:

V
(m)
ij = 1

mi +mj

C
mjV

(−)
j +miV

(−)
i

D
(A.9)

Now substituting all the expression in the equation number A.7 the maximum
strain energy stored became:

U (m) = mimj

2(mi +mj)

C
δ̇(−)

D2

(A.10)

The absorbed strain energy is equal to the work done during all the compression
phase by the contact force which for simplicity is considered equal to the Hertz
contact force model and became:

U (m) = K

n+ 1δ
n+1
m (A.11)

Now equalizing the equation number A.10 and A.11 it can be found the initial
indentation velocity: C

δ̇(−)
D2

= 2(mi +mj)K
mimj(n+ 1) δ

n+1
m (A.12)

Knowing the indentation velocity for each time during the contact is possible to
calculate also the energy loss by the damping function of the this new contact force
model. In this analysis it’s assumed that the dissipated energy during the contact
is small compared to the strain energy, this leads to have the restitution coefficient
close to unity and it can be also assumed that the indentation velocity can be
approximate by the same expression during the two phase of the contact. So the
dissipated energy can be evaluated form the work done by the damping component
of the contact force and it’s expressed in the following way:

∆T =
j
D δ̇ dδ =

j
µ δn δ̇ dδ (A.13)

Making all the proper calculus the energy loss formulation became:

∆T ≈ 4µ
3(n+ 1)

C
2(mi +mj)K
mimj(n+ 1

D1/2C
δm

D3(n+1)/2

(A.14)

The maximum indentation can be expressed in term of the initial indentation
velocity and the equation of the energy loss became:

∆T ≈ 2µmimj

3K(mi +mj)

C
δ̇(−)

D3

(A.15)
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Finally from the previous equation it can be found µ the "hysteresis damping factor"
comparing the equation with the equation number A.6 which is equal to:

µ = 3K(1 − e2)
4δ̇(−)

(A.16)

which is the expression used in the chapter number 4.

93



Bibliography

[1] Wayne Scraba. «"CRITICAL COMPONENTS" "What You Need To Know
About Rod Ends Spherical Bearings"». In: () (cit. on p. 7).

[2] Antonio Carlo Bertolino, Andrea De Martin, Giovanni Jacazio, and Massimo
Sorli. «Design and Preliminary Performance Assessment of a PHM System for
Electromechanical Flight Control Actuators». In: Aerospace (2023) (cit. on
p. 7).

[3] Massimo SORLI Alberto BACCI Dott Andrea DE MARTIN. «High-fidelity
modeling of degraded rod-end for flight control actuators-analysis and pre-
liminary PHM study». POLITECNICO DI TORINO DEPARTMENT OF
MECHANICAL and AEROSPACE ENGINEERING, 2020 (cit. on p. 7).

[4] Zhanshan Wang, Yulin Yang, Xiping Liu, and Shijun Huang. «Design and
movement trail analysis of a life testing machine for self-lubricating rod end
spherical plain bearing of a helicopter». In: Journal of Advanced Mechanical
Design, Systems and Manufacturing (2016) (cit. on p. 8).

[5] Edward J Nagy. «Wear-indicating rod-end bearing». In: (1976) (cit. on p. 10).
[6] Zhang Shuai, Cui Yongcun, Hu Zhonghui, Yang Xiaomin, Li Yan, and Deng

Sier. «Thermal-stress-wear coupled characteristics of oil seal in airframe rod
end-bearing». In: (2021) (cit. on p. 10).

[7] Byung Chul Kim, Dong Chang Park, Hak Sung Kim, and Dai Gil Lee.
«Development of composite spherical bearing». In: Composite Structures
(2006) (cit. on p. 10).

[8] Osman Asi and Önder Yeşil. «Failure analysis of an aircraft nose landing gear
piston rod end». In: Engineering Failure Analysis (2013) (cit. on p. 11).

[9] Evaldas Narvydas, Romualdas Dundulis, and Nomeda Puodžiūnienė. «Rod
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