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Abstract

Through research studies conducted over the years, it has been demonstrated that suction is
an active flow control (AFC) technique that is highly effective in delaying the transition from
laminar to turbulent flow.

This thesis focuses on utilizing a numerical framework to determine the optimal suction
configuration, intending to maximize the extension of the laminar region within a steady, incompressible,
and two-dimensional flat plate boundary layer.The computational approach involves integrating
the boundary layer equations using an internally developed code (BLES), with suction effects
introduced through the wall boundary condition. Validation is conducted by comparing BLES
computed velocity field with the Blasius and openFOAM solutions. Linear Stability theory is
used to asses the modal and local stability of the boundary layer flow. The Companion Matrix
Method is used to solve the Orr-Sommerfeld equation and obtain the spatial evolution of the
perturbation modes [5], while the eN method is employed for transition modeling [35].

In order to maximize the tranisition delay, an optimization of the flow control parameters
(suction strength and location) was carried out by means of the Bayesian optimization approach.
The effect of suction configuration is evaluated both versus the transition position and the
evolution of the skin friction coefficient over the flat plate. Results indicate a narrow range
of optimal mass flow conducive to effective and efficient transition control, with the optimal
suction region extention (d) ranging from 8% and 20% of the plate total length. Moreover, the
location of the suction region significantly influences transition. It is shown that shifting the
suction location, while fixing the mass flow, results in a displacement of transition.

A clear relationship between suction configuration and transition position was found. From
this, a predictive AFC model is proposed. The output of the proposed model, tested against the
results of the BLES-LST framework, agree within 1% accuracy. Further experimental validation
of the derived observations is sought after. Towards this goal a wind tunnel model was designed
and the experimental tests are planned.

Finally, future development of the optimization framework could include a non uniform
suction velocity profile.

1



Chapter 1

Introduction

In an era marked by unprecedented connectivity and interdependence, the phenomenon of
globalization has reshaped virtually every aspect of human society. From the flow of goods and
services to the exchange of ideas and cultures, globalization has fostered a level of interconnectedness
that transcends geographical boundaries and revolutionizes the way we perceive the world.
Central to this transformative process is the phenomenon of air travel, which serves as a vital
conduit for facilitating the exchange of people, goods, and ideas across vast distances.

As globalization continues to accelerate, so too does the demand for air transportation,
resulting in a dramatic surge in air traffic volume worldwide. While this exponential growth
in air travel has undoubtedly facilitated economic development, cultural exchange, and tourism,
it has also raised significant concerns regarding its environmental impact, particularly in terms
of greenhouse gas emissions and air pollution.

The exponential growth of air traffic volume is demonstrated through a detailed analysis
of the Revenue Passenger Kilometer (RPK), which is calculated by multiplying the number
of passengers by the distance flown per passenger. RPK has grown from 1 billion kilometers
in the 1980s to approximately 3 billion kilometers in 2000, and currently stands at around 8
million kilometers, data readable from figure 1.1 [29]. As a result, it is unsurprising that aviation
accounts for 2% of CO2 emissions and 13% of fossil fuel consumption in transportation [6].

CO2 emissions from aviation have steadily increased, except for specific periods such as the
1970s, 2009, and more recently during the pandemic. CO2 production in 2018 had quadrupled
since 1966 and doubled since 1987, as highlighted in figure 1.2. While aviation is responsible for
roughly 2.5% of global carbon dioxide (CO2) emissions, this is only a share of the contribution
of aviation to climate change.

In addition to CO2, engine combustion also produces other byproducts such as nitrogen
oxides, sulfur oxides, water vapor, hydrocarbons, and more [4]. When released, these substances
interact with one another and the gases in the atmosphere, leading to changes in the upper
troposphere and lower stratosphere. The chemical reactions caused by these byproducts can
have both cooling and warming effects on the climate. Unfortunately, the warming effects tend
to outweigh the cooling ones, which means that aviation plays a significant role in the issue of
climate change.

As we shift our focus from environmental concerns to economics, it’s worth noting that fuel
costs make up a significant portion of airlines’ operational expenses - ranging anywhere from 20%
to 30% over time. While it’s true that airlines are motivated to reduce fuel consumption in order
to minimize their environmental impact, it’s also worth acknowledging that profit maximization
is a driving factor as well.
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Figure 1.1: Revenue passenger kilometers and available passenger kilometers are plotted against
the years. They serve as a measure of air traffic volume. In addition, the aviation efficiency,
measured as kilograms of CO2 per RPK, is shown across the same years.

Figure 1.2: The CO2 emissions produced by aviation, both in absolute value and as a percentage
of global CO2 emissions, tracked from 1940 to 2020.

To comply with regulations limiting aircraft pollutants, airplane manufacturers have made
considerable efforts to ensure their planes and engines meet the latest standards. The impact of
these regulations is evident by looking at the efficiency, measured as kilograms of C02 produced
per RPK, in figure 1.1. Without any doubt, emissions have increased significantly over the
last five decades due to the rapid increase in air traffic volume, but fortunately, the growth in
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Figure 1.3: The share of fuel costs in airlines’ expenditures from 2011 to 2021, with forecast until
2023.

the emission was slower than the growth in PRK thanks to the technological advances in the
aeronautical sector. Since 1960, air transport emissions have risen by almost seven times, with
a three-fold increase since 1970. In contrast, the number of revenue passenger kilometers flown
has experienced exponential growth, increasing almost 300 times since 1950 and 75 times since
1960.

This reflects on aircraft efficiency, whose evolution is equally impressive. Since 1950, aviation
efficiency has increased by a factor of 20. While much progress has been made recently, there is
still room for improvement.

To mitigate the effects of pollution and the rising cost of airline fuels, two primary approaches
are identified. Firstly, there is a focus on increasing the efficiency of the engine, aiming to produce
the same amount of thrust while reducing fuel consumption. Secondly, efforts are directed
towards the aircraft level, where novel concepts are introduced to reduce drag, which is balanced
by thrust. The advantage of this approach is direct, as a reduction in drag readily translates to
a reduction in thrust requirements and, consequently, lower fuel consumption.

Reducing drag can be achieved through various means, including the introduction of novel
aircraft concepts such as Blended Wing Body and Closed Wing designs, the utilization of new
and lighter materials, or the control of flow structures around key aircraft components.

Flow control features a wide range of applications such as separation and transition delay, lift
increases, flow stabilization, flow reattachment, drag reduction, etc. For this purpose, different
devices have been designed and employed which can be divided into three classes [33]:

• Passive: Passive devices involve surface geometrical modification or the addition of geometrical
devices on the object’s skin. The word passive refers to the absence of any source of mass,
momentum or energy. Once they are applied to the body’s skin they operate until they
wear out. Examples of devices belonging to this group are riblets and vortex generators.
Studies have demonstrated that surfaces with riblets can achieve a reduction of the total
drag by 10%. On the other hand, a vortex generator produces vortices that promote the
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mixing inside the boundary layer and make the flow close to the surface more energetic
trying to delay separation and enhance the effectiveness of control surfaces.

• Semi-active: As the word active suggests, semi-active flow control involves sources of
mass, momentum and energy that actively modify the boundary layer characteristics. For
instance, suction removes the low momentum flow near the wall while tangential blowing
aims to energize the lower region of the velocity profiles. The addition of the prefix active
describes the operating strategy of these devices. Semi-active flow control features only
two operating modes: on and off. Among semi-active flow control fall suction, blowing and
plasma actuator

• Active: Active flow control involves the same actuation type of semi-active control (suction,
blowing, and plasma). The only difference is that for active flow control devices, the
actuation is a function of time.

One application of active flow control consists of trying to keep the flow in a laminar state
(Laminar Flow Control LFC), also for Reynolds number at which flow is transitional or already
turbulent without any control. Suction is often applied to achieve this task. Since laminar
flows exhibit skin friction usually 90% lower than turbulent flow, by delaying transition we aim
to reduce the skin friction drag and, in turn, the total drag [16]. This thesis aims to study
numerically the suction control on a flat plate, trying to optimize the suction configurations in
order to get the best gains out of the LFC.

In this thesis, chapter two lays the theoretical foundations of this thesis, scratching the surface
of the boundary layer theory and linear stability theory. Chapter three describes the optimization
algorithm invoked, while chapter four describes the numerical set-up used to estimate the extent
of laminar flow on a flat plate. Chapter five describes directly the effect of suctions on different
variables, while the following chapter analyzes and discusses the results of the optimization,
concluding the chapter with a model allowing to predict the effect of the suction on the flow
stability.
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Chapter 2

Boundary Layer, Stability and
Laminar-Turbulent transition

2.1 Boundary layer
2.1.1 Boundary layer concept
The Navier-Stokes equations possess the ability to model a wide range of situations in which fluids
play a central role. These equations offer comprehensive and universally applicable descriptions
of a vast array of phenomena spanning different scales, encompassing everything from oceanic
currents and pipe flow to the evolution of fluids in turbomachinery stages.

For an incompressible and homogeneous fluid, the NS equations coupled with the continuity
read [1]: I

∂ui

∂xi
= 0

∂ui

∂t + uj
∂ui

∂xj
= − 1

ρ
∂p
∂xi

+ ν ∂2ui

∂x2
j

(2.1)

In certain situations, it can be more advantageous to express equations in their nondimensional
form. This requires the identification of characteristic scales of length (L), velocity (V ), and
time (T = L/V ) representative of the fluid system. The above quantities are used to normalize
pressure and velocity fields, as well as independent variables such as the three spatial (x, y, z)
coordinates and the time t. To distinguish dimensional quantities from their non-dimensional
counterparts, the latter are denoted with a tilde æ(·). The relationship between dimensional and
non-dimensional quantities is explicitly stated below.

åx = x
L ; åt = t

T ; åui = ui

V ; åp = p
ρV 2 ;

Finally, by substituting the new variables into the equation 2.1:
∂ åui

∂ åxi

= 0
∂ åui

∂åt + åuj
∂ åui

∂ åxj

= − ∂åp
∂ åxi

+ 1
Re

∂2 åui

∂ åxj
2

(2.2)

Following a series of manipulations, the Reynolds number spontaneously appears as the
coefficient of the viscous term.

Re = V L

ν
= Inertial forces

V iscous forces
(2.3)
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This parameter can be considered one of the key parameters in fluid mechanics. Despite eq. 2.2
being a simple rewriting of the equations 2.1, it carries a significantly deeper meaning, leading
to two fundamental concepts in fluid dynamics: similarity and boundary layer theory.

Indeed equation 2.2 immediately:

• introduces the concept of mechanically similar flows. Given two fluid systems that are
geometrically similar (their geometries can be overlapped by applying a constant scaling
factor), if these systems have the same Reynolds number, then they are said to be kinematically
similar, meaning that corresponding points in the two systems possess the same values of
non-dimensional variables [34]. The validity of this statement lies in the presence of a single
control parameter as the coefficient of the non-dimensional equation. The consequence of
this assertion is significant, as it implicitly suggests that knowing the evolution of pressure
and velocity fields for a given geometry and Reynolds number allows for the prediction of
the unknown fields for all systems in fluid dynamic similarity with the first one. Numerical
and laboratory experiments heavily rely on this property.

• provides a direct and easy interpretation of the Reynolds number. As the Reynolds
number increases, the contribution of the diffusive term in the momentum balance equation
decreases. When the Reynolds number tends to infinity, the Navier-Stokes equations
approach the inviscid Euler equations, which describe the motion of an ideal fluid. However,
the approximation of inviscid flow under the assumption of a high Reynolds number cannot
be universally applied. In the Euler equations, wall boundary conditions are typically
defined as slip conditions; however, for the NS equation, even for Reynolds number tending
to infinity, the no-slip condition at the wall must be applied. This is due to the fact that
viscosity causes particles near the surface to adhere to it, thus enforcing a no-slip condition.
In 1904, Prandtl resolved this dichotomy by introducing the concept of boundary layer.

2.1.2 Boundary Layer approximations
In 1904, during the third International Congress of Mathematicians held in Heidelberg, Germany,
Prandtl presented the pioneering concept of boundary layer. Prandtl’s work demonstrated that
even at high Reynolds number conditions flow close to the walls is still affected by viscosity.
In essence, when Reynolds numbers are significantly greater than one (Re»1), the velocity has
approximately the same order of magnitude everywhere in the domain except for a thin layer
near the walls. At the wall, fluid particles stick to the surface resulting in zero velocity relative
to the object skin. This will further imply the existence of a thin region where quick velocity
transitions occur (from fluid at rest on the wall to a velocity of the order characteristic flow
velocity V , over a narrow distance δ). This thin region is known as Boundary Layer or friction
layer [30].

The basic idea is to divide the fluid domain into two regions, with the boundary between
them not sharply defined:

• A thin layer where the wall-normal velocity gradients ∂u/∂y are large, resulting in high
frictional forces τ = µ∂u/∂y.

• The region external to the boundary layer where gradients are smoothed and viscosity
effects are quiescent.

Within the boundary layer, there is a perfect balance between inertial, viscous, and pressure
forces. By analyzing the differential operators related to the inertial and viscous forces in the
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NS equations, it is feasible to determine the relative magnitude of these two forces. For example

uj
∂ui

∂xj
∼ ν

∂2ui

x2
j

→ V 2

L
∼ ν

V

δ2 → δ

L
∼ Re− 1

2 (2.4)

Where L is the length scale for the inertial force and δ is the length scale for the viscous force.

Re ≫ 1 → δ

L
≪ 1 (2.5)

Making explicit the equation 2.2 for a 2D flows:

∂åu
∂åx + ∂åv

∂åy = 0
1 1

(2.6)

∂åu
∂åt +åu ∂åu

∂åx +åv ∂åu
∂åy = − ∂åp

∂åx + 1
Re

!
∂2åu
∂åx2 + ∂2åu

∂åy2

"
1 1 1 δ 1

δ δ2 1 1
δ2

(2.7)

∂åv
∂åt +åu ∂åv

∂åx +åv ∂åv
∂åy = − ∂åp

∂åy + 1
Re

!
∂2åv
∂åx2 + ∂2åv

∂åy2

"
δ 1 δ δ 1 δ2 δ 1

δ2

(2.8)

Jumping back to the dimensional form, the three main equations are:
∂u
∂x + ∂v

∂y = 0
∂u
∂t + u ∂u

∂x + v ∂u
∂y = − 1

ρ
∂p
∂x + ν ∂2u

∂y2
∂p
∂y = 0

(2.9)

Following these simplifications, several important considerations arise. The most relevant pertains
to the considerable simplification of the momentum equation along the y-direction. Pressure
within the boundary layer is independent of y. The imposition of pressure as a boundary
condition outside the boundary layer is sufficient for a unique definition of the pressure within
and allover the BL. Thus, the pressure throughout the boundary layer is determined by the
boundary conditions, resulting in a reduction of variables from 3 (u, v, p) to 2 (u, v). The
continuity equation remains unchanged, while the momentum equation in the x-direction loses a
diffusive term. Additionally, the mathematical nature of the system changes. While the original
equations are elliptic, the boundary layer equations take on a parabolic nature.

2.1.3 Flat-plate Boundary Layer
In this section, the equations describing a uniform flow impinging on a flat plate will be derived.
This will also provide the opportunity to introduce and define several quantities used throughout
the following discussions, such as boundary layer thickness, displacement thickness, momentum
thickness, or even the friction coefficient. These parameters play an integral role in the characterization
of fluid flow behavior and contribute to a deeper understanding of the underlying physical
mechanisms.

A theoretical approach is adopted thus an infinitely long plate is studied. The velocity profile
inside the BL constitutes a self-similar solution usually referred to as the Blasius solution. As
the term self-similar implies, by suitably scaling the dependent and independent variables, (i.e.
the velocity profile (u) and the distance from the plate (y) respectively) the normalized velocity
profiles (u/U∞) at different x stations can be collapsed onto a single curve. In other words u/U∞
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is only a function of the normalized distance η = y/δ, where δ represents a measure of the BL
thickness.

By considering the dimensional nature of the involved quantities and relying on a certain
degree of physical intuition, it is possible to derive a relationship for the boundary layer thickness
δ as a function of the coordinate x, representing the direction aligned with the free stream velocity.

Boundary Layer(BL) thickness δ can be defined as the fluid region where the viscous effects
are significant, therefore BL development must somehow depend on the kinematic viscosity ν,
involved in modeling viscous phenomena. By combining the variables ν and δ, it is possible to
obtain a velocity called Uν that represents the velocity component, normal to the wall, at which
particles move away from it due to viscous transport.

Uν = ν

δ
(2.10)

A particle that begins its journey through the flat plate, starting from the leading edge (x, y)=(0,
0), will be advected in a streamwise direction by a ∆x over a time interval estimated as ∆t = ∆x

U∞
.

During this time, the particle will also undergo a vertical displacement ∆y = δ = Uν∆t. These
relations can be used to estimate the evolution of BL thickness.

∆x

U∞
= δ

Uν
(2.11)

Having imposed that at t = t0, x0 = 0 it follows that ∆x = x.

x

U∞
∼ δ2

ν
=⇒ δ ∼

ò
νx

U∞
(2.12)

The parameter δ(x), often referred to as the boundary layer thickness, may not be unambiguously
defined due to the lack of a clear boundary between BL and the outflow. However, it can be
regarded as a measure of the thickness up to a certain factor that multiples the square root in
eq. 2.12. For convenience:

δ(x) =
ò

2νx

U∞
(2.13)

Where the factor
√

2 is arbitrary and it was chosen to simplify some coefficients in the final
equation.

A stream function can be introduced

Ψ =
ð

2νxU∞f(η) (2.14)

Where f(η) is the normalized stream function. From Ψ, the velocity components are readily
resumed by differentiating the stream function.

u = ∂Ψ
∂y

= ∂Ψ
∂η

∂η

∂y
= U∞f ′(η) (2.15)

v = −∂Ψ
∂x

= −
3

∂Ψ
∂x

+ ∂Ψ
∂η

∂η

∂x

4
=

ò
νU∞

2x

!
ηf ′ − f

"
(2.16)

The equations governing the boundary layer development are expressed by Equation 2.1. For
a flat plate, these equations are further simplified assuming a zero external pressure gradient.
Writing down the x-momentum boundary layer equation for a flat plate yields:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 (2.17)
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Upon substitution of equations 2.15 and 2.16 in 2.17 it ends up in the Blasius equation:

f ′′′ + ff ′′ = 0 (2.18)

With boundary conditions:

y = 0 : u = 0 v = 0;
y → ∞ u = U∞

Introducing the normalized stream function then BC will transform into:

η = 0 : f = 0 f ′ = 0;
η → ∞ f ′ = 1

There is no closed solution to the Blasius BL equation. However, it is possible to solve them by
numerical integration.
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Figure 2.1: Blasius solution: normalized stream function derivatives profiles, with respect to η,
as functions of η. The derivatives are indicated by the dash.

Boundary layer characteristic quantities

The lack of any sharp boundary between the boundary layer and the flow leads to different
definitions of boundary layer thickness:

• Boundary layer thickness δ99: it is the distance from the wall where the velocity reaches
the 99% of the BL external velocity:

u(η99) = 0.99Ue; η99 = 3.6 (2.19)

δ99 ≃ 5.0
ò

νx

Ue
(2.20)
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Figure 2.2: Visual representation of interpretation about the displacement thickness δ1. The
shaded regions have the same area [30].

• Displacement thickness δ1. It represents the displacement in the wall’s normal direction
such that the volume flux of a uniform profile, equal to the BL edge velocity is equal to
the BL flux(figure 2.2).

δ1Ue =
Ú ∞

0

!
Ue − u

"
dy

δ1 =
Ú ∞

0

3
1 − u

Ue

4
dy

Applying that definition to the Blasius solution:

δ1 = 1.7208
ò

νx

Ue
(2.21)

• Momentum thickness δ2:The momentum thickness refers to the perpendicular distance
to a reference plane, which signifies the lower boundary of an idealized inviscid fluid with
uniform velocity Ue. This ideal fluid is conceptualized to possess an equivalent momentum
flow rate to that observed in the actual fluid within the boundary layer.

ρU2
e θ = ρ

Ú ∞

0
u (Ue − u) dy (2.22)

θ =
Ú ∞

0

u

Ue

3
1 − u

Ue

4
dy (2.23)

For Blasius BL
θ = 0.664

ò
νx

U∞
(2.24)

• Shape factor H: ratio between the displacement thickness and the momentum thickness

H = δ1

θ
(2.25)

For Blasius BL H = 2.59

The only type of drag that acts on a flat plate is the friction drag, which is defined as follows:

D

b
=

Ú L

0
τw(x)dx (2.26)
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Figure 2.3: Development of boundary layer δ99, displacement δ1 and momentum thickness θ for
a flat plate with U∞ = 15 [m/s] and ν = 1.5 × 10−5[m2/s].

Where b is the plate depth (the plate is a rectangle of b × L), L is the plate length and τw(x) is
the wall shear stress

τw(x) = τ(x, y = 0) = µ
∂u

∂y

----
y=0

(2.27)

The skin friction coefficient is the adimensional version of the wall shear stresses:

cf = τw
1
2 ρU2

∞
(2.28)

For the Blasius

τw(x) = 0.332µU∞

ò
U∞

νx
; cf = 0.664

ñ
ν

U∞x (2.29)

2.2 Linear Stability Theory
In certain circumstances, particularly those marked by a high Reynolds number regime, fluids
have a propensity to deviate from the laminar state and transition towards a turbulent state.
This phenomenon, commonly referred to as laminar-turbulent transition or onset of turbulence,
is of great significance in the fluid mechanics field. As such, it has emerged as a key area of study
and interest among the scientific community.

The main goal of Liner Stability Theory (LST) lies in finding the condition under which small
perturbations, inherently included inside any real fluid system, will be damped or magnified,
leading to defining the conditions of existence of laminar flow.

It is worth reserving some words about the phenomenology of turbulence, which also allows to
understand the reason for its arising. The problem will be taken with a mathematical approach,
studying the mathematical properties of the NS equations.

In turbulent flows, velocity and pressure fields are defined as random. Without conferring
any additional meaning to the word random, the right interpretation of the characteristics that
this term takes on can be expressed as follows.: "in a turbulent flow, the velocity or pressure
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Laminar Turbulent
layered, regular disordered

smooth fluctuating
ordered chaotic

Table 2.1: Difference between laminar and turbulent flow

fields are random because experimental measurement of these fields in the same point in space
and at the same time, in repeated experiments, will lead to a non unique measure" [27].

NS are deterministic equations. Theoretically, this means that given the NS with appropriate
initial and boundary conditions, it is possible to follow the evolution of physical quantities as
functions of time. The above statement seems to come up against the random behavior of the
flow fields.

During the 19th century, the mathematician Hadamard introduced the concept of a well-
posed problem. A problem is considered well-posed when the solution to a system of differential
equations satisfies the following conditions [39]:

• existence: a solution exists;

• uniqueness: there is one and only one solution to the problem;

• stability: small perturbations of initial conditions (ICs)and boundary conditions (BCs)lead
to small variations of the solution;

The first two conditions represent a deterministic view of the universe. The third condition
distinguishes between the ideal and the real world. Mathematically speaking, if we know the ICs
& BCs with infinity accuracy, the solution is completely known. Given the proper, ICs & BCs
it is possible to predict the state of a system exactly at any time in the future. The reality is
different as ICs & BCs are known with only finite accuracy, therefore the uncertainty associated
with them makes impossible the detailed prediction of the system evolution.

In order to better understand the impact of uncertainty of ICs and BCs on differential
equations and their solutions, it is often helpful to consider a classical example. By doing so,
one can experience firsthand the direct effects of such uncertainties on the resulting solutions.
Recalling the Lorenz problem, which consists of a system of three ordinary differential equations:

dx
dt = σ(y − x)
dy
dt = ρx − y − xz
dz
dt = −βz + xy

(2.30)

With σ = 10, β = 8
3 and ρ = 28. To illustrate the sensitivity upon the initial conditions it is

convenient to define two sets of them.

[x0, y0, z0]A = [0.1, 0.1, 0.1] (2.31)

[x0, y0, z0]B = [0.100001, 0.1, 0.1] (2.32)

In the beginning, the two systems, A and B, characterized by the different initial conditions,
are nearly the same, but close to 30s, they start diverging from one another. This illustrative
example serves to demonstrate that, in the case of an ill-posed problem, even small uncertainties
or perturbations in the initial conditions can render any predictions about the system’s state
impractical and meaningless. In the context of the example, where the initial state is unknown
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Figure 2.4: Time evolution of x variable from the Lorentz system. Here x represents the evolution
of the system subject to A initial condition, while x̂ is the time history that follows the B initial
condition.

to within 10−6, the difference between system A and B is substantial (2.4 (c) shows that the
difference becomes large from about t > 30s).

The behavior of differential equations is heavily influenced by their coefficients. Interestingly,
a parallel can be made between the Lorentz equation and the NS equations, as they both exhibit
a critical parameter value that demarcates the threshold between two different types of solutions.
In the Lorenz equation, if ρ takes a value below ρ∗ = 24.74, the system will converge to a stable
fixed value. However, if ρ is greater than ρ∗, the variables will exhibit chaotic behavior. ρ is a
control parameter for the Lorenz equation as Re does it for the NS equations. In a low Reynolds
number regime is very likely that flow is laminar but if the Reynolds number increases too much
the arisen of turbulent flow, coming with the randomness associated with it, becomes more and
more probable.

Therefore, now the answer to the debate between deterministic equation-random solutions
should be clear. It is twofold and closely related to the well-posed problem.

• Any turbulent flow is unavoidably subject to perturbation in initial conditions, boundary
conditions and material properties. These perturbations can arise from various sources,
such as the vibration of mechanical systems, temperature inhomogeneities, impurities in
the flow, surface roughness, and perturbations in the initial conditions.

• Turbulent flow exhibits an acute sensitivity to these perturbations. Perturbations are also
present in laminar flows, however their stability result in minimal impact on the solution.

This introduction emphasizes the importance of studying stability and its role in generating
turbulence.
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2.2.1 Stability in parallel flow- Orr Sommerfeld equation
The fundamental pillar of linear stability theory (LST) lies in examining minor disturbances that
are applied to a smooth, undisturbed, steady base laminar flow. As highlighted in the preceding
chapter, perturbations play a crucial role, especially in the transition process. Consequently,
the LST aims to determine the circumstances in which these perturbations are either amplified
(leading to unstable flow conditions) or dampened (resulting in stable flow conditions).

The flow can be decomposed in its mean part(capital letters) and the fluctuating part due to
the perturbations ((·)′ ):

u = U + u′ v = V + v′ w = W + w′ p = P + p′ (2.33)

Base, laminar flow satisfies the governing equations (NS or BL equations). Assuming a 2D,
steady, incompressible and locally parallel flow, the mean field can be written as

U = U(y) V = W = 0 P = P (x, y) (2.34)

Although this assumption accurately describes the flow in a channel or pipe with a constant cross-
section, it is not entirely precise for boundary layer flow. This is because the BL velocity field
changes with x, moreover, the component V is not equal to zero. Nonetheless, this assumption
remains a reasonable approximation for BL flow since the dependence of U on x is much lesser
than on the y direction, and the velocity component V is significantly smaller than U [30].

The perturbations are function of space and time and can be regarded as small compared to
the velocity U .

u′ = u′(x, y, t) v′ = v′(x, y, t) w′ = w′(x, y, t) (2.35)

u′, v′, w′ ≪ U (2.36)

Upon substituting the decomposed variables 2.33 into the Navier-Stokes (NS) equation, the
product between fluctuating velocities will emerge. If the original perturbation possesses a
frequency ω, the multiplication of two perturbations can be deconstructed into the sum of
one perturbation with zero frequency and another with a frequency 2ω. Consequently, the
nonlinear interaction alters the mean flow, a mechanism often denoted as mean flow distortion,
and introduces higher harmonics [8]. Nonetheless, it is feasible to neglect any product between
two or more perturbations appearing in the governing equations (either NS or boundary layer
equations), as these terms are negligible compared to a single perturbation. By retaining the
first order perturbations, the nonlinear governing equations have been linearized.

The greatest advantage coming from the linearization consists in the validity of the superposition
principle, one of the most important properties that linear systems feature.

If two perturbations are solutions of the stability equation, any linear combination of those
two will still satisfy it. Consequently, given any perturbations, it is possible to conduct a
Fourier decomposition. Each elementary wave that composes the original perturbation will evolve
independently of the others, enabling the evaluation of the stability of each wave separately. The
aforementioned reason justifies the normal mode approach. The solenoidal nature of perturbations
allows for the introduction of a stream function Ψ.

u′ = ∂Ψ
∂y ; , v′ = − ∂Ψ

∂x ; (2.37)

The ansatz used for one mode is the following:

Ψ(x, y, t) = ϕ(y)ei(αx−ωt) (2.38)
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i =
√

−1 is the immaginary unit; α = 2π/λ is the wave number and λ is the wave length;
ω = 2π/T is the angular frequency and T is the period. The previous quantities characterize
each mode that constitutes a perturbation. ϕ is the amplitude of the disturbance and it is only
a function of y as the base flow is also solely a function of y. Therefore, the stream function is
an implicit function of y but an explicit function of x and t.

u′ = ∂Ψ
∂y

= ϕ′(y)ei(αx−ωt) (2.39)

v′ = −∂Ψ
∂x

= −iαϕ(y)ei(αx−ωt) (2.40)

Defining c = ω
α

c = cr + ici (2.41)

cr is the phase velocity while ci is the amplification factor. Having contextualized what is behind
the Orr-Sommerfeld equation it is now possible to introduce the equation

(U − c)
!
ϕ′′ − α2ϕ

"
− U ′′ϕ = − i

αRe

!
ϕ′′′′ − 2α2ϕ′′ + α4ϕ

"
(2.42)

The dash represents the derivation with respect to the variable η = y/δ1, while the Reynolds
number is:

Re = Ueδ1

ν
(2.43)

Ue is the boundary layer edge velocity. The boundary conditions, needed to close the differential
problem, are based on the idea that perturbations vanish at the wall and outside the boundary
layer:

y = 0 : u′ = v′ = 0 → ϕ = 0 ϕ′ = 0;
y → ∞ : u′ = v′ = 0 → ϕ = 0 ϕ′ = 0; (2.44)

OS equation is a homogeneous ODE with homogeneous boundary conditions, therefore it constitutes
an eigenvalue problem. Given a general profile U(y), its second derivatives U ′′(y) and α / ω
(temporal/ spatial approach), eq. 2.42 establishes a functional relation among Re-α-ω.

2.2.2 Spatial and temporal approach
Using a normal mode approach it is possible to jump from a partial differential equation to a 4th
order, ordinary differential equation in the unknown ϕ (eq. 2.42). This simplification doesn’t
come without complications. Two different parameters (ω and α have been introduced) resulting
in more unknowns [8]. To handle the problem and hence reduce the number of unknowns one
can assume that disturbance may growth or be damped in space or in time leading to a temporal
or spatial approach.

• temporal approach: it assumes that perturbations, at a fixed point can change their
amplitude as time goes by. The wave number α is a real number while ω = ωr + iωi is
complex.

Ψ(x, y, t) = ϕ(y)ei(αx−ωt) = ϕ(y)eωitei(αx−ωrt) (2.45)

• spatial approach: it assumes that perturbations, at a fixed time can change their amplitude
moving with space. The wave number α = αr + αi is a complex number while ω is real.

Ψ(x, y, t) = ϕ(y)ei(αx−ωt) = ϕ(y)e−αixei(αrx−ωt) (2.46)
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Figure 2.5: Evolution of the auxiliary model (of the stream function) as a function of the support
variable ξ. The top figure shows a stable mode while the bottom an unstable one

Both equations 2.45 and 2.46 represent a sinusoidal function which amplitude is modulated by
an exponential function.

To summarize, the effect that the real and imaginary parts of the wave parameters have on
the stream function, without loss of generality, we utilize auxiliary variable ξ and parameters(dr,
di), assuming an initial perturbation of unit amplitude.

Ψ = 1 · ei(dr+idi)ξ (2.47)

The spatial or temporal approach can be recovered from equation 2.47 substituting the corresponding
quantities in the table 2.2.

Growth with Damped Amplified
Auxiliary model ξ di > 0 di < 0
Spatial approach x αi > 0 αi < 0

Temporal approach t ωi < 0 ωi > 0

Table 2.2: Relations among auxiliary model, spatial and temporal approach

If the real part of the exponential is greater than zero, the mode is unstable and the magnitude
of the perturbation will grow. On the contrary stable modes have a negative real exponential
coefficient such that the perturbation vanishes as time goes by or moving in downstream direction.

Temporal stability analysis was developed in the 19th century and utilized by prominent
scientists such as Helmholtz, Kelvin, and Rayleigh. Spatial stability analysis, on the other
hand, emerged more recently, as it was introduced only in the 1950s. In recent times, spatial
stability analysis has garnered increasing significance compared to temporal stability. It has been
observed that for parallel laminar flow, transition occurs primarily through the amplification
of disturbances in the streamwise direction [22]. In light of the growing recognition of the
importance of spatial amplification, this thesis adopts a spatial approach.
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Stability calculation involves the following steps:

• Choosing a station x and extracting the velocity profile;
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• Select a mode by choosing the angular frequency ω;

• Solve the Orr-Sommerfeld equation;

• Repeat the previous steps;

2.2.3 Stability diagrams
The results of the LST can be summarized in the stability curves.

Figure 2.6: Spatial stability curve for Blasius boundary flow. layer [11]

In the x axis of figure 2.6 the Reynolds number is computed with the displacement thickness
δ1 (Re = U∞δ1/ν), while the y axes display a dimensional frequency F.

F = νω

U2
∞

× 106 (2.48)

Solid lines are iso-αi along which imaginary parts of the wave number is constant and dotted
lines are iso-αr representing the constant real parts of α.

The bold solid line αi = 0 denotes the marginal or neutral stability curve, as modes along
this curve neither dampen nor amplify. The region enclosed by the marginal stability curve
features unstable perturbations (αi < 0), thus defined as the unstable region. Conversely, the
area exterior to the neutral stability curve is stable to any perturbations. Therefore, the marginal
stability curve serves as the boundary between stable and unstable regions. Figure 2.7 shows the
continuum variation of −αi encompassed by the neutral stability curve.

Each Reynolds number corresponds to one velocity profile, such as different F refer to different
modes. In the stability plane, each point is defined by the Reynolds number-angular frequency
pair (Re − F ). A wave number, composed of its real and imaginary part, can be associated
with each point. Cutting the stability diagram with a vertical line (Re=constant) is equivalent
to discussing the stability of a single velocity profile. For a low enough Reynold number the
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Figure 2.7: Stability diagram for Blasius profile. The white dashed line represents the neutral
stability curve. To highlight the unstable region lower value of −α∗

i was saturated to 0

iso-Re line doesn’t intersect the marginal stability curve, therefore the profile is stable to any
perturbation. There will be a certain Reynolds number for which its iso line will intercept the
neutral curve in one point (vertical line tangent to the neutral curve). The Reynolds number
for which this condition is verified is called indifference Reynolds number (Reind). Profiles with
Re < Reind are stable but profiles with Re > Reind are unstable. For Re > Reind vertical lines
cut the unstable region, showing a frequency range of unstable perturbations.

2.2.4 Rayleigh equation
It is possible to understand some important stability properties by looking at Rayleigh’s stability
equation, sometimes referred to as the inviscid stability problem.

(U − c)
!
ϕ′′ − α2ϕ

"
− U ′′ϕ = 0 (2.49)

B.C. y = 0 =⇒ ϕ = 0; y → 0 =⇒ ϕ = 0; (2.50)

One of the most important results coming from this equation is called Point of inflection
criterion which states:"Velocity profiles with point of inflection are unstable"

Rayleigh proved that point of inflection within the domain is a necessary condition for the
presence of amplified waves[30].

Later on, this will be a powerful means to understand the stabilizing effect of the suction on
the laminar profile.

2.3 Transition prediction method: eN method
In 1956 Van Ingen [36] and Gamberoni & Smith [32] came out with a robust method allowing
for transition prediction.
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It has been previously noted that downstream of the indifference Reynolds number, a specific
range of frequencies experience amplification. Employing the spatial approach entails that the
amplitude a of a given mode of the stream function (see eq. 2.46) will vary with the coordinate
x. The ratio of the disturbance’s amplitude between locations x and x + dx can be expressed as
follows:

a + da

a
= e−αi(x+dx)

e−αix
= e−αidx (2.51)

−αidx = ln(a + da) − ln(a) = d
!
ln(a)

"
(2.52)

Integrating the above equation:

n(x, ω) = ln

3
a

a0

4
=

Ú x

x0

−αi(x, ω)dx (2.53)

n is called amplification factor, −αi is known as amplification rate and en is the amplification
ratio [35]. x0 is the point where the disturbance with frequency ω first becomes unstable.

The steps needed to build the n curves are shown in figure 2.8, where the quantities denoted
as (·)∗ are dimensionless parameters.

α∗
i = αiδ1; ω∗ = ωδ1

Ue
(2.54)

To simplify the representation of the iso-ω curves in the stability map, it was decided to use
the dimensionless angular frequency ω∗ rather than ω on the ordinate. It is easy to see that, in
this plane, the curves with fixed ω values are lines passing through the origin, whose slope F
depends on the dimensional frequency ω.

ω∗

Reδ1

= ωδ1

Ue

ν

Ueδ1
= νω

U2
e

= F (ω) (2.55)

Given the angular frequency ω we define for simplicity:

nω(x) = n(x, ω = const) (2.56)

To draw nω(x) the following steps are required:

1. Compute the slope of the curve F (ω) and draw the curve in the stability diagram (figure
2.8a).

2. Sample −αi along this line ((figure 2.8b)) to have −αi(x, ω = const).

3. Integrate −αi(x, ω = const)
nω(x) =

Ú x

x0

−αi(x, ω)dx (2.57)

x0 is the intersection point between the lower branch of the neutral stability curve and the
line ω∗ = F (ω)Reδ1 .

By computing the amplification factor for a specific range of frequencies, it becomes feasible
to represent the envelope of the amplification factor, hence called the maximum amplification
factor N (2.9).

N = max
ω

[n(ω, x)] (2.58)
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(a) Figure shows the neutral stability curve in black in the ω∗-Reδ1 plane. The four
lines are the locus of points with constant angular frequency.
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(b) Amplification rate −αi expressed as function of Rex. Along each curve ω is
constant.
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(c) Amplification factor for each mode(ω = const).

Figure 2.8: Post processing of the stability curves
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Figure 2.9: Maximum amplification factor is plotted in black along with the amplification rates,
in blue color, that generate it

Van Ingen was guided by the flat plate experiment conducted by Schubauer and Skramstad,
which revealed that transition occurs within a range of Reδ1 between 2.8 × 106 and 3.9 × 106,
corresponding to a 7.8 ≤ N ≤ 10. Thus, as the N interval suggests, the transition requires a
certain spatial extension before the flow, from laminar, turns to fully turbulent. It is important
to note that the method of eN is sometimes mistaken with e9, but the choice of the exponent
N = 9 as a reference value for transition was made by Smith in his experiments on the airfoil
boundary layer transition, where the transition occurs over a small portion of the chord due to
the adverse pressure gradient. For wind tunnels with low turbulence intensity (Tu < 0.1%),
transition location is no longer influenced by the free stream turbulence (FST); thus, N = 9
serves adequately for facilities designed for transition characterization and studies.

When turbulence intensity is high, it becomes possible to tailor the amplification factor
at which transition occurs to accommodate the influence of free-stream turbulence. Empirical
relationships propose that the N value at which transition initiates and concludes are:

N1 = 2.13 − 6.18log10(Tu) (2.59)

N2 = 5 − 6.18log10(Tu) (2.60)

Another relation available is the following:

N = −8.43 − 2.4ln(T ) (2.61)

23



Figure 2.10: N factors for different flat plate experiments as function of turbulent intensity. [35]

2.4 Laminar-Turbulent transition
7 In the previous section, it was explained the reasons leading to turbulence from a mathematical
perspective leveraging the ill and well posed problem. Leaving the mathematical world, a physical
approach is now adopted.

The on set turbulent transition features three main stages [18], sketched in figure 2.11:

1. Receptivity: this field of study explores how external disturbances such as acoustic,
vortical, temperature, and vibration perturbations penetrate at first inside the boundary
layer. The leading edge shape is a critical feature in a flat plate when it comes to transitions
study due to its high receptivity characteristics [31]. Leading Edge (LE) receptivity is one
of the main mechanisms through which free stream disturbances are transformed in TS
waves [17].

2. Linear stability: It was extensively treated in the previous section.

3. Non linear breakdown: It starts when the amplitude of the TS waves can no longer
be considered small (e.g. perturbations are higher than 1% or 2% of the stream velocity
U∞) hence the hypothesis of the LST loses its validity. Despite this phase occurring over
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Figure 2.11: Flat plate boundary layer transition representation [17].

a short distance, it is arguably the most crucial stage as it involves the metamorphosis of
the flow from a laminar, ordered, and deterministic state to a three-dimensional, unsteady,
and chaotic turbulent flow.

2.4.1 Non linear breakdown
In addition to its inherent complexity, governed by nonlinear couplings, the phenomenon of
nonlinear breakdown can manifest in various forms, often referred to as regimes. The two most
significant regimes are the k-regime (named after Klebanov) and the N regime. Extensive studies
of nonlinear breakdown began in the late 1950s and have continued until the present day, with
a peak of interest observed between 1970 and 1980. During this period, significant progress was
made in understanding the phenomenology involved in this process.

Figure 2.12: Flow structures in laminar-turbulent transitions
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k regime

For scenarios characterized by low free stream turbulence and small initial perturbation magnitudes,
the transition process unfolds through distinct phases, each characterized by unique flow structures.
These phases are depicted in Figure 2.12, where the hydrogen bubble visualization technique has
been employed.

In the initial stage, as depicted in Figure 2.12a, the perturbation represented by hydrogen
bubbles exhibits 2D characteristics, primarily consisting of Tollmien-Schlichting (TS) waves.
However, as a small perturbation begins to amplify and its amplitude increases, downstream
generation of three-dimensional effects manifests. This amplification gives rise to the formation
of the Λ vortex [14].

The subsequent evolution of the Λ vortex leads to the formation of the Ω vortex, also known
as hairpin vortex, as shown in Figure 2.12c. The hairpin vortex is a vortical structure composed
of two legs close to the ground and one head farther from the ground. These hairpin vortices
are fundamental structures for the development of turbulent flow. They can either give rise to
turbulent spots, as depicted in Figure 2.12b, or secondary hairpin vortices.

A turbulent spot consists of an ensemble of structures that entrain the neighboring flow.
Consequently, a turbulent spot grows over time until the flow becomes fully turbulent.

Figure 2.13: Turbulent spot structures

The artificial introduction of a 2D disturbances into the boundary layer by Klebanoff et al.
resulted in the observation of a spanwise modulation of the wave front, characterized by regions
with peaks and valleys of streamwise fluctuations, as illustrated in Figure 2.14.

Klebanoff found that the beginning of the breakdown process is marked by the presence of
powerful and high-frequency flashes of perturbations called spikes on the streamwise-velocity
oscilloscope traces. These spikes can double, or triple downstream (figure 2.15). The study
concluded that these spikes play a crucial role in causing the final laminar-boundary-layer
breakdown and flow randomization. Later was discovered that the spikes are the result of the

26



Figure 2.14: Spanwise modulation of 2D perturbation

induced velocity by ring vortex [2].

Figure 2.15: Hairpin vortex evolves downstream generating second hairpin vortex

2.5 Stability & suction: state of the art
Throughout the years, studies have proven suction to be an effective laminar flow control (LFC)
technique mostly us ed to delay laminar-turbulent transition. The main objective of using LFC
techniques for transition control is to maintain laminar flow over a region whose extension needs
to be maximized. Given the fact that half of the total drag is caused by skin friction, this approach
results in reducing the total amount of friction drag that an object experiences whenever there
is relative motion between the body and the fluid surrounding it.
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In his analysis, Marec provides a detailed breakdown of the sources of drag that airplanes
encounter during the flight [24]. He pointed out that almost half of the total drag is caused by
skin friction. He also presents an overview of the drag reduction project currently taking place
in major industries such as Airbus, as well as research centers like ONERA and DLR, aimed at
mitigating the effects of skin friction drag.

Laminar flow control technology for aircraft was first tested in wind tunnels in the late 1930s
in the US [3]. Research efforts continued in both the US and Europe until the early 1960s, after
which interest in this area declined. However, with the imposition of the oil embargo by OPEC in
the 1970s and the subsequent sharp rise in fuel prices, research into laminar flow control systems
experienced a resurgence. Successful flight tests, like Boeing 757 HLFC flight tests (1990–1991)
reported a net drag saving by using micro-perforated titanium skin mounted on the nose of the
wing [21]. The in-flight test showed that for a Mach number of 0.8, it was possible to save 8% of
the fuel and have a drag reduction of 6%. Motivated by the excellent results of suction effects,
GE attempted to apply HLFC (Hybrid Laminar Flow Control) to the nacelles of a large bypass
turbofan jet engine. The HLFC concept proved to be extremely effective, resulting in laminar
flow to 43 % engine nacelle length, independent of altitude[21]. To provide a more in-depth
understanding of HLFC (Hybrid Laminar Flow Control), we recommend reviewing the following
articles([21], [3]). The second article [21] delves into the history of laminar flow control research
from the 1930s to 1999, with a specific emphasis on flight testing. The first article provides a
comprehensive overview of the suction implementation system, with particular attention given
to the characteristics of the porous medium, piping, and preliminary compressor design. Since
experimental evidences have demonstrated the effectiveness of such a powerful technique, wind
tunnel tests and theoretical studies have been performed for almost 50 years. The first experiment
of which the author is aware dates back to 1977 when Kozlov et Al. carried out a wind tunnel
investigation to explore boundary layer stability employing suction slots [20]. They aimed to
analyze the effects of the suction through a solitary slot on a flat plate regarding mean flow
and disturbance measurements. The outcomes highlighted a notable reduction in disturbance
amplitude in the vicinity of the slot.

Nevertheless, the first experiment that paved the way for wind tunnel transition analysis was
conducted by Reynolds and Saric in 1982 [28]. Using a wind tunnel with a turbulent intensity
of 0.02% they studied the evolution of perturbation generated by a vibrating ribbon over a flat
plate with and without suction. Different suction configurations were investigated with a fixing
mass flow, assured by a sonic chocking nozzle. The plate was equipped with two porous panels,
each composed of 16 spanwise flutes, allowing both continuous suction when all the flutes are
active and local suction in the case of only a few suction strips opened. From figure 2.16 it is
worth noting that despite the variegate suction configurations, the disturbance amplitude always
slightly differs from one case to the other. Lingering any further on figure 2.16 it is remarkable
that a single strip results as effective as 30 strips all together, under the assumption of equal
mass flow.

In more recent years, an experiment on boundary layer transition over a flat plate was
performed by Corelli [7]. At first, the effect of the porous panels at different Reynolds number
was investigated. As predicted, the presence of the porous medium destabilizes the boundary
layer. The reason for the earlier transition, when porous panel are employed, can be found in a
combination of three causes:

• The presence of micro-holes has a similar effect to a rougher wall;

• Blowing through the porous wall, driven by the pressure difference between the two sides
of the porous panel;
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Figure 2.16: Disturbance amplitude A(x) vs R =
√

Rex, the square root of Rex = U∞x/ν. The
number on the side of each case (up-left corner) are referred to the number of flutes of the first
slot and second slot(e.g. case V features 7 strips on the first panel and 3 on the second)[28]

• The volume of air inside the suction chamber can act as resonant cavity and magnify the
perturbation amplitude.

Methel et Al. [25] show how the premature transition process is mainly triggered by the
blowing effect. In figure 2.17 the velocity fluctuation as a measure of transition location is
reported against both the Rex and the stream-wise location x. As it is shown in the same figure,
the velocity fluctuations start increasing earlier compared to the solid panel(no perforated).
Covering the porous panel with the tape prevents the arisen of any vertical velocity components
and, by measurements, it is proven that this little deed brings transition back again to the point
of natural transition. This proves that the vertical velocity component is the main mechanism
responsible for the earlier rising of the velocity fluctuations.

Figure 2.18 illustrates two important phenomena. The first is that increasing the free stream
velocity U∞, holding constant all the other parameters such as porosity, suction coefficient etc.,
causes the transition to move upstream. The second and most important result is that there
is a limit on transition delays for a fixed slot location. That means that starting without any
wall-normal velocity component, small increments of suction velocity will result in a remarkable
shifting of the transition point. At the time when CQ = vw

U∞
is greater than the critical value, the

increments of the suction mass flow will not be as effective as for the case with CQ lower than
this value, which can be traced back to the knee of the curves CQ − XT R/Lref (figure 2.18).

Linear Stability Theory (LST) is a widely accepted approach for analyzing disturbances in
fluid dynamics. However, its applicability is limited to scenarios where the flow field variations
occur at a length scale significantly larger than the characteristic wavelength of the inherent
instability modes. In cases of abrupt distortions, where the distortion length is comparable to or
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Figure 2.17: Streamwise velocity fluctuation vs Rex for porous and solid walls. The effect of the
tape on the velocity fluctuation is highlighted [25].

Figure 2.18: Suction coefficient CQ = vw/U∞ vs transition location. vw is the suction velocity.
Different Reynolds numbers have been considered [7]

shorter than the inherent instability mode’s characteristic length, the conventional representation
of the disturbance as a product of a slowly varying shape function and a rapidly oscillating carrier
wave becomes invalid. Consequently, the normal-mode assumption, which is fundamental to
both LST and the Parabolized Stability Equation (PSE), loses accuracy. Therefore, it becomes
imperative to explore alternative methods for analyzing disturbances in such scenarios, as both
LST and PSE rely on assumptions of slow variation of the mean flow and normal-mode.

Nevertheless, even in the case of localized suction (suction region extends over a small fraction
of the body chord), under the condition of low velocity and mass flow sucked, the variation of
the flow velocity field along the mean flow (stream wise) direction is gradual [15]. Recovering
the Reynolds experimental data, Huang and Wu focused on case 3 of Reynolds experiment [28],
which features a 16 mm slot with a mean suction velocity of vw/U∞ = 5.7 × 10−3. Whenever
there is a rapid mean flow change, the effects of this distortion are reflected on stability through
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Figure 2.19: Comparison between the perturbation amplitude of LST, DNS, experiment and
LSA

a scattering problem[41]. Wu and Dong proposed a method, called Local Scattering Approach
(LSA) that tackles the stability in the nearby of the abrupt mean flow changes location by using
a local scattering approaches [40]. Huang and Wu showed that even for localized suction with
abrupt flow modification, LST is in a good agreement with the more sofisticated LSA theory(see
figure 2.19)
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Chapter 3

Optimization algorithms

Human nature drives individuals to seek the best possible outcomes in their lives. Optimization,
therefore, is an inherent trait bestowed upon us by nature, one that we often employ, sometimes
even unconsciously. Optimization manifests in various degrees of complexity. For instance, as we
experience in everyday situations, stressed by time, people select the quickest route. Conversely,
a farmer who wants to determine the most profitable crops to cultivate has to make careful
considerations and strategic planning. While optimization may be a desired pursuit in personal
life, it is an absolute necessity in the industrial world.

Optimization problems vary widely in complexity, requiring appropriate optimization algorithms
to tackle them effectively. At its simplest level, optimization involves a known, concave and
unconstrained objective function. In such cases, leveraging the knowledge about the function
enables rapid convergence towards the optimal solution, often achieved through gradient-based
optimization algorithms.

However, optimization becomes more challenging when dealing with functions that are non-
concave or either constrained by complex relationships. In such scenarios, the mathematical
properties of the function may impede optimization, requiring the application of more sophisticated
algorithms and techniques.

Occasionally, situations arise where optimization objectives lack a closed-form formulation.
Shape optimization of a structural component is one of them. Complex FEM calculations are
required to ensure that the object will possess structural rigidity while maintaining lightweight
characteristics. Similar examples can concern fluid dynamics problems as could be the airfoil’s
profile optimization constrained by some lift or drag requirements. In such cases, although
gradient-based methods remain applicable, they can be cumbersome.

To address the challenges posed by the absence of closed-form formulations in optimization
problems, diverse algorithms and strategies have been developed over the past fifty years. One
such strategy is stochastic optimization, which introduces structured randomness during the
search for optimal solutions. Many stochastic optimization methods take inspiration from natural
processes [10]. For example, Genetic Algorithms (GA) emulate evolution by favoring the survival
of the fittest individuals, thus preserving advantageous characteristics over successive generations.
While evolution is indeed effective in selecting the most suitable individual for life, it operates
on a timescale spanning thousands of years. Similarly, Genetic optimization algorithms exhibit
a comparable trend, often characterized by slow convergence.

The Artificial Bee Colony (ABC) algorithm draws inspiration from the organizational structure
of bees. In the ABC model, the colony comprises three primary bee groups: employed bees,
onlookers, and scouts. Employed bees exploit known areas to gather nectar, which in the
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algorithmic context represents the fitness value of the function. Onlookers observe the findings of
employed bees and select the most promising nectar sources, reflecting the process of selecting the
best design points. Meanwhile, scouts explore uncharted regions of the design space, analogous to
searching for new sources of nectar, to continually optimize the algorithm. This model effectively
captures the essence of natural bee behavior and applies it to the optimization process.

Among the various optimization algorithms available, one of the most efficient yet complex
is Bayesian optimization.

3.1 Bayesian optimization
Considering a continuous optimization problem:

maxx f(x) s.t.

gi(x) ≤ 0 i = 1, 2, ... m

hi(x) = 0 i = 1, 2, ... p

f(x) represents the function subject to the optimization process, while g(x) and h(x) denote
the inequality and equality constraints that have to be fulfilled by the design vector variables
x ∈ Ω ⊆ Rd.

Bayesian optimization is suitable when[12]:

• The problem dimension is not too large, d ≤ 20;

• Ω is simple set, for instance an hyper-rectangle li ≤ xi ≤ ui (li: lower boundary, ui: upper
boundary);

• f is a continuous function, a necessary condition for Gaussian Process (GP) regression;

• f is costly to evaluate (typically from tens of minutes to a couple of hours);

• f being a black box function implies that its value can be queried at a given point without
possessing any knowledge about its derivatives. Consequently, traditional optimization
methods like gradient descent, Newton’s method, or quasi-Newton methods cannot be
applied due to the lack of derivative information.

• We aim to find the global optimum rather than the local optima.

Bayesian Optimization (BO) harnesses the power of the Gaussian Process (GP), serving as a
statistical representation of the objective function, acting as a surrogate model. This surrogate
model is leveraged by the algorithm to intelligently select the next evaluation point through the
acquisition function.

BO is comprised of two primary processes: Modeling the objective function using Gaussian
Process and determining the sampling policy, which dictates how the algorithm selects the next
point for evaluation [13].

3.2 Gaussian process
Through a Bayesian approach, during the optimization process, unknown design points are
considered to be random variables. This decision has far-reaching implications, as it permits each
variable’s value to be represented in a probabilistic manner, resulting in a cloud of potential values
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that reflects the uncertainty inherent in the surrogate model. Not all values within this cloud
have the same likelihood of manifestation, which is why the surrogate model is accompanied by
a belief about the objective function’s behavior that is supported by probabilistic considerations.
This belief isn’t static and established once and for all; instead, it can be refined when new
evidence emerges from observations. The concept is expressed through the idea of a prior and a
posterior distribution in the field of probabilistic inference. The prior distribution encapsulates
our initial expectations or beliefs about the model, while the posterior distribution represents
the updated belief after new evidence has been incorporated. This iterative process of refining
beliefs based on observed data is the essence of Bayesian inference, enabling continuous learning
and adaptation during the optimization process.

To have a better understanding it is convenient to begin with Gaussian distribution and then
move towards Gaussian Process.

Univariate Gaussian distribution is uniquely defined by mean µ and the standard deviation
σ.

P (x; µ, σ2) = 1√
2πσ

exp

3
− (x − µ)2

2σ2

4
(3.1)

In the case of multivariate Gaussian distribution, the expected or mean value is a vector µ while
the standard deviation σ is replaced by the covariance matrix Σ. Consider a vector x of random
variables.

x =


x1
x2
...

xd

 ∼ N (µ, Σ) (3.2)

x follows a normal distribution with the joint probability given by

P (x; µ, Σ) = 1
(2π) d

2 ∥Σ∥
exp

3
−1

2 (x − µ)T Σ−1 (x − µ)
4

(3.3)

Where d is the dimension of the system, x, µ ∈ Rd and Σ ∈ Rd×d while ∥Σ∥ is the norm of
the covariance matrix.

To better explain the meaning of the entries in the covariance matrix, various examples may
be illustrated, as depicted in Figure 3.1. The covariance matrix, denoted as Σ, is a symmetric,
positive definite square matrix. Each off-diagonal element Σi,j stands for the correlation between
the random variables xi and xj . A value of Σi,j = 0 indicates that xi and xj are uncorrelated,
while Σi,j ̸= 0 suggests a correlation between the two variables; the higher the value of Σi,j ,
the stronger the correlation between the random variables. Σi,i is associated with the standard
deviation of xi. Therefore, the greater the value of Σi,i, the less knowledge or equivalently the
greater the uncertainty we have about the variable xi.

Gaussian distribution is said to be closed under conditioning, marginalization and summation.
Being closed means that the resulting distribution from these operations is also Gaussian.
Usually, it is said: "Once Gaussian always Gaussian".

To explain some properties it is convenient to split the variable x, the mean µ and the
covariance Σ

x =
5

xa

xb

6
; µ =

5
µa

µb

6
; Σ =

5
Σaa Σab

Σba Σbb

6
(3.4)

The properties of the distribution are:
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1. Normalization: Ú
P (x; µ, Σ)dx = 1 (3.5)

2. Marginalization
P (xa) =

Ú
xb

P (xa, xb; µ, Σ)dxb (3.6)

P (xb) =
Ú

xa

P (xa, xb; µ, Σ)dxa (3.7)

xa ∼ N (µa, Σa) (3.8)
xb ∼ N (µb, Σb) (3.9)

3. Summation: If x ∼ N (µ, Σ) and x′ ∼ N (µ′, Σ′)

x + x′ ∼ N (µ + µ′, Σ + Σ′) (3.10)

4. Conditioning: It returns the probability of xa given the xb.

P (xa|xb) ∼ N (µa + ΣabΣbb
−1 (xb − µb) , Σaa − ΣabΣbb

−1Σba) (3.11)

P (xa|xb) = P (xa, xb; µ, Σ)s
xa

P (xa, xb; µ, Σ)dxa
(3.12)

The first important consideration is that the covariance matrix resulting from conditioning
is not influenced by the observed value. Conversely, the new mean value is affected by
nearly all components except Σaa.When variables are uncorrelated (Σab = 0), both the
mean and covariance remain unaffected by any observation.

Marginalization and conditioning are closely related to Bayesian inference. For the sake of
simplicity, we can explain the above property for d = 2. This simplification enhances intuition
by facilitating direct coupling between understanding and observations. Therefore considering a
vector x

x =
5

xa

xb

6
; µ =

5
µa

µb

6
=

5
0
0

6
; Σ =

5
Σaa Σab

Σba Σbb

6
(3.13)

Three different covariance matrices were investigated:

Σ(a) =
5

1 0
0 1

6
; Σ(c) =

5
1 0.3

0.3 1

6
; Σ(e) =

5
1 0.8

0.8 1

6
; (3.14)

Figure 3.1 illustrates the joint probability for each of the above cases.
For case (a), where the variables are uncorrelated, P (xb) = P (xb|xa) (see Figure 3.1(b)),

showing that what happens to one variable doesn’t affect the other.
In case (c), where xa and xb are mildly correlated, knowing system a contributes to a more

confident belief in system b, as evident by a narrower probability distribution. The mean value
of the conditioned system, µb|a, is linearly related to xa.

This relationship is further amplified in case (e), where a greater correlation translates to
a better understanding of system b given a. A tighter distribution increases the confidence of
finding the real value of xb close to µb.

Now that we have defined the basic properties of multivariate Gaussian distributions, Gaussian
Processes become straightforward. In a Gaussian process, every point is considered a random
variable. The only remaining challenge is how to construct the mean and the covariance matrix.
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Figure 3.1: In the left column, the multivariate Gaussian distributions for three different
covariance matrices are illustrated. On the right, the probability of xb is presented. The black
curve is associated with the univariate Gaussian distribution with σ = Σbb and µ = µb = 0.
The colored lines represent the conditioning probability of xb given xa. P (xb|xa) is equivalent to
sampling the multivariate Gaussian Distribution with a line of constant xa. The sampling lines
are the dotted white lines on the right

It is possible to simplify the expression of conditioning by setting the average to 0, which is
a common practice. However, any arbitrary value can be chosen since it does not significantly
impact the Gaussian Process (GP). On the other hand, building the covariance matrix Σ is the
defining characteristic of the GP.

Σ is built from the covariance function, also known as the kernel of the GP. Different types
of kernels exist, each suitable for fitting functions with certain characteristics. Understanding
the geometric features of the fitted curve and choosing the kernel wisely can notably affect the
regression process.

One of the most commonly used kernel functions is the Radial Basis Function kernel (RBF).

kRBF (x, x′) = σ2
kexp

3
−∥x − x′∥

2l2

4
(3.15)

The interpretation of the hyperparameter involved is simple. l sets the correlation length,
meaning that the greater is l the more distance takes fot the correlation to fade out. If l is small
two points close to each other are most probably very low correlated.

Σi,j = σ2
kexp

3
−∥xi − xj∥

2l2

4
(3.16)

Σi,i = σ2
k (3.17)

It is clear now that the kernel function determines our prior belief regarding the function,
taking into account our assumptions about the correlation length l and the uncertainty around
the function values.
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Marginalization and conditioning now come in handy. Calling xa the testing points and xb

the sampling points, by conditioning the prior (µ = 0) with the sampling data we have the
posterior probability:

P (xa|xb) ∼ N (ΣabΣbb
−1xb, Σaa − ΣabΣbb

−1Σba) (3.18)

Figure 3.2: The figure above illustrates the prior distribution with some samples. The initial
average value is set to zero, and the variance is homogeneous. Acquiring knowledge about the
system, by points sampling, modifies both the mean and the standard deviation distributions
depicted in the bottom figure.

3.3 Acquisition function
Given our belief about the objective function through the surrogate model, the next question to
address is how to choose the next point where evaluate the function. Two strategies are available:
exploration and exploitation.

Exploration focuses on discovering unknown regions of the design space, potentially leading
to better solutions than those already found. Exploitation involves leveraging known information
or exploiting regions of the design space believed to contain good solutions.

Both approaches have pros and cons. An exploration-oriented algorithm may be slow to
converge while being overly focused on exploitation can lead to premature convergence.

An optimal search strategy dynamically adjusts the balance between exploration and exploitation.
This adaptability allows the algorithm to explore new regions while also exploiting known
information to converge efficiently toward the optimal solution.

During each iteration of the optimization process, an optimization policy examines the
available data and selects a point where the next observation will be made. To accomplish
this, another function called the acquisition function is introduced. The next point to evaluate
the objective function is chosen to maximize the acquisition function.

37



Optimizing the objective function translates into subsequent maximization of the acquisition
function, with one significant difference: while the objective function is known only at discrete
points where it has been evaluated, the acquisition function is known everywhere in the domain
and is much easier and less expensive to optimize.

There are numerous acquisition functions available, but three common ones include:

• Upper Confidence Bound (UCB);

• Probability of improvement (PI);

• Expected improvement (EI);

3.3.1 Upper Confidence Bound
The simplest acquisition function that can be built is the Upper Confidence Bound (UCB).

αUCB(x) = µ(x) + λσ(x) (3.19)

By tuning λ is it possible to balance between exploration and exploitation.

3.3.2 Probability of Improvement
The fundamental idea is to focus on areas where there is the greatest potential for improving the
objective function, regardless of the extent of the improvement.

Gaussian Process (GP) enables us to describe the function f(x) in terms of normal distribution
with a mean of µ and standard deviation of σ.

f(x) ∼ N (µ(x), σ2(x)) (3.20)

This implies that f can assume different values, with some more likely than others.
Defining a new function I(x) as:

I(x) = max(f(x) − f(x∗), 0) (3.21)

f(x∗) is the best solution found so far. I(x) makes feasible the definition of the acquisition
function αP I(x):

αP I(x) = P (I(x) > 0) (3.22)

Calling with z0

z0 = f(x∗) − µ(x)
σ(x) (3.23)

αP I(x) = P (f(x) > f(x∗)) = 1 − Φ(z0) = Φ(−z0) = Φ
!µ(x) − f(x∗)

σ(x)
"

(3.24)

Where Φ(z) is the cumulative distribution function.
It is possible to gain an understanding of the meaning of equation 3.24 by referring to Figure

3.3. Drawing a horizontal line at the level of f(x∗), the next point to sample is the point with
the most shaded region above the horizontal line. As depicted, near the sampled points where
the uncertainty is close to zero, the acquisition function is also zero.
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Figure 3.3: 5 steps of BO iterations with PI as acquisition function.

3.3.3 Expected improvement
It has been previously mentioned that PI accounts only for an improvement, not necessarily the
best improvement. To take into account also the magnitude of this improvement, a modification
of the acquisition function is required.

αEI(x) = E[I(x)] =
Ú +∞

−∞
I(x)φ(z)dz (3.25)

Where φ(z) is the normal distribution φ(z) ∼ N (0, 1) .

φ(z) = 1√
2π

exp

3
−z2

2

4
(3.26)

αEI(x) =
Ú +∞

−∞
max(f(x) − f(x∗), 0)φ(z)dz (3.27)

Exploiting the additive integral properties:

αEI(x) =

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿=0Ú z0

−∞
max(f(x) − f(x∗), 0)φ(z)dzü ûú ý +

Ú +∞

z0
max(f(x) − f(x∗), 0)φ(z)dz

since I(x) = 0

αEI(x) =
Ú z0

−∞
(f(x) − f(x∗))φ(z)dz (3.28)

Recalling that f(x) can be expressed as f(x) = µ(x)+σ(x)z, after some algebraic manipulations

αEI(x) =
!
µ(x) − f(x∗)

"
Φ

1
µ(x)−f(x∗)

σ(x)

2
+σ(x)φ

1
f(x∗)−µ(x)

σ(x)

2
(1) (2)

(3.29)

The interpretation of the above equation is crucial to understand the essence of the expected
improvement policy. EI assumes high values when:

• µ(x) ≫ f(x∗) because the first term (1) equation 3.29 is the product between two monotonic
function of µ(x) − f(x∗). It is also important that the uncertainty σ is low because for a
fixed (µ(x) − f(x∗), Φ

1
µ(x)−f(x∗)

σ(x)

2
increases as σ(x) decreases.

39



• The mean value is close to the best found up to that iteration µ(x) ≃ f(x∗) and the
standard deviation σ is high. Under this circumstance term (1) is close to zero, but φ is
close to its maximum value (bell curve with a maximum close to the mean). Therefore the
second term (2) rules the equation 3.29 since it is the product between σ and φ.

Figure 3.4: 5 steps of BO iterations with EI as acquisition function.

3.4 High dimensional data post-processing: classical Multi
Dimensional Scaling (cMDS)

As data structures become increasingly complex, new techniques are needed to interpret the
gathered information. In recent years, dimensional reduction techniques have gained popularity
due to their ability to represent data in lower dimensions (typically 2D or 3D) while preserving
the key intrinsic characteristics of the original data [23].

MDS offers a valuable advantage by representing complex data structures as geometrical
images, making it an effective tool for data visualization. One of its many applications is
identifying quantitative or qualitative similarities among points within a dataset [37]. For
example, in 1968, 18 students were asked to rate the similarities between various countries.
An MDS analysis (depicted in figure 3.5) revealed the unconscious criteria that influenced the
students’ judgments. As shown in the figure, two lines can be drawn that divide the countries
based on two criteria: developed vs. developing nations and pro-Western vs. pro-Communist
countries. Countries within the same quarter marked by the dotted line share the same two
characteristics.

While it is feasible to define similarity or dissimilarity qualitatively, like in the previous
example, engineering applications focus heavily on quantitative comparisons. Additionally, if
the data belong to Euclidean space, classical Multidimensional Scaling (MDS) proves suitable
for dimensional scaling. Within Euclidean space, dissimilarity is quantified by the distance
between two points, while similarity is assessed via the inner product.

The task of MDS can be summarized as follows: given a data set H = {x1, ..., xn} ∈ χ ⊂ RD

find an embedding F : χ → Rd with d ≤ D such that

∥xi − xj∥ = ∥F (xi) − F (xj)∥ (3.30)

This statement ensures that the Euclidean distance between any pair of original data points xi

and xj is preserved in the lower-dimensional space defined by F (x).
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Figure 3.5: Similarity and dissimilarities among countries, deduced from a questionnaire, after
MDS

3.4.1 cMDS
Defining the Euclidean distance between two points a and b with a, b ∈ RD as

d2(a, b) = ∥a − b∥ =

öõõô DØ
k=1

(ak − bk)2 (3.31)

Given the data set H = {x1, ..., xn} ∈ χ ⊂ RD the inter-points distance matrix is defined

D = [Dij ] = [d2(xi, xj)] (3.32)

And the Euclidean square distance matrix

S =
#
d2

2(xi, xj)
$

(3.33)

The distance between two points remains invariant under shifting and rotation of the frame of
reference. Consequently, the matrices D and S are symmetric and also invariant to rotation and
shifting. These matrices serve as measures of dissimilarities between points, whereas similarities
can be gauged using the inner product.

⟨a, b⟩ =
DØ

k=1
akbk (3.34)

The inner products of the points within the data set H are stored in G, which represents the
Gram matrix.

G = [Gij ] = [⟨xi, xj⟩] (3.35)
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Using the law of cosine a relation between the distance matrix and the Gramm Matrix can
be found:

Dij =
ð

Gii + Gjj − 2Gij (3.36)

The Gram matrix is not shifting invariant. To establish a stronger and more stable relationship
between G and D, it is advantageous to choose a frame of reference such that the origin coincides
with the center of H .

x = 1
n

nØ
i=1

xi (3.37)

The hat denotes the vector in a centered frame of reference x̂i = xi − x and Ĥ is the center
data set. If we denote with X a data matrix which columns are the data xi

X = [x1, ..., xn] (3.38)

It is possible to go from X to X̂ = [x̂1, ..., x̂n] by a matrix multiplication

X̂ = HX (3.39)

Where H is known as the centering matrix:

H = I − 1
n

E (3.40)

I is the identity matrix and E is a matrix filled with one (Eij = 1). Similarly, the Gram matrix
expressed in a centered frame of reference Gc

Gc = HGH (3.41)

Euclidian square distance Matrix Sc and the centering Gram matrix Gc are related by the
following equation

Gc = −1
2Sc (3.42)

It can be proven that if Gc has rank r, then there exists a centered vector set Y = y1, ..., yn ⊂ Rr

such that
d2(x1, x2) = d2(y1, y2) (3.43)

This implies that it is possible to represent the data set in a low-dimensional space without
altering the inter-point distances if the embedded space has a dimension larger or equal to r.
However, if r ≫ 3, visualizing the data set remains challenging, and thus, no substantial benefits
can be drawn from this transformation. At times, we must compromise the need for visualization
by forgoing the exact representation of the inter-point distances. When Y = {y1, ..., yn} ⊂ Rd

with d < r, inevitably
d2(x1, x2) ̸= d2(y1, y2) (3.44)

To measure how distorted is the embedded space, compared with the original space, a loss
function η (Y ) is introduced:

η (Y ) =
nØ

i=1

nØ
j=1

!
d2

2(x1, x2) − d2
2(y1, y2)

"
(3.45)
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It is evident that the loss function must be minimized to reduce the distance distortion introduced
by reducing the dimension of the data set. Therefore, denoting Y = [y1, ..., yn] as the reduced
data set, Y is the solution of the optimization problem when:

Y = arg [min η (Y )] (3.46)

For classical Multidimensional Scaling (cMDS), it can be proven that the solution to the
minimization problem is given by the spectral decomposition of the Gram matrix. Let λ1, λ2, ..., λd

denote the d largest eigenvalues of the Gram matrix G, and u1, u2, ..., ud represent the corresponding
eigenvectors. These eigenvalues and eigenvectors are collected in two matrices.

Λd =
èð

λiδij

é
(3.47)

Ud = [u1, u2, ..., ud] (3.48)

Y = ΛdU ′
d (3.49)

Λd ∈ Rd×d, Ud ∈ Rn×d, Y d ∈ Rd×n and δij Kronecker delta.
A closed formulation of the loss function is also available for cMDS:

η (Y ) =
rØ

i=d+1
σ2

i (3.50)

Where σi is obtained by the Singular Value Decomposition SVD of the Matrix X̂.

X̂ = V Σ∗W (3.51)

Σ∗ = [σiδij ], σi > σj i, j = 1, ..., r and i < j
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Chapter 4

Numerical Set-up

This chapter is dedicated to presenting the numerical tools employed for the subsequent calculations.
The numerical framework comprises four blocks in series, meaning that the output of one block
serves as the input for the next, as figure 4.1 shows.

BLES LST Filter

INPUTS
OUTPUTS

Developed

Figure 4.1: Blocks for computing the transition location. BLES computes the velocity fields,
LST uses them as input to solve the OR equation. The filter selects the dominant roots while
eN is the transition prediction method selected to estimate the transition point.

4.1 Boundary Layer Equation Solver BLES
It is invoked to solve the boundary layer equations described in the previous chapter. BLES
takes as input:

• Geometry: This includes the height of the computational domain (H) and the length of
the plate (L).

• Number of grid points: Nx grid points in the stream-wise (x) direction and Ny grid points
in the wall-normal (y) direction, resulting in a total of Nx × Ny nodes.

• Boundary conditions:

44



- Inflow BC. It starts the marching from a Falker-Skan velocity profile with an equivalent
Hartree parameter to the local external velocity;

- Wall boundary condition: No-slip velocity (u(x, y = 0) = 0) is enforced, with an
option for a permeable wall to implement suction (v(x, y = 0) = vw).

- BL edge boundary condition: Ue(x) is obtained from external or inviscid calculations.

• Fluid properties: Kinematic viscosity (ν) and fluid density (ρ);

• Free stream velocity: U∞

The outputs include the velocity field and its derivatives up to the second order. The main
quantities of interest are u, v, ∂u

∂y , and ∂2u
∂y2 .

Figure 4.2: Output of BLES. The dotted lines define the boundary of the suction region while
the suction velocity is illustrated in the figure below and it is equal to 0.1% of the free stream
velocity.

In the y direction, the grid points feature a Chebyshev distribution, while in the x direction,
the grid is equally spaced. The scheme in the y direction is N th

y order accurate, whereas, in
the x direction, it is only second-order accurate. The nonlinear momentum equation is solved
using a simple algorithm, with an implemented check for laminar separation inside the code.
An example of the BLES velocity field is shown in Figure 4.2, where the x component u of the
velocity is represented. The boundary layer (BL) is identified as the region where colors change
rapidly, indicating high-velocity gradients. In the top figure, a natural boundary layer evolution
is depicted, while the bottom figure illustrates the effect of suction. In the region where suction
is applied, there is a noticeable reduction in the BL thickness or a local acceleration of the flow.

4.2 Linear Stability Theory (LST) solver method
The Orr-Sommerfeld equation is commonly used to study the hydrodynamic stability. It is a
nonlinear eigenvalue equation in the parameter α. Mathematically, this parameter represents the
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eigenvalue of the OS equation, while from a physical standpoint, it denotes the wavenumber of
the perturbation under consideration. To solve nonlinear eigenvalue problems, two main methods
have been developed over the years. The first is the "shooting method" with ortho-normalization,
as described by Keller [19]. This method is effective when a good initial approximation of the
solution is available, and it involves an iterative algorithm to integrate the approximated solution
over the entire domain until the boundary conditions coincide with those imposed. However, the
convergence of this method heavily depends on the quality of the initial estimate.

In situations where such an estimate is unavailable, the method introduced by Bridges and
Morris [5], commonly known as the companion matrix method, is preferred. This method is, in
fact, independent of the initial solution estimate. As our code implements this method, we will
proceed with a detailed description.

Firstly, it is essential to discretize the eigenfunctions by utilizing Chebyshev nodes. This initial
step is imperative in approximating the differential operators through matrix-vector products -
a crucial aspect in the progression of the solving methodology. By utilizing a spectral approach,
the accuracy of the approximate solution is further improved, surpassing the less precise finite
differences method. Let us now delve into the Orr-Sommerfeld equation.

31
d2

dy2 − α2
22

− i Re
è
(αU − ω)

1
d2

dy2 − α2
2

− αU ′′
é4

ϕ = 0

ϕ = 0 ; y = 0, y → ∞
ϕ′ = 0 ; y = 0, y → ∞

(4.1)

Observing equation (4.1), one notices the increased complexity associated with the spatial
approach compared to the temporal approach. While the temporal approach treats the Orr-
Sommerfeld equation as a linear eigenvalue equation in ω, the spatial approach delves into the
spatial evolution of disturbances characterized by given frequencies ω, resulting in a nonlinear
eigenvalue equation in the eigenvalues α. In this spatial context, the appearance of α with a
fourth power adds difficulties in the solution process, making it non-trivial.

The companion matrix method is applied having first discretized the coordinate y by introducing
Chebyshev nodes.

ηj = cos((j − 1) π

Nc − 1) ; −1 ≤ η ≤ 1 ; j = 1, 2, ...Nc; (4.2)

With Nc the number of Chebichev nodes. Since the coordinate y is upper-unbounded, a
transformation capable of mapping the interval [0, y∞] to [-1, 1] is required. Motsa and Makukula
have proposed the following transformation [26]:

y = y∞
1 + η

2 (4.3)

The function ϕ can be approximated using Chebyshev polynomials Tk(η).

ϕ(η) =
NØ

k=0
akTk(η) (4.4)

with

ak(η) = 2
Nbk

NØ
m=0

1
bm

Tk(ηm)ϕ(ηm) (4.5)

;
bk = 1 k = 1, 2, ..., Nc − 1
b0 = bN = 2 (4.6)
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Having placed the nodes according to the Chebyshev distribution, it becomes possible to
express derivatives using the Chebyshev differentiation matrix, which possesses a well-known
structure.

ϕ(1) = Dϕ (4.7)
ϕ(2) = D(2)ϕ (4.8)

The derivatives in equation (4.1) are with respect to y, whereas the differentiation matrices
express derivatives with respect to the variable η. It is necessary to rescale the derivatives before
discretizing them with the differentiation matrices.

dϕ

dy
= dϕ

dη

dη

dy
= 2

y∞

dϕ

dη
(4.9)

By introducing D̃

D̃ = 2
y∞

D (4.10)1!
D̃2 − α2I

"2 − i Re
#
(αUI − ωI)

!
D̃2 − α2I

"
− αU ′′I

$2
ϕ = 0 (4.11)

Rearranging and grouping the terms appropriately, we get:

C4α4 + C3α3 + C2α2 + C1α + C0 = 0 (4.12)
C4 = I
C3 = iReUI

C2 = −(iωReI + 2D̃2)
C0 = D̃4 + iReωD̃2

(4.13)

All matrices are of size Nc × Nc .
The roots of Equation (4.12) are the eigenvalues of the companion matrix introduced by

Bridges and Morris.


−C1 −C2 −C3 −C4
I 0 0 0
0 I 0 0
0 0 I 0

 − α


−C0 0 0 0

I 0 0 0
0 0 I 0
0 0 0 I





α3ϕ
α2ϕ
αϕ
ϕ

 =


0
0
0
0

 (4.14)

4.2.1 LST solver
The method utilized by the solver and described in the previous paragraph requires dimensionless
variables and parameters as input. These variables are denoted with a star (·)∗ to distinguish
them from their dimensional counterparts. The following quantities are the required inputs:

• Re = Ue(x)δ1(x)
ν : The Reynolds number at station x where stability is evaluated. Here, δ1

represents the displacement thickness while Ue denotes the velocity outside the boundary
layer.

• u∗(x, y) = u(x,y)
Ue(x) : the velocity profile normalized by the external velocity.

•
1

d2U(x,y)
dy2

2∗
= d2U(x,y)

dy2
δ2

1(x)
Ue(x) : the second derivative of the velocity profile with respect to y,

normalized accordingly.
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• y∗ = y
δ1(x) : the normalized y coordinate.

• ω∗ = ωδ1(x)2

Ue(x) : the dimensionless disturbance frequency.

The solver will provide a set of Nc eigenvectors stored in a (Nc × Nc) matrix. Each vector is
associated with its dimensionless eigenvalue. The value of Nc is equal to the size of the vector y
i.e. Nc is the number of Chebyshev grid points.

Some of the solutions obtained may be deemed spurious, representing purely numerical
artifacts devoid of any physical significance. Among the Nc solutions, only a subset will be
compatible with the velocity perturbation inside the boundary layer, which we refer to as physical
solutions. To apply the eN method effectively, we require only the dominant root, corresponding
to the wave number associated with the least damped stable mode or the most amplified unstable
mode. It becomes evident from this discussion that a filtering process is necessary, initially
to distinguish between numerical and physical solutions, and subsequently to select the most
relevant physical solution for the transition.

4.3 Filter
In order to assess the velocity profile stability, it is necessary to couple the solver with a filtering
function at least for discarding spurious solutions.
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Figure 4.3: Spectrum of Blasius profile with Reδ1 = 800, ω∗ = 0.08 and Nc = 100. The vertical
line divides upstream and downstream traveling perturbations, while the horizontal line splits
the spectrum into stable and unstable modes

To begin, it’s important to choose the eigenvalues with real parts greater than zero, α∗
r > 0.

The real part of the eigenvalue is directly connected to the phase velocity c∗
r . α∗

r > implies
that c∗

r > 0, causing perturbations to move from the leading edge to the trailing edge of the
flat plate. Figure 4.3 illustrates this concept, with the spectrum divided by a vertical line into
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Figure 4.4: Figure shows the real part of 5 out of the Nc eigenfunctions that LST provides. The
black curves are spurious solutions, the blue curve corresponds to the physical solution.

downstream-traveling perturbations on the right and upstream-traveling perturbations on the
left.

The filter method originally implemented was based on cross-correlations between the eigenvector
from the LST and a base reference function. However, this cross-correlation filter carries two
disadvantages:

• The effectiveness of the method heavily relies on the choice of the base shape utilized in
cross-correlations. When tested against various Falkner-Skan profiles, the method failed
in most cases, particularly when the Hartree parameter deviated from zero (a value that
corresponds to the flow for which the base reference function is computed).

• The cross-correlation operation is computationally expensive. For accurate stability analyses
the stability of a substantial number of profiles is reviewed, and tested against perturbations
densely spread inside a broad frequency range. Looking at the stability plane, the above
statement immediately translates into having a very fine grid that discretizes Reδ1 −ω space.
The other parameter that operates is the number of Chebyschev nodes directly involved in
the OS equation. It is obvious that once accuracy is required the filtering process becomes
time demanding, up to the point when it is as expensive as the LST solver. The next
example will provide a direct perception of how things can escalate in a blink of an eye.
Suppose stability curves are desired over an evenly spaced interval of Reynolds numbers
ranging from 400 ≤ Re ≤ 3000 and frequencies ranging from 50 to 400 rad/s, typical values
for a flat plate, with NRe and Nω points used to discretize these intervals, respectively. The
number of cross-correlations performed is Nc × NRe × Nω. For instance, using Nc = 100,
NRe = 100, and Nω = 100, the number of cross-correlations to be performed is on the
order of a million.

Therefore, efforts were made to address these difficulties by creating a filter that leverages the
geometric properties of eigenfunctions, aiming to be independent of any base shape and thus
assume a universal validity.
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Among the Nc solutions from the stability solver, the filter’s task is to select only the
correct eigenvalue. Observing eigenfunctions across various spectra led to the conclusion physical
solutions:

• Exhibit one and only one maximum of Real(ϕ) for y/δ1 < 3.

• Have Real(ϕ) > 0.

To give a hint about what the real part of the eigenvectors, directly taken from LST, could
possibly look like, some of them (5 out of the 98 eigenvalues) are shown in figure 4.4. It is evident
that, among those depicted, there is only one physical that is colored in blue. For the sake of
clarity, each group of Nc modes has more than one physical solution.

This paradigm shift, from cross correlations to eigenfunctions geometrical characteristics,
allowed the filter to be 10 times faster than the original one. However, challenges arise when ω
drops too low. In this scenario, the shape of the eigenfunction deviates from the classical one,
and wiggling in the eigenfunctions begins to occur, giving a hard time for the filter to operate.

Figure 4.5: Eigenfunctions associated with different value of ω for Reδ1 ≃ 598. The one with the
lowest angular frequency shows some wrinkles.

Generally speaking, the geometrical filter can always be applied when the point we query
for stability lies inside the unstable region of the stability map. When we step outside of the
unstable region, the geometrical filter may fail. In this case, a cross correlation is used. Since for
one Reδ1 , or equivalently x station, the stability of multiple modes is investigated it is possible
to combine both approaches. Indicating with

ωLB = arg
è
min

ω
(αi(ω, Reδ1) = 0)

é
(4.15)

LB stands for Lower Branch and Reδ1 is fixed.;
ω ≥ ωLB ; Geometrical filter works
ω < ωLB ; Geometrical filter may not work

(4.16)
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Figure 4.6: Flow chart that summarizes the filtering operations

The strategy applied for the filter is explained in figure 4.6. Given a velocity profile and a
set of angular frequencies

ω∗ = [ω∗
1 , ω∗

2 , ..., ω∗
Nω

]; ω∗
i > ω∗

j , i > j, 1 ≤ i, j ≤ Nω (4.17)

The filter starts to analyze the modes with the highest angular frequency to be sure that the
application of the geometrical filter is feasible. For each current ωi, it stores the eigenfunction
associated with the dominant root (the letter p ahead of α and ϕ means previous). When the filter
moves to the following angular frequency, it starts applying the geometrical filter. If a solution
is found the eigenfunction and eigenvalue stored are updated. Otherwise, when the geometrical
filter fails a cross correlation between the stored eigenfunction, related to the previous ω∗, and
the Nc eigenfunctions of the current ω∗ is performed. To be chosen are those which have a cross
correlation coefficient above a threshold value, and then, only the one with the lowest imaginary
part of the wave number is selected and stored.

Essentially, the filter always tends to apply the geometric criterion. In cases where this
criterion fails, the filter degrades from the geometric criterion to cross-correlation, using the real
part of the eigenfunction calculated in the previous step as the base shape. This solution provides
the filter with both speed and robustness, inheriting the best from each approach.

4.3.1 Filter Validation
The LST solver and the filter were validated by comparing the results delivered with reference
literature solutions.

The LST solver was further assessed by examining Falkner-Skan profiles across varying
Hartree parameters, aiming to validate its performance under adverse (Figure 4.8) and favorable
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Reδ1 ω∗ Jordison Danabasoglu LST
336 0.1297 0.3084+i0.0079 0.3086+i0.0079 0.3082+i0.0079
598 0.1201 0.3079+i0.0019 0.3080+i0.0018 0.3078-i0.0018
998 0.1122 0.3086-i0.0057 0.3087-i0.0056 0.3085-i0.0056

Table 4.1: Validation of LST+filter. Comparison between the dominant roots for three different
combinations of Reδ1 − ω∗ [9]
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Figure 4.7: Stability curves for Blasius boundary layer. On the left figure provided by Frasson
[11] while on the right stability curves calculated with LST + filter. F is the dimensionless
angular frequency defined by the equation 2.48

(Figure 4.9) pressure gradient conditions [38]. This rigorous evaluation ensures the reliability
and applicability of the solver to evaluate the stability of an airfoil BL .
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Chapter 5

Optimal LFC implementation

The initial section of this chapter clarifies the impact of suction on various quantities. The
subsequent section is geared towards establishing an efficient numerical framework necessary for
proceeding to the optimization phase.

5.0.1 LFC control of suction
Consider a flat plate immersed within a flow with a free stream velocity U∞. At a distance xs

from the leading edge (LE), a porous panel allows for uniform suction with velocity vw. The
suction region extends over a length d until the solid wall begins again to form xe (see Figure
5.1).

Suction is characterized by three parameters, [xs, xe, vw], referred to as suction variables
henceforth.

From a pragmatic standpoint, removing air near the wall effectively eliminates low-momentum
flow, consequently reducing boundary layer thickness. Another perspective on this effect involves
examining the trajectory of a fluid particle within the flow. It was previously mentioned that
a fluid particle, starting from the leading edge, is advected along the x by the bulk velocity,
while a "virtual" friction velocity allows the particle to move also in the wall normal direction y.
The displacement of the fluid particle in the y-direction serves as a measure of boundary layer
thickness, or at least represents the rate of boundary layer growth.

In steady flows, the trajectory of fluid particles coincides with streamlines, which are depicted
in figure 5.2

Figure 5.2 contains a wealth of information regarding both the equation used to model the
physics and the physics itself. The gray color represents the natural evolution of the boundary
layer (BL), while the blue lines depict the BL with suction control. Initially, before entering
the shaded regions, all lines overlap. This holds for most of the region upstream of the slot,
although the effects of suction right upstream of the slot are present. Unfortunately, considering
BL equations with a parabolic nature do not allow for the inclusion of this effect. Shortly after
the suction begins, the streamlines deviate, indicating that particles in the suction region move
closer to the wall. It is reasonable to assume, therefore, that the BL thickness will decrease
between the starting and ending points of the suction. This reduction is further confirmed by
Figure 5.3, which demonstrates an overall reduction in BL thickness. Another significant aspect
is how the profiles become fuller and hence more energetic.

The cause of this phenomenon is also evident from Figure 5.2. Fluid particles farther from
the wall possess greater velocity. When these particles are drawn towards the wall by the suction,
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Figure 5.1: Sketch of the geometry and suction configuration. xs and xe indicate the boundaries
of the porous panel or, alternatively, the location where suction starts and ends. Suction here is
represented by vertical arrows above the porous panel as expression of the suction velocity vw

Figure 5.2: Comparison between the enforced laminar flow and LFC with suction(xs = 1.2 [m],
xe = 1.8 [m] vw/U∞ = −0.02/100). The gray lines refer to laminar base flow, while the blues to
the LFC. Dotted lines represent the stream lines while continuous lines the velocity profiles

they carry their original momentum with them. Consequently, the lower region in the boundary
layer (BL) is enriched by the higher momentum originating from the upper region of the BL.
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Figure 5.3: Comparison between the enforced laminar flow(dotted lines) and LFC with
suction(continuous line).Suction configuration: xs = 1.2 [m], xe = 1.8 [m] vw/U∞ = −0.02/100.
Black lines represent the displacement thickness δ1, blue lines the BL thickness δ99 and the gray
line the momentum thickness θ

Figure 5.4: Comparison between the friction coefficient of the enforced laminar flow (dotted
lines) and LFC with suction (continuous line). Suction configuration: xs = 1.2 [m], xe = 1.8 [m]
vw/U∞ = −0.02/100.

One consequence of this more energetic boundary layer is the increase in skin friction coefficient
or wall shear stresses compared to the case where laminar flow is enforced across the entire flat
plate (Figure 5.4).

The effects of suction on stability are widely recognized, as a solution for a boundary layer with
uniform and continuous suction was already derived by Prandtl. Suction makes the boundary
layer more stable and therefore less susceptible to transition by removing low-energy fluid from
it.

Suction enhances the stability of the profile by acting on two fronts: reducing the boundary
layer thickness, as previously mentioned. A thinner boundary layer is less prone to transition;
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producing a laminar velocity field that has a higher indifference Reynolds number [30].
Figure 5.5 serves as a summary of the preceding discussion and introduces further analysis.

The top two figures illustrate the fuller profile previously depicted and explained in Figure 5.2.
The two middle figures represent the increase in velocity derivatives ∂u/∂y at the wall, resulting
in higher friction drag. The third row of figures is closely related to stability considerations.

The wall compatibility condition reads:

ν
∂2u

∂y2 = vw
∂u

∂y
+
✟

✟✟✟✟1
ρ

dPe(x)
dx

(5.1)

Rayleigh’s inviscid stability analysis led him to propose the inflection point criterion, which
states that the presence of an inflection point in velocity profiles is a necessary condition for
the onset of instabilities. However, it’s important to note that the Orr-Sommerfeld equation for
viscous fluids is more complex than the inviscid equation solved by Rayleigh. Therefore, while
Rayleigh’s results are not considered definitive, they can still serve as a useful rule of thumb.

Suction/blowing and pressure gradient act on the stability in the same manner.

• Blowing. vw > 0 and this leads to a negative curvature at the wall. Somewhere in the
upper BL region, the curvature is positive in order to allow the velocity to blend with the
external boundary layer velocity. Due to Hilbert’s Nullstellensatz the second derivatives
must have at least one zero in the middle of the domain allowing the profile to be unstable

• Solid wall vw = 0: the inflection point is at the wall.

• Suction. vw < 0: the lack of an inflection point is the cause for a more stable profile
according to the inflection point criterion.

We can understand why the suction has only a local influence on the stability. As long as
suction is applied over some regions, velocity profiles have no inflection points, pushing away the
threat of instability. However, soon after, where vw = 0, the inflection point comes back at the
wall and with it, the possibility of having instability.

Both Figure 5.6 and 5.7 depict the concept clearly. Upon applying suction, the area of
application attains stability, causing the stability map to divide into two parts (as illustrated
in Figure 5.7). Consequently, the perturbation amplitude decreases, which is evident from the
reduction in the envelope (as shown in Figure 5.6).

5.1 LST automatization
5.1.1 Grid independence study
Before performing any optimization, fine-tuning of the grid parameters is needed in order to
achieve both accuracy and speed. The relevance of this operation can be understood by looking
at it from an optimization loop perspective, where the same calculations are repeated thousands
of times. Saving a small amount of time for each iteration translates into saving hours during
the entire optimization process. To provide a perspective, let’s assume that, at the end of this
tuning process, we manage to reduce the solver computation time by 20 seconds. Considering
that the optimization evaluations are in the order of 1000, this translates into saving 20,000
seconds, approximately 5 hours, that would have been otherwise wasted.
MATLAB code is primarily divided into two solvers: BLES and LST. BLES generates velocity
profiles that serve as the initial inputs for the LST solver, which performs stability calculations.
As a result, the following analysis will also be split into two parts, corresponding to the functionality
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Figure 5.5: Comparison between the enforced laminar flow (dotted lines) and LFC with
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Figure 5.6: Comparison between the envelope of the enforced laminar flow (dotted lines) and
LFC with suction(continuous line).Suction configuration: xs = 1.2 [m], xe = 1.8 [m] vw/U∞ =
−0.02/100.

of these solvers.
To assess the independence of BLES from the grid, we start defining two different grids which
will be involved in the next paragraphs, referred to as computational and sampling grid. The
former pertains to the grid employed for solving the BL equation, whereas the latter pertains to
its utilization in the assessment of convergence rate. The reason for their introduction will be
clarified later.
The BLES requires some kind of discretization of the continuum physical domain to solve the
boundary layer equation. As was already mentioned in the designated section, the plate length
L is divided into Nx equally spaced points, while, along the y coordinate, the total number of
points Ny that discretize the height H, obey a Chebyshev distribution. The reason for the name
“computational grid” now becomes clear since it is the grid used in the first place to compute
the velocity profiles.
Changing the number of discretization points has different effects in terms of cost and accuracy
that we wish to obtain. The cost to run a simulation is easily measured in terms of the time
required by the solver to complete the calculation, therefore it is easy to get an estimation.
On the other hand, measuring the accuracy, under the involved circumstances, is not trivial.
Usually, the convergence study is performed on some target integral quantity we are most of
the time interested in. Changing of the target quantities with the grid are tracked and when no
substantial changes are spotted, the numerical solution can be regarded as independent from the
discretization.

When BLES is involved, our interest lies in the velocity profiles and their curvature since these
two are the main inputs for the following solver that deals with the OS equation, therefore they are
selected as target quantities. Opting for this particular choice gives rise to numerous challenges.
For start, the points in space where the solution is computed change as the computational grid
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Figure 5.7: Iso-curves of constant amplification factor αi ≤ 0. The above figure refers to the
natural case, while the bottom figure represents the stability diagram in the case of LFC with
suction. The suction region here is bounded by the two black vertical lines

changes, therefore it is impossible to directly compare the solution coming from BLES without
doing some operation first. A workaround is to map the velocity field from the computational grid
to another grid, fixed in the physical space and therefore independent from the discretization grid.
At this juncture, a second grid comes in handy. This grid is introduced to collect information
on the velocity field consistently at the same position, an operation commonly referred to as
sampling. Given that the primary objective of this grid is to sample the velocity field, it is
appropriately named the sampling grid.

Several simulations were conducted by progressively increasing the number of discretization
points in the x and y directions of the computational grid. We refer with nx and ny as the total
number of sets of Nx and Ny under investigation.
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y

The time required to solve the boundary layer equations is computed by using the combination
of the MATLAB commands tic and toc, giving the information on the computational cost in
terms of seconds. From figure 5.10 we can infer that the dependency of the time respect Nx

and Ny is completely different. A small change in the number of Ny nodes is responsible for a
significant increase in the computational time while the dependence on Nx is far milder.

Unfortunately, the available data are insufficient to draw any conclusions regarding the
computational grid, as the determination of the number of nodes required for convergence is
still pending. To address the question, an operator referred to as ’δ’ needs to be introduced. For
a given computational grid defined by the parameters (k, h), a matrix is constructed containing
the x component of the velocity vector evaluated at the sampled grid points. This matrix is a
4th-order tensor denoted by four indices Ui,j,k,h.

Ui,j,k,h

• i: x sampling grid point

• j: y sampling grid point

• k: x-computational grid index (Nk
x nodes along x)

• h: y-computational grid index (Nh
y nodes along y)
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Figure 5.9: BLES solution time as a function of the nodes along x and y.

Figure 5.10: BLES solution time as function Ny and Nx, here introduced as curves parameter.

Using this matrix, we can assess the rate of variation of Ui,j,k,h respect to h and k, which
indicates how the field at the sampled grid points is influenced by the computational grid.

(δyU)h,k = | U:,:,k,h+1 − U:,:,k,h |2
| U:,:,k,h+1 |2

(5.2)

(δxU)h,k = | U:,:,k+1,h − U:,:,k,h |2
| U:,:,k+1,h |2

(5.3)
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The same operator δ is also applied to the curvature of the velocity profile, represented by the
matrix

1
∂2U
∂y2

2
i,j,k,h

. To simplify the notation, we refer to
1

∂2U
∂y2

2
i,j,k,h

as
!
∂2

yU
"

i,j,k,h
.

The near-perfect overlap of curves across all four graphs suggests that studying the convergence
of the grid along the x and y directions can be done independently, given their lack of correlation.

Beginning with the nodes Nx, it is noticeable that the change in the U solution remains quite
small, around the order of 1e-4, as shown in figure 5.11. However, the curvature ∂2

yU exhibits a
larger error, nearly plateauing for Nx values exceeding 1600. Given the relatively mild impact
of simulation time concerning x discretization, the choice of Nx is guided by considerations
regarding the smallest element utilized in the optimization loop. As elucidated in the subsequent
paragraph, defining the optimization environment, the minimum slot length permissible within
the optimization loop is 1 cm. Thus, the intention to allocate at least 10 nodes along the slot
dictates a spacing of 1mm between consecutive nodes, resulting in 2500 discretization nodes, as
further detailed.

Ny was chosen to be 350 because it is the minimum value, for which ∂2
yU reaches the lowest

value without requiring long computational time. In conclusion, the average amount of time
required for IBL to run, with Nx = 2500 and Ny = 350 is about 30s.

Figure 5.11: Relative rate of variation of U with respect Nx and Ny
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Figure 5.12: Relative rate of variation of ∂2
yU with respect Nx and Ny

However, the entire process is mostly dominated by the LST computational time. Given the
velocity profiles and their curvature, the LST takes in the order of many minutes to perform a
simulation. This elapsed time is given by the product between two elements:

∆telapsed = ∆tOS Npairs (5.4)

• The time required to obtain one LST solution (composed by Nc pairs of eigenvalues and
eigenfunctions) by solving the Orr-Sommerfeld equation, denoted as ∆tOS , involves solving
a linear system using the MATLAB backslash command (mldivide), which has a time
complexity of O(N3

c ).

Within the LST solver, both the velocity and its second derivative are interpolated on a
Chebyshev grid consisting of Nc nodes. This operation offers several advantages. Firstly, it
is possible to disengage the number of nodes through which the profiles are provided from
the nodes used to perform the OS calculation. For instance, while the BLES outputs U
and ∂2U/∂y2 represented across 350 nodes, performing LST calculations with such a large
quantity of nodes would be impractical.
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(a) LST solution time versus Nc

(b) Relative error related to the imaginary part of the dominant root versus Nc

Figure 5.13

The second, and perhaps more critical, reason is that the algorithm involved in the LST
solution requires a Chebyshev distribution to perform the calculation. Therefore, even in
scenarios where the velocity is computed on a uniform or any other grid, a remapping is
necessary for the solver to work.

In the wake of what we have done above, the purpose of this paragraph will be to choose the
appropriate value of Nc such that the desired compromise between velocity and accuracy
is achieved. Nc = 80 was the ultimate choice.

• The final check left concerns what is called Npairs, given by the product of the number
of x-stations where the stability is calculated and the number of points that discretize the
frequency range.

As evident from the figures 6.12, the differences in Nenv are not substantial. Therefore,
in this final case, an attempt was made to expedite the computation time by choosing
Nx = 60 and Ny = 40.
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Figure 5.14: Nx number of profiles evaluated Ny total number of frequency ω∗ tested

Based on what has been discussed, it is now possible to estimate the time required to carry out
a single simulation.

∆ttot = ∆tIBL + ∆tOS Npairs ∼ 30 + 2400 ∗ 0.08 = 222s

5.2 Optimization environment
All the instruments presented so far have been designed to be incorporated into an optimization
algorithm; the aim of which is to identify the optimal suction variables, i.e. the best position and
flow rate to delay the transition of the flow into a turbulent and hence maximize the extension of
the laminar region as efficiently as possible. While the general definition of an optimality problem
has a standard form, it is important to state the conventions adopted in this study, as they can
vary depending on the author or the literature. It is worth noting that some algorithms require
the optimal configuration to be the one that maximizes an objective function f(x), while others
prefer to formulate the optimization in terms of finding a minimum assumed by the function
q(x). It is possible to switch between the two forms by declaring q(x)=-f(x) or q(x)=1/f(x).
Another integral part of the optimization problem definition relates to the sign assumed by the
inequality constraints for the definition of the feasible regions.

It is crucial, therefore, to explicitly declare the conventions about the standard form for a
continuous optimization problem: 

minx f(x) s.t.

gi(x) ≤ 0 i = 1, 2, ... m

hi(x) = 0 i = 1, 2, ... p

f(x) represents the function subject to the optimization process, while g(x) and h(x) denote
the inequality and equality constraints that have to be fulfilled by the design variables x. To
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enable the effective application of any readily available optimization algorithm, it is imperative
to transform any problem into this standard formulation. This section will address the objective
function definition, according to our goals, as well as the constraints, providing reasoning for
their selection.

Delaying transition essentially involves shifting the location where the transition occurs xt

as close as possible to the trailing edge of the flat plate, which in mathematical terms literally
traduces into minimizing the quantity (L − xt)/L, where the physical distance is rescaled with
the plate length L to have a non-dimensional quantity. This non-dimensionalization helps
mitigate the influence of experiment-dependent parameters, such as the length of the simulated
plate aiming for results that are more universal and independent from the specific experimental
conditions.

Given that, the function to optimize is defined by:

f(x) : Ω ⊆ R3 → R (5.5)

f(x) = L − xt(x)
L

(5.6)

The x vector has, as components, the optimization variables.

x = (x1, x2, x3) = (xs, xe, vw) ∈ Ω ⊆ R3 (5.7)

xlb
i < xi < xib

i

Or in a vectorial formulation
xlb < x < xib

As the suction configuration becomes more favorable, the objective function progressively decreases.

xt(x) → L, f(x) → 0+ (5.8)

In turn, xt can be seen as a function:

xt(x) : Ω ⊆ R3 → R (5.9)

Basically, for every configuration in terms of slot position, width, and suction velocity, there will
be a corresponding shift in the transition position along the x-axis, as depicted in figure 5.15.
Finally, the objective is a composite function of

f(xt(x)) = f(x) (5.10)

Breaking down the components of the x vector to define the variable bounds:

• x1 denotes the point where suction starts xs. The lower boundary xlb
s is determined by the

location of the indifference Reynolds number. In the realm of the LST approach, applying
suction before this point is meaningless since the profile is already stable. The upper
boundary of the suction starting location is influenced by the mathematical nature of the
boundary layer equations. It is commonly known that the BL equations exhibit a parabolic
nature, indicating that events at position x∗ only affect downstream (x > x∗) evolution
and have no impact on upstream development. Our thorough theoretical and numerical
analysis indicates that applying suction beyond the natural transition point has little to no
effect on boundary layer transition. This means that utilizing suction control on a flow that
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Figure 5.15: The two figures illustrate the evolution of the maximum amplification factor as a
function of the normalized streamwise coordinate x/L. The suction region’s position is delineated
by the orange rectangle, wherein its height states the suction velocity vw. Notably, alterations
in the suction variables, manifested through shifting or stretching of the rectangle, induce
corresponding changes in the transition position xt. To demonstrate the benefits induced by
suction, the evolution of Nenv without suction control, alongside the abscissa of natural transition
xN

t /L, is also illustrated.

has already transitioned will not change the transition position in comparison to a natural
transition scenario. Delaying transition can only occur by operating the control on laminar
flow. It is important to note that this assertion holds true employing BLES to compute the
velocity field, LST for stability computations and the eN method for transition prediction.
xs is upper and lower bounded by:

0.037 <
xs

L
< 0.58 (5.11)

Where xub
s = xN

t /L = 0.58 is the point of natural transition while

xlb
s = xind =

3
(Reδ1)ind

1.72

42
ν

U∞
= 0.037

U∞ = 15 [m/s], (Reδ1)ind = 520

• x2 = xe is the last point where suction is implemented. The reasons leading to its
boundaries are moved by easy motivations.

0.041 <
xe

L
< 0.92 (5.12)

Since xe = xs +d, chosen the minimum slot width to be d/L = 0.004 follows xe/L = 0.041.
The upper boundary is moved by the necessity of ending the suction before reaching the
trailing edge for obvious reasons.
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• x3 is the wall suction velocity, defined with the symbol vw.

−0.0267 <
vw

U∞
< 0 (5.13)

The reason for this value will be made clearer when the constraints about the mass flow
rate will be introduced.

Ω is therefore a cube, setting the range through which each design variable will span.

Ω = [0.037, 0.5800] × [0.041, 0.9200] × [−0.0267, 0] (5.14)

Besides these elementary boundaries, one can set other relations among the variables, representing
the real problem constraints.

g1(x) = xe − xs

L
− 0.4 (5.15)

g2(x) = xe − xs

L
− 0.004 (5.16)

g3(x) = xe − xs

L

vw

U∞
− 1.06 × 10−4 (5.17)

g(x) ≤ 0 (5.18)

• g1(x) prescribes the maximum porous panel width;

• g2(x) prescribes the minimum porous panel width;

• g3(x) prescribes the maximum volume mass flow allowed.
The selected value 1.06 × 10−4 was chosen as a reference based on existing literature.
Corelli et al. [7] employed a volume flow rate on the order of 10−2 [m3/s], while Reynolds
& Saric [28] and Meter et al. [25] utilized a mass volume flow rate of 10−3 [m3/s]. To
strike a balance between these disparate values, an intermediate value of 4 × 10−3 [m3/s]
was selected. Consequently, scaling this value with the plate length L = 2.5 [m] and the
free stream velocity U∞ = 15 [m/s] yields:

4 × 10−3

15 · 2.5 = 1.06 × 10−4 (5.19)

From this constraint follows the lower boundary on the velocity vw

vlb
w = 1.06 × 10−4!

xs−xe

L

"
min

= 1.06 × 10−4

0.004 = 0.0267 (5.20)

To help the optimization algorithm find the optimal combination of suction variables, an extended
plate L + ∆L was simulated.

It is easier to explain the motivation that led to this choice starting with an example: consider
a configuration, x′, where the critical Nenv value is attained at x/L = 1, implying that the
numerical framework predicts transition at the trailing edge (TE) for the suction variable x′.

The algorithm is looking for the optimum, yet it operates without prior knowledge of the
optimal configuration x′. During its exploration, the algorithm may venture close to x′, represented
as x = x′ +δx, where ||δx||/||x′|| ≪ 1. Two cases now unfold: xt(x) > L or xt(x) < L. Suppose
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a plate of length L is simulated; the corresponding objective function is illustrated on the right
of Figure 5.16. When xt(x) < L, the actual objective function value can be determined by
computing the abscissa xt at which Nenv(xt(x)) = N crit

env . Conversely, if xt(x) > L with the plate
length L, the envelope curve ceases at x = L. At this juncture, Nenv(L) < N crit

env , signifying that
the envelope never attains the critical value, thereby precluding the estimation of the transition
point. Consequently, no useful transition prediction can be made. Meanwhile, the Bayesian
Optimization (BO) algorithm requires a value of f(x) to associate with x.

Based on our analysis, it appears that the level of suction in the current configuration is
excessive, as evidenced by the transition point extending beyond the plate. Although the precise
value of the objective function for this suboptimal scenario cannot be determined, we have
assigned a discouragingly high value to prevent future attempts. However, this approach poses a
challenge as the objective function experiences a discontinuity at the optimal configuration xt =
L, which is not conducive to BO’s ability to work well with continuous functions. Additionally,
the algorithm loses its sensitivity about the distance between the configuration tested x and the
optimum x′.

A solution to restore continuity and sensitivity consists of simulating a plate with length
L + ∆L. The new objective function is shown in figure 5.16 on the left. For xt(x) < L the same
considerations did before apply. Now, if xt(x) > L, the envelope extends ∆L after plate TE.
This allows us to compute the actual xt(x) > L.
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Figure 5.16: Objective function representation. On the left is the case where a plate of length
L+∆L, whereas on the right, for a plate of length L, the objective function shows a discontinuity
at xt/L = 1.

Choosing ∆L/L = 0.2 allows us to collect information on the transition position beyond the
trailing edge, thereby introducing small increments in the objective function for slight departures
from the optimal configuration. The new definition of the objective function is as follows.

f(x) =


L−xt

L , xt ≤ L

− L−xt

L , L < xt ≤ L + ∆L

0.5 Non valid case

f(x) = 0.5 pertains to the sub-optimal scenarios characterized by excessive mass flow, leading
to negative maximum amplification factors (Figure 5.17) or transition occurring beyond the TE
of the extended plate xt(x) > L + ∆L, as depicted in Figure 5.18.
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Figure 5.17: Nenv as function of x/L for a sub-optimal case: the envelope goes below zero;
no-physical meaning.

Figure 5.18: Nenv as function of x/L for a sub-optimal case: transition doesn’t happen at all
within L + ∆L; some energy employed to do suction is wasted.
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Chapter 6

Results

6.1 Bayesian optimization: results and comments
The optimization was conducted in MATLAB® utilizing the bayesopt MATLAB® routine, which
is part of the Statistics and Machine Learning Toolbox™. The simulation was initiated with
170 valid values selected from the initially generated set of 400 random configurations created to
cover the design space comprehensively, taking care that this set of initial solutions, as neutral as
possible, wouldn’t introduce any bias. The initial configurations were externally solved to filter
out non-valid configurations before providing the whole pool of initial solutions to the Bayesian
algorithm.
Expected-improvement-plus was chosen as acquisition function, coupled with an exploration ratio
of 0.8 to guarantee the appropriate balance between exploration and exploitation.

Figure 6.1: Cumulative average of the fitness values throughout the optimization process

After nearly 600 iterations without any improvement (no better global solution is found since
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1000th iteration ), the decision was made to conclude the optimization, having explored about
1600 configurations. The fitness value cumulative average, defined in Eq. 6.1, is shown in Figure
6.1.

fn(x) = 1
n

nØ
i=1

f(xi) (6.1)

An attempt to summarize the exploration history is presented in figure 6.2, featuring the suction
length (d), the slot center position (xm), and the volume flow rate (q). It is important to note
that these three variables differ from those used within the optimization, and the reason behind
this replacement will soon become clear.

The inspection capabilities of the BO algorithm are visible from Figure 6.2, where each
optimization variable spans the entire available range. The amount of data produced out of the
optimization process is overwhelming and what is left to us is to interpret, verify the correctness
and in the end, explain them.

In figure 6.3a, the cloud of points are color-coded based on their associated fitness value,

Figure 6.2: Explored design points during the optimization process expressed as slot center
location (top figure), slot width (at the center) and volumetric flow rate (bottom figure)

with the color spectrum ranging from red (indicating poor performance configurations, with
values near 0.5) to blue (representing optimal solutions with values near 0). The blue points are
uniformly spread throughout the feasible domain, suggesting the presence of multiple optimal
configurations. While it’s difficult to determine what these optimal solutions have in common,
considering variables such as slot width and volume flow rate may offer a new perspective.

d = xe − xs (6.2)

q = −v(xs − xe) (6.3)

xm = xe + xs

2 (6.4)
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(a) 3D view of the design space

(b) Projection on v-xe plane (c) Projection on v-xs plane (d) Projection on xs − xe plane

Figure 6.3: The design space is represented by a scatter plot, with each point color-coded
according to its fitness value. Each point on the plot represents a combination of suction variables
attempted during the optimization process.

Making use of the Multi-Dimensional Scaling (MDS) technique makes it easier to identify regions
or clusters of points [37]. This is achieved by visualizing the pairwise dissimilarities or similarities
between a set of objects in a lower-dimensional space, typically 2D.
Before delving further, it is imperative to mention that the variables used as input in MDS are
rescaled to range between 0 and 1. This rescaling is crucial to prevent issues that may arise when
variables have different orders of magnitude.
Upon implementing this change, the difference becomes readily visible, as does the optimization
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(a) MDS with primitive variables
(xs, xe, vw)
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(b) MDS with LFC embedded variables
(xm, d, q)

Figure 6.4: Suction configuration in a 2D space with point color coded according to the fitness
function value f(x). The dimension reduction is obtained through MDS
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output shown in figure 6.4. Two regions, indicated by the black dashed rectangles in figure 6.4 b,
emerge. In these regions the fitness values are lower than in the surrounding areas. Additionally,
the non-valid values (to reiterate, representing cases where no intersection or envelope curves go
negative) are clustered, within the green dashed rectangle, in the top-right corner of figure 6.4 (b).
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(a) MDS color-coded according to
the extension of the suction region.
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(b) MDS color-coded according to volumic
mass flow rate

Figure 6.5: Multi dimensional scaling representation

After a closer examination, it becomes evident that the plane defined by γ1 and γ2 is essentially
a rotation of the q-d plane, as illustrated in Figure 6.5. Therefore, it is more convenient to
represent the optimization output on a q-d plane (Figure 6.6). For the sake of clarity, only the
best solutions are retained in the representation of Figure 6.6, meaning all solutions with a fitness
value below 2% are included, while the remaining configurations are filtered out.

f(xopt) ≤ 0.02 (6.5)
The reasons for this choice are manifold, starting with considerations about the physics and the
model employed to estimate the transition.

Even though the transition prediction method identifies the point where the flow trips to
turbulent, it has been emphasized in the section 2.3 and 2.4 that transition occurs over a region,
typically referred to as a transition region. To account for this and acknowledge that transition
is not abrupt, but rather develops along an interval ∆xt, it is possible to adopt a more flexible
approach regarding the optimal values. Instead of strictly considering the optimum as the point
where xt = L and f(xt = L) = 0, we can introduce an optimal range of transition points where
|xt − L| < 2L/100 and the fitness function f(x) < 2%. By adopting this approach, we try to
make amend for the approximation it was made by reducing the transition region to a single
transition point xt.

Secondly, it is crucial to remember that the eN method is merely a means to model the
transition position, and like any estimation, it involves some level of approximation. Consequently,
it is illogical to disregard solutions that predict transitions within the range of accuracy of the
model [7].
As a final consideration, even if the transition location computed by the model was correct, we
can accept transitions within |xt − L|/L < 2%.
As previously mentioned, the filtered solutions are now depicted in a q-d plane, shown in Figure
6.6. The color scale, which maps data values into the colormap, has been adjusted, with the
color red now indicating a fitness value of 2%.
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Figure 6.6: Optimal configurations (f(x) < 0.02) in q-d plane. Here two groups of configurations
are visible, and highlighted by the rectangles. q0 = 4 × 10−3 [m3/s] is the maximum mass flow
rate allowed

Crucial insights can be drawn from figure 6.6. All the points depicted in the figure allow
for a transition very close to the trailing edge (TE). However, in delaying transition, some
configurations demonstrate greater efficiency than others.
While for suction slot widths d/L in the range between 0.08 and 0.32, the points are densely
clustered around the mean value q/q0 ∼ 0.25 (dotted rectangle in figure 6.6), for d/L less than
0.05 (solutions inside the solid rectangle), the mass flow q/q0 associated with the best-performing
configuration can range from 0.3 to 1. Relying on the physical intuition that energy consumption
is a monotonic growing function of mass flow, configurations with d/L < 0.05 delay transition
at the cost of higher power consumption.

A legitimate objection that someone could raise is that the sudden increments of mass flow
requested by suction configuration with d/L < 0.05 may be due to the no longer validity of the
boundary layer assumptions.

According to Schlichting [30], the validity of the boundary layer hypothesis extends until the
suction velocity, relative to the undisturbed flow velocity U∞, reaches approximately 1/

√
Re ∼

6 × 10−4.

d

L
∼ 0.2 → v

U∞
= q0

dU∞
∼ 10−3

0.5 15 = 1.3 × 10−4 (6.6)

d

L
∼ 0.02 → v

U∞
= q0

dU∞
∼ 10−3

0.05 15 = 1.3 × 10−3 (6.7)

By employing the first-order estimations provided in equations 6.6 and 6.7, it becomes
apparent that reliance on the results for suction over regions of length d/L ∼ 0.2 is justified, as
they adhere to the boundary layer hypothesis outlined above. However, when suction configurations
possess a value of d/L ∼ 0.02, the boundary layer hypothesis is no longer valid. Consequently,
doubts may arise regarding the validity of the flow field provided by the BLES in such scenarios.
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Figure 6.7: Comparison between BLES velocity profile and openFOAM profiles, at 6 different
locations both upstream and downstream suction locations. On the x axis the normalized
velocity, while η represents the non dimensional wall normal distance according to Blasius
normalization.

In essence, the question to be addressed pertains to why the mass flow remains constant for
almost all slot widths except for the low-amplitude slot. Hence, it is plausible that deviations from
the BL hypothesis could lead to incorrect computations of the velocity profile. It is conceivable
that the BLES velocity profiles may be less stable than the real velocity profiles under the same
suction conditions, thereby necessitating more mass flow to compensate for these inaccuracies.

By solving the Navier-Stokes equation, could we achieve the same effect in terms of the
transition with d/L ∼ 0.02 and q/q0 ∼ 0.25?
To verify this hypothesis, a comparison between the velocity profiles provided by BLES and
openFOAM was performed. Specifically, a single case was selected from all configurations with
d/L < 0.05.

Far from the suction slot location(xm-4d), the non-dimensional velocity profiles, normalized
according to Blasius, exhibit good agreement with each other and align well with the analytical
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Blasius profile. As we approach the slot (xm-d) the two profiles start differing from each other.
While the effect of the suction is felt only downstream the location of start suction for BLES, in
OF the suction also affects the edge pressure distribution ahead of the suction location resulting
in a favorable pressure gradient

Now, it is worth asking why the best results are consistently obtained with almost a fixed
value of mass flow and whether this statement can be reversed. For example, do all configurations
within the optimal mass flow rate, regardless of the suction location, lead to a transition at the
end of the plate? Proceeding step by step, let’s examine the effect of constant mass flow over the
stability curves, selecting among the 1600 configurations provided by the optimization process
the ones that have the optimal mass flow rate of q/q0 ∼ 0.25. The envelope curves are shown in
figure 6.8 leading to two important considerations. First, a direct answer to the above question is
provided. Among the envelopes shown in the figure 6.8 and associated with configurations with
optimal mass flow, only a few allow transition close to the TE. Therefore all optimal solutions
for transition control have a mass flow around q/q0 ∼ 0.25, but not all the configurations with
q/q0 ∼ 0.25 are optimal.
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Figure 6.8: Some of the Nenv at q/q0 ∼ 0.25 selected from the data set produced by the
optimization.

More importantly, it is clear that, at constant mass flow, the portion of the N envelope
curves downstream the suction location, has the same development regardless of the suction
configuration. This appears evident looking figure 6.8, where the last growing portion of the
envelopes run parallel, without crossing each other. In mathematical words, let’s define a curve
N*(x/L).

{∀xk ∈ Ωf | qk = const ∃ δk s.t. N
1 x

L

2
= −

Ú x
L

x−e+dx
L

αid
1 x

L

2
− δk ∈

è x

L
, N∗

1 x

L

2é
, x > xe}

(6.8)
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Carefully analyzing the implications, stating that the Nenv curves have the same evolution
essentially means they feature integrands of similar magnitude. This is because the curves are
obtained by taking the envelope of the integral of the imaginary part of the eigenvalue dominant
root (DR) over the length x.

Nenv(x) = max
ω

−
Ú x

x0

αi(x, ω)dx (6.9)

Since the DRs are obtained solving the OS equation that depends on ω, Reδ1 , (U(x, y)/Ue(x)),
(∂2U(x, y)/∂y2)(δ2

1/Ue(x)), to obtain the same DRs the OS equation should possess the same
input values. Thus, for a fixed mass flow, we should expect the dimensionless velocity and its
second derivative to be independent of the suction location sufficiently downstream from the slot.
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Figure 6.9: Normalized velocity at four different locations for q/q0 ∼ 0.25. Same amount of curves
as in figure 6.8. The configurations associated with each curve vary in suction slot location and
extension.

The intuition was confirmed by data shown in figures 6.9, 6.10, 6.11.
Let’s consider 2 different values of mass flow of q/q0 ∼ 0.25 and q/q0 ∼ 0.375. We expect

that the curves that feature the same mass-flow value will have the same slopes (DRs) at the
same point. On the contrary, those featuring different mass-flow values will have different slopes
(see Figure 6.12). Therefore, envelopes that belong to the same mass flow family never bump
into each other, while taking two envelopes from the two mass flow groups it is probable that
they may intersect at some point.

The last and, maybe, more valuable evidence that we bring to support the thesis about the
dependence of the N envelopes on the mass flow is depicted in figure 6.13. On the left there are
the envelopes associated with each point of figure 6.6. On the right only the one with a mass
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Figure 6.10: Normalized velocity second derivatives profiles at four different locations for q/q0 ∼
0.25 . Same amount of Nenv curves as in figure 6.8. The configurations associated with each
curve vary in suction slot location and extension.
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Figure 6.11: Displacement thickness along the plate for q/q0 ∼ 0.25 is depicted, with the same
number of Nenv curves as in Figure 6.8. The configurations associated with each curve vary in
suction slot location and extension.

flow:
q∗ − ∆q

q0
≤ q

q0
≤ q∗ + ∆q

q0
(6.10)

With q∗

q0
= 0.275 and ∆q

q0
= 0.1250. While on the left side the evolution of the envelope looks
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Figure 6.12: Nenv of two different families of curves. The blues are associated with q/q0 ∼ 0.375
while the black ones to q/q0 ∼ 0.25

chaotic, upon retaining only the envelopes that satisfy the above relation, it can be seen that
the envelopes collapse into a tight bundle(figure 6.13 (b)).

Taking into account everything that has been previously stated it is possible to conclude:

• There are theoretically an infinite number of combination that can lead transition to happen
in a desired point, like the TE;

• Among these infinite configurations, the ones that are energetically advantageous feature
large slot width.

• Being aware of the optimal flow rate value to apply is not exhaustive for achieving effective
transition control. An incorrect coupling of this value with an unsuitable geometry can
undermine the efficiency of active flow control(AFC).
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(a) Optimal envelope given by the optimization
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(b) Optimal envelope with the same mass flow

Figure 6.13: Comparison between the optimal envelope and the envelope obtained with a constant
mass flow spillage.
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6.2 AFC effects on friction drag
6.2.1 Drag increments?
Whenever boundary layer control is applied through suction, a local increase in skin friction
coefficient is observed (already pointed out in Figure 5.4), leading to an overall rise in drag force.
The drag, defined per unit depth, is given by the equation:

D =
Ú L

0
µ

∂u(x, y = 0)
∂y

dx (6.11)

Here, the parameter Drag Increment (DI) represents the increment in skin friction drag
compared to the enforced laminar flow:

DI = Dact − Dbase

Dbase
(6.12)

Despite the highest value of mass flow rate is only q0 = 4 × 10−3 [m3/s], the maximum drag
increments that can be reached is in the order 20%, as figure 6.14 testifies. Keeping in mind
the ultimate goal of reducing the drag force on the flat plate, observing drag growth seems to
contradict the initial intentions. To avoid confusion, it is wise to provide the proper interpretation
of the phenomenon.
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Figure 6.14: DI is shown for each point computed during the optimization.

Linear stability analysis requires a base laminar flow to perform stability calculations. The
solution we have seen so far like BL thickness, friction coefficients or wall shear stresses, mainly
presented in section 5.0.1, refers to an enforced laminar solutions. We call it enforced because
BLES is only able to provide to us laminar solutions. For instance, when considering a flat
plate of length L exposed to a free stream velocity U∞, BLES computes a laminar flow from the
leading edge (LE) to the trailing edge (TE). However, departing momentarily from numerical
considerations and delving into the physics, it is recognized that over a sufficiently long flat plate,
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the flow initiates as laminar and transitions to turbulence at a certain point xt. While BLES
models flow characteristics within the laminar regime, it cannot encapsulate turbulent flow over
the final portion of the flat plate. Consequently, if transition occurs, the distributions depicted in
the figures 5.2, 5.3 and 5.4 are inaccurate beyond the transition point. Furthermore, the observed
increments in total friction drag (DI) stem from the comparison with a hypothetical baseline
laminar solution, which does not exist in reality. It is imperative for the author to emphasize this
concept, as a cursory examination of the above listed figure might lead to erroneous conclusions.

6.2.2 Drag Reduction
By setting the critical N factor to 5, the transition is located about at xt/L = 0.58. This results
in a laminar flow that extends from the leading edge up to the transition point, beyond which a
turbulent flow follows.

The coexistence of these two flow states requires different approaches. In the laminar region,
the friction coefficient is a direct consequence of the BLES velocity profile, which is known by
solving the boundary layer equations.

τ(x) = µ
∂u

∂y

----
w

(6.13)

cf = τ(x)
1
2 ρU2

∞
(6.14)

When the flow transitions to turbulence, it is possible to rely on empirical expressions that
connect cf to Rex [1].

cf = 0.0576
3

ν

U∞x

4 1
5

, x > xt (6.15)

Figure 6.15 shows the comparison between the friction coefficient of a laminar flow that abruptly
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Figure 6.15: Friction coefficient of the laminar profile vs friction coeffient of the laminar +
turbulent
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turns into turbulent flow and the friction coefficient associated with the enforced laminar. From
the point where turbulence starts, friction coefficient goes up by six to seven times compared to
the laminar case.

Another parameter, called drag reduction is now introduced to estimate the benefits of the
suction on the friction drag force:

DR = Dn − Ds

Dn
(6.16)

Where Dn stands for drag in natural transition scenario, estimated by the area below the red
line in figure 6.15, previously multiplied by the free stream dynamic pressure 1/2ρU2

∞. Ds is the
drag force when suction control is applied defined by:

Ds = 1
2ρU2

∞

Ú L

0
cs

f (x)dx (6.17)

cs
f (x) =


τBLES(x)
1/2ρU2

∞
x ≤ xt

cf = 0.0576
3

ν
U∞x

4 1
5

x > xt

(6.18)
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Figure 6.16: DR is shown for each point computed during the optimization.

In many cases,the application of Active Flow Control (AFC) leads to a noteworthy reduction
in friction drag, as illustrated in Figure 6.16. The maximum achieved value of Drag Reduction
(DR) peaks at approximately 55.4%, with the majority of suction configurations yielding DR
values above 40%. Hence, even when employing non-optimal control over the transition position,
a substantial reduction in drag is still realized.

It is beneficial to summarize the findings thus far, particularly regarding the criteria by which
a suction configuration is deemed favorable. To achieve this, the dataset generated during the
optimization process is partitioned into 10 groups based on the suction extension d. A suction
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configuration i is assigned to the k-th group if:

k − 1
10

dm

L
<

di

L
≤ k

10
dm

L
(6.19)

k = 1, ..., 10 and dm

L = 0.4. Each group has been filtered based on three criteria:

1. Transition location ----xt − L

L

---- <
2

100

2. Mass flow rate q
q

q0
≤ 0.375

3. DR
DR ≥ 0.53
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Figure 6.17: Within each group, the bar indicates the number of solutions that fulfill the
constraints specified in the legend.

Figure 6.17 illustrates all the configurations that fulfill the above constraints. The most crucial
constraint, always applied, is the one prescribing the transition location.

Although suction configurations belonging to the first group, as depicted in Figure 6.17,
readily enable optimal transition control (with 109 valid cases), these configurations also exhibit
the most disadvantageous mass flow rates. Indeed, Drag Reduction (DR) is closely related
to xt, but optimizing one does not necessarily optimize the other. This concept is particularly
highlighted for the first group (k = 1), where 109 configurations satisfy the xt constraint, deemed
optimal for transition delay, but only 23 of them also permit a consistent DR.

Optimization hasn’t produced any solution belonging to the second group. From the same
graph, it can be observed that groups 3, 4, and 5 achieve a rate of success of 100%. All
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configurations within these groups are optimal for transitions and adhere to the constraints
regarding drag and mass flow. Without getting caught up in the excitement but rather being
cautious, it doesn’t imply that all the configurations within the 3-th, 4-th, and 5-th groups satisfy
the above statement.

Constraint for the mass flow is always satisfied from the 3rd to the 8th group, but not for
the last two groups.

6.3 Model for optimal LFC
The cumulative insights gathered from the preceding discussions indicate a potential avenue for
creating a model capable of guiding the choice of the optimal suction parameters, given some
initial information, without necessitating stability calculations.

When focusing specifically on the envelope, the curve can be deconstructed into three distinct
segments, N I

env, N II
env and N III

env shown in figure 6.18:

• The monotonic growth until the slot starting point:N I
env

• A decreasing segment :N II
env

• The second monotonic growth:N III
env

Figure 6.18: An example of an envelope curve provided to visually correlate each of the three
segments with their respective names: N I

env, N II
env, and N III

env .

6.3.1 Envelope modeling
The modeling of first the segment N I

env is straightforward, as it remains the same as the envelope
associated with the natural flow until the point where suction is applied.

The modeling process initiates by attempting to predict the effect of suction on the N
envelope. Upon careful examination of Figure 6.13, three key observations emerge:
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Figure 6.19: The slope of the N II
env segment, denoted as ∆N

d , is plotted as a function of the suction
velocity vw. The blue points on the graph signify the slopes computed from the optimization
dataset, while the black line represents the the data points fitting curve.

• The decreasing part N II
env can be reasonably approximated as a segment.

• The slope of this segment appears to be correlated with the suction velocity vw. The
segment slope increases alongside velocity.

• The final jump ∆N , for a fixed velocity, is primarily influenced by the slot width.

Figure 6.19 visually captures the relationship between ∆N/d and vw, showing a cluster of
data points that closely aligns with a curve well fitted by a cubic polynomial.
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Figure 6.20: N III
env evolution for two different groups of mass flow. The points are picked up from

the data set produced by the optimization. Fitting curve expression is expressed by the equation
6.21.

The next step consists of modeling the last part N III
env . It was highly stressed in the previous

section how the evolution of the curve downstream of the suction slot is mainly dictated by the
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mass flow rate. Given all the envelopes generated after the optimization process, it is possible
to interpolate them to obtain a relation between the volumetric flow rate q and Nenv. All the
envelopes resemble the shape of

y ∝ xn 0 ≤ n ≤ 1 (6.20)
The curves are divided into different groups based on the mass flow. Subsequently, they are

vertically translated such that the point [x/L, Nenv] = [1, 5] belongs to each curve. Finally, the
curves are truncated to retain only the region between the ending of the suction slot and the flat
plate trailing edge. With this post-processing, it becomes possible to fit each group of curves
using a base function:

y = 5 + a(xn − 1) (6.21)
The point [x, y] = [1, 5] also belongs to the base function.
As a result, a dependence of a and n on q is obtained. q is discretized from q/q0 = 0.25 to

q/q0 = 0.45 with a step of ∆q/q0 = 0.125. Figure 6.21 displays the curve that fits the N III
env for

the different mass flow parameters q.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

q

Figure 6.21: Ray of N III
env curves for all mass flow analyzed

6.3.2 Application of the model
The benefits of using a low-fidelity model to predict the evolution of the envelope when suction
control is applied are manifold. One immediate advantage is the ability to expedite the identification
of optimal suction configurations without the need for an extensive optimization process. For
instance, if two out of the three suction variables are known, the model can be utilized to
determine the value that the unknown variable must assume to achieve optimal control.

To clarify the employment of the model for this task, it is advantageous to further simplify
the representation by approximating the curves N III

env , in Figure 6.21, as straight lines with a
slope directly correlated the mass flow called q2.

In a situation where we need to determine the optimal slot dimension based on the slot’s
starting position xs and suction velocity vw, the initial step involves identifying the point that

89



corresponds to the suction starting location on the N I
env curve. Figure 6.22 visually depicts this

point using a red square superimposed on the blue curve N I
env.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

q
1
, d

q
2

Figure 6.22: Sketch, not to scale and for demonstration purpose, of the envelope segments N I
env,

N II
env and N III

env . The blue line represents N I
env. The red square the suction starting location.

The green half-line the curve N II
env, while the blue points different value of xe/L. The black lines

illustrates the optimal curves with the mass flow q2 that allows to joint the blue points with
[x/L, Nenv] = [1, 5].

Information about vw immediately translate in the slope of the decreasing segment N II
env.

Knowing the slope of a line and the point that belongs to the line, the line is uniquely defined.
These calculations will enable us to plot the green half-line in the figure 6.22. It is noteworthy
that each point along the green line corresponds to a particular slot width and, consequently, a
specific value of mass flow q1.

q1 = −vwd (6.22)

By selecting a point along the green line N II
env, a curve N III

env starting from that point can be
drawn (the dotted green line in figure 6.23), which is characterized by the mass flow q1. However,
not all points on this curve pass through [x/L, Nenv] = [1, 5], as only one value of d can make
the combination of (xs, d, vw) optimal.

Furthermore, it is possible to connect each point along the N II
env with the point [x/L, Nenv] =

[1, 5] and determine the mass flow q2 that would have to be sucked to achieve the critical N crit
env

on the trailing edge. The black lines in figure 6.22 depict this scenario. Therefore, the optimal d
value is the one that allows a proper connection between the blue line N I

env and one of the black
lines N III

env through the green line N II
env.

In essence, each blue point on the green line N II
env corresponds to two N III

env lines or two mass
flows (refer to figure 6.24). The first is the green dotted N III

env with q = q1, which is followed
in practice when xe/L coincides to the blue point, while the second is the black N III

env with
q = q2, which we strive to achieve. In the optimal configuration, these lines would coincide, as
demonstrated in figure 6.24.

dopt = min
d

(| q1 − q2 |) (6.23)
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Figure 6.23: For demonstration purposes, a sketch (not to scale) of the envelope segments N I
env,

N II
env, and N III

env is provided. The blue line represents N I
env. The red square denotes the suction

starting location. The green half-line represents the curve N II
env, while the blue points denote

different values of xe/L. The green dotted lines illustrate the evolution of N III
env associated with

a mass flow q = q1 = −vwd.

The algorithm that leads to the estimate of the third unknown parameter starts with finding
the intersection between the black curve N III

env and the green line N II
env. This intersection is

highlighted by blue points in figure 6.22. Each point is characterized by two mass flows q1 and
q2. The point that minimizes the absolute difference among q1 and q2 is the optimum.

6.3.3 Model Validation
The created model was subsequently tested on 400 randomly generated configurations, divided
into 4 groups of 100 cases each. The only imposed limits concern the slot width, 0.08 ≤ d/L ≤
0.32, and also regarding the upper bound of xs/L, by imposing xs/L < xN

t . To validate the
model the two suction variables (xs, vw) are given as input to the model which provides in output
the third missing variable d in order to have xmodel

t = L. Given d, xe is a consequence since
xe = xs +d. Then, using the same numerical framework we employed in the optimization (BLES
+ LST + FILTER + eN ), we compute more accurately the transition position xt and we take
that as ground truth.

The validation metric used to estimate the error is the following:

ε = | xmodel
t − xt |

L
= | L − xt |

L
= f(xt) (6.24)

The fitness value from the numerical framework is therefore a good metric to estimate the
quality of the model predictions.

The validation results summarized in table 6.1 are promising. The average error ε ≃ 1%,
below the thresholds of 2% imposed to distinguish the best solutions from the others. Also the
standard deviation of the 4 groups is low, showing that most of the solutions predicted have a
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Figure 6.24: Sketch, not to scale, for demostration purpose, of the envelope segments N I
env, N II

env

and N III
env . The blue line represents N I

env. The red square the suction starting location. The
green half-line the curve N II

env, while the blue points different value of xe/L. The green dotted
lines model the evolution of the N III

env associated with a mass flow q = q1 = −vwd. The black
lines illustrates the optimal curves with the mass flow q2 that allows to joint the blue points with
[x/L, Nenv] = [1, 5].

fitness value close to the mean. The maximum error found was around 2.5%, slightly above the
aforementioned 2%.

ε σ max(ε) min(ε)
pool 1 9.3069e-03 6.8146e-03 2.5327e-02 5.5417e-04
pool 2 9.0666e-03 6.2794e-03 2.4918e-02 2.5499e-04
pool 3 9.4706e-03 5.6639e-03 2.4993e-02 5.9267e-04
pool 4 1.0519e-02 7.1232e-03 2.5820e-02 2.2950e-05

Table 6.1: The average, standard deviation, maximum and minimum value of the error defined by
the eq. 6.24 is shown from columns two to five. The rows refer to the group under investigations

To show the variety of suction configuration tested, in terms of position, slot amplitude and
velocity, some of them are shown in figure 6.25 .
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Figure 6.25: 6 comparison between the envelope produced through the model(thin magenta lines)
and the numerical framework (blu curves) are shown. Each sub-figure shows different suction
configurations, expressed by the orange rectangle. The vertical edge of the rectangle express
the suction boundaries while the height of the rectangle is related to the suction velocity. The
number above the figures f(xt) indicates the error committed by the model.
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Chapter 7

Conclusion and outlooks

In order to maximize the achievable transition delay, an optimization of 3 flow control parameters
(suction velocity vw and upstream xs and downstream xe boundaries of the LFC region) was
carried out by means of the Bayesian optimization approach. More than 1600 different permutations
of the control parameters were evaluated. To distill the effect of the considered LFC parameters
on the transition position, a multi-dimensional scaling of the input parameters was performed.
Results indicate the existence of multiple optimal configurations, that can be further divided
into two groups. In one group, suction is applied in a small region, that can be identified by
d/L < 0.05. Solutions that belong to the second group are characterized by mass flow values
similar to each other.

It was also observed that the evolution of the envelope downstream of the suction locations
is mainly dependent on the mass flow spilled by the suction, and almost independent from the
suction location or extension. Closer observations of the results showed that in the regions where
suction is performed, the envelope decreases almost linearly, with a slope that is function of the
suction velocity, uniform inside the suction regions. The combination of the above discoveries
led to the proposal of a model that allows for accounting directly for the suction effect on the
envelope. Given two out of three suction parameters, the model was used to estimate the value
of the missing one to have the best suction control. The model was validated against the same
numerical framework used during the optimization. The validation showed promising accuracy
of the model predictions. The utility of the proposed model is to estimate, in a first analysis, a
good starting point for either the design of a LFC setup or for a LFC optimization process.

Drag analyses performed using empirical correlations showed that a small amount of suction
can produce up to 55% of drag reduction DR, compared to the case of natural transitions.

The influence of the slot dimension on different variables such as transition point xt, mass
flow q, and DR was studied. Even though for the transition, all slot dimensions were revealed
as suitable, when analyzing the mass flow it is evident that the small slots require a larger mass
flow to delay the transition, while to have a good drag reduction, it is better to employ suction
over a width between 8% ≤ d/L ≤ 20%.

Future work about the influence of suction on transition could involve the investigation of
nonuniform suction velocity on stability and therefore transition. Validation of the numerical
framework also to the case of the Falkner-Skan velocity profile allows the numerical framework
to analyze the airfoil BL stability, where favorable and adverse pressure gradients are present.
Moreover, validation of the results with advanced numerical techniques, specifically RANS with
γ-Reθ closure model, is still ongoing.
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