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Abstract

Today’s design trends in aeronautics focus on decreasing structural weight and increasing

aerodynamic efficiency in order to reduce emissions. These trends are towards slender air-

craft configurations and are consequently prone to aeroelastic phenomena. At the same time

composite materials allows to reduce structural weight and they are today’s state of the art in

aircraft industry. Furthermore, composite materials, with their different possible laminations

that allows to induce coupling between bending and twisting deformation, can be exploited to

counteract aeroelastic instabilities establishment, a phenomenon called aeroelastic tailoring.

In this context an invariant approach able to normalize stiffness components of every

composite material could be tremendous in simplifying composite material design. Such

invariant approach was not possible until Tsai and Melo published in 2014 their results about

a novel invariant approach to describe elastic properties of composites plies and laminates.

In this approach the trace of the plane stress stiffness matrix, namely Tsai’s Modulus, is

evaluated as a material property and it is an invariant.

Relatively to this, the present thesis aims to exploit the potentiality of this newly discov-

ered invariant in the field of aeroelasticity. In particular, a finite element parametric sailplane

wing model will be built to analyze flutter and divergence behaviour as function of material

Tsai’s Modulus. Tsai’s Modulus is a measure of the total stiffness of an orthotropic compos-

ite material (longitudinal and shear combined). Since the focus is on composite materials,

2D orthotropic plate elements parameterized as function of Tsai’s Modulus will be used for

the FEM model. For aerodynamics loads evaluation the vortex lattice method (VLM) and

doublet lattice method (DLM), two of the most powerful tools for linear aeroelastic analysis

in subsonic regime, will be used respectively for steady and unsteady aerodynamics.

Since Tsai’s Modulus measure exactly the total stiffness of an orthotropic laminated com-

posite, given that the aeroelastic behaviour of a wing is inherently tied to its bending, torsion,

and shear properties, it logically follows that it should also be influenced by Tsai’s modu-

lus of the material it is constructed from, as suggested by Dr. Sharma. Consequently, the

primary objective of this thesis is twofold: first, to empirically verify the validity of this hy-

pothesis, and secondly, if substantiated, to delineate the correlation between flutter behavior

and Tsai’s modulus. This investigation will be undertaken by conducting comprehensive

parametric flutter analysis on the specified wing.

Should this hypothesis stand true, it implies that the process of wing design can be stream-

lined. Initial steps would involve identifying the optimal lamination sequence for the wing.

Subsequently, the choice of the most suitable material becomes a straightforward task, con-

tingent upon the desired flutter velocity.
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Chapter 1

Introduction

1.1 Historical aeroelasticity preface

Aeroelasticity is an engineering study field concerning the interaction between aerodynamic

loads applied on a deformable structure subject to inertial and damping effects.

Aeroelastic and structural-dynamic phenomena can result in dangerous static and dy-

namic deformations and instabilities and, thus, have important practical consequences in

many areas of technology. Especially when one is concerned with the design of modern

aircraft which are characterized by the demand for extremely lightweight structures [1].

One of the first appearance of aeroelastic problems in human handiwork was with wind-

mills. The problem was solved empirically more than four hundreds years ago in Holland

by moving the front spars of the blades from about midchord to quarter-chord position [2].

Aeronautical wise, aeroelastic instability is a phenomenon that affected aircraft almost since

the beginning of aviation. Wright brothers discovered that by making the blades of the pro-

peller much wider and thinner than the originals performance of propellers during flight did

not agree closely with their calculation. This was due to the the propeller blades twisted in

shape under aerodynamic pressure [2]. It is also speculated that Langley was not able to

beat Wright brothers to the race to the first flight due to aeroelastic instability, as G.T.R. Hill

suggested that failure on Langley’s tandem monoplane (fig. 1.1) was the result of insufficient

wing-tip stiffness resulting in wing torsional divergence [2].

To move a little closer in time, World War I planes were haunted by static divergence,

that was solved at the time by ad hoc stiffening. The first recorded and documented case of

aircraft flutter was that which occurred to a Handley Page O/400 biplane bomber during a

flight in 1916. It experienced violent antisymmetric oscillations of fuselage and tail. Since

then, with the increase of flight speed, flutter would have become a more and more big prob-

lem. From Theodorsen theory in the 30s huge progress in flutter prediction has been made,

especially with the introduction of computational fluid dynamics in the means of Doublet lat-

tice methods (DLM) or Navier-Stokes methods (RANS, URANS, LES). The former method,

DLM, the one used in this thesis, was introduced in the late 60s thanks to Albano and Rod-

den [3] and then developed by Rodden and al. [4]. This method is still one of the most used

nowadays for flutter prediction as [5]:
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• it offers good accuracy (unless transonic regimes are considered or separation occurs);

• it is cost competitive with respect to simpler methods such as strip theories;

• fairly complex geometries can be analysed.

Higher fidelity methods, able to represent effects of viscosity, are required in case of presence

of transonic regime or separation, requiring much higher computational costs.

Today’s design trends are towards engineering solutions prone to aeroelastic phenomena,

such as slender aircraft wings. Focus has, therefor, being put on composite materials design

to try and postpone aeroelastic phenomena by means of aeroelastic tailoring. Thus, great

attention has been put towards the study of new composite materials properties, such as

Tsai’s Modulus, a new invariant discovered by Tsai and Melo in 2014 [6] that defines elastic

properties of composite plies and laminates, which will be the key focus of the thesis.

Figure 1.1: Langley’s aerodrome

1.2 Sailplane flutter

Sailplanes (fig. 1.2) are aircraft heavier than air aircraft, usually non powered, designed

for soaring and characterized by a very high aerodynamic efficiency, typically better than

L/D = 20. They are certified by the European Aviation Safety Agency (EASA) according to

the regulation CS 22.

Sailplanes benefit from producing very low drag using very long, slender and thin wings.

As said before, this type of wing is very prone to flutter, therefore great attention must be

put in the sailplane design to not incur in aeroelastic phenomena inside the flight envelope.

The regulation, the CS 22.629, prescribes that the sailplane must be free from flutter, aerofoil

divergence, and control reversal in each configuration and at each appropriate speed up to at

least VD (design maximum speed). Sufficient damping must be available at any appropriate

speed so that aeroelastic vibration dies away rapidly. Compliance with that must be shown by

a ground vibration test (GVT) which includes an analysis and an evaluation of the established

vibration modes and frequencies for the purpose of recognising combinations critical for

flutter, either by an analytical method, which will determine any critical speed in the range

up to 1.2 VD, or any other approved method [7]. Since the present thesis will be realized only

on a computational base the absence of any aeroelastic instability up to 1.2 VD will be verified

2



Politecnico di Torino

Figure 1.2: Rolladen-Schneider sailplane

based only on the modes evaluated through finite element analysis (FEM) and not via ground

vibration testing.

1.3 Aeroelasticity of composite wings

As said before, targeted design advancements in aeronautics include wing structural weight

reduction and increased wing aspect ratio to decrease lift-induced drag [8]. High aspect ratio

wings operating at minimum weight are typically highly flexible structures prone to aeroelas-

tic instabilities. Thus, composite wing could be the most efficient solution, as with aeroelastic

tailoring distructive phenomena can be postponed at higher speed. Aeroelastic tailoring was

defined by Shirk M. et al. [9] as “the embodiment of directional stiffness into an aircraft

structural design to control aeroelastic deformation, static or dynamic, in such a fashion as

to affect the aerodynamic and structural performance of that aircraft in a beneficial way".

Aeroelastic tailoring can essentially modify the wing’s primary stiffness direction, changing

the wing’s bending and torsional stiffness as well as the degree of coupling between the two.

The wing’s primary stiffness direction is defined as the “locus of points where the structure

exhibits the most resistance to bending deformation”. The structural reference axis is the

“conventional wing structure elastic axis” [10]. If the primary stiffness axis is not coincident

with the structural reference axis, the wing will have bendtwist coupling. When the primary

stiffness direction is moved forward of the structural reference axis, the bendtwist coupling

causes the wing to have more “wash-out” (leading edge down) characteristics. When the

primary stiffness direction is moved behind the structural reference axis, the bend-twist cou-

pling causes the wing to have more “wash-in” (leading edge up) characteristics. As can be

seen in figure 1.3 moving the primary stiffness axis in either direction produces desirable

changes in wing performance. Clearly a trade off between the two direction is needed to be

found for every specific case.

Since variation on primary stiffness direction can be obtained mainly by changing lami-

nation sequence an invariant approach to stiffness, by using Tsai’s Modulus, could play a key

role in simplifying the wing design, as, once chosen the desired lamination, material selection

could be executed only based on the required stiffness of the material to obtained for exam-

ple a certain flutter speed, hence its Tsai’s Modulus. This is the kernel of the present thesis

3



Politecnico di Torino

Figure 1.3: Effect of location of primary stiffness axis on wing behaviour [10]

as, if a relationship between flutter behaviour and Tsai’s Modulus exists, then the choice of

the ideal material for a wing would become the last step in the aeroelastic wing design, as it

would be done only after having found the optimal lamination, as it is better explained in the

sub-chapter 1.5.

1.4 Stiffness effects on flutter

Since stiffness is one of the key parameters, together with inertia and aerodynamics, that

determines the establishment of flutter, great attention has been put in literature to study the

effects of stiffness variation on flutter. From theory it is known that increasing stiffness prop-

erties will result in an increase in the natural frequencies and, therefor, an increase in the

dissipated energy per cycle, since it depends on frequency [11]. However, a direct mathemat-

ical relationship between stiffness and flutter behaviour is still not known, therefor research

on the influence of the first on the latter has been performing to the modern days, using from

some of the easier methods such as 2 DOFs airfoil systems to way more accurate 3D methods

that compute aerodynamics with unsteady Navier-Stokes methods. In 2022 Oskar Tylen [12]

realized a CFD model based on a simple airfoil 2 DOF system, free to translate vertically and

rotate around its elastic axis. The bending and torsional stiffness of a 3-dimensional airfoil

was modeled using a flexural and torsional spring. To compute the fluid-dynamics around the

airfoil a URANS (unsteady RANS) model was used, in order to be able to capture the airfoil

oscillations. By running the simulations it was clear that the main parameter that determined

flutter was the torsional degree of freedom. By increasing torsional stiffness it was possible

to prevent flutter and improve damping characteristics. Qiao S. and al. performed a more

sophisticated analysis [13], where they evaluated flutter around a 3D wing using a coupled

implicit Spalart-Allmaras model to perform CFD. They evaluated stiffness of the wing by

using an equivalent beam model. They evaluated that when the wing bending stiffness and

torsional stiffness of each section along the span increase by an average of 8.28% and 5.22%,

the flutter amplitude value decreases by approximately 30%. In general, they concluded that,

in terms of the overall impact, the stiffness has a greater effect on the wing flutter critical

4



Politecnico di Torino

speed. Increasing the wing stiffness overall increases the wing flutter critical speed. Similar

effects of stiffness on flutter behaviour were found also by Barnes and Visbal [14], using even

more sophisticated aerodynamics model, in the means of high order ILES (implicit large ed-

dies simulations). In conclusion it appears that, despite an increase in the level of accuracy

of the simulations, both on the FEM and CFD sides, the correlation between stiffness and

flutter behaviour is maintained.

Since Tsai’s Modulus measure exactly the total stiffness of an orthotropic laminated com-

posite a similar correlation is expected, and it will be investigated throughout the present

thesis.

1.5 Aim of the thesis

As can be better seen in chapter 4, it has been established through the classical lamination

theory that Tsai’s Modulus is a material constant [6] and it measures the total stiffness of an

orthotropic composite material. The structural response of a system, encompassing charac-

teristics like bending, torsion, and shear, is intrinsically linked to these material constants.

Given that the behaviour of a wing is inherently tied to its bending, torsion, and shear

properties, it logically follows that it should also be influenced by Tsai’s Modulus of the

material it is constructed from.

Furthermore, flutter, a phenomenon closely intertwined with the structural dynamics of a

wing, should exhibit a proportionate relationship with Tsai’s Modulus. Consequently, the pri-

mary objective of this thesis is twofold: first, to empirically verify the validity of this hypoth-

esis, and secondly, if substantiated, to delineate the correlation between flutter characteristics

and Tsai’s Modulus. This investigation will be undertaken by conducting a comprehensive

parametric flutter analysis on the specified wing.

Should this hypothesis stand true, it implies that the process of wing design can be stream-

lined. Initial steps would involve identifying the optimal lamination sequence for the wing.

Subsequently, the choice of the most suitable material becomes a straightforward task, con-

tingent upon the desired flutter velocity. This streamlined approach capitalizes on the estab-

lished connection between flutter velocity and Tsai’s Modulus.

Credit for this statement must be done to Dr. Naresh Sharma, as he is the original thinker

of a possible relationship between the flutter behaviour of a wing and Tsai’s Modulus.

1.6 Outline

The present thesis is composed mainly by two parts. The first part consists of the first five

chapters and it consists of a revision of theoretical notions related to the argument of the

thesis. The second part, instead, summarizes the actual work executed to find the relation-

ship between flutter behaviour of the sailplane wing and Tsai’s Modulus, starting from the

construction of the FEM model, passing through a static sizing to determine the wing’s parts

thicknesses, then a modal analysis is executed to identify the normal modes and, in the end,

the flutter analysis is performed.
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Chapter 2 presents some notes on aeroelasticity theory, describing every component tak-

ing part in this phenomena. First a rapid review of structural dynamics is given, since it is the

starting point for any flutter analysis. Then it is present a fast review on static aeroelasticity

with the definition of the divergence phenomenon. A more accurate description is provided

for dynamic aeroelasticity, and especially flutter. Here the flutter establishment mechanism

is briefly explained, then some flutter prediction methods are presented. Following an histor-

ical sequence, p-method with steady and quasi-steady aerodyanimcs, then p-k method with

Theodorsen aerodynamic are presented, in order to allow the reader to understand how flutter

prediction methods works with some simple methods. In the end, some aerodynamic models

to predict steady and unsteady loads, in the means of VLM and DLM are enunciated. These

are respectively the methods used in the present thesis to evaluate the steady loads for the

static sizing and then to execute the flutter calculations.

Chapter 3 presents some notes on the FEM theory at the basis of the 2D plate elements.

There the Reissner-Mindlin plate element is presented and then its stiffness and mass matrices

are evaluated.

Chapter 4 presents the essence of Tsai’s Modulus. First it is shown how Tsai and Melo

deduced the invariant nature of Tsai’s Modulus, using classical lamination theory and trans-

formation relations. The essence of Tsai’s Modulus is here explained, as it essentialy rep-

resents the total and upper bound of the stiffness property of a composite material. Then

exploiting Tsai’s Modulus the definition of master ply is given, as universal normalized [0]

ply common for every composite material. Finally some literature examples of application

of Tsai’s Modulus in the world of composite materials are presented.

Chapter 5 gives some information about AVL, the vortex lattice software used to evaluate

the aerodynamic loads used for the static sizing.

Chapter 6 provides a short overview on the wing CAD construction, using some reference

imposed values as the surface area and the wing span.

In chapter 7 the construction of the FEM model and then the static sizing executed on that

model are presented. There the mesh, materials, layups and boundary conditions definition

are enunciated in detail. A paragraph regarding the definition of the aerodynamic loads using

AVL is also present. Last, the results of the sizing are exposed, with all the modifications and

all the main laminations imposed.

In chapter 8 a modal analysis extracting the first 20 natural frequencies is executed.

Through this analysis the modal shapes that will then take part in the flutter analysis are

deeply analysed. Then a comparison with some analytical modal results for a uniform can-

tilever beam and also with an equivalent FEM beam model are performed to prove the good-

ness of the FEM model implemented in the thesis.

The most significant modal frequencies found in the previous chapter are then used in

Chapter 9 to perform a flutter analysis on the wing model. There all the settings imposed to

perform the analysis, including the aerodynamic mesh, are deeply analyzed.

Finally, in Chapter 10 some parametric analysis are executed to investigate the aeroelastic

response to the varying of the main spar position and Tsai’s Modulus. The possible existence

of a relationship between flutter and divergence speeds and Tsai’s Modulus will be there
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deeply analyzed.
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Chapter 2

Aeroelasticity theory

Aeroelasticity is an engineering study field concerning the interaction between aerodynamic

loads applied on a deformable structure subject to inertial and damping effects. Thus, the

free main fields involved in aeroelastic theories are:

1. Aerodynamics: loads applied on a body;

2. Elasticity: state of deformation of a body;

3. Dynamics: Inertia and damping of a body;

The interaction between these three subjects are well described by the Collar triangle (fig.

2.1).

Figure 2.1: Collar triangle [15]

Flight mechanics sees the plane as a rigid body and it is not interest of this analysis.

Static aeroelasticity analyses the effects of steady or quasi-steady aerodynamics loads on a

deformable body, without accounting inertial and damping effects.

Structural dynamics studies the main vibration frequencies of a body and their respective

deformation modes. These deformation modes, at certain frequencies, can interact with unst-

edy aerodynamics loads to give birth to some unstable configurations, as flutter. This possible

unstable configurations are studied by means of dynamic aeroelasticty.

9
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2.1 Structural dynamics

Structural dynamics are studied through modal analysis. Every structure with mass and in-

ertia is characterized by a set of natural frequencies at which the structure vibrate with a

corresponding modal shape. Technically, these set are composed by infinite natural frequen-

cies, but only the lowest frequencies are aeroelastically important. Thus, in general, it is

satisfactory to extract only the lowest ten natural frequencies and their relative modes. Nor-

mal modes analysis can be carried out both by computational methods (FEM) or by ground

vibration testing (GVT). The former one is the method used during this thesis, as the analysis

will be performed only on a computational basis. To find normal modes computationally a

free vibration analysis can be executed (such as Nastran SOL 103). Essentially it investigates

the equilibrium between elastic forces and inertial forces. Using the principle of virtual work

(PVD) this equilibrium can be written as:

δWint = δWine (2.1)

Where:

Wint : internal work;

Wine: inertial work.

The virtual variation of internal work can be expressed as:

δWint =
Z

δε
T

σ dv (2.2)

Using the FEM approximation, by assembling the stiffness matrix K, δWint can be expressed

as:

δWint = δUT KU (2.3)

With:

U:displacements vector.

The virtual variation of inertial work can be expressed as:

δWine =
Z

δuρ üdv (2.4)

Where:

ρ: material density;

u: displacement;

ü = d2u
dt2 :acceleration.

Using the FEM approximation the variation of the inertial work can be written as:

δWine = δUT MÜ (2.5)

Substituting (2.3) and (2.5) in (2.2) the following equation is obtained:

MÜ +KU = 0 (2.6)

10
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The solution of this homogeneous problem must be searched through an eigenvalue problem.

Considering an harmonic solution:

U =Ueiωt (2.7)

and its derivative:

Ü =−ω
2Ueiωt (2.8)

the equation (2.6) can be rearranged as:

(−Mω
2 +K)U = 0 (2.9)

Where:

U : amplitude of the displacements;

ω: angular frequency.

By solving the characteristic polynomial it is easy to find the natural frequencies:

f =
ω

2π
(2.10)

Considering again equation (2.9) each frequency gives an eigenvector U, representing the

respective modal shape, or normal mode.

This computational approach can be sufficient for a preliminary analysis and it is usually

developed before executing ground vibration testing, to have an idea of the places subject to

the major displacements. This particular spots are optimal to place some accelerometers that

will gather data when the particular mode is externally excited by some electrical actuators

or by moving lifting surfaces at the expected natural frequencies. In fact, most of GVT

processes are based on preliminary information given by FEM analysis. GVT are used in

order to get more accurate information about the natural frequencies, the modal shapes and

also about damping properties of the real structure of a plane.

2.2 Static aeroelasticity

As it was said previously static aeroelasticity implies an analysis on a deformable body with-

out taking in count of inertial and damping phenomena. This kind of analysis is good at

predicting the divergence and commands inversion phenomena.

To simply understand what is the essence of static aeroelasticity the so called "typical

section" (fig. 2.2), a 1 DOF system representative of a 2D airfoil, is considered. The airfoil is

approximated by a flat plate mounted on a torsional spring. The spring is representative of the

elastic line of the wing box. The degree of freedom is expressed by the elastic deformation

angle θ :

α = αR +θ (2.11)

With:

α: angle of attack of the airfoil;

αR: angle of attack of the airfoil considered as a rigid body (fixed).

In this model the aerodynamic force, applied on the aerodynamic centre Q placed at 0.25%
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Figure 2.2: Typical section

of chord, is function of the deformation angle θ , as if the wing rotates rigidly around the

elastic line placed in P:

L =
1
2

ρV 2
∞SCLα

α =
1
2

ρV 2
∞SCLα

(αR +θ) (2.12)

With:

ρ: air density;

V∞: air velocity relative to the airfoil;

S: wing aerea;

CLα
= dCL

dα
;

Contrarily, the aerodynamic torque applied in Q is known to be constant with the angle of

attack for moderate α and it is, therefor, neglected.

By imposing a static equilibrium around P a velocity for which the angle θ tends to infinity

is found, the so called divergence velocity:

UD =

s
2Kθ

ρSCLα
(1

2 +a)b
(2.13)

With:

b = c/2;

a: aeroelastic parameter.

Therefor, this velocity corresponds to a condition of "infinite" elastic deformation, or, more

realistically, a breaking condition for the wing.

Interesting it is to note that if the aerodynamic center is positioned downstream the elastic

line divergence cannot occur.

2.3 Dynamic aeroelasticity

Dynamic aeroelasticity analyzes unsteady phenomena of fluid-structure interactions such as

flutter.

Flutter is a phenomenon of dynamic instability caused by interactions between aerodynamic

12
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loads and structure’s natural modes.

During the last century various methods have been developed to predict this potentially

destructive phenomenon, initially analytical, then, with the development of computational

power, more and more flutter prediction codes have been published, with increasing accu-

racy.

2.3.1 Simplified flutter mechanics

Flutter, as said earlier, is an unstable configurations generated by unsteady aerodynamic loads

that change due to the induced deformation of a wing. Since flutter depends on aerodynamic

loads it usually emerges at moderate/high speeds, but flutter prediction are essential in avia-

tion for every aircraft, as prescribed by EASA .

The unstable configurations starts when aerodynamic forces act near a resonance fre-

quency of the wing, in a way that the work executed by the air on the wing increases in every

load cycle. This happens when the structural damping relative to at least one normal mode

is no more big enough to counteract aerodynamics loads. Aerodynamic loads can, therefor,

be expressed as a fictitious damping that sums to the structural one. When the sum of the

two factors is no more negative the flutter configuration is reached and oscillations amplifies

exponentially. Towards flutter condition a torsional and a bending mode usually merges and

the wing starts to deform in a torsional-flexural way.

This phenomenon can be visualized in all its fashion in a video realised by NASA in 1966

during a Piper PA-30 Twin Comanche tail flutter test, from which the following images are

taken.

Figure 2.3: PA-30 Twin Comanche tail flutter test

Thus, the flutter problem can be expressed by the following homogeneous equation:

([Ms]− [Ma])Ü +([Ds]− [Da])U̇ +([Ks]− [Ka])U = 0 (2.14)

with:

Xa: aerodynamic mass/damping/stiffness matrix;

Xs: structural mass/damping/stiffness matrix.

Usually [Ms]>> [Ma] and [Da]>> [Ds], so equation (2.14) can be simplified as:

[Ms]Ü +(−[Da])U̇ +([Ks]− [Ka])U = 0 (2.15)

The flutter condition is, therefor reached when (−[Da]) is no more negative.
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Aerodynamic damping is directly influenced by deformation levels of the wing and, con-

sequently, by its stiffness. Thus, flutter can be fought by increasing material stiffness, or, as

it will be seen, its Tsai’s Modulus, by increasing wing box stiffness, and by introducing some

flexural-torsional coupling in the material stiffness matrix. This can be done by not using

quasi isotropic laminations. In this way, for example, when a wing is subject to pure bend-

ing loads it can deform in order to reduce its angle of attack, an excercise called aeroelastic

tailoring.

An other way to influence aerodynamic damping is by modifying the wing geometry. In

particular, it is good to have a centre of mass far from the elastic centre of the wing, to increase

wing’s inertia. In addition to this it is good to have the elastic line upstream the aerodynamic

centre, or, if that is not possible, the nearest possible. In this way an increase in lift, by

having a little arm or a negative arm, will induce respectively little torsional deformation or

a negative torsional deformation and so, it will increase only by a small amount the angle of

attack or it will decrease it.

A last way to counteract flutter is to introduce a positive swept angle in the wing config-

uration.

Finally, from equation (2.15) also the divergence phenomenon can be extracted, and it

establish when [Ka] became greater than [Ks].

2.3.2 P-method with steady aerodynamics

The P-method is historically one of the first flutter calculation methods developed. It is based

on a quasi-steady or steady aerodynamic model. In the case of steady aerodynamics lift is

function solely of the elastic deformation angle θ :

L = LI =
1
2

ρV 2SCLα
(αr +θ) (2.16)

On the contrary the aerodynamic torque results constant for low to moderate angles of attack

and, therefor, it is usually not much important. Thus, with αr constant, lift variation results

to be function solely of structural torsional deformation and can be interpreted as an aerody-

namic stiffness matrix to be add to at the structural stiffness matrix, obtaining the equation:

[M]Ü +([Ks]− [Ka])U = 0 (2.17)

In fact, if we consider again the typical section (fig. 2.2) with 2 DOFs, one rotational around

P (θ ) and one translational along the vertical direction (h), the displacement vector U is equal

to:

U =

(
h

θ

)
(2.18)

And so it is natural to represent aerodynamic loads as a stiffness matrix.

It is clear from equation (2.17) that structural damping has been neglected and aerody-

namic damping does not appear due to the lift hypothesis.
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Equation (2.17) is an eigenvalue problem and can be resolved by imposing an exponential

solution:

U =Ueiλ t (2.19)

With:

λ = λr + iλi: complex eigenvalue.

P-method exploit these hypothesis, in fact it studies the stability of the system using the

dimensionless eigenvalue "p":

p = λ
b
V

(2.20)

with:

b = c/2: semichord;

V : air speed.

This method essentially studies the stability of the system by analyzing the change of eigen-

values values with speed, in particular the real part of p. In fact Re(p) expresses the stability

condition of the system. If Re(p) become positive the system become unstable.

This method unfortunately provides good results only when the airfoil oscillates very

slowly. If we introduce an other non dimensional eigenvalue, the reduced frequency, related

to the angular frequency of the system:

k = ω
b
V

= λi
b
V

(2.21)

The condition of validity of this method can be expressed as:

k → 0 (2.22)

That means that also ω must tend to zero. This condition is too unrealistic for a typical flutter

condition, where high amplitude oscillations can occur at high frequency.

2.3.3 P-method with quasi-steady aerodynamics

This method extends the aerodynamic theory exposed in the previous section by adding two

quasi-steady extra terms related to vertical velocity and and deformation angular velocity:

LII =
1
2

ρV 2SCLα
αvs =

1
2

ρV SCLα
ḣ (2.23)

With:

αvs ≃ ḣ
V : angle of attack due to wing vertical speed.

LIII =
1
2

ρV 2SCLα
αrs (2.24)

Due to the rotation of the airfoil (fig. 2.2) around P, Q (aerodynamic centre) is subject to a

vertical velocity ḣ equal to:

ḣ =−b(
1
2
+a)θ̇ (2.25)
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Now, developing LIII in the same way as LII the third lift component is obtained as a function

of θ̇

LIII =−1
2

ρV SCLα
b(

1
2
+a)θ̇ (2.26)

Finally the lift can be expressed as a sum of the three terms:

L = LI +LII +LIII =
1
2

ρV SCLα
[V θ + ḣ−b(

1
2
+a)θ̇ ] (2.27)

Also in this case aerodynamic torque results constant for low to moderate angles of attack

and, therefor, it is neglected in the analysis. Thus, with αr constant, lift variation results to

be function of structural torsional deformation θ , torsional angular velocity θ̇ and vertical

velocity ḣ (or flexural deformation velocity). The term f (θ) can be seen, as previously, as

an aerodynamic stiffness matrix, whereas, the terms function of ḣ and θ̇ can be seen as an

aerodynamic damping matrix, obtaining the following equation:

[Ms]Ü +(−[Da])U̇ +([Ks]− [Ka])U = 0 (2.28)

In fact, considering the 2 DOFs typical section (2.2), the displacements velocity vector is

equal to:

U̇ =

(
ḣ

θ̇

)
(2.29)

Since in general [Da] >> [Ds] the latter is neglected. The problem (2.28) can be solved in

the usual way by imposing an exponential solution and studying the eigenvalue stability with

air speed. In this equation a damping term appears, so now Re(p) can assume also negative

values. Flutter condition is, therefor, reached when Re(p) is no more negative. In fact, as

a typical mass-spring-dumper system, with the variation of Re(p) different behaviours are

obtained:

• Re(p)<< 0: strongly dumped solution;

• Re(p)< 0: dumped oscillating solution;

• Re(p) = 0: harmonic solution;

• Re(p)> 0: amplified oscillating solution;

• Re(p)>> 0: strongly amplified solution.

P-method with quasi-steady aerodynamics gives a bit more accurate results than with

steady aerodynamics, but its validity field remains too low, as it also requires that the reduced

frequency

k → 0 (2.30)

In fact, the big flaw of this method is that it is not able to taking in count of the delay in

lift generation in respect to the perturbations. This delay can be neglected only if the wing

oscillates very slowly.
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Some more complex form of p-method have been developed to be able to analyze also

unsteady aerodynamics cases, such as the one developed by Mazelsky and O’Connel which

accounts for apparent mass, aerodynamic lag and aerodynamic coupling between different

strips on the wing (Hassig, 1971 [16]).

2.3.4 p-k method

p-k method allows to take in count phase differences between disturbances (θ , ḣ, θ̇ ) and gen-

eration of lift. This can be done by using more complex aerodynamics models, such as

Theodorsen or DLM (doublet lattice method). These aerodynamic methods gives results

only for harmonic oscillations. This introduces a discrepancy in the model because post-

flutter or pre-flutter conditions imply an amplification or damping in oscillations, whereas

these aerodynamic methods can only represent harmonic oscillations. As explained by Has-

sig [16] the rationale for this approach is that for sinusoidal motions with slowly increasing or

decreasing amplitude aerodynamics based on constant amplitude are a good approximation.

So near flutter conditions can be well represented.

In this model aerodynamic loads are function of the reduced frequency:

k = ω
b
V

(2.31)

k allows to account for phase differences between disturbances and effective angle of attack.

To simply understand how the method works, the 2 DOFs typical section (fig. 2.2) is

again considered, using Theodorsen aerodynamics.

Effective angle of attack evaluated at 3/4 of chord can be expressed as:

αe f f =C(k)[θ +
ḣ
V
+

b
V
(
1
2
−a)θ̇ ] (2.32)

C(k) is the Theodorsen function and it is a complex function:

C(k) = F(k)+ iG(k) (2.33)

Essentially the deformation angle is multiplied for a complex function in order to take in

count the delay in the generation of lift due to the non immediate change in circuitation

value. Phase difference can be expressed by:

φ = arctan(
G(k)
F(k)

) (2.34)

Now, if the aeroelastic problem is solved as an eigenvalue problem imposing an exponential

solution the characteristic polynomial will result as function of the eigenvalue p, similarly to

the p-method. However, the coefficients of the polynomial terms result to be function of the

reduced frequency k, whose value is not known. The i-th eigenvalue p is in turn function of

k, in fact:

pi = pir + iki (2.35)
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To solve the problem an iterative method is required. To find the roots of the characteristic

polynomial

A(k)+B(k)p+D(k)p2 + ...+N(k)pn = 0 (2.36)

it is necessary to impose a guess value kguess. With this guess value a first value for the p

vector is found:

p1 = p1r ± ik1 (2.37)

The k1 value just found will differ from kguess and will be used in the second iteration cycle.

After recalculating the aerodynamic terms the roots of the characteristic polynomial are found

again using k1, obtaining:

p2 = p2r ± ik2 (2.38)

This iteration cycle continues until convergence is reached. This process is repeated for every

speed incremental.

p-k method, using more complex aerodynamic theories such as DLM is able to predict

pretty accurately the flutter velocity and it is still one of the most used methods for subsonic

flutter prediction. CFD based codes have also been developed, but require much higher

computational costs.

2.4 Aerodynamic models

To evaluate accurately aerodynamic loads some computational methods are required. Since

in subsonic aeroelasticity the interest is to evaluate Lift and Lift variations, also in strong

unsteady regimes, the most suited methods are potential based methods and, in particular,

VLM (vortex lattice methods) and DLM (doublet lattice methods), as Navier-Stokes based

CFD codes would still be too computationally expensive for the present work. These methods

are based on Prandtl lifting line theory and consequently viscosity effects are neglected. VLM

works better with quasi-steady aerodynamics and it is best suited for divergence evaluation,

whereas DLM represents very well harmonic aerodynamic phenomena, and it gives good

results for flutter analysis. Both methods represent the wing as an infinite thin surface divided

into a finite lattice of quadrangular elements, called panels. Lifting properties are respectively

represented through vortex or doublets placed on the panels.

2.4.1 Vortex Lattice Method (VLM)

In VLM on each panel is placed a horseshoe element that consists of a straight bound vortex

segment and two semi-infinite vortex lines (fig. 2.4). On the bound vortex, placed at the

first quarter of chord, is concentrated the vorticity that models the lifting properties. The

trailing vortex lines extend to infinity and model the wake. At infinity the vorticity lines

close the circuit (fig. 2.4) in order to obtain a total vorticity value equal to zero. This closure

is needed to respect the Helmholtz theory, which states that the vorticity flow through every

fundamental surface that move with the fluid is constant respect to time, or mathematically:

D
Dt

(ω ·ndσ) = 0 (2.39)
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Figure 2.4: VLM horseshoe element [17]

However this closure vortex, or starting vortex to be more precise, is so far downstream that

it does not influence wing lifting properties [18]. Thus the vorticity system of the wing and

its wake is represented by N horseshoe vortex of intensity Γi.

To find the value of induced velocity on the panel i induced by the sending vortices of

the sending panel j wall tangency condition (WTC) must be imposed for all panels. This

condition must be imposed in the mid point of 3/4 chord line, called control point. In this

way Kutta condition is automatically satisfied.

Considering the assumption that the freestream velocity is directed along +x (fig. 2.5),

for the panel i the wall tangency condition on the receiving panel is:

V iT
j = [(V∞ +u′i)i+ v′i j+w′

ik] ·ni = 0 (2.40)

Where n is the panel normal and u′,v′,w′ are the induced velocity by the j-th panel on the

i-th, respectively in direction x,y,z. Considering small wing deflection the products u′i ·ni and

v′i ·ni are negligible and the WTC equation simplifies as:

V∞ sinα
i +w′

i cosα
i = 0 (2.41)

Considering the displacement along the z axis of the control point, since:

tanα
i =−∂Zi

∂x
(2.42)

WTC can be rewritten as:

V∞

∂Zi

∂x
= w′

i (2.43)

Or, if normalized normalwash (wi = w′
i/V∞) is considered:

∂Zi

∂x
= wi (2.44)
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This relation is very important because it links the normlwash acting on the panel with the

deformation of the panel itself.

The dimensionless normalwash wi on a generic panel can be expressed also as a function

of dimensionless pressure differences ∆p j acting on every j-th panel as:

wi =
NAP

∑
j=1

AD
i j ·∆p j (2.45)

Or, in a matricial form:

{w}= [AD] · {∆p} (2.46)

[AD] is the Aerodynamic Influence Coefficient Matrix for the aerodynamic panels. It depends

on geometrical quantities, in fact, the input data consists of the vertices’ coordinates of the

horseshoes, the coordinates of control points, the chords and the normal vectors of each panel.

Essentially it only depends on the aerodynamic discretization. [AD] has dimension equal to

NAP ×NAP, whereas {w} and {∆p} are vectors of dimension NAP × 1, with NAP number of

aerodynamic panels. ∆p is the dimensionless pressure differential:

∆p =
∆P

1
2 ρ∞V 2

∞

(2.47)

2.4.2 Doublet Lattice Method (DLM)

The DLM is based on the same assumptions of potential flow as VLM, with an analogous

discretization, but, instead of a vortex, a doublet horseshoe is used. Thus the DLM solves the

acceleration potential equations using an harmonic approach [19]. If dimensionless normal-

wash and dimensionless pressure jump are considered:

w =
w′

V∞

∆p =
∆P

1
2 ρ∞V 2

∞

(2.48)

Considering harmonic motion w′ and ∆p can be expressed in the exponential form:

w = weiωt
∆p = ∆peiωt (2.49)

The normalwash w in a point with coordinates x,y is related to the pulsating pressure jump

∆p in the point with coordinates ξ ,η by the following expression [3]:

w =
1

8π

Z
A

∆p K(x0,y0,ω,M)dA (2.50)

Figure 2.5: Reference configuration
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This a surface integral to be executed on every aerodynamic panel, where:

M is the freestream Mach number;

x0 = x−ξ y0 = y−η ; (2.51)

and the Kernel function K can be written as:

K = e−
iωx0
V∞

K1T1

r2 (2.52)

With:

r = (y2
0)

1
2 T1 = 1

K1 = I1 +
M r
R

e−ik1u1

(1+u2
1)

1
2

I1 =
Z

∞

u1

e−ik1u1

(1+u2
1)

3
2

du

u1 =
MR− x0

β 2r
k1 =

ω r
V∞

R = (x2
0 +β

2r2)
1
2 β = (1−M2)

1
2 (2.53)

From normalized normalwash w pressure differentials ∆p can be computed using an Aero-

dynamic Influence Matrix, similarly to VLM:

w =
NAP

∑
j=1

AD
i j∆p j (2.54)

Ai j depends on the geometry of the wing and on the aerodynamic discretization as in VLM.

For DLM a good expression for AD
i j is given by:

AD
i j =

∆x j

8π

Z +b j

−b j
Ki j dy j (2.55)

The presence of the Kernel function means that nearer panels have a stronger influence on

each other than farther panels.

2.4.3 VLM and DLM application in aeroelastic analysis

The pressure differentials are the final result of the aerodynamic analysis. They are calculated

relying on modal shapes form given by a structural FEM model. Displacements of the FEM

nodes are passed to the control point (the point placed at 3/4 of chord) of the aerodynamic

mesh through a spline interpolation. Then, thanks to equation 2.44, by differentiating verti-

cal displacements along the longitudinal direction, the normalized normalwash wi is found.

Knowing the Aerodynamic Influence Coefficient Matrix, with equation 2.46 is now easy to

find the value of normalized pressure differentials ∆p with some numerical methods. By

integrating the pressure value on every aerodynamic panel surface the lift applied at the load

points (the point placed at 1/4 chord) is calculated. By transferring the load back again to the
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FEM model with a spline interpolation it is possible to compute the aeroelastic stiffness and

damping matrices or to apply a flutter calculation method such as the p-k method.

2.5 Aeroelastic equations of motion

Now that all components of aeroelasticity has been enunciated the aeroelastic equation in

time-domain can be expressed as [20]:

Mü(t)+Cu̇(t)+Ku(t) = F(t) (2.56)

With:

M: mass matrix;

C: structural damping matrix;

K: stiffness matrix;

F : force vector;

u: displacements vector.

The solution, in Laplace domain, of the aeroelastic problem will have the following os-

cillating form:

u(t) = ûest = ûe(σ+iω)t (2.57)

Introducing the aerodynamic term:

[Ms2 +Cs+K − 1
2

ρV 2Q(s)]û(s) = 0 (2.58)

The non-dimensional p eigenvalue can now be introduced:

p =
b

V∞

s =
b

V∞

(σ + iω) = g+ ik (2.59)

Where b is the reference length, usually half chord length. k is the reduced frequency and it

is the imaginary part of p.

Substituting p into (2.58):h
(
V∞

b
)2Mp2 +

V∞

b
Cp+K − 1

2
ρV 2Q(p)

i
û(p) = 0 (2.60)

2.5.1 Modal approach and generalized matrices

To deal with a computationally cheap problem the modal approach can be used. Usually only

the lower modes play a role in flutter occurrence. Typically the first ten modes are enough to

describe the structural deformation of flutter. The displacements vector can be written using

the modal superposition and the unknown modal amplitudes vector q:

u = φq (2.61)
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φ is a matrix where a number of modal shapes Nmodes are contained.

The generalized aerodynamic matrix for a given reduced frequency is given by:

Q̃i j(ik) =
NAP

∑
N=1

∆pN
j (ik)Z̃

N
i SN

AP (2.62)

Where:

δ pN
j (ik) is the pressure jump due to the j-th set of motions acting on the N-th aerodynamic

panel. It is computed by means of DLM;

Z̃N
i is the i-th transversal motion set evaluated at the N-th aerodynamic panel. Starting from

the i-th modal shape given by a structural code, the i-th motion set is then mapped on the

aerodynamic mesh by means of splining process;

SN
AP is the area of the N-th aerodynamic panel.

Qi j(ik) is, therefor, a square matrix with Nmodes ×Nmodes elements.

The generalized mass matrix is given by:

M̃ = φ
T Mφ (2.63)

M̃ is a square diagonal matrix with Nmodes ×Nmodes elements.

The generalized stiffness matrix is a square diagonal matrix with Nmodes ×Nmodes, whose

diagonal terms are:

K̃i j = ω
2
i M̃i j (2.64)

Where ωi j is the oscillatory frequency associated to the i-th modal shape.

The aeroelastic equation, neglecting the damping term1, becomes:h
(
V∞

b
)2M̃p2 + K̃ − 1

2
ρV 2Q̃(p)

i
q(p) = 0 (2.65)

The use of the generalized matrices allows to reduce the problem’s dimensions, that decrease

from NDOF ×NDOF using the regular matrices to Nmodes ×Nmodes using the generalized ma-

trices.

If to solve (2.65) is chosen the p-k method, Q is obtained from simple harmonic motion:h
(
V∞

b
)2M̃p2 + K̃ − 1

2
ρV 2Q̃(ik)

i
q(p) = 0 (2.66)

This formulation, as explained in section 2.3.4, is mathematically inconsistent because p

was assumed as dumped sinusoidal motion. Despite this approximation this method usually

provides good results.

1Usually structural damping is much smaller than aerodynamic damping, so it can be neglected
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Chapter 3

FEM theory

Finite element method is a tool to evaluate the approximate solution to boundary conditions

problems for partial differential equations. Fem utilizes a discretization of the domain in a

finite number of elements and variational methods to rewrite equations in terms of simple

algebraic equations.

Finite elements models are today’s state of the art for aeroelastic calculations since, as

seen in section 2.5, stiffness matrix and mass matrix must be known to perform an aeroelastic

analysis. Therefor, an introduction to how FEM works is presented here in this chapter. Since

a 2D elements model will be realized during the thesis particular attention will be put to plate

elements. Thus, the stiffness matrix and the mass matrix will be evaluated for a Reissner-

Mindlin plate element.

3.1 Reissner-Mindlin theory

The first step needed to compute a 2D FEM model is to approximate a 3D displacement field

with a 2D field. Usually 2D FEM codes are based on Reissner-Mindlin (R-M) theory. This

theory is based on two hypothesis on the displacements field:

• the displacements field is linear;

• plate thickness is constant (εzz = 0).

From these hypothesis the following displacement field is found:
u(x,y,z) = u0(x,y)+ z φx(x,y)

v(x,y,z) = v0(x,y)+ z φy(x,y)

w(x,y,z) = w0(x,y)

(3.1)

Through these hypothesis the field on the plate volume is determined by the displacements

field on a reference surface on the plate, which usually correspond to the mean surface of the

plate. Therefor, the 3D problem has been rewritten as a 2D problem. The unknowns are now

the displacements (u0,v0,w0) and the rotations (φx,φy) of the reference surface (apex "0"):

{s0}T = {u0 v0 w0
φx φy} (3.2)
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The vector {s0} regards a plane domain and no more a volume.

To write the R-M transformation in a contracted form let consider a matrix [R] such that:

{s}= [R]{s0} (3.3)

With:

h
R
i
=

1 0 0 z 0

0 1 0 0 z

0 0 1 0 0

 (3.4)

3.2 Finite element "Reissner-Mindlin plate"

The R-M plate theory just evaluated can now be exploited to find the expression for the plate

finite element.

Since displacements field is linear, deformations {ε}T can be expressed as1 :

εxx = u,x

εyy = v,y

εxy = u,y+v,x

εxz = u,z+w,x

εyz = v,z+w,y

(3.5)

Or in compact form as:

{ε}= [b][s] (3.6)

Where:

h
b
i
=



∂

∂x 0 0

0 ∂

∂y 0
∂

∂y
∂

∂x 0
∂

∂ z 0 ∂

∂x

0 ∂

∂ z
∂

∂y


(3.7)

If R-M hypothesis are inserted in (3.5) and derivatives are executed, the following expressions

are obtained: 

εxx = u0,x+z φx,x

εyy = v0,y+z φy,y

εxy = u0,y+v0,x+z (φx,y+φy,x )

εxz = φx +w,x

εyz = φy +w,y

(3.8)

1,x stands for ∂

∂x
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Or in contracted form:

{ε}= [b0][s0] (3.9)

With:

[b0] = [b00]+ z[b0z] (3.10)

Where:

h
b00

i
=



∂

∂x 0 0 0 0

0 ∂

∂y 0 0 0
∂

∂y
∂

∂x 0 0 0

0 0 ∂

∂x 1 0

0 0 ∂

∂y 0 1


(3.11)

and

h
b0z

i
=


0 0 0 ∂

∂x 0

0 0 0 0 ∂

∂y

0 0 0 ∂

∂y
∂

∂x

0 0 0 0 0

0 0 0 0 0

 (3.12)

To arrive at the finite element formulation now unknowns {s0} must be express in function

of nodal displacements {S}. The relationship that can be exploited is the following:

{s0}= [N]{S} (3.13)

Where nodal displacements are grouped (for a quad element) as:

{S}T = {{S1}T , {S2}T , {S3}T , {S4}T} (3.14)

With:

{Si}= {Ui,Vi,Wi,φxi,φyi} (3.15)

[N] is the shape functions matrix. Ni are essentially interpolation functions, such as Lagrange

polynomials, that execute a sort of geometrically weighted average of the values of the vari-
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ables in the element nodes:

u0(x,y) =
N nodi

∑
i=1

Ni(x,y)Ui (3.16)

v0(x,y) =
N nodi

∑
i=1

Ni(x,y)Vi (3.17)

w0(x,y) =
N nodi

∑
i=1

Ni(x,y)Wi (3.18)

φx(x,y) =
N nodi

∑
i=1

Ni(x,y)Φxi (3.19)

φy(x,y) =
N nodi

∑
i=1

Ni(x,y)Φyi (3.20)

Now the matrix of interpolation of deformation [B] can be obtained, which relates deforma-

tions to nodal displacements:

{ε}= [B]{S} (3.21)

But, from (3.13) and (3.9), it is clear that the following relationship is valid:

{ε}= [b0][N]{S} (3.22)

Therefor:

[B] = [b0][N] (3.23)

That is equal to:

[B] = ([b00]+ z[b01])[N] (3.24)

And, posing:

[B0] = [b00][N] (3.25)

[B1] = [b01][N] (3.26)

It is obtained that:

[B] = [B0]+ z[B1] (3.27)

3.2.1 Evaluation of stiffness matrix

To evaluate the stiffness matrix of the element now it is necessary to exploit the definition of

virtual internal work, and substitute inside the definition the relationship just evaluated:

δWi =
Z

V
{σ}T{δε} dV (3.28)

From Hooke’s law is then known that:

{σ}= [QK ]{ε} (3.29)
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Figure 3.1: Laminated plate

Therefor:

δWi =
Z

V
{ε}T [Qk]{δε} dV (3.30)

Substituting 3.21 inside:

δWi = {δS}
Z

V
[B]T [Qk][B] dV {S}T (3.31)

That can be rewritten in turn, by putting inside (3.27), as:

δWi = {δS}
Z

V
([B0]+ z[B1])T [Qk]([B0]+ z[B1]) dV {S}T (3.32)

From which the stiffness matrix [K] is evaluated:

[K] =
Z

V
([B0]+ z[B1])T [Qk]([B0]+ z[B1]) dV (3.33)

If a composite laminate plate is considered the volume integral can be rewritten as:

Z
V

dV =
Z +h/2

−h/2
dz

Z
Ω

dΩ =
N layers

∑
k=0

Z zk+1

zk

dz
Z

Ω

dΩ (3.34)

Where, referring to figure 3.1:

h is the total plate thickness;

Ω is the reference surface;

k is the layer number.

And, consequently, stiffness matrix can be rewritten as:

[K] =
N layers

∑
k=0

Z zk+1

zk

dz
Z

Ω

([B0]+ z[B1])T [Qk]([B0]+ z[B1]) dΩ (3.35)

[K] can be conveniently developed as:

[K] =
N layers

∑
k=0

Z zk+1

zk

dz
Z

Ω

([B0]T [Qk][B0]+[B0]T z[Q]k[B1]+[B1]T z[Qk][B0]+[B1]T z2[Qk][B1]) dΩ

(3.36)
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Then variables that are function solely of z are integrated along z and are named as:

[A] =
N layers

∑
k=0

Z zk+1

zk

[Qk] dz (3.37)

[B] =
N layers

∑
k=0

Z zk+1

zk

z[Qk] dz (3.38)

[C] =
N layers

∑
k=0

Z zk+1

zk

z2[Qk] dz (3.39)

[A]: membrane stiffness matrix;

[B]: coupling stiffness matrix;

[D]: bending-torsional stiffness matrix.

[K] can now be rewritten as:

[K] =
Z

Ω

([B0]T [A][B0]+ [B0]T [B][B1]+ [B1]T [B][B0]+ [B1]T [D][B1]) dΩ (3.40)

From which:

[K] = [K00]+ [K01]+ [K10]+ [K11] (3.41)

With:

[K00] =
Z

Ω

[B0]T [A][B0] dΩ (3.42)

[K01] =
Z

Ω

[B0]T [B][B1] dΩ (3.43)

[K10] =
Z

Ω

[B1]T [B][B0] dΩ (3.44)

[K11] =
Z

Ω

[B1]T [D][B1] dΩ (3.45)

Evaluate the stiffness matrix of the R-M plate is equal to evaluate stiffness matrices [K00], [K01], [K10], [K11].

3.2.2 Evaluation of mass matrix

Evaluation of mass matrix is needed to compute modal analysis and flutter analysis. To

evaluate it let start by writing the virtual variation of the inertial work2:

δWiner =
Z

V
{δ s}T

ρ{s̈} dV (3.46)

Considering homogeneous plates it can be defined a mass per unit of surface as:

m =
Z +h/2

−h/2
ρ dz (3.47)

And rewriting the virtual variation of inertial work:

δWiner =
Z

Ω

{δ s}T m{s̈} dΩ (3.48)

2s̈ stands for d2s
dt2
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From section 3.1 it is known that:

{s}= [R]{s0} (3.49)

and from section 3.2 that:

{s0}= [N]{S} (3.50)

Therefor the variation of virtual inertial work can be rewritten as:

δWiner = {δS}T
Z

Ω

[N]T [R]T m[R][N] dΩ {S̈} (3.51)

From which the mass matrix can be extracted:

[M] =
Z

Ω

[N]T [R]T m[R][N] dΩ (3.52)
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Chapter 4

Tsai’s Modulus

4.1 What is Tsai’s Modulus

Carbon fiber reinforced composites are widely used in aeronautics due to their unique proper-

ties, such as high strength and modulus to weight ratio. In 2014 Tsai and Melo [6] proposed

a novel invariant-based approach to describe elastic properties of composites plies and lami-

nates. In this approach the trace of the plane stress stiffness matrix is evaluated as a material

property.

Considering classical lamination theory (CLT), for a unidirectional tape the the on-axis stress–strain

relations, using engineering notation, are:
σx

σy

σs

=

Qxx Qxy 0

Qyx Qyy 0

0 0 Qss




εx

εy

εs

 (4.1)

and 
εx

εy

εs

=

Sxx Sxy 0

Syx Syy 0

0 0 Sss




σx

σy

σs

 (4.2)

where σi and εi are the stress and strain components, respectively, and [Q] and [S] are the in

plain stress stiffness and compliance.

In engineering notation stiffness and compliance are not tensors. Rewriting 4.4 and 4.3

in tensorial notation the following relations are valid:


σx

σy

σs

=

Qxx Qxy 0

Qyx Qyy 0

0 0 2Qss




εx

εy

εs/2

 (4.3)
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and 
εx

εy

εs/2

=

Sxx Sxy 0

Syx Syy 0

0 0 Sss/2




σx

σy

σs

 (4.4)

Now, if a rotation around the reference axis is introduced 4.1, stress, strains, and con-

sequently the stiffness matrix will modify as a function of the rotation angle θ . We will

consider a positive rotation in the anti – clockwise direction.

Figure 4.1: Rotation of master ply along reference axis [21]

Due to the rotation stress and strains components will change as it follows:

n
σ ′
o
=
h
J
in

σ

o
(4.5)

n
ε ′
o
=
h
JT

i−1n
ε

o
(4.6)

where

h
J
i
=

 m2 n2 2mn

n2 m2 −2mn

−mn mn m2 −n2

 (4.7)

and

h
JT

i−1
=

 m2 n2 mn

n2 m2 mn

−2mn 2mn m2 −n2

 (4.8)

with

m = cosθ (4.9)
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n = sinθ (4.10)

Note that 4.7 and 4.8 differ because engineering shear strain is used.

Now, if the off axis Hooke relation is written:
σ1

σ2

σ6

=

Q11 Q12 Q16

Q12 Q22 Q26

Q61 Q62 Q66




εx

εy

εs

 (4.11)

Between on – axis and off – axis stiffness matrix is valid the following relation:

[Q′] = [J][Q][JT ] (4.12)

The transformation relations lead to the following matrix:

Q11

Q22

Q12

Q66

Q16

Q26


=



m4 n4 2m2n2 4m2n2

n4 m4 2m2n2 4m2n2

m2n2 m2n2 m4 +n4 −4m2n2

m2n2 m2n2 −2m2n2 (m2 −n2)2

m3n −mn3 mn3 −m3n 2(mn3 −m3n)

mn3 −m3n m3n−mn3 2(m3n−mn3)




Qxx

Qyy

Qxy

Qss

 (4.13)

The positive and negative transformations differ because of the sign of the odd powers of

sine (which is an anti – symmetrical function), which are present in the shear couplings

components.

Now the following trigonometric identities are introduced to transform relations from the

fourth powers of trigonometric function to those in multiple angles:

cos4
θ =

3+4cos2θ + cos4θ

8
= m4 (4.14)

cos3
θ sinθ =

2sin2θ + sin4θ

8
= m3n (4.15)

cos2
θ sin2

θ =
1− cos4θ

8
= m2n2 (4.16)

cosθ sin3
θ =

2sin2θ − sin4θ

8
= mn3 (4.17)

sin4
θ =

3−4cos2θ + cos4θ

8
= n4 (4.18)

When the transformation relations are repackaged by substituting these identities into those

in Equation 4.7, a set of linear combinations of the principal stiffness, listed in Table 4.1, are

obtained.

Three of these combinations are invariants. Invariants are very important for composite ma-

terials design, because, regardless of laminate layup of multidirectional plies, they remain

constant.

The transformation relations (4.13) can now be rearranged in order to be a linear combination
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Qxx Qyy Qxy Qss Invariant?
U1 =U4 +2U5 3/8 3/8 1/4 1/2 YES

U2 1/2 -1/2 0 0 NO
U3 1/8 1/8 -1/4 -1/2 NO

U4 =U1 −2U5 1/8 1/8 3/4 -1/2 YES
U5 = (U1 −U4)/2 1/8 1/8 -1/4 1/2 YES

Table 4.1: Linear combinations of on-axis stiffness moduli

of Us and multiple angles functions:

Q11

Q22

Q12

Q66

Q16

Q26


=



U1 U2 U3 0 0

U1 −U2 −U3 0 0

U4 0 −U3 0 0

U5 0 −U3 0 0

0 0 0 U2/2 U3

0 0 0 U2/2 −U3





1

cos2θ

cos4θ

sin2θ

sin4θ


(4.19)

Writing tensorial off-axis stress-strains relations a two factor appears in the third column:


σ1

σ2

σ6

=

Q11 Q12 2Q16

Q21 Q22 2Q26

Q61 Q62 2Q66




ε1

ε2

ε6

 (4.20)

By summing the components of the main diagonal of the stiffness matrix its trace is obtained:

trace[Q] = Q11 +Q22 +2Q66 (4.21)

Using the relations presented in (4.19) trace [Q] can be written as a function of Us and

multiple angles:

trace[Q] = 2U2 +2U5 = 2(U1 +U5) (4.22)

Therefore, it is clear that the trace [Q] is an invariant, as it is the linear combination of two

invariants. Trace is a fundamental property of the material and represents the total and upper

bound of the stiffness property of a material in an explicit form as defined by mathemat-

ics. It is independent by the loading condition (in-plane versus flexural), stacking sequence

(mid-plane symmetric versus asymmetric), and material symmetry: isotropic, orthotropic

and anisotropic. Since trace[Q] is an invariant with respect to coordinate transformations,

in a laminate, the trace of the thickness-normalized inplane (A∗) and flexural (D∗) stiffness

matrices are also the same:

trace[A∗] = trace[D∗] = trace[Q] (4.23)

This is a crucial result and for the merits on the research the invariant trace[Q] has been

named as Tsai’s Modulus in 2020 by Albertino, Sharma et al. [22].
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4.1.1 Master ply for carbon/polymer composites

It was found that carbon fiber/epoxy and thermoplastic composite materials share common

stiffness properties when they are normalized by their respective Tsai’s Modulus. Tsai and

Melo [6] in their analysis proposed ten different carbon fiber composites and found that their

trace-normalized stiffness factors were very close (tab. 4.2). In particular, they found that

the longitudinal stiffness (parallel to the fiber) has a coefficient of variation equal to 1.5%.

The median values of these factors define a ’master ply’ used to gain understanding of the

laminate behavior of these composites.

The variation on the matrix dominated transverse and shear properties are larger because

different matrices and curing processes are used. However, their effect on laminate properties

is small. The stiffness along the fiber is, in fact, responsible for about 88% of the trace for

the unidirectional carbon/epoxy composites; thus, uncertainty from matrix related property

is masked by the dominant fiber property, which has a small variation of 1.5%. Hence, the

matrix contribution and its wider variation are of small consequence when ply stiffness is

converted to laminate stiffness.

Figure 4.2: Trace normalized plane stress stiffness components and engineering constants

In conclusion, master ply’s engineering constants and stiffness components are equal to [21]:

E∗
x =

Ex

tr[Q]
= 0.880 E∗

y =
Ey

tr[Q]
= 0.052 E∗

s =
Es

tr[Q]
= 0.031 (4.24)

Q∗
xx =

E∗
x

1−νxνy
= 0.885 Q∗

yy =
E∗

y

1−νxνy
= 0.0525 (4.25)

Q∗
xy = νxEy = 0.0167 Q∗

ss = 0.0313 (4.26)

4.2 Tsai’s Modulus application in structural optimization and
design

The opportunities brought by this new invariant based approach based on Tsai’s Modulus are

almost endless. Arteiro A., Sharma N. et al. [22] cited numerous applications of this new

approach in their article. Among them there is a directed laminate sizing method proposed

by Tsai et al. [23] using Tsai’s Modulus as a normalizing factor. Laminate selection could,

therefor, be performed independently of the material system. Material selection would be the

last step, according to strength and stiffness requirements. The latter could be matched by

direct scaling using the Tsai’s modulus. Tsai et al [24] proposed a method where shape opti-
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mization of tapered beams could be easily performed, allowing an easy calculation of weight

saving with a given material. Shrivastava et al. [25] used stiffness components normalized

by Tsai’s modulus in layup optimization of a wing box, including thermal deformation anal-

ysis. Some universal carpet plots normalized by Tsai’s Modulus, valid for every CFRP, have

been proposed by Melo et al. [26] and by Barbero [27]. These carpet plots are not sensitive

to environmental conditions and the actual Young’s and shear moduli can be immediately

recovered simply by using the corresponding value of the Tsai’s modulus, at the respective

environmental conditions. Tsai et al. [21] proposed a possible simplification of the current

design certification and processes based on a practical case study without posing risk to the

safe design of structures at larger scales. In fact, the result of the analysis is that one test

at the laminate level could repalce the three independent tests at the ply level required by

current design and certification processes. Furtado et al. [28] used the invariant approach and

the master ply concept to obtain the elastic properties of balanced multi-directional laminate

and their sub-laminates, in order to predict open–hole strength of laminated panels. Differ-

ences below 3% were found for high-strength CFRP systems and below 7% for high-modulus

CFRP systems. Also in the field of notched composites Melo et al. [26] obtained the stress

concentration factors for open–hole laminates using the normalized Master ply properties,

hence valid for any CFRP. Dalli et al. [29, 30] used trace-normalized moduli to simplify

the expressions of the geometric correction factors used in fracture mechanics of orthotropic

bodies, proposing a general formulation for the Energy release rate valid for the majority of

standard balanced woven CFRPs.
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Chapter 5

AVL

AVL (Athena Vortex Lattice) is a vortex lattice method originally written by by Harold Youn-

gren circa 1988 for the MIT Athena TODOR aero software collection, and developed by

Mark Drela and Harold Youngren.

As every vortex lattice method code the geometry consists of a lattice of 2D panels, on

which is placed an horseshoe vortex. The trailing legs of the horseshoe filaments are assumed

to be parallel to the x axis. Thus AVL is best suited for aerodynamic configurations which

consist mainly of thin lifting surfaces at small angles of attack and sideslip [31]. Furthermore,

AVL allows to model slender bodies as fuselages via source plus doublet filaments.

AVL assumes quasi-steady flow, meaning that unsteady vorticity shedding is neglected.

It assumes the limit of small reduced frequency, which means that any oscillatory motion

must be slow enough so that the period of oscillation is much longer than the time it takes the

flow to traverse an airfoil chord. The yaw, pitch and yaw rates used in the computation must

be slow enough so that the resulting relative flow angles are small.

Complex wing and aircraft geometries can be modeled in AVL. It is, in fact, possible to

model dihedral angle, aileron deflection, high lift devices, both in the leading edge and in the

trailing edge. The airfoil lifting properties are modeled by the software by giving it simply

the airfoil coordinates. Control surfaces can be model in the same way too.

The general freestream is described through the following parameters/techniques:

• α: angle of attack;

• β : sideslip angle;

• p,q,r: aircraft rotation components;

• Subsonic Prandtl-Glauert compressibility treatment.

By giving it some constraints, such as the required CL or moments, AVL can execute trim

calculations. It can then give the following aerodynamic outputs:

• Direct forces and moments on elements;

• Trefftz plane;

• Derivatives of forces and moments, w.r.t freestream, rotation, controls;
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• In body or stability axes.

Optional mass properties file can also be defined to execute eigenmode flight dynamics anal-

ysis, as:

• Rigid-body analysis with quasi-steady aero model;

• Display of eigenvalue root progression with a parameter;

• Display of eigenmode motion in real time;

• Output of dynamic system matrices.

5.0.1 Vortex lattice spacing distributions

AVL offers a set of possible discretizations for both spanwise and chordwise wing’s direc-

tions. The possible discretizations are controlled by the spacing parameters Sspace, Cspace

and Bspace, that must fall in the range between -3 and 3. The dicretization distribution asso-

ciated to each parameter is presented in figure 5.1, and are:

• Equal;

• Sine;

• Cosine.

Figure 5.1: Possible AVL discretizations [31]

The most efficient distribution is usually the cosine both chordwise and spanwise . If the

wing does not have a significant chord slope discontinuity at the centreline then the -sine

distribution from root to tip will be more efficient [31].

To get good results in AVL a set of vortex-spacing rules must be followed:

• In a standard VL method a trailing vortex leg must not pass close to a downstream

control point. Consequently surfaces that are lined up along the x direction (that have

almost the same y and z components) must have the same spanwise vortex spacing;

• Spanwise vortex spacings should be “smooth", with no sudden changes in spanwise

strip width;
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• If a surface has a control surface on it, an adequate number of chordwise vortices

should be used to resolve the discontinuity in the camberline angle at the hingeline;

• When refining the mesh it is generally necessary to refine in both spanwise and chord-

wise directions. Refining along only one direction may not converge to the correct

result.
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Chapter 6

Wing geometry definition

The first step before beginning the analysis is the creation of the CAD of the wing.

The CAD was created with CATIA v5 software. The geometry is all parameterized in

function of wing root chord and the fraction 1
2

span
root chord . The surface area is imposed as

A = 9 m2 and the span imposed is equal to b = 13,5 m. From this data the aspect ratio can

be evaluated as:

AR =
b2

A
= 20.25 (6.1)

From AR the mean aerodynamic chord can be evaluated:

caero =
b

AR
= 0.667 m (6.2)

The wing geometry is created using an ellipse as reference. Then it is divided into three traits

using a cosine distribution. Since there must be two intermediate sections the law is applied

by using θ = [30,60] to find the y coordinate of the sections, applying the law:

y = cos(θ) (6.3)

The first section will, therefor, be at 50% of semi-span and the second section will be near

86,6% of semi-span. The first spar is set straight, so the wing will not follow a perfectly

elliptical shape, but it will appear a little swept forward. The relative chordwise position of

the main spar is set as an editable parameter initially to 30% of chord. The plan areas in the

three traits are calculated in order to be equivalent to the respective ellipse’s surfaces. The

obtained sketch of the wing structure is presented in figure 6.1. Referring to the figure’s axis

system the main dimension of the wing are here listed:

• Wing semi-span = 6758 mm;

• Wing root chord = 850 mm;

• First kink y coordinate = 3379 mm;

• First Kink chord = 740 mm;

• Second kink y coordinate = 5853 mm;
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• Second kink chord = 493 mm;

• Tip chord = 145 mm.

Figure 6.1: Sketch of the wing

Obtained the main structure now the wing profile coordinates (fig. 6.7) are imported

in the software in order to match the cord length. The profile NACA 641412 is chosen. By

importing the profile coordinates a series of point is created by the software. The wing profile

is then reconstructed using two nurb curves which approximate in the best way possible the

shape of the wing. From these two curve it is now easy to realize the bottom and top surfaces

of the wing, extruding the profile along the leading edge and the trailing edge lines. The two

spars are than realised with surfaces extruded along z direction and then trimmed with the top

and bottom surfaces. The ribs located in the kink are realised by filling the profile section.

Then the flap and the ailerons are inserted. The configuration chosen for both is the plain

flap configuration, as it is one of the most common solution for sailplanes high lift devices.

The aileron hinge is placed at 80% of chord, as for wing of normal thickness ratio little

benefit is obtained by increasing the flap cord to more than 20% of chord [32]. From side

view the section of the wing appears as figure 6.2.

After that, the three ribs located are holed, leaving a width of 30 mm for the root rib,

20 mm for the rib located in the first kink and 17 mm for the last rib. The width of the ribs

shear webs varies in function of the dimension of the rib . The back part of the ribs, located

between the rear spar and the flap/ailerons. The ribs obtained are presented in figure 6.4.

Then on the panels the spar’s flanges are introduced by projecting two curves that develop

alongside the spars (one in front of the main spar and one behind the back spar). In the FEM

model on this two thin surfaces the lamination relative to the flange will be applied. The main

spar’s flange width is editable and is set to 80 mm from the root section to the second kink,

then its width is reduced linearly till 30 mm at the wing tip in order to not intersect the wing

leading edge. The rear flange width is set to 60 mm between the root section and the first

kink, then its width reduces linearly to 40 mm towards the second kink and then till 12 mm

at the wing tip. This tapering is done in order to not intersect the aileron leading edge.

Last, a reinforcement to allow the application of the boundary conditions is realised. The

objective is to create a wing box able to sustain the root loads. First the main spar is extruded

along negative spanwise direction coordinates for 600 mm. Then a surface parallel to the
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one just extruded is realized in correspondence of the flange foremost point. Now a diagonal

surface that reaches inside the wing is created to connect this surface to the spar’s shear web

(fig 6.5). The connection point is located at a y coordinate equal to three times the spar

root height. Then two circular holes are realised in the wing box to simulate the presence

of two bolt joints. The holes axes are located at 20% and 80% of the box extrusion length

(respectively 120 mm and 480 mm) and the holes radius are 20 mm (fig .6.6).

The baseline CAD obtained is presented in figure 6.3. This will be the starting point for

the structural optimization of the wing.

Figure 6.2: Wing root section

Figure 6.3: Baseline CAD

Figure 6.4: Ribs
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Figure 6.5: Box spars

Figure 6.6: Box geometry

Figure 6.7: NACA 641412 coordinates [32]
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Chapter 7

Static sizing

Before executing the flutter analysis the wing must be properly sized to resist to static loads,

in order to then obtained realistic flutter results. Therefor, in this chapter the sizing to static

loads is presented. There will be, as well, a long presentation of the FEM model realized,

that will be the basis for every further work.

7.1 FEM Model

In this subsection the development of the FEM model used for the static sizing is presented.

The FEM model is developed on the baseline CAD presented in Chapter 6. Based on the

results of the static analysis the model will be sized to not have failures following the Tsai-

Wu criterion. The FEM model has been realized on Simcenter Femap. The consistent units

used for the model are presented in table 7.1.

Mass Length Time Force Stress Density Gravity
tonn mm s N MPa tonn/mm3 9810 mm/s2

Table 7.1: Consistent units

7.1.1 Mesh

The first thing executed during the creation of the model is the mesh on the CAD surfaces.

For the mesh creation the main objective was to use only CQUAD elements, without having

to use any TRIA element in order to obtain a very good mesh quality. This was obtained by

slightly modifying the CAD topology, by, for instance, splitting some surfaces.

The mesh was defined starting from the smallest surfaces, like the ribs’ leading edge zone

and the flanges’ small side.

For the front spar’s flange small side a mesh seed of 6 six elements was set. This number

of elements resulted to be a good compromise between obtaining a smooth mesh relative to

the CAD topology and in the mean time having an enough fine discretization in this highly

loaded part. The resulting element size was around 13.5 mm at the root station. To keep a

good mesh quality also in the spanwise direction, but at the meantime not increase too much

the number of cells a biased spacing option is set in the spanwise mesh seed, with a bias
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factor of 1.3, in order to have smaller cells near the root section. The number of element

chosen is 63 spanwise elements, 39 between root section and first kink, 19 between first and

second kink and 5 between second kink and wing tip.

For the rear flange small side 5 elements have been inserted, with an element length of

nearly 15 mm. This setting also respects the same conditions exposed before.

For the ribs three elements are inserted transversely in the leading edge zone and on the

long sides, while two transversal elements are inserted in the short sides. Chordwise, on the

leading edge a mesh seed of four elements is set with a bias factor of 1.3 towards the centre

in order to be able to represent well enough the leading edge shape. In this leading edge

region the rib topology is modified in order to obtain a nice sheaf that surrounds entirely

the inside hole. For the front part beetween the leading edge and the front flange some

biased discretizations are applied to the various ribs in order to obtain the smoothest mesh

possible while using the least elements. Six elements are set there. For the mid part between

the flanges an other biased discretization has been used for the same reasons, putting there

11 elements. In the vertical direction, in the root rib ten elements has been inserted in the

junction with the front spar in order to have a good mesh quality on the rib, on the spar’s

shear web and in the wing box. To not incur in topology errors ten elements have been set

also in the junction between the wing box front shear web and the root rib. In the junction

with the rear spar 8 elements have been set, since there the airfoil is thinner.

These mesh seed number set for the root rib are carried equal to the other ribs, as can be

seen in figure 7.1a, 7.1b, 7.2a and 7.2b. The skin and the spars’ shear web are then meshed

consequently.

For the wing box a mesh size equal to 10 mm is set. Then two pads with washer are

created on each box side around the holes, in order to improve the mesh quality. The pad

factor is set to 0.5. With these settings a good mesh can be obtained executing some other

minor topology modification to allow the software to carry the correct number of element

from one side of the box to the other (fig. 7.6).

The total elements obtained using these settings are:

Element type Number of elements
CQUAD 8758
CTRIA 0

Table 7.2: Number of mesh elements

The obtained mesh quality looks good, with only some small elements in the highest

curvature zones in the ribs characterized by a Jacobian over 0.6 (fig. 7.7). The mesh obtained

is more fine in the more loaded parts, or with possible high loads gradients, and more coarse

in the zones with high chances of having constant or low loads, as for example skin panels

(fig. 7.4).
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(a) Root rib mesh (b) First kink rib mesh

Figure 7.1: Side view of first two ribs’ mesh

(a) Second kink rib mesh (b) Tip rib mesh

Figure 7.2: Side view of second two ribs’ mesh

Figure 7.3: Side view of spar’s shear web mesh
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Figure 7.4: TOP view of the mesh

Figure 7.5: Isometric view of the mesh

Figure 7.6: Side view of the wing box

Figure 7.7: Jacobian value on mesh
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7.1.2 Materials and global plies definition

After having realised the mesh now it is necessary to define the properties to be assigned to

the mesh elements. As the kernel of the thesis is evaluating the relationship between Tsai’s

Modulus and the flutter behaviour of the wing a model capable of representing composites

laminates must be used. The materials must be, therefor, declared as 2D orthotropic. Then,

these materials must be stuck in a layup which will be assign to the elements’ properties.

Since the model to be analyzed is quite complex the layup sequence is defined using

global plies. This method allows to simplify post processing and also make easier to execute

modifications on the model by simply adding or removing global plies to a layup sequence.

Since in the global plies definition only a single ply can be defined, the material has

been defined as an equivalent global lamination block, putting inside the material properties

the resulting moduli of a laminated plate with a lamination equal to the global blocks to be

used in the analysis. The three global plies used in the model are 2D orthotropic materials

equivalent to:

• [+0/+50/−50/−0] DD lamination;

• [+45/−45] lamination;

• [0] single ply.

Their equivalent moduli are respectively presented in the tables 7.3, 7.4 and 7.5. It can be

noted how the values used for the [0] ply refer to the master ply values.

The resulting material properties has been evaluated using an Octave script based on ma-

terial transformations relations (4.13) and classical lamination theory. The results obtained

are compared to the data presented by Tsai, Sharma et al. in 2019 [33], where they char-

acterized a [0/50/− 50/− 0] DD with a Tsai’s Modulus of 118294 MPa and to the Femap

layup moduli computation. That value of Tsai’s Modulus is the one imposed for the opti-

mization phase. The material properties are then inserted in Femap as a function of Tsai’s

Modulus. The terms G1z and G2z has been deduced from Tsai’s and Melo’s "Composite Ma-

terials design and testing" [34]. The terms have been imposed to 3500 MPa as a mean value

of the epoxy carbon fiber composites presented in the cited book, as both terms are matrix

dominated component.

Modulus Value
E1 = 0.485 T M = 57350 MPa
E2 = 0.179 T M = 21166 MPa
ν12 = 0.551
G12 = 0.126 T M = 14899 MPa
G1z = C66 = 3500 MPa
G2z = C44 = 3500 MPa

Table 7.3: [0/50/−50/−0] equivalent 2D orthotropic material properties

The thickness to be attributed to these global plies is evaluated through rule of mixtures.

Hypothesizing to have a carbon fibre with a density equal to 1.8 g/cm3 and a aereal density
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Modulus Value
E1 = 0.110 T M = 13002 MPa
E2 = 0.110 T M = 13002 MPa
ν12 = 0.774
G12 = 0.225 T M = 26730 MPa
G1z = C66 = 3500 MPa
G2z = C44 = 3500 MPa

Table 7.4: [+45/−45] equivalent 2D orthotropic material properties

Modulus Value
E1 = 0.880 T M = 104059 MPa
E2 = 0.052 T M = 6149 MPa
ν12 = 0.32
G12 = 0.0313 T M = 3666 MPa
G1z = C66 = 3500 MPa
G2z = C44 = 3500 MPa

Table 7.5: [0] equivalent 2D orthotropic material properties

of 150 g/m2, an epoxy matrix with a density of 1.2 g/cm3 and an aereal density of 75 g/cm3,

with a volume fraction of carbon equal to 0.55 a single ply thickness of 0.103030 mm is

obtained. To find the thickness of the [+45/− 45] and of the DD block it is enough to

multiply that value respectively by two and by four.

Since for the sizing will be necessary to evaluate failure index on the structure, limit

stress must be given as input in the material cards. Starting from the known value of longi-

tudinal tensile and compression stress limit of the [0/50/−50/−0] DD other layups failure

properties are evaluated from inverse transformation relationship (4.13), obtaining the results

presented in table 7.6 for the DD lamination, table 7.7 for the [+45/− 45] lamination and

table 7.8 for the [0] ply.

Direction 1 Direction 2
Tension 1082 MPa 400.07 MPa

Compression 618 MPa 228.5 MPa
Shear 248.51 MPa

Table 7.6: [0/50/−50/−0] DD failure stress limits

Direction 1 Direction 2
Tension 542.24 MPa 542.24 MPa

Compression 309.71 MPa 309.71 MPa
Shear 447.24 MPa

Table 7.7: [+45/−45] failure stress limits

7.1.3 Layups and properties definition

On the baseline FEM model to be used for the first static analysis there will be two layers of

DD on the wing skin, which will be identified as global ply 1 and 2, two layers of [+45/−45]
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Direction 1 Direction 2
Tension 1753 MPa 103 MPa

Compression 1001 MPa 58.83 MPa
Shear 61.4 MPa

Table 7.8: [0] failure stress limits

on the shear webs that will be identified as global plies 101 and 102. Since in the flanges there

must be a continuity with the global plies of the shear web and the global plies of the skin, as

it would be in realty, attention must be put to use the same global plies ids and stack them in

the correct order. So, for the flanges the layup sequence imposed is:

Bottom
Global ply id lamination sequence

1 [+0/+50/−50/−0]
2 [+0/+50/−50/−0]

101 [+45/−45]
201 [0]
102 [+45/−45]
top

Table 7.9: Flange lamination

The obtained lamination for a cross section around the main spar is presented in figure

7.8. The green lines represent the skin global plies, with the DD lamination. The blue lines

represent the [+45/−45] global plies that extends from the shear webs to the flanges. Last,

the purple lines represent the [0] global ply in the flanges.

Figure 7.8: Cross sectional view of lamination around a spar

During the optimization iterations using global plies is easier to add or remove an entire

lamination block from an element, as it would be done in a real wing. In the flange up to three

layers of [0] can be add between two layers of [+45/− 45]. On the skin and on the shear

webs blocks of global plies respectively representing laminations of [+0/+ 50/− 50/− 0]
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and [+45/− 45] can be add or removed as necessary. The main two global plies identified

respectively as 1,2 and 101 and 102 must always be the first and last plies of the lamination

sequence of the skin and of the shear webs to have coeherence in the model.

When assigning the layup sequence to the properties is now important to set an options

that allows to stack the plies starting from the CAD surface line toward the inside of the wing.

That is done by activating the option "Offset from bottom surface" in the property card and

checking that all the surfaces normals points toward the inner of the wing. An other check

that can be done is to verify that also the elements normals point towards the inner of the

wing. Finally the Tsai-Wu failure criterion is activated in the property card.

The correct properties assignment can be verified assigning a colour to the element prop-

erties. In figure 7.9 the yellow colour is assigned to the skin’s property, the blue color to the

shear web’s property and the red colour to the flange’s property.

Figure 7.9: Different properties assigned to elements

7.1.4 Boundary conditions and loads

The boundary conditions are set to simulate the presence of two ball joint on the root rib and

two bolt connection on the holes (fig. 7.10).

Therefore, on the node place near 3% of chord near half the thickness of the airfoil the

translations in x and z are fixed.

On the node place at half thickness in correspondence of the intersection with the rear spar

the translation in z is fixed.

On the surface of the hole nearer to the wing translation in z and rotation in y and z are fixed.

On the surface of the hole further from the wing translation in y and z are fixed, as well as

rotations in y and z.

To simulate the presence of an acceleration of 10 g a body load is created, that take in count

presence of angle of attack and diehdral.

For the aerodynamic loads definition a pressure surface from a data table imported from AVL

is created, as described better in the following chapter.
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Figure 7.10: Boundary conditions

7.2 Aerodynamics loads

To evaluate aerodynamics loads is necessary to create an envelope diagram. The aerodynamic

parameters to realize the envelope diagram, such CL max and CL min are evaluated through a

vortex lattice method called AVL. Then, after realizing the envelope diagram coefficients

of pressure that act on the wing surface are evaluated with AVL too and then imported in

Femap. The two loading configurations considered in the sizing are pressures at maximum

load factor nmax at Va and at minimum load factor nmin at Vg.

7.2.1 2D airfoil aerodynamic characteristics

First it is necessary to find the correct 2D value of CL max, CL min, positive and negative stall

angle of attack αmax and αmin of the wing profile NACA 641412 to be given as an input to

AVL.

Since the aerodynamic curves presented in "Theory of wing sections [32]" (fig. 7.11)

change with Reynolds number it is necessary to evaluate the correct Reynolds number at stall

speed to find the correct values.

For positive stall, hypothesizing a CL max of 1.4 and a wing loading of 40 kg/m2 the guess

stall speed is evaluated:

Vs guess =

s
2

W
S ρ CL max

= 20 m/s (7.1)

With sea level ISA condition (ρ = 1.225 kg/m2). This lead to a Reynolds of guess of:

Reguess =
ρ V L

µ
= 900000 (7.2)

With µ = 1.8 10−5 kg
m s . In the graph of figure 7.11a, the curve for Re = 900000 is not present,

so the CL max is evaluated through an extrapolation using a parabolic interpolation of the three

values of CL max given:

• CL max = 1.33 at Re = 3 106;

• CL max = 1.67 at Re = 6 106;

• CL max = 1.55 at Re = 9 106;
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which led to a CL max guess = 1.45.

Now the positive stall speed can be reevaluated and the process is iterated since the following

values are found:

• Vs1 = 21 m/s;

• Re = 964590;

• CL max = 1.44.

Using the same process of interpolation the positive stall angle of attack is found:

• αmax = 12.85°.

For the negative angles of attack the process is easier since the curves don’t change much

with Reynolds, therefor CL min and the negative αmin are find straightaway:

• CL min =−1.00;

• αmin =−12°.

The value of αstall can now be given as an input to AVL to evaluate the 3D aerodynamic

characteristics of the wing.

(a) NACA 641412 CL α and Cmα curves (b) NACA 641412 CD α and Cmac α curves

Figure 7.11: NACA 641412 aerodynamic curves [32]

7.2.2 3D wing aerodynamic characteristic

To proceed with the evaluation of the 3D CL max and CL min first, the wing geometry must be

reproduced on AVL. A file .avl (appendix A) is created, representing in a faithful way the
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wing shape, with the two kinks, the ailerons, and a dihedral angle Γ of 3. For the airfoil

reconstruction a file with the airfoil coordinates is read by the .avl file. The obtained wing

shape can be seen in figures 7.12 and 7.13.

Now two case study for the analysis are created, one for αmax and one for αmin. The air

density is here set to 1.225 kg/m3.

Before executing the calculation a definition of the aerodynamic discretization is needed.

Figure 7.12: AVL geometry isometric view

Figure 7.13: AVL geometry top view

For the aerodynamics mesh a cosine distribution is chosen along the chordwise direction and

a sine distribution along the spanwise direction, as advised by the AVL User Primer [31]

for a wing with little chord slope discontinuity at the centerline. The sine distribution is

chosen since only half of the wing is represented by the model, the other half is obtained by

symmetry, so, along the spanwise direction the mesh will be more fine near the tip and more

coarse near the root section.

The aerodynamic mesh is now defined through a convergence analysis (appendix C). The

optimal mesh obtained is composed by 5 elements chordwise and 25 elements spanwise. That

is the best compromise found to obtain a good data interpolation when data are imported into
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Femap.

The obtained mesh can be seen in figure 7.13, where also the horseshoe vortices are high-

lighted as red lines.

Using this mesh the aerodynamics coefficients found are:

• CL max = 1.512;

• CL min =−0.904.

7.2.3 V-n diagram

Knowing the 3D aerodynamic lifting coefficients it is now possible to realize the V-n diagram.

Maneouvre diagram

First the true stall speeds are evaluated with 3D CL values:

• VS1 = 20.2 m/s;

• V 1
S1 = 26.2 m/s.

From the stall speeds Va and Vg, design manoeuvring speeds, can be evaluated as:

Va =Vs1
√

n1 (7.3)

Vg =V 1
s1

q
n1

1 (7.4)

Imposing a maximum load factor n1 equal to 10 and a minimum load factor n1
1 equal to -9:

• Va = 63.87 m/s;

• Vg = 78.6 m/s.

The Vd , design maximum speed, is then imposed 115 m/s. This value is acceptable by means

of the CS 22.3 [35], which prescribes a mandatory Vd of at least:

Vd > 3.5(
W
S
)+200(km/h) (7.5)

With W
S expressed in daN/m2.

In this case the minimum Vd would be equal to 93.7 m/s, so the imposed Vd is acceptable.

Gust diagram

For the realization of the gust diagram reference to the CS 22.3 [35] has been done. First the

gust load is evaluated at Vb, the design gust speed, and Vd using the following relationship:

n = 1±
k
2 ρ0 U V a

m g
S

(7.6)

where:

ρ0: density air sea-level (kg/m3);
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U : gust velocity (m/s);

V : equivalent air speed (m/s);

a: slope of wing lift curve per radian;

m: mass of sailplane (kg);

g: acceleration due to gravity (m/s2);

S: design wing area (m2);

k: gust alleviation factor:

k =
0.96 µ

H/lm
0.475+ µ

H/lm
;

µ =
2 m

S
ρ lm a (non dimensional sailplane mass ratio);

ρ: density of air (kg/m3) at the altitude considered;

lm: mean geometric chord of the wing;

H: length of the (1− cos) shaped gust:

H = (12.17+0.191µ)lm;

As prescribed by the CS 22 the design gust speed Vb must not be less than Va, so Vb is imposed

equal to 1.1 Va.

The gust speeds prescribed by the CS 22 are ±15 m/s at Vb and ±7.5 m/s at Vd .

Using our sailplane characteristics the V-n diagram (fig. 7.14) is obtained. It was obtained

through a parametric script in Octave (appendix B). The two sizing condition are therefor

maximum load factor at Va and minimum load factor at Vg.

Figure 7.14: V-n diagram
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7.2.4 Pressure on wing

Now that the sizing conditions are known it is necessary to evaluate pressure acting on the

wing in these conditions. This is easily obtained by printing the elements loads in AVL, which

give as an output dcp. These dcp are normalized pressure differentials between upper and

lower surface of the panels sheet. By multiplying dcp with dynamic pressure static pressures

acting on the panel are obtained:

p =
1
2

ρV 2dcp (7.7)

An Octave script that converts dcp in pressures in Femap data table format is written.

The data table is then imported in Femap and the data are interpolated from the aerodynamic

mesh to the FEM mesh to the nearest load point. For the positive lift coefficient the data are

interpolated on the upper surface of the wing, whereas for the negative lift coefficient to the

lower surface.

For the case of Va at maximum lift coefficient (CL = 1.512) the obtained pressure surface is

presented in figure 7.15. Then these pressure values are multiplied for a safety factor of 2.1.

Figure 7.15: Pressure surface evaluated at Va and CL = 1.512 (values in MPa)

7.3 Sizing results

7.3.1 First results

As result of the sizing of the baseline wing the maximum thickness is obtained on the top

flange of the wing box, with a lamination of 45 layers of [+45/− 45/0/0/0/0/0], with a

thickness of nearly 32 mm. The thickness is gradually reduced along the spar in function

of the stress. On the bottom flange of the wing box a lamination of 45 layers of [+45/−
45/0/0/0/0/] is obtained, with a thickness of 27.5 mm. On the box shear web a lamination

45 layers [+45/−45] is imposed consistently to the flanges’ lamination. With this lamination

some failure index greater than 1 remains on the top flange and near the holes 7.16. The

loaded zones near the holes are not concerning since in reality there will be present some

reinforcement, which for the sake of simplicity are not represented in this simplified model.

On the other hand the failure index on the top flange are not acceptable. Moreover, the

thickness on that flange is a little too high, so a redesign of the main spar is executed.

On the wing skin some DD layers are added, with a maximum of 20 DDs of [0/50/−
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50/0] obtained at the root section near the flanges. On the majority part of the wing 3 or 2

DD layers are enough to sustain the loads.

On the ribs and on the rear spar a foam Diab HT 61/81 6 mm thick is inserted in the

middle [+45/− 45] layers. The HT 61 is a little less dense (rho = 6.5 10−5g/mm3) than

the HT 81 (rho = 8.5 10−5g/mm3), but the HT 81 has got better mechanical properties. The

material properties for the foams are taken via the data sheets of the producer [36]. In the

tables 7.10 and 7.11 are presented respectively the 2D orthotropic properties inserted for the

HT 61 and the HT 81.

Modulus Value
E1 = 80 MPa
E2 = 80 MPa
ν12 = 0.3
G12 = 20 MPa
G1z = 20 MPa
G2z = 20 MPa

Table 7.10: Diab HT 61 equivalent 2D orthotropic material properties

Modulus Value
E1 = 105 MPa
E2 = 105 MPa
ν12 = 0.3
G12 = 28 MPa
G1z = 28 MPa
G2z = 28 MPa

Table 7.11: Diab HT 81 equivalent 2D orthotropic material properties

Since also the foams are subject to the failure analysis, failure properties must be inserted

in the foams material cards too. These are also taken from the data sheets and are presented

in tables 7.12 and 7.13 respectively for the HT 61 and the HT 81.

Direction 1 Direction 2
Tension 1.8 MPa 1.8 MPa

Compression 1 MPa 1 MPa
Shear 0.9 MPa

Table 7.12: Diab HT 61 failure stress limits

Direction 1 Direction 2
Tension 2.8 MPa 2.8 MPa

Compression 1.5 MPa 1.5 MPa
Shear 1.25 MPa

Table 7.13: Diab HT 81 failure stress limits

On the rear spar a lamination with two layers of [+45/− 45] with HT 81 in the middle is

enough to sustain the loads for all its length.
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On the front part of the root rib 20 layers of [+45/− 45] with an HT 81 in the middle are

needed.

On the rear part of the root rib only 14 layers of [+45/− 45] with in between HT 81 are

needed.

On the first kink rib 8 layers of [+45/−45] with a HT 81 in the middle are inserted.

On the second kink rib only 4 layers of [+45/− 45] with in between a HT 61 foam are

enough.

On the tip rib the default single layer of [+45/−45] is left without any foam.

Figure 7.16: FI > 1 on the wing

In figure 7.9 the different colours associated to the different properties can be seen on the

top surface of the wing. It is clear how the main spar’s flange reduces its thickness spanwise

drastically. The skin results more thick near the main spar in the first section, with the light

green associated to 8 DD layers lamination. The red part is associated with 4 DD layers,

whereas the darker green is associated to 3 DD layers and the yellow to 2 DD layers.

With this lamination all the failure index remains under 1 on all the top surface (fig. 7.18).

Figure 7.17: Properties on the upper surface of the wing

Figure 7.18: FI on the upper surface of the wing
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7.3.2 Improvement in geometry

During the first sizing three more ribs are added to the geometry of the wing in order to

improve its strength and stability properties:

• One rib at 25 % of distance between chord rib and first kink rib;

• One rib at 50 % of distance between chord rib and first kink rib;

• One rib at 50 % of distance between first kink rib and second kink rib.

The three ribs are holed relatively to their spanwise position, with a left thickness of:

• 27.5 mm for the first of the three;

• 25 mm for the second one;

• 19 mm for the latter.

The ribs are then imported into Femap and are inserted in the model as glued elements.

The glue property allow to make in a permanent contact the added elements with the ones

already present in order to not have to modify the mesh on the wing. The sizing process is

then executed also for these ribs.

On the second rib (the one nearest to the root section) 6 layers of [+45/− 45] with HT 61

foam are inserted.

On the third rib (the one in the middle of the first section) 8 layers of [+45/− 45] with HT

81 in the middle are needed to sustain the loads.

On the last rib 6 layers of [+45/−45] with HT 61 foam are needed.

Since on the box upper flange the thickness of the lamination is a little too high and failure

index still remains greater than one the thickness of the main spar’s flanges are increased to

100 mm at the root section. The width remain 100 mm till the first kink, then it reduces

gradually to 80 mm to the second kink. After the first the second kink the width of the flange

remains the same as before. To allow this enlargement of the flange the spar shear web is

moved from 30% of the chord to 33% of chord.

Figure 7.19: Geometry with the three new ribs added
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7.3.3 Final sizing

Following the enlargement of the main spar’s flanges the stresses on the flanges, and therefor

the failure index decrease substantially. This allows to reduce the thickness of the flanges

both on the wing box and on the wing spar, managing at the same time to not have almost

anymore failure index greater than 1. The only zones with failure index greater than one that

remains are near the holes, which, as said before, are not concerning, and near the vertices of

the box (fig. 7.20). The latter are due to stress concentration due to the rectangular shape of

the wing box section and are acceptable since in an hypothetical real wing these zones can

be rounded to reduce the stress.

The maximum thickness obtained on the top flange of the wing box is 27.5 mm, with a

lamination of 45 [45/− 45/0/0/0/0]. The thicknesses obtained on the TOP surface can be

seen in figure 7.22.

By enlarging the flanges also the skin takes now less loads, so that is thinned too. As

can be seen in figure 7.21 now the wing top surface is composed almost with only 2 layers

of DD (yellow part) everywhere. Now a sizing at Vg with a load factor of -9 g and a factor

of safety of 2.1 is executed in order to sizing properly also the bottom surfaces of the wing.

The obtained thicknesses on the bottom surface are presented in figure 7.23. The maximum

thickness on the bottom surface is located on the wing box flange, with a thickness of 23.3

mm and a lamination of [45/−45/0/0/0] repeated 45 times.

The failure index obtained in the most critical condition for the upper surface and the

bottom surface are presented in figure 7.24 and 7.25. As can be seen, failure index reach

values near one, but remains under one on all the wing. This indicates that the sizing has

been executed properly.

Figure 7.20: FI > 1 on the wing with larger flanges
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Figure 7.21: Properties on the upper surface of the wing with larger flanges

Figure 7.22: Contour of thickness on top surface

Figure 7.23: Contour of thickness on bottom surface

Figure 7.24: FI on upper surface
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Figure 7.25: FI on bottom surface
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Chapter 8

Modal analysis

With the wing now sized properly the first step to be done before executing the flutter anal-

ysis is a modal analysis. Calling a modal analysis (Nastran SOL 103) the solver solves an

eigenvalue problem extracting the lowest N eigenvalue and eigenvectors (with N selected by

the user) from the following problem:

(−Mω
2 +K)U = 0 (8.1)

With:

M: mass matrix;

ω: eigenvalues (angular frequencies);

K: stiffness matrix;

Ū : eigenvector (modal shapes).

By solving the characteristic polynomial it is easy to find the natural frequencies:

f =
ω

2π
(8.2)

The frequencies associated with their modal shapes will then be the input for the flutter

analysis, as these modes will interact with aerodynamic flow damping or amplifying the

oscillations.

Executing some preliminary modal analysis it was understood that some more ribs were

needed, as the modal shapes were strongly stained by internal deformation modes, due to

having too large skin panels. To prevent this phenomenon to occur more ribs has been in-

serted. The final configuration of the wing is composed with 14 ribs, 1 at the root section, 7

equally spaced spanwise between the root section and the first kink, one at the first kink, 3

equally spaced between the first kink and second kink, one at the second kink and finally one

rib at the wing tip (fig 8.1).
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Figure 8.1: Final configuration of the wing

8.1 Normal modes and natural frequencies

Setting up a modal analysis the first 20 modes are requested. Here in table 8.1 is presented a

description of the first 7 modes, with their natural frequencies:

Mode Type frequency [Hz]
1 Bending 5.04
2 Inplane 7.98
3 Bending 18.19
4 Bending 41.13
5 Torsion 53.77
6 Inplane 54.35
7 Bending 68.44

Table 8.1: Wing modes and associated frequencies

The associated modal shapes are presented from figure 8.2 to 8.8.

From the seventh mode on, all the modes are dirtied by internal deformation modes due

to the wing’s trailing edge deflection and would not be greatly interesting to the analysis

purposes. Their frequencies span from 70 Hz to 85 Hz. This high deformation in the trailing

edge is due to the fact that this part of the wing is a free edge part and results to be an open

section, therefore has got more freedom to vibrate. Modal shapes 8 and 9 are reported in

figure 8.9 as an example.

Figure 8.2: Mode 1, f = 5.04 Hz
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Figure 8.3: Mode 2, f = 7.98 Hz

Figure 8.4: Mode 3, f = 18.19 Hz

Figure 8.5: Mode 4, f = 41.13 Hz

Figure 8.6: Mode 5, f = 53.77 Hz
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Figure 8.7: Mode 6, f = 54.35 Hz

Figure 8.8: Mode 7, f = 68.44 Hz

(a) Mode 8 (b) Mode 9

Figure 8.9
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8.2 Results comparison with analytic model

The evaluated modes in the previous paragraph can be compared with analytic results. In

fact, for uniform cantilever beam a close solution to evaluate the first modes can be found.

The model in exam in this thesis is not, of course, a uniform beam, but comparing the results

can give an idea about the correctness of the FEM model.

For a cantilever beam subjected to free vibration, and the system is considered as contin-

uous system in which the beam mass is considered as distributed along with the stiffness of

the shaft, the free vibration equation is [37]:

d4Y (x)
dx4 −β

4Y (x) = 0 (8.3)

With:

β
4 =

ω2m
EI

(8.4)

Where:

Y (x): transversal displacement;

x: beam axis coordinate;

m: mass of the cantilever beam;

ω: angular frequency;

E: stiffness modulus of the beam;

I: moment of inertia of the beam;

By imposing the correct boundary conditions:x = 0, Y (x) = 0, dY (x)
dx = 0

x = L, d2Y (x)
dx2 = 0, d3Y (x)

dx3 = 0
(8.5)

A close form for the bending angular frequencies can be found [37]:

fbi =
α2

2π

s
EI

ρAL4 (8.6)

Where, for the first three modes, α = 1.875,4.694,7.855.

The first three associated bending modal shapes are presented in figure 8.10.

For the torsional modes the following relation is valid:

fti =
2i−1

4L

s
GJ
ρIp

(8.7)

For our beam model inertia moduli and area of the cross section have been evaluated at

the section put at 50% of wing’s span; the Young’s and shear moduli have been evaluated

for an equivalent isotropic material of the composite used (as it was all laminated with a

[0/45/−45/90]s lamination), obtaining the following values:

• A = 1.241 10−3 m2;
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Figure 8.10: Analytic first three bending modal shapes [37]

• E = 39749 MPa;

• G = 13035 MPa;

• I1 = 1.87 10−6 m4;

• I2 = 3.31 10−5 m4

• Ip = 1.00 10−6 m4;

• J = 3.00 10−7 m4

• L = 6.75 m

The previous values have been evaluated by importing in Femap a cross section placed in y =

3.375 m with its skin and spar laminate thickness. The software, in fact, has got an automatic

calculator for inertia and other beam properties. Since the calculator needed a thickness of

at least 4 mm some of the evaluated values would not have been accurate, as the thickness

of the skin there is well under 4 mm. Therefor, a Matlab code based on a semimonocoque

model and colloborant areas has been created to correct data regarding inertia areas and

concentrated areas values. The simplified semimonocoque model used is presented in figure

8.11. The amount of concentrated area due to every section component is defined depending

on the major load condition of the component. For every 2D panel, if b is the width and t is

the thickness, for:

• Uniaxial stress (horizontal elements), A = bt
2 ;

• Bending (vertical elements), A = bt
6 .

Having corrected the inertia areas values, the major uncertainty remains on the torsional

constant value J, as the value evaluated by Femap is left there.
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Figure 8.11: Semimonocoque model for cross section

The obtained results in comparison with what has been found through the FEM model

are listed in table 8.2. From the table it can be seen that the values found with the FEM model

do not differ much from the analytical ones, with the exception of the first bending. The main

differences are due to the fact that mass distribution, geometry and inertia spanwise along the

wing are not constant, as it is assumed by the analytical beam model and, moreover, some

uncertainties are present in the evaluation of the inertia values. The associated modal shapes

found with the FEM model (both for bending and inplane modes) match almost perfectly

with the ones predicted by the analytical theory (fig. 8.10). Therefor, this is a confirmation

of the reliability of the FEM model.

Mode Type Wing fr. [Hz] Beam fr. [Hz]
1 Bending 5.04 2.43
2 Inplane 7.98 10.22
3 Bending 18.19 15.24
4 Bending 41.13 42.67
5 Torsion 53.77 59.21
6 Inplane 54.35 64.07

Table 8.2: Comparison between beam analytic model and wing’s FEM model frequencies

8.3 Results comparison with a FEM equivalent beam model

To have an even more accurate confirmation of the goodness of the wing’s FEM model a

comparison with an equivalent beam model has been executed.

To obtain a piecewise tapered beam six section and their respective properties have been

imported into Femap. The spanwise coordinate of each imported section is 0 mm, 280 mm,

735 mm, 1390 mm, 2500 mm, 3750 mm, 5000 mm, 6000 mm. Showing the cross section,

the obtained beam is presented in figure 8.12. A boundary condition with every degree of

freedom fixed is imposed at the root node.

With this model it was possible to catch quite accurately the bending modes. By now

accounting a piecewise tapering of the beam, the first three bending modes match pretty well

with the original wing FEM model, as it can be seen in table 8.3, in support of the fact that the
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Figure 8.12: Equivalent beam

discrepancy between the analytical first bending frequency and the wing model was mainly

due to the wing’s tapering. Moreover, taking a look to the equivalent beam bending modal

shapes they are almost identical to the wing’s ones (fig. 8.13 & 8.2, 8.14 & 8.4, 8.15 & 8.5).

Mode Analytical Eq. beam Wing
First bending 2.4 Hz 5.7 Hz 5.02 Hz

Second bending 15.2 Hz 20.0 Hz 18.22 Hz
Third bending 42.7 Hz 41.8 Hz 41.36 Hz

Table 8.3: Comparison of beam analytic model, equivalent beam model and wing model
frequencies

Figure 8.13: Equivalent beam first bending
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Figure 8.14: Equivalent beam second bending

Figure 8.15: Equivalent beam third bending
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Chapter 9

Flutter analysis

Having identified the first six modes as the more significant ones, it is now time to perform

the flutter analysis. To set a flutter analysis is necessary to create an aerodynamic mesh from

which the solver, using DLM, can take the aerodynamic pressures. The imposed deformation

on the aerodynamic panels is evaluated thanks to a splining process that transfer deformations

from FEM nodes due to the modal shapes to the aerodynamic panels’ control points. Then

the loads on the aerodynamic panels are evaluated through DLM at the load points and are

transferred back again to the FEM mesh again with a spline interpolation. Then the gen-

eralized aerodynamic matrix is evaluated and thanks to p-k method the stability analysis is

performed.

The solver used to perform the flutter analysis is MSC Nastran. The specific flutter

method used will be the PKNL method, which is a variant of the p-k method with no looping.

In this method, the number of entries in the FLFACT data for density ratios, Mach numbers,

and velocities need to be the same and the eigenvalue extraction is carried out at each linear

selection of density ratio, Mach number, and velocity. This reduces much the computational

costs without affecting much the results accuracy, especially considering constant density

ratio and Mach number.

9.1 Aerodynamic mesh

The aerodynamic mesh was created using three set of flat plates, one for each section between

wing’s kinks. The leading edge of the plates corresponds to the leading edge of the wing.

The total length of the plates’ surface is then obtained giving as input the chord length of

the wing at the edge sections. The optimal discretizion was obtained through a convergence

analysis (appendix D). The best configuration obtained (fig. 9.1) is composed with 25 panels

in spanwise direction: 10 equally spaced between root section and first kink, 10 equally

spaced between first and second kink and 5 equally spaced between second kink and tip. The

mesh in the chordwise direction is composed by ten elements distributed in bias way with a

bias factor of 5, obtaining a mesh thinner near the leading and trailing edges. These thinner

elements towards leading and trailing edge allows to obtain more precise results compared to

using an uniform mesh.

With this discretization there are not elements with excessive aspect ratio and, moreover,
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by increasing further the number of elements flutter results don’t change much (there is a

3% variation in respect with a mesh composed by 15 chordwise elements and 60 spanwise

elements).

Then a CAERO1 property (to perform DLM) is associated to the panels and three surface

splines are associated to the three sections of aerodynamic panels and the respective structural

nodes placed on the wing top surface are set up.

Figure 9.1: Aerodynamic mesh

9.2 Analysis settings

Before performing the flutter analysis some important settings must be passed to the solver.

The complex solution method selected is the complex Lanczos, with a number of six desired

eigenvalues to extract.

The mean aerodynamic chord is set to 667 mm and the reference density to 1.225 10−12 g/mm3,

consistently with the units used in the model.

The velocities where to perform the stability analysis are set to 500, equally spaced between

10 m/s and 300 m/s.

The Mach numbers associated to the velocities are all set to 0. This is coherent to the math-

ematical model, which uses DLM and PKNL and also to the purposes of the sailplane from

which the wing is taken, as its maximum speed evaluated from the envelope diagram is

115 m/s, which is fully subsonic and incompressible (M ≃ 0.3). Thus, if the flutter speed

is below the Vd it will be captured faithfully by the model without any imposed compress-

ibility correction. If the flutter speed is found at higher Mach number it will be influenced

by some compressibility error, but there is the certainty that it will not fall into the envelope

diagram. Moreover, for the analysis of the relationship between Tsai’s Modulus and the flut-

ter behaviour it is better to leave Mach number equal to zero, as in this way there won’t be

captured any non-linearity due to the air compressibility.

Then, since we are not interested in analyzing flutter behaviour at different altitudes, the

density ratio are imposed to one.

Finally, in the MKAERO card the starting k values that the solver uses to evaluate the aero-

dynamic matrix are imposed as it follows:

MKAERO1 0. +MK

+MK 0.001 0.05 0.10 0.20 0.50 1.0 2.0 5.0 +MK

+MK 10.0 20.0 50.0
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9.3 Results

The output from Nastran is read with a Matlab script that converts numerical values into

graphs: frequencies vs velocities and damping vs velocities (fig. 9.2).

First, it can be seen that the modes’ frequencies at low speed match almost perfectly the

ones evaluated with the modal analysis (table 8.1), with the blue line associated to the first

mode, the orange line to the second, the yellow line to the third, the purple line to the fourth,

the green line to the fifth and the light blue line to the sixth. Then, the damping of every

mode starts at low speed with negative values, as it would be expected.

By analyzing more in detail the graphs it can be seen that the first mode whose damping

becomes positive is the fifth, namely the torsional mode, at a speed of:

Vf = 199.9 m/s (9.1)

That is much more than the minimum flutter velocity prescribed by the CS 22 of 1.2 VD, that

in this case corresponds to 138 m/s. Therefor, from the analysis it appears the wing is free

from any danger of flutter in all its flight conditions.

From the frequencies vs velocity graph it can be seen that in correspondence of the flutter

speed the torsional mode (purple line) merges almost perfectly with the third bending mode

(green line), as their frequencies assume almost identical values. By looking at the flutter

modal shape (fig. 9.3) this is confirmed, as the torsional mode is dirtied by the third bending

mode. This merging phenomenon is well known in literature and it occurs near the flutter

establishment speed very often, as flutter is generally induced by flexural-torsional coupled

oscillations.

Another interesting phenomenon that can be noted from the graphs is that the first mode

and the third mode become strongly damped respectively from 54 m/s and 261.6 m/s and

their frequency become zero. Then, from 213.5 m/s the damping of the first mode become

positive, with an associated frequency that remain zero. This occur when the wing encounters

the divergence phenomenon, as the static deformation of the wing induced by aerodynamic

loads cannot be countered anymore by the wing stiffness, and the wing reaches a theoretically

infinite deformation. Practically this is a destructive configuration that led to the failure of

the wing. Therefor, the previously cited velocity is the divergence speed of the wing model:

Vd = 213.5m/s (9.2)

Last, it is interesting to note that inplane modes (orange and light blue lines) don’t interact

by any means with the aerodynamic flow, as their frequency is constant with velocity and their

damping is almost zero.
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Figure 9.2: Frequencies and damping vs velocities

Figure 9.3: Flutter modal shape, f = 49.0 Hz

80



Chapter 10

Parametric analysis and results

After having build, sized and then performed a flutter analysis on a wing model, it can be

used to execute some parametric analysis. The first analysis will evaluate wing’s aeroelas-

tic behaviour as function of the position of the main spar. Then a second analysis will be

executed to evaluate the relationship between the aeroelastic behaviour of the wing and the

value of the material’s Tsai’s Modulus. It must be remembered that the wing model used to

perform the two analysis is all composed with the same fiber reinforced composite material,

parameterized in function of Tsai’s Modulus (chapter 7.1.2).

10.1 Aeroelastic behaviour by varying the position of the main
spar

To evaluate wing’s aeroelastic behaviour by changing the position of the main spar three new

models are created in addition to the one used up to this point. The four models differs only

for the location of the main spar, which is located respectively for each model at:

• 33% of chord;

• 37% of chord;

• 43% of chord;

• 47% of chord.

The mesh on the models is executed in order to be the more similar possible to the original

model. The materials, properties and boundary conditions assigned to the various models are

exactly the same. The aerodynamic mesh and splines are also executed in the same way as

described in chapter 9.1.

By drawing back the main spar position the elastic line and center of mass will conse-

quently draw back in turn. In particular, by moving back the elastic line divergence velocity

should decrease in a quasi-hyperbolic way, as

Ud ∝
1√

x0 − xac
(10.1)
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Where:

x0: chordwise position of the elastic line;

xac: chordwise position of the aerodynamic centre.

Moreover, this shift of the elastic line towards the trailing edge should determine a reduction

in the flutter speed.

The computed frequencies and damping diagrams obtained for the four configurations

are presented respectively in figures 10.1, 10.2.

(a) spar position: 33 % of chord (b) spar position: 37 % of chord

Figure 10.1: Frequencies and damping vs velocities diagrams

(a) spar position: 43 % of chord (b) spar position: 47 % of chord

Figure 10.2: Frequencies and damping vs velocities diagrams

By analyzing the graphs the results presented in table 10.1 are extracted:

Spar position (% of chord) V divergence [m/s] V flutter [m/s]
33 213.5 199.9
37 165.7 198.1
43 137.9 184.4
47 121.6 166.3

Table 10.1: Divergence and flutter speed with different spar positions

By plotting these results (fig. 10.3) the trend of divergence and flutter speeds variation

with spar position can be better understood. From the graph the quasi-hyperbolic decrease in
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divergence speed with the moving back of the spar is evident, as it is predicted by theory.

On the other hand, flutter speed takes a different trend, with only a slight decrease in its value

until the spar reaches higher downstream positions. Then its value start to decrease faster.

It is clear that for wing configurations with the main spar rearmost than 34% of chord the

most critical aerolastic phenomenon become divergence, as it is more sensitive than flutter to

the position of the elastic axis.

Figure 10.3: Divergence and flutter speeds variation with spar position

10.2 Evaluation of the relationship between flutter speed and Tsai’s
Modulus

The four wing models created previously are now used in this section to investigate the rela-

tionship between flutter speed and Tsai’s Modulus.

The experiment carried on in this section consists of evaluating flutter speed using MSC

Nastran on the wing models by varying material’s Tsai’s Modulus and then evaluate through

Matlab curve fitting Toolbox the existence of a possible relationship.

The set of Tsai’s moduli used to perform the analysis spans from 50 GPa to 250 GPa,

considering every value equally spaced by 25 GPa between the two. The value of 118 GPa

used during the wing’s development is also inserted in the analysis. This range of values has

been chosen as it spans a range of widely used aeronautical fiber composite materials, such

as carbon fiber and fiberglass composites.

As expected the modes’ frequencies increase with Tsai’s Modulus, as it represent mate-
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rial’s stiffness. This leads to an increase in the energy dissipated per cycle and therefor an

increase in the flutter speed. In addition to this it can be seen that by increasing Tsai’s Mod-

ulus the mode that cause flutter remains always the same (in this case the torsional mode),

therefor, there will not be any non linearity due to change in the mode responsible for flutter

establishment. By looking at three frequencies and damping vs velocities graphs (fig. 10.4),

taken from the 33% of chord model, it looks that whatever the value of Tsai’s Modulus the

flutter behaviour remains analogous, as the modes evolves in the same way with speed, with

the only difference that with higher Tsai’s Modulus the graphs are scaled at higher speed.

(a) T M = 50 GPa (b) T M = 150 GPa (c) T M = 250 GPa

Figure 10.4: Evolution of flutter stability graphs with Tsai’s Modulus

Considering now the flutter speed, in table 10.2 are reported the obtained values of flutter

speed in respect to the Tsai’s Modulus (TM) for the four models. For the sake of simplicity

the subscripts 1,2,3,4 will be assigned respectively to the models with the main spar posi-

tioned at 33%, 37%, 43% and 47% of chord.

T M [GPa] Vf 1 [m/s] Vf 2 [m/s] Vf 3 [m/s] Vf 4 [m/s]
50 133.2 131.5 123.6 111.5
75 161.7 159.9 149.6 134.7
100 185.3 183.5 171.3 154.1
118 199.9 198.1 184.5 166.3
125 206.1 204.2 190.3 171.4
150 224.7 222.8 207.5 186.9
175 241.9 239.8 223.2 201.1
200 257.8 255.7 237.9 214.3
225 272.7 270.4 251.7 226.7
250 286.9 284.6 264.8 238.5

Table 10.2: Flutter speed in respect to Tsai’s Modulus

By plotting these data (fig. 10.5) it can be seen that there is a quasi-linear relationship

between the two quantities. The curves move towards lower flutter speeds and tend to be

slightly less sloping as the spar position moves downstream. Interesting is to note that to-

wards lower Tsai’s Moduli the curves tend to lose by a little margin the linearity, as in the

material the matrix start to assume a more important role in respect to the fiber.

Executing a linear fit with Matlab’s curve fitting Toolbox the relationships that best fit the
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data are expressed by the following equations and represented in figure 10.6.

Vf 1 = 0.7488 T M+107.1 (10.2)

Vf 2 = 0.7456 T M+105.6 (10.3)

Vf 3 = 0.6883 T M+99.37 (10.4)

Vf 4 = 0.6198 T M+89.54 (10.5)

With velocity expressed in m/s and Tsai’s Modulus expressed in GPa.

The slope m and intercept q of the linear equations are, therefor, not constant and depend

on geometry, position of centre of gravity and position of elastic line of the wing.

The goodness of the fit can be expressed by the coefficient of determination R2. It is a

statistical measure of how well the regression line approximates the actual data. It is defined

as:

R2 = 1− ∑i(yi − fi)
2

∑i(yi − y)2 (10.6)

Where:

yi: value of the experimental data;

fi: value evaluated through the fit equation;

y: mean of the experimental data.

The closest R2 is to 1 the better the data are approximated by the fit. In the present case

the value of R2 found are:

Model R2

1 0.9865
2 0.9862
3 0.9870
3 0.9872

Table 10.3: R2 values

For the present case R2 values are pretty high, therefor the linear relationships can be

assumed as a good predictor of flutter speed given a certain Tsai’s Modulus.

In conclusion, given a significative range of Tsai’s Moduli (that are representation of

existing materials), to determine the flutter speed of a simple single material full composite

wing for every Tsai’s Modulus inside the range it is enough to execute two flutter analysis

at the highest and lower values of the Modulus. Then, through a linear interpolation of the

obtained values, every other flutter speed in corrispondence to every other material Tsai’s

Modulus can be determined by simply exploit the linear relationship just found. In this way,

the optimal wing material, able to guarantee a desired flutter speed, could be chosen by

executing only two flutter analysis, using two arbitrary low and high Tsai’Moduli, and then

exploit the linear approximation.
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Figure 10.5: Flutter speed vs Tsai’s Modulus

Figure 10.6: Flutter speed data vs Tsai’s Modulus and linear approximations
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10.2.1 Validity of the linear approximation

Let consider again the previous case study with the four models. Let find the linear equation

using the lower and upper limits of the Tsai’s Modulus range and their respective flutter

speeds:

Vf 1 app = 0.7685 T M+94.78 (10.7)

Vf 2 app = 0.7655 T M+93.23 (10.8)

Vf 3 app = 0.7060 T M+88.30 (10.9)

Vf 4 app = 0.6350 T M+79.75 (10.10)

These are approximated linear equations found using only the end points of the range.

By inserting in these equations the same Tsai’s moduli used in the case study of the

previous paragraph the values of flutter speed presented in table 10.4 are found.

T M [GPa] Vf 1 app [m/s] Vf 2 app [m/s] Vf 3 app [m/s] Vf 4 app [m/s]
50 133.2 131.5 123.6 111.5
75 152.4 150.6 141.3 127.4
100 171.6 169.8 158.9 143.3
118 185.7 183.8 171.8 154.9
125 190.8 188.9 176.6 159.1
150 210.1 208.1 194.2 175.0
175 229.3 227.2 211.9 190.9
200 248.5 246.3 229.5 206.8
225 267.7 265.5 247.2 222.6
250 286.9 284.6 264.8 238.5

Table 10.4: Flutter speed values found using approximated linear equations

If these values are compared with the original ones (tab 10.2), obtained through classical

flutter analysis, the differences are quite small. Evaluating relative errors in respect to the

original results as:

e =
Vf −Vf app

Vf
% (10.11)

it is found that the error never exceed 7.5% (tab. 10.5). Therefor, for a simple single ma-

terial full composite wing, executing a linear approximation between two extremes can be

considered as a good predictor of flutter speed given a Tsai’s Modulus inside the two limits

and vice versa. Moreover, thanks to the concavity of the original flutter speed vs Tsai’s Mod-

ulus curves (fig 10.5) errors will always be conservative. The magnitude of the errors can

be reduced if smaller range of Tsai’s Moduli are considered, so a correct choice of range of

Moduli is necessary to obtain accurate results in such analysis.

10.2.2 Example of application of the linear approximation

If the envelope diagram of the wing model developed during the present thesis is considered

(fig. 7.14), by the dictates of the CS 22 a minimum flutter velocity of 1.2 Vd is required to

obtained a certifiable aircraft. For the present wing this flutter speed correspond to 138 m/s.
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T M [GPa] e1% e2% e3% e4%
50 0 0 0 0
75 -5.74 -5.79 -5.58 -5.44
100 -7.38 -7.48 -7.24 -7.04
118 -7.11 -7.23 -6.88 -6.88
125 -7.38 -7.48 -7.23 -7.16
150 -6.51 -6.62 -6.41 -6.37
175 -5.20 -5.26 -5.09 -5.08
200 -3.62 -3.67 -3.53 -3.52
225 -1.83 -1.83 -1.81 -1.80
250 0 0 0 0

Table 10.5: Percentage error on the approximate flutter speeds

If someone would find the value of the minimum material Tsai’s Modulus to not have flutter

under the prescribed velocity the linear approximation could be used to find a quick and

reliable result. If the usual range between Tsai’s Moduli of 50 GPa and 250 Gpa is considered,

the linear equation which go through the extreme points is:

Vf 1 app = 0.7685 T M+94.78 (10.12)

By imposing in this equation the required flutter speed the relative Tsai’s Modulus can be

easily calculated, and it is equal to:

T M = 56.24 GPa (10.13)

Then, it will be simply necessary to select the material with a Tsai’s Modulus close to 56.24

GPa.

To verify the goodness of the result a flutter analysis with MSC Nastran is executed

on the FEM model imposing the just found Tsai’s Modulus. The flutter velocity evaluated

computationally is equal to 140.9 m/s. This velocity is very close to the one desired (e =

2.1%), therefor the linear approximation led to a very accurate result.

10.3 Evaluation of the relationship between divergence speed and
Tsai’s Modulus

From the flutter diagrams of the four wing model analyzed previously is straightforward to

find also the divergence speed of the wing. The divergence, in fact, can be found when a

mode with null frequency value assumes a positive damping. For the present wing model the

mode that causes divergence is the first bending. Therefor, an analogous investigation to the

previous about flutter can be carried on also on the divergence phenomenon.

In table 10.6 are reported the obtained values of divergence speed for the four wing

models.

By plotting these data (fig. 10.7) it can be immediately noted that the quasi-linear trend

between Tsai’s Modulus and the aeroelastic variable can be found in an analogous way to
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T M [GPa] Vd1 [m/s] Vd2 [m/s] Vd3 [m/s] Vd4 [m/s]
50 138.5 108.2 90.0 79.7
75 170.0 132.5 110.0 97.3

100 196.6 153.0 125.9 112.2
118 213.0 165.9 137.6 121.6
125 220.2 171.1 141.8 125.3
150 241.7 187.5 155.3 137.1
175 261.7 202.5 167.6 147.9
200 280.3 216.6 179.1 158.0
225 297.9 229.7 190.0 167.5

Table 10.6: Divergence speed in respect to Tsai’s Modulus

flutter also for the divergence phenomenon.

The curves move drastically towards lower flutter speeds as the spar position move down-

stream and they tend to be slighty less sloping. In addition to that, the curves tend to have a

little negative concavity similarly to what was found with flutter. This is a confirmation that

this slight non-linearity is due to mainly to the effects of the material matrix and not due to

aeroelastic phenomena.

Executing the linear fit with Matlab’s curve fitting Toolbox the relationships that best fit

the data are expressed by the following equations and represented in figure 10.8.

Vd1 = 0.8944 T M+103.4 (10.14)

Vd2 = 0.6813 T M+81.89 (10.15)

Vd3 = 0.5616 T M+68.12 (10.16)

Vd4 = 0.4919 T M+60.81 (10.17)

With velocity expressed in m/s and Tsai’s Modulus expressed in GPa.

Even for divergence the slope m and intercept q of the linear equations are not constant

and depend on geometry, position of centre of gravity and position of elastic line of the wing.

The associated values of R2 (tab. 10.7) result to be pretty high also in this analysis, in

confirmation of the validity of these linear relationships.

Model R2

1 0.9899
2 0.9885
3 0.9889
3 0.9880

Table 10.7: R2 values

The same conclusions as in the case of flutter can be expressed also for the divergence

case. Given a significative range of Tsai’s Moduli (that are representation of existing ma-

terials), to determine the divergence speed of a simple single material full composite wing

for every modulus’ value inside the range it is enough to execute two aeroelastic analysis

at the highest and lower values of the Modulus. Then, through a linear interpolation of the
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obtained values, every other flutter speed in correspondence of every other material Tsai’s

Modulus can be determined by simply exploit the linear relationship just found. In this way,

the optimal wing material, able to guarantee a desired divergence speed, could be chosen by

executing only two aeroelastic analysis, using two arbitrary low and high Tsai’s Moduli, and

then exploit the linear approximation in the same way as done in the example executed for

flutter (paragraph 10.2.2).

Figure 10.7: Divergence speed vs Tsai’s Modulus
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Figure 10.8: Divergence speed data vs Tsai’s Modulus and linear approximations

10.3.1 Validity of the linear approximation

Let now find the linear equations using the extremes of the range as done for the flutter case:

Vd1 app = 0.9190 T M+92.96 (10.18)

Vd2 app = 0.6943 T M+73.49 (10.19)

Vd3 app = 0.5714 T M+61.43 (10.20)

Vd4 app = 0.5017 T M+54.61 (10.21)

Inserting in these equations the same Tsai’s moduli used throughout the entire chapter the

values of flutter speed presented in table 10.8 are found.

T M [GPa] Vd1 app [m/s] Vd2 app [m/s] Vd3 app [m/s] Vd4 app [m/s]
50 138.5 108.2 90.0 79.7
75 161.3 125.6 104.3 92.2

100 184.0 142.9 118.6 104.8
118 200.7 155.6 129.0 114.0
125 206.8 160.3 132.9 117.3
150 229.6 177.6 147.1 129.9
175 252.4 195.0 161.4 142.4
200 275.1 212.3 175.7 155.0
225 297.9 229.7 190.0 167.5

Table 10.8: Divergence speed values found using approximated linear equations
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Evaluating the errors as:

e =
Vd −Vd app

Vd
% (10.22)

in respect to the original values evaluated with classic aeroelastic analysis (tab. 10.6) it is

found that the errors never exceed 6.6% (tab. 10.9). Therefor, for a simple single material full

composite wing, executing a linear approximation between two extremes can be considered

as a good predictor also for divergence speed given a Tsai’s Modulus inside the two limits

and viceversa. Moreover, thanks to the concavity of the original divergence speed vs Tsai’s

Modulus curves (fig 10.5) errors will always be conservative. The magnitude of the errors

can be reduced if smaller range of Tsai’s Moduli are considered, so a correct choice of range

of Moduli it is necessary to obtain accurate results in such analysis.

T M [GPa] e1% e2% e3% e4%
50 0 0 0 0
75 -5.13 -5.24 -5.13 -5.13
100 -6.39 -6.59 -6.39 -6.39
118 -5.77 -6.20 -5.77 -5.77
125 -6.08 -6.33 -6.08 -6.08
150 -5.01 -5.26 -5.01 -5.01
175 -3.57 -3.71 -3.57 -3.57
200 -1.85 -1.97 -1.84 -1.85
225 0 0 0 0

Table 10.9: Percentage error on the approximate divergence speeds
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Chapter 11

Conclusions

A comprehensive parametric flutter analysis has been executed on a simple sailplane wing

model. The novelty presented in this thesis is to investigate the relationship between the

flutter behaviour of a simple wing and Tsai’s Modulus, a novel invariant that measure exactly

the total stiffness of an orthotropic laminated composite, exploiting classical and reliable

techniques such as FEM modelling for the structure of the wing and DLM (doublet lattice

method) for aerodynamics.

11.1 Outline

In the first part of this thesis a theoretical review of the main topics covered and tool used to

execute calculations is present.

In chapter 2 an extensive review of aeroelasticity theory is carried on, focusing on every

single component that takes part in aeroelastic phenomena, such as structural dynamics, aero-

dynamics and elasticity. There a comprehensive review on static and dynamic aeroelasticity

is present, describing first qualitatively the phenomena and then presenting some models to

predict their establishment, starting from the simpler and arriving to the state of the art, such

as the p-k method, as it is the flutter evaluation method used during the present work. A

brief description of aerodynamics models, in the form of VLM (vortex lattice method) and

DLM (doublet lattice method), exploited for evaluating static and dynamic loads during an

aeroelastic anlysis is also present. Last, the aeroelastic equations of motion that put toghether

all these elements are described.

In chapter 3 a brief review of 2D FEM theory, in form of the Reissner-Mindlin element,

is executed. The stiffness and mass matrices are here evluated, starting from the Reissner-

Mindlin plate theory and then exploiting nodal displacements, shape functions and virtual

work principle.

In chapter 4 the essence of Tsai’s Modulus, the fulcrum of the presence thesis, is pre-

sented. Here, referring to Classical Lamination Theory, starting from the on-axis stress–strain

relations for a unidirectional tape and then evaluating off axis relationships, the transforma-

tions relationship, using some trigonometric identities, can be rearranged in order to demon-

strate that the trace of the stiffness matrix, namely Tsai’s Modulus, is a material invariant.

It represents the total and upper bound of the stiffness property of a material in an explicit
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form as defined by mathematics. This newly discovered invariant can be exploited to defined

a "master ply", an universal normalized [0] ply common for every composite material.

Then in chapter 5 the software used to evaluate static aerodynamics loads, Athena Vortex

Lattice (AVL), is presented. On this software, based upon vortex lattice method (VLM), the

wing model has been recreated using a lattice of panels and horseshoe vortices to extract the

loads to be used for the static sizing of the wing..

From chapter 6 on the computational model realized to perform the various analysis is

presented. In the said chapter the construction of the parametric CAD is presented, with the

reference quantities used to size it. The main parameter that can be changed is the position

of the front spar relative to the chord length.

In chapter 7 is then presented in detail the FEM model realized to perform the static

sizing of the wing. First, the techniques used to obtained a mesh composed of only CQUAD

elements are described accurately. To this mesh are then applied the correct properties using

laminates and global plies, boundary conditions and loads. The loads are evaluated through

the software AVL, in a condition of maximum load factor. Then, after having built the model

a static sizing based on the Tsai-Wu failure criterion is performed. Where the materials fail

other layers on the laminates are added. After performing some change in the wing geometry,

a configuration with no failures is obtained.

Then in chapter 8 a modal analysis to find the most significant modes to be included in

the flutter analysis is performed. The first 20 modes are extracted. It was found that only the

first 6 modes are interesting, as from the seventh mode on every mode is dirtied by internal

trailing edge deflection. The 6 significant modes with their relative frequencies are presented

in table 11.1. The validity of the calculations executed are demonstrated by comparing these

results with an analytical beam model and with a FEM equivalent beam model.

Mode Type frequency [Hz]
1 Bending 5.04
2 Inplane 7.98
3 Bending 18.19
4 Bending 41.13
5 Torsion 53.77
6 Inplane 54.35

Table 11.1: Wing modes and associated frequencies

In chapter 9 the flutter analysis is set up and executed on the just sized wing model.

The flutter method chosen is the PKNL, setting density ratio and Mach number constant and

equal respectively to 1 and 0. Then, the optimal aerodynamic mesh is obtained through a

convergence analysis. The best configuration found is composed by 10 chordwise elements

distributed in a bias way at both ends with a bias factor of 5. Spanwise 25 elemets are present,

10 equally spaced between root section and first kink, 10 equally spaced between first and

second kink and 5 equally spaced between second kink and tip. Performing the analysis on

500 equally spaced velocities between 10 and 300 m/s it is found that the wing’s flutter speed

is equal to:

Vf = 199.9 m/s (11.1)
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and the divergence speed is equal to:

Vd = 213.5m/s (11.2)

The flutter speed is the most critical of the two. Anyhow, it results to be acceptable by the

means of CS22.

Finally, in chapter 10 some parametric analysis are performed to find the aeroelastic be-

haviour by varying main spar position and material Tsai’s Modulus. By moving downstream

the main spar position it is found that divergence speed decreases in a quasi-hyperbolic way

as predicted by theory, whereas flutter speed decreases more gradually.

Then, the relationships between flutter and divergence speeds and Tsai’s Modulus are inves-

tigated. By varying Tsai’s Modulus in a range between 50 Gpa and 250 Gpa it was found

that both in flutter and divergence case the evolution of the instability speeds as function of

Tsai’s Modulus can be approximated quite accurately by a linear law:

Vf/d = m T M+q (11.3)

This relationship could be conveniently exploited to speed up the process of choice of the

ideal material 1 to build a wing to resist to a certain flutter or divergence speed.

11.2 Concluding remarks

Results from the parametric aeroelastic analysis as function of Tsai’s Modulus have high-

lighted the following key-features:

• The varying of flutter and divergence speeds as function of Tsai’s Modulus for a simple

single composite material wing can be accurately approximated by a linear law;

• The slope m and intercept q are not constants and must be evaluated by conducting at

least two aeroelastic analysis;

• The just found linear equation can now be used to predict accurately the evolution of

flutter speed with Tsai’s Modulus and vice versa inside the range of Tsai’s Moduli

in between the two used to conduct the two original flutter analysis to find the linear

equation2.

• Pay attention to not execute the approximation on too big Tsai’s Modulus ranges, as

non linearity start to get more important influence on bigger ranges.

11.3 Further works

Developments of the results found seem to be interesting. In the present work the validity

of the linear relationship between Tsai’s Modulus and flutter and divergence speeds has been

1Remember that the present wing model is composed of a single composite material, therefor this statement
is valid only for simple single material wings

2An example of this is given in paragraph 10.2.2

95



Politecnico di Torino

demonstrated only for a simple wing on a computational basis. It would be interesting to

try to demonstrate the validity of this relationship for more complex wing structures, with

more complex laminations, internal elements, flaps, or even entire aircraft. If the relationship

stands true even for more complex structures then results could be verified by means of

ground vibration testing, wind tunnel testing and flight testing.

Moreover, since in this thesis air compressibility effects are not been taken in count, using

higher fidelity aerodynamic models, able to take in count aerodynamic non linear effects,

would be interesting to see how the relationship between flutter and Tsai’s Modulus would

change.
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Appendix A

AVL wing model

The following code was created to reproduce the wing geometry on AVL. A single surface

with four section was used. The four section correspond to root rib, first kink rib, second

kink rib and tip.

Wing

0.0 ! Mach

0 0 0 ! iYsym iZsym Zsym

9.0 0.667 13.5 ! Sref Cref Bref reference area, chord, span

1.0 1.0 1.0 ! Xref Yref Zref moment reference

# 0.001 ! CDp

#

#==============================================================

#

SURFACE

Wing

5 1.0 25 -2.0 ! Nchord Cspace Nspan Sspace

#

# reflect image wing about y=0 plane

YDUPLICATE

0.00000

#

# twist angle bias for whole surface

ANGLE

0.00000

#

SCALE

1.0 1.0 1.0

#

# x,y,z bias for whole surface

TRANSLATE

0.00000 0.00000 0.90000
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# Here the sections start

#---------------------Inner section-----------------------------------------

# Xle Yle Zle chord angle

SECTION

0.0 0.0 0.0 0.850 0.000

#NACA

#0010

AFIL

NACA_641412.dat

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

flap 1.0 0.80 -0.01636 1.0 0.0 1.0

#------------------------First kink-----

# Xle Yle Zle chord angle

SECTION

0.03315 3.379 0.1768 0.740 0.000

#NACA

#0010

AFIL

NACA_641412.dat

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

flap 1.0 0.80 -0.01636 1.0 0.0 1.0

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

aileron -1.0 0.80 -0.01636 1.0 0.0 -1.0

#--------------------------Second kink---

# Xle Yle Zle chord angle

SECTION

0.1071 5.852 0.306 0.493 0.000
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#NACA

#0010

AFIL

NACA_641412.dat

#Cname Cgain Xhinge HingeVec SgnDup

CONTROL

aileron -1.0 0.80 -0.0497 1.0 0.0 -1.0

#----------------------------Tip section----

SECTION

0.2116 6.758 0.353 0.145 0.000

#NACA

#0010

AFIL

NACA_641412.dat

CONTROL

aileron -1.0 0.80 -0.192 1.0 0.0 -1.0

#==============================================================
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Appendix B

V-n parametric diagram definition

The parametric V-n diagram was obtained through the Octave script below. In this way the

output diagram changes with the input parameters that are:

• CL max;

• CL min;

• Load factors in every flight fase;

• Mass to surface ratio;

• Vd ;

• Wing reference surface;

• Air density.

For the gust diagram reference to the CS22 has been done, as described in paragraph 7.2.3.

%% manouvre

CL_max=1.51196;

n_1=10;

n_2=10;

n_3=-9;

n_4=-9;

CL_min=-0.90474;

m_s=40; %m/s [kg/m^2]

W_s=40*9.8/10; %W/S [daN/m^2]

W=3412;

Vd_lim=(3.5*W_s+200)/3.6; % [m/s]

Vd=115;

rho=1.225;

S=9;

N=1000;

101



Politecnico di Torino

n_s_1=[1:0.01:n_1];

V_s=sqrt(abs(2*W/(rho*S*CL_max)));

V_stall=V_s*sqrt(n_s_1);

W=0.5*rho*V_s^2*CL_max*S;

Va=V_s*sqrt(n_1);

Vs_neg=sqrt(abs(2*W/(rho*S*CL_min)));

Vg=Vs_neg*sqrt(abs(n_3));

n_s_3=[1:0.01:-n_3];

V_stall_neg=Vs_neg*sqrt(abs(n_s_3));

%% gust

Vb=1.1*Va;

a=6.283;

Ub=15;

Ud=7.5;

lm=0.666;

mu=2*m_s/(rho*lm*a);

H=(12.17+0.191*mu)*lm;

k=0.96*mu/(H/lm)/(0.475+(mu/(H/lm)));

np_b=1+(0.5*k*rho*Ub*Vb*a/(W_s*10));

nm_b=1-(0.5*k*rho*Ub*Vb*a/(W_s*10));

np_d=1+(0.5*k*rho*Ud*Vd*a/(W_s*10));

nm_d=1-(0.5*k*rho*Ud*Vd*a/(W_s*10));

P=polyfit([0 Vb], [1 np_b], 1);

X=linspace(0, Vd, N);

Y=polyval(P,X);

i=1;

while Y(i)<(n_1-0.01) || Y(i)>(n_1+0.01)
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i=i+1;

end

P2=polyfit([0 Vb], [1 nm_b], 1);

Y2=polyval(P2, X);

k=1;

while Y2(k)<(n_3-0.01) || Y2(k)>(n_3+0.01)

k=k+1;

end

%% plots

hold on

fill([V_s V_stall Va],[0 n_s_1 0],’y’)

fill([Vs_neg V_stall_neg Vg],[0 -n_s_3 0],’y’)

fill([Va Va X(i) X(i)],[0 n_1 n_1 0],’y’)

fill([Vg Vg X(k) X(k)],[0 n_3 n_3, 0],’y’)

fill([X(i) X(i) Vd Vd],[0 n_1 np_d 0], ’y’)

fill([X(k) X(k) Vd Vd],[0 n_3 nm_d 0],’y’)

set(gca, "Layer", "top")

% plot(V_s,0,’oy’)

% plot(Vs_neg,0,’oc’)

% plot(Va,0,’or’)

% plot(Vg,0,’og’)

% plot(Vd,0,’om’)

plot(V_stall,n_s_1, ’k’)

plot(V_stall_neg, -n_s_3, ’k’)

plot([Va Vd], [n_1 n_2], ’k’)

plot([Vg Vd], [n_3 n_4], ’k’)

plot([Vd Vd], [n_2 n_4], ’k’)

plot([Va Va], [n_1 0], ’k’)

plot([Vg Vg], [n_3 0], ’k’)

plot([V_s V_s], [1 0], ’k’)

plot([Vs_neg Vs_neg], [-1 0], ’k’)

grid on
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plot(X, Y, ’b’)

plot(X, Y2, ’b’)

plot([0 Vd], [1 np_d], ’b’)

plot([0 Vd], [1 nm_d], ’b’)

plot([X(i) Vd], [Y(i), np_d], ’b’)

plot([X(k) Vd], [Y2(k), nm_d], ’b’)

xlabel(’V [m/s]’)

ylabel(’n’)

np_check=1.25*(Vb/V_s)^2;

nm_check=1.25*(Vb/Vs_neg)^2;
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Appendix C

AVL mesh convergence analysis

To find the optimal mesh to evaluate the aerodynamics loads a convergence analysis is ex-

ecuted. The chordwise number of elements is made vary between 2 and 12, the spanwise

elements number between 5 and 50. For the chordwise sensibility analysis the number of

spanwise elements is set fixed to 20, whereas for the spanwise case the chordwise elements

are set fixed to 8.

As can be seen from the graphs in figure C.1, for the chordwise case the percentage error on

the evaluated CL becomes very low starting from a number of elements of 4, with an error

equal to 0.204 %.

For the spanwise case the percentage error on the evaluated CL becomes very low starting

from a number of elements of 12, with an error equal to 0.131 % (figure C.2).

The chosen mesh will be composed by 5 elements chordwise and 25 elements spanwise

as it is the best compromise to obtain a good data interpolation when data are imported into

Femap.

(a) CL in function of chordwise elements (b) % error in function of chordwise elements

Figure C.1: Chordwise elements number convergence analysis
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(a) CL in function of spanwise elements (b) % error in function of spanwise elements

Figure C.2: Spanwise elements number convergence analysis
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Appendix D

DLM mesh definition

The aerodynamic mesh to perform DLM for flutter analysis was defined through a conver-

gence analysis. The chordwise elements are made varying from 6 to 20 equally spaced,

whereas the spanwise elements are made varying from 25 to 60. Results are much more

sensitive to chordwise elements in respect to spanwise, as can be seen from the graphs of

figure D.1. Spanwise 25 elements give already good results and allow to execute a correct

interpolation with FEM nodes.

In the chordwise direction accurate results can be obtained inserting a bias factor in the mesh

distribution, as with a bias factor equal to 5 with 12 elements similarly accurate results as

having 20 equally spaced elements are obtained. In fact, elements near leading and trailing

edges are the most sensitive and reducing their dimension respect to central elements allows

to obtain more accurate results.

Therefor, a mesh with 12 chordwise elements, spaced with 5 bias factor at both ends, and

25 spanwise elements is used during the analysis.

(a) V flutter in function of chordwise elements (b) V flutter in function of spanwise elements

Figure D.1: DLM mesh elements convergence analysis
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