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Abstract

In the realm of assembly processes, collaborative robots (cobots) are recognized
as valuable assets for enhancing production performance, encompassing assembly
time, product quality, and worker satisfaction. Nonetheless, there’s a noticeable ab-
sence of models that effectively assess cobot integration and assist decision-makers
in selecting the most economically efficient assembly setup. This study aims to
bridge this gap by proposing an innovative cost evaluation model, facilitating a
practical comparison among various assembly configurations to aid in choosing the
most optimal one. The proposed model accounts for diverse cost dimensions such
as manufacturing, setup, prospective, retrospective, product quality, and worker
well-being. Furthermore, it incorporates the influence of learning effects on assem-
bly time and quality, which is particularly pertinent in scenarios of low-volume and
mass-customized productions. Alongside the model description, the study presents
three real-world manufacturing case studies.

Furthermore, this thesis conducts an in-depth examination of an industrial assem-
bly line, scrutinizing its throughput across different production setups. Contrary to
conventional wisdom, the analysis suggests that the conventional average produc-
tion batch size might not always yield the most efficient balance between production
costs and line throughput. The throughput analysis underscores the necessity of
considering specific production attributes and assembly strategies to optimize op-
erational efficiency and profitability
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Chapter 1

Introduction

Significant advancements in robotics have revolutionized manufacturing processes,

enabling the substitution of human labor with automated systems across various

industries. In the past, manufacturing managers often aimed to establish auto-

mated factories, where automated equipment would execute all production opera-

tions under human supervision. This approach yielded favorable outcomes in con-

texts focused on high-volume production of standardized goods. The investment

in automated production lines translated into lower production costs and increased

capacity, making it economically viable over time.

Cobots have demonstrated exceptional performance in assisting humans with as-

sembly tasks, executing precisely repeatable and monotonous activities such as

bolting, nut driving, and part fitting. This collaboration reduces the physical and

mental strain on operators while improving productivity and quality outcomes. De-

spite their benefits, the widespread adoption of cobots in manufacturing processes

with high collaboration potential remains constrained by technological immaturity

and a lack of supportive design tools.

While collaborative robots offer significant advantages, their use in manufacturing

processes with high collaboration potential remains limited due to technological im-

maturity and a lack of supportive design tools. Assembly processes, in particular,

could benefit greatly from collaborative robotics, but their adoption is hindered by
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Introduction

these factors. Manufacturers often struggle with deciding which assembly configu-

ration to adopt, yet there are insufficient tools available to guide decision-makers

towards efficient choices. To address this gap, this study aims to answer two re-

search questions:

• When is it cost-effective to introduce a cobot in an assembly process?

• What are the main components of assembly costs that decision-makers need

to consider?

To address these questions, this thesis presents a cost model that captures the key

factors influencing the selection of the most cost-effective assembly configuration

for an assembly line.

The subsequent sections of this thesis are structured as follows: The first chap-

ter provides an overview of the conceptual background in the industrial sector,

emphasizing its significance for Europe’s economy, with a focus on innovation and

efficiency. It introduces Industry 5.0 as an evolution of Industry 4.0, placing greater

emphasis on sustainability and worker well-being. The integration of collaborative

robots (cobots) into manufacturing processes is highlighted as a key trend, en-

hancing productivity across various tasks. Industry 4.0 is characterized by princi-

ples such as interconnectivity, decentralized decision-making, and smart technology,

driving the transformation of traditional industries into more efficient and flexible

systems. Cobots facilitate human-robot collaboration, offering advantages like ease

of programming and cost-effectiveness. The market for collaborative robots is ex-

pected to expand significantly due to increasing labor costs and the demand for

higher efficiency, although efforts are needed to make cobots more accessible to

smaller enterprises.

The second chapter describes the proposed cost model. The general cost model

considers various components, including retrospective costs linked to operational
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Introduction

disruptions and unused inventory, and costs related to product quality, such as

inspections and detection errors. Automation of production systems can reduce

inspection errors but not eliminate them completely. The research conducted in

this thesis proposes a general cost model aimed at assessing the implementation

of cobots within assembly lines. By examining various cost components, including

but not limited to manufacturing costs, setup costs, and the costs associated with

product quality and worker wellbeing, this study endeavors to provide a compre-

hensive evaluation framework.

The thrid chapter offers recommendations for production throughput analysis. The-

oretical computation involves analyzing throughput across multiple assembly sta-

tions, focusing on meeting demand while optimizing efficiency. It considers factors

like batch size and annual production volume. Utilizing FlexSim software, simu-

lation models are developed for assembly stations. The case study illustrates how

different assembly configurations affect efficiency and cost-effectiveness. Utilization

rates and queue dynamics between stations are analyzed, highlighting the need for

synchronization to minimize idle time. The comparison between maximum and re-

quired throughput reveals potential mismatches between production capacity and

market demand, prompting adjustments to optimize operations and meet customer

needs effectively. This underscores the importance of balancing cost optimization

with fulfilling demand for sustainability and competitiveness.

In the last chapter, the Stellantis case is analyzed where the mathematical model

developed in chapter two for multiple stations is implemented on two real cases of

production plants.

Finally, the concluding section summarizes the contributions, limitations, and po-

tential avenues for future research.
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Chapter 2

Conceptual framework

2.1 Industry 4.0

The industrial sector stands as a pivotal economic and social cornerstone in any

region, and Europe is no exception. Industry not only contributes to the region’s

revenue and future prospects but also promote stability and economic growth. To

enhance global competitiveness, regions must fight for elevated levels of industrial

efficiency and innovation. While the European Union is in the process of transi-

tioning to Industry 5.0, the current emphasis remains on Industry 4.0. Industry

5.0 builds upon Industry 4.0, placing a significant stress on research and innovation

as catalysts for a shift toward a sustainable, human-centric, and resilient European

industry [1]. This innovative industry prioritizes worker well-being, utilizing ad-

vanced technologies to promote prosperity beyond mere job creation and economic

growth, while also respecting the Earth’s production constraints.

The unique aspect of Industry 5.0 lies in its focus on the worker’s centrality in the

production process, utilizing cutting-edge technologies inherited from Industry 4.0

but with a distinctive orientation. Rather than concentrating on specific technolo-

gies or tools, Industry 5.0 can be interpreted as an approach, highlighting the need
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Conceptual framework

to research into the concepts and technologies integral to Industry 4.0.

Understanding the concepts and technologies that constitute Industry 4.0 is thus

more compelling. Historically, technological advancements and discoveries have

given rise to various "industrial revolutions" that have fundamentally transformed

existing paradigms [7]. The First Industrial Revolution introduced steam power

and mechanization, reducing production times and increasing human productivity.

The Second Industrial Revolution harnessed electric energy and assembly line pro-

duction, leading to even greater efficiency and reduced production times. The 3rd

Industrial Revolution emerged with the widespread digitalization, computers, and

the use of robots. Following these, the 4-th Industrial Revolution, often referred

to as ”Industry 4.0,” began in Germany in 2011, characterized by the application

of information and communication technology in industry. The ”4.0” terminology

alludes to software versioning, digitization, and the "smart" concept [7].

Defining Industry 4.0 is challenging, so it’s more helpful to outline its key principles

[3]:

• Smart Technology: Involves the use of sensors, actors, and autonomous

systems in factories, integrating technologies like the Internet of Things (IoT)

and artificial intelligence to create "smart factories."

• Cyber-physical Systems: This principle represents the convergence of the

physical and digital worlds, where physical objects are digitally recorded, and

the real conditions of a system are determined by digital process parameters.

• Self-organization: Industry structures are shifting towards decentralized

systems, promoting individualization, increased autonomy in activities, and

the breakdown of traditional hierarchies.
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Conceptual framework

• New distribution and procurement systems: These systems are becom-

ing more personalized and individualized, aligning with the trend towards

customization and tailored approaches.

• New product and service development systems: Adaptation to inno-

vation is vital to stay competitive, pushing for more flexible and responsive

product and service development.

• Adaptation to human needs: Industry 4.0 aims to place humans at the

center of processes, satisfying their needs and enhancing collaboration with

technology rather than replacing human operators.

• Corporate Social Responsibility: Emphasizes resource efficiency and sus-

tainability to ensure resources are safeguarded for future generations, con-

tributing to ethical and sustainable practices within industries.

These principles collectively represent the ethos of Industry 4.0, guiding the

integration of advanced technologies and methodologies within the industrial land-

scape to enhance productivity, efficiency, and sustainability. Industry 4.0, also

known as the Fourth Industrial Revolution, is characterized by several key princi-

ples and concepts that define its approach to modernizing and enhancing industrial

processes. These principles include [3]:

• Inter connectivity: Devices, machines, and systems are interconnected and

communicate with each other in real-time. This allows for seamless data

sharing and collaboration between different components of the production

process

• Information transparency: : All relevant information is made visible and

accessible to decision-makers. This transparency enables better decision-

making and optimization of processes.
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Figure 2.1. Industry 4.0 technology trends and design principles
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Conceptual framework

• Decentralized Decision-Making: Industry 4.0 promotes decentralized decision-

making, where intelligent systems and devices can make decisions autonomously.

This reduces the need for central control and allows for quicker responses to

changing conditions.

• Technical Assistance: Human workers are assisted by smart systems and

technologies, which can offer guidance, suggestions, and alerts. This enhances

the capabilities of human workers and improves overall productivity.

• Smart Products and Services: Products are designed with embedded

sensors and connectivity, making them "smart." These products can collect

data and provide valuable insights throughout their life cycle, leading to better

customer experiences and service.

• Digital Twins: Digital replicas of physical systems, products, or processes

are created. These digital twins allow for real-time monitoring, simulation,

and analysis, enabling better control and optimization.

• Cyber-Physical Systems (CPS): These systems bridge the gap between

the physical and digital worlds. They integrate physical components (e.g.,

machinery) with digital technologies (e.g., sensors and software) to improve

performance and efficiency.

• Big Data and Analytics: Large amounts of data are collected from various

sources, and advanced analytics and machine learning are used to extract

meaningful insights, identify trends, and predict future events.

• Additive Manufacturing (3D Printing): 3D printing and additive manu-

facturing technologies are used to create customized and complex components,

reducing waste and increasing flexibility in production.
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• Cloud Computing: Cloud-based systems provide a platform for data stor-

age, processing, and analysis, making it easier to access and share information

across organizations.

• Internet of Things (IoT): IoT devices are widely used to connect physical

objects and systems to the internet, enabling remote monitoring, control, and

data collection.

• Artificial Intelligence (AI) and Machine Learning: AI and machine

learning algorithms are applied to make sense of data, improve decision-

making, and automate tasks.

• Augmented Reality (AR) and Virtual Reality (VR): AR and VR

technologies are used to enhance training, maintenance, and troubleshooting

processes by providing real-time, interactive information.

• Sustainability and Resource Efficiency: Industry 4.0 emphasizes sus-

tainability by optimizing resource usage, reducing waste, and promoting en-

ergy efficiency.

These key principles collectively drive the transformation of traditional indus-

tries into more efficient, flexible, and intelligent systems, fostering innovation, com-

petitiveness, and resilience in the digital age.

In recent years, the integration of robotics, particularly collaborative robots (cobots),

has become widespread in manufacturing, aligning with the goals of Industry 4.0.

The benefits include relieving workers of repetitive tasks, ensuring precision, and

achieving higher product quality. Striking the right balance between automation

and flexibility is crucial for achieving manufacturing goals in mass customization.

This has led to the emergence of Human-Robot Collaboration (HRC), a discipline

focused on enabling robots and humans to work collaboratively [8].
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Collaborative robots play a vital role in making manufacturing lines more flexible

and breaking down the traditional separation between robots and human opera-

tors. They offer advantages such as ease of programming, speed of setup, flexibility,

safety, and cost-effectiveness. The collaborative robot market is expected to wit-

ness significant growth, driven by factors such as the need for automation due to a

lack of skilled labor, rising labor costs, complex demands, and the requirement for

higher efficiency [3].

The research and adoption of collaborative robots have garnered attention in both

industry and academia. The increasing number of articles on this topic under-

scores its relevance and potential to surpass traditional robots in various applica-

tions. However, the market for collaborative robots is currently dominated by a

small number of companies, emphasizing the need for market expansion to encour-

age competition and innovation, making these robots more accessible to smaller

enterprises.

2.2 What are Cobots?

The application of Human-Robot Collaboration (HRC) in manufacturing systems

has increased in recent years, aligning with the growing significance of Industry

4.0-related technologies. Collaborative robots, also known as cobots, are complex

devices defined as machines that support and assist human operators in shared

work processes. In simpler terms, cobots are robots designed to collaborate with

humans, sharing a workspace to ease human efforts [8].

The term ”Cobot” is a contraction of ”collaborative robot”. The Institute for Oc-

cupational Safety and Health of the German Statutory Accident Insurance (IFA)

defines Cobots as "complex machines which work hand in hand with human beings.
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In a shared work process, they support and relieve the human operator.” In simpli-

fied terms, a cobot is a robot that collaborates with humans, sharing a workspace

to alleviate human efforts. Instead of replacing humans with autonomous coun-

terparts, Cobots augment and enhance human capabilities with super strength,

precision, and data capabilities so that they can do more and provide more value

to the organization.” [8]

Drawing an analogy with the software context, cobots can be considered as the

hardware counterpart of augmented intelligence. Rather than replacing humans

with autonomous counterparts, cobots enhance human performance by providing

strength, precision, and data capabilities, thereby adding value to organizations.

Quality control of products is widely acknowledged as a crucial factor in the pro-

duction process to minimize defective parts reaching end-users. Given the high

customer demands in today’s market, there is a continuous search for new control

systems and technologies to make quality control processes as efficient and effective

as possible, posing a significant challenge for academia and industry.

In the context of Industry 4.0, cobots equipped with various sensors have gained

prominence, cooperating with humans in the quality control of finished or semi-

finished products. Cobots play a pivotal role in Quality 4.0, a paradigm empha-

sizing the adaptation to technological innovations by updating traditional quality

approaches in the modern era of Industry 4.0 [9]. Quality 4.0 offers benefits such as

real-time process monitoring, big-data collection, and predictive maintenance sup-

ported by analytics, contributing to enhanced enterprise efficiencies, performance,

innovation, and improved business models.

The market for cobots is rapidly expanding due to their flexibility, ease of use,

and affordability. In industrial contexts, cobots are deployed for various tasks such
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Conceptual framework

as packing, assembling, palletizing, welding, material handling, parts and prod-

uct inspection, machine loading/unloading, part cleaning, bin picking, and kitting.

However, the collaborative features of cobots are not fully exploited; they are often

used for simple repetitive tasks with limited interactions with human operators.

One possible reason for this under utilization may be the lack of practical and

quantitative tools capable of demonstrating the benefits of the technology in new

application contexts [5].

In manufacturing lines, robots traditionally undertake activities that humans can-

not physically accomplish, are unsafe to perform, or are not preferred by humans.

Robots are typically used for "3D jobs," referring to "Dirty, Dangerous, or Dull

jobs." However, to ensure human safety and prevent accidents, these industrial

robots must work physically separated from human operators while performing

these activities. For human operators to collaborate with robots safely, the means

to interact with them need to be available. Human-Robot Interaction involves the

exchange of information between humans and robots and can be implemented using

different concepts. A high-level classification of interaction modes includes direct

physical interaction with the robot or the part being processed by both human

and robot, remote contactless interaction, tele-operation, and message/information

exchange through human-machine interfaces or other IT systems.

Remote contactless interaction employs interfaces such as voice or gesture recogni-

tion software and 3D cameras to translate human input into actions for the robot.

Tele-operation involves the operator directly driving the robot through an interface

like a joystick, determining its position and velocity without the need for inter-

mediate software/controller translation. Message/information exchange through

human-machine interfaces or other IT systems involves the robot exchanging infor-

mation with the use of digital I/O signals, transmitted through a PLC or physical

buttons in the cell [5].
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Standards have been developed to regulate the interaction between humans and

automation. ISO 10218 Part 1 and Part 2 address workplace safety requirements

for assisting robots working in a collaborative workspace with users. The standards

include requirements for safety-related control system performance, robot stopping

functions, speed control, operational modes, collaborative operation requirements,

and axis limiting. The more recent ISO/TS 15066 provides guidelines for collabo-

rative robot operation in shared work spaces with humans, including establishing

minimum separation distance, establishing maximum safe speed, tracking operator

position and velocity, determining and avoiding potential contact, avoiding poten-

tial collision, operator controls, power and force limiting, technological, medical/bio

mechanical requirements, and ergonomic requirements. [11]

Many manufacturing industries aspire to introduce collaborative robots into their

production lines using these standards as guidelines. Companies like BMW, Volk-

swagen, and Audi have integrated collaborative robots to work alongside human

operators, taking over tasks that could cause repetitive strain injury or optimizing

ergonomic issues and automating routine operations. These applications demon-

strate the lifting of safety barriers as system integrator find ways to meet the

requirements set by standards. However, some significant gaps persist in current

practice:

• In the majority of collaborative applications, lightweight robots are used,

which are easier and safer to work with but may not fully exploit the ca-

pabilities of high-powered industrial robots capable of undertaking strenuous

tasks.

• Safety functionalities should not obstruct the workflow, and protective func-

tions should minimize the need for recovery even in the presence of human

error.
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• Approaches replacing physical barriers with laser scans or light barriers are

insufficient, and a more dynamic monitoring approach is needed to adjust the

workspace according to the robot’s actual status and task.

• There is a lack of efficient means to integrate human operators into the col-

laboration workflow, with current interaction relying on warning lights and

human-machine interfaces that may not be designed for non-expert operators.

In conclusion, the collaboration between humans and robots in manufacturing

is evolving rapidly, driven by advancements in collaborative robot technologies and

Industry 4.0-related innovations.

2.3 Difference between cobots and robots

There exist two significant distinctions between traditional industrial robots and

Cobots. Firstly, as previously mentioned when discussing Cobots, the interaction

between robots and humans is absent in traditional robots, as they often operate

autonomously without human presence. In contrast, Cobots are trained by humans

directly manipulating their arms and learning by example through demonstrations

and reinforcement learning. These robots are both autonomous and capable of

collaborating with humans in the same physical environment, equipped with a

range of sensors and standardized interfaces. Autonomous and collaborative robots

are a fundamental component of Industry 4.0 and are increasingly preferred over

traditional industrial robots due to their ability to function in diverse settings,

offering several advantages, such as [7]:

• They are user-friendly, enabling programming accessibility to a wide range of

individuals, including those without prior programming expertise. Addition-

ally, they can quickly adapt their programming to suit various applications,

enhancing versatility.
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• They have a rapid setup process, requiring only a few hours as opposed to

the weeks often needed for traditional robots.

• They are flexible and occupy minimal space, allowing for quick deployment

in various settings.

• They prioritize safety, collaborating with humans without posing risks through

environmental awareness and sensor-equipped capabilities for detecting vari-

ous factors.

In summary, collaborative robots are typically a more cost-effective and efficient

choice compared to traditional industrial robots, especially in suitable contexts.

Their lighter weight and increased mobility make them easier to relocate within

the factory or industry where they are installed. The flexibility and affordability of

collaborative robots render them a suitable option for a wide range of industries and

applications. Presently, collaborative robots find applications in numerous indus-

tries, including automotive, electronics, general manufacturing, metal fabrication,

packaging, plastics, food, agriculture, pharmaceuticals, chemicals, and scientific re-

search. As collaborative robot technology advances, and more companies recognize

the productivity benefits they offer, sales volumes in this sector are expected to

rise [7].

Figure 2.2. Collaborative robots vs Traditional robots
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2.4 Application of HRC system in manufacturing

In contemporary times, the utilization of collaborative robots in manufacturing

systems is extensive and continually evolving. The manufacturing industry, par-

ticularly the automotive sector and assembly lines, heavily relies on Cobots for a

diverse range of tasks such as picking, packing, palletizing, welding, assembly, ma-

terial handling, product inspection, and more [5].

The evolving market dynamics and heightened customer expectations have com-

pelled the industry to enhance efficiency and flexibility. Hence, collaborative robots,

with their numerous advantages outlined in Chapter 1.2, are now being integrated

into factories not only for assembly and basic tasks but also for comprehensive in-

volvement in both production and non-production processes. Within the reviewed

literature, various application domains for collaborative robots were identified, and

these are summarized as follows [7]:

Figure 2.3. Application of collaborative robots

• Welding: Collaborative robots excel in precision and speed when it comes to

welding tasks. They can operate independently with high precision or assist
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human welders as needed. These Cobots incorporate features such as vision

sensing, automatic programming, guiding, tracking, and real-time intelligent

control of the welding process. The collaboration system depends on human

skills, with the robot functioning under a robot-as-tool approach and limited

autonomy or cognitive capabilities.

• Material Handling: Material handling represents one of the most signifi-

cant applications of collaborative robots today. These robots efficiently trans-

port materials within manufacturing units and across factory floors, reducing

the physical strain on workers involved in lifting and moving materials. Col-

laborative robots are particularly useful when handling materials that are

unsuitable for human handling due to hygiene, safety, or weight constraints.

It’s important to note that this application entails cooperation rather than

direct collaboration between human workers and the robot, and the robot

operates under a robot-as-tool approach, leaving most cognitive tasks to the

user. A wide variety of palletizing and material-handling robots with different

payloads and gripper tools are available in the market.

• Machinery: Collaborative robots are employed as machinery, primarily fol-

lowing a robot-as-tool approach. Similar to welding applications, they excel in

high-precision and high-speed tasks, whether it’s cutting, deburring, drilling,

foundry work, grinding, material removal, milling, polishing, refueling, rout-

ing, sanding, spindle operations, or water jet cutting.

• Assembly: Cobots play a significant role in lean industrial processes, ex-

panding production capabilities in manufacturing. They are integrated into

what’s known as hybrid assembly robotic cells, using their capabilities in

part handling, high-speed picking, and assembly to assemble parts into sub-

assemblies. This, in turn, allows human operators to focus on more value-

added tasks at the assembly line, increasing productivity for simple assembly
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tasks. Cooperative assembly workstations are particularly well-suited for se-

quential assembly, where the robot handles simpler tasks, while human oper-

ators complete complex, often varied tasks at the end of the line. Effective

timing and coordination between humans and robots are crucial for the suc-

cess of Human-Robot Collaboration (HRC).

• Quality Inspection: Robots consistently and accurately follow precise pro-

cesses, making them more precise than human operators. They can perform

quality inspections with high accuracy and repeatability, without suffering

from fatigue or boredom. A common application involves combining a vision

system with a Cobot to inspect products for quality and immediately remove

defective items from the production line. This approach minimizes human

errors and introduces a new level of quality control and assurance for end

customers.

• Picking, Packing, and Palletizing: Many industries, particularly those

requiring extensive packaging, have turned to robots for these tasks. Manual

execution of these activities can be labor-intensive and time-consuming. Col-

laborative robots excel in tasks like shrink-wrapping, box assembly, loading,

box collation, and pallet placement for shipping.

• Automotive: The automotive industry warrants a separate category due to

its significant interest in collaborative robot applications, both in industrial

settings and academic research. These applications primarily focus on assem-

bly tasks, where collaborative robots play a crucial role in producing lines,

ensuring high-precision operations.

As technology and collaborative robot capabilities continue to evolve, these robots

are expected to find even broader applications, enhancing productivity and effi-

ciency across various industries.
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Chapter 3

General cost model

To facilitate the integration of cobots into assembly production lines, this section

introduces a comprehensive cost model intended for estimating unit assembly costs

and than implement it into an assembly line. The purpose of the model is to

assist decision-makers in selecting the most cost-effective assembly configuration,

incorporating key factors that define the overall assembly cost for a single unit.

Specifically tailored for production settings marked by small lot production, the

model takes into consideration the learning processes of human operators, address-

ing both productivity and product quality aspects. However, it is versatile enough

to be effectively employed in mass production scenarios characterized by large vol-

umes of standardized products.

3.1 Notation

The following notations are used in the remainder of the thesis:

i Assembly configuration (i = manual, collaborative, automated)

Cm Unit manufacturing costs (e/unit)

c0 Cost of operative assembly time (e/hours)
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ta Operative assembly time (hours)

t(n)i Operative assembly time for the n-th lot unit(hours)

t(1)i Operative time for the 1st lot unit (hours)

bi Productivity leaning factor

θi Productivity learning percentage ([0;1])

Csi Unit setup costs (e/unit)

csi Cost of setup time (e/hour)

tsi Setup time attributable to the individual assembly operation (hours)

CP C Unit prospective costs (e/unit)

Ki Total life-cycle cost of investments (e)

vi Service life of the equipment (years)

N Estimated lot size (unit)

L Estimated number of lots processed in a year

RCT OT Total annual retrospective costs (e)

Cqi Unit quality costs (e/unit)

di Average defectiveness ([0;1])

cdi Average cost of a defective unit (e/unit)

d(n)i Defectiveness related to the n-th lot unit ([0;1])

d(1)i Defectiveness related to the 1st lot unit ([0;1])

CWT OT i Unit well being costs (e/unit)
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CWT OT MAX Maximum well being costs (e)

γi Well being costs reduction factor ([0;1])

3.2 Model formulation

The proposed assembly cost model takes into account six distinct cost components:

• Manufacturing costs (Cm): This pertains to the expense associated with

the time spent by human operators while conducting assembly operations.

• Setup costs (Cs): This involves the cost incurred during the time in which

the human operator sets up the assembly station between one production lot

and the next.

• Prospective costs (CP C): This refers to the expenditure related to acquir-

ing the necessary equipment essential for executing the assembly process.

• Retrospective costs (CRC): These are costs that will persist even if the

current assembly configuration is modified.

• Product quality costs (Cq): This encompasses costs arising due to defects

in the assembly process, affecting the quality of the final product.

• Wellbeing cost (Cw): This includes costs resulting from the physical and

cognitive workload imposed on operators, reflecting the impact on their well-

being.

In summary, the model provides a comprehensive framework by considering

these six cost components to estimate the overall assembly costs. [4]

The unit cost of assembly in the i-th assembly configuration can be expressed

by the following formula [4]:

CAi = Cmi + Csi + CP Ci + CRCi + Cqi + Cwi (3.1)
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3.2.1 Manufacturing cost

The first cost that we take into account is the manufacturing cost, that is referring to

the cost of the time during which the human operator performs assembly operations.

We can assume that it can be expressed by the following formula:

Cm = co · ta (3.2)

Where co is the cost of operative assembly time and ta is the required operative

assembly time. The time required for operative assembly (ta) is influenced by the

complexity and number of tasks involved in the assembly process. Two production

types are considered: mass production, where assembly time tends to stabilize

as a constant, converging to a specific standard time (tstd ) with increasing units

produced, and low-volume production (small lots), where assembly time is heavily

influenced by learning processes, and the standard time is not attained. In smaller

production lots, the impact of learning processes on average assembly time becomes

more pronounced.

The substantial impact of learning processes on average assembly time is often

characterized by the concept known as the learning curve. The learning curve

illustrates the relationship between cumulative production quantity and the average

time required to complete a task or produce a unit. Key points highlighting how

learning processes affect average assembly time include [2]:

• Learning Curve Effect: Workers or a production team, gaining experience

with a specific task or assembly process, become more efficient over time -

a phenomenon known as the learning curve effect. While there may be an

initial slower production pace, accumulated experience leads to a decrease in

average assembly time.
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• Increased Efficiency: Repeated practice and exposure to the assembly pro-

cess make workers more familiar with the steps, fostering better coordination,

reduced errors, and a smoother workflow-contributing to a decrease in assem-

bly time.

• Skill Development: Learning processes involve the acquisition and refine-

ment of specific skills and techniques. As workers develop these skills, they

can perform tasks more rapidly and accurately, ultimately reducing assembly

time.

• Process Optimization: Learning processes often include the analysis and

optimization of assembly methods. This encompasses identifying and im-

plementing more efficient tools, streamlining workflows, and adopting best

practices-contributing to a reduction in assembly time.

• Technology and Automation: Learning processes can integrate new tech-

nologies or automation in the assembly line. Automated processes, being more

consistent and faster than manual ones, result in decreased average assembly

time.

• Training Programs: Well-designed training programs significantly impact

the learning curve. Effective training accelerates the learning process, en-

abling workers to quickly understand assembly intricacies and minimizing

the time to achieve optimal performance.

• Feedback Loops: Learning processes benefit from feedback loops where per-

formance data is analyzed, and improvements are implemented. Continuous

improvement based on feedback refines processes, enhancing efficiency, and

reducing assembly time.

In summary, learning processes positively influence average assembly time through

skill development, increased efficiency, process optimization, and the integration of
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technology and automation. A well-managed learning curve contributes to more

cost-effective and streamlined assembly operations [2].

Wright is widely acknowledged as the first individual to observe and delve into the

study of the learning curve within the realm of production and operations man-

agement. His pioneering work sparked a multitude of articles exploring both the

practical application of learning in production and its theoretical foundations. The

advantages of incorporating the learning curve concept into production and op-

erations management are manifold. A comprehensive grasp of these benefits by

managers can lead to favorable and valuable managerial implications and insights.

At the granular planning and operations levels, these benefits encompass estab-

lishing more precise labor standards and monitoring achievable production objec-

tives [16]. Additionally, the application of learning curves facilitates the forecasting

of the available working time of a process [13], as well as predicting production

output [14] and the occurrence of non-conforming units [10].

On a strategic level, the utilization of learning curves, sometimes referred to as "ex-

perience" curves in this context, extends to optimal decisions related to new product

introductions, competitive pricing strategies, determining investment levels to drive

process and product innovations, decisions regarding vertical integration, and the

selection of organizational design structures [12].

The Wright (1936) learning curve (WLC) is of the form:

t(n)i = t(1)i · n−bi (3.3)

The formula express the time required to produce the n-th lot unit in the i-th

assembly, where:
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• n is the cumulative unit number

• t(1)i is the operative time required to assembly the 1st lot unit

• bi is the learning productivity factor in the i-th assembly configurations.

The learning productivity factor can be related to the learning productivity

percentage ϕ by the following:

bi = −log2(ϕi) (3.4)

The smaller is the value of ϕi, the larger is the value of bi and the higher is the

productivity learning effect. We can assume standard value of ϕ:

• 0.98 for manual assembly

• 0.95 for collaborative assembly

• 1 for automated assembly

It can therefore be deduced that the support of cobots allows for shorter assembly

times and faster learning with respect to manual configuration.

The average unit assembly time (tai) is influenced by the lot size, and it can be

calculated as follows:

tai =
∑︁N

n=1 t(1)i · n−bi

N
(3.5)

where N is the estimated production lot size. Considering this, the unit manu-

facturing costs in the i-th assembly configuration can be calculated as follows:

Cm = co · ta (3.6)
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3.2.2 Setup cost

We are examining another cost known as the setup cost, which pertains to the

expenditure of time when a human operator arranges the assembly station between

consecutive production lots.

The unit setup costs (Cs) arise from the inactive time needed to reorganize the

workstation according to production requirements. When transitioning from one

batch to the next, it is crucial to consider the passive time required to change tools,

reprogram robotic systems, or modify the workstation layout. In a practical con-

text, it is imperative to recognize that this cost cannot be disregarded.

In instances of manual configuration, setup times are generally brief. However,

the scenario differs significantly when implementing robotic systems. Currently,

robotic systems lack the ability to autonomously reprogram their actions, necessi-

tating human involvement in tasks such as selecting trajectories, reprogramming

task sequences and allocation, and changing tools and grippers [15].

Cobots demonstrate remarkable flexibility, enabling swift movement and intuitive,

rapid reprogramming. Reprogramming cobots often does not necessitate extensive

expertise. Conversely, traditional industrial robots are typically stationary, and

their reprogramming is intricate and time-consuming.

Utilizing cobots in the assembly line introduces enhanced flexibility, as a single

cobot can undertake various tasks by adapting different tools. While tool changes

can be automated, it is important to note that this process incurs setup time. In

simpler terms, altering the tools on the cobot initiates the setup time. Aghajani

formulated a model for the design of a robot-based assembly line that considers

setup time; however, this model does not align with the trajectory of human-robot
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collaboration, as the setup time is activated by traditional setup activities associ-

ated with conventional robots. Cobots exhibit remarkable flexibility, showcasing

both agility in movement and intuitive, rapid reprogramming.

The setup cost can be expressed by the following formula [4]:

Csi = csi · tsi (3.7)

Here, Cs denotes the cost of setup time, which may significantly differ from the cost

of operative time due to the potentially heightened skill requirements for worksta-

tion setup. The value tsi represents the time needed to set up the assembly station

for an individual unit produced.

It is given by:

tsi = Tsi

N
(3.8)

where Tsi is the total time required to setup the workstation in the i-th assembly

configuration.

This time is linked to the specific assembly operation and is influenced by the

estimated lot size.

3.2.3 Prospective cost

Costs linked to the acquisition of new tools, equipment, operator support systems,

and robotic systems need to be considered in the projected costs. These projected

costs should cover any expenditure that the current decision on assembly configu-

ration has the potential to alter. The projected costs for an individual unit in the

i-th assembly configuration can be calculated as follows [4]:

CP C = Ki/vi

N · L
(3.9)
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Here, Ki represents the comprehensive life-cycle cost of investments essential

for executing the i-th assembly configuration, vi signifies the operational lifespan of

the equipment measured in years within the i-th assembly configuration, N denotes

the projected production lot size, and L indicates the estimated number of lots

processed in a year.

Projected costs for an individual unit should specifically consider the costs that

are affected by the current decision, and what is commonly known as sunk costs

should be disregarded. Sunk costs, which refer to expenditures that have already

been incurred and are irrecoverable, should not be factored in. For instance, in the

scenario where a workstation is newly arranged, all investments made in equipment

fall into the category of sunk costs. This term is typically used to describe money

that has already been spent and cannot be recuperated.

A manufacturing company, for instance, may have various sunk costs, including

machinery expenses, equipment costs, and lease payments for the factory space.

When making decisions related to selling a product as is or processing it further,

sunk costs are excluded. This concept applies to situations where a product can

either be sold in its current state or subjected to further processing. Similarly, in

cases where the workstation undergoes a reorganization, all equipment investments

fall under the umbrella of sunk costs.

3.2.4 Retrospective cost

On the flip side, retrospective costs emerge when the assembly systems are already

established, and the decision-maker is faced with the task of deciding whether and

how to introduce modifications. In these situations, there may be ongoing costs

resulting from past decisions that need to be taken into account when making

future choices. A typical example of retrospective costs is the expenditure linked
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to employees who cannot be terminated or redeployed to different tasks. The

retrospective costs for an individual unit in the i-th assembly configuration can be

computed as follows [4]:

CRC = RCT OT

N · L
(3.10)

Where RCT OT are total annual retrospective costs in the i-th assembly config-

uration.

In the manufacturing context, retrospective costs denote expenses incurred due

to past decisions or actions, becoming relevant when contemplating changes or en-

hancements to existing processes or systems. These costs are tied to decisions made

in the past and can significantly influence future choices. Retrospective costs are

contrasted with prospective costs, which are forward-looking and relate to antici-

pated investments and decisions.

Illustrative examples of retrospective costs in manufacturing encompass:

• Costs of Existing Equipment: If a manufacturing facility has previously

invested in machinery or equipment that remains functional but may require

modification or replacement for process improvements, the costs associated

with the existing equipment become retrospective.

• Labor Costs: Expenses related to employees, particularly those with spe-

cific skills or expertise not easily transferable to other tasks, are considered

retrospective. For instance, if specialized workers were hired for a particular

manufacturing process, their salaries and benefits contribute to retrospective

costs when contemplating changes in the process.

• Training Costs: If specialized training was provided to employees or oper-

ators for a specific manufacturing process that might undergo changes, the

training costs incurred in the past become part of retrospective costs.
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• Operational Disruptions: Costs linked to disruptions or downtime re-

sulting from past decisions, such as implementing new technology or re-

configuring production lines, fall into the category of retrospective costs.

• Unused or Surplus Inventory: In cases of overproduction or excess inven-

tory stemming from past decisions, the costs associated with storing, manag-

ing, or disposing of unused materials or finished goods are considered retro-

spective.

Recognizing retrospective costs is pivotal for decision-makers in manufacturing

when assessing the feasibility and implications of altering existing processes. This

understanding aids in evaluating the complete financial repercussions of past deci-

sions on current and future operations.

3.2.5 Product quality cost

Quality inspections typically aim to verify compliance with specified and functional

requirements, as well as to detect potential defects or anomalies in a product. These

inspections may be guided by either strict or lenient rules, such as periodic checks

or fixed-percentage controls, employing statistical or heuristic approaches.

Key considerations when developing inspection procedures include [6]:

• Collection of Information:Gathering relevant data on the process under

examination.

• Definition of Tasks and Parameters: Clearly outlining the tasks and

parameters essential for the inspection process.

• Activity and Responsibility of Operators/Inspectors: Specifying the

roles and responsibilities of the individuals conducting the inspection.
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• Identification of Inspection Costs: Determining the associated costs in-

volved in the inspection process.

• Identification of Possible Inspection Errors: Recognizing potential er-

rors in the inspection, such as false positives or false negatives, and under-

standing their consequential impact.

Recent advancements in the automation of manufacturing systems contribute to

a reduction in inspection errors, although complete elimination remains unattain-

able. Additionally, due to budget constraints, not all manufacturing systems can be

automated, underscoring the crucial role of inspector skills. It’s noteworthy that,

in numerous production environments, the impact of inspection errors on quality

costs is substantial. This is particularly evident when there are relatively low in-

spection costs, high repair costs, significant penalty costs, or a high probability of

defects. Unfortunately, these errors are frequently overlooked.

The construction of a probabilistic model involves two main phases:

1. Estimating the Probability of (Not) Detecting Defects:This phase

involves assessing the likelihood of detecting or failing to detect defects in

each manufacturing step.

2. Combining Probabilities into a Model:The probabilities determined in

the first phase are integrated into a model that portrays the overall effective-

ness and cost of the inspection procedure.

During each process step (i-th step), various types of quality control activities

may be conducted, depending on the specific defect type. For each of these ac-

tivities, there is a risk of detecting a defect when it is not present (type I error)

and a risk of not detecting it when it is actually present (type II error). While

sophisticated quality monitoring techniques (manual and/or automatic) can mini-

mize these risks, complete elimination remains unachievable.

34



General cost model

An inspection is associated with two types of errors [6]:

1. Type I Error (α): This occurs when a good part is misclassified as defective.

2. Type II Error (β): This happens when a defective part is misclassified as

good.

Each step (i-th step) in the production process is represented by a Bernoulli distri-

bution, characterized by three parameters:

1. pi: The probability of a defect occurring in the i-th step (parameter of the

Bernoulli distribution).

2. αi: The probability of (erroneously) detecting a defect when it is not present

in the i-th step (Type I inspection error or false positive).

3. βi: The probability of not detecting a defect when it is present in the i-th

step (Type II inspection error or false negative).

The index i ranges from 1 to m, representing the total number of steps. The

first parameter (pi) pertains to the defectiveness or, alternatively, the quality of

the i-th step. On the other hand, the other two parameters (αi and βi) relate to

the quality of the corresponding inspection(s). The following probabilities can be

calculated for each generic i-th step.

The probability of detecting the defect in the step i P1 is:

P1 = pi · (1 − βi) + (1 − pi) · αi (3.11)

The probability of non detecting the defect in the step i P2 is:

P2 = pi · βi + (1 − pi) · (1 − αi) (3.12)

where i is included between 1 and m, i.e., the total number of steps.
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In the case the defect is detected, it will be authentic with a probability pi · (1 -

βi) or false with a probability (1 - pi) · αi. On the other hand, in the case no defect

is detected, there can be an inspection error (false negative), with a probability

pi · βi, or due to the real absence of any defect, with a probability (1 - pi)·(1 -

αi) Regarding the i-th step, the total inspection cost may be expressed, as a first

approximation, as follows [6]:

CT OT = ci + NRCi · pi · (1 − βi) + URCi · (1 − pi) · αi + NDCi · pi · βi (3.13)

where:

• ci is the cost of the specific inspection activity (e.g., manual or automatic

inspection activities).

• NRCi is the necessary-repair cost, i.e. the cost for removing the defect when

it is present.

• URCi is the unnecessary repair cost, i.e., the cost incurred when identifying

false defects, e.g., although there is no repair cost, the overall process can be

slowed down or interrupted, with a consequent extra cost.

• NDCi is the cost of undetected defect, i.e., the cost related to the missing

detection of defects.

Expenses linked to product quality are a result of errors or malfunctions occurring

in the assembly process, leading to imperfections in the final product. These costs

significantly impact production expenses across diverse industries. For instance,

in sectors such as aerospace or precision manufacturing, where product defects

can have severe consequences, the existence of defects can result in substantial

economic repercussions. Product quality costs can manifest due to various factors,
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encompassing expenditures related to re-manufacturing, costs linked to discarded

products, harm to the brand image, and expenses associated with after-sales repairs.

As an initial estimate [4], the computation of product quality costs for the i-th

assembly configuration can be determined by multiplying the average defectiveness

(di) - representing the proportion of defective assembled units - by the average cost

of a defective unit (cdi)

Cqi = di · cdi (3.14)

The defectiveness, as a first approximation, can be assumed constant for large-

volume productions. However, similarly to productivity, defectiveness is also influ-

enced by a learning process; consequently, the observed average defectiveness can

be affected by the size of the assembled lot.

The defectiveness related to the assembly of the n-th unit in the i-th assembly

configuration can be calculated as follows:

d(n)i = d(1)i · n−qi (3.15)

where:

• n is the cumulative unit number

• d(1)i is the defectiveness related to the 1st unit, i.e. the initial quality per-

formance, in the i-th assembly configuration

• qi = -log2(φi) is the quality learning factor

• φi is the quality learning percentage in the i-th assembly configuration. The

smaller is the value of φi, the larger is the value of qi and the higher is the

quality learning effect
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So the equation for the product quality cost becomes [4]:

Cqi = di · cdi (3.16)

where di is

di =
∑︁N

n=1 d(1)i · n−qi

N
(3.17)

3.2.6 Wellbeing cost

To enhance both the physical and mental well being of individuals and overall

system performance, the design of contemporary workplaces should incorporate

considerations of physical and mental ergonomics. From this standpoint, it is vital

to include costs related to worker well being when assessing an assembly configu-

ration. The incorporation of human support systems in repetitive and physically

demanding tasks is often intended to enhance the operator’s well being and can

serve as valuable assistance in alleviating the physical and mental burden on hu-

man operators. Although the literature offers highly advanced and quantitative

well being cost models, a preliminary analysis can provide a rough estimate of well

being costs in the i-th assembly configuration using the following approach [4]:

CWT OT i = CWT OT MAX · γi (3.18)

where γi ∈ [0;1]. If, for example, the implementation of cobots allows a 30%

reduction in well being costs with respect to the manual assembly configuration

(considered the most onerous configuration), then γcollaborative assembly = 0.7

3.3 Overall assembly cost

The overall assembly cost resulting from the proposed model is a function of (i)

the specific input parameters of the process, (ii) the assembly configuration and
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(iii) the estimated lots size processed by the assembly station (N). The cost curves

highlighted by the model clearly show the potential of collaborative robotics to

make small lot assembly processes more efficient.

3.3.1 Model extension for multiple stations

The extension of the model [4] was made through the following assumptions:

• The assembly line’s operational time is computed as the highest value between

the operational times of the two stations. This is due to the operator being

remunerated for the entirety of the work session, not just the time when the

station is actively involved in production activities.

• Upon establishing the operational time for the assembly line, manufacturing

costs are derived by directly multiplying this duration by the corresponding

operational expenses.

Given this extension of the model, it is possible to verify at both cost and

throughput levels what the optimal configuration is for two in-line stations as the

average production lot size varies.
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Chapter 4

Theoretical computation

In this chapter we will analyze, graphically, the variation of the average optimal

production lot size through cost curve analysis and production capacity through a

simulative approach using FlexSim software.

After this initial analysis and estimating the average lot size we will consider, we

will go to see which of the costs has the greatest impact on the total cost of manu-

facturing and how these cost components are sensitive to changes and are therefore

important to consider when seeking to optimise or minimise costs.

An examination of the suggested cost model can be carried out to identify which

cost components had the greatest impact on the overall cost. In conducting this

analysis, it is initially assumed that the individual cost elements are independent.

4.1 Single station

The first study we go to is on the single workstation. The calculation done is based

on fictitious examples of cost curves for different assembly configurations. The as-

sembly stations analyzed are: fully manual, collaborative and automatic.
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The data considered for the cost curve analysis and evaluation of the optimal av-

erage production lot size are those summarized in Table 4.1.

The result of the analysis obtained are ranges of average lot sizes that go to mini-

mize the costs of the corresponding assembly stations.

Figure 4.1. Input for the single assembly station

The total cost that we observe as a projection of curves in Figure 4.1 is given

by the following formula:

CAi = Cmi + Csi + CP Ci + CRCi + Cqi + Cwi (4.1)

As evident from the discernible trends depicted in the graphical representations,

our optimization strategy revolves around three distinct average lot size ranges,

each finely tuned to maximize efficiency across the spectrum of assembly stations

at our disposal.

The judicious selection of manual stations comes into play when dealing with aver-

age batch sizes ranging from N=1 to N=5. In this scenario, the human touch and
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attention to detail play a pivotal role in ensuring precision assembly.

Moving up the scale, the collaborative station seamlessly integrates into our op-

erational framework for average batch sizes spanning from N=6 to N=22. This

station harnesses the power of teamwork and coordinated effort, capitalizing on the

collective skills and expertise of a group of operators to enhance productivity and

streamline assembly processes.

For more substantial lot sizes surpassing the threshold of 22, the fully automatic

station takes center stage. This state-of-the-art station leverages cutting-edge tech-

nology to handle the complexities associated with larger batches, ensuring a seam-

less and efficient assembly process without compromising on accuracy.

In summary, our approach is finely calibrated to align with the unique demands

posed by varying the estimated lot sizes, strategically employing manual, collab-

orative, and fully automatic stations to optimize assembly operations and elevate

overall efficiency.

Figure 4.2. Total assembly cost curves
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4.2 Multiple station

In this section, our focus will be directed towards a meticulous examination of the

dynamics inherent in the sequential placement of two stations, with a comprehen-

sive assessment encompassing both their production capacity and the fluctuation

of total costs contingent upon the average lot size.

An underlying assumption integral to our analysis is that the tandem operation of

these two sequentially arranged stations is exclusively dedicated to the assembly

process under scrutiny. Furthermore, it is postulated that any idle time within a

station is not diverted for the execution of alternative operations.

Figure 4.3. Input for the assembly line

To ensure a comprehensive and thorough analysis, we have developed various com-

binations of two machines arranged in line, taking into account potential variations

in operating and setup times, particularly when dealing with two stations of the

same type. The total cost of the production line is determined by aggregating the
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individual costs associated with each station, with the exception of the manufac-

turing cost.

For the latter cost component, a distinct methodology is applied. Recognizing that

the stations are exclusively dedicated to the desired assembly operation and ac-

knowledging that the manufacturing operational cost is calculated based on the

hourly wage of the operator, several assumptions have been formulated:

The operational time required for the assembly line is calculated as the maximum

of the operational times for the two stations. This is because the operator is com-

pensated for the entire work session, not solely for the time the station is actively

engaged in production tasks. After determining the operational time for the assem-

bly line, the manufacturing costs are calculated by simply multiplying this time by

the respective operational costs.

This meticulous and systematic approach ensures a precise evaluation of the pro-

duction line’s performance and associated costs, facilitating effective planning and

optimization of assembly operations. So the total assembly cost of the line with

two consecutive stations is given by the following formula:

CA = Cm1+Cs1+CP C1+CRC1+Cq1+Cw1+Cm2+Cs2+CP C2+CRC2+Cq2+Cw2 (4.2)

After calculating the various costs of the different assembly lines, the data were

plotted on a graph to visualize their variation based on the estimated batch size.

This graphical representation allowed for a clear understanding of how costs fluc-

tuate with changes in the size of the batch, providing valuable insights for decision-

making and optimization strategies.
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Additionally, the visualization facilitated the identification of potential cost-

saving opportunities and the determination of the most cost-effective estimated lot

sizes for efficient production processes.

Figure 4.4. Total cost of the assembly line

The provided data presents various combinations of machines along with their

associated total costs for different lot sizes. Let’s break down the analysis:

• Combination: Refers to the specific combination of machines used in the as-

sembly line setup. For example, "Manual 1" refers to the first manual machine,

"Collaborative 1" refers to the first collaborative machine, and "Automated

1" refers to the first automated machine.
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• Variation of lot size: Indicates the different lot sizes considered in the

analysis.

• Total Cost of the Line: Represents the total cost incurred for a specific

combination of machines and lot size.

Here’s a breakdown of the data:

• Manual Combination (Manual 1 + Manual 2):

– The total cost of the line decreases as the lot size increases, indicating

potential economies of scale.

– For example, for the first combination (Manual 1 + Manual 2), the total

cost ranges from e257.50 for a lot size of 1 to e171.16 for a lot size of

100.

• Collaborative Combination (Collaborative 1 + Collaborative 2):

– Similar to the manual combination, the total cost of the line generally

decreases with increasing lot size.

– However, the cost reduction is not as pronounced compared to the man-

ual combination.

– For example, for the first combination (Collaborative 1 + Collaborative

2), the total cost ranges from e397.67 for a lot size of 1 to e81.13 for a

lot size of 100.

• Automated Combination (Automated 1 + Automated 2):

– The total cost of the line is significantly higher compared to manual and

collaborative combinations.

– However, similar to the other combinations, the cost decreases with in-

creasing lot size.
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– For example, for the first combination (Automated 1 + Automated 2),

the total cost ranges from e1,995.33 for a lot size of 1 to e19.95 for a

lot size of 100.

• Mixed Combinations (Manual 1 + Collaborative 1, Manual 1 + Automated

1, Collaborative 1 + Automated 1):

– These combinations involve mixing different types of machines.

– The total cost of the line varies based on the combination and lot size.

Overall, the data highlights the impact of lot size and machine type on the total

cost of the assembly line. It suggests that larger lot sizes generally lead to lower

costs per unit, while automated configurations tend to be more expensive but may

offer advantages in terms of efficiency and productivity.

4.2.1 Production throughput analysis for a single station

The analysis of throughput is crucial when designing, operating, and managing

production systems. This aspect must be taken into account when evaluating and

selecting the optimal assembly setup. Different assembly configurations can exhibit

varying levels of performance and yield different unit volumes.

It’s evident that the anticipated number of units processed by the assembly station

changes depending on the assembly configuration and estimated lot size. While

one assembly configuration may appear more cost-effective, it might not meet the

necessary demand in terms of productivity. Therefore, alongside cost analysis, it’s

essential to conduct a productivity analysis to ensure that the chosen assembly

configuration can meet the required demand [4].

A rough estimate of the maximum annual throughput for the i-th assembly config-

uration can be calculated as follows:
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maximum throughput = tws · ews · nws · WD

tai + tsi
(4.3)

Where:

• tws is the duration of the work session

• nws is s the number of work sessions in a working day

• ews is is the efficiency in the use of the production resources (workforce and

equipment)

• WD is the number of working days in a year

• tai is average unit assembly time

• tsi is setup time attributable to the individual assembly operation

Figure 4.5. Data for throughput analysis

Using the data in Figure 4.5, we can analyze various curves of maximum through-

put as the estimated lot size varies. As evident from the graph in Figure 3.6, the

more automated the station, the greater the increase in annual units produced with

the growth of the average production lot size, highlighting a clear correlation be-

tween automation level and production scalability.
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As clearly evidenced by the graph, the automatic station exhibits its maximum

efficiency with very large production batches, exceeding 100 units. On the other

hand, the collaborative station achieves its maximum yield with batches exceeding

50 units, while the manual station reaches its peak throughput already with batches

exceeding 30 units.

Figure 4.6. Productivity curves for different assembly configurations

The maximum annual throughput should be compared with the throughput

required by the production system to ensure alignment between production ca-

pabilities and system demands, facilitating informed decision-making and optimal

resource allocation:

Required throughput = N · L (4.4)

49



Theoretical computation

where:

• N is the estimated lot size

• L is the estimated number of lots processed in a year

The i-th assembly configuration allows the required demand to be fulfilled, if

the following condition is satisfied:

Required throughput < Maximum throughput (4.5)

Where the maximum throughput is determined based on the chosen batch size

and the type of assembly station used.

4.2.2 Production throughput analysis for multiple stations

When it comes to analyzing throughput for multiple stations, the approach adopted

leans more towards being illustrative rather than strictly analytical. This choice is

driven by the inherent challenge of accurately predefining the exact manner in which

the setup time of each station will influence the overall throughput of the production

line. In essence, the methodology prioritizes providing a visual representation or

demonstration of the throughput dynamics, acknowledging the complexity involved

in quantitatively predicting the impact of setup times on the system’s performance.

To analyze the maximum throughput our production line can achieve, we look at

two main things: the size of the batches we’re working with and how many batches

we assume we’ll handle each year for our specific case. We then compare what we

find using Flexsim software with what we’ve previously calculated as the required

throughput. This helps us see if we’re hitting the target we’ve set for our production

line in terms of how much it should ideally produce. If we’re not hitting that target,

we can figure out where we might need to make improvements.
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FlexSim is a 3D software used for 3D modeling and discrete event simulation. In

our case study, two generic assembly stations were developed, subsequently made

specific based on varying process times and setup times; a queue between the two

assembly stations due to different production times; and a sink resource identifying

the output of the line.

Figure 4.7. Software simulation [FlexSim]

The software furnishes the hourly throughput (th) of the production line, ne-

cessitating adjustment according to the data in the Table 4.8 to derive the yearly

production volume. Subsequently, this maximum throughput of the production line

is juxtaposed with the theoretically established required throughput. Should the

latter fall short of the line’s current annual production output, then the solution

advocated by us is deemed satisfactory.

Figure 4.8. Annual work session data
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4.2.3 Case study - application example

In conducting this assessment of throughput across multiple stations, we delve into

the intricacies of our production dynamics. Here, we set our focus on an annual

production scale, aiming to handle a total of L=150 batches throughout the year.

Additionally, we pay close attention to the average size of each batch, which stands

at N=10 units. These parameters serve as foundational elements in our quest to

understand and optimize the efficiency of our production processes across multiple

stations. The required throughput so becomes:

Required throughput = N · L = 10 · 150 = 1500 [units/year] (4.6)

Given that the average production batch size amounts to 10 units, we have carefully

selected a configuration for our assembly line. This configuration entails the incor-

poration of two collaborative stations arranged sequentially. The rationale behind

this decision lies in a thorough examination of cost curves, which has shed light on

the most cost-effective approach to assembly.

Figure 4.9. Total cost of the assembly line
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By scrutinizing these curves, we have discerned that the arrangement featuring two

collaborative stations in series offers the optimal balance between efficiency and

cost-effectiveness. This strategic choice not only ensures the smooth flow of pro-

duction but also serves to minimize assembly costs, ultimately contributing to the

overall profitability and competitiveness of our operations.

The data used to implement the two collaborative stations in the software are those

presented in the table.

Figure 4.10. Two collaborative stations

By implementing the two stations on the software, various results useful for our

analysis can be visualized on the dashboard.

The first data we analyze are the utilization rates of the stations. Following the

release of the initial output from the production line, a closer examination reveals

notable utilization patterns at both Station 1 and Station 2.

Station 1 exhibits a high utilization rate of 99.84%, indicating that the station
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is nearly constantly occupied. This utilization is further broken down into two

components: 52.79% attributed to processing activities and 47.06% to setup times.

Conversely, Station 2 presents a lower utilization rate of 55.81%. Here, processing

accounts for 24.14% of the utilization, while setup activities contribute 31.67%.

Figure 4.11. Utilization of two collaborative stations

Concerning the utilization of the queue situated between the two assembly sta-

tions, it’s noteworthy to observe that after the initial cycle, its usage amounts to

8.81%. This relatively low utilization can be attributed to the variance in process-

ing and setup times between the two stations.

The queue essentially acts as a buffer, accommodating any temporal disparities

that may arise during the production process. This indicates that while the queue

is indeed being utilized, its usage is not overly extensive at this stage.

This insight prompts further investigation into the dynamics of the assembly pro-

cess and highlights the importance of synchronizing the activities of the two stations
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to minimize idle time and enhance overall efficiency.

Figure 4.12. Queue between station 1 and station 2

Lastly, we can delve into the examination of the hourly output of the production

line. When conducting the throughput analysis for a multi-station assembly line,

the focal point of our investigation is the output recorded at the sink.This output

encapsulates the cumulative result of the entire production process, reflecting the

final outcome of the assembly line’s operations. By scrutinizing the hourly output

data from the sink, we gain valuable insights into the overall performance and

efficiency of the production line.

The hourly output will need to be adjusted based on the data in Figure 4.8 in order

to conduct the actual throughput analysis.

This analysis allows us to assess the effectiveness of our manufacturing processes,

identify any potential bottlenecks or inefficiencies, and make informed decisions to
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optimize production throughput and enhance overall productivity.

Figure 4.13. Hourly output of a collaborative assembly line

The maximum throughput of the line is given by the following formula:

maximum throughput = tws · ews · nws · WD

output/hour
(4.7)

Which then for our case study will become:

maximum throughput = 8[hour/session] · 0.85[day] · 2[session/day] · 280
4.22[units/hour] (4.8)

maximum throughput = 902.37[units/year] (4.9)

Once we have determined the maximum throughput of our assembly line, the next

step is to compare it with the required throughput, which is dictated by the de-

mand for our products. This comparison serves as a pivotal assessment to evaluate

whether our production capabilities align with the needs of our customers.
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If the maximum throughput exceeds the required throughput, it suggests that our

production capacity surpasses demand, potentially leading to surplus inventory or

underutilization of resources. On the other hand, if the required throughput ex-

ceeds the maximum throughput, it indicates a shortfall in our production capacity

to meet customer demand, highlighting the need for adjustments or enhancements

in our manufacturing processes.

By conducting this comparison, we gain valuable insights into the alignment be-

tween our production capabilities and market demand, enabling us to make in-

formed decisions to optimize our operations and meet customer needs effectively.

The required throughput, as calculated earlier, stands at 1500 [units/year], sur-

passing the maximum throughput of the production line being evaluated. This

observation leads us to a significant inference: while the chosen collaborative as-

sembly line configuration proves cost-effective for the specified lot size, it falls short

in meeting production demands.

Despite its efficiency in cost optimization, its inability to meet the required through-

put underscores a critical misalignment between production capacity and market

demand. This discrepancy prompts a deeper examination of our manufacturing

processes and underscores the importance of ensuring that our production capa-

bilities are sufficiently aligned with customer needs. Addressing this disparity may

entail reevaluating our production strategies, exploring alternative assembly line

configurations, or implementing process improvements to enhance efficiency and

productivity.

Ultimately, the goal is to strike a delicate balance between cost optimization and

meeting customer demand, ensuring the overall sustainability and competitiveness

of our operations.
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Chapter 5

Stellantis case study

The primary objective of this thesis was to showcase, through a tangible case study,

the practical application of a cost model within two manufacturing facilities belong-

ing to Stellantis. The purpose was to illustrate how various factors within the pro-

duction process can influence the strategic choices made when deploying technology

in assembly processes.

5.1 Melfi Plant

The first plant under analysis is Melfi, formerly known as SATA (an acronym for

SocietÃ Automobilistica Tecnologie Avanzate S.p.A.). It serves as both a produc-

tion site and an industrial complex within the FCA Italy group, now controlled by

the multinational Stellantis. Presently, this facility is responsible for manufacturing

the Jeep Renegade, Jeep Compass, and Fiat 500X.

In order to conduct the analysis utilizing the cost model that we’ve developed

earlier, we take a closer look at two consecutive stations at a time to assess how

efficiently they operate considering the different technological advancements they

incorporate.
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The initial examination focuses on two specific stations: one operated manually

and the other in collaboration with technology.

The manual station requires human labor for assembling the left front door panel.

On the other hand, the collaborative station integrates tasks such as reading trace-

ability labels, a task performed by a cobot (a collaborative robot), along with the

preparation of the rear crossmember, which is managed by an operator.

Figure 5.1. Operational card for manual labor in assembling the left front door panel
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Figure 5.2. Operational card for manual labor in assembling the left front door panel

Figure 5.3. Operational card for manual labor in assembling the left front door panel
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The second collaborative station has the following operational card.

Figure 5.4. Operational card for preparation of the rear crossmember

Figure 5.5. Operational card for preparation of the rear crossmember
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Figure 5.6. Operational card for preparation of the rear crossmember

Figure 5.7. Operational card for reading traceability labels
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The second analysis pertains to the following segment of the production line.

Resuming from the collaborative station, we move on to the next one, which is

entirely automated. Here, the focus is on the assembly of rods GOMA links, where

a robot secures each side in place.

The third automated station has the following operational card.

Figure 5.8. Operational card for assembly rods
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Figure 5.9. Operational card for assembly rods

Figure 5.10. Operational card for assembly rods
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Figure 5.11. Operational card for assembly rods
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The Melfi assembly line operates based on a predetermined cycle time of 1

minute. Considering a target output of 60 pieces per day, working for 21 hours daily

across three shifts, and accounting for 235 working days in a year, the subsequent

analyses have produced the following outcomes:

Figure 5.12. Manual + Collaborative stations input data

Figure 5.13. Collaborative + Automated stations input data
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When we analyze the situation with a fixed lot size of L=5000 lots per year,

several key insights emerge. For lot sizes smaller than 15 units, it becomes evident

that the optimal strategy for cost efficiency involves a combination of manual and

collaborative stations in the assembly process. However, as lot sizes grow larger,

the dynamics shift accordingly.

In these cases, it becomes more advantageous to lean towards a predominantly auto-

mated assembly setup, which integrates both collaborative and automatic stations.

This transition underscores the potential advantages of embracing automation, par-

ticularly in larger-scale production settings, where the pursuit of efficiency gains

and cost optimization becomes increasingly paramount.

Figure 5.14. Cost curves for Melfi Plant
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5.2 Mirafiori Plant

Similar to the approach taken with the Melfi plant, we will now delve into examining

a segment of the production line at Mirafiori, which comprises three stations. Unlike

the setup at Melfi, however, the operations at Mirafiori are confined to a single shift,

and there isn’t a predetermined cycle time governing the entire production line.

The three stations under analysis are:

• Homologation VIN labels: At this manual station, there’s a printer dedicated

to producing homologation labels tailored for the specific markets across var-

ious regions where the cars are destined to be shipped. These labels are then

carefully affixed to different areas of the vehicle body, including the electric

motor, engine hood, and bumper. Each label is crucial as it contains the

vehicle identification number (VIN), ensuring that every car has its unique

identifier, making them distinguishable from one another.

• Marriage: this station is a fully automated stage where the mechanical com-

ponents of the vehicle, including the electric motor, battery, and two axles,

come together with the vehicle chassis. This union between the two com-

ponents is achieved through the fastening action carried out by screwdrivers

controlled by two fully automated carts.

• Fluid Filling Plant Startup: This station serves as a collaborative workspace

within the fluid filling area. It’s where vehicles are filled with various flu-

ids essential for operation during the shift, including brake fluid, windshield

washer fluid, engine coolant, and air conditioning gas. Unlike fully automated

setups, this station operates semi-automatically, utilizing both a cobot sys-

tem and a human operator. Each morning before the shift begins, a startup

routine is performed to prepare the system. This involves warming up the

equipment, purging the lines, and ensuring that all plant parameters, such as
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temperature, flow rate, and sensor readings, are within the correct operational

ranges.

We begin our analysis by examining the first two stations in sequence along the

production line. The initial station is manual, followed by a collaborative station.

Moving further down the line, we encounter a succession of collaborative stations

before reaching an automatic one.

The input data used for this analysis are as follows:

Figure 5.15. Manual + Collaborative stations input data

Figure 5.16. Collaborative + Automated stations input data
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Figure 5.17. Cost curves for Mirafiori Plant

In contrast to the Melfi plant, it’s evident that when cycle times aren’t defined

for the entire line, opting for automation in assembly lines is consistently preferable

over relying mainly on manual processes, even when dealing with small production

batch sizes.
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Conclusion

This thesis embarked on a comprehensive exploration of the integration of collab-

orative robots (cobots) within assembly lines, particularly focusing on the auto-

motive industry, represented by the case studies of Stellantis’ Melfi and Mirafiori

plants. Through the development of a general cost model, the study systematically

assessed various configurations of manual, collaborative, and automated assembly

processes. Key findings include the economic efficiency of cobots, their impact on

worker well-being, improvements in quality and throughput, and the adaptability

and learning curve associated with their deployment.

The findings of this thesis carry profound implications for the manufacturing sector.

Manufacturers should consider cobots as a viable solution for optimizing produc-

tion lines, especially where flexibility and rapid adaptation to changing market

demands are critical. Emphasizing the development of ergonomic and intuitive in-

terfaces can further harness the potential of human-cobot collaboration, optimizing

production efficiency and worker satisfaction. The study advocates for enhanced

industry standards and policies that facilitate the integration of cobots into man-

ufacturing systems, ensuring safety, interoperability, and efficiency.
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Conclusion

While this study offers valuable insights into cobot integration in manufacturing,

several limitations warrant further investigation. Future research could explore the

application of the developed cost model across different industries to validate its

universality and adaptability. An in-depth analysis of the long-term economic im-

plications of cobot integration, including return on investment and total cost of

ownership, would provide a more comprehensive understanding. As cobot technol-

ogy continues to evolve, future studies should examine the impact of technological

advancements on cobot capabilities and the corresponding training needs of the

workforce.

The integration of collaborative robots into assembly lines represents a paradigm

shift towards more flexible, efficient, and human-centric manufacturing processes.

This thesis has laid a foundational framework for assessing cobot implementation

in manufacturing, offering valuable insights for industry practitioners and paving

the way for future research in this burgeoning field.
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