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Introduction

The aim of this thesis is to describe the physical and mathematical aspects of optimising tangential
manoeuvres for longitude relocation operations, which are intended to reposition a constellation of
communication satellites in Geostationary Orbit (GEO). The optimisation process is conducted by
harnessing the capabilities of the NLPQLP solver, which consists of a Fortran subroutine.

Space-based technologies play an increasingly pivotal role in our interconnected world, as the
need for global surveillance and continuous observation of extensive areas of the Earth becomes
more and more imperative. In this context, geostationary satellites are confirming their role as a
crucial element for space-based services. Their characteristic orbit allows these spacecraft to remain
consistently positioned above a fixed point on the Earth’s surface, providing a stable platform for
a variety of applications. Longitude relocation is a frequent operational activity required for GEO
satellites, to decrease or increase their altitude and start drifting towards a new longitude in order
to offer new services in a different Earth location. Even though this process is well-known to
satellite operators, its optimisation is not always straightforward due to the multiple constraints
that must be satisfied, particularly when considering the low-thrust performances of the electric
thrusters widely used in recent missions. The optimisation of the manoeuvres required to carry
out the relocation of GEO satellites holds paramount importance in order to limit the operational
and management costs of the mission. This thesis investigates a novel approach for GEO relocation
optimisation by implementing a sequential quadratic programming (SQP) algorithm for constrained
nonlinear optimisation problems. The primary focus will be directed towards the study of continuous
manoeuvres, thus considering the use of electric thrusters. This enhanced approach incorporates a
quasi-Newton method to solve a set of variables, aiming to achieve the desired orbit targets and
obtain the best feasible manoeuvre plans. From the operational standpoint, configurable and user-
defined constraints are introduced. The solver’s flexibility enables the customization of constraints
for the different phases of insertion and extraction, executed both through electric or chemical
propulsion. Specifically, this versatility of the method has been corroborated in the work conducted,
with its broadening to impulsive manoeuvres, resulting in excellent results.

Firstly, a brief overview of geostationary satellites and their main characteristics will be provided.
Secondly, key concepts related to orbital mechanics and space propulsion will be reviewed to better
understand the analyzed problem. Then, a general mathematical description of the SQP optimisation
algorithm will be given. Finally, the methodology applied for the study of the problem will be
presented, followed by the exposition of the principal results obtained.
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Chapter 1

Geostationary Satellites

“The more I read, the more I acquire, the more certain I am that I know nothing”
— Voltaire

Since this work is related to the relocation operation of geostationary satellites, it is useful to
begin with a general introduction about these spacecraft. This first chapter will present the main
characteristics of GEO satellites, introducing the features of their peculiar orbit without, however,
delving into the technical details that define it. Additionally, the principal applications of geosta-
tionary spacecraft will be illustrated here, along with a brief overview of the aspects concerning their
implementation.

A geosynchronous satellite is a spacecraft with an orbital period equal to the Earth’s rotation
period: 23h 56’ 4". A special case of a geosynchronous satellite is the geostationary one, which
is characterized by a circular geosynchronous orbit directly above the Earth’s equator. Such syn-
chronization uniquely determines the orbit height; thus, all GEO satellites share the same altitude.
This particular characteristic will be discussed more thoroughly in Chapter 2, where it will also be
demonstrated from a technical point of view.

The concept of a geostationary orbit was popularized in the 1940s as a way to revolutionize
telecommunications, while the first satellite to be placed in this kind of orbit was launched in 1963.
Since this inaugural launch, the number of GEO spacecraft has steadily increased, reaching more
than one hundred in 1980 and two hundred in 1990. Nowadays, they represent approximately 12%
of satellites in orbit, a significant percentage considering the high cost required to reach the GEO
orbit, due to its significant altitude of nearly 42,000 km.
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1.1 Overview

Geostationary satellites, during their motion, follow the direction of Earth’s rotation —eastward—
and have the unique property of remaining permanently fixed in exactly the same position in the
sky as viewed from an observer on Earth. The primary benefit of this orbital configuration lies in
the continuous communication link between the ground station and the spacecraft. Additionally,
for Earth observation purposes, it enables the consistent monitoring of a specific geographical area.
Since the GEO orbit is characterized by a very high altitude, resulting in a very large visibility
cone, a single satellite can cover an area close to 30% of the Earth’s surface. In the specific, with
a constellation of just 3 satellites, it is generally possible to achieve global coverage of the Earth,
except for polar regions. It is easier to understand this characteristic looking at Fig. 1.1, which
provides a schematic representation. It is worth highlighting that a perfectly geostationary orbit is
a mathematical abstraction achievable only by a spacecraft orbiting around a perfectly symmetric
Earth, with no additional forces exerted on it apart from the gravitational attraction from Earth.
However, a spacecraft is actually subject to various forces that influence and modify its orbit. These
forces, known as non-Keplerian forces or perturbations in celestial mechanics, arise from different
factors, such as the gravitational influence of the Moon and the Sun or the non-sphericity of the
Earth. Further specific details of these perturbations are provided in Chapter 2.

Figure 1.1: Satellite altitude versus visibility cone (above) and coverage of three
GEO satellites (below).
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1.1.1 Eclipses

Geostationary satellites are typically equipped with solar panels, which generate the electrical power
needed to operate the mission payload and onboard electronics. Furthermore, in recent GEO mis-
sions, there has been an increasing use of electric propulsion systems, where the electrical energy
provided by the solar cells is used to generate acceleration power. It goes without saying that appro-
priate and periodic exposure to sunlight during the day is crucial for the correct functioning of the
satellite. Therefore, the eclipse period represents challenging phases during which the solar panels
are unable to produce energy, leaving the satellite reliant solely on the energy previously stored in
its onboard batteries. Eclipses are generally a nuisance to the mission, as they cause fluctuations in
onboard temperatures and the loss of Sun reference direction. Furthermore, manoeuvres are often
prohibited in this time interval and, depending on the spacecraft’s design, various on board devices
must be switched off during the eclipse.

Figure 1.2: Schematic overview of the eclipses of the Sun by the Earth experi-
enced by a satellite during the year

1.1.1.1 Eclipse by Earth

Near the winter and summer solstices—occurring on December 21th and June 21th respectively—a
GEO satellite, due to its orbit, is never in shadow or penumbra, remaining continuously illuminated
by sunlight. Conversely, near the spring and autumn equinoxes—occurring on March 21th and
September 21th respectively—it enters in the the eclipse season. During these periods, the Sun
moves through the equatorial plane, which is reasonably close to the orbital plane. Consequently,
the spacecraft passes through the Earth’s shadow once per day, becoming aligned with the Earth
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and the Sun. This phenomenon is known as eclipse of the Sun by the Earth, and each eclipse season
lasts for about seven weeks — specifically for 46 days, from February 26 to April 13 and from August
31 to October 16—. Before and after entering the shadow, there exists a singular transition through
the penumbra, the duration of which varies depending on the season. This penumbra region occurs
due to the nature of the light source, the Sun. As can be inferred from Fig. 1.3, the time interval
during which the satellite is in shadow reaches a maximum of 71.5 minutes on the equinox day
and decreases in the days before and after it. When the inclination is not zero, both the timing of
the eclipse seasons and their overall duration are altered, although the length of the longest eclipse
remains constant.

Figure 1.3: Duration of the eclipse in relation to the days around the equinox
(left); umbra and penumbra region (right) [1]

1.1.1.2 Eclipse by Moon

The eclipses of the Sun by the Moon, as experienced by a spacecraft, follow similar principles
to those perceived by an observer on Earth. However, there are some distinctions arising from
the spacecraft’s higher velocity in comparison to a ground observer. Consequently, a geostationary
satellite encounters solar eclipses more frequently and for longer durations than those witnessed from
the Earth’s surface. Specifically, the nature and duration of these eclipses are strongly dependent on
the Moon’s location with respect to the satellite’s position along its orbit. One can consider the mean
value of the orbital period of the Moon to be 27.3 days, and its flight velocity to be approximately
1 km/s. The velocity of a geostationary spacecraft, which is approximately 3 km/s, allows it to
surpass the Moon’s shadow when both are moving in the same direction. This scenario arises when
the spacecraft and the Moon are positioned on the same side of the Earth. Conversely, a quarter of
a day earlier or later, the satellite moves perpendicular to the Moon’s shadow, enabling the shadow
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to catch up with the spacecraft. As a result, the relative motion between the satellite and the
Moon’s shadow may lead to the spacecraft experiencing extended periods of eclipse or encountering
two eclipses with only a short interval between them outside the shadow. This phenomenon is
clearly not possible for a ground-based observer due to the lower rotation velocity of the Earth, with
its highest value being 0.46 km/s at the equator. A visual representation of the aforementioned
concept is depicted in Fig. 1.4. In general, eclipses caused by the Moon exhibit a distribution
characterized by a seemingly irregular pattern, with a variable number of occurrences per year. It
is evident that calculating these phenomena results in a significant challenge for astronomers, given
the high complexity involved. The description provided applies to both the umbra and penumbra
scenarios. Specifically, surrounding the umbra region, there is the wider cone of the penumbra, with
a cross-sectional radius measuring approximately 3500 km.

Figure 1.4: Two closely spaced eclipses (top) or one long eclipse (bottom), which
may occur when the spacecraft flight direction is approximately aligned with the
Moon’s shadow [2]

1.1.2 Applications

As previously mentioned, an object in a GEO orbit appears motionless to ground observers, remain-
ing fixed over one spot above the equator. Hence, this characteristic proves favorable for certain
technical applications and is therefore exploited for various purposes. Moreover, other advantages
arise from the peculiar features of this orbit, as it allows for high temporal resolution data and
simplifies the tracking of the satellite by its earth stations.

Geostationary satellites have had a significant impact on global communications, television
broadcasting, and weather forecasting, while also finding applications for a number of important
defense and intelligence objectives. Nowadays, the geostationary orbit is primarily utilized for com-
munications missions, enabling ground stations to employ fixed-direction antennas. This simpli-
fication eliminates the need for Earth-based satellite antennas to rotate for tracking, as they can
be permanently pointed at the spacecraft’s position in the sky, thereby reducing operational costs.
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Other applications include Earth observation missions; for example, weather satellites are often
placed in this orbit for real-time monitoring and data collection. Additionally, the GEO orbit is
utilized for navigation satellites to provide a known calibration point and enhance GPS accuracy, as
well as in a few scientific missions. However, there are also some disadvantages associated with this
specific orbit. Due to its high altitude, radio signals take a significant amount of time to reach and
return from the satellite, resulting in a small but noticeable signal delay. Furthermore, as mentioned
earlier in this paragraph, geostationary satellites do not provide complete geographical coverage,
leaving regions at higher latitudes uncovered. Consequently, ground stations at latitudes higher
than 60° may have difficulty reliably receiving signals.

Further information about some of the main applications just discussed, and their specific benefits
and complications derived from employing a geostationary orbit, are summarized as follows:

• Communication

Geostationary communication satellites are particularly useful due to their high visibility from
a large area of the Earth’s surface, extending 81° away in latitude and 77° in longitude. Since
they appear stationary in the sky, as mentioned previously, movable antennas are not necessary.
This allows for the implementation of small and less expensive stationary antennas on Earth.
However, the major drawback is the significant latency for signal transmission. This delay
poses challenges for latency-sensitive applications such as voice communication, making geo-
stationary satellites primarily suitable for unidirectional entertainment and applications where
low-latency alternatives are unavailable. It is worth highlighting that as the observer’s latitude
increases, communication becomes more difficult due to various factors such as atmospheric
refraction, Earth’s thermal emission, and line-of-sight obstructions.

• Observation

In this type of mission, GEO satellites are typically employed to capture images in the visual
and infrared spectrum of Earth’s surface, atmosphere, and oceans. The main objectives involve
weather observation, oceanography, and atmospheric tracking. Specifically, geostationary me-
teorological satellites are utilized for tracking volcanic ash, estimating vegetation coverage, and
measuring temperatures of clouds, land, and oceans. They also provide crucial information
for creating meteorological prediction models. Nevertheless, the high altitude of their orbit
compromises the achievable resolution. Due to their wide field of view and low resolution, they
are primarily implemented for short-term and real-time forecasting.

• Navigation

Geostationary satellites can be used to enhance GNSS systems by providing an additional
reference signal, consequently leading to a significant improvement in position accuracy. How-
ever, it should be noted that for navigation purposes, MEO orbits are typically preferred over
GEO orbits due to their better accuracy and lower latency. Moreover, the geostationary orbit
does not offer particularly significant advantages for this kind of missions.
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1.2 Implementation

Geostationary satellites are launched eastward into a prograde orbit that matches the rotation
rate of the Earth at the equator, and they are positioned in a specific slot above a designated
point on the Earth’s surface. Various actions are necessary to reach the final orbit and ensure the
satellite’s correct operability. Additionally, several interventions and manoeuvres are required to
maintain the satellite’s trajectory, make any necessary changes, and ultimately dispose of it at the
end of its operational life. However, for a concise and straightforward overview of GEO spacecraft
implementation, four main phases can be identified:

• Launch
As previously mentioned, the satellite is launched eastward. Specifically, the launcher releases
the spacecraft at an altitude of about 200 km above the Earth, placing it into a geostationary
transfer orbit (GTO). The GTO is an elliptical orbit characterized by a low-altitude perigee
and an apogee near the geostationary height. The onboard propulsion system is then utilized
to raise the orbit’s perigee, circularize it, and ultimately reach the GEO orbit. During this
process, the apogee motor (AFM) boosts the flight velocity and alters the spacecraft direction,
thereby adjusting the transfer orbit’s inclination from approximately 7° to nearly 0°. Launching
a geostationary satellite from a low-latitude site minimizes the amount of inclination change
required in this manoeuvre, thus reducing the associated costs. Additionally, launching close to
the equator allows for greater exploitation of the tangential velocity caused by Earth’s rotation,
which is maximized at the equator. However, the selection of the launch site is subject to
additional requirements common to all space launches, which arise from other issues such as
safety considerations.

• Station acquisition
This phase begins after the AFM firing. During station acquisition, a sequence of smaller orbit
manoeuvres is executed over a span of up to one month to shift the spacecraft to the intended
longitude and adjust the orbit’s eccentricity and inclination. Specifically, these manoeuvres
serve to rectify any discrepancies arising from the AFM burn and residual errors stemming
from the launcher injection.

• Operational phase
After an initial period, known as the commissioning phase, during which tests and checks
are conducted on the satellite to ensure all systems function correctly, the satellite can begin
its operational life. The routine operations of the mission typically endure for several years
until one of several conditions is met: depletion of onboard fuel, degradation of electric power
generators, occurrence of a significant onboard error, or obsolescence of the mission.

• Disposal
At the conclusion of the mission, aging GEO spacecraft are commonly transitioned into a
circular orbit situated a few hundred kilometers above the geostationary altitude. This measure
is undertaken to reduce the risk of potential collisions. Following this phase, ground control
over the satellite is terminated, allowing it to drift indefinitely in what is colloquially known
as a graveyard orbit.
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1.2.1 Manoeuvre Types

Geostationary spacecraft are outfitted with thrusters capable of being activated either through
ground command or an automatic onboard system to adjust the orbit as per specific requirements.
These requirements typically align broadly with the phases observed earlier:

• Station acquisition: manoeuvres aimed at positioning the spacecraft into the desired geosta-
tionary orbit at the mission’s outset.

• Station keeping : Regular manoeuvres performed throughout the mission’s lifespan to counter-
act external perturbations that may alter the orbit from its geostationary position.

• Station shifts: manoeuvres executed to alter the satellite’s longitude, if needed by the mission’s
objectives.

• Re-orbiting : Actions taken at the mission’s conclusion to transition the spacecraft out of the
geostationary orbit, achieved by adjusting its altitude up or down by several hundred kilometers
from the nominal geostationary radius.

1.2.2 Legal Aspects

As mentioned at the beginning of the chapter, the geostationary orbit belt is defined by the distance
from the Earth, which must be near the geostationary radius, and the latitude relative to the Earth’s
equator, which should approximately be zero. It goes without saying that this orbit represents a
very limited region of space. The ring-shaped region outlined has only one free dimension to allocate
to different spacecraft, namely the longitude[1] relative to the Earth.

Figure 1.5: The eight signatories to the 1976 Bogota Declaration

[1]The longitude of the projection of the spacecraft on the Earth’s surface
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The allocation of longitude positions is primarily performed to avoid signal interference between
neighboring spacecraft that utilize the same radio frequency. In light of the above, there are a limited
number of slots available in this orbit, and thus only a limited number of satellites can be operated
in it.

Nowadays, the allocation of frequencies for terrestrial radio communications is coordinated by the
International Telecommunication Union (ITU). The ITU’s allocation mechanism is also responsible
for resolving any disputes regarding access to the GEO orbital slots.

As a matter of fact, the exploitation of the geostationary orbit has also led, over time, to conflicts
between different countries. Many nations, even those without access to space technology, requested
longitude positions for potential future use out of fear of losing access to this crucial resource.
Additionally, a group of eight equatorial nations claimed sovereignty over the geostationary orbit
above their territories. These requests culminated in the 1976 Bogota Declaration, but the claims did
not gain international recognition and received no positive response from space-faring states. These
events clearly demonstrate the importance of the geostationary orbit, which, due to its unique
characteristics, can be likened to a natural resource essential for various human activities.
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Chapter 2

Orbital Mechanics

“Eppur si move!”
— Galileo Galilei

Before delving into the specifics of the work conducted, it proves beneficial to provide a brief overview
of foundational notions and physical aspects related to orbital mechanics. Therefore, this Chapter
introduces essential concepts to enhance the understanding of the analyzed problem, these funda-
mentals will be deemed assimilated through the exposition of the thesis.

Firstly, the two-body problem will be presented, starting from Kepler’s laws and Newton’s uni-
versal law of gravitation, and leading to its solution and the equations that characterize it. Then,
the main methods of parameterizing an orbit will be discussed. Finally, the typical physical and
technical characteristics of the geostationary orbit will be examined.

2.1 Two-Body Problem

The initial stage in investigating any issue related to celestial mechanics is usually represented
by the Two-Body Problem (2BP). As the name suggests, it involves studying the motion of two
celestial bodies, considering their mutual gravitational influence as the sole interaction between them.
Within the simplified framework of the Two-Body Problem, the first fundamental contribution to
the mechanics of spaceflight is represented by Kepler’s Three Laws. These laws, formulated purely
empirically by the physicist Johannes Kepler between 1609-1620, assert that:

1. The orbit of a planet is elliptical and lies in a plane, with the Sun occupying one of the foci of
this ellipse.

2. The radius vector connecting the planet and the Sun sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the distance
from the Sun.
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Sinoptically, the first law thus consisted of proposing a heliocentric model in which orbits are
not circular but elliptical. Meanwhile, the second law stems from the conservation of orbital angular
momentum.

The second pillar of orbital mechanics is instead represented by Newton’s contribution. In 1689,
in the ’Philosophiae Naturalis Principia Mathematica’, Newton analytically demonstrated the three
aforementioned laws and formulated the Law of Universal Gravitation. This law states that in the
Universe, two material bodies exert mutually an attractive and central force directly proportional
to the product of their masses and inversely proportional to the square of their distance:

F “ ´G
mM

r2
r

r
(2.1)

where G “ 6.67 ¨ 10´11 m3

kgs2
is the gravitational constant, while r is the is the radius vector equal

to the distance between mass M and m. It is customary, for simplicity in the case of bodies orbiting
around Earth, such as satellites, to substitute the gravitational parameter µ “ GM within the
equation. In the case of the Earth: µ “ 3.986 ¨ 105 km

3

s2
. The same can be applied to rotating bodies

around other celestial objects by substituting the appropriate gravitational parameter.
Kepler and Newton’s work represent the foundations of orbital mechanics and find application

in the study of the orbit of any celestial body. Although enunciated with reference to the motion
of celestial bodies such as planets and stars, they clearly hold validity for the study of spacecraft
motion as well.

As previously mentioned, in 2BP, the motion of two bodies is studied under the influence of their
mutual gravitational interaction as the only force acting on them. An additional simplification to
this problem is the so-called Restricted Two-Body Problem (R2BP), where one of the two bodies
is considered to have a significantly smaller mass than the other. The assumptions underlying this
model are:

• Distribution of the mass homogeneous and spherical

• Punctiform masses concentrated in the centres of the bodies

• m ! M

• Only gravitational forces (the influence of third bodies is neglected)

In the R2BP, the secondary body, in this case the spacecraft, is assumed to experience the
exclusive gravitational attraction of a primary body. Thanks to the simplifications made, it is
possible to derive analytically the equation that governs its motion.

Starting from equation (2.1) and under the assumptions of the previously presented Restricted
Two-Body Problem, can be obtained:

:r “ ´
µ

r2
r

r
(2.2)

This formula describes the motion of the secondary body relative to the primary body and
represents a second-order vector equation.
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2.1.1 Constants of Motion

In the R2BP, there exist important physical properties arising from specific laws of conservation
in dynamic systems. Consequently, there are quantities that remain constant over time during the
evolution of the system. In the case of satellites, two fundamental constants of motion are defined,
which remain unchanged during the orbit of the body:

• Angular Momentum

h “ r ^ v “ r ^ 9r (2.3)

In the context of the R2BP, the trajectory is planar, meaning it lies within a plane. Since r
and v define the orbital plane, h must be always perpendicular to it.

• Specific Mechanic Energy

Eg “
v2

2
´
µ

r
(2.4)

Where the first term represents kinetic energy, while the second term represents the potential
energy associated with the Earth’s gravitational field.

2.1.2 Trajectory Equation

The equation of the trajectory in the R2BP describes the locus of points occupied by the secondary
body during its orbit. By solving the equation of motion (2.2) and through several steps not reported
here for simplicity, one can obtain it:

r “
h2{µ

1 `B{µ cos ν
(2.5)

Where ν is the true anomaly which defines the position of the satellite in its orbit. And it has
been assumed that B is a constant phase-shifted by ν from r. Through considerations of a geometric
nature, equation (2.5) can be written as follows:

r “
p

1 ` e cos ν
(2.6)

Where p is the semilatus rectum of the orbit and e the eccentricity, two important parameters
that define the shape of the trajectory. The formula (2.6) describes the potential orbits of a satellite,
which are defined by the intersection between a plane and a cone, also known as conic sections. The
ellipse is, in fact, just one of the possible trajectories that a body can have. Specifically, a satellite
can assume a circular, elliptical, parabolic, or hyperbolic orbit, as shown in Fig. 2.1. The solution
to the R2BP, also known as the Kepler Problem, is an unperturbed orbit referred to as Kepler Orbit.

In the case of an elliptical orbit, two important quantities can be defined: rp and ra, which are
the radii of the periapsis and apoapsis, respectively.
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These two points represent the extremes of the ellipse along the major axis and can be obtained
from equation (2.6):

$

’

&

’

%

rp “
p

1 ` e cos 0
“

p

1 ` e
ν “ 0

ra “
p

1 ` e cosπ
“

p

1 ´ e
ν “ π

(2.7)

Through geometric considerations, one can then write:

p “ a p1 ´ e2q (2.8)

Using equations (2.7) and (2.8):

#

rp “ a p1 ´ eq

ra “ a p1 ` eq
(2.9)

from which:

e “
ra ´ rp
ra ` rp

(2.10)

By comparing equations (2.5) and (2.6), it can finally be stated for completeness that:

$

’

’

&

’

’

%

p “
h2

µ

e “
B

µ

(2.11)

Figure 2.1: Conic sections
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2.2 Orbital Elements

A generic Keplerian orbit can be parameterized in various ways; in particular, given an inertial frame
of reference and an arbitrary epoch (a specified point in time), it is generally necessary to use a set
of six elements. In the context of the Restricted Two-Body Problem, indeed, the orbit and position
of a body can be uniquely defined by employing six different parameters, which corresponds to the
number of degrees of freedom of the problem.

2.2.1 Keplerian Elements

In orbital mechanics, the Classical Orbital Elements or Keplerian Elements are a group of six
elements commonly used to identify a specific Keplerian orbit. These parameters are:

• Eccentricity (e)

It defines the shape of the orbit. In the Tab. 2.1, various values of eccentricity are summarized
in relation to the type of trajectory of the body, which, as seen earlier, is represented by one
of the conic sections.

• Semi-major Axis (a)

It defines the dimension of the orbit and in the specific the semi-major axis is connected
to its energy. Indeed, starting from the equation of mechanical energy, through geometric
considerations, it can be shown that:

E “ ´
µ

2a
(2.12)

Tab. 2.1 shows the different values of a and the corresponding energy E for various types of
trajectories.

Orbit E a e

Circle ă 0 ą 0 e “ 0
Ellipse ă 0 ą 0 0 ă e ă 1

Parabola 0 8 e “ 1
Hyperbola ą 0 ă 0 e ą 1

Table 2.1: Types of orbit as conic sections

• Inclination (i)

It is one of the two parameters necessary to describe the orientation of the plane of the orbit.
It is the angle between the plane of the orbit and the reference plane (the Earth’s equator or
the ecliptic).
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• Right Ascension of Ascending Node (Ω)

The RAAN is the other parameter necessary to define the orientation and the plane of the
orbit. It represents the angle between the Vernal Point [1] (γ) and the ascending node [2] of the
orbit. The RAAN is measured in the equatorial plane; in the case where the reference plane
is the ecliptic, it is referred to as Longitude of the Ascending Node.

• Argument of Periapsis (ω)

It provides the position of the orbit’s periapsis, which is the closest point of the trajectory to
the principal body. More precisely ω is the angular distance between the periapsis and the
ascending node measured on the orbital plane in the direction of motion.

• True Anomaly (ν)

It identifies the angular position of the secondary body at a given moment along its orbit. It
is measured on the orbital plane starting from the periapsis.

While the provided definitions implicitly refer to a celestial body orbiting the Earth, they can be
adapted, with appropriate modifications, to describe any orbits around an arbitrary primary body.
In Fig. 2.2, the just listed parameters are clearly depicted.

Figure 2.2: Keplerian Orbital Elements [3]

[1]One of the two equinoctial points where the celestial equator intersects the ecliptic, specifically, it is defined in
correspondence with the vernal equinox.

[2]The point where a satellite crosses from the southern hemisphere to the northern one. It belongs to the line of
nodes, defined by the intersection between the plane of the orbit and the reference plane.
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2.2.2 Alternative parameters

In some cases, classical orbital elements are not suitable for defining certain specific orbits. Therefore,
the following alternative parameters are introduced:

• Longitude of Periapsis: π “ Ω ` ω

Which is used for equatorial orbits (i “ 0), where there is no line of nodes, and Ω is therefore
undefined.

• Argument of Latitude: u “ ω ` ν

Which is employed for circular orbits (e “ 0) where ω is undefined, as the periapsis cannot be
identified.

• True Longitude: l “ Ω ` ω ` ν

It is used in the specific case of orbits with zero eccentricity and inclination (i “ e “ 0), for
which it is not possible to define ω and Ω. This applies, for example, to a geostationary orbit.

These parameter are obviously useful for orbits with inclinations or eccentricities close to zero,
though not entirely null. It should be emphasized that it is possible to refer to the same parameters
listed above using different names depending on the context.

2.2.3 Orbital State Vectors

Given a reference epoch, an alternative method to uniquely determine the trajectory of an orbiting
body involves the use of the Orbital State Vectors, defined by the vectors of position and velocity
expressed in a Cartesian coordinate system:

xptq “ rrptq,vptqsT “ rxptq, yptq, zptq, 9xptq, 9yptq, 9zptqsT

The state vectors can be formulated in various other ways, not limited to the traditional position-
velocity vectors. Other possible representations include the Two-Line Element Set (TLE) and the
Vector Covariance Matrix (VCM), whose description is beyond the scope of this work. It is worth
noting the explicit time dependence of the state vectors, which implies the variability of these
parameters along the trajectory. While in the R2BP, the classical orbital parameters, with the
exception of the true anomaly, remain constant, making them more convenient for representing a
Keplerian orbit. Through appropriate transformations, it is possible to obtain Keplerian orbital
elements from the state vectors and vice versa.

2.3 Orbital Perturbations

The equation of motion, as defined in equation (2.2), is obviously applicable only under the simpli-
fications of the R2BP. However, in reality, the satellite is subjected to several forces—non-Keplerian
forces—that alter its trajectory. The presence of these perturbations renders the expression in equa-
tion (2.2) invalid as presented, necessitating appropriate modifications. Therefore, by expressing the
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effect of the external forces in the form of perturbation accelerations experienced by the satellite,
one can correct the equation of motion as:

:r1 “ :r ` ap (2.13)

where :r represents the acceleration described by equation (2.2) under the assumption of the
R2BP. Meanwhile, the term ap denotes the sum of perturbing accelerations acting on the spacecraft,
resulting from all forces except the spherically symmetric Earth gravity and the forces generated
by the onboard thrusters. It should be noted that the acceleration produced by the propulsion
system during manoeuvres constitutes an active orbit control. Therefore, it cannot be considered
a perturbation and should be added separately to the motion equation through an appropriate
individual term.

The primary non-Keplerian forces to be considered for a geostationary spacecraft are:

• Gravitational attraction arising from the non-spherical component of the Earth’s gravitational
field.

• Gravitational attraction of the Sun and the Moon treated as point masses.

• Solar radiation pressure.

To these, the effect of non-uniform motion of the coordinate system can also be added. There are
also other less relevant disturbances, such as the effect of tides.

The perturbations induced by non-Keplerian forces cause a real orbit to experience variations in
its elements over time. These changes are not considered in a Keplerian orbit, which serves as an
idealized, mathematical representation of the real orbit at a specific moment.

Therefore, it is customary to provide orbital elements even for perturbed orbits. A common
approach is to use the osculating orbital elements. These elements are computed using the actual
spacecraft position and velocity obtained from the perturbed motion at a given moment, known as
the epoch.

Another viable option, which proves advantageous in scenarios involving perturbed orbits, is to
employ the arithmetic mean of orbital elements averaged over a specific time interval, for example
an entire sidereal day. These elements are known as mean elements.

In the following subsections, the effects of the main external perturbations are briefly described
from a more technical perspective. While in Fig. 2.3, the primary perturbation effects as a function
of the orbit’s altitude are illustrated. The graph confirms that the most significant perturbative
accelerations acting on a GEO satellite are those caused by the gravitational attraction of the Sun
and the Moon, as well as the solar radiation pressure.

2.3.1 Non-spherical Earth Potential

The acceleration due to Earth’s gravitational field, as expressed in equation (2.2), assumes the Earth
as a uniform-density perfect sphere with all its mass concentrated at its center. However, in reality,
Earth is not perfectly spherical, nor is it characterized by homogeneous mass distribution. Therefore,
the gravitational attraction cannot be adequately represented as originating from a point mass or a
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sphere when describing the motion of spacecraft orbiting around Earth. This results in inevitable
perturbations compared to the motion outlined by equation (2.2). Hence, it is necessary to rewrite
the potential function associated with Earth’s gravitational field in a more realistic and accurate
manner:

U “
µ

r
` µ

L
ÿ

l“2

l
ÿ

m“0

Rl
C

rl`1
Plmpsin θqpClm cosmλ` Slm sinmλq (2.14)

where REarth denotes the Earth’s radius, λ and θ represent the satellite’s longitude and latitude,
respectively. While, Plm are the Legendre polynomial functions of degree l and order m. More-
over, µ{r represents the contribution from the symmetric part of the spherical Earth’s gravitational
field—corresponding to l “ m “ 0—which determines equation (2.2). The other terms allow us to
define the real Earth’s potential function, obtained through the series expansion in harmonics. In
the context of geostationary orbits, an expansion up to order L “ 8 can generally be considered
adequately precise. The perturbative accelerations resulting from the Earth’s non-symmetric attrac-
tive field, whose equations are omitted here for brevity, are calculated under considering that the
spacecraft’s gravitational acceleration is represented by the gradient of a potential function U :

:r “ ∇U (2.15)

The gradient of the term µ{r yields the acceleration obtained in the R2BP, which clearly does
not represent a perturbation.

2.3.2 Sun and Moon influence

To describe the perturbations caused by the gravity of the Sun and the Moon, one can utilize the
equation describing the gravitational attraction of a third body on a satellite orbiting Earth. Given
a generic third body, a spacecraft experiences the following acceleration ak:

ak “
µk
rk3

ˆ

3

rk2
prk ¨ rqrk ´ r

˙

(2.16)

with µk the gravitational parameter of the third body and rk the vector denoting its position
respect the center of the coordinate system. Replacing the values related to the Sun and the Moon
in the equation just seen, one can obtain their respective perturbative accelerations.

The influence of a third body is considered in the Three-Body Problem (3BP), in which the motion
of a less massive third body, such as a spacecraft, is influenced concurrently by two primary bodies,
for example the Earth and the Moon. The Restricted Three-Body Problem (R3BP) simplifies this
scenario by considering the spacecraft to have negligible mass. Additionally, the Circular Restricted
Three-Body Problem (CR3BP) extends this assumption to include circular orbits.
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Figure 2.3: Magnitude scale of different perturbations affecting a satellite’s orbit
[4]

2.3.3 Solar radiation pressure

This perturbation is associated with photons composing the solar flux. Upon impacting the satellite,
these particles exchange energy, thereby altering its momentum. The magnitude of the force exerted
by solar radiation pressure on the satellite can be expressed as:

Fsr “ psrp1 ` εqS (2.17)

where S is the satellite cross section and ϵ is the reflectivity coefficient of the spacecraft ranging
in surface 0 ă ε ă 1; with P “ 4.56 ¨ 10´6N{m2 the pressure generated by the solar radiation, in
the vicinity of Earth, on an orthogonal surface.
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Given the satellite mass m, it is then possible to estimate the perturbative acceleration asr,
derived from the solar radiation:

asr “
psrp1 ` εqS

m
(2.18)

2.4 Geostationary Orbit

Since this thesis focuses on the study of satellites in geostationary orbit, it is useful to describe the
main physical characteristics of such orbits. To accomplish this, it is necessary to define two crucial
parameters of a satellite: the orbital period T and the circular velocity vc.
The orbital period is the time required for a satellite to complete a single orbit around another
celestial body. For an elliptical orbit, using the conservation of angular momentum and through
geometric considerations, it is demonstrated that:

T “ 2π

d

a3

µ
(2.19)

For a circular orbit, such as the ideal geostationary orbit, it is possible to easily derive the
tangential velocity of the satellite by equating the gravitational acceleration ac, described by equation
(2.2), to the centripetal acceleration :r:

$

’

&

’

%

ac “ ´r 9ν2

:r “ ´
µ

r2

ÝÑ r2 9ν2 “
µ

r
(2.20)

Where r represents the radius of the circular orbit and 9ν corresponds, in this specific case, to
the angular velocity. Substituting the expression for the tangential or circular velocity:

vc “ vt “ r 9ν ÝÑ vc “

c

µ

r
(2.21)

2.4.1 Orbital Characteristics

The geostationary orbit is a circular, equatorial orbit with a period equal to one sidereal day [3].
Therefore, it represents a particular case of a geosynchronous orbit, characterized by both zero
inclination and eccentricity. Referring to ωC as the period of Earth’s rotation and as ω the period
of the geostationary orbit:

$

&

%

ωC “
2π

86164, 1
» 7.292 ¨ 10´5 rad{sec

ω “ ωC

(2.22)

[3]Time taken by the Earth to complete one full rotation around its axis. Shorter by 4 minutes than the solar day:
the duration for Earth to return to the same position relative to the Sun
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As can be easily seen from equation (2.19), fixing the period of an orbit automatically implies
establishing its semi-major axis. Applying the circular velocity definition from equation (2.21) allows
us to ascertain the required semi-major axis, or radius, for a geostationary satellite to complete its
orbit within one sidereal day:

v “

c

µC

r
“ ωCr (2.23)

µC

rgs
“ ω2

Cr
2
gs ÝÑ rgs “

ˆ

µC

ω2
C

˙1{3

» 42164 km (2.24)

However, depending on the context, different values can be used to indicate the altitude of a
geostationary orbit. Specifically, the average distance of the GEO spacecraft from the center of the
Earth is approximately 42164.5 km. Nonetheless, the average value of the geostationary semi-major
axis is often cited as 42165.8 km. These two averages differ because the latter is calculated based
solely on the Earth’s attraction in R2BP, while the former takes into account the complete Earth
potential, as well as the influence from the Sun and the Moon.

The table below summarizes the main parameters related to the ideal GEO orbit.

Geostationary Orbit

Orbital Period T “ 86164 sec
Semi-major Axis a “ 42164 km

Altitude h “ 35786 km
Inclination i “ 0°
Eccentricity e “ 0

True Anomaly ν “ ωCt

Table 2.2: Main characteristics of the GEO orbit

2.4.2 Mean Longitude Drift Rate

The mean longitude drift rate, or simply drift rate, holds significant importance and finds extensive
application in the context of geostationary orbits, especially in the planning of relocation manoeu-
vres. If the semi-major axis of the ideal geostationary orbit is denoted by A and the deviation from
this value by δa, the drift rate can be expressed as follows:

D “ ´1.5
δa

A
(2.25)

D is dimensionless, but for practical purposes, it is often converted to degrees per day by mul-
tiplying by 361 deg/day. The drift rate depends solely on the variation in semi-major axis and is
frequently used in place of a since it can be more relevant for describing the properties of a geo-
stationary orbit. In fact, for a perturbed orbit, D is valuable for quantifying the relative error in
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the semi-major axis and, simultaneously, the accumulated error over time in terms of longitude. In
practical terms, a D “ 0.1 deg/day indicates that an error of 0.1 deg in longitude is accumulated
each day by the satellite. Then from the drift value, the corresponding error in a, in this case 7.8
km, can be derived.

During relocation operations, the drift rate is utilized to determine the semi-major axis of the
extraction orbit (defined in subsection 2.4.4) and to compute the change in longitude over time. In
particular selecting the target value for drift rate, the extraction orbit a is defined, and the resulting
change in longitude over time while remaining in that orbit is communicated. A higher orbit than
the GEO (δa ą 0) corresponds to a longer orbital period, causing the satellite’s longitude to lag
behind the Earth’s rotation, resulting in a mean westward longitudinal drift (D ă 0). Conversely, a
lower orbit (δa ă 0) induces an eastward drift (D ą 0). This topic is explained in further detail in
subsection 2.4.4.

2.4.3 Parameterization

It is evident that the geostationary orbit possesses unique characteristics; therefore, its parame-
terization typically involves the use of slightly different parameters compared to classical orbital
elements. Since the ideal orbit of a GEO satellite lies on the equatorial plane, it is convenient to
project certain vector quantities onto it.

2.4.3.1 Inclination Vector

The first step is to define the vector the orbital pole or the three-dimensional inclination vector :

I “

»

–

sin i sinΩ
´ sin i cosΩ

cos i

fi

fl (2.26)

Which is unit vector orthogonal to the orbital plane, positive with respect to the motion of the
spacecraft along its orbit, and therefore parallel to the angular momentum vector. Its projection on
the x-y-plane allows for the delineation of the two-dimensional inclination vector :

i “ pix, iyq “ psin i sinΩ,´ sin i cosΩq » pi sinΩ,´i cosΩq (2.27)

Where because of small inclinations one can approximate sin i » i. The inclination vector is used
in the case of perturbed orbits, where, in contrast to ideal ones, the inclination is close to zero but
not exactly zero. This vector has a magnitude equal to i and points in the direction of Ω “ ´90°.

2.4.3.2 Eccentricity Vector

The two-dimensional eccentricity vector, which can be visualized in the x-y-plane, has a magnitude
of e and points from the center of the coordinate system towards the orbit perigee:

e “ pex, eyq “ pe cos pΩ ` ωq, e sin pΩ ` ωqq (2.28)

This vector is also employed to denote real geostationary orbits, which are characterized by low
eccentricity values.
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2.4.3.3 Mean Longitude

To describe the position of a GEO spacecraft in the Earth’s rotating system, it is useful to utilize a
specific parameter known as the mean longitude. It indicates the average angular position, relative
to the Greenwich Meridian, of the satellite along its orbit, which remains constant for an ideal GEO
spacecraft. This parameter, due to its distinctive characteristics, proves particularly convenient and
is written as follows:

λ “ l ´G (2.29)

Where G is the Greenwich sidereal angle and l the True Longitude:
#

G “ G0 ` Ψpt´ t0q with Ψ “ ωC

l “ Ω ` ω ` ν
(2.30)

In detail, G represents the angle that specifies the position of the zero meridian relative to the
vernal point, and it can be computed as a function of UTC time utilizing the Earth’s uniform angular
velocity, denoted as Ψ above. In equation (2.30), G0 denotes the value of G at a chosen epoch t0.

The mean longitude is conventionally deemed positive for east longitudes and negative for west
longitudes, typically adjusted to fall within the interval (-180°, +180°). In Fig. 2.4, the angles just
mentioned are represented more clearly. In the image, the x-axis points in the direction of the vernal
point, while the angle s is equivalent to the true longitude.

Figure 2.4: Seen from north: Sidereal angles of Greenwich (G), spacecraft (s)
and the satellite’s longitude (λ) [2]

Starting from equation (2.29), it can be demonstrated, through some steps and approximations
not reported here for brevity, that:

λ “ l ´G “ Ω ` ω ` ν ´G0 ´ Ψpt´ t0q “

“ Ω ` ω ´G0 ` Ψpt0 ´ tpq ´ 1.5pδa{AqΨpt´ tpq ` 2e sinΨpt´ tpq (2.31)
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The operations necessary to achieve this formulation involve solving the differential equation
known as Kepler’s equation, which describes the time derivative of the true anomaly, dν{dt. The
solution to this equation allows to obtain an expression for the true anomaly ν as a function of
time, which can be inserted into equation (2.31). Kepler’s equation is solved by incorporating the
trajectory equation depicted in equation (2.6) and linearizing it for a small eccentricity. Hence, the
characteristics of a GEO orbit are exploited, particularly the almost negligible eccentricity (e « 0),
and the orbital period equal to one sidereal day (ω “ Ψ).

In equation (2.31), tp represents the moment of perigee passage used as a constant of integration
for calculating the linear solution of Kepler’s equation, while t0 indicates a designated epoch. The
equation (2.31) can then be modified by considering the term:

Ψpt´ tpq « l ´ Ω ´ ω (2.32)

which allows to obtain the following formula for the satellite longitude:

λ “ λ0 `Dpl ´ l0q ` 2ex sin l ´ 2ey cos l (2.33)

Where λ0 is a new constant, called mean longitude at epoch, which is defined by:

λ0 “ Ω ` ω ´G0 ` p1 `DqΨpt0 ´ tpq “

“ p1 `Dql0 ´G0 ´DpΩ ` ωq (2.34)

At this point, all the elements needed to represent an approximately geostationary orbit are
available:

pλ0, D, ex, ey, ix, iyq “ pλ0, D, e, iq (2.35)

The information regarding the semi-major axis of the orbit is provided by D, while 0 plays a
similar role to the true longitude l. This set of parameters, called synchronous elements, is used
for real geostationary orbit instead of the classical elements defined previously. Various alternative
definitions exist in the literature for similar sets of elements, sometimes also known as equinoctial
elements.

2.4.4 Longitude Relocation

Longitude relocation is a common activity necessary for GEO satellites, involving the shift of their
operational longitude to enable the provision of new services in different locations on Earth. As
discussed in Chapter 1, the peculiar feature of a GEO satellite is to remain stationary above a
specific area of the Earth, maintaining a constant longitude λ relative to the Greenwich Meridian.
This ability is made possible by the precise set of orbital parameters defining the geostationary
orbit. Specifically, the particular height established for the orbit ensures synchronization between
the spacecraft and Earth’s rotation, resulting in matching of their angular velocities.

This phenomenon can be further understood through equation (2.25), which indicates that the
drift rate of a GEO orbit approaches zero, albeit not precisely due to unavoidable external perturba-
tions. This mathematical insight elucidates why the longitude of GEO satellites remains consistent
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over time. In light of the above, it becomes evident that modifying the operational λ of the space-
craft necessitates adjusting its orbital altitude. In fact, altering the semi-major axis of the orbit,
the previously mentioned synchronization between the satellite and the Earth is disrupted, causing
the satellite to adopt a different angular velocity than the Earth. Consequently, the satellite can
deviate from its original longitude, as its new angular velocity enables it to shift relative to the
Earth, thereby altering its angular position over time.

To elaborate further, the new orbit attained after adjusting the semi-major axis, referred to
as the drift or extraction orbit, is characterized by a distinct value of D, which in this case will
be no more zero. As the satellite completes multiple revolutions in this orbit, it accrues a certain
phase shift concerning the initial longitude, proportionate to the time spent in orbit, leveraging the
new drift rate. The approximate change in longitude attained during this period can be estimated
through the following formula:

∆λ “ D ¨ tdrift (2.36)

Where tdrift represents the time spent in the drift orbit. Ultimately, the relocation process entails
multiple orbital manoeuvres aimed at either increasing or decreasing the orbit’s altitude. Modifying
the semi-major axis it is achieved a new orbital period either shorter or longer than a sidereal day,
which induces an apparent ’drift’ Eastward or Westward, respectively, towards a new longitude. In
this operation three main phases can be identified:

• Extraction phase: In this phase, the satellite is gradually manoeuvred out of the current
geostationary orbit. The spacecraft’s velocity and trajectory are adjusted to transition to a
drift orbit, characterized by an altitude different from that of the GEO orbit.

• Drift phase: During this phase, the satellite simply orbits for a certain period of time, gradually
drifting to a different longitude. No additional manoeuvres are generally executed during this
period.

• Insertion phase: After a sufficient time period, the spacecraft is finally brought back into a
geostationary orbit. Precise manoeuvres are executed at the appropriate moment to achieve
the desired operational longitude by the end of this phase.

Once the drift orbit is selected and the desired change in longitude is determined, equation
(2.36) is employed to obtain an initial estimate of the time required for the drift phase. However,
it should be noted that even during manoeuvre periods, namely during the extraction and insertion
manoeuvres, a slight variation in longitude occurs, which although minimal, is not negligible. It
is convenient noting that to move the satellite Eastward relative to Earth, thus gaining longitude,
it is necessary to reduce its orbital altitude. This results in achieving a positive D, as depicted in
equation (2.25), given that a negative δa is applied. Conversely, increasing the satellite’s semi-major
axis, denoted by a positive δa, determines a negative D, enabling the satellite’s shift in the Westward
direction, decreasing its operational longitude over time.
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Chapter 3

Space Propulsion

“Newton’s Third Law. The only way humans have figured out how to move forward
is to leave something behind”

— Interstellar

To provide a clearer introduction to the conducted work, it is advantageous to describe some
fundamental concepts of space propulsion. Therefore, this chapter will discuss the fundamental
principles of space propulsion, introducing some key quantities related to this subject. Next, an
insight into electrical thrusters—those considered for the analyzed problem—will be provided.

As seen in the previous Chapter, the trajectory of a generic satellite can be uniquely defined by
its state vector, i.e., by its position and velocity at a given time. It goes without saying that to
modify the orbit of a spacecraft, it is necessary to change its velocity. Therefore, propulsion can
be defined as the ability to generate a force capable of altering the velocity of a satellite, allowing,
in this way, the modification or maintenance of its trajectory. An orbital manoeuvre is the use of
propulsion systems to change the orbit of a spacecraft.

3.1 Space propulsion fundamentals

3.1.1 Overview

Space propulsion can be divided into two main categories, depending on its purpose:

• Auxiliary Propulsion: it has the intent to contrast external perturbations to maintain the
desired orbit (station-keeping manoeuvres).

• Primary Propulsion: it aims to change a given orbit

All types of thrusters are grounded in Newton’s third law of motion, regardless of their specific mode
of operation:

"If two bodies exert forces on each other, these forces have
the same magnitude but opposite directions"
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Thus, the only way for a satellite to generate thrust in space is to carry onboard something to
exchange momentum with: the propellant. A conventional thruster provides energy to the propellant
mass, which accelerates and, once ejected, creates thrust (T ). The effect of this force is to produce a
change of velocity, ∆V . The specific energy source used to generate the acceleration of the propellant
allows the classification of propulsion systems into three distinct categories:

• Chemical Propulsion: It utilizes chemical reactions of the propellant or between two sub-
stances—an oxidizer and a fuel—to generate high-energy gases, which are expelled to produce
thrust.

• Electric Propulsion: It exploits electric power or electromagnetic fields to generate thrust.

• Nuclear Propulsion: It utilizes the energy released from nuclear reactions to accelerate the
propellant. In particular, an onboard nuclear reactor can power electric engines or provide
thermal energy to the propellant.

As mentioned in Chapter 2, if a satellite is only subjected to the gravitational attraction exerted
by the primary body, and no perturbative forces are present, its trajectory is a conic section. The
effect of a manoeuvre thrust on an orbit can be calculated by numerically integrating the differential
equation (2.2) of spacecraft motion, including the thrust acceleration on the right-hand side. A
formulation for the thrust can be easily obtained by applying Newton’s second law of motion:

T “ m
dV

dt
(3.1)

Where T represents the thrust vector, and the hypothesis of constant mass has been applied.
This assumption is particularly appropriate in the case of station-keeping manoeuvres with electric
propulsion, where the mass of burned fuel is negligible. It is self-evident that the change in velocity
resulting from the application of thrust can be estimated by integrating the preceding equation. If
the duration of the thrust is very short relative to the orbital period, one can consider the thrust to
be impulsive and calculate its effect semi-analytically by adding a velocity increment, or ∆V :

∆V “

ż tf

t0

T

m
dt »

T

m
∆t (3.2)

The theoretical model of an impulsive manoeuvre assumes that the manoeuvre takes place via a
single burn at one point in space. Thus, the variation of the trajectory occurs through instantaneous
finite changes in the spacecraft’s velocity, due to the application of infinite thrust in an infinitesimal
instant. In the physical world, truly instantaneous changes in velocity are clearly not feasible,
as it is impossible to apply an infinite force during an infinitely short time. Nevertheless, the
impulsive model, although less accurate, is a very simple and convenient way to study the effect of
a manoeuvre on an orbit. It is important to highlight that this simplification is acceptable only for
chemical thrusters, given their mode of operation through short impulses. In fact, electric propulsion
systems, in light of their operational features, currently face limitations in force and acceleration
generation. This limitation imposes their use for long-term manoeuvres, in which the trajectory
changes gradually, and the thrust is applied continuously. Hence, the manoeuvres described in
this work, considering that the spacecraft of interest are equipped with electric thrusters, will be
categorized as continuous manoeuvres: low thrust applied over a long period of time.

30



3.1.2 Significant Parameters

As described above, the fundamental principle of propulsion is the action-reaction law, and this
characteristic unites all thrusters. Consequently, it is possible to illustrate the general functioning of
a generic propulsion system and introduce some important parameters through an apposite example.
It is considered a body on which no external force is applied, in motion with a velocity v at time
t. At the time t ` dt, the body expels an infinitesimal mass of propellant mp at a velocity c ´ v,
where c represents the velocity of the propellant relative to it. The body reaches a velocity v ` dv
after ejection. Therefore, the spacecraft increases its velocity due to the loss of a part of its mass.
Assuming a closed system, one can consider the global momentum as constant during the process.
Hence, by imposing the conservation of the total momentum of the system:

mv “ pm´ dmpqpv ` dvq ´ dmppc´ vq (3.3)

Carrying out the mathematical simplifications and neglecting the infinitesimal terms of higher
order, it is possible to write:

mdv “ dmp c (3.4)

Since the propellant is ejected continuously rather than discretely, it is necessary to modify the
equation just presented. First, the propellant flow is defined:

9mp “
dmp

dt
(3.5)

Then, incorporating this term into equation (3.4), one can obtain:

m
dv

dt
“ 9mp c (3.6)

This equation can be used to write an alternative formulation for the Thrust (T ). In fact, by
considering equation (3.1), the thrust is given by the equation:

T “ m
dv

dt
“ 9mp c (3.7)

with which one can express the thrust power (PT ):

PT “
1

2
9mp c

2 “
1

2
T c (3.8)

which is the power required to accelerate the propellant to the velocity that generates the thrust T .
It is worth highlighting that c represents an important parameter called the effective discharge
velocity, generally used to describe the performances of a thruster. As a matter of fact, the higher
c is, the greater the thrust generated for the same propellant flow. Additionally, it is important
to specify that the effective discharge velocity does not properly represent the exit velocity of the
propellant.
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Figure 3.1: Momentum conservation scheme [3]

In fact, the correct formulation of thrust should take into account a term called static thrust,
that adds up to the dynamic one:

T “ 9mp ue `Aeppe ´ p0q (3.9)

where ue is the exit velocity of the propellant, Ae represents the exit section of the nozzle, pe is
the pressure of the propellant in the exit section, and p0 is the ambient pressure (near zero in space).
The physical reason behind this additional term is that the propellant outside the nozzle, ejected
at the pressure pe, exerts a force on the propellant that is still inside the thruster and still belongs
to it. The resulting force generated is proportional to the difference between the exit pressure and
the ambient pressure. Hence, to avoid specifying the division between static and dynamic thrust,
the effective discharge velocity is defined. Furthermore, to be precise, the value of c can be obtained
only once the thrust is known, and it depends solely on the characteristics of the employed propulsor
and propellant:

c “
T

9mp
(3.10)

Nevertheless, it must be said that for electric space propulsion, the static thrust is usually very
low; therefore, the effective discharge velocity tends to be equal to the exit velocity: c » ue.
It is now useful to introduce some additional entities generally employed to quantify and evaluate
the effect of the thrust and the performances of the propulsor. The first one is total impulse:

It “

ż tf

t0

T dt (3.11)

it measures the effectiveness of the propulsion system and its capacity to generate thrust. The
second parameter is the propellant mass, which is simply the integral of the propellant flow:

mp “

ż tf

t0

9mp dt (3.12)

it is used to estimate the propulsor consumption and represents the expense required for creating
thrust. With the total impulse, it is finally possible to define the specific impulse:
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Is “
It

mpg0
(3.13)

where g0 is the gravity acceleration on the Earth’s surface. The specific impulse is a measure of
the efficiency with which the propulsion system utilizes the propellant to generate thrust. Specifically,
ifmp and T are considered constant, substituting equations (3.10), (3.11), (3.12) into equation (3.13),
one can obtain:

Is “
c

g0
“

T

9mp g0
(3.14)

as seen in this expression, c and Is represent the same quantity, differing only by a multiplicative
constant. Both of these parameters are interchangeably used to evaluate the efficiency of a thruster.
Obviously, it is crucial to have a propulsion system with a high specific impulse for the optimal
success of a mission. In fact, for a given propellant mass, a higher specific impulse (Is) allows the
generation of a higher thrust for the same operating time or the production of the same thrust but
over a longer interval. The importance of a high specific impulse is perhaps more evident when
considering the Tsiolkovsky equation. This expression, also referred to as the ideal rocket equation,
is one of the most important equations in space propulsion. It connects the variation of velocity,
∆V , obtained in the manoeuvre, with the cost required for its generation by the thruster in terms
of propellant consumption. The variation of velocity is computed in the ideal case, with no external
forces acting, and represents the propulsive cost demanded by the propulsion system. The derivation
of this equation falls beyond the scope of this work; thus, for brevity, it is directly reported:

∆V “ c ln
m0

mf
“ Isg0 ln

m0

mf
(3.15)

where m0 is the initial mass of the spacecraft, and mf represents the final mass, i.e., without
the propellant consumed. It is evident that a high Is is associated with a minor fuel consumption.
In particular, if the specific impulse is too low, manoeuvring becomes practically infeasible for a
satellite, undermining the ability to execute any corrective and control action over it.
By appropriately reversing equation (3.15), it is possible to estimate the final mass achieved at the
end of the manoeuvre, as expressed by:

mf “ m0 e
´∆V

c (3.16)

Furthermore, by utilizing this expression, one can compute the propellant mass burned during
the manoeuvre phase as:

mp “ m0 ´mf “ m0p1 ´ e´∆V
c q (3.17)

Where it has been assumed that the difference between the initial and final mass of the spacecraft
is entirely composed of the propellant consumed, which is a theoretically valid hypothesis.
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3.2 Chemical propulsion

Chemical propulsion systems utilized in GEO satellites generally involve exploiting a controlled
chemical reaction to energize the propellant, thereby creating high-temperature and high-pressure
gases to be expanded and thus accelerated through the spacecraft’s nozzle, generating thrust. In fact,
following the Newtonian principle of action and reaction, the effect of expelling a mass at high velocity
is to propel the satellite forward. The produced thrusts are particularly elevated compared to electric
propulsion, resulting in significant accelerations and thus high ∆V . The operating mode entails, as
previously mentioned, impulse manoeuvres, given that large velocity variations are generated in very
short periods of time.

Common propellants include hypergolic combinations such as hydrazine (N2H4) and nitrogen
tetroxide —NTO—(N2O4), which ignite spontaneously upon simple contact and offer reliable and
controllable thrust. Moreover, the exothermic decomposition reaction of hydrazine can be exploited
to obtain monopropellant thrusters, achieving similar performance compared to bipropellant chem-
ical propulsion systems. Thrusters fueled by hydrazine are typically designed to generate forces
ranging from 0.5 to 20 N, with a specific impulse between 220-300 s.

The main advantages of chemical propulsion are those linked to the high thrust-to-weight ratio,
proven reliability, and flexibility. However, there are also some general drawbacks; in many cases,
the use of chemical propellant imposes strict mass and volume constraints on satellite design. In
particular, propellant tanks and associated hardware often limit payload capacity and mission ob-
jectives. Furthermore, the finite propellant reserves require satellite operators to carefully manage
fuel consumption to maximize mission duration. Last but not least, safety concerns must also be
considered, as hypergolic propellants are generally toxic; therefore, their handling and disposal pose
challenges, necessitating stringent safety protocols and disposal procedures.

3.3 Electric Propulsion

Electrical propulsors have become extensively employed in recent missions owing to their high ef-
ficiency. This type of propulsion system is particularly well-suited for long-term manoeuvres char-
acterized by low variations in velocity, such as station-keeping operations or, as investigated in this
thesis, relocation manoeuvres. As mentioned in the previous paragraph, electric thrusters exploit
electrical power, usually generated using solar arrays, to accelerate a propellant gas. It is possible
to distinguish different categories of electric propulsors, depending on how this energy is employed
to create thrust:

• Electrothermal propulsion: uses electrical power, either through resistance or an electric arc,
to heat a propellant. The heated propellant is then accelerated and expanded in a nozzle,
where the thermal energy is converted into kinetic energy, generating thrust.

• Electrostatic propulsion: uses electrical power to ionize the propellant and accelerate it by
exploiting an electric field. In the specific, the ionized gas contains both ions and electrons,
but only the former are accelerated within the thruster and then neutralized at its exit.
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• Electromagnetic propulsion: uses electric and magnetic fields to accelerate the propellant,
creating thrust. In the specific, acceleration is produced by the electromagnetic forces due to
the interaction of internal and/or external magnetic fields with the electrical current in the
propellant flow.

It is worth highlighting that some electrostatic thrusters also utilize magnetic fields, although
the acceleration is only generated by the electric field. In contrast, electromagnetic acceleration is
created by both electric and magnetic forces. Besides the classification by physical phenomenon,
there is another possible categorization based on the characteristic power of the thruster:

• Microthrusters: used, in general, for precision attitude control.

• 1 kW : used for station keeping or orbit injection —or de-orbit— of small satellites.

• 5-10 kW : used for GEO insertion or de-orbit of large satellites.

• 100+ kW : are under development concepts that could be implemented in human exploration
missions.

3.3.1 Electrostatic Propulsion

Electrostatic thrusters accelerate the propellant through electrostatic forces, generated by exploiting
electrical fields. In this kind of propulsion system, the presence of magnetic fields is not directly
related to the propellant acceleration. In particular, to correctly operate an electrostatic thruster,
three different processes are required:

• Ionization

Electrostatic thrusters operate with ionized propellants, as electrical forces necessitate the
presence of charged particles to produce acceleration. In the ionization process, some atoms
of the propellant are separated from one of their electrons, thus creating an ion —and the
electron itself—. For this operation, energy is clearly required; this first ionization energy,
εi, is different for each atom on the periodic table. Thus, the ionization reaction can be
summarized as:

A` εi ⇌ A` ` e´

where A and A` are respectively the propellant’s atom and ion, and e´ is the free electron.
Clearly, the process is not perfect since not all of the propellant’s atoms are ionized, and even-
tually, some atoms can lose more than one electron, creating, for example, ions with a double
charge. The second step to generate thrust is to separate ions from electrons. Applying an
electric field to both electrons and ions will cause each to accelerate but in opposite directions,
resulting in null thrust.

35



This is due to the fact that cations and electrons have the same charge in magnitude but
opposite signs. Considering the physics behind this phenomenon:

F “ qE

where F is the electrostatic force acting on the considered particle, E is the electric field, and q
is the elementary charge. Then, electrons and ions are subjected to equal but opposite forces,
which mutually neutralize each other. In the Fig. 3.2, this phenomenology is represented in a
schematic way.

Figure 3.2: Electric forces acting on ions and electrons [3]

• Acceleration

The acceleration of ions is enabled by an electric field, which, being a conservative field, is
connected to an electric potential. Thus, the ions experience the application of an electric
potential difference, referred to as the net accelerating potential (VN ). Similar to a mass
subjected to a gravitational field, when ions move from a higher potential to a lower one, their
velocity increases, leading to acceleration. Mathematically, this implies that electrical potential
energy is converted into kinetic energy. One can consider that inside the thruster, ions possess
only electrical potential energy —the propellant is globally static, with only chaotic thermal
agitation velocity, which is globally null—. Assuming this energy is completely converted into
kinetic energy at the exit section, it is possible to impose the conservation of total energy:

qVN “
1

2
m`u

2
` (3.18)

where q and VN have already been defined, m` represents the atomic mass of the ion —com-
parable to the mass of the propellant atom itself— and u` denotes the exit velocity. The
expression describing the effective discharge velocity can be readily obtained.
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As stated in paragraph 3.1.2, it can be assumed to be equal to u`. Therefore:

u` “

d

2qVN
m`

(3.19)

• Neutralization

The final process required for an electrostatic thruster is to neutralize the accelerated beam
of ions. It is crucial to maintain the overall neutrality of the propulsion system by balancing
the positive flow of charges with an equal current of electrons. Otherwise, if ions were just
accelerated, the thruster itself would accumulate a negative charge internally. To prevent this
undesired situation, the ejected ion beam passes through a sort of electron cloud created at a
certain distance from the thruster’s exit. The current of electrons, referred to as the neutralizing
current, is not accelerated since it does not have to contribute to thrust production. Each ion
acquires an electron and becomes neutral; this process leads to a globally neutral gas —as the
propellant was before ionization—.

3.4 Orbital Manoeuvres

As stated at the beginning of this chapter, an orbital manoeuvre involves utilizing satellite’s propul-
sion system to alter its trajectory. In particular, manoeuvre thrusts enable the modification of an
orbit by changing one or more orbital parameters. In fact, the thrusters, generating thrust, produce
an acceleration that influences the spacecraft motion equation seen in Chapter 2.

The acceleration is represented by a vector comprising three components, which depend on the
directions in which the vector itself is projected. Specifically, acceleration is typically split in one
of two ways: with respect to the radius vector connecting the Earth and the satellite r, or with
respect to the spacecraft velocity vector V . Consequently, the following two sets of three mutually
perpendicular components can be respectively identified:

• Projection in the r direction: paT , aR, aW q

When the acceleration is resolved in the radial direction, aR represents the component of
acceleration parallel to r, while aT is the tangential component orthogonal to the radius vector
r. Finally, aW is the out-of-plane component, perpendicular to the plane defined by aR and
aT .

• Projection in the V direction: paV , aN , aW q

The acceleration is split with reference to the velocity vector direction. Specifically, aV rep-
resents the component of acceleration aligned with V , aN is the component normal to V .
Similarly, as in the previous projection, aW is the out-of-plane component and is perpendicu-
lar to the plane defined by aV and aN .

However, for a circular orbit like the geostationary one, the two projections are equivalent since
the velocity V is purely tangential, making its direction orthogonal to r. For this reason, particular
attention will not be paid to this distinction in this document.
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3.4.1 Gauss-Planetary Equations

The orbital parameter evolution due to the acceleration generated by the manoeuvre thrusts can be
evaluated by referring to the Gauss-planetary equations. These allow for understanding the effects
of the thrusters on the Keplerian orbit of a satellite. The equations, described in further detail in
Blanco and McCuskey [5], define the connection between the time derivatives of orbital elements
and their corresponding cause, which is a generic acceleration different from the one caused by the
Earth’s gravitational field. In this specific context, the acceleration obviously refers to that produced
by the propulsors which deviate the satellite from the Earth’s gravitational action.

To generalize the discussion, reference is made to a generic orbit. The acceleration imparted by
the thrusters is decomposed with respect to the velocity vector V . Following the convention used
by Gauss in his own treatment, aV is considered positive in the direction of increasing longitude,
aN is positive in the direction of increasing radial distance, and aW is directed positively toward the
north pole. Consequently, Gauss’ equations can be formulated as follows:

da

dt
“

2

n
?
1 ´ e2

„

aNe sin ν `
ap1 ´ e2q

r
aV

ȷ

(3.20)

de

dt
“

?
1 ´ e2

na

„

aN sin ν `

ˆ

e` cos ν

1 ` e cos ν
` cos ν

˙

aV

ȷ

(3.21)

dω

dt
“

?
1 ´ e2

nae

„

´aN cos ν `

ˆ

1 `
r

ap1 ´ e2q

˙

aV sin ν

ȷ

´
dΩ

dt
cos i (3.22)

di

dt
“

1

na
?
1 ´ e2

r

a
cos pω ` νqaW (3.23)

dΩ

dt
“

1

na
?
1 ´ e2

r

a

sin pω ` νq

sin i
aW (3.24)

dM

dt
“ n`

1

na

„

2r

a
´

p1 ´ e2q

e
cos ν

ȷ

aN ´
p1 ´ e2q

nae

„

1 `
r

ap1 ´ e2q

ȷ

aV sin ν (3.25)

In which the same notation seen in Chapter 2 is used to represent the classical orbital elements.
While M denotes the mean anomaly of the satellite, a new quantity is defined as:

M “ npt´ tpq (3.26)

The mean anomaly defines the angular distance of an orbiting body, such as a spacecraft, from
the pericenter at an arbitrary time t. Specifically, in the formula just presented, tp represents the
time at which the body is at the pericenter, and n is the mean angular motion of the satellite,
calculated as:

n “
2π

T
“

c

µ

a3
(3.27)

The Gauss equations prove convenient as they enable us to understand the influences of the
three components of acceleration separately. It is evident that the only component contributing
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to increasing a, namely the size of the orbit, is aV , assuming that e ! 1—this is particularly true
when considering a GEO orbit. Hence, if the manoeuvre objective is to vary the orbit’s altitude,
it is advisable to thrust only in the tangential direction. Since the longitude relocation operation
involves changing the semi-major axis of a GEO orbit, as explained in Chapter 2, the manoeuvres
analyzed in this thesis will primarily consist of tangential acceleration.

To change the shape of the orbit, represented by the eccentricity e, both aV and aN are effective,
with varying significance depending on where the thrust is applied along the orbit. Consequently,
by performing tangential manoeuvres to vary the semi-major axis during the relocation operation,
an additional effect is the modification of eccentricity.

The orbit plane, and therefore the argument of the ascending node Ω and the inclination i, are
modified solely with thrust out of the plane, providing an acceleration aW . The position where the
thrust is applied redistributes the effect on i and Ω differently: at the nodes, there is only a change
in inclination; at the anti-nodes, only ∆Ω is obtained; otherwise, the thrust effect is divided by
changing both parameters.

Figure 3.3: ∆V produced by a manoeuvre thrust projected with respect to the
radius vector r [2]

3.4.2 Manoeuvres Thrusts for GEO Satellites

Thruster burns used for controlling geostationary orbits are typically either perpendicular to the
orbital plane or tangential to the orbit; while radial burns are rarely employed. For a thruster, it is
generally required that the force vector must pass through the spacecraft’s center of mass to avoid
generating any torque on it. However, another solution to avoid the creation of this torque consist
in firing two thrusters simultaneously. Further requirements involve ensuring that antennas, solar
panels, or other protruding equipment are not damaged by the exhaust plumes of the thrusters. In
some cases, compromises are necessary, resulting in a component of force in an undesired direction,
which inevitably decreases manoeuvre efficiency.

As mentioned, the focus of this work will be directed on the investigation of tangential ma-
noeuvres, which are commonly referred to as East-West thrusts. As seen in the Gauss equations, a
thrust in the tangential, i.e. east-west direction, alters both the longitude drift rate —and thus the
semi-major axis— and the orbit’s eccentricity. Given a three-axis spacecraft, it is possible to provide
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it with a boost in its flight direction through a propulsor positioned on its westward surface. This is
termed an eastward thrust, with the corresponding imparted ∆V considered positive. Conversely,
a westward thrust consists of an acceleration in the opposite direction, resulting in a negative ∆V .

In the case of impulsive manoeuvres, a single tangential thrust acts as a short impulse, which
instantaneously alters the spacecraft’s flight velocity but not the position of the burn itself. Hence,
the ∆V changes the orbit altitude everywhere except at the point where the firing has been executed,
where the new orbit maintains its original altitude. Specifically, an eastward thrust raises the orbit
height, but the point of the burn maintains its altitude, becoming the perigee of the new orbit.
Conversely, a westward thrust, with negative ∆V , would lower the orbit, positioning the final orbit’s
apogee at the thrust point.

As observed in the previous subsection, a radial thrust only affects the eccentricity of the orbit,
but it turns out to be less effective than a tangential thrust of the same magnitude. Therefore,
using radial thrust to alter orbit eccentricity is not cost-effective. Radial and east-west thrusts are
typically referred to as in-plane manoeuvres.

Finally, a manoeuvre producing a force perpendicular to the orbital plane represents an out-of-
plane thrust, also known as a North-South thrust. These manoeuvres are used to alter the orientation
of the orbit’s plane, correcting both the inclination and the ascending node.

In many situations, a combination of manoeuvres in the east-west direction, called a multiple
in-plane thrust sequence, is executed when it is required to alter the drift rate of the orbit controlling
the eccentricity vector or without affecting it. It is evident that the relocation operation is composed
of this kind of sequence, in order to properly modify the semi-axis of the orbit along with controlling
the eccentricity. A sequence of two subsequent tangential manoeuvres is also performed to carry out
a transition from one circular orbit to another with either greater or lesser altitude, an operation
commonly known as a Hohmann transfer.

Figure 3.4: Multiple East-West Thrust Manoeuvres to change orbit: trajectory
overview (left) and spacecraft view (right) as seen from the North [2]
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Chapter 4

SQP algorithm for constrained nonlinear
optimisation

“There’s a way to do it better - find it.”
— T. Edison

In this chapter, the global characteristics and mathematical aspects of the algorithm employed
for optimising the manoeuvres addressed in this thesis are described. Firstly, an outline of the SQP
method will be provided, illustrating the main characteristics of its algorithm while conveying the
principal mathematical concepts that underlie it. Then, the general specifics of its implementation
in the Fortran code NLPQLP will be presented.

optimisation is a branch of applied mathematics that studies theories and methods for finding
extrema—maximum and minimum points—of a mathematical function within a specified domain.
In general, an optimisation problem aims to maximize or minimize one or more specific quantities,
expressed in the form of a suitable objective function. The problem can be subject to the satisfaction
of a system of equality and inequality functions, referred to as constraints. In this case, the set of
variables that constitutes the solution resolves the optimised problem while satisfying a series of
specific conditions.

In the context of planning station shift manoeuvres, the optimisation usually focuses on mini-
mizing the durations of these manoeuvres, resulting in a lower quantity of propellant used. Indeed,
the duration of a manoeuvre is directly linked to propellant consumption; therefore, minimizing it
limits consumption, leading to a reduction in the costs of the mission.

The methods typically employed to solve nonlinear optimisation problems are based on iterative
algorithms. Thus, the solution is progressively obtained through a series of iterations, each aiming to
improve upon the solution provided by the previous one. This process continues until an acceptable
result is reached, convergence towards the optimal solution is achieved, or the maximum number
of preset iterations is reached. It is worth highlighting that the starting point for these methods
is anchored in an initial guess of the solution, often obtained analytically. This is used to initiate
the computations in the first iteration of the process. Clearly, providing a precise estimation of the
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solution proves advantageous for promoting the proper convergence of the method, especially for
methods characterized by slow convergence and low robustness. In general, the more accurate the
initial approximation, the faster and more probable the convergence of the algorithm.

4.1 Sequential Quadratic Programming

When some of the constraints or the objective function are nonlinear, it becomes necessary to imple-
ment a nonlinear programming process to solve the optimisation. Sequential Quadratic Programming
(SQP) methods belong to the most powerful nonlinear programming algorithms. Specifically, SQP
iterative algorithm is widely adopted to solve constrained nonlinear optimisation problems for various
applications in science, engineering, industry and management.

4.1.1 Generalities

Methods for solving nonlinear programming problems can generally be classified into two main
categories. The first class encompasses approaches that involve transforming the constrained problem
into either a non-constrained problem or a series of unconstrained problems. Algorithms falling under
this category utilize sequential or exact penalty functions, as well as sequential or exact augmented
Lagrangian functions. The second class comprises methods that exploit the transformation of the
constrained problem into a sequence of quadratic programming problems. The algorithm employed
in this work belongs to this latter class. Within this category, a further subdivision can be made
into two classifications:

• Sequential inequality quadratic programming (SIQP): in this case the sub-problems include
both equality and inequality constraints.

• Sequential equality quadratic programming (SEQP): the sub-problems involve only equality
constraints.

Sequential quadratic programming algorithm can be considered as part of quasi-Newton algo-
rithms; however, if the problem is unconstrained, it reduces to Newton’s method, also known as
the Newton–Raphson method. The Newton’s method allows finding the roots of a function f and
consequently its extrema —i.e. the zeroes of its derivative f 1. In particular, it is based on the idea
of approximating the objective function and its higher-order derivatives around the current solution
using a Taylor series. A detailed description of its algorithm is not relevant to the scope of this
work, but it proves useful to present at least the expression implemented by the Newton-Raphson
in its simplest uni-dimensional form:

xk`1 “ xk ´
fpxkq

f 1pxkq
(4.1)

where f is a real-valued function, the roots of which are being searched, f 1 is its derivative, and
xk is the solution at the kth iteration. Obviously, the implementation for the search of the extrema
is analogous, with the due differences.
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The SQP algorithm shares many similarities with Newton’s method and is indeed regarded as an
alternative to it. Both are used to solve nonlinear problems, but they differ in their approaches, as
one can observe from the overview carried out in the following paragraph.

4.1.2 SQP Algorithm

As mentioned before, SQP is implemented to solve smooth nonlinear constrained optimisation prob-
lems. Therefore, the general optimisation problem to minimize an objective function f under non-
linear equality and inequality constraints is considered. This can be written as:

min fpxq

x P Rn : gjpxq “ 0, j “ 1, . . . ,me

gjpxq ě 0, j “ me ` 1, . . . ,m

(4.2)

where x is an n-dimensional parameter vector, which can be called solution vector. It is assumed
that all problem functions fpxq and gjpxq, @j “ 1, ...,m, are continuously differentiable on the whole
Rn. To be precise, the formulation of the optimisation problem addressed in this thesis presents
some differences from the one just illustrated, since no equality constraints are applied. Instead, all
constraints are expressed through inequality functions, therefore, specifying the presence of upper
and lower bounds xU and xL, the problem becomes:

min fpxq

x P Rn : gjpxq ě 0, j “ 1, . . . ,m

xL ď x ď xU

(4.3)

However, for the purpose of the description presented in this section, it is preferable to refer to
the more general case depicted in equation (4.2).

The fundamental concept of the algorithm revolves around formulating and solving a quadratic
programming sub-problem in each iteration. This sub-problem is derived by linearizing the con-
straints and approximating the Lagrangian function quadratically:

Lpx,uq “ fpxq ´

m
ÿ

j“1

ujgjpxq (4.4)

where x P Rn is the primal variable and u “ pu1, ..., umqT P Rm the multiplier vector. The
major reason for using a quadratic sub-problem, i.e., problem with a quadratic objective function
and linear constraints is that such problems are relatively easy to solve and yet in their objective
function can reflect the non-linearities of the original problem.
It is worth to present immediately here the first-order necessary conditions that characterized any
particular local solution of the problem defined in equation (4.2).
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In the specific if x˚ is a local optimum of the optimisation problem and if the constraints regularity
condition is fulfilled at x˚, then exist and are unique the multipliers u˚

j that together with x˚ satisfy
the following conditions:

1. ∇fpx˚q ´

m
ÿ

j“1

u˚
j∇gjpx˚q “ 0 Stationarity

2. @j P t1, . . . ,meu : gjpx
˚q “ 0 Primal Feasibility

3. @j P tj “ l, . . . ,mu : gjpx
˚q ě 0 Primal Feasibility

4. @j P tj “ l, . . . ,mu : u˚
j ě 0 Dual Feasibility

5. @j P tj “ l, . . . ,mu : u˚
j gjpx

˚q “ 0 Complementary slackness

(4.5)

whit l “ me ` 1, used to simplify the notation. The first equation establishes the gradient of
the Lagrangian function associated with the problem to be zero for the local solution defined by
x˚ and u˚

j . The second and third conditions determine that in correspondence of x˚ the inequality
and equality constraints must be satisfied, representing the feasibility condition of the solution.
The fourth condition imposes the non-negativity of the multipliers associated with the inequality
constraints. Finally, the last equation states that the multiplier of an inactive inequality constraint[1]

must be zero.
These conditions ensure a solution of a nonlinear programming to be optimal and take the name of
Karush–Kuhn–Tucker conditions (KKT), while u˚

j are known as KKT multipliers.
Regarding the sequential quadratic programming algorithm the first step, that represents also

the major concern in SQP methods, involves the choice of appropriate quadratic sub-problems. A
reasonable approach is the linearization of the actual constraints about the current approximation
xk. Thus the general form of the quadratic sub-problem is:

min
d

prkqTd `
1

2
dTBkd

subject to ∇hpxkqTd ` hpxkq ě 0

∇gpxkqTd ` gpxkq “ 0

(4.6)

being d “ x ´ xk. The vector rk and the symmetric matrix Bk remain to be chosen appropri-
ately. Anyhow the most appropriate selection for the objective function typically involves the local
quadratic approximation to f at xk. That is, Bk is taken as the Hessian and rk as the gradient of
f at xk.

The next step instead consist in the use of the method of Lagrange multipliers to incorporate
both the objective and the constraint functions in Lpx, uq, the Lagrangian function. In particular,
as already said, the SQP method utilizes a quadratic model of the Lagrangian function as the
objective function, in this way it is possible to take non-linearities in the constraints into account
while maintaining the linearity of the constraints in the sub-problem. The optimisation is then

[1]The set of active constraints are the inequality constraints whose condition is satisfied with equality in the current
solution xk: gjpxkq “ 0. Conversely if its condition is not satisfied with equality the constraint is defined inactive.

44



reformulated by applying the Lagrange multipliers to the constraints, and the purpose of the problem
becomes to find the minimum of Lpx, uq, instead of fpxq. It is necessary to clarify the reformulated
problem is indeed equivalent to the previous one, since when the constraints and the conditions
expressed in equation (4.5) are satisfied minimizing Lpx, uq or fpxq is the same operation. This
strategy is widely adopted to simplify the problem of searching for the extrema of a function subject
to equation constraints.
It should be noted the application of the KKT conditions allows to generalize the method of Lagrange
multipliers to the case of problems with inequality constraints. As a matter of fact, such method
would be suitable in presence only of equality constraints.
At this point it may be convenient to highlight the distinction between equality and inequality
constraints within the Lagrange function through a temporary change in notation. Specifically, for
better clarity in the description, the constraints and their corresponding Lagrange multipliers will
be respectively represented as follows: hpxq and λ for inequalities, and gpxq and σ for equalities.
Moreover, for the time being, it is assumed that there are only two constraint functions present, to
simplify the treatment: one for equality and one for inequality. Hence, the Lagrangian function is
rewritten as:

Lpx, λ, σq “ fpxq ´ λhpxq ´ σgpxq (4.7)

Given a current iterate pxk, λk, σkq, the quadratic Taylor series approximation in x for the La-
grangian is:

Lpxk, λk, σkq ` ∇Lpxk, λk, σkqTd `
1

2
dT∇2Lpxk, λk, σkqd (4.8)

A strong motivation for using this function as the objective function in the quadratic sub-problem
is that it generally ensures the algorithm to have good local convergence properties.
Hence, the algorithm defines an appropriate search direction dk at an iterate pxk, λk, σkq, as a solution
to the quadratic programming sub-problem, that in light of the above can be expressed as:

min
d

fpxkq ` ∇fpxkqTd `
1

2
dT∇2

xxLpxk, λk, σkqd

∇hpxkqTd ` hpxkq ě 0

∇gpxkqTd ` gpxkq “ 0

(4.9)

This formulation is obtained using the Taylor expansion approximation around the current so-
lution x. In the specific through further simple steps, not reported here for brevity, it is immediate
to derive from equation (4.8) the following expression for the Lagrangian:

Lpx, λ, σq “ fpxkq ` ∇fpxkqT px ´ xkq `
1

2
px ´ xkqT∇2

xxL px ´ xkq ` .... (4.10)

Then, substituting d “ x´xk one can obtain the objective function expression just seen in (4.9).
This formulation for the quadratic sub-problem is analogous to the more general case presented in
equation (4.6). In fact, it can be noticed that the term fpxkq present in objective function may be
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left out for the minimization problem, since it is constant under the min
d

operator.

Therefore in the SQP method at a current iterate xk, the step to the next iterate is obtained
through information generated by solving the quadratic sub-problem. This is assumed to reflect in
some way the local properties of the original problem.
It is significant to highlight that generally SQP methods do not compute the Hessian matrix, but
utilize instead an appropriate approximation of it. As a matter of fact, a convenient approach involves
exploring alternatives to the actual Hessian of the Lagrangian, for example, as just mentioned,
approximating matrices that enable the quadratic sub-problem to be solved at any xk, and facilitate
the analysis of global convergence of the resulting algorithm. This is the principle difference between
the Newton-Raphson method and the quasi-Newton algorithms, like the SQP, since the former
necessarily need to compute the Hessian matrix.
In fact, if one applied the standard Newton’s method to minimize the Lagrangian, described by
equation (4.8), searching for the solution ∇Lpx, uq “ 0, it would be necessary to iterate the following
equation:

»

—

—

–

xk`1

λk`1

σk`1

fi

ffi

ffi

fl

“

»

—

—

–

xk

λk

σk

fi

ffi

ffi

fl

´

»

—

—

–

∇2
xxL ∇h ∇g

∇hT 0 0

∇gT 0 0

fi

ffi

ffi

fl

´1 »

—

—

–

∇f ` λk∇h` σk∇g
h

g

fi

ffi

ffi

fl

(4.11)

where xk, λk, σk represent the solution and the Lagrange multipliers at the kth iteration, while
∇2

xx denotes the Hessian matrix. Note that functions and gradients are computed at xk, λk, σk.
Moreover, the first matrix after the minus represents ∇2L, while the second one is ∇L. This expres-
sion is analogous to the one seen in equation (4.1), but adapted for a multidimensional minimization
problem.
It is evident that one of the drawbacks of the Newton-Raphson is the computational cost required
to calculate the inverse of the Hessian at each iteration, which can be very high. Furthermore, this
matrix can be singular, thus non-invertible, therefore in several cases the algorithm terminates and
is not possible to proceed further calculating directly the next iterate. This is clearly understandable
looking at equation (4.7).
Conversely the quasi-Newton methods approximate directly the inverse of the Hessian matrix and
update it at each iteration, avoiding the need to compute and then invert the matrix at every step.
In the specific, the various strategies employed to perform this estimation distinguish the different
quasi-Newton methods. These algorithms are particularly advantageous when is impractical to com-
pute the inverse of the Hessian or the operation is prohibitively expensive, such as for large-scale
problems.
In detail, the SQP method implemented in this work employs the BFGS formula to approximate
the Hessian matrix of the Lagrangian function, as it will be addressed in more detail in the next
paragraph.
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Hence, modifying equation (4.9) and returning to the notation used in (4.2), it is finally possible
to write the sub-problem in the form that follows:

min
1

2
dTCkd ` ∇fpxkqTd

d P Rn : ∇gjpxkqTd ` gjpxkq “ 0, j “ 1, . . . ,me

∇gjpxkqTd ` gjpxkq ě 0, j “ me ` 1, . . . ,m

(4.12)

where xk P Rn represents the iterates, an approximation of the solution, vk P Rm, an approxima-
tion of the multipliers, and Ck P Rm, an approximation of the Hessian of the Lagrangian function.
This represents the reference quadratic sub-problem for the optimiser used in this thesis — with
me “ 0 — and solved to optimise the manoeuvres of interest. It is worth underline that in the
presented treatment, inequality functions have always been expressed in the form hpxq ě 0 —which
is the formulation used for all constraints in this thesis—. In any case, formally speaking, it is always
possible to transform any constraint hpxq ď 0 into h1pxq ě 0, where h1pxq “ ´hpxq.
Let dk be the optimal solution and uk the corresponding vector of Lagrange multipliers of this
quadratic sub-problem. A new iterate is obtained by:

ˆ

xk`1

vk`1

˙

“

ˆ

xk

vk

˙

` αk

ˆ

dk

uk ´ vk

˙

(4.13)

with αk P p0, 1s a suitable step-length parameter. For completeness, it is specified that the upper
and lower bound, mentioned at the beginning of this Chapter, are expressed by:

xL ´ xk ď d ď xU ´ xk

for the sub-problem. The vk vector needs to be updated if the algorithm employs a line search
approach, as this may depend on the approximation vk of the optimal Lagrange multipliers.
In conclusion a SQP method models the nonlinear programming problem (4.2) at a given approxi-
mate solution, xk, by a quadratic programming sub-problem (4.12). This is obtained linearizing the
nonlinear constraints of (4.2) and minimizing a quadratic approximation of the Lagrangian function.
The solution to this sub-problem is then used to construct a better approximation xk`1 and this
process is iterated to create a sequence of approximations that it is hoped will converge to a solution
x˚.

4.1.3 Properties Overview

SQP algorithms typically exhibit traits similar to Newton-like methods. They converge rapidly when
the iterates are near the solution, but they may display erratic behavior, especially when the iterates
are distant from a solution. However, incorporating constraints significantly increases the complex-
ity of both analyzing and implementing these algorithms. Furthermore, the effectiveness of SQP
methods hinges on the availability of rapid and precise algorithms for solving quadratic programs.
Fortunately, these are often relatively easy to solve due to the availability of good procedures for
their solution.
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It is worth noting that nonlinear optimisation problems can have multiple local solutions, with the
global solution being the local solution corresponding to the least value of f . SQP methods ensure
convergence only to a local solution of a nonlinear problem. Therefore, they must be distinguished
from algorithms aimed at finding global solutions, which operate on different principles.
Another important question is connected to the local and global convergence properties of the al-
gorithm and its relative asymptotic rate of convergence. Assuming that the quadratic sub-problem
can be solved, the sequence generated by the algorithm can then converge to a solution. In the
specific, local convergence results proceed from the assumptions that the initial x-iterate is close
to a solution x˚ and that the initial Ck approximates the Hessian matrix of the problem appropri-
ately. On the other hand, global convergence consists of the capacity of the algorithm to converge
to some local solution starting from any arbitrary remote point. In general, SQP methods enjoy
good theoretical local convergence under appropriate conditions. To ensure global convergence, a
method for measuring progress toward a solution is necessary. The algorithm is then equipped with
a merit function, the reduction of which indicates this progress and establishes that an acceptable
step has been taken. Moreover, a procedure for adjusting the step length parameter αk is required
to guarantee the reduction of the merit function at each step.
Regarding the rate of convergence, it is possible to identify three main measures: let txku be a
sequence converging to x˚, then this is said to converge linearly if there exist a positive constant
ξ ą 1 such that:

}xk`1 ´ x˚ } ď ξ }xk ´ x˚ }

for all k sufficiently large. The convergence is superlinear if there exists a sequence of posi-
tive constant ξ Ñ 0 such that the previous condition is satisfied. Finally, the sequence converges
quadratically if there exists a positive constant ξ such that:

}xk`1 ´ x˚ } ď ξ }xk ´ x˚ }2

In the expressions just presented, } ¨ } denotes the 2-norm of a vector. An SQP method can
achieve quadratic and superlinear convergence in many cases under suitable conditions.
The algorithm also proves to be robust to variations in the initial conditions and the parameters of
the problem.

4.2 NLPQLP Optmiser

NLPQLP is a Fortran implementation of a SQP algorithm, characterised by a distributed and non-
monotone line search. The code is used in academic and commercial institutions to solve smooth
nonlinear programming problems of the form illustrated in equation (4.2). Furthermore, it represents
the solver employed to carry out the optimisation process of the relocation manoeuvres investigated
in this work.
With regard to the features of the SQP method employed by the solver as well as the assumptions
required, one can clearly apply the considerations expressed in the previous section.
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Figure 4.1: Schematic overview of the basic SQP algorithm

The optimisation performed by NLPQLP is solved under the following further assumptions,
which define its domain of application:

• The problem is not too large (the problem size depends on hardware facilities)

• Functions and gradients can be evaluated with sufficiently high precision

• The problem is smooth and well-scaled

The NLPQLP code can handle both equality and inequality constraints; the latter are all ex-
pressed in the form gpxq ě 0. It is worth noting that the functions f and gj , j “ 1, ...,m, need to
be defined only on set E “ tx P Rn : xL ď x ď xUu, since the iterates computed by the algorithm
will never violate the lower and upper bounds.

4.2.1 Numerical Method

As said earlier NLPQLP, being based on a SQP method, generates a sequence of quadratic program-
ming sub-problem, which are solved successively by a external Fortran function, known as QL. In
case of computational errors as for example caused by inaccurate function or gradient evaluations,
the non-monotone line search is then activated.
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The algorithm build an approximation of the inverse of the Hessian matrix, updating at each
iteration this quasi-Newton matrix, Ck, using the BFGS formula:

Ck`1 “ Ck `
qkq

T
k

pT
k qk

´
Ckpkp

T
kCk

pT
kCkpk

(4.14)

in which:

qk`1 “ ∇xLpxk`1,ukq ´ ∇xLpxk,ukq

pk`1 “ xk`1 ´ xk

Special precautions, as proposed by Powell [6], through modifications to the standard BFGS for-
mula, ensure that pTk qk ą 0, thereby preserving the positive definiteness of all matrices Ck throughout
the iterations, assuming C0 is positive definite. In certain instances —such as when convergence
becomes exceedingly slow— additional measures like a scaling factor and restart procedure can be
applied.
Although the modified BFGS formula ensures that the matrix Ck is positive definite, it is possible
that equation (4.12) is not solvable due to inconsistent constraints. Therefore one can not always
implement the quadratic sub-problem (4.12) as it stands. More specifically, the feasible region of
(4.12) can be empty although the original problem (4.2) is solvable. The second drawback is the re-
calculation of gradients of all constraints at each iteration, although some of them might be inactive
at an optimal solution, thus locally redundant. One possible remedy, to avoid both disadvantages, is
to introduce an additional variable δ P Rn, leading to a modified quadratic programming problem.
In broad terms, the operation entails adding a term 1{2ρkδ

2 to the objective function and reformu-
lating the constraints. In which ρk represents an additional penalty parameter designed to reduce
the influence of δ on the solution. A more detailed and comprehensive description can be found in
[7].
The step-length parameter αk seen in equation (4.13) is required to enforce global convergence of the
SQP method. In this way it can be reached a point satisfying the necessary Karush-Kuhn-Tucker
optimality conditions when starting from arbitrary initial values. These are typically a user-provided
x0 P Rn and v0 “ 0, while the initial estimation of the Hessian is the identity matrix, C0 “ I.
Moreover, αk should satisfy at least a sufficient decrease condition of a merit function ϕrpαq given
by:

ϕrpαq “ ψr

ˆˆ

x
v

˙

` α

ˆ

d
u ´ v

˙˙

(4.15)

with a suitable penalty function ψrpx, vq. Possible choices for ψrpx, vq are the L1-exact penalty
function:

ψrpx,vq “ fpxq `

me
ÿ

j“1

rj |gjpxq| `

m
ÿ

j“me`1

rj |minp0, gjpxqq| (4.16)
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Or the augmented Lagrangian function:

ψrpx,vq “ fpxq ´
ÿ

jPJ

pvjgjpxq ´
1

2
rjgjpxq2q ´

1

2

ÿ

jPK

vj
2{rj (4.17)

The NLPQLP version utilized for this work, implements the latter. With J “ t1, ...,meu Y

tj : me ă j ď m, gjpxq ď vj{rju and K “ t1, ...,mu\J .
In the specific, rj , j “ 1, ...,m, is a vector of penalty parameters, governing the degree of constraint
violation and penalizes the objective function as soon as an iterate leaves the feasible domain. It is
updated according to a suitable rule to ensure a descent direction of dk with respect to the chosen
merit function. In more detail, it is chosen to get:

ϕ1
rp0q “ ∇ψrkpxk,vkqT

ˆ

dk

uk ´ vk

˙

ă 0 (4.18)

The implementation of a line search algorithm is a critical issue when employing a nonlinear
programming method. As a matter of fact, it greatly influences the overall efficiency of the resulting
code. On one hand, a line search is crucial for stabilizing the algorithm; on the other hand, it is
undesirable to consume excessive computational resources with numerous function calls. Addition-
ally, the behavior of the merit function can become irregular in constrained optimisation scenarios.
Even the implementation can be complex, if linear constraints and bounds of the variables are to be
satisfied during the line search.
Usually, the step-length parameter αk is chosen to satisfy the Armijo condition:

ϕrpσβiq ď ϕrp0q ` σβiµϕ1
rp0q (4.19)

with constants µ, β, σ that are from the ranges 0 ă µ ă 0.5, 0 ă β ă 1 and 0 ă σ ď 1. The
starting point is i “ 0, and then it is increased until the equation (4.19) is satisfied for the first time,
at a generic ik. Hence, the correct step-length is obtained as: αk “ σβik .
Usually, the test parameter µ ensuring a sufficient descent property that meets the Armijo condition
is quite small. Meanwhile, the selection of the reduction parameter β should be adjusted to the
current slope of the merit function. If β is too small, the line search terminates rapidly, but this
frequently leads to excessively small step sizes, thereby increasing the number of outer iterations
required. Conversely, selecting a larger value of β approaching one necessitates a greater number of
function calls during the line search. It is then necessary a compromise, which is obtained by first
applying a polynomial interpolation, generally a quadratic one, and use (4.19) only as a stopping
criterion. It is immediate to get the minimizer of the quadratic interpolation by:

ᾱi “
0.5α2

i ϕ
1
rp0q

αiϕ1
rp0q ´ ϕrpαiq ` ϕrp0q

(4.20)

since αi is the actual iterate of the line search procedure and ϕrp0q, ϕ1
rp0q and ϕrpαiq are given.

Then the maximum between ᾱi and the Armijo parameter is taken as a new iterate. This operation
is necessary to avoid irregular values, since ᾱi can be outside of the feasible domain. If a sufficient
decrease is not achieved after a preset number of iterations, it is required to terminate the algorithm.

51



If the number of iterations becomes too high, the line search is repeated using a different stopping
criterion. Instead of fulfilling equation (4.19), the process continues as soon as it is satisfied:

ϕrkpαkq ď max
k´ppkqďjďk

ϕrj p0q ` αk µϕ
1
rk

p0q (4.21)

where pk is a predetermined parameter: ppkq “ mintk, pu, with p a given tolerance. Therefore,
an increase of the merit function value is permitted in a certain error situation. To implement the
non-monotone line search, clearly a set of merit function values from previous iterations is demanded.
Anyhow, monotone line searches are performed as long as they terminate successfully, while only in
case of error, a non-monotone approach is employed.
The use of non-monotone line search is in general advantageous to determine the step size or step-
length along the search direction of a SQP method. Indeed, it allows to improve performance and
convergence properties of the algorithm. Traditional monotone line search methods strictly enforce a
decrease in the objective function at each iteration. Conversely, non-monotone line search methods,
as just mentioned, are more flexible, permitting occasional increases in the objective function by
considering a history of function values over multiple iterations.

4.2.1.1 QL Subroutine

The computational challenges associated with solving the quadratic sub-problems are significant, and
their solutions directly impact the overall performance of the SQP method. The technical details
of their resolution are outside the scope of and will not dealt with here. However it is appropriate
to briefly mention at least the main features of the QL subroutine, as it is part of the NLPQLP
code. The Fortran subroutine QL is used to solve strictly convex quadratic programming problems,
implementing the primal-dual method of Goldfarb and Idnani, whose specifics can be found in [8].
Initially, a Cholesky decomposition of Ck is computed by an upper triangular matrix R such that
Ck “ RTR. This operation is made possible by the positive definite property of Ck, ensured by the
modified BFGS formula, as already stated. Successively, violated constraints are added to an active
set. At each step, the minimizer of the objective function subject to this new set is computed. The
algorithm terminates when an optimal solution, that satisfies all linear constraints and bounds, is
obtained.

4.2.2 Program Features

NLPQLP code is structured in form of a Fortran subroutine, characterized by several inputs that
must be provided by the user. Its sole output is an integer, indicating the status of the optimisation
process. This communicates whether the operation was successful or provides information about
the cause which led to its termination. Nonlinear problem functions and analytical gradients are
provided within the calling program through reverse communication. In general, the main data
passed to the subroutine include:

• Objective function value and number of solution variables

• Upper and lower bounds of the sub-problem
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• Constraint values and number of constraints

• Gradient of the constraint and objective function values

• Additional data, such as final accuracy, upper bound for the number of function calls during the
line search, minimum step-length value, maximum number of outer iterations —one iteration
corresponds to one formulation and solution of (4.12)—, etc.

As mentioned earlier, if the optimality conditions cannot be met within a user-defined tolerance,
the code will report the encountered error. The most common errors are the following:

• The algorithm terminates when it reaches the maximum number of iterations specified by the
user.

• The line search algorithm stopped because the user-provided maximum number of sub-iterations
was exceeded.

• The search direction dk, is close to zero, but the current iterate is still infeasible. It suggests
issues with poorly scaled problem functions.

4.2.3 Performance Overview

The updated version of NLPQLP was tested on a dataset comprising 306 problems, employing a
stopping tolerance of 10´7. As stated in [9] it achieved a success rate in problem resolution exceeding
90%. The numerical results obtained indicated stability and robustness of the algorithm for this set
of standard test problems. The code was also extensively tested on problems with up to 100 variables.
In general, the analysis performed demonstrated the efficiency and reliability of the algorithm and
its capability to handle problems with numerous constraints. The integration of the non-monotone
line search represents a notable enhancement in performance compared to the monotone approach.
The non-monotone procedure allows for efficient problem solving even in scenarios characterized by
highly noisy function values and numerical differentiation challenges. Moreover, internal restarts
further bolster stability by addressing severe errors encountered during the computation of the
search direction, attributable to inaccurate derivatives. Scaled restarts assume critical importance,
particularly when the convergence of the SQP method slows considerably. This typically occurs in
instances involving poorly scaled variables or functions, inaccurate derivatives, or imprecise solutions
of (4.12). In such circumstances, deviations in the search direction adversely affect the update process
(4.14), leading to progressively inaccurate quasi-Newton matrices Ck.

Further information about the performance of the code can be found in [9] and [7]. In particular,
the latter provides a comparison of NLPQLP with other nonlinear programming codes, highlight-
ing that SQP codes result to be the most efficient, followed by the generalized reduced gradient,
multiplier, and penalty methods.
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Chapter 5

Methodology

“Success is not final, failure is not fatal: It is the courage to continue that counts.”
— W. Churchill

In this chapter, the methodology used to formulate the optimisation problem is outlined. Specifi-
cally, the approach employed to mathematically express the constraints associated with the physical
problem of relocation is introduced. Additionally, the processes for computing both the constraints
and objective function values, along with their corresponding gradient function values — which are
essential for the NLPQLP code to execute the optimisation — are illustrated. Finally, a comprehen-
sive overview of the key concepts related to the implementation of the NLPQLP code is provided.

The optimisation problem involves finding the best feasible manoeuvre plan for the relocation
process, considering the single extraction and insertion phases individually. In formulating the
problem, the main focus will be directed towards the case of continuous manoeuvres, which have
been found to be the most time-demanding to study. The discussion is further extended to the study
of impulsive manoeuvres, highlighting the main differences in the case. In the following paragraphs,
the problem and methodology are defined, with reference, for simplicity, to the relocation of a
single satellite. Nonetheless, such considerations can be extended in a similar manner to address
constellations composed of multiple satellites. The relocation operation theoretically consists of
purely tangential manoeuvres in the East-West direction. Therefore, North-South manoeuvres,
characterized by out-of-plane thrusts, will not be taken into account. More specifically, North-
South and East-West manoeuvres will be considered completely decoupled for the purposes of the
discussion.

5.1 Generalities

The vectorial differential equations describing the motion of the satellite are:

dr

dt
“ V (5.1)

dV

dt
“ ´

µC

r2
r

r
` ap `

T

m
(5.2)
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Here, r represents the position vector of the satellite relative to Earth, V denotes the velocity
vector of the spacecraft, T signifies the thrust vector, and µC stands for the Earth’s gravitational
parameter. Finally, ap indicates accelerations due to external perturbations affecting the satellite
orbit. Specifically, perturbative accelerations arising from the following effects are considered:

• Non-spherical Earth’s gravitational attraction

• Moon gravity

• Sun gravity

• Solar radiation pressure

The orbit is propagated by integrating the differential motion equations of the satellite, con-
sidering the manoeuvres performed and the perturbations listed above. This operation is highly
complex and exceeds the scope of this thesis; therefore, it will not be explored here. Propagating
the spacecraft trajectory is crucial for estimating the orbital elements after executing manoeuvres. A
dedicated library provided by GMV has been used for propagation, employing an 8th Order Runge-
Kutta Integration method to solve the integration. For the estimation of non-spherical Earth gravity,
an expansion of the Legendre polynomial to the 8th order has been utilized.

Similarly, GMV’s source codes have been used for estimating and calculating the number and
epochs of eclipses. The procedures for calculating umbra and penumbra events are not relevant to
understanding the conducted work. Furthermore, they are characterized by a high level of complex-
ity; hence, they will not be discussed.

One can adopt a spherical coordinate system to describe the position and velocity vectors of the
satellite in the inertial frame, based on the equatorial plane of the central body, i.e., the Earth. The
position vector of the spacecraft is given by:

r “

»

–

r
λ
θ

fi

fl (5.3)

where r is the distance from the Earth, while λ and θ are the satellite longitude and latitude
respectively. The spacecraft’s velocity vector consists of the following components:

V “

»

–

Vr
Vθ
Vφ

fi

fl (5.4)

where Vr, Vθ and Vφ are respectively the radial, tangential and normal components of the velocity.
The acceleration vector expressed with respect to the velocity vector is:

a “

»

–

aN
aV
aW

fi

fl (5.5)

It is worth underlining that for the problem formulation, the maneuver duration has been ex-
pressed in days, while the ∆V of the impulsive maneuvers in km/day.
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5.2 Problem Formulation

It is assumed that the mass of the reference satellite remains constant throughout the entire relo-
cation process. This simplifies the problem without compromising the validity and accuracy of the
results. The assumption is particularly appropriate given the nature of the relocation manoeuvres,
which require very low thrust, delta-V, and propellant consumption. Consequently, the mass of pro-
pellant consumed — representing the mass variation during the manoeuvres — can be considered
negligible compared to the total weight of the satellite.
In accordance with the features of the thrusters equipped on the satellite, the thrust generated by
the propulsion system is constant during each manoeuvre and is the same across all of them.
As discussed in Chapter 3, acceleration is defined as the ratio of thrust to mass. Therefore, based
on the information just presented, it turns out to be purely tangential and constant. Thus, the
acceleration vector can be expressed as:

a “

»

–

0
aV
0

fi

fl (5.6)

The tangential component aV — that as stated in Chapter 3 is aligned with the velocity di-
rection— is a constant and is the only non-null component. The out-of-plane component of the
acceleration, aW , is equal to zero, as North-South manoeuvres are not executed. Also the radial
component aR is null, since the main objective is to change the semi-major axis and in case of
continuous thrust eccentricity can be easily control through the tangential burns.
The solution variables of the optimisation are represented by the duration of the manoeuvres and
their midpoints. The latter, calculated as the middle epoch between the start and end times of a
manoeuvre, provide temporal information regarding the placement of manoeuvres within the plan-
ning process. Let n be the number of manoeuvres required for the extraction or insertion phase,
then the solution vector can be expressed as:

x “

»

—

—

—

—

—

—

—

—

—

—

–

x1
x2
...
xn
xn`1

...
x2n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.7)

where the first n values represent the duration of each manoeuvre, while the successive n denote
their respective midpoints. With the acceleration fixed, these variables uniquely determine the set of
manoeuvres necessary to change the satellite orbit, defining their temporal sequence and magnitude.
Another fundamental piece of information to identify a manoeuvre is its ∆V , but this is completely
dependent on the duration, due to the constant acceleration.
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In fact, the ∆V of the ith manoeuvre can be written as:

∆Vi “ aV ¨ xi @i “ 1, ..., n (5.8)

from which it is evident that duration and ∆V convey the same information. In any case, when
dealing with continuous thrust, the most reasonable and practical choice is generally to refer to
duration rather than delta-V. The conversion between them is then straightforward, as just seen.

5.2.1 Constraints

The constraints characterizing the optimisation arise from orbital considerations and operational
requirements, additionally, manoeuvres must be scheduled to avoid eclipse periods, introducing
further limitations. From a mathematical standpoint, each constraint is represented by a constraint
function gjpxq, expressed as an inequality gpxq ě 0. As illustrated in the previous chapter, given
an approximate solution xk, the NLPQLP subroutine requires as input the results of the constraint
functions at the current iterate gjpxkq to carry out the optimisation. This implies the need to store
such values in one vector, thus given an iterate xk:

y “

»

—

—

—

–

y1
y2
...
ym

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

g1pxkq

g2pxkq
...

gmpxkq

fi

ffi

ffi

ffi

fl

(5.9)

in which m is the total number of constraints of the problem, y is referred to as the vector of
constraints and its generic component yj represent the value of the constraint function gj subject to
the solution vector x.
It is advisable for expositional clarity to underline the distinction between orbital, operational, and
eclipse-related constraints, decomposing the constraint vector y into three additional vectors: u, v
and w. This approach allows for a more structured and organized description of these elements in
the upcoming subsections. Furthermore, it is consistent with the same strategy followed for the
Fortran implementation of the optimisation problem. Therefore:

y “

»

–

u
v
w

fi

fl (5.10)

The components of the vector u, v and w are the values of the functions gpxq corresponding to
the orbital, operational, and eclipse separation constraints, respectively.
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5.2.1.1 Orbital Constraints

The orbital constraints stem from the necessity of achieving the correct final orbit with appropri-
ate precision after the manoeuvre phase. This is accomplished by controlling the following mean
equinoctial elements:

1. Longitude (λ)

2. x component of Eccentricity the Vector (ex)

3. y component of Eccentricity the Vector (ey)

4. Drift (D)

Inclination control is not necessary, as East-West manoeuvres do not modify it. In any case, this
parameter will clearly experience variations during the process due to the external perturbations.
Nevertheless, these changes will be corrected by specific North-South manoeuvres that does not take
part in the relocation process. The required control actions on the above mentioned parameters are
expressed mathematically through orbital constraint functions gjpxq, j “ 1, ...,ma. However deriving
the equation of these functions is not straightforward, as it will be explained later. Therefore, only
the process for computing the components of the orbital vector u will be described here, presenting
the final formulas applied to obtain the mathematical values stored in it:

u “

»

—

—

—

–

u1
u2
...

uma

fi

ffi

ffi

ffi

fl

(5.11)

with ma representing the number of orbital constraints.
For each orbital parameter, a target value is provided by the user, along with the respective tolerance
required to achieve it. The orbital constraints impose that for the generic parameter, the difference
between the obtained actual value and the target must be less than or equal to the maximum
admissible error established for it, which corresponds to its tolerance. Mathematically, gjpxq is
represented by the sum of the tolerance and the difference between the desired value for the element
and its final value at the end of the default time window for manoeuvres:

gjpxq “ ˘pactual ´ targetq ` toll ě 0

The difference is considered with both positive and negative signs to account for the absolute
value of the attained error, which can be either positive or negative. Consequently, two constraints
are defined for each orbital element: if the error exceeds the tolerance, one constraint will always
be satisfied, but the second one will not. In the equation of gpxq, only the final value achieved by
the orbital parameter is a function of x, as it depends on the executed manoeuvres. The first step
to compute this value is to utilize the solution variables of x to define the orbital manoeuvres for
extraction or insertion.
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Specifically, given the generic ith manoeuvre, its start time is calculated as:

tstarti “ xn`i ´ 0.5 ¨ xi (5.12)

while its end time is:

tendi “ xn`i ` 0.5 ¨ xi (5.13)

With these pieces of information, it is then possible to propagate the satellite orbit considering
the presence of manoeuvres. Finally, starting from the state vector, all the equinoctial elements are
computed. It is evident that the dependence of these values on x is highly nonlinear, intricate, and
complex, making it extremely challenging to obtain an equation for gpxq, which is why it cannot be
reported.
For the insertion phase all the equinoctial elements illustrated at the beginning of the paragraph are
controlled, thus the orbital constraint vector u becomes:

u1,2 “ fλ p˘∆λ` tollλq (5.14)

u3,4 “ fe p˘∆ex ` tolleq (5.15)

u5,6 “ fe p˘∆ey ` tolleq (5.16)

u7,8 “ fD p˘∆D ` tollDq (5.17)

where ∆˚ denotes the difference between the target and achieved values, toll˚ represents the
tolerance, and f˚ is a multiplicative factor. This factor, as will be explained in paragraph 5.4, is
employed if necessary to enhance the final accuracy of the results.
For the extraction phase, the control of the longitude is not present; in this case, components u7,8
replace u1,2:

u1,2 “ fD p˘∆D ` tollDq (5.18)

the expression (5.14) is no longer required, while the components u3,4 and u5,6 remain unchanged.
Consequently, the size of the orbital vector u is ma “ 8 for insertion and ma “ 6 for extraction.
The distinctions in constraints come from inherent differences between the two manoeuvre phases,
each with its own unique objectives. Specifically, in extraction, it is crucial to achieve the drift
orbit with high accuracy in terms of semi-major axis while controlling eccentricity. Needless to say,
respecting the target drift in this phase is paramount, as the main aim is to leverage the altitude
differences —precisely expressed by the drift— between the final and GEO orbits to change the
satellite operative longitude. During insertion, semi-major axis —still represented by the drift—
and eccentricity are managed to attain the correct geostationary altitude. However, it is essential to
introduce the constraint on the final target longitude in this phase, as it constitutes the ultimate goal
of the relocation activity. Achieving the target longitude with precision at the end of the process is
fundamental to avoid costly subsequent corrective actions.
It is worth noting that the inclusion of tolerance in formulating orbital constraints simplifies their
fulfillment and speeds up the method convergence. Mathematically, as the algorithm requires gpxq ě

0, the addition of tolerance, which is a positive value, facilitates the satisfaction of this inequality. In
essence, achieving the target value with a certain margin of error is evidently easier than achieving
it precisely, thereby allowing for a broader range of admissible values as outcomes of gpxq.
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5.2.1.2 Operational Constraints

The operational constraints are typically related to both the characteristics of the thrusters and the
needs of satellite operators. Taking into account the low-thrust performances of electric thrusters,
as well as their associated platform restrictions and limitations, along with practical operational
requirements, the following set of constraints can be delineated:

1. Minimum separation between manoeuvres: the interval time between the end of one manoeuvre
and the start of the subsequent one must not be less than the user-defined minimum value.

2. Minimum manoeuvre duration: the duration of each manoeuvre must be greater than the
user-provided minimum duration.

3. Start times within the analysis interval : the start times of each manoeuvre must fall within
the analysis interval preset for the manoeuvre operation

4. End times within the analysis interval : the end times of each manoeuvre must fall within the
analysis interval preset for the manoeuvre operation.

5. Consecutive manoeuvres: manoeuvres must occur in consecutive temporal order.

This is applied to the optimisation problem and is representative of the basic constraints generally
required for a satellite equipped with electric thrusters. However, this set can be modified if further
or different restrictions are requested by satellite operators. In fact, operational constraints are
typically more susceptible to changes than orbital ones, which tend to be less specific since they
depend only on the manoeuvre phase — extraction or insertion .
Given the solution vector x, and denoting the ith manoeuvre with the subscript i, the inequality
functions used for express mathematically the aforementioned constraints are:

1. Minimum separation between manoeuvres:

gjpxq “ pxn`i`1 ´ 0.5 ¨ xi`1q ´ pxn`i ` 0.5 ¨ xiq ´ c1 ě 0 (5.19)

with i “ 1, ..., n´ 1, j “ 1, ..., n´ 1 and c1 representing the minimum separation value.

2. Minimum manoeuvre duration:

gjpxq “ xi ´ c2 ě 0 (5.20)

with i “ 1, ..., n, j “ n´ 1, ..., 2n´ 1 and c2 denoting the minimum required duration.

3. Start times within the analysis interval :

gjpxq “ pxn`i ´ 0.5 ¨ xiq ´ c3 ě 0 (5.21)

with i “ 1, ..., n and j “ 2n´ 1, ..., 3n´ 1, while c3 is start epoch of the analysis interval
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4. End times within the analysis interval :

gjpxq “ c4 ´ pxn`i ` 0.5 ¨ xiq ě 0 (5.22)

with i “ 1, ..., n, j “ 3n´ 1, ..., 4n´ 1 and c4 being the end epoch of the analysis interval

5. Consecutive manoeuvres:

#

gjpxq “ pxn`i`1 ` 0.5 ¨ xi`1q ´ pxn`i ´ 0.5 ¨ xiq ě 0

gj`1pxq “ pxn`i`1 ` 0.5 ¨ xi`1q ´ pxn`i ` 0.5 ¨ xiq ě 0
(5.23)

with i “ 1, ..., n´ 1 and , j “ 4n´ 1, ..., 5n´ 2

The values of these functions, subject to the current iterate xk, are inserted into the operational
constraints vector v:

v “

»

—

—

—

–

v1
v2
...
vmb

fi

ffi

ffi

ffi

fl

(5.24)

the size of which will consequently be mb “ 6n ´ 3, representing the number of operational
constraints. The user defines the analysis interval by specifying the start and end epochs of the
temporal window designated for the execution of the manoeuvres. The parameters c1, c2, c3 and c4
are the same for each j, yet there exists the option to initialize distinct values of c1 and c2 based on
the specific manoeuvre or pair of manoeuvres under consideration. It is important to note that the
requirement concerning the consecutiveness of manoeuvres implies two constraint values for each j.
Its associated equations ensure that the end time of a manoeuvre must occur temporally after the
start and end times of the previous one. In the formulations reported above, the start and end times
for manoeuvres are computed as depicted in equations (5.12) and (5.13), respectively.
It is worth to present the approach used to get the mathematical values stored in v on Fortran,
which has required to handle separately the computation of the first n ´ 1 elements —that are the
constraints on the minimum separation— from the others. This can be illustrated in a simple way
by partitioning the operational constraints vector into two further vectors v1 and v2:

v “

„

v1

v2

ȷ

(5.25)

Where v1 is an pn´ 1q ˆ 1 vector, representing the restrictions on the the minimum manoeuvre
separation, while the vector v2 of 5n ´ 2 components, denotes all the remaining constraints. The
calculation of the elements of v1 follows the formulation seen in equation (5.19), thus that expression
is simply applied for each ith value:

v1piq “ ptstarti`1 ´ tendiq ´ c1 with i “ 1, ..., n´ 1
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with tstarti and tendi the start and end time of ith manoeuvre. More interesting to depict, is the
formulation on Fortran for v2. This consists in the construction of a p5n ´ 2q ˆ 2n matrix and a
p5n´2q ˆ1 vector, utilized to rearrange the system of expressions expressed by (5.37), (5.21), (5.22)
and (5.23) into matrix form as:

v2 “ A ¨ x ´ b (5.26)

In more detail, b represents the constant terms present in such equations:

b “

»

—

—

–

c2 ¨ 1n
c3 ¨ 1n

´c4 ¨ 1n
0p

fi

ffi

ffi

fl

(5.27)

with p “ 2n´ 2 and 1n denoting the vector of size n consisting solely of ones. The matrix A, in
order to enhance clarity, can be viewed as the union of the two matrix A1 and A2:

A “

«

A1

A2

ff

with A1 having dimension 3n ˆ 2n and representing the coefficients of the solution variables in
(5.37), (5.21) and (5.22):

A1 “

»

—

—

–

In 0n

´0.5 ¨ In In
´0.5 ¨ In ´In

fi

ffi

ffi

fl

(5.28)

where In and 0n are respectively the identity and zero matrix of dimension n. While A2 has
size p2n´ 2q ˆ 2n and incorporates the coefficients of x present in (5.23) and (5.24). The matrix is
partially reported in the following figure.

As can be easily verified, by applying (5.26), the respective expressions for gpxq shown previ-
ously are obtained. The choice to employ the matrix representation of equation (5.26) to handle
the calculations of the constraint functions subject to x, makes the process more streamlined and
systematic. Furthermore, it facilitates the incorporation of any modifications or additions to the
constraint formulation.

5.2.1.3 Separation from Eclipses

As mentioned in Chapter 1, eclipses represent challenging periods during which the satellite typi-
cally cannot execute manoeuvres, or its thrust capabilities are limited. Regarding the optimisation
problem, it is imposed to not perform manoeuvres during eclipses and the surrounding periods. This
restriction entails the introduction of specific constraints to avoid the overlap between manoeuvres
and the umbra and penumbra phases.
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Figure 5.1: Matrix A2 representing the coefficients of x in consecutiveness of
maneuvers constraint expressions

The complete equation for the functions gpxq associated with these constraints is not directly pro-
vided, since it is clearer to present only the individual steps followed to calculate their values.
Furthermore, the equations for these functions are quite complex and not easily expressed in math-
ematical terms. Additionally, they would require intricate notation to concisely be represented in
an unique formula. The constraint values are stored, as mentioned at the beginning of this section,
in the vector w:

w “

»

—

—

—

–

w1

w2
...

wmc

fi

ffi

ffi

ffi

fl

(5.29)

with mc “ n representing the number of constraints needed to enforce the separation between
manoeuvres and eclipses, which precisely matches the number of manoeuvres.
Once the analysis interval is defined, the first step involves computing the eclipses caused by the
Earth and the Moon, determining the number and duration of these events. Specifically, a list
is generated containing the start and end times of each eclipse that occurs during the manoeuvre
window. Moreover, users have the option to apply a margin to these times, either advancing or
delaying the eclipse dates respectively, thereby extending its actual duration. This margin can be
different for the start and end epochs of the eclipse.
Subsequently, for each ith manoeuvre, the duration of the overlap between it and each of the eclipses
in the list is estimated. This operation is repeated for all manoeuvres, and the results are inserted
into a dedicated vector w1. Referring to the ith manoeuvre, ne components of w1 corresponding to
the given manoeuvre are obtained, with ne representing the number of eclipses. The size of this
vector is consequently ne ¨ n, and its components are:

w1
j`pi´1q¨ne

“ maxpestartj , xn`i ´ 0.5 ¨ xiq ´ minpeendj , xn`i ` 0.5 ¨ xiq (5.30)

with j “ 1, ..., ne, i “ 1, ..., n and where estartj and eendj are the start and end epochs of the
jth eclipse. Given a specific manoeuvre, it can be easily verified that if there is an overlap between

64



it and a generic eclipse, a negative value representing the duration of the overlap is computed and
stored in w1. Conversely, in the case of no overlap, a positive value is obtained, equal to the time
separation between the manoeuvre and the eclipse.
At the end, for each manoeuvre, only the minimum value of its corresponding ne components of w1

is selected and stored in w. In practice, considering the ith manoeuvre, the most negative value,
indicating the maximum duration overlap, is inserted into the constraint vector:

wi “ minpw1
jq with j “ 1 ` pi´ 1q ¨ ne, ..., i ¨ ne (5.31)

with i “ 1 ˜ n. It is important to emphasize that each component of w is linked to a specific
manoeuvre and if one of them does not overlap with any eclipses in the list, then the time separation
between it and the nearest eclipse is recorded. Since this value is positive, as inferred from (5.30),
it indicates that the respective manoeuvre satisfies the eclipse separation constraint.
However, a geostationary satellite generally encounters only one eclipse by Earth per day, being each
umbra periods separated by about 24 hours. Consequently, since the duration of a single manoeuvre
is typically less than a day, this usually overlaps with only one eclipse. Therefore, the maximum
overlap value for a specific manoeuvre stored in w actually represents its unique overlap.
Finally, it is worth noting that estartj and eendj are dependent on the satellite’s orbit, which in turn
relies on the manoeuvres executed, and thus on the solution variables x. Hence, to be precise, the
eclipse start and end epochs can be expressed as a function of x, although this operation would be
particularly complex.

5.2.2 Objective Function

The objective function of the problem, is represented by the summation of manoeuvre durations:

fpxq “

n
ÿ

i“1

xi (5.32)

The choice of such a function aims to minimize propellant consumption of the mission, and thus
to reduce operational costs. As a matter of fact, minimizing the sum of manoeuvre durations, while
maintaining the same propellant flow, results in a decrease in the total mass of propellant burned,
mp :

mp “ 9mp t

where t represents the duration of each manoeuvre. If mp is reduced, this results in a lower
satellite mass at launch for the same operational lifespan. Alternatively, it allows for a longer
operational life or to enable a larger number of manoeuvres executable for the same amount of
onboard propellant. It is noteworthy that optimising either the duration or the delta-V yields
equivalent results for continuous manoeuvres, as their acceleration is assumed constant.
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5.2.3 Gradient Functions

As seen in Chapter 4, to formulate the quadratic sub-problem, it is necessary to calculate the
gradients of the objective and constraint functions. Therefore, finite differences, in the specific
central differences, are employed to approximate the derivatives of these functions. Thus, considering
the objective function and i “ 1, ..., 2n, its derivatives are obtained as:

Bfpxq

Bxi
«
fpx1, . . . , xi ` h, . . . , x2nq ´ fpx1, . . . , xi ´ h, . . . , x2nq

2h
(5.33)

While, considering j “ 1, ...,m, the derivatives of the constraint functions become:

Bgjpxq

Bxi
«
gjpx1, . . . , xi ` h, . . . , x2nq ´ gjpx1, . . . , xi ´ h, . . . , x2nq

2h
(5.34)

In this way it is possible to estimate all derivatives and utilized them to get the gradients ∇fpxq

and ∇gpxq. Hence, in reference to the objective function, its gradient is represented by the following
vector:

∇f “

»

—

—

—

—

—

—

—

—

–

Bf

Bx1

Bf

Bx2

...
Bf

Bx2n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.35)

While the gradient of the constraint function is constituted by the matrix:

∇g “

»

—

—

—

—

—

—

—

—

–

Bg1
Bx1

Bg1
Bx2

. . .
Bg1

Bx2n

Bg2
Bx1

Bg2
Bx2

. . .
Bg2

Bx2n

...
...

...
...

Bgm
Bx1

Bgm
Bx2

. . .
Bgm
Bx2n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.36)

It is noted that the arguments of the functions have been omitted in (5.35) and (5.36) to stream-
line notation.
The NLPQLP subroutine, requires the values of these gradient functions subject to x, to perform
the optimisation. Therefore, in line with the above-mentioned, given the current iterate xk the
parameter h is used to increase and decrease its solution variables. Equations (5.33) and (5.34)
approximate properly the derivatives of a function only whether the parameter h is close to zero or
in any case sufficiently small. For this reason the value chosen for the computation is:

h “ 10´6
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In more detail the forward and backward solution vector values of xk are computed, by respec-
tively adding and removing h from a single element xki of xk. Subsequently, the associated cost
function and constraints values are calculated and the operation is repeated for all the solution
variables contained in x, varying i from 1 to 2n.
Equations (5.39) and (5.33) are applied, once determined the solution vectors of the ith forward and
backward steps, to get the objective functions values. Finally using (5.33) the components of ∇fpxq

are estimated.
In a similar manner forward and backward solution vector values, are used to compute the constraint
function values by following the methodology illustrated in the previous subsections. Hence the vec-
tor y is obtained for the forward and backward steps. Denoting these by yfw and ybw respectively,
it is applied the following expression to get the pi, jq element of ∇gpxq:

yfwj ´ ybwj
2h

with j “ 1, ...,m

In this manner the ith column of ∇g is initialised and repeating the process for i “ 1, ..., n the
complete matrix is obtained.

5.3 Formulation for Impulsive Manoeuvres

The optimisation problem has been initially formulated and studied only concerning continuous
manoeuvres and electric propulsion. This work strategy was based on the fact that continuous
manoeuvres, due to their nature, typically prove to be more complex to investigate. Indeed, the
prolonged duration of these manoeuvres, which may extend beyond a single orbit, along with the
electric propulsion system’s limitations, make their constrained optimisation difficult. Additionally,
as they involve an high number of constraints, the correct implementation of the SQP algorithm
becomes more challenging.
However, once valid results were obtained, the implementation of the method was further validated
by extending it to the case of chemical propulsion, and thus to impulsive manoeuvres. The problem
formulation is very similar to the one just described, but there are clearly some crucial differences.
Since these manoeuvres, as the name suggests, consist of short impulsive accelerations that produce
an instantaneous velocity variation—indicated as ∆V—discussing durations loses meaning.
For this reason, it is arbitrarily assumed that each manoeuvre is characterized by a constant duration
of 1 second, which is approximately 1.157 ¨ 10´5 days. This value is small enough to consider the
manoeuvres as impulsive, while also allowing for simplification of the study. In fact, using a unitary
value for the durations results in the velocity variations and acceleration having the same numerical
value. Referring to the ith manoeuvre, this characteristic is immediately understandable from the
following expression:

∆Vi “ ai ¨ ti “ ai ¨ 1 with i “ 1, ..., n

where ai, ∆Vi, and ti respectively denote the acceleration, velocity variation, and duration of
the ith manoeuvre. It is evident that a and ∆V convey the same information, as they both define
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the intensity of the manoeuvre. Thus, these two parameters can be arbitrarily used to identify the
manoeuvres, but since ∆V proves to be a more representative measure of a propulsor’s effect, it is
chosen as the primary parameter for the problem formulation.
Consequently, the velocity variations generated by the manoeuvres and their midpoints become the
solution variables of the optimisation in the impulsive case. The first n components of the solution
vector x are now represented by ∆V and no longer by the manoeuvre durations.
Given that the durations remain constant during the optimisation, these new solution variables still
uniquely define the set of manoeuvres.

5.3.1 Constraints

The orbital, operational, and eclipse constraints and their formulation are basically the same as in
the continuous case. The only difference lies in the operational constraint related to the minimum
duration of the manoeuvres, which obviously becomes irrelevant. In its place, an analogous constraint
concerning the minimum ∆V is defined. Its equation becomes:

gjpxq “ ai ¨ xauxi ´ c5 ě 0 (5.37)

where i “ 1, ..., n, j “ n ´ 1, ..., 2n ´ 1, ai represents the acceleration of the ith manoeuvre
in kilometers per day, and c5 denotes the minimum ∆V required by the user for each manoeu-
vre. Therefore, the matrix A and the vector b discussed in subsection 5.2.1.2 can be appropriately
modified:

b “

»

—

—

–

c5 ¨ 1n
c3 ¨ 1n

´c4 ¨ 1n
0p

fi

ffi

ffi

fl

A1 “

»

—

—

–

Dn 0n

´0.5 ¨ In In
´0.5 ¨ In ´In

fi

ffi

ffi

fl

where Dn is a diagonal matrix of dimension nˆn, presenting the manoeuvre acceleration values
ai on its diagonal.
The other equations for the constraints illustrated in the previous paragraph can still be considered
valid, provided that the vector x used for calculations is changed. Indeed, the solution vector can
no longer be utilized; instead, a vector containing the duration of the manoeuvres —besides their
midpoint — must be employed:

xaux “

»

—

—

—

–

f ¨ 1n
xn`1

...
x2n

fi

ffi

ffi

ffi

fl

(5.38)
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in which the first n components precisely represent the durations in days. In particular, 1n is a
vector of size n consisting of only ones, and f “ 1{86400 “ 1.157407 ¨ 10´5 is the factor representing
the number of days in a second.
In this manner, by using the auxiliary vector xaux instead of x, all the formulations and expres-
sions from section 5.2.1 can still be employed for the impulsive case. The start and end times of
the manoeuvres are still computed using equations (5.12) and (5.13) with xaux. These pieces of
information, along with the new solution variables, are utilized to determine the manoeuvres and
propagate the satellite orbit when computing the orbital and eclipse separation constraints.
Although chemical thrusters do not rely on the power provided by solar panels to generate thrust,
it is still good practice to avoid performing manoeuvres during these periods. For this reason, the
constraint for eclipse separation is maintained, and as mentioned earlier, it remains analogous to the
continuous case.

5.3.2 Gradient and Objective Functions

The method applied for computing gradient values is the same as introduced in section 5.2.3. The
objective function of the optimisation problem for impulsive manoeuvres is instead characterized by
the summation of the absolute values of ∆V :

fpxq “ fF ¨

n
ÿ

i“1

|xi| (5.39)

where fF “ 0.001 is a factor applied to facilitate the convergence of the algorithm. Unlike du-
rations, velocity variations can be positive or negative—corresponding to manoeuvres towards the
east or west direction, respectively. Therefore, the use of absolute values is essential to correctly
minimize the delta-V.
However, the purpose of optimisation, depicted by the cost function, remains unchanged: to reduce
operational costs by minimizing the consumed propellant mass. As seen in Chapter 3, minimizing
the ∆V required to perform the manoeuvre results in a lower propellant mass consumed.

5.3.3 Radial Cross-Coupling

Considering the high-thrust performance of chemical thrusters and the short duration of their ma-
noeuvres, meeting constraints such as eclipse separation becomes less complex. However, the im-
pulsive nature of the burn also presents some drawbacks, such as the inability to consider the ∆V
produced by the manoeuvres as purely tangential. In reality, the thrust applied to the satellite by
the propulsion system is not perfectly tangential; components in other directions are always present.

In practical terms, the error effect of thrust application in the radial direction in terms of ∆V is
usually considered for relocation operations carried out through impulsive manoeuvres. This entity
is referred to as radial cross-coupling and represents the maximum admissible ∆V in the radial
direction. Specifically, it is defined as the ratio, expressed as a percentage, between the delta-V
applied in the radial direction and the applied tangential delta-V. The user can determine this
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parameter, and there is the option to define different values for it when considering manoeuvres
towards the east or west direction.

For continuous manoeuvres, there is no need to consider the radial cross-coupling since the
thrusts are much smaller, resulting in significantly lower errors. Additionally, the overall effect is
diminished because the long duration of the manoeuvre allows errors to compensate over the orbit.
Conversely, for impulsive manoeuvres, the high intensity of the thrust produced at a single point in
the orbit results in a significant error that must be taken into account.

5.4 Implementation

In order to implement the optimisation problem described in the previous paragraphs using For-
tran, a comprehensive review of several Fortran modules from GMV’s corporate source code was
necessary. Specifically, since the starting point for the relocation optimisation process relies on the
analytical solution, the modules responsible for generating it were studied. This analytical solution
serves as the initial guess for the optimiser, and its derivation follows a different strategy depend-
ing on whether continuous or impulsive manoeuvres are conducted. In both cases, equations from
[2] are applied to obtain an analytical estimation of the total ∆V required to achieve the target
orbit. These approximated orbital mechanics equations focusing on the geostationary orbit are not
included here, as they were not analyzed or delved into detail for the purposes of this thesis.
In the impulsive case, the total ∆V is then subdivided into three manoeuvres separated by 12 hours,
following a series of steps that cannot be disclosed due to confidentiality concerns.
For continuous manoeuvres, the analytical solution is computed by strategically distributing the
total Delta-V across the minimum number of full orbits, resulting in a set of manoeuvres equally
spaced temporally.
In both cases, the procedure involves an iterative process that cyclically seeks to obtain a solution
satisfying orbital and operational constraints.
The Fortran implementation of the SQP algorithm for the optimisation problem of relocation ma-
noeuvres carried out by the NLPQLP subroutine required the development of four modules:

• Module 1: which initializes all the arguments required for constrained optimisation. It contains
subroutines to initialize the input values necessary for calling the NLPQLP subroutine.

• Module 2: it calculates the values of orbital, operational, and eclipse separation constraints, as
well as the cost function value. It also computes the corresponding gradient values for these
functions.

• Module 3: it calls the subroutines from the previous two modules to carry out the optimisation
process. It implements the NLPQLP solver, and based on the result provided by it, recalculates
the constraints and cost function or the gradient functions, or both, for the next execution.
The process continues until convergence or the maximum number of executions of optimiser
is reached.

• Module 4: which handles and generates manoeuvres. It contains general subroutines for check-
ing for overlap between manoeuvres in a given list, separating manoeuvres if there is overlap
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between two or more of them, reordering manoeuvres chronologically based on the start date
of the manoeuvre, etc.

The first module is responsible for assigning values to vectors and matrices, and allocating and
deallocating local memory. The second module implements the equations formulated in the previous
paragraph. It includes several corporate subroutines essential for propagating the satellite orbit,
computing the eclipse list, and performing other operations. The third module constitutes the proper
implementation of the NLPQLP subroutine, following the guidelines outlined in [9]. Essentially, the
module recursively calls the NLPQLP optimiser, updating the constraint, gradient or cost function
values for the next execution. Its functioning is schematically summarized in Algorithm 1. The
last module is essential for creating the variables containing the information required to represent
continuous and impulsive manoeuvres in Fortran. The need for functions to detect overlapping
manoeuvres and separate them arises from the nature of the NLPQLP subroutine. This code
represents a mathematical abstraction of a real physical problem, therefore it could potentially
generate infeasible solutions from the physical standpoint. In the specific during optimisation,
overlapping manoeuvres may be generated. Although these consist in a solution that does not
fulfill the constraints and is ultimately discarded at the end of the process, they are utilized during
the current execution to compute orbital constraints. Hence, without separating these manoeuvres
during this operation, inevitable crashes in the corporate code responsible for orbital propagation
would occur. Consequently, the subroutines of the fourth module generate an additional manoeuvre
characterized by an acceleration equal to the sum of the overlapping manoeuvres within that segment,
in place of each overlapping region.

There is the option to optimise only the single extraction or insertion manoeuvre, or alternatively,
the full relocation process consisting of extraction and insertion phases sequentially performed.
Although the theory behind the computation of the full relocation or the single extraction-insertion
manoeuvres is the same, two different subroutines are used for practical reasons. In particular, in
the full relocation case, the subroutine must verify that the user-provided extraction target drift
is sufficiently high to perform the relocation within the preset temporal window, computing a new
value if necessary.
The module responsible for optimisation can be invoked either at the first iteration or at the last
iteration of the algorithm that generates the analytical solution. It is evident that in the latter case,
starting from a better solution that may already satisfy the constraints results in a higher probability
of convergence for the optimiser.
It is worth noting that in the adopted implementation of the SQP algorithm, there is no provision
for changing the number of solution variables in the optimisation operation. Therefore, during this
process, the size of the solution vector x remains unchanged and equal to that of the initial guess
provided by the analytical method. This means that in order to find the best feasible manoeuvre
plan, the optimiser only has the possibility to vary the temporal arrangement and duration of burns,
while the number of manoeuvres considered to perform the relocation operation will not be modified.
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Algorithm 1 Implementation of the NLPQLP subroutine for nonlinear constrained optimisation
(Module 3)
Require: initial guess list of manoeuvres and information about the relocation operation
Require: orbital targets, orbital and operational constraints data
Require: user-defined maximum number of executions and outer iterations of the optimiser
Require: indication about the relocation phase, whether it is extraction or insertion
Require: indication about the type of manoeuvres, whether they are impulsive or continuous
1: Compute solution variables related to the initial guess manoeuvres
2: Compute orbital, operational, and eclipse constraint values subject to the initial iterate
3: Compute the objective function value subject to the initial iterate
4: Compute constraint and objective functions gradient values subject to the initial iterate
5: Set lower and upper bounds of the nonlinear optimisation problem
6: Use information obtained through the previous steps to initialize input vectors and matrices to

pass to the NLPQLP subroutine
7: loop
8: Call the NLPQLP subroutine
9: Store the current iterate in the solution vector

10: if optimisation failed and new objective function and constraint values are required then
11: Re-compute objective function and constraint values subject to the variable values of the

current iterate
12: else if optimisation failed and new gradient values are required then
13: Re-compute gradient values subject to the variable values of the current iterate
14: else if optimisation did not converge then
15: Re-compute objective function, constraint, and gradient values subject to the variable values

of the current iterate
16: Update the number of executions of the optimiser: i “ i` 1
17: if i exceeds the preset maximum number of executions of the optimiser then
18: Exit
19: end if
20: else if optimisation converged then
21: Exit loop
22: end if
23: end loop
24: Generate the solution by creating a new list of manoeuvres using the information stored in the

final iterate, which represents the optimal solution variables
25: return The new list of optimised manoeuvres and information about the convergence status
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Chapter 6

Results

“Yesterday is history, tomorrow is a mystery, but today is a gift.
That is why it is called the present”

— Anonymous

In this Chapter, the main results obtained from the implementation of the NLPQLP code for
the constrained optimisation process of relocation manoeuvres will be illustrated. The nature of the
problem and its implementation, characterized by numerous degrees of freedom, enable the simu-
lation of a wide range of scenarios. More specifically, a practically infinite number of results can
be obtained, as it is possible to test different case studies by simply changing the orbital target,
operational requirements, epochs defining the manoeuvre window, or the starting orbit. Addition-
ally, the great flexibility of the optimiser implementation must be taken into account. Indeed, the
NLPQLP subroutine can be called at the first or last iteration of the analytical method, allowing
for the opportunity to follow two different approaches for the analysis.
Therefore, in the next paragraphs, only some of the possible attainable results are presented, which
can be considered the most representative for the investigated problem.

Before entering the particulars of the solutions, it proves convenient to specify some further
aspects of the methodology followed.

The starting orbit for the relocation and extraction phases is the geostationary orbit, which is
also the arrival orbit for the insertion phase. Anyhow, as already mentioned in this thesis, the GEO
orbit is an ideal representation of a real orbit. In the specific, it is a theoretical abstraction used
to define an orbit with particular characteristics, which is, however, achieved only momentarily in
reality. For this reason, the orbital elements describing the reference GEO orbit in this Chapter will
not be exactly the same as those seen in Tab. 2.1, but they will present a certain degree of error
due to the presence of perturbations and real effects that slightly alter them.
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The spacecraft equipped with electric thrusters considered for the study of continuous manoeu-
vres represent actually existing satellites, and their respective data will be used to compute the
corresponding solutions reported in the next sections. However, for privacy reasons, this informa-
tion cannot be made public. Nonetheless, for the sake of consistency, one can refer to the general
characteristics illustrated in Tab. 6.1, which approximate the real satellite data. These will be
utilized to make practical considerations about the propellant mass savings achieved through opti-
misation.

Nominal Thrust (T ) Specific Impulse (Is) Propellant Flow ( 9mp) Satellite Mass (m0)

0.4 N 1500 s 0.05 g/s 4000 kg

Table 6.1: Data for electrically propelled satellites

The analysis of impulsive manoeuvres, as mentioned in the previous Chapter, has been conducted
solely to certify the validity of the method and its implementation, and to explore the possibility
of extending its application to satellites employing chemical propulsion systems. Therefore, it has
not been possible to refer to currently operational spacecraft, and as stated in Chapter 5, these
manoeuvres are assumed to be simple impulsive burns lasting one second. Nevertheless, for basic
propulsion-related evaluations, it is supposed that the spacecraft mass remains consistent with the
electric propulsion scenario and that hydrazine is used as fuel. Thus, the general characteristics for
hydrazine thrusters provided in [2] can be utilized, which are shown in Tab. 6.2.
For chemical propulsors, the computation of the propellant flow rate becomes more complex, as it
would require the use of pressure and temperature data and the application of an analytical model
to estimate it realistically at each instant of time. Hence, for simplicity this entity is not evaluated,
in addition it is easier to refer to the Tsiolkovsky equation for estimating the propellant consumption
in case of impulsive manoeuvres.

Nominal Thrust (T ) Specific Impulse (Is) Satellite Mass (m0)

20 N 300 s 4000 kg

Table 6.2: Data for chemically propelled satellites

The solutions to be presented have been attained by leveraging GMV’s corporate platform, Fo-
cusSuite®, which was employed to conduct all the necessary simulations. The GMV’s relocation
manoeuvre planning library for geostationary satellites, containing modules for various flight me-
chanics operations such as orbit propagation, is written in Fortran 90. This also applies to the
modules responsible for executing the optimisation process and computing the analytical solution
used as an initial guess by the optimiser, as already mentioned. Consequently, the corporate plat-
form generates results by executing the binary file produced by compiling the Fortran 90 source code
on the Linux operating system through the GNU Fortran compiler (gfortran).
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The orbital targets, along with their relative tolerances, and the operational constraints, are
defined within the same platform. Specifically, a uniform tolerance value has been employed across
all simulations—both for continuous and impulsive manoeuvres—to indicate the accuracy required
to achieve orbital targets. These values are presented in the subsequent table.

D (deg/day) λ (deg) e

0.1 ¨ 10´3 0.1 ¨ 10´3 0.1 ¨ 10´3

Table 6.3: Maximum admissible errors for the orbital targets

Additionally, to streamline the study, identical operational requirement data for continuous ma-
noeuvres have been applied throughout all corresponding analyses. Details regarding these param-
eters are outlined in the table below.

Continuous case options

Maximum Duration: 65000 s
Minimum Duration: 720 s

Minimum Separation: 4200 s
Minimum Separation to Eclipses: 300 s

Table 6.4: Operational requirements for continuous manoeuvres

Conversely, given their different nature, distinct operational data have been utilized for impulsive
manoeuvres. Nevertheless, these requirements remain consistent across all simulations involving such
manoeuvres. The corresponding numerical values are provided in the following table.

Impulsive case options

Maximum ∆V : 6 m/s
Minimum ∆V : 0.001 m/s

Minimum Separation: 3600 s
Minimum Separation to Eclipses: 300 s

Table 6.5: Operational requirements for impulsive manoeuvres

The values for the operative requirements and orbital target tolerances outlined above have been
selected arbitrarily, while still choosing realistic values that roughly reflect parameters commonly
used for manoeuvres planning in relocation operations. Some of these variables depend on satellite
requirements, additionally they clearly vary based on the specifics of the case and on the considered
mission scenario. Hence, it becomes evident that identifying specific values universally applicable is
not feasible.
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Finally, the settings options used for the optimisation process need to be defined. These are
depicted in Tab. 6.6, which reports the values employed for the conducted analyses. The following
notation is used:

l - number of available processors, i.e., number of simultaneous function evaluations

acc - final accuracy for the optimisation

accQP - tolerance for the QP solver

stpmin - minimum step-length value

nmax
fun - maximum number of function calls during the line search

nmax
iter - maximum number of outer iterations for the NLPQLP code

nmax
exc - maximum number of executions (NLPQLP routine calls) during the optimisation

nmax
analyt - maximum number of iterations for the analytical method

l acc accQP stpmin nmax
fun nmax

iter nmax
exc nmax

analyt

1 10´5 10´9 10´10 50 30 8 50

Table 6.6: Optimisation process configuration specifics

It is worth noting that one iteration corresponds to one formulation and solution of the quadratic
programming sub-problem, while one execution indicates one call of the NLPQLP subroutine itself.
More specifically, the iterations are directly performed within one call of the NLPQLP subroutine
internally.

The presentation of the solutions in the following paragraphs outlines and summarizes, in chrono-
logical order, the strategy employed for testing the optimiser and simulating the diverse scenarios
under analysis. This entails starting with extraction for continuous manoeuvres, followed by the
insertion and full relocation phases, all within the realm of electric propulsion. Subsequently, the
validation process extends the investigation to encompass these three phases in the context of chem-
ical propulsion, i.e., impulsive manoeuvres.
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6.1 Extraction with Continuous Manoeuvres

The optimisation of extraction manoeuvres for electric propelled satellites has been the first chrono-
logical step for the implementation of the NLPQLP code. Consequently, the extraction has been the
first phase to be simulated and tested on the corporate platform FocusSuite , to verify the Fortran
formulation of the physical problem and the correctness of the optimisation process.
The application of the optimiser for these manoeuvres served as the foundation for its entire im-
plementation and subsequent adjustments were mainly limited to adapt it for the single insertion
and full relocation cases. Notably, the extraction phase demanded the most time and effort, as
it necessitated a comprehensive integration of the SQP algorithm and the development of all the
associated Fortran modules illustrated in the previous Chapter.

Given the absence of orbital constraints related to longitude control during this phase, the
optimiser’s convergence is faster and easier to achieve compared to both single insertion and full
relocation scenarios. Additionally, this operation proves to be simpler and more straightforward to
simulate. In contrast, full relocation is a more intricate and complex process—comprising extraction
and insertion carried out sequentially—which inevitably demands a longer simulation time. As for
insertion, as one might infer, it is necessary to simulate an extraction phase beforehand, thereby
prolonging the analysis and reducing immediacy in its simulation.
In light of the above, due to the ease of testing extraction, a higher number of case studies for
this operation will be illustrated here, allowing also to present general concepts about relocation
manoeuvres and highlighting specific characteristics of the optimisation process. For sake of brevity,
the concepts explained in this Section will not be reiterated in the subsequent paragraphs.

In further detail, in this Paragraph, the optimal manoeuvre plan solutions for three defined
extractions will be reported. The relevant information regarding the initial orbital state and the
analysis interval is summarized in Tab. 6.7, while the selected targets are delineated in Tab. 6.8. It
is important to underline that these targets are required to be reached on the date representing the
end of the manoeuvre window.

Operation 1 Operation 2 Operation 3

Initial longitude - λ0 (deg) 148.0 45.6 148.0
Initial semi-major axis - a0 (km) 42164.7 42164.8 42164.7

Initial drift - D0 (deg/day) 0.024 0.0024 0.024
Initial eccentricity - e0 0.001 0.0001 0.001
Simulation start time 2024/06/02-00:00 2024/09/14-00:00 2024/06/02-00:00
Simulation end time 2024/06/06-00:00 2024/09/19-00:00 2024/06/08-00:00

Table 6.7: Analysed extraction operations, initial state
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Operation 1 Operation 2 Operation 3

Longitude target - λt (deg) - - -
Drift target - Dt (deg/day) 3.0 -3.0 5.0

Eccentricity target - et 0.0 0.0 0.0
Manoeuvre window start time 2024/06/03-00:00 2024/09/16-00:00 2024/06/03-00:00
Manoeuvre window end time 2024/06/05-00:00 2024/09/18-00:00 2024/06/07-00:00

Operation Type Extraction Extraction Extraction

Table 6.8: Analysed extraction operations, set targets

Before illustrating the results for these three precise operations, it is convenient to present the
orbital solution attained using the optimiser for a generic extraction to a drift orbit characterized
by D “ 3 deg/day and zero eccentricity. This general example allows for a better practical under-
standing of concepts related to the relocation process, specifically the exploitation of the drift orbit,
which have been described purely theoretically in previous chapters. However, for this introductory
case study, the specific details regarding the optimisation process itself will not be addressed.
Firstly, looking at Fig. 6.1-6.2 it is possible to appreciate the general evolution of the mean or-
bital elements, which may be considered representative for every generic extraction operation. More
specifically, in Fig. 6.1 one can observe the variation in the orbit drift longitude, achieved through
the planned manoeuvres. The time execution of the latter can be identified in the approximately
linear segments of the curve. Conversely, the mean drift remains practically constant in the periods
where no manoeuvres are performed. Thus the plot shows how the the target value is reached:
through several burns, in this case four, resulting in a gradual and step-wise change of D.
A drift orbit characterized by a positive drift rate, means that the satellite has a higher orbital
velocity than the Earth’s rotation, thereby allowing for increasing its longitude over time. Clearly,
such drift orbit is characterised by a lower semi-major axis than the GEO one, thus to achieve it
is necessary to reduce a, as evidenced by Fig. 6.2. As already stated in Chapter 2 a lower altitude
orbit results in a shorter orbital period and therefore a higher orbital velocity, thus in a positive
drift rate.
For this reason the semi-major axis evolution, depicted in this graphic follows a pattern analogous
but antithetical to the drift, which also confirms that the two elements convey the same orbital
information.
Regard the mean longitude this is simply the integral over time of the drift, thus, when the lat-
ter is nearly constant, the longitude increases linearly with a slope equal to the drift rate. This
characteristic is perfectly visible in Fig. 6.1, represented by the linear curve in the final stretch of
the graphic. Therefore, once the drift orbit, i.e. the drift target, is reached, the longitude tends
to increase linearly, allowing to change the geostationary satellite position with respect the Earth.
Hence, as discussed in Chapter 2, the satellite’s revolutions in the extraction orbit, which consists in
the drift phase, are leveraged to modify the longitude. Then, at the correct moment the spacecraft
will return to the geostationary orbit via insertion operation, but in a new operational longitude
compared to the beginning of the process. It is important to highlight that the mean longitude is
the unique orbital elements not directly changed by the manoeuvres. Conversely, as just explained
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its variations are obtained indirectly by exploiting the drift orbit characteristics.

Figure 6.1: Mean drift longitude (left) and mean longitude (right) evolution
during extraction

Figure 6.2: Mean semi-major axis (left) and mean eccentricity (right) evolution
during extraction
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Figure 6.3: Satellite’s trajectory during extraction

Figure 6.4: Mean semi-major axis evolution during extraction for different drift
targets
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The mean eccentricity variation is represented in Fig. 6.2, this element remains approximately
null during the entire extraction process. However, it is interesting to note how manoeuvres change
it: generally an even number of burns are performed, so that the variation caused by one manoeuvre
is counterbalanced by that of the next one. The entity and nature of the eccentricity modifications
generated by the tangential manoeuvres depend on in which spatial point during the orbit the latter
are executed. In any case, it can be stated that generally an higher number of manoeuvres results
in easier capacity in properly controlling this parameter. The Fig. 6.3, although may not be very
informative, provides an idea of the general trajectory followed by the satellite to reach the drift
orbit. The graphic does not accurately reflect the correct proportions; in fact, the difference between
the starting geostationary orbit and the extraction arrival orbit has been exaggerated for exposition
clarity.
However, it is possible to appreciate the modality with which the target orbit is reached, after
several prolonged orbits. In conclusion in Fig. 6.4 different extraction operations characterised by
distinct drift targets values are represented. In can be inferred that the curve pattern are similar,
and obviously, the higher the target drift to achieved, the more costly is the operation, resulting in
a greater number of manoeuvres or longer duration. This holds true whether the semi-major axis is
raised or lowered; the only difference is the sign of the thrust imparted by the thrusters, respectively
in East or West direction.
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6.1.1 Operation 1

This case study is particularly interesting because the analytical method is unable to find a solution
that meets the imposed constraints within 50 iterations, while the optimiser manages to achieve it.

The Tab. 6.9 displays information regarding the manoeuvre lists of the solutions obtained at the
end of both the analytical and numerical methods. It is worth noting that the analytical solution
shown in it serves as the initial guess for the NLPQLP solver, as reiterated several times in this
document. The table allows for an immediate comparison between the two solutions generated
by their respective methods, highlighting particularly that the total durations of the manoeuvres
undergo minimal variations between the two cases. This characteristic is generally valid when the
optimisation process is executed in the final iteration of the analytical method. In fact, in other
results that will be presented later in this Chapter, the same behavior can be noted, confirming this
observation.

The analytical method thus succeeds to find a solution that is sufficiently good in terms of the
overall duration of manoeuvres but fails to fulfill all the imposed constraints. In the specific, the
constraint on the target eccentricity of the arrival orbit is not satisfied at the end of the extraction.
As can be seen in Tab. 6.10, the error in reaching the corresponding target value exceeds the imposed
tolerance of 10´4.

The limitation of the analytical solution lies in attempting to control eccentricity by always
executing two pairs of manoeuvres, each pair consisting of two identical manoeuvres, as is evident
looking at Tab. 6.9. In contrast, the NLPQLP algorithm explores a broader range of possible
solutions during optimisation, identifying a manoeuvre plan capable of satisfying all constraints.
Specifically, the major flexibility of the algorithm allows for finding a a solution that better controls
eccentricity, thus respecting the corresponding constraint.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/03-03:34:37 2024/06/03-08:23:26 West 17329 -1.522
2024/06/03-13:41:40 2024/06/03-22:12:26 West 30647 -2.691
2024/06/04-03:30:41 2024/06/04-08:19:30 West 17329 -1.522
2024/06/04-13:37:44 2024/06/04-22:08:30 West 30647 -2.691

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/03-03:40:51 2024/06/03-08:32:04 West 17473 -1.534
2024/06/03-13:29:45 2024/06/03-21:59:12 West 30567 -2.684
2024/06/04-03:37:29 2024/06/04-08:27:10 West 17381 -1.526
2024/06/04-13:26:14 2024/06/04-21:55:01 West 30527 -2.681

Table 6.9: Operation 1, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical ´0.338 ¨ 10´7 N/A 0.224 ¨ 10´3

Numerical 0.881 ¨ 10´4 N/A 0.165 ¨ 10´4

Table 6.10: Operation 1, orbital targets errors at the end of the manoeuvre
period

Observing the start and end times of the manoeuvres, it is possible to appreciate how the
optimiser manages to temporally rearrange them, refining the solution provided by the analytical
method. As mentioned earlier, the total duration of the manoeuvres does not experience a significant
reduction, but a decrease of approximately 4 seconds is still achieved. Clearly, given the constrained
nature of the problem and its physical characteristics, as well as the limited two-day time window
for manoeuvres, it leads to the feasible solution space becoming highly restricted. In addition,
considering the good quality of the initial solution, it is easy to understand why variations in terms
of manoeuvres midpoints are on the order of tens of minutes and not higher.

It goes without saying that reducing the total duration of manoeuvres results in a proportional
decrease in the sum of their ∆V . As already observed, the delta-V is merely the product of accel-
eration by duration, and since the former is assumed to be constant, variations in duration directly
and proportionally impact ∆V .

In Fig. 6.5-6.6-6.7-6.8, the evolution of the orbital elements during the extraction operation
within the analyzed interval is depicted, aligning with overall trends observed in the illustrative case
seen previously. Eccentricity is displayed in a polar geometry graph, which offers a comprehensive
view by simultaneously presenting the variation of both x and y components of the vector e. The
effect of each manoeuvre on eccentricity is evident and all the burns are precisely timed to achieve
the target eccentricity by the end of the extraction process. Changes in other orbital elements
are represented using both mean and osculating elements; notably, the former provide a clearer
perspective on the orbit’s evolution, while the latter indicate instantaneous parameter values. All
the general orbit considerations stated at the beginning of the Paragraph, remain still valid.

These trends and Tab. 6.10, which summarizes the final errors encountered in reaching the orbital
targets, confirm the validity of the solution obtained at the end of the optimisation. Although the
reduction in manoeuvre times is very modest, the most interesting result is the NLPQLP code’s
ability to find a satisfactory solution able to meet the numerous imposed constraints.
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Figure 6.5: Operation 1, semi-major axis evolution

Figure 6.6: Operation 1, mean eccentricity vector evolution
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Figure 6.7: Operation 1, drift evolution

Figure 6.8: Operation 1, longitude evolution
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6.1.2 Operation 2

The extraction discussed in this subsection differs from the previous one in terms of the sign of the
target drift, i.e., the direction of manoeuvres performed —in the East direction—, and the presence
of the constraints related to eclipses. As a matter of fact, Operation 1 was executed in June, during
which no eclipses were accounted for. In contrast, for Operation 2, the manoeuvring window was
specifically selected in September to coincide with an eclipse period. In more detail, during the
analysis interval, the FocusSuite flight dynamics software computed five Sun eclipses by Earth.

Furthermore, it has been decided to present the results for this particular operation because,
in this instance, both the analytical method and the optimiser successfully found a solution that
satisfies the constraints. This allows for conducting two analyses: initially calling the optimiser at
the last iteration of the analytical method (Analysis 1), and then at the first iteration of the same
(Analysis 2).

6.1.2.1 Analysis 1

In this simulation, the analytical method gets a solution in three iterations, this solution is then
passed to the NLPQLP code, which performs two internal iterations to optimise it. The manoeuvre
solutions obtained from both methods are presented in Tab. 6.11. The evolution of the orbital
parameters differs from those of Operation 1 mainly in terms of the sign of the drift, resulting in an
increase of the semi-major axis through the manoeuvres.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/16-01:29:10 2024/09/16-08:32:02 East 25372 2.228
2024/09/16-13:43:37 2024/09/16-20:13:39 East 23402 2.055
2024/09/17-01:25:14 2024/09/17-08:28:06 East 25372 2.228
2024/09/17-13:39:41 2024/09/17-20:09:44 East 23402 2.055

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/16-01:29:19 2024/09/16-08:32:15 East 25376 2.228
2024/09/16-13:43:41 2024/09/16-20:13:42 East 23401 2.055
2024/09/17-01:25:28 2024/09/17-08:28:19 East 25372 2.228
2024/09/17-13:39:44 2024/09/17-20:09:41 East 23397 2.055

Table 6.11: Operation 2, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical 0.345 ¨ 10´5 N/A 0.429 ¨ 10´4

Numerical ´0.999 ¨ 10´4 N/A 0.447 ¨ 10´4

Table 6.12: Operation 2, analysis 1: orbital targets errors at the end of the
manoeuvre period

It can be observed by looking at Tab. 6.11 that the two lists of manoeuvres generated by the
analytical method and the optimiser are nearly identical. There is a slight difference in the start and
end times of the manoeuvres, and thus in the midpoints, but these discrepancies are very minimal, on
the order of a few seconds. Furthermore, as seen in the case analyzed in 6.1.1, calling the optimiser at
the end of the analytical method results in a reduction of only a few seconds in the overall duration
of the manoeuvres through the optimisation. The presence of such a pronounced similarity between
the analytical and numerical solutions could be explained by the existence of the constraints related
to the eclipses. These, combined with the orbital and operational constraints, further narrow down
the range of feasible solutions.
Moreover, given that the initial solution used as initial guess is very good —as was also the case in
Operation 1—, this is only slightly modified by the NLPQLP code.

Note that the eccentricity of the starting orbit for Operation 2 is an order of magnitude lower
than that of Operation 1, making it apparently easier for the analytical method to find a solution
that correctly controls the eccentricity. It is interesting to note that increasing the value of the initial
eccentricity to 0.001 results in more iterations—precisely 39—for the analytical method to reach a
solution, thus making the resolution process more difficult. This result also attests to the strong
dependency of the problem solution on the characteristics of the starting orbit, an aspect that will
be further investigated in the simulations of Operation 3.

6.1.2.2 Analysis 2

For this analysis, the manoeuvre list produced at the first iteration of the analytical method is directly
used to initiate the optimisation process, which achieves a proper solution after three iterations. It
must be noted that with this approach, the algorithm will receive a rough approximation of the
solution that may not fulfill several of the applied constraints. The main results of the analysis are
summarized in Tab. 6.13 and 6.14.

In contrast to the cases seen so far, as expected, there is a significant reduction in the overall
duration of manoeuvres of approximately 50 minutes. This substantial decrease is clearly explained
by the quality of the solution used as the initial guess, which is much worse compared to that of
Analysis 1. In this situation, the optimiser must modify and significantly improve the manoeuvre
plan. In all cases tested, calling the optimiser at the first iteration of the analytical method resulted
significant reductions of the manoeuvres duration, which is logically understandable. It must be
highlighted that the two different optimisation strategies followed in Analysis 1 and 2 lead to two
distinct final solutions for the same extraction operation. Specifically, in the case of Analysis 2, the
sum of the durations of the solution manoeuvres is imperceptibly greater —by about 0.2 seconds—.
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This is linked to the fact that, as mentioned in Chapter 4, the SQP algorithm, due to its intrinsic
characteristics, only ensures convergence towards local solutions and not global ones of a nonlinear
problem. Ultimately, this demonstrates how the method employed depends on the initial guess
provided: thus, by varying the starting point for the optimisation, different results are generally
achieved, even when considering the same case study.

For brevity, the evolution of the orbital parameters resulting from the optimal solution manoeu-
vres is reported only for the numerical result of Analysis 1. This decision is made due to the lack
of significant differences in trends between the two analyses, as they pertain to the same extraction
operation.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/16-01:15:05 2024/09/16-08:24:34 East 25769 2.263
2024/09/16-13:23:44 2024/09/16-20:11:59 East 24495 2.151
2024/09/17-01:11:09 2024/09/17-08:20:38 East 25769 2.263
2024/09/17-13:19:48 2024/09/17-20:08:03 East 24495 2.151

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/16-01:21:36 2024/09/16-08:18:44 East 25027 2.198
2024/09/16-13:30:01 2024/09/16-20:05:55 East 23754 2.086
2024/09/17-01:17:48 2024/09/17-08:14:46 East 25018 2.197
2024/09/17-13:26:03 2024/09/17-20:01:50 East 23746 2.085

Table 6.13: Operation 2, analysis 2: manoeuvres data

Solution D (deg/day) λ (deg) e

Analytical 0.916 ¨ 10´1 N/A 0.722 ¨ 10´4

Numerical ´0.999 ¨ 10´4 N/A 0.703 ¨ 10´4

Table 6.14: Operation 2, analysis 2: orbital targets errors at the end of the
manoeuvre period
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Figure 6.9: Operation 2, Analysis 1: semi-major axis evolution

Figure 6.10: Operation 2, Analysis 1: mean eccentricity vector evolution
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Figure 6.11: Operation 2, Analysis 1: drift evolution

Figure 6.12: Operation 2, Analysis 1: longitude evolution
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6.1.3 Operation 3

Similar to Operation 1, this investigated case study witnesses convergence of the optimiser but not of
the analytical method. Likewise, the solution reached by the analytical method after the maximum
number of iterations allowed is not acceptable in terms of eccentricity. However, as discussed in
subsection 6.1.1, through the optimisation process executed at the end of the traditional method, it
is possible to obtain a list of manoeuvres that solve the constrained problem and thus also meet the
eccentricity target.

In any case, it is useful to present this simulation, as the selected value for the drift target is
notably high. This allows for the verification of the optimiser’s correct functioning, even in situations
where a high number of manoeuvres is required to execute the extraction.
In more detail, this analysis demonstrates the capability of the NLPQLP algorithm to manage
problems characterized by numerous solution variables. Specifically, in the case under consideration,
it adeptly handles 18 solution variables, achieving a solution in just two iterations.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/03-02:14:46 2024/06/03-05:43:55 West 12549 -1.102
2024/06/03-09:08:02 2024/06/03-14:48:02 West 20399 -1.791
2024/06/03-17:06:44 2024/06/03-22:46:43 West 20399 -1.791
2024/06/04-02:10:51 2024/06/04-05:39:59 West 12549 -1.102
2024/06/04-09:04:06 2024/06/04-14:44:06 West 20399 -1.791
2024/06/04-17:02:48 2024/06/04-22:42:47 West 20399 -1.791
2024/06/05-02:06:55 2024/06/05-05:36:03 West 12549 -1.102
2024/06/05-09:00:11 2024/06/05-14:40:10 West 20399 -1.791
2024/06/05-16:58:52 2024/06/05-22:38:51 West 20399 -1.791

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/03-01:08:04 2024/06/03-05:51:36 West 17012 -1.494
2024/06/03-08:27:27 2024/06/03-15:02:37 West 23710 -2.082
2024/06/03-16:56:03 2024/06/03-23:09:39 West 22415 -1.968
2024/06/04-01:36:15 2024/06/04-05:10:37 West 12862 -1.130
2024/06/04-09:10:18 2024/06/04-14:45:28 West 20110 -1.766
2024/06/04-17:15:52 2024/06/04-22:34:39 West 19127 -1.680
2024/06/05-01:57:15 2024/06/05-04:44:36 West 10041 -0.882
2024/06/05-09:38:55 2024/06/05-14:33:53 West 17698 -1.554
2024/06/05-17:26:03 2024/06/05-22:10:22 West 17060 -1.498

Table 6.15: Operation 3, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical 0.120 ¨ 10´6 N/A 0.261 ¨ 10´3

Numerical 0.952 ¨ 10´4 N/A 0.454 ¨ 10´4

Table 6.16: Operation 3, orbital targets error summary

In the graphs and tables provided, it is possible to appreciate the increase in the number of burns
compared to the two operations previously illustrated. It is obvious that the higher the absolute
value of the target drift, the more expensive the extraction operation becomes in terms of propulsion.
Consequently, due to the restriction on the maximum duration of manoeuvres, it is generally true
that increasing the drift target typically results in a rise in the number of solution manoeuvres. It
is important to clarify that the choice of a 5 deg/day drift was made for illustrative purposes. Such
a high value is rarely used in relocation operations, being closer in module to the values used for
de-orbiting operations. This case study serves to demonstrate additional insights into the impact
of the starting orbit’s eccentricity on the solution process. For clarity, it is designated as Operation
3b, an extraction that replicates Operation 3 but begins from a geostationary orbit with e “ 0.0001.
Despite the reduction in initial eccentricity, contrary to what was observed in 6.1.2.1, the analytical
method still fails to control e. This underscores the complexity of the analyzed physical problem,
making it challenging to draw general conclusions. As expected, altering the initial orbit leads to a
different solution for the analytical method, affecting the optimiser’s convergence toward a distinct
solution compared to Operation 3.

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/03-00:06:17 2024/06/03-06:54:42 West 24505 -2.152
2024/06/03-08:14:15 2024/06/03-15:06:18 West 24723 -2.171
2024/06/03-16:50:59 2024/06/03-22:29:38 West 20319 -1.784
2024/06/04-00:47:42 2024/06/04-05:46:25 West 17923 -1.574
2024/06/04-09:24:30 2024/06/04-14:34:58 West 18628 -1.636
2024/06/04-17:26:09 2024/06/04-21:30:38 West 14670 -1.289
2024/06/05-01:28:05 2024/06/05-05:11:19 West 13394 -1.176
2024/06/05-10:10:39 2024/06/05-14:14:40 West 14642 -1.286
2024/06/05-17:46:12 2024/06/05-20:53:29 West 11237 -0.987

Table 6.17: Operation 3b, manoeuvres data

D (deg/day) λ (deg) e

0.992 ¨ 10´4 N/A 0.393 ¨ 10´4

Table 6.18: Operation 3b, orbital targets error summary
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Figure 6.13: Operation 3, semi-major axis evolution

Figure 6.14: Operation 3, mean eccentricity vector evolution
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Figure 6.15: Operation 3, drift evolution

Figure 6.16: Operation 3, longitude evolution
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6.2 Insertion with Continuous Manoeuvres

The insertion phase represents somewhat of a dual counterpart to extraction, as during this opera-
tion, the satellite, after being removed from the reference geostationary orbit, is reintroduced into it.
From a physical standpoint, insertion can be seen like performing extraction in reverse. Therefore,
many of the general considerations made in Paragraph 6.1 regarding manoeuvres and the evolution
of orbital parameters still apply. Clearly, in this case, the drift target will be close to zero, as the
destination orbit is the GEO one.

The main distinguishing feature for the insertion lies in the addition of the constraint on control-
ling longitude. As already mentioned, this orbital parameter is not directly modified by manoeuvres,
so it is necessary to time the insertion manoeuvres accurately to reach the GEO orbit with the re-
quired longitude after the drift phase.

The optimisation of the individual insertion does not provide insights beyond those discussed
in the previous paragraph. Additionally, in order to simulate this phase, as previously mentioned,
it is necessary to first execute the simulation of an extraction, making it cumbersome to conduct
numerous analyses. For these reasons, optimisation of the individual insertion has been tested only
a few times on the FocusSuite platform, solely to verify the correct formulation of the longitude
constraints, before investigating the full relocation. However, for consistency, the result of an inser-
tion operation is still presented in this Paragraph, allowing to demonstrate the correct functioning
of the optimiser even when employed for this single phase.

In more detail, an extraction to a drift orbit characterized by D “ ´3 deg/day, executed between
June 16, 2024, and June 17, 2024, is computed using the NLPQLP code after the analytical method.
The orbit reached after the extraction manoeuvres represents the starting point for the investigated
insertion operation. The key details about this initial orbit are outlined in Tab. 6.19. The orbital
targets are summarized in Tab. 6.20, from which it can be inferred that a longitude variation of
about 12 degrees is required. The definition of the manoeuvre interval must take into account also
the time demanded for the drift period, in which the satellite effectively changes its longitude.

Operation 4

Initial longitude - λ0 (deg) 132.28
Initial semi-major axis - a0 (km) 42401.6

Initial drift - D0 (deg/day) -3.0
Initial eccentricity - e0 0.0
Simulation start time 2024/06/18-00:00
Simulation end time 2024/06/28-00:00

Table 6.19: Analysed insertion operation, initial state
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Operation 4

Longitude target - λt (deg) 120.0
Drift target - Dt (deg/day) 0.0001

Eccentricity target - et 0.0
Manoeuvre window start time 2024/06/19-00:00
Manoeuvre window end time 2024/06/27-00:00

Operation Type Insertion

Table 6.20: Analysed insertion operation, set targets

The optimisation process is carried out at the end of the analytical method, which finds a
correct solution in 9 iterations. The main results about the manoeuvre lists obtained through the
two methods are depicted in Tab. 6.21. The trends of the orbital parameters in the reported
graphs and the information contained in Tab. 6.22 demonstrate that the solution achieved from the
optimisation is globally correct and complies with all the imposed orbital constraints.
The results in terms of reduction in manoeuvre duration and variation of manoeuvre midpoints align
with those observed for the extraction case. Specifically, as already seen in the analyses presented
in Paragraph 6.1, optimisation only marginally improves the solution produced by the traditional
method.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/21-05:20:04 2024/06/21-12:18:17 West 25092 -2.204
2024/06/21-17:28:55 2024/06/22-00:05:30 West 23795 -2.090
2024/06/22-05:16:09 2024/06/22-12:14:21 West 25092 -2.204
2024/06/22-17:24:59 2024/06/23-00:01:34 West 23795 -2.090

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/21-05:20:03 2024/06/21-12:18:18 West 25095 -2.204
2024/06/21-17:28:46 2024/06/22-00:05:22 West 23797 -2.090
2024/06/22-05:16:08 2024/06/22-12:14:17 West 25089 -2.203
2024/06/22-17:24:51 2024/06/23-00:01:21 West 23790 -2.089

Table 6.21: Operation 4, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical ´0.577 ¨ 10´7 0.186 ¨ 10´4 0.676 ¨ 10´4

Numerical 0.999 ¨ 10´4 0.994 ¨ 10´4 0.662 ¨ 10´4

Table 6.22: Operation 4, orbital targets errors at the end of the manoeuvre
period

This scenario has been included for completeness however, instead of separately optimising the
extraction and insertion phases, it is more logical to employ the analytical method to immediately
compute the solution for the entire relocation operation and then directly optimise the generated
manoeuvres.
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Figure 6.17: Operation 4, semi-major axis evolution

Figure 6.18: Operation 4, mean eccentricity vector evolution
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Figure 6.19: Operation 4, drift evolution

Figure 6.20: Operation 4, longitude evolution
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6.3 Full Relocation with Continuous Manoeuvres

Given that the primary objective of this work was to optimise East-West manoeuvres for relocation
operations, it is significant to present the results achieved from implementing the NLPQLP algo-
rithm for the optimisation of the entire relocation process.
Many of the concepts and considerations highlighted in the preceding paragraphs for the single
insertion and extraction phases can naturally extend to the full relocation scenario, as it involves
both extraction and insertion performed sequentially. Specifically, the aspects observed regarding
manoeuvres executed in the two individual phases remain still valid when considering the entire
relocation. Furthermore, the results emphasized in the previous case studies concerning the optimi-
sation process and its implementation and characteristics are applicable to the analyses presented
here. Implementing the NLPQLP subroutine has necessitated minor adjustments in the code com-
pared to the individual phases, as the analytical method’s approach to computing a solution for
them differs slightly from the algorithm used to calculate the full relocation.
It is important to note that the examples provided for the optimisation of extraction manoeuvres
are representative instances of the general optimiser implementation, offering a comprehensive un-
derstanding of almost all its key features. Hence, the considerations outlined in Paragraph 6.1 will
not be reiterated here, and only the peculiarities of the specific case studies will be emphasized.

Two distinct operations have been simulated, and the main information about them is summa-
rized in Tab. 6.23. Each operation requires a longitudinal shift of approximately 30 degrees, which
is accomplished in both of them by utilizing a drift orbit characterized by D “ ´3 deg/day.
The manoeuvre windows vary between the two cases: the first one takes place during an eclipse
period, specifically in September, while the other operation occurs in December when no eclipses
take place. In this manner two distinct situations are analysed, with Operation 5 characterized by
more restrictions due to the presence of constraints related to the separation from eclipses.

Operation 5 Operation 6

Initial longitude - λ0 (deg) 48.55 328.72
Initial semi-major axis - a0 (km) 42164.7 42164.7

Initial drift - D0 (deg/day) 0.016 0.023
Initial eccentricity - e0 0.0001 0.0001
Simulation start time 2024/09/11-00:00:00 2024/12/01-00:00:00
Simulation end time 2024/09/26-00:00:00 2024/12/16-00:00:00

Manoeuvre window start time 2024/09/12-00:00 2024/12/02-00:00:00
Manoeuvre window end time 2024/09/25-00:00 2024/12/15-00:00:00

Operation Type Full Relocation Full Relocation

Table 6.23: Analysed relocation operations, initial state and general overview
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Note that the start and end times for the manoeuvre window outlined in Tab. 6.23 apply to the
entire relocation process, encompassing both extraction and insertion phases. Finally, the orbital
targets for both extraction and insertion must be defined, these are shown in Tab. 6.23 and 6.24.

Operation 5, 6

Longitude target - λt (deg) -
Drift target - Dt (deg/day) -3

Eccentricity target - et 0.0

Table 6.24: Analysed relocation operations, extraction orbit targets

Operation 5 Operation 6

Longitude target - λt (deg) 18.0 300.0
Drift target - Dt (deg/day) 0.0001 0.0001

Eccentricity target - et 0.0 0.0

Table 6.25: Analysed relocation operations, insertion orbit targets
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6.3.1 Operation 5

The case study is notable because the analytical method fails to find a solution, particularly strug-
gling with respecting the constraint related to eccentricity during the insertion while avoiding the
overlap between manoeuvres and eclipses. In particular reached the maximum number of iterations,
one of the manoeuvre violates the eclipse constraints, overlapping with an umbra period. Addi-
tionally, the insertion eccentricity target is not achieved with the required accuracy. Utilizing the
optimiser after the traditional method it is possible to correct this initial and not acceptable solution,
generating a list of manoeuvres that satisfy all constraints and thus solve the nonlinear constrained
problem. The particulars of results just commented are presented in Tab. 6.26 and 6.27-6.28.

As evidenced in previous case studies, applying optimisation at the conclusion of the analytical
method only yields marginal improvements in manoeuvre solutions, reducing their duration by a
few seconds (approximately 10 s in this specific case). However, the most notable outcome of this
simulation lies in the optimiser’s ability to address highly complex problems. In fact, this operation
was specifically chosen as it represents one of the most challenging scenarios that can be simulated
on the corporate platform (for the formulated problem in Fortran).

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/12-01:20:15 2024/09/12-08:08:23 East 24488 2.150
2024/09/12-13:18:17 2024/09/12-20:06:25 East 24488 2.150
2024/09/13-01:16:19 2024/09/13-08:04:27 East 24488 2.150
2024/09/13-13:14:21 2024/09/13-20:02:29 East 24488 2.150
2024/09/22-03:15:56 2024/09/22-09:21:27 West 21930 -1.926
2024/09/22-14:36:34 2024/09/22-21:56:53 West 26419 -2.320
2024/09/23-03:12:01 2024/09/23-09:17:31 West 21930 -1.926
2024/09/23-14:32:38 2024/09/23-21:52:57 West 26419 -2.320

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/09/12-01:10:24 2024/09/12-08:07:18 East 25014 2.197
2024/09/12-13:27:15 2024/09/12-20:06:29 East 23954 2.104
2024/09/13-01:06:53 2024/09/13-08:03:48 East 25014 2.197
2024/09/13-13:23:21 2024/09/13-20:02:46 East 23966 2.105
2024/09/22-04:12:34 2024/09/22-08:39:41 West 16027 -1.407
2024/09/22-16:16:19 2024/09/22-21:55:12 West 20333 -1.786
2024/09/23-02:20:09 2024/09/23-10:28:19 West 29290 -2.572
2024/09/23-13:21:54 2024/09/23-21:59:17 West 31043 -2.726

Table 6.26: Operation 5, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical 0.105 ¨ 10´6 N/A N/A
Numerical ´0.956 ¨ 10´4 N/A N/A

Table 6.27: Operation 5, orbital targets errors at the end of the extraction
manoeuvres

Solution D (deg/day) λ (deg) e

Analytical ´0.122 ¨ 10´4 -0.371 0.125 ¨ 10´3

Numerical 0.100 ¨ 10´3 ´0.986 ¨ 10´4 0.944 ¨ 10´4

Table 6.28: Operation 5, orbital targets errors at the end of the insertion ma-
noeuvres

Given the presence of numerous operational and orbital constraints affecting both insertion and
extraction phases, alongside additional limitations imposed by eclipses, finding a solution becomes
exceptionally challenging. Moreover, the low performance of electric thrusters necessitates prolonged
continuous manoeuvres, further complicating the problem. Nevertheless, the successful resolution
and optimisation without encountering errors by the code demonstrate its effectiveness in addressing
even the most arduous problems characterized by a significantly restricted field of feasible solutions.

Similar situations, where the optimiser successfully obtains a solution while the analytical method
fails to converge, have been encountered in various tests involving full relocation operations during
eclipse periods. This observation underscores the intricacy of the problem and emphasizes the
analytical method’s difficulty in addressing such scenarios. Finally, this case study further validates
the NLPQLP algorithm’s capability to effectively manage scenarios with multiple constraints.

The subsequent graphs illustrate the evolution of orbital parameters throughout the optimal
relocation process. The graphs exhibit a symmetrical trend in the drift and semi-major axis, where
is possible the identification of the distinct phases that composed the process. Specifically, the initial
segment depicts the extraction phase, during which the desired drift target is attained by increasing
the orbit altitude. Subsequently, the drift phase is exploited, during which satellites stationed in
the new orbit undergo a reduction in longitude, as evidenced in the central portion of Fig. 6.24.
This figure showcases the evolution of longitude, ultimately reaching the target value specified by
requirements and then maintaining a constant value, a characteristic inherent to the geostationary
orbit, as discussed in Chapter 1.

The concluding segments of Fig. 6.21 and 6.23 depict the insertion phase, wherein the semi-
major axis, along with the drift, is adjusted to values typical of the geostationary orbit. Figure 6.22
illustrates the evolution of the eccentricity vector, demonstrating how this parameter is influenced
by the various manoeuvres executed. The reported trend attests to the accuracy of the solution
achieved by the optimiser, adhering to the orbital targets within the predetermined manoeuvre
window.
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Figure 6.21: Operation 5, semi-major axis evolution

Figure 6.22: Operation 5, mean eccentricity vector evolution
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Figure 6.23: Operation 5, drift evolution

Figure 6.24: Operation 5, longitude evolution
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6.3.2 Operation 6

This analysis is provided for completeness to demonstrate the functioning of the optimiser when
invoked during the initial iteration of the analytical algorithm for relocation scenarios. In this
particular case, as observed in other simulations presented, the eccentricity constraint is not met —
in the specific for the insertion manoeuvres of the relocation— after reaching the preset maximum
number of iterations of the traditional method. Therefore, the optimiser is utilized to compute a
solution, and, as said, it is directly called during the first iteration. The solution achieved by the
optimiser, along with the initial guess provided by the analytical method, are presented in Tab.
6.29.

Examining Tab. 6.30, which displays the errors in achieving the orbital targets by the aforemen-
tioned solutions, it is evident that the manoeuvre generated by the analytical method represents
a very poor approximation of the correct solution. Conversely, the NLPQLP code employs 3 and
2 iterations, respectively, to optimise the extraction and insertion manoeuvres respecting all the
constraints. As expected, the reduction in manoeuvre duration is consistent.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/12/02-02:36:01 2024/12/02-09:22:01 East 24359 2.139
2024/12/02-14:34:03 2024/12/02-21:20:03 East 24359 2.139
2024/12/03-02:32:05 2024/12/03-09:18:05 East 24359 2.139
2024/12/03-14:30:07 2024/12/03-21:16:07 East 24359 2.139
2024/12/11-23:30:22 2024/12/12-06:15:36 West 24314 -2.135
2024/12/12-11:15:60 2024/12/12-18:26:02 West 25803 -2.266
2024/12/12-23:26:26 2024/12/13-06:11:40 West 24314 -2.135
2024/12/13-11:12:04 2024/12/13-18:22:06 West 25803 -2.266

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/12/02-02:25:00 2024/12/02-09:20:53 East 24953 2.191
2024/12/02-14:43:00 2024/12/02-21:22:36 East 23976 2.106
2024/12/03-02:21:26 2024/12/03-09:17:22 East 24956 2.192
2024/12/03-14:38:31 2024/12/03-21:18:01 East 23970 2.105
2024/12/11-20:04:08 2024/12/12-05:57:14 West 35586 3.125
2024/12/12-08:28:25 2024/12/12-18:09:32 West 34867 3.062
2024/12/12-22:54:28 2024/12/13-02:47:59 West 14012 1.230
2024/12/13-11:28:16 2024/12/13-15:08:34 West 13218 1.161

Table 6.29: Operation 6, manoeuvres data
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Solution D (deg/day) λ (deg) e

Analytical ´0.918 ¨ 10´1 N/A N/A
Numerical ´0.949 ¨ 10´4 N/A N/A

Table 6.30: Operation 6, orbital targets errors at the end of the extraction
manoeuvres

Solution D (deg/day) λ (deg) e

Analytical ´0.918 ¨ 10´1 0.576 0.218 ¨ 10´3

Numerical 0.100 ¨ 10´3 0.997 ¨ 10´4 0.448 ¨ 10´4

Table 6.31: Operation 6, orbital targets errors at the end of the insertion ma-
noeuvres

For the sake of brevity, the evolutions of the orbital parameters determined by the manoeuvre
solutions generated by the optimiser are not reported. The trends are globally similar to the ones
presented for Operation 5, considering also that the extraction orbit is practically the same. There-
fore, they do not offer insights for further significant considerations and for the analysis results, the
tables mentioned above are sufficient.
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6.4 Impulsive Manoeuvres

The primary focus of this thesis was on satellites equipped with electric thrusters, thus on the op-
timisation of continuous manoeuvres. However, upon completing the application of the NLPQLP
algorithm for continuous manoeuvres, it was decided to extend its implementation to include impul-
sive manoeuvres. This extension aimed to validate the work conducted and explore the possibility
of using the optimiser for a broader range of problems. In particular, this strategy enabled the
utilization of the SQP method for optimising the relocation operations of satellites equipped with
chemical propulsors. The necessary modifications have been explained in Chapter 5, primarily in-
volving problem formulation, particularly the definition of the solution vector. The simulations
conducted yielded satisfactory results, confirming the functionality of the optimisation process for
impulsive manoeuvres. The overall functioning of the optimiser and the general aspects of the results
generated by it are similar to those presented for the continuous case. However, it is important to
reiterate that the analysis of impulsive manoeuvre cases was not the primary objective of this work.
Therefore, their study and testing were not conducted in detail, resulting in only a few simulations
being carried out. The most representative results obtained are reported here solely for completeness.
Specifically, three operations were considered: single extraction, single insertion, and full relocation.
This choice was made for consistency to demonstrate the functionality of the optimiser for the three
possible processes related to satellite relocation that can be tested on the company’s platform. The
summarized results are briefly provided in the following paragraphs.

It is noteworthy that the presented solutions for the insertion phase, whether carried out indi-
vidually or as part of the relocation process, do not consist solely of manoeuvres in a single direction
(east or west), as one might expect. Instead, manoeuvres in both east and west directions can be
observed, generated by the specific algorithm constituting the analytical solution. Upon receiving
the list of generated manoeuvres, the optimiser maintains not only the number of manoeuvres but
also the direction of their acceleration. Therefore, the list of optimised manoeuvres will align with
the direction of the analytical solution. This is a clear limitation of the implemented optimiser
that restricts its ability to explore a wider range of solutions. The obtained results indicate that,
as expected given the nature of impulsive manoeuvres characterized by brief durations, compliance
with constraints is much easier. It is evident that the very limited duration of impulsive manoeuvres
facilitates the fulfillment of several of the constraints defined in this work, with separation from
eclipses being just one illustrative example. Consequently, the traditional method readily finds a
solution in many cases, and this solution is often optimal, obviating the need for iterations of the
NLPQLP algorithm.

In the forthcoming graphs illustrating the evolution of orbital parameters for the distinct opera-
tions, it can be observed that there are differences compared to those obtained through continuous
manoeuvres. Although the global trends are similar, the discrete nature of the variations induced by
impulsive manoeuvres is notable. This characteristic is particularly evident in the graphs concerning
mean eccentricity and in the figures related to semi-major axis and drift. Here, changes occur in-
stantaneously, resulting in a distinctive and pronounced "stepped" pattern. This stands in contrast
to the continuous case, where long-duration manoeuvres led to a gradual variation of parameters,
resulting in inclined segments in the graphs of mean drift and semi-major axis, rather than distinctly
vertical ones.
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6.4.1 Extraction: Operation 7

In this study case, both the analytical method and the optimiser found a solution. The analysis was
initially conducted by optimising the manoeuvre list obtained at the end of the analytical method.
However, since the same solution was returned by the NLPQLP code after just one iteration, it
was decided to repeat the simulation by performing the optimisation at the first iteration. The
main information about the operation is summarized in Tab. 6.32 and 6.33, while the results are
illustrated in Tab. 6.34 and 6.35. Specifically, the solution from the analytical method, reached
after 4 iterations, and the solution generated by the optimiser when called at the first iteration are
reported. Therefore, for brevity, the initial guess provided to the optimiser is not included here.

Operation 7

Initial longitude - λ0 (deg) 24.9
Initial semi-major axis - a0 (km) 42164.7

Initial drift - D0 (deg/day) 0.026
Initial eccentricity - e0 0.0001
Simulation start time 2024/10/05-00:00
Simulation end time 2024/10/10-00:00

Table 6.32: Analysed extraction operation, initial state

Operation 7

Longitude target - λt (deg) -
Drift target - Dt (deg/day) -2.5

Eccentricity target - et 0.0
Manoeuvre window start time 2024/10/06-00:00
Manoeuvre window end time 2024/10/09-00:00

Operation Type Extraction

Table 6.33: Analysed extraction operation, set targets

It is interesting to note that the solution reached by the optimiser differs from that of the ana-
lytical method; however, the sum of the delta-V, which represents the objective of the optimisation
problem, remains the same. Therefore, the optimiser and the analytical method converge to two
different solutions, but both are similarly optimal in terms of total delta-V. This can explain why
the optimiser does not need to further improve the solution generated by the analytical method
and simply returns it. Consequently, both solutions represent a minimal point of the cost function
and thus an optimal solution to the optimisation problem. This result demonstrates that, due to
the nature of impulsive manoeuvres, which easily fulfill the constraints, a seemingly wider range of
feasible solutions is available for the physical problem. This allows it to yield two different lists of
manoeuvres, both minimizing the delta-V.
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Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/10/06-02:30:18 2024/10/06-02:30:19 East 1 3.725
2024/10/06-14:28:20 2024/10/06-14:28:21 East 1 3.479

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/10/06-05:49:20 2024/10/06-05:49:21 East 1 3.725
2024/10/06-17:59:01 2024/10/06-17:59:02 East 1 3.479

Table 6.34: Operation 7, manoeuvres data

Solution D (deg/day) λ (deg) e

Analytical 0.231 ¨ 10´6 N/A 0.104 ¨ 10´6

Numerical 0.999 ¨ 10´4 N/A 0.881 ¨ 10´4

Table 6.35: Operation 7, orbital targets errors at the end of the manoeuvre
period
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Figure 6.25: Operation 7, semi-major axis evolution

Figure 6.26: Operation 7, mean eccentricity vector evolution
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Figure 6.27: Operation 7, drift evolution

Figure 6.28: Operation 7, longitude evolution
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6.4.2 Insertion: Operation 8

The results for this operation do not offer particularly insightful findings for analysis. They are
mainly presented to showcase the functionality of the NLPQLP code in optimising the single insertion
phase performed via impulsive manoeuvres. The insertion operation is practically equal to Operation
4, with the only difference being that it is computed through impulsive manoeuvres. Therefore, for
details regarding the operation features, it is possible to refer to Tab. 6.19 and 6.20. The NLPQLP
code is invoked at the end of the analytical algorithm, and both methods converge. A reduction of
approximately 0.043 m/s in delta-V is achieved through optimisation. Interestingly, the operation
conducted via impulsive manoeuvres proves to be more propulsively expensive than that performed
through continuous manoeuvres. This can be attributed to the peculiar method employed by the
analytical algorithm, which generates manoeuvres in two different directions.

Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/22-15:43:24 2024/06/22-15:43:25 West 1 -3.711
2024/06/22-15:43:25 2024/06/22-15:43:26 West 1 -3.711
2024/06/22-15:43:26 2024/06/22-15:43:27 West 1 -3.711
2024/06/23-03:41:27 2024/06/23-03:41:28 West 1 -4.307
2024/06/23-15:39:29 2024/06/23-15:39:30 East 1 3.427
2024/06/23-15:39:30 2024/06/23-15:39:31 East 1 3.427

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/22-16:00:13 2024/06/22-16:00:14 West 1 -3.700
2024/06/22-17:04:44 2024/06/22-17:04:45 West 1 -3.700
2024/06/22-19:45:27 2024/06/22-19:45:28 West 1 -3.700
2024/06/23-03:35:00 2024/06/23-03:35:01 West 1 -4.319
2024/06/23-18:01:07 2024/06/23-18:01:08 East 1 3.416
2024/06/23-19:26:58 2024/06/23-19:26:59 East 1 3.416

Table 6.36: Operation 8, manoeuvres data

Solution D (deg/day) λ (deg) e

Analytical ´0.725 ¨ 10´5 ´0.696 ¨ 10´4 0.833 ¨ 10´4

Numerical 0.999 ¨ 10´4 0.276 ¨ 10´4 0.881 ¨ 10´4

Table 6.37: Operation 8, orbital targets errors at the end of the manoeuvre
period
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Figure 6.29: Operation 8, semi-major axis evolution

Figure 6.30: Operation 8, mean eccentricity vector evolution
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Figure 6.31: Operation 8, drift evolution

Figure 6.32: Operation 8, longitude evolution
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6.4.3 Full Relocation: Operation 9

The simulation is conducted by invoking the NLPQLP code at the conclusion of the analytical
method. The details and orbital targets of the full relocation operation analyzed are outlined in
Tab. 6.38, 6.39, and 6.40.

Operation 9

Initial longitude - λ0 (deg) 139.13
Initial semi-major axis - a0 (km) 42164.8

Initial drift - D0 (deg/day) 0.003
Initial eccentricity - e0 0.0001
Simulation start time 2024/06/10-00:00:00
Simulation end time 2024/06/29-00:00:00

Manoeuvre window start time 2024/06/11-00:00
Manoeuvre window end time 2024/06/28-00:00

Operation Type Full Relocation

Table 6.38: Analysed relocation operation, initial state and general overview

Operation 9

Longitude target - λt (deg) -
Drift target - Dt (deg/day) -3

Eccentricity target - et 0.0

Table 6.39: Analysed relocation operation, extraction orbit targets

Operation 9

Longitude target - λt (deg) 118.0
Drift target - Dt (deg/day) 0.0

Eccentricity target - et 0.0

Table 6.40: Analysed relocation operation, insertion orbit targets

The most interesting aspect of the obtained results lies in achieving the same solution for the
extraction phase between the analytical and numerical methods, while a different one is attained for
the insertion phase. Specifically, as can be inferred by examining Tab. 6.41 and 6.42, the manoeuvres
constituting the extraction (the first two in the respective lists presented in Tab. 6.41) are identical
for both the analytical and optimised solutions. In fact, as observed in Operation 7, the optimiser
returns the same solution received as the initial guess. In contrast, for the insertion manoeuvres,
the NLPQLP algorithm undergoes 6 iterations to refine the input manoeuvre list and achieves a
reduction of 0.04 m/s in delta-V.
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Analytical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/12-05:56:21 2024/06/12-05:56:22 East 1.000 5.002
2024/06/12-17:54:23 2024/06/12-17:54:24 East 1.000 3.535
2024/06/18-13:49:48 2024/06/18-13:49:49 East 1.000 1.584
2024/06/19-01:47:50 2024/06/19-01:47:51 West 1.000 -4.173
2024/06/19-13:45:52 2024/06/19-13:45:53 West 1.000 -3.011
2024/06/19-13:45:53 2024/06/19-13:45:54 West 1.000 -3.011

Numerical Solution

Start date (UTC) End date (UTC) Dir. Duration (s) ∆V (m/s)

2024/06/12-05:56:21 2024/06/12-05:56:22 East 1.000 5.002
2024/06/12-17:54:23 2024/06/12-17:54:24 East 1.000 3.535
2024/06/18-17:31:29 2024/06/18-17:31:30 East 1.000 1.566
2024/06/19-01:49:37 2024/06/19-01:49:38 West 1.000 -4.122
2024/06/19-13:06:56 2024/06/19-13:06:57 West 1.000 -3.027
2024/06/19-16:13:38 2024/06/19-16:13:39 West 1.000 -3.027

Table 6.41: Operation 9, manoeuvres data

Solution D (deg/day) λ (deg) e

Analytical ´0.572 ¨ 10´10 N/A 0.118 ¨ 10´10

Numerical ´0.572 ¨ 10´10 N/A 0.118 ¨ 10´10

Table 6.42: Operation 9, orbital targets errors at the end of the extraction
manoeuvres

Solution D (deg/day) λ (deg) e

Analytical 0.516 ¨ 10´5 0.275 ¨ 10´4 0.312 ¨ 10´4

Numerical ´0.893 ¨ 10´5 ´0.994 ¨ 10´4 0.999 ¨ 10´4

Table 6.43: Operation 9, orbital targets errors at the end of the insertion ma-
noeuvres
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Figure 6.33: Operation 9, drift evolution

Figure 6.34: Operation 9, longitude evolution
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6.5 Final Assessment

It is finally possible to summarize the savings achieved through the optimisation process for the
various analyzed operations. Specifically, in Tab. 6.44, the obtained reductions in terms of manoeu-
vre duration for continuous manoeuvres and total ∆V for impulsive manoeuvres are illustrated.
Based on these values, it is also possible to estimate the propellant mass saved due to the ma-
noeuvre optimisation. This allows to observe the results of the optimisation process from a more
practical standpoint. In particular, to evaluate the propellant savings for impulsive manoeuvres,
the Tsiolkovsky equation has been utilized, while for continuous manoeuvres, the estimation has
been made by simply multiplying the propellant flow rate by the manoeuvre duration decrease. The
notation used in Tab. 6.44 is summarized in the following list:

• CSanalyt: convergence status of the analytical method for the operation under consideration.

• ds: manoeuvres duration saving due to optimisation. This applies only to operations performed
through continuous manoeuvres.

• ∆Vs: saving in terms of ∆V achieved through optimisation. This applies solely to operations
carried out through impulsive manoeuvres.

• ms
p: saving in propellant mass in grams due to optimisation.

Operation CSanalyt ds ∆Vs ms
p (g)

Op.1 Negative 4 sec - 0,2
Op.2 Positive 2 sec - 0,1
Op.2˚ Negative 50 min - 149,2
Op.3 Negative 6 sec - 0,3
Op.4 Positive 3 sec - 0,2
Op.5 Negative 9 sec - 0,5
Op.6˚ Negative 36 min - 106,6
Op.7˚ Positive - 0,228 m/s 3,0
Op.8 Positive - 0,043 m/s 0,6
Op.9 Positive - 0,037 m/s 0,5

Table 6.44: Overview of optimisation results for the investigated operations
(* denotes that the optimiser is invoked at the first iteration of the analytical method)

The reduction in total ∆V for the impulsive case is on the order of tenths of cm/s. Once
again, it can be observed that invoking the optimiser at the first iteration of the traditional method
results in a significant reduction in the problem’s cost function value: tens of minutes for continuous
manoeuvres and tens of cm/s for impulsive manoeuvres. Finally, manoeuvre optimisation generally
results in savings of several hundred milligrams in terms of propellant mass. While this decrease
may not be substantial, it remains a positive outcome, clearly making it advantageous to execute
manoeuvres planned through the optimisation process.
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Conclusion

The methodology and results concerning the implementation of an SQP method, applied by the
Fortran subroutine NLPQLP, for nonlinear constrained optimisation of relocation manoeuvres for
geostationary satellites, have been presented and discussed.

The thesis work was conducted at GMV, and the formulation and implementation of the optimi-
sation process were carried out within GMV’s Flight Dynamics Software, FocusSuite , specifically
in the frame of the corporate Fortran manoeuvre planning library for GEO satellites.

Simulations of various scenarios, crucial for verifying method functionality and obtaining the
results depicted in this document, were predominantly executed using GMV’s platform FocusSuite .

The achieved results are excellent, demonstrating the successful operation of the optimiser for
all manoeuvre phases associated with satellite relocation activity, conducted in different temporal
scenarios and considering distinct mission requirements. Notably, the produced code enables the
optimisation of single extraction and insertion phases, as well as entire full relocations, considering
both continuous and impulsive manoeuvres. The analysis and testing have primarily focused on a
real satellite constellation equipped with electric thrusters. However, the optimiser implementation
has also been extended to impulsive manoeuvres, enabling its utilization for satellites outfitted with
chemical thrusters. This decision further strengthened the implemented optimisation procedure of
the NLPQLP subroutine.

The performed tests underscore the significant potential of the SQP algorithm in handling con-
strained optimisation problems with numerous constraints, even in the presence of numerous solution
variables. The adaptability of the NLPQLP code enables adaptation and resolution of a wide range
of scenarios, facilitating the straightforward addition of new constraints.

The flexibility of the implementation allows for conducting the optimisation procedure either at
the end of the analytical method, which generates the initial guess for the NLPQLP routine, or at its
first iteration. In the former case, the optimiser simply refines the manoeuvre list received as input,
confirming the analytical method’s capability to discover a viable solution near the optimum. In the
latter case, the consistency of the improvements after the optimisation is significantly enhanced, as
it starts from a less precise and approximate solution. Clearly, the convergence of the method in
this situation turns out to be a little slower in some tests, as expected since the initial solution is
less accurate.

The optimiser turns out to be dependent, on the initial guess solution; this sensitivity must be
considered before the optimisation process. The analyses conducted have also emphasized that the
physical problem of GEO satellite relocation demonstrates a notable sensitivity to the initial orbital
conditions, resulting in variations in solutions when these are altered.
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The most significant and interesting result lies in the possibility of directly using the optimiser as
a solver for computing relocation manoeuvre plans fulfilling several constraints, given its capability
to efficiently resolve various complex problems highlighted by the various simulations investigated.
This is particularly significant, as in many cases, it has been observed that the analytical method
manages to identify a manoeuvre list, but it is not always able to satisfy the numerous and stringent
constraints that may be imposed by the relocation operation. This challenge is especially pronounced
when considering the low-thrust performance of the electric thruster and the presence of eclipses.

The implementation of the optimiser not only enhances and expands upon the functionality of
the analytical method but also surpasses its abilities. This is evident in its capacity to manage prob-
lems with numerous constraints, finding solutions across diverse situations, and generating feasible
manoeuvre plans even under challenging conditions. Additionally, the enhanced solver potentially
reduces the necessity for extensive operator input.

Possible future developments and refinements of the present work may include:

• Incorporating additional constraints, such as collinearity constraints between satellites, which,
due to lack of time, could not be included. Given the solver’s significant potential in solving
highly constrained problems, it would be worth exploring the possibility of adding new con-
straints previously unconsidered for the analytical method, given its lesser ability to find a
solution.

• Additionally, more extensive analysis and testing of impulsive manoeuvre cases are needed.
The optimiser has been tested only in a few simulations, yielding good results but not verifying
its performance in every possible mission scenario.

• Further enhancement of the optimiser’s implementation and its utilization as a solver warrants
consideration. Specifically, the application of specific changes should be studied to enable
dynamic variation in the number and direction of manoeuvres during the optimisation process.
This adaptation is likely to enhance solution quality and lead to better outcomes, thereby
augmenting the solver capabilities of the optimiser. By allowing it to explore a broader range
of solutions during the optimisation problem-solving process, the potential for finding optimal
solutions across various scenarios can be significantly improved.

• Adjust the problem formulation to incorporate the option of executing manoeuvres with re-
duced thrust during eclipse periods, a strategy employed in certain cases for specific satellite
constellations.

• Further tests and validation are necessary to ensure the functioning of the optimiser in all
possible situations. This comprehensive approach will help verify the robustness and reliability
of the optimiser across diverse scenarios, thereby instilling confidence in its performance and
effectiveness.
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Appendix A: FocusSuite®

The FocusSuite platform, as referenced in [10], stands as GMV’s innovative Flight Dynamics so-
lution tailored for satellite operations. It comprises several Flight Dynamics tools and products
designed to assist satellite operators in diverse tasks including satellite control, space debris con-
junction assessment, and mission analysis. Through this software, GMV endeavors to meet the
varied requirements of its wide clientele, striving to provide user-friendly and adaptable products
compatible with different platforms. Its primary features encompass:

• Comprehensive mission operations analysis across all mission phases (launch and early orbit
phase operations, on-orbit operations, etc.) and orbital regimes (LEO, MEO, GEO, interplan-
etary missions, etc.)

• Space surveillance and tracking capabilities to facilitate collision avoidance services

• Advanced configurability and intuitive user interfaces

• Elevated reliability and security

It furnishes end-to-end solutions for satellite operations throughout their life-cycle, drawing from
a library of proven missions, alongside enabling automation and planning for these operations made
easier by the presence of scripts that can be customized for specific needs. The software also offers
an open framework aimed at facilitating the development and evolution of GMV’s products.

With its open and extensible nature, FocusSuite ensures easy interoperability with third-party
services, scalability, and flexibility. Its architecture is compatible with both public and private
clouds, and it interfaces seamlessly with several Control Centers.

Some of the functionalities allowed by the platform’s tools include date and state vector conver-
sions between different reference frames and formats, ephemeris retrieval for the Sun and Moon, orbit
propagation and determination, and others. Among the various products included in FocusSuite ,
it is worth mentioning at least FocusGEO , an integrated application that offers complete life cycle
support for geostationary satellites, encompassing a variety of missions within its collection.

In summary, the FocusSuite software is exploited by GMV to provide for all operational
needs, covering orbit determination and propagation, manoeuvre planning and optimisation, station-
keeping, and more with platform portability. These results are achieved through the utilization of
existing software, a database-driven approach, and graphical interactive reporting functions, ensur-
ing mission success and efficiency. Other specified goals of the platform and further details are
illustrated on GMV’s web page, as indicated in [10].

123



124



Bibliography

[1] Thompson R., Satellites, Geo-stationary orbits and Solar Eclipses, 2019.

[2] Soop E.M., Handbook of Geostationary Orbits, 1994. Vol. 3 of Space Technology Library,
Springer Science & Business Media, illustrated edition.

[3] De Santi S., Missions towards NEAs with Departure from Lagrangian Points L4 and L5, 2020.

[4] Montenbruck O., Gill E., Satellites Orbit, 2000. Springer-Verlag Berlin Heidelberg.

[5] Blanco V.M., McCuskey S.W., Basic physics of the solar system, 1961. Addison-Wesley series
in the engineering sciences, Addison-Wesley Publishing Company.

[6] Powell M.J.D., The convergence of variable metric methods for nonlinearly constrained opti-
mization calculations, 1978. In: Nonlinear Programming 3, O.L. Mangasarian, R.R. Meyer,
S.M. Robinson eds., Academic Press.

[7] Schittkowski K., NLPQL: A Fortran subroutine solving constrained nonlinear programming
problems, 1985/86. Annals of Operations Research, Vol. 5, 485–500.

[8] Goldfarb D., Idnani A., A numerically stable method for solving strictly convex quadratic pro-
grams, 1983. Mathematical Programming, Vol. 27, 1–33.

[9] Schittkowski K., NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming
Algorithm with Distributed and Non-Monotone Line Search, July 2015. User’s Guide, Version
4.2.

[10] GMV, FocusSuite, 2024.
https://www.gmv.com/en/products/space/focussuite.

[11] H. M. Haranas I.I., Gauss planetary equations in a non-singular gravitational potential, 2010.

[12] Powell M.J.D., A fast algorithm for nonlinearly constrained optimization calculations, 1978. In:
Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics, Vol. 630, Springer.

[13] Di Pillo G., Metodi per la Soluzione di Problemi di Programmazione Nonlineare.

125

https://www.gmv.com/en/products/space/focussuite


[14] Stoer J., Foundations of recursive quadratic programming methods for solving nonlinear pro-
grams, 1985. In: Computational Mathematical Programming, K. Schittkowski, ed., NATO ASI
Series, Series F: Computer and Systems Sciences, Vol. 15, Springer.

[15] Thomas D., A Comparison of GEO Satellites Using Chemical and Electric Propulion, 2016.

[16] Rocket & Space Technology, Orbital Mechanics, 2024.
https://www.braeunig.us/space/orbmech.htm.

[17] Cornell University, Sequential quadratic programming , 2024.
https://optimization.cbe.cornell.edu/index.php?title=Sequential_quadratic_
programming.

[18] Softwareentwicklung Schittkowski GmbH, NLPQLP , 2024.
https://www.schittkowski.de/numericalsoftware_nlpqlp.php.

[19] Li L., Zhang J., Zhao S., Qi R., Li Y., Autonomous onboard estimation of mean orbital elements
for geostationary electric-propulsion satellites, 2019. In: Aerospace Science and Technology 94.

[20] Boggs P.T., Tolle J.W., Sequential Quadratic Programming, 1996. Acta Numerica, Vol. 4, 1-51.

[21] Nocedal J., Large Scale Unconstrained Optimization, 1996.

[22] Bonnans J.F., Gilbert J.C., Lemaréchal C.,Sagastizábal C.A., Numerical Optimization Theo-
retical and Practical Aspects, 2006.

[23] Battipede M., Introduction to Ground Tracks.

[24] GMV, Deployment of an SBAS system demonstration in Southern Africa, 2016.

[25] Soler T., Eisemann D.W., Determination of Look Angles To Geostationary Communication
Satellites, 2019.

[26] Kohn D., The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wire-
less, Real-Time Internet Access Worldwide, 2016.

[27] Wertz J.R., Larson W.J., Space mission analysis and design, 1999. In: Space Technology
Library, Springer Dordrecht.

[28] Nocedal J., Wright S.J., Numerical Optimization, 2006. Springer.

[29] ESA, Orbits, 2024.
https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Orbits.

[30] Hanson D., Peronto J., Hilderbrand D. , NOAA’s Eyes in the Sky – After Five Decades of
Weather Forecasting with Environmental Satellites, What Do Future Satellites Promise for Me-
teorologists and Society?, 2015.

126

https://www.braeunig.us/space/orbmech.htm
https://optimization.cbe.cornell.edu/index.php?title=Sequential_quadratic_programming
https://optimization.cbe.cornell.edu/index.php?title=Sequential_quadratic_programming
https://www.schittkowski.de/numericalsoftware_nlpqlp.php
https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Orbits


[31] Australian Government, BOM , 2024.
http://www.bom.gov.au/.

[32] The Planetary Society, Coverage of a geostationary satellite at Earth, 2024.
https://www.planetary.org/space-images/coverage-of-a-geostationary.

[33] SpaceRef, NOAA Satellites, Scientists Monitor Mt. St. Helens for Possible Eruption, 2024.
https://spaceref.com/press-release/noaa-satellites-scientists-monitor\
-mt-st-helens-for-possible-eruption/.

[34] NASA, GOCI , 2019.
https://oceancolor.gsfc.nasa.gov/data/goci/.

[35] Science On a Sphere, GOES-R: Today’s Satellite for Tomorrow’s Forecast , 2024.
https://sos.noaa.gov/catalog/datasets/goes-r-todays-satellite-for-tomorrows-\
forecast/.

[36] FAA, Satellite Navigation-WAA -How It Works, 2024.
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/
techops/navservices/gnss/waas/howitworks.

127

http://www.bom.gov.au/
https://www.planetary.org/space-images/coverage-of-a-geostationary
https://spaceref.com/press-release/noaa-satellites-scientists-monitor\ -mt-st-helens-for-possible-eruption/
https://spaceref.com/press-release/noaa-satellites-scientists-monitor\ -mt-st-helens-for-possible-eruption/
https://oceancolor.gsfc.nasa.gov/data/goci/
https://sos.noaa.gov/catalog/datasets/goes-r-todays-satellite-for-tomorrows-\ forecast/
https://sos.noaa.gov/catalog/datasets/goes-r-todays-satellite-for-tomorrows-\ forecast/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/howitworks
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/howitworks

	Introduction
	Geostationary Satellites
	Overview
	Eclipses
	Eclipse by Earth
	Eclipse by Moon

	Applications

	Implementation
	Manoeuvre Types
	Legal Aspects


	Orbital Mechanics
	Two-Body Problem
	Constants of Motion
	Trajectory Equation

	Orbital Elements
	Keplerian Elements
	Alternative parameters
	Orbital State Vectors

	Orbital Perturbations
	Non-spherical Earth Potential
	Sun and Moon influence
	Solar radiation pressure

	Geostationary Orbit
	Orbital Characteristics
	Mean Longitude Drift Rate
	Parameterization
	Inclination Vector
	Eccentricity Vector
	Mean Longitude

	Longitude Relocation


	Space Propulsion
	Space propulsion fundamentals
	Overview
	Significant Parameters

	Chemical propulsion
	Electric Propulsion
	Electrostatic Propulsion

	Orbital Manoeuvres
	Gauss-Planetary Equations
	Manoeuvres Thrusts for GEO Satellites


	SQP algorithm for constrained nonlinear optimisation
	Sequential Quadratic Programming
	Generalities
	SQP Algorithm
	Properties Overview

	NLPQLP Optmiser
	Numerical Method
	QL Subroutine

	Program Features
	 Performance Overview 


	Methodology
	Generalities
	Problem Formulation
	Constraints
	Orbital Constraints
	Operational Constraints
	Separation from Eclipses

	Objective Function
	Gradient Functions

	Formulation for Impulsive Manoeuvres
	Constraints
	Gradient and Objective Functions 
	Radial Cross-Coupling

	Implementation

	Results
	Extraction with Continuous Manoeuvres
	Operation 1
	Operation 2
	Analysis 1
	Analysis 2

	Operation 3

	Insertion with Continuous Manoeuvres
	Full Relocation with Continuous Manoeuvres
	Operation 5
	Operation 6

	Impulsive Manoeuvres
	Extraction: Operation 7
	Insertion: Operation 8
	Full Relocation: Operation 9

	Final Assessment

	Conclusion
	Appendix A: FocusSuite®

