
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A Framework for the Analysis of
File Infection Malware

Supervisors:
Prof. Cataldo Basile

Dr. Juan Caballero

Candidate:
Lorenzo Ippolito

Academic Year 2023/2024
Torino

Ai miei nonni.

Abstract

Over the past two decades, malicious software, commonly known as malware, has become
one of the largest threats to digital systems. File infectors, a class of malware, spread
by injecting their malicious code into legitimate executables. Such infected files are
routinely collected by cybersecurity vendors. The mixture of malicious and benign code
in infected executables makes it challenging to detect and classify file infectors. This
thesis presents a novel framework for the analysis of file infectors. Our framework takes a
malware sample as input and examines the permanent modifications made to executables
within a sandbox environment to determine if the given sample is a file infector. The
original and modified executables are input to the classification module that leverages
a novel executable differ to compare them and determine the type of file infector (i.e.,
appender, prepender, impersonator). We evaluate the effectiveness of our framework on
350 executables belonging to 70 malware families.

ii

Acknowledgements

Throughout this journey, I am deeply grateful to the numerous individuals who have
supported and guided me.

First and foremost, I want to express my deep appreciation to my two advisors, Prof.
Cataldo Basile and Dr. Juan Caballero. I am particularly indebted to Dr. Caballero for his
exceptional guidance and analytical mind, which have significantly enriched my academic
experience and development as a researcher. I am immensely grateful to Prof. Davide
Balzarotti for his invaluable mentorship and inspiring ideas during my time in France,
which have been instrumental in shaping my academic journey. I extend heartfelt thanks
to all the professors and staff at Politecnico di Torino, Eurecom, and IMDEA Software
Institute for their dedication and expertise. Their contributions have played a crucial role
in shaping me into the academic individual I am today.

To my newfound friends from diverse corners of the globe, I offer my sincere appreciation
for enriching my life immeasurably through cultural exchange and companionship during
these five remarkable years. To my longtime friends, who have been my pillars of strength
and comfort throughout this journey, I express my gratitude for your consistent support
and encouragement.

I reserve my deepest and sincerest gratitude for my family. I am certain that my
grandparents would share the same pride in the person I have become, just as much as my
aunts and uncles do today. Lastly, I am profoundly grateful to my parents. No words can
adequately express all the sacrifices they have made for me, just as no words can capture
the depth of gratitude I hold for how they always make me feel fortunate.

iii

Table of Contents

List of Figures vii

List of Tables viii

Acronyms x

1 Introduction 1

2 Related work 4

2.1 File Infectors . 4

2.2 Fuzzy Hashes . 5

2.3 Executable Diffing . 5

2.4 Malware Detection and Classification . 6

3 Dataset 8

4 Methodology 11

4.1 Sandbox . 11

4.2 Image Differ . 13

4.3 PE Structure . 14

4.3.1 DOS Header . 15

v

4.3.2 DOS Stub . 16

4.3.3 Rich Header . 16

4.3.4 COFF File Header . 16

4.3.5 Optional headers . 16

4.3.6 Sections . 17

4.3.7 Attribute Certificate Table . 17

4.3.8 Overlay . 18

4.4 PE Differ . 18

4.5 Classifier . 25

5 Results 26

5.1 Dynamic Analysis . 26

5.2 File Infector Characterization . 29

5.2.1 Appenders . 29

5.2.2 Prependers . 30

5.2.3 Impersonators . 31

5.3 Similarity Scores . 31

5.4 Classifier . 34

6 Conclusions 35

6.1 Limitations . 35

6.2 Future Work . 36

Bibliography 37

vi

List of Figures

3.1 Number of samples first seen by VirusTotal per year. 9

4.1 Framework for the analysis of file infection malware. 12

4.2 Portable Executable structure. 15

5.1 Number of file infectors first seen by VirusTotal per year. 32

6.1 Example of error message window. 36

vii

List of Tables

3.1 Summary of dataset. 9

5.1 Summary of modification of executed samples per family. 27

5.2 Summary of modifications performed by identified file infectors per family. 30

5.3 Summary of similarity results performed on identified file infectors per family. 33

5.4 Overall of classification results using Random Forest. 34

viii

Acronyms

API
Application Programming Interface

AV
Antivirus

COFF
Common Object File Format

CPU
Central Processing Unit

GB
Gigabyte

JSON
JavaScript Object Notation

MS-DOS
Microsoft Disk Operating System

PE
Portable Executable

RAM
Random Access Memory

RVA
Relative Virtual Address

x

VM
Virtual Machine

VT
Virus Total

xi

Chapter 1

Introduction

In the digital age, the proliferation of interconnected systems and the adoption of technology
have revolutionized the way we interact with information. However, this digital revolution
has also ushered in new challenges, chief among them being the omnipresent threat of
malicious software, commonly referred to as malware. Malware encompasses a broad
spectrum of software designed with malicious intent, ranging from relatively benign
nuisances to sophisticated cyber weapons capable of causing widespread disruption and
damage. Among the various malware classes, file infectors, also known as viruses, stand out
as a particularly insidious class, capable of injecting malicious code within legitimate target
files. The history of computer file infectors dates back to the early days of computing, with
seminal examples like the Michelangelo virus [1] and the CIH virus [2] demonstrating the
disruptive potential of malicious software. Over the years, the landscape of file infectors
has evolved, adapting to advancements in technology and security measures. File infectors
have been defined in various ways across different contexts and periods. The fundamental
characteristic of a file infector is its capacity to alter existing files within a system, distinct
from the actions of creating new files or deleting existing ones. File infectors operate by
injecting malicious code into pre-existing benign files. Among the infected files, executable
files are particularly targeted because they allow to run the malicious code. When executed,
infected executables can propagate the file infector by infecting additional files. For this
reason our work will be focused on executables.

Recent research conducted by Dambra et al. [3] underscores the inherent challenge in
accurately classifying certain classes of malware, particularly file infectors. This challenge
arises from the natural behavior of file infectors, which involves injecting snippets of
malicious code into benign files. As a result, this mixture of benign and malicious code
complicates detection and classification efforts. Given their established presence spanning
three decades, we are also particularly interested in assessing the ongoing significance of
file infectors in contemporary contexts and the extent to which they are still being utilized.
In standard literature [4], file infectors are often classified based on various features, with

1

Introduction

infection mode being one of them. File infectors exhibit different modes of infection
documented in existing literature. These include Appenders, which inject their malicious
code at the end of the executable; Prependers, which inject code at the beginning of the
executable; Cavity Infectors, which inject code interstitially within the executable; and
Companion Viruses, which inject malicious code into a newly crafted file somehow linked
to the target code, to execute beforehand. Macro viruses instead infect document files
(i.e., Word, Excel), thus this research will not delve into their consideration.

The goal of this thesis is to design and implement a framework for the analysis of file
infection malware. This framework aims to not only identify such malware but also to
categorize them into distinct types based on their infection behavior.

Our research aims to distinguish file infectors from other malware classes through a
meticulous analysis of file system modifications post-execution of a given sample. Dynamic
analysis is performed within a sandbox environment, where the presence of permanently
modified executables is determined for each sample. If a sample lacks permanently modified
executables, it serves as a key indication that it is not a file infector. The executable
files displaying permanent modifications are analyzed by a PE Differ module, which can
parse Portable Executable (PE) components (i.e., headers, sections), extracts their features
and generates a clear textual representations of the alterations. Additionally, the module
computes measures of similarity between the original and modified files, providing an
overview of each sample’s behavior. Finally, the obtained similarity scores are fed into a
Classifier module, which utilizes this data to categorize the analyzed sample into different
types (e.g., Appender, Prepender).

For our dataset, we utilized a subset of the malware dataset featured in Dambra’s
research [3], sourced from VirusTotal’s (VT) feed. Specifically, our dataset consists solely
of PE malware executables, encompassing 70 distinct malware families. This dataset
is carefully balanced, with each family containing a consistent number of 100 samples,
resulting in a total of 7,000 samples. Of those, we analyzed 5 randomly selected samples
from each family, resulting in a total of 350 samples analyzed.

With this dataset, we derived diverse outcomes. Initially, following sandbox dynamic
analysis and employing analysis parameters congruent with an established study [3], we
determined that great majority of the families detonated, indicating the manifestation
of observable behaviors. Among these detonated samples, we successfully identified 94
samples of 22 families as file infectors, distinguished by the presence of permanently
modified executables. We conducted a manual analysis of the samples to identify their
respective file infector types. Our analysis specifically identified the presence of 4 families
classified as Appenders, 16 families classified as Prependers, and 2 families classified as
Impersonators. Subsequently, we utilized a custom-built PE executable differ to extract
similarity results, tailoring our approach to the behavioral patterns exhibited by file
infectors. By delineating various dimensions for feature extraction, we prepared the dataset
to be fed into the classification module. Employing a machine learning multiclass classifier
based on the Random Forests model, we proceeded to construct our classification model.

2

Introduction

To facilitate model evaluation, we adopted a static random split, dividing the dataset
into Training and Testing sets. The Training Set, encompassing 70% of the samples, was
utilized for model training, while the Testing Set, comprising 30% of the dataset, served
for assessing the model’s performance. The obtained results demonstrate remarkably
high precision, with all scores reaching a perfect 1.0. While these findings may initially
seem encouraging, it is imperative to acknowledge the possibility of overfitting, especially
considering the relatively limited size of the analyzed dataset.

To summarize, the main contributions of this thesis are:

• A novel framework for the analysis of file infection malware

• A novel PE executable differ that operates at component level

• Evaluation on 350 malware samples

3

Chapter 2

Related work

2.1 File Infectors

In the realm of cybersecurity and malware analysis, file infectors have long been a focal
point of research and study. Several seminal works have contributed significantly to
our understanding of file infectors and their impact on computing systems. In this
section, we briefly discuss four influential papers on file infectors and highlight how our
work differs from them. Cohen’s groundbreaking work [5] introduced the concept of
computer file infectors and laid the foundation for file infector research. He proposed
formal definitions of file infectors and discussed their potential threat to computer systems.
Cohen’s experiments with file infector creation and propagation provided valuable insights
into the behavior of file infectors. Szor’s comprehensive book [6] delves into the intricacies
of computer file infectors, offering insights into their anatomy, propagation mechanisms,
and defense strategies. It provides a detailed analysis of real-world file infectors and
their impact on computer systems, along with practical guidance on file infector detection
and mitigation techniques. Saltzer and Schroeder’s seminal paper [7] discussed various
security principles and mechanisms for protecting information in computer systems. While
not focused exclusively on file infectors, their work addressed broader issues of computer
security, including access control, authentication, and auditing. It provided a framework
for understanding security threats and designing secure systems. Skoudis and Zeltser’s
book [8] provides a comprehensive overview of malware, including file infectors, worms,
Trojans, and other malicious software. It covers various aspects of malware analysis,
including detection, classification, and mitigation strategies. The book offers practical
insights into combating malware threats in modern computing environments.

While these seminal papers have contributed significantly to our understanding of file
infectors, our work differs in focus and scope. Unlike traditional file infector research, which
often focuses on understanding and mitigating the impact of file infectors on computer

4

Related work

systems, or their family classification, our work is centered around building a novel
framework for detecting and classifying file infectors based on their infection behavior.

2.2 Fuzzy Hashes

While cryptographic hash functions enable the immediate identification of differences
between two files down to the byte level, they do not provide insight into the degree of
difference between them. Fuzzy hashing, also known as similarity hashing, is a technique
that enables the detection of similarity among files. Depending on the algorithm used, it
can indicate either a distance or a similarity score. Fuzzy hashes are quite present and
well studied, they were introduced to deal both with email signatures computation and to
forensics artifacts correlation. In our work we will use different types of similarity functions
for binary comparison, measuring the similarity between PE files.

There are different fuzzy algorithms used in research, SSDeep, proposed in 2006 by
Kornblum [9], is a Context-Triggered Piecewise Hash, a method that generates a hash by
dividing the input into several segments, computing conventional hashes for each segment,
and subsequently merging these individual hashes into a unified string. SSDeep represents
one of the earliest fuzzy hashes and several limitations for practical applications have been
raised [10] since its creation, and other similarity hashes have been created. Oliver et al.
proposed TLSH [11] as a newer technique specifically designed for binary analysis, its
approach is based on Locality Sensitive Hashing, which focus on distribution of n-grams.
It calculates the hash by first processing the byte string with a sliding window creating a
bucket array, then the quartile points of this array are computed in order to get first the
digest header and consequently the digest body, finally the final digest is constructed by
concatenation.

Among all these fuzzy algorithms, different researchers have tried to perform large scale
experiments on their accuracy and effectiveness, reaching contradictory conclusions. While
Upchurch and Zhou [12] suggested TLSH as completely ineffective for binary comparison,
Azab et al. [13] considered it one of the best available solutions for this problem. In
2018, Pagani et al. [14] measured how these algorithms perform in different scenarios and
provided interpretations about the reasons why results vary widely, stating TLSH as a
better alternative with respect to SSDeep. We looked at this work as one of the latest and
well documented papers on this topic, and we decided to use both SSDeep and TLSH in
order to calculate similarity between PE executables.

2.3 Executable Diffing

While fuzzy hashes can be used for calculating the similarity between digital files, with no
need of understanding neither the file-type nor the context associated with it, sometimes

5

Related work

there could be the necessity to dig a little bit more about the differences between specific
types of files, such as executable ones. In the earlier section, we explored fuzzy hashes,
which operate at the byte level by employing their techniques on input data in the form of
byte blobs, however there always be a widespread interest for comparing different versions
of the same executable. According to Flake [15], while numerous tools exist for comparing
different versions of the same source code, the comparison between executables has always
posed a greater challenge.

BinDiff [16] is a comparison tool designed for analyzing binary files, it operates by
focusing on the abstract structure of an executable rather than the concrete assembly-level
instructions in its disassembly. It generates signatures for each function creating initial
matches between two sets of signatures for different executables. A match is established
if a signature occurs uniquely in both examined subsets of signatures. Subsequently,
callgraphs are employed to discover more matches, examining subsets of functions called
from matched functions and increasing the likelihood of finding new unique matches. This
iterative process continues until no further matches can be identified. With BinDiff is
thus possible to obtain a list of associated functions, identifying structural similarities and
differences in executables.

In our study, we opted for the use of similarity hashes due to the inherent difficulties
associated with performing disassembly operations on malware. Malware often employs
packers or intricate code obfuscation techniques, making it challenging to analyze at the
source code level. By operating at the byte level, similarity hashes provided us with a
means to overcome these complexities, although this approach sacrificed clarity regarding
the source code.

2.4 Malware Detection and Classification

Malware detection and classification are crucial tasks in cybersecurity, and numerous
studies have contributed to advancing the field. The task of malware detection involves
the development and implementation of techniques and tools to recognize and mitigate
malicious software or code that can compromise the security of computer systems. Family
classification in the realm of cybersecurity refers to grouping similar or related malware in-
stances based on their characteristics, code similarities, and behavior patterns. Establishing
these connections is crucial for understanding the broader landscape of cyberthreats.

Various researchers have delved into the realm of malware detection and classification,
offering diverse perspectives and methodologies. Among them, Kalash et al. [17] explored
the application of deep convolutional neural networks to classify malware. Additionally, Ye
at al. [18] conducted an in-depth survey encompassing a range of data mining techniques
employed in malware detection. Furthermore, Aslan and Samet [19] undertook a com-
prehensive review, critically analyzing and summarizing existing approaches in malware
detection. In a similar vein, Pascanu et al. [20] investigated the efficacy of recurrent

6

Related work

networks in classifying malware. Recently Dambra et al. [3] comprehensively explored the
intricacies of machine learning in malware classification. They investigated the impact of
dataset characteristics, feature extraction techniques, and model performance evaluation
metrics on classification accuracy, providing valuable insights for researchers.

Our work differs from these studies as we focus specifically on detecting and classifying
file infectors. Unlike traditional malware detection approaches that classify malware
into families, we propose a novel framework for the analysis of file infectors based on
their infecting behavior. This approach enables us to develop more targeted and effective
detection and classification techniques tailored to the unique characteristics of file infectors.

7

Chapter 3

Dataset

For our study, we utilize a subset of the malware dataset featured in the paper by Dambra
et al. [3]. The source dataset comprises PE malware executables from VirusTotal (VT) [21]
feed, a real-time stream of JSON-encoded reports generated by the execution of those
samples in VT’s virtual machines. VT’s report can contains not only file hashes, strings
extracted from the executables, the open sockets and different kind of metadatas, but also
detection labels assigned by different antivirus (AV) engines. In their paper, Dambra et
al. collected 118,111 malicious PE executables divided into different datasets referenced
as Malware Balanced (MB) composed by 670 families with 67,000 samples, Benign (B)
composed by 16,611 samples, Malware Unbalanced (MU) composed by 1,500 families with
18,000 samples and Malware Generic (MG) composed by 16,500 samples. According to
their paper they collected reports and samples from the VT feed for 82 non-consecutive
days between August 2021 and March 2022, maintaining only those samples detected by
at least one AV engine and with a file type equal to “32-bit non-installer PE executable”.
Out of all the collected executables, 64-bit PE executables, dynamic-link libraries (DLLs),
and executables generated by installer software have been excluded. For our purposes we
focused only on the first dataset (MB), as it is balanced and with a constant number of
samples of 100, enough to performing multi-class classification experiments.

After identifying the dataset source, our attention turned to filtering the retained
reports to extract a subset consisting solely of file infectors. This process involved utilizing
AVclass2 [22]. AVclass2 is an automatic malware tagging tool that given the AV labels for
a large number of samples, extracts for each input sample a clean set of tags that capture
properties such as the malware class, family, file properties, and behaviors. AVclass2
provides different tags under each of the four default categories: behavior, class, file
properties, and family, and it is able to identify strong relations between them. Thanks
to the Expansion phase [22], AVclass2 outputs an alias file containing a list of tags and
unknown tokens along with their confidence scores. The alias file is based on tags belonging
to two different categories, and it is structured in different values: the tags, the number of

8

Dataset

samples each tag appears in the dataset being labeled, the number of samples where both
tags appear, and the fraction of times that both tags appear in the same samples. From
the output file, we selected the two categories as family and class. For the first set, called
“Likely viruses”, we included all samples with the file infector class assigned as the top class.
Additionally, we created another set named “Maybe viruses”, which comprised samples
where the file infector class was not assigned as the top class, but where the associated
confidence score for the file infector class within a family exceeded a specified threshold
denoted as T1. In our case, T1 was set to 0.5, capturing all families with a probability
greater than 50% of being classified as file infectors.

Dataset Samples Families
Likely viruses 4,000 40
Maybe viruses 3,000 30
All 7,000 70

Table 3.1: Summary of dataset.

In summary, as outlined in Table 3.1, we derived 70 families, each comprising 100
distinct samples, divided into two sets: “Likely viruses”, encompassing all samples where
the file infector class was assigned as the top class, and “Maybe viruses”, comprising
samples where the file infector class was not the top class, but had a probability greater
than 50% of being classified as such.

Figure 3.1: Number of samples first seen by VirusTotal per year.

To contextualize the timeline of our dataset samples, we chose to extract the “first_seen”

9

Dataset

field from previously collected VirusTotal reports. This helped us determine the year of first
submission for these samples. It is important to note that due to resource constraints, we
could only analyze a subset of 350 samples out of the total 7,000 in the dataset, as detailed
in Chapter 5. Therefore, our temporal analysis will focus solely on these analyzed samples.
As detailed in Figure 3.1, all samples are dated between 2008 and 2022, with a noticeable
peak in 2021. Given that the VirusTotal feed was collected over a year of observation
spanning from 2021 to 2022, these samples are relatively recent. This observation also
suggests that file infectors are still actively infecting systems.

10

Chapter 4

Methodology

The goal of our study is to introduce a framework for the analysis of file infection malware.
This framework aims to not only identify such malware but also to categorize them into
distinct types based on their infection behavior. The framework, outlined in Figure 4.1,
begins by taking a Portable Executable (PE) file as input. This file is dynamically executed
in Cuckoo Sandbox, which generates a Cuckoo report and a disk image containing the
altered file system resulting from the execution of the sample. These elements, along
with the unaltered disk image prior to execution (the second input), are fed into the
Image Differ module. This module compares the two file systems, identifying all modified
executables. The presence of modified executables suggests potential infection, prompting
further analysis. The modified executables, along with their original versions, serve as
input for the PE Differ module. This module produces textual files for manual inspection
of modifications and derives various features from similarity scores between executables.
These features are then used by the Classifier to classify the executables into different
types (e.g., Appender, Prepender). In the following sections all the conceptual steps for
the analysis are explained in details.

4.1 Sandbox

Our analysis aims to identify file infectors by examining the differences between the
permanently modified executables in the file system post-sample execution and their
original counterparts. Dynamic analysis was employed to achieve this objective. We
set up Cuckoo Sandbox for executing malware using the best practices recommended by
previous works [23, 24, 25]. We configured a Windows 7 Pro 32-bit virtual machine (VM)
with 2 CPUs and 2 GB of RAM. We deployed widely used applications and populated
the file system with standard file formats to simulate the configuration of an authentic
desktop workstation, and as recommended by Rossow et al. [25], the virtual machine runs

11

Methodology

Figure 4.1: Framework for the analysis of file infection malware.

on its isolated local network. Ultimately, we validated our analytical environment using
Al-Khaser [26] and Pafish [27] tools, to ascertain that our sandbox remained undetectable
and potentially did not prompt evasive techniques from malware. We employed Cuckoo
Sandbox, also referred to as Cuckoo, as our malware analysis system, which utilizes
customizable components to monitor and document the activities of malicious processes
while they operate within a virtual machine environment, which must be provided. Cuckoo
works primarily on two essential concepts: the host, which is the operating system where
Cuckoo is installed, housing configuration files and scripts for analysis, and the guest,
an operating system utilized as a virtual machine by Cuckoo. The guest serves as the
environment for executing malware and is restored after each iteration. During an analysis,
control shifts from the host to the guest to execute the sample. Afterward, control is
returned to the host, where all auxiliary and reporting modules are utilized to generate a
textual report in JSON format. While Cuckoo Sandbox is a valuable malware analysis
system, it is important to note that there are alternatives like Intel Pin [28] and Joe
Sandbox [29], which are widely recognized and utilized by the scientific community. The
decision to opt for Cuckoo is driven by two key factors: its user-friendly customization of
auxiliary and reporting scripts, and the completeness of the JSON report it generates. To
decide the execution time for each sample we relied on a previous study [3] and given the

12

Methodology

mentioned work, we adopted a similar cautious approach and executed each sample for a
maximum of five minutes.

The input given to the Cuckoo Sandbox is an executable file, while its standard output
is a JSON file. To facilitate the extraction of the file system image post-sample execution,
we developed custom Python scripts. The disk’s initial state was transformed into a disk
image to serve as a reference for the original file system. Practically, immediately following
the execution of the PE file and the transfer of control to the guest, the system captures a
snapshot of the current disk state. Upon returning control to the host, this snapshot is
restored, and a disk image is extracted in a raw format. This systematic process ensures
that all files modified during execution are stored in an image file, facilitating easy access
to them.

4.2 Image Differ

The Image Differ module takes disk images before and after sample execution, along
with the Cuckoo report, as input. Its objective is to identify all permanently modified
executables. To achieve this, the module calculates the SHA-256 hash of all files and
identifies the subset with different hashes but the same filepath in both images, thanks to
the information provided by the Cuckoo report. Following this, it filters for executable files
and proceeds to extract them. To traverse the entire file system and extract executable files,
we utilized a Python module called The Sleuth Kit [30], an open-source forensic toolkit
for analyzing Microsoft and Unix file systems and disks. We exclusively concentrated on
analyzing executables because they are a prime vector for triggering file infection and their
ease of parsing provides convenience in understanding the modifications introduced by file
infectors. The extracted executable files, both modified and original versions, along with
their filepaths, are stored in a Python dictionary. This dictionary is serialized using the
Python module pickle [31] to facilitate its use between Python scripts.

In Listing 4.1, a subset of executables extracted from a sample is displayed, each
denoted by its filepath along with its old and new hashes resulting from modifications.

Listing 4.1: Example of extracted executables from a sample.
1 //Windows/assembly/NativeImages_v2.0.50727_64/MSBuild/1

a154709cdfe214029ea88c51ab2b579
2 321b2b1d180b4eb0bb5402fe6417f7f892a9dd68089419274f35dd555820cd35
3 065b8ef72d98dd901b0199cf1a007c7696ee29279245f67393db4ea7f01f414f
4

5 //$Recycle.Bin/S-1-5-21-483214431-1722755210-2890981749-1001/$R7W2UHH/lib64/
python3.10/site-packages/setuptools

6 5c1af46c7300e87a73dacf6cf41ce397e3f05df6bd9c7e227b4ac59f85769160
7 256ceba9c8e9e2303748398d2e08be9257756cbdcc7160924e4a787328334d58
8

13

Methodology

9 //$Recycle.Bin/S-1-5-21-483214431-1722755210-2890981749-1001/$R7W2UHH/lib64/
python3.10/site-packages/setuptools

10 28b001bb9a72ae7a24242bfab248d767a1ac5dec981c672a3944f7a072375e9a
11 639bb16efaf06be54434215a9eaadcea35aa3fb600a8359211bc3a5b05e3aa35
12

13 //Python27/Lib/site-packages/pip/_vendor/distlib
14 34f60fa6decf22356a00112ed42cda6db0f21c7909a6ec3efea66aff8f07d23d
15 b8e087f1b2166047bdb40c7335ddde85fa13e7118ad9831221edb9f309446c5a
16

17 //Program Files/LibreOffice/program
18 a9e7d53b51e332a9a182e1cbb801ba243e98535aaf99991a53a4925865fdee1d
19 12d70059c2d49067ca281a60542ea9cca660c0025825795a9d1dfe2822136e58
20

21 //$Recycle.Bin/S-1-5-21-483214431-1722755210-2890981749-1001/$R7W2UHH/lib64/
python3.10/site-packages/setuptools

22 75f12ea2f30d9c0d872dade345f30f562e6d93847b6a509ba53beec6d0b2c346
23 d004eef460c27ec91580732e1b216dffcb43febb685ca60e8c8f215fc55ae32e
24

25 //Program Files/LibreOffice/program/python-core-3.8.18/lib/distutils/command
26 3c978f7167f71538635c35864f2ac7862cb9ba8c57464b6f90f0c6185f258cb9
27 fd0755f5170f9509a116f4097e0a7b923ce3deef4791d64d2d0bdf2684a6b534
28

29 //Program Files/LibreOffice/program/python-core-3.8.18/lib/distutils/command
30 cf6cd3e0b085e89584061f5562f6206a98673251042e486ba0210d7d46817081
31 6383564aca068de256d4130c26e17ab49c2e60314b3cd5a84a14e701f6f22cdf
32

33 //Program Files (x86)/Mozilla Maintenance Service
34 1341040bb86be331284ddb95c93d4b157267c2c145d248c729eea6081e03fd19
35 d580c1b66c4516cb53a3af521d3513d2439bdcdc9c9e7e92e8f79fd5f805b025
36

37 //Program Files (x86)/Adobe/Acrobat Reader DC/Reader
38 1a5ea90eff67873ecba529096c005b641e025a8dd92a1732c532c500516de324
39 4ada2b540ca9957917b6b6f93b18cf34531e4aec255442faf7a4f679df6a9c31

4.3 PE Structure

A Windows PE file follows a specific and fixed structure, illustrated in Figure 4.2, consisting
of various components. Each component is further subdivided into fields that describe its
specific attributes. Some components consist entirely of raw byte data, lacking distinct
fields. In Figure 4.2, intentional empty spaces between components provide areas where
malware could inject content without affecting functionality as well as components marked
in red. The upcoming subsection will provide detailed explanations for each component.

In order to have a clear view of each component and its content, we implemented a
Python script, based on the Python module pefile [32]. The software processes a 32-bit

14

Methodology

Portable Executable (PE32) file by parsing each of its components. It extracts and presents
details such as file offset, size, field name, and corresponding values for each field inside
components. For components without fields, the program calculates the SHA-256 hash of
the associated byte data. Additionally, the software identifies any bytes not attributed
to specific components, dealing potential gaps in the analysis by computing the SHA-256
hash for these stray bytes. We intentionally omitted certain aspects of components and
fields, such as header flags, as we did not consider them crucial for our work. This decision
was made with the goal of creating a comprehensive mapping of every byte within the PE
files. This approach facilitates the identification of the position of any modifications at the
byte level.

PE Image File

DOS Header

DOS Stub

Rich Header (OPT)

COFF File Header

Standard Fields

Windows Specific Fields

Attribute Certificate Table (OPT)

Data Directories

Section Table

Section 1

Section 2

Overlay (OPT)

Section n

...

Figure 4.2: Portable Executable structure.

4.3.1 DOS Header

The DOS header, also known as the MS-DOS header, is a 64-byte structure located at the
beginning of the PE file. It does not play a crucial role in the functionality of PE files on
modern Windows systems and it exists for backward compatibility reasons. This header
designates the file as an MS-DOS executable, therefore, when loaded on MS-DOS, the
DOS stub is executed instead of the actual program. Omitting this header would result in

15

Methodology

the executable not loading on MS-DOS and producing a generic error. Two noteworthy
fields are the following: “e_magic”, the initial member of the DOS Header, is a 2-byte-long
entity commonly known as the “magic number”. With a fixed value of 0x5A4D or MZ in
ASCII, it serves as a signature designating the file as an MS-DOS executable. The second
field, “e_lfanew”, ends the DOS header structure, holding an offset to the start of the NT
headers.

4.3.2 DOS Stub

The MS-DOS stub is a valid application that runs under MS-DOS. It is placed at the
front of the PE image. The linker places a default stub here, which prints out the message
“This program cannot be run in DOS mode” when the image is run in MS-DOS.

4.3.3 Rich Header

The Rich Header is an optional, undocumented field in the PE32 file format located between
the MS-DOS and COFF Headers. It consists of a chunk of encrypted data followed by a
signature “Rich”, from which it takes its name, and a 32-bit checksum value that is the
encryption key. The encryption used in the Rich Header is a simple XOR function, thus,
it is easy for attackers to take advantage of this implementation, but not equally smooth
to detect for automated analysis. For this and other reasons, the Rich Header’s potential
in enabling the rapid triage of malicious samples has been demonstrated in Webster’s
work [33].

4.3.4 COFF File Header

At the beginning of an object file, or immediately after the signature of an image file, there
is the COFF file header made of seven fixed fields. Notably, the field “NumberOfSections”
is the only one worth mentioning, as it indicates, the number of sections present in the PE
file.

4.3.5 Optional headers

The Optional headers starts right after the COFF File Header and it has three major
parts. The first eight fields of the Optional headers, known as standard fields, are defined
for every implementation of COFF. These fields contain general information that is useful
for loading and running an executable file.

16

Methodology

The subsequent 21 fields, categorized as Windows-specific fields, hold additional in-
formation necessary for the linker and loader in Windows. Among these, two fields are
particularly noteworthy for our research: “SizeOfCode”, representing the sum of sizes of all
text sections, and “AddressOfEntryPoint”, describing the starting address for execution.

The final segment of the Optional headers is the data directories. It is formed by
different data directory entries are all loaded into memory so that the system can use them
at run time. A data directory is an 8-byte field, consisting of 4-bytes Relative Virtual
Address (RVA) of the table and 4-bytes of table size. The number of data directories is
not fixed within a PE file and is determined by the “NumberOfRvaAndSizes” field in the
Optional headers.

4.3.6 Sections

Section Table The Section Table contains details about the properties of PE data
sections. Each section header is 40 bytes in size and includes information such as the
section’s name, size, virtual and physical addresses. This table is crucial in a PE executable
as it describes the metadata of sections, rendering it susceptible to alteration during
infection.

Data Sections Data sections in the PE executable format hold various types of data
within the binary. These sections store information such as executable code, initialized
data, uninitialized data, resources, and import/export tables. Each data section has its own
characteristics, including a name, size, virtual and physical addresses, and flags indicating
properties such as whether the section is executable, writable, or readable.

4.3.7 Attribute Certificate Table

The Certificate Table in PE files stores digital signatures that verify the integrity and
authenticity of the executable. It holds certificates signed by trusted entities, enhancing the
security and trustworthiness of the executable. The entry in the Certificate Table directs
to a set of attribute certificates, distinctively not loaded into memory with the image.
Due to its importance, malicious actors may leverage it to evade automated detection,
a commonly observed tactic in malware, as outlined in a study by Kotzias et al. [34].
Additionally, in the same paper, researchers highlight a concern with Authenticode, located
in the Certificate Table, where timestamped signed malware successfully validates even
after the revocation of their code signing certificate.

17

Methodology

4.3.8 Overlay

In a PE file, an overlay refers to additional data appended to the end of the legitimate
PE file structure, this data is optional and not officially part of the PE file specifications.
While the legitimate components of the PE file have specific offsets and sizes defined in
the file header, the overlay is any data beyond the specified size of the last component.
It is essential to note that although the Certificate Table, a component used to verify
the authenticity and integrity of executable code, is technically part of the overlay as
it is positioned after the last section, but we have excluded it from the overlay for the
purpose of our work. Overlays can be utilized to conceal malicious code or attempt to
evade detection.

4.4 PE Differ

The module responsible for identifying differences between executables is the PE Differ
module. It accepts a pair of PE executable files as input: the original file and its infected
version. It parses these files, breaking them down into PE components as detailed in the
preceding section. The module then performs component-level diffing for each component,
extracting the differences. The output produced by the module is a diff file, which explicitly
highlights the alterations between the two executable files in a human-readable format.
Unlike other tools such as BinDiff, which are capable of establishing differences between
files through disassembly procedures, our tool does not involve disassembly processes. The
module operates analogously to the Unix utility diff, part of diffutils [35] package. The
Listing 4.2 provides a diff file example.

Listing 4.2: Example of diff file.
1 file_path //Python27/Lib/site-packages/pip/_vendor/distlib/w32.exe
2 - file_sha-256 34

f60fa6decf22356a00112ed42cda6db0f21c7909a6ec3efea66aff8f07d23d
3 + file_sha-256

c4b5bc7fcd8b0e89e3bcc2dc3e6bea2e34fd393c86b268b9565fe20ef2407524
4 - file_tlsh

T1E9938D11B291D076D05624305C6AC2B10ABEFC3395B9C54B7BC97B3E1F71381AA6BB27
5 ? ^ ^^ ^ - ^

^ ^^ ^
6 + file_tlsh

T1ED938D55B291D076D05625305C6AC2B10ABEFC3354B9C54B7BC93B3E1F723C0AA6AB27
7 ? ^ ^^ ^ + ^

^ ^^ ^
8 - file_ssdeep 1536:8Hg7DHaVCkO8XyUKdujCc66m5tvKbUOQNieF2FfHYTolz:8

A7AFfCGReFwfHYTol
9 ? ^^ ^ ^^ ^^ ^

^^

18

Methodology

10 + file_ssdeep 1536:zxg7DkRaVCkO8XyUKdujCc66m5tvKbUOQNiml2FfHYTolzs:
zO7ouFfCGRmlwfHYTolQ

11 ? ^^ ^^ ^^ + ^^ ^^
^^ +

12 - actual_size 0x15c00
13 ? ^
14 + actual_size 0x16c00
15 ? ^
16 - expected_size 0x15c00
17 ? ^
18 + expected_size 0x16c00
19 ? ^
20 difference 0x0
21

22 DOS_HEADER
23 0x0 0x2 e_magic 0x5a4d
24 0x2 0x2 e_cblp 0x0090
25 0x4 0x2 e_cp 0x0003
26 0x6 0x2 e_crlc 0x0000
27 0x8 0x2 e_cparhdr 0x0004
28 0xa 0x2 e_minalloc 0x0000
29 0xc 0x2 e_maxalloc 0xffff
30 0xe 0x2 e_ss 0x0000
31 0x10 0x2 e_sp 0x00b8
32 0x12 0x2 e_csum 0x0000
33 0x14 0x2 e_ip 0x0000
34 0x16 0x2 e_cs 0x0000
35 0x18 0x2 e_lfarlc 0x0040
36 0x1a 0x2 e_ovno 0x0000
37 0x1c 0x8 e_res
38 0x24 0x2 e_oemid 0x0000
39 0x26 0x2 e_oeminfo 0x0000
40 0x28 0x14 e_res2
41 0x3c 0x4 e_lfanew 0x000000f8
42

43 DOS_STUB
44 0x40 0x40 dos_stub sha256:7764

e7022dcac1b5779d1f96fc05af5c1fee394aaff8a3a7e9a881e1a1b163a3
45 0x80 0x60 rich_header sha256:0432

e5a8f2acd97d3ec605b8e0bad8891b35f7fff83b952762100f67c2aa4a09
46

47 0xe0 0x18 unknown sha256:9
d908ecfb6b256def8b49a7c504e6c889c4b0e41fe6ce3e01863dd7b61a20aa0

48

49 NT_HEADERS
50 0xf8 0x4 Signature 0x00004550
51

52 FILE_HEADER
53 0xfc 0x2 Machine 0x014c

19

Methodology

54 0xfe 0x2 NumberOfSections 0x0005
55 - 0x100 0x4 TimeDateStamp 0x5ad46bbb [Mon Apr 16

09:24:11 2018 UTC]
56 ? ^^ ----- ^^^ ^^ ^^

^ ^^ ^ ^
57 + 0x100 0x4 TimeDateStamp 0x4e4f4f4d [Sat Aug 20

06:08:13 2011 UTC]
58 ? ^^^^^^^ ^^^ ^^ ^^

^ ^^ ^ ^
59 0x104 0x4 PointerToSymbolTable 0x00000000
60 0x108 0x4 NumberOfSymbols 0x00000000
61 0x10c 0x2 SizeOfOptionalHeader 0x00e0
62 0x10e 0x2 Characteristics 0x0102
63

64 OPTIONAL_HEADER
65 0x110 0x2 Magic 0x010b
66 0x112 0x1 MajorLinkerVersion 0x0a
67 0x113 0x1 MinorLinkerVersion 0x00
68 0x114 0x4 SizeOfCode 0x0000ba00
69 0x118 0x4 SizeOfInitializedData 0x00009e00
70 0x11c 0x4 SizeOfUninitializedData 0x00000000
71 0x120 0x4 AddressOfEntryPoint 0x00002e1a
72 0x124 0x4 BaseOfCode 0x00001000
73 0x128 0x4 BaseOfData 0x0000d000
74 0x12c 0x4 ImageBase 0x00400000
75 0x130 0x4 SectionAlignment 0x00001000
76 0x134 0x4 FileAlignment 0x00000200
77 0x138 0x2 MajorOperatingSystemVersion 0x0005
78 0x13a 0x2 MinorOperatingSystemVersion 0x0001
79 0x13c 0x2 MajorImageVersion 0x0000
80 0x13e 0x2 MinorImageVersion 0x0000
81 0x140 0x2 MajorSubsystemVersion 0x0005
82 0x142 0x2 MinorSubsystemVersion 0x0001
83 0x144 0x4 Reserved1 0x00000000
84 - 0x148 0x4 SizeOfImage 0x0001b000
85 ? ^
86 + 0x148 0x4 SizeOfImage 0x0001c000
87 ? ^
88 0x14c 0x4 SizeOfHeaders 0x00000400
89 0x150 0x4 CheckSum 0x0001b9f7
90 0x154 0x2 Subsystem 0x0002
91 0x156 0x2 DllCharacteristics 0x8140
92 0x158 0x4 SizeOfStackReserve 0x00100000
93 0x15c 0x4 SizeOfStackCommit 0x00001000
94 0x160 0x4 SizeOfHeapReserve 0x00100000
95 0x164 0x4 SizeOfHeapCommit 0x00001000
96 0x168 0x4 LoaderFlags 0x00000000
97 0x16c 0x4 NumberOfRvaAndSizes 0x00000010
98

20

Methodology

99 DIRECTORIES_HEADER
100 ENTRY_EXPORT
101 0x170 0x4 rva 0x00000000
102 0x174 0x4 size 0x00000000
103 ENTRY_IMPORT
104 0x178 0x4 rva 0x0000f36c
105 0x17c 0x4 size 0x0000003c
106 ENTRY_RESOURCE
107 0x180 0x4 rva 0x00014000
108 0x184 0x4 size 0x000050a4
109 ENTRY_EXCEPTION
110 0x188 0x4 rva 0x00000000
111 0x18c 0x4 size 0x00000000
112 ENTRY_SECURITY
113 0x190 0x4 rva 0x00000000
114 0x194 0x4 size 0x00000000
115 ENTRY_BASERELOC
116 - 0x198 0x4 rva 0x0001a000
117 ? ^^
118 + 0x198 0x4 rva 0x00000000
119 ? ^^
120 - 0x19c 0x4 size 0x0000090c
121 ? - ^
122 + 0x19c 0x4 size 0x00000000
123 ? ^^
124 ENTRY_DEBUG
125 0x1a0 0x4 rva 0x0000d190
126 0x1a4 0x4 size 0x0000001c
127 ENTRY_COPYRIGHT
128 0x1a8 0x4 rva 0x00000000
129 0x1ac 0x4 size 0x00000000
130 ENTRY_GLOBALPTR
131 0x1b0 0x4 rva 0x00000000
132 0x1b4 0x4 size 0x00000000
133 ENTRY_TLS
134 0x1b8 0x4 rva 0x00000000
135 0x1bc 0x4 size 0x00000000
136 ENTRY_LOAD_CONFIG
137 0x1c0 0x4 rva 0x0000eed0
138 0x1c4 0x4 size 0x00000040
139 ENTRY_BOUND_IMPORT
140 0x1c8 0x4 rva 0x00000000
141 0x1cc 0x4 size 0x00000000
142 ENTRY_IAT
143 0x1d0 0x4 rva 0x0000d000
144 0x1d4 0x4 size 0x00000154
145 ENTRY_DELAY_IMPORT
146 0x1d8 0x4 rva 0x00000000
147 0x1dc 0x4 size 0x00000000

21

Methodology

148 ENTRY_COM_DESCRIPTOR
149 0x1e0 0x4 rva 0x00000000
150 0x1e4 0x4 size 0x00000000
151 ENTRY_RESERVED
152 0x1e8 0x4 rva 0x00000000
153 0x1ec 0x4 size 0x00000000
154

155 SECTION_HEADER
156 0x1f0 0x8 Name .text
157 0x1f8 0x4 Misc 0x0000b8da
158 0x1f8 0x4 Misc_PhysicalAddress 0x0000b8da
159 0x1f8 0x4 Misc_VirtualSize 0x0000b8da
160 0x1fc 0x4 VirtualAddress 0x00001000
161 0x200 0x4 SizeOfRawData 0x0000ba00
162 0x204 0x4 PointerToRawData 0x00000400
163 0x208 0x4 PointerToRelocations 0x00000000
164 0x20c 0x4 PointerToLinenumbers 0x00000000
165 0x210 0x2 NumberOfRelocations 0x0000
166 0x212 0x2 NumberOfLinenumbers 0x0000
167 0x214 0x4 Characteristics 0x60000020
168

169 SECTION_HEADER
170 0x218 0x8 Name .rdata
171 0x220 0x4 Misc 0x00002b2c
172 0x220 0x4 Misc_PhysicalAddress 0x00002b2c
173 0x220 0x4 Misc_VirtualSize 0x00002b2c
174 0x224 0x4 VirtualAddress 0x0000d000
175 0x228 0x4 SizeOfRawData 0x00002c00
176 0x22c 0x4 PointerToRawData 0x0000be00
177 0x230 0x4 PointerToRelocations 0x00000000
178 0x234 0x4 PointerToLinenumbers 0x00000000
179 0x238 0x2 NumberOfRelocations 0x0000
180 0x23a 0x2 NumberOfLinenumbers 0x0000
181 0x23c 0x4 Characteristics 0x40000040
182

183 SECTION_HEADER
184 0x240 0x8 Name .data
185 0x248 0x4 Misc 0x000036e4
186 0x248 0x4 Misc_PhysicalAddress 0x000036e4
187 0x248 0x4 Misc_VirtualSize 0x000036e4
188 0x24c 0x4 VirtualAddress 0x00010000
189 0x250 0x4 SizeOfRawData 0x00001000
190 0x254 0x4 PointerToRawData 0x0000ea00
191 0x258 0x4 PointerToRelocations 0x00000000
192 0x25c 0x4 PointerToLinenumbers 0x00000000
193 0x260 0x2 NumberOfRelocations 0x0000
194 0x262 0x2 NumberOfLinenumbers 0x0000
195 0x264 0x4 Characteristics 0xc0000040
196

22

Methodology

197 SECTION_HEADER
198 0x268 0x8 Name .rsrc
199 0x270 0x4 Misc 0x000050a4
200 0x270 0x4 Misc_PhysicalAddress 0x000050a4
201 0x270 0x4 Misc_VirtualSize 0x000050a4
202 0x274 0x4 VirtualAddress 0x00014000
203 0x278 0x4 SizeOfRawData 0x00005200
204 0x27c 0x4 PointerToRawData 0x0000fa00
205 0x280 0x4 PointerToRelocations 0x00000000
206 0x284 0x4 PointerToLinenumbers 0x00000000
207 0x288 0x2 NumberOfRelocations 0x0000
208 0x28a 0x2 NumberOfLinenumbers 0x0000
209 0x28c 0x4 Characteristics 0x40000040
210

211 SECTION_HEADER
212 0x290 0x8 Name .reloc
213 - 0x298 0x4 Misc 0x00000e8e
214 ? ^^^
215 + 0x298 0x4 Misc 0x00002000
216 ? + ^^
217 - 0x298 0x4 Misc_PhysicalAddress 0x00000e8e
218 ? ^^^
219 + 0x298 0x4 Misc_PhysicalAddress 0x00002000
220 ? + ^^
221 - 0x298 0x4 Misc_VirtualSize 0x00000e8e
222 ? ^^^
223 + 0x298 0x4 Misc_VirtualSize 0x00002000
224 ? + ^^
225 0x29c 0x4 VirtualAddress 0x0001a000
226 - 0x2a0 0x4 SizeOfRawData 0x00001000
227 ? ^
228 + 0x2a0 0x4 SizeOfRawData 0x00002000
229 ? ^
230 0x2a4 0x4 PointerToRawData 0x00014c00
231 0x2a8 0x4 PointerToRelocations 0x00000000
232 0x2ac 0x4 PointerToLinenumbers 0x00000000
233 0x2b0 0x2 NumberOfRelocations 0x0000
234 0x2b2 0x2 NumberOfLinenumbers 0x0000
235 0x2b4 0x4 Characteristics 0x42000040
236

237 0x2b8 0x148 unknown sha256:7
b4499c3cc6e82a9da3100028f52af7f8c1e9ee60e33010a108e401989782962

238

239 SECTION_DATA
240 - 0x400 0xba00 .text sha256:

f63208c03a4e74b371ce17a5151f14acb1dff91c68bbb775bf53904106ede02f
241 + 0x400 0xba00 .text sha256:

bef4d87efc208ad5a86e5fdefef089baff51b919f76fba05049df2853f68ba6b
242

23

Methodology

243 SECTION_DATA
244 - 0xbe00 0x2c00 .rdata sha256:82

e7bdf9a42713d94b225e1da4a204b3797898e9bebc30fe3b2ff38b3d86385c
245 + 0xbe00 0x2c00 .rdata sha256:

c9f7496ff730bd5b9934c9d170a9731cd07f4e34e834da3da560e6320fba8f44
246

247 SECTION_DATA
248 0xea00 0x1000 .data sha256:1

f030beb042fa9a2eada0dee901747f50b0b6a006d0dc4d086b23a607d4244f4
249

250 SECTION_DATA
251 0xfa00 0x5200 .rsrc sha256:

dde3adb5a734a39fe8fccefcd3f8a315bfa883a6466b1ab7b20cc2670c9acff0
252

253 SECTION_DATA
254 - 0x14c00 0x1000 .reloc sha256:

d175784bb45286eb24f579f824c682d105e2edc10991848ac1e0e3d52922b961
255 + 0x14c00 0x2000 .reloc sha256:

f3f3668a7ca7eb4701e6a303f8fb59b86e0e1eee9243430571c4ad3919669028

After establishing the process for highlighting differences between the analyzed input
files, the need arose to define a distinct measure for file similarity. To quantify the
differences between files and express them numerically, we employed fuzzy hashes. Fuzzy
hashes, also known as similarity hashes [36], serve the purpose of establishing a distance
metric between files. In this study, we applied fuzzy hashes as byte-wise approximate
matching algorithms. This approach involves two phases: the first phase calculates a string
that serves as a representation for the specific file. This string captures all aspects of the
file by encoding them into a fixed sequence of characters, commonly known as a fingerprint.
The second phase of the process is dedicated to generating similarity scores. We employed
two distinct fuzzy hashes, SSDeep [9] and TLSH [11]. These hashes were implemented
using their respective Python modules, enhancing the efficiency of both phases of the
process. The similarity scores indicate the degree of similarity between two files, ranging
from 0 (indicating no similarity) to 100 (indicating high similarity). Regarding TLSH, the
Python library used allowed only for the computation of distance scores. To convert these
distance scores into similarity scores, we relied on the work of Upchurch and Zhou [37],
which enabled us to invert and normalize the algorithm. To determine the similarity scores
for each pair of files, we considered the maximum similarity scores obtained from both
SSDeep and TLSH.

The PE executable differ tool utilized by the PE Differ module has been made available
as open-source software, promoting accessibility and collaboration within the research
community. The source code and documentation for the tool are available at:
https://github.com/f4ncyz4nz4/pe_differ.

24

https://github.com/f4ncyz4nz4/pe_differ

Methodology

4.5 Classifier

The final component of the proposed framework is the Classifier. Its primary function is to
receive similarity scores from the PE Differ module as input, extract features by combining
the similarity scores of permanently modified executables, and subsequently produce a
label to classify the sample. For each sample, six similarity-based features are established
to feed into the properly trained classifier. The selection of these features is grounded in
the characterization of file infectors outlined in Section 5.2. These features encompass six
key aspects:

• Average similarity scores between original and modified infected executables, they
serve to quantify the degree of similarity between original and infected executables.

• Average similarity scores between original and modified infected files truncated
according to the original size, they are particularly useful for samples that append a
significant amount of bytes in the last sections, thereby altering normal similarity
scores.

• Average similarity scores between the original and just the overlay of the modified
infected files, they are particularly useful for samples that store the original file in
the overlay, possibly with some modifications.

• Average similarity scores between original and modified infected files with the overlay
removed, they are particularly useful for samples that append a significant amount
of bytes to the overlay, rendering a normal similarity scores meaningless.

• Average similarity scores between modified infected files, they serve to quantify the
degree of similarity between infected executables.

• Number of infected files appended with an overlay, it measures how many infected
executables present overlays compared to their original version.

We utilized a Random Forest classifier to handle the classification task, which involved
distinguishing among four distinct labels. These labels used by the Classifier are: Appender,
Prepender, Impersonator, and Unknown. The label “Unknown” serves as a pseudo-label
assigned to all file infectors exhibiting unusual behavior, which may include behaviors
that are non-malicious or different from typical behaviors observed within the same family.
Random Forest is an ensemble learning method widely used for both classification and
regression tasks. It operates by constructing a multitude of decision trees during the training
phase and outputting the mode of the classes for classification or the mean prediction for
regression. Each decision tree in the ensemble is trained on a bootstrapped subset of the
training data and makes predictions independently. The final prediction is determined by
aggregating the predictions of all trees in the forest. Random Forest is renowned for its
robustness against overfitting, high accuracy, and ability to handle large datasets with high
dimensionality. By utilizing Random Forest, we aimed to leverage its strengths in handling
multi-class classification tasks while ensuring reliable and interpretable predictions.

25

Chapter 5

Results

The upcoming sections will explain the outcomes derived from various analysis modules of
the framework proposed and outlined in Chapter 4.

5.1 Dynamic Analysis

In this section, we delve into the findings from the dynamic analysis conducted within the
controlled environment of Cuckoo Sandbox, following the analytical framework outlined in
Figure 4.1. We had a dataset consisting of 7,000 samples spread across 70 distinct families,
as shown in Table 3.1. From this dataset, we analyzed a total of 350 samples, with 5
samples randomly chosen from each family.

Table 5.1 provides a summary of the relevant information extracted from the analysis
of each sample. Each row represents a different family, with the columns indicating the
total data aggregated from all samples within that family. The columns, from left to right,
detail the family name, the total number of executed samples per family, the count of
files opened, written, and deleted, the total number of permanently modified executables
(with the number of samples that permanently modified those executables in brackets
if greater than zero), and finally, the total count of Windows API calls. We observed
that only 2 out of the 70 families, namely contenedor and stone, did not exhibit any
Windows API calls. This finding suggests that behavioral observations were possible for
the vast majority of our samples. To further refine our analysis, we referred to a previous
study [3], which proposes a threshold of at least 50 Windows API calls to ascertain sample
detonation. Detonation refers to the process of triggering a sample to exhibit its malicious
behavior. After applying this threshold, we determined that the samples meeting this
criterion comprise 94.3% of the total. Finally, among all executed samples, only 94 samples
from 22 families demonstrated permanent modifications to executables, thereby being

26

Results

classified as file infectors. The families lamer and xolxo stand out as exceptions because
they do not exhibit any Windows API calls, but they do show executables permanently
modified, indicating successful detonation and file infection. Consequently, these families
are classified among the file infector families.

Table 5.1: Summary of modification of executed samples per family.

family exec file
open

file
writ

file
del

permanent
exe mod

win api

adgazelle 5 159 41 41 0 66811
airinstaller 5 15 3 2 0 21166
alman 5 0 0 1 0 383
atcpa 5 20 5 0 0 138878
babar 5 50 8 6 0 14122
benjamin 5 1010 1005 0 0 142272
catalina 5 700 340 15 0 48723
chir 5 16 6 0 0 39536
contenedor 5 0 0 0 0 0
copidmbe 5 3 1 0 0 2820
cosmu 5 15253 85 1 0 1761724
dealply 5 34 2 0 0 1064597
detroie 5 122 33 15 8(5) 30186
egroupdial 5 66 75 21 0 17974
expiro 5 223 133 111 209(5) 109292
fesber 5 95 315 2 0 344515
fickerstealer 5 3 3 1 0 67397
firseria 5 225 10 6 0 567171
fujacks 5 109 65 14 0 737272
geegly 5 5 5 3 0 1430798
getnow 5 107 56 81 0 132445
gogo 5 88 45 36 25(4) 281841
grenam 5 0 0 0 276(4) 2
hematite 5 6 2 0 0 273
imali 5 224 39 20 0 66246
induc 5 152 75 86 24(3) 1166071
installbrain 5 58 93 10 0 1037398
installcore 5 43 210 6 0 1335920
jeefo 5 55 113 4 0 40623
klez 5 4 4 0 0 2179
kolabc 5 0 0 0 0 884
lamer 5 0 0 0 109(5) 0
lassorm 5 56 54 11 0 907889
lmir 5 40 25 15 5(5) 20688

27

Results

family exec file
open

file
writ

file
del

permanent
exe mod

win api

mabezat 5 114 12 9 0 12055
memery 5 8828 160 0 105(5) 907040
mepaow 5 28 4 0 0 46302
mywebsearch 5 100 105 10 0 31931
neshta 5 794 645 40 440(5) 476875
parite 5 1706 1703 0 0 362295
pidgeon 5 3 1 0 412(5) 237
pioneer 5 360 21 14 0 33101
plemood 5 0 0 0 0 0
ramnit 5 7 2 2 0 603541
rungbu 5 659 51 66 0 410868
sality 5 4 3 2 0 4035
shodi 5 276 97 88 49(4) 285574
sinau 5 277 33 4033 8(4) 230001
sivis 5 18653 17799 0 18(5) 369973
slugin 5 30 8 0 0 563146
soulclose 5 1240 935 1224 658(5) 2109916
stihat 5 43 12 6 24(3) 51614
stone 5 0 0 0 0 0
tempedreve 5 15 15 0 0 3276
tenga 5 24 0 0 0 4682
triusor 5 884 40 0 28(4) 341681
tufik 5 391 1589 143 0 1052300
tupym 5 120 10 0 0 2838596
ursnif 5 25 0 0 0 24819
usteal 5 26 16 5 0 14407
viking 5 38 34 15 0 21525
virfire 5 6 2 0 0 2024802
virlock 5 750 796 761 58(4) 435165
virut 5 0 0 0 0 61
vitro 5 34 22 2 0 82926
wapomi 5 805 103 6 27(5) 1441027
wlksm 5 4353 72 0 36(3) 399018
xiaobaminer 5 11812 1671 0 172(5) 2171895
xolxo 5 0 0 0 84(5) 0
xorer 5 999 736 20 13(1) 153833

28

Results

5.2 File Infector Characterization

The preview section provides an overview of the 350 analyzed samples. Among them,
we identified 94 file infectors belonging to 22 families. Moving forward, our analysis will
exclusively focus on these samples. We conducted manual analysis to establish ground
truth regarding the types of file infectors. As depicted in Table 5.2, we identified three
potential file infector types: Appender, Prepender, and Impersonator. The Impersonator is
a classification of file infector type introduced by our study to delineate a specific infection
behavior. Each type manifests distinct behavior patterns, facilitating its characterization.
Detailed explanations of these file infector types will be provided in the subsequent sections.

The Table is organized into eight columns. Initially, the “family” column delineates the
file infector families, while the “type” column categorizes them by their file infector types.
Following this are three columns detailing modifications to the section table: “st added”,
“st extend”, and “st remov”, indicating the average number of sections added, extended, or
removed, respectively. The sixth column, “es mod”, is a boolean value denoting whether
modifications were made to the entry section, the first section executed, as pointed by
the entry point. Similarly, the seventh column, “ep mod”, is a boolean value indicating
modifications to the entry point. Finally, the last column, “overlay ratio”, quantifies the
average ratio between the size of the overlay and the original file size for each pair of
original and infected files. This ratio ranges from zero to infinity.

5.2.1 Appenders

An Appender is a type of file infector that injects malicious code into executables by
appending it to the end of the file. Additionally, they typically modify either the entry
point or the section that contains the entry point (i.e., the entry section) to facilitate the
execution of the appended malicious code. It is important to note that Appenders do not
exhibit an overlay.

In our analysis of Appenders, we identified two primary behaviors. Firstly, expiro and
wlksm modify the section table to extend the final section and append malicious code to it.
They do not modify the entry point itself; instead, they modify the entry section. The
family wlksm typically modifies the entry section by a small number of bytes, which include
the invocation of the VirtualAlloc Windows function to allocate memory. In contrast,
expiro modifies a significantly larger portion of the entry section. The second behavior
is shared by triusor and wapomi. Instead of extending the last section, they modify the
section table to add one or more sections for storing the malicious code. Unlike the first
behavior, they do not alter the entry section but directly modify the entry point address
within the headers. This modification directs the execution flow to the newly created
section containing the malicious code.

29

Results

Table 5.2: Summary of modifications performed by identified file infectors per family.

family type st
added

st
extend

st
remov

es
mod

ep
mod

overlay
ratio

expiro A 0 1 0 ✓ ✗ ✗
triusor A 4 0 1 ✗ ✓ ✗
wapomi A 1 0 0 ✗ ✓ ✗
wlksm A 0 1 0 ✓ ✗ ✗

lamer P 3 0 all - - 637.2
induc P 3 0 all - - 1.0
neshta P 8 0 all - - 1.0
shodi P 4 0 all - - 6.4
sinau P 8 0 all - - 1.0
sivis P 3 0 all - - 4.8
soulclose P 3 0 all - - 1.0
xiaobaminer P 7 0 all - - 53.3
memery P 4 0 all - - 55.9
pidgeon P 26 0 all - - 0.8
detroie P 8 0 all - - 20.3
gogo P 3 0 all - - 33.1
lmir P 8 0 all - - 0.1
stihat P 18 0 all - - 13.4
xolxo P 70 0 all - - 82.6
xorer P 3 0 all - - 1.8
virlock I 2 0 all - - ✗
grenam I 10 0 all - - ✗

5.2.2 Prependers

A Prepender represents a specific type of file infector that injects malicious code into
executables by adding it to the beginning of the file. These entities significantly alter the
infected file by adding themselves at the file’s outset and modifying almost all the aspects
from the executable’s headers to its data sections. In addition, Prependers exhibit an
overlay, a section of additional data appended to the end of the PE file beyond the last
defined section. This overlay remains unnoticed during execution and can contains the
original executable file, sometimes with alterations.

Among the 16 families identified as Prependers, we observed a consistent pattern of
behavior. As indicated in Table 5.2, these families completely modify the section table by
removing the original sections and inserting their own, without extending any section. The
table does not provide specific information for the “es mod” or “ep mod” columns. This
omission is due to the fact that since these Prependers entirely replace the original content
of infected executables, both the entry point and the entry section must consequently
undergo modification. An interesting observation arises from the “overlay ratio” column in

30

Results

Table 5.2, which quantifies the extent of modifications to the original file potentially stored
in the overlay. For instance, some families, like nestha, store the original version entirely
unmodified, and extracting only this overlay would yield a new PE executable. Conversely,
other families, such as xiaobaminer, completely alter the original executable, resulting in a
meaningless blob of bytes or sometimes nested executables. When referring to “nested
executable”, we mean that certain families, like memery, exhibit a layered structure in
their overlay. This structure allows for the recursive extraction of various PE executable
versions from the overlay of the previously extracted one. One potential explanation
for this phenomenon could be related to an infection error resulting from uncontrolled
infections of already infected executables, as discussed in a previous study [38].

5.2.3 Impersonators

An Impersonator is a distinct type of file infector that injects malicious code by completely
overwriting the infected file. These infectors entirely transform the infected file by modifying
all its aspects, from the executable’s headers to its data sections. Unlike other types of
infectors, Impersonators do not have an overlay; they do not retain the original file in any
form. Instead, they directly replace the original executable with their modified version.

From the Table 5.2, we observe that only two families have been classified as Imper-
sonators. Similar to Prependers, these families manipulate the section table by replacing
the original sections with their own, without extending any section. Consequently, the
Table 5.2 does not provide specific information for the “es mod” or “ep mod” columns, as
for the previous section.

After identifying the file infectors, it is now possible to temporally locate them and assess
whether they remain a contemporary concern. Employing a similar approach as outlined
in Chapter 3, we observed that all the file infectors are temporally confined between 2016
and 2022, as depicted in Figure 5.1, with a peak in 2021. This observation indicates that
they were recently detected by VirusTotal for the first time. It is important to note that
these results do not ascertain the age of specific samples or their respective families, as
they may have been previously infected by other malicious files rather than being the
original file infector. However, it is evident that file infectors continue to propagate in
contemporary times.

5.3 Similarity Scores

We concentrated our similarity analysis on the 94 samples of the 22 families classified
as file infectors, which exhibited permanent modifications to executables. The outcomes,
categorized by type, are outlined in Table 5.3.

31

Results

Figure 5.1: Number of file infectors first seen by VirusTotal per year.

The Table is structured into eight columns. Firstly, the “family” column represents
the file infector families, while the “type” column categorizes them based on their file
infector types. Moving forward, the “orig mod” column presents the average similarity
score computed between each original executable version and its infected counterpart.
Subsequently, the “orig mod sized” column displays the average similarity score computed
between each original executable version and its infected counterpart, but truncated to
the original file size. Following that, the “orig mod just over” column shows the average
similarity score computed between each original executable version and just the overlay of
its infected counterpart, if present. Further, the “mod mod” column displays the average
similarity score calculated among all possible pairs of infected executables. Subsequently,
the “mod mod no over” column shows the average similarity score among all possible
pairs of infected executables, excluding their overlays, if present. Finally, the “over occur”
column presents the occurrence of overlays in the infected files compared with their original
versions.

Starting with Appenders, we can identify common characteristics. These infectors
inject malicious code at the end of the file, typically altering only a small fraction of the
entire executable. This behavior is reflected in the high average similarity score between
the original and truncated infected executable versions. Similarly, since the modifications
do not impact the entire file, the average similarity scores between modified executables
are consistently lower. As there is no overlay present, the fifth column remains empty.
The family wapomi is an exception, as some infected files exhibit an overlay. This behavior
is likely a result of an infection error, as aside from the creation of the overlay, no other

32

Results

Table 5.3: Summary of similarity results performed on identified file infectors per family.

family type orig
mod

orig
mod
sized

orig
mod
just
over

mod
mod

mod
mod
no

over

over
occur

expiro A 36.8 95.4 ✗ 17.4 ✗ ✗
triusor A 73.0 97.0 ✗ 41.5 ✗ ✗
wapomi A 72.2 100.0 3.0 71.6 56.2 5.2
wlksm A 50.0 98.0 ✗ 37.7 ✗ ✗

detroie P 0.0 4.8 16.0 96.0 99.0 1.0
gogo P 5.5 42.8 3.5 73.0 100.0 6.2
induc P 42.0 7.3 100.0 73.3 95.0 8.0
lamer P 15.6 23.2 12.2 71.8 92.8 20.4
lmir P 50.6 50.6 0.0 ✗ ✗ 1.0
memery P 0.0 51.2 0.0 98.8 100.0 16.0
neshta P 82.0 83.0 99.0 14.0 84.4 72.0
pidgeon P 29.8 28.0 78.2 13.2 26.8 63.8
shodi P 40.8 49.8 37.2 48.5 98.2 11.5
sinau P 34.5 15.0 98.0 57.8 96.0 1.0
sivis P 86.8 88.8 24.0 41.4 100.0 18.0
soulclose P 72.2 60.2 95.2 20.8 98.4 112.4
stihat P 1.3 0.0 14.0 96.3 100.0 8.0
xiaobaminer P 10.4 33.0 4.4 77.2 100.0 148.6
xolxo P 4.8 20.2 8.0 86.2 100.0 15.8
xorer P 42.0 42.0 44.0 21.0 91.0 11.0
grenam I 6.0 17.2 ✗ 99.2 ✗ ✗
virlock I 8.0 12.8 ✗ 14.0 ✗ ✗

parts are modified, rendering the overlay useless.

Prependers demonstrate a consistent behavior pattern. Since they extensively modify
most, if not all, of the target executables, the average similarity score between the original
and infected versions tends to be notably low, occasionally even reaching zero for specific
families. However, the most crucial aspect among these infected files lies in the overlay,
which may contain their original versions. Removing this overlay yields higher similarity
scores, effectively delineating this type of file infector. The family lmir represents an
exception because all the analyzed samples infected only one file, making it impossible to
calculate the metrics between infected files.

Impersonators, much like Prependers, extensively modify the target executables. This
behavior is reflected in the similarity scores, as the average similarity score between the
original and infected executables tends to be quite low, as anticipated. Conversely, the
average similarity scores between modified executables are higher. Similar to Appenders,

33

Results

Impersonators do not present an overlay.

5.4 Classifier

In this section, we present the outcomes of the multiclass classification conducted with
a Random Forest classifier. The dataset was statically partitioned into a Training set,
encompassing 70% of the samples, and a Testing set, encompassing 30% of the samples.
The classification results are summarized in Table 5.4. The obtained results indicate
remarkably high precision values, with all precision scores being 1.0. While these results
may seem promising, it is essential to note that they could be indicative of overfitting,
especially given the relatively small size of the dataset consisting of only 94 file infectors.
Overfitting occurs when a model learns the training data too well, capturing noise in the
data rather than underlying patterns. Therefore, further investigation is necessary to
validate the robustness of the classification model and ensure its generalizability to unseen
data.

Table 5.4: Overall of classification results using Random Forest.

Accuracy Macro
Avg

Weighted
Avg

A P I U

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0

34

Chapter 6

Conclusions

In this thesis, we presented a novel framework for the analysis of file infection malware,
able to detect file infectors and classify them into different types based on their infection
behaviors. Through the analysis of a dataset comprising 350 samples, we demonstrated
the effectiveness of our framework in accurately classifying 94 file infectors, belonging to
22 families, into distinct types (e.g., Appender, Prepender, Impersonator). Despite the
limitations associated with the analyzed dataset size and the potential risk of overfitting
in the classification model, our framework shows promise in improving the understanding
and characterization of file infectors.

6.1 Limitations

A limitation intrinsic to dynamic analysis is that a fraction of samples may not detonate
due to various reasons. Samples might fail to detect components, encounter incompatible
versions, or detect the sandbox environment, thereby not exhibiting their malicious behavior.
Figure 6.1 illustrates one of the many error message windows displayed when a sample fails
to detect components or encounters incompatible versions during manual execution. As a
result, the system may determine that a sample is not a file infector simply because it was
not able to capture sample detonation and thus observe permanently modified executables.
Another limitation is that our dataset, extracted from the original dataset by Dambra et
al. using the AVClass2 tool, may not include all file infectors present within it. We did
not discover different types of file infectors beyond those discussed in our work, such as
Cavity Infectors [4], despite their theoretical mention. Another drawback of this study is
the relatively small number of samples analyzed. Due to resource constraints and time
limitations, we were only able to analyze a limited dataset comprising 350 samples. This
restricted sample size may not fully capture the diversity and complexity of file infectors in
the wild, potentially limiting the generalizability of our findings. Another limitation is the

35

Conclusions

Figure 6.1: Example of error message window.

risk of overfitting in the Random Forest classifier. Despite its high precision and accuracy,
it may have memorized the training data too well, resulting in poor generalization on
unseen data. Overfitting can happen when the model is overly complex or the training
dataset is too small. These limitations underscore the need for caution when interpreting
the results of this study and highlight areas for future research and improvement.

6.2 Future Work

As the thesis concludes, it is imperative to outline potential avenues for future research
endeavors that can build upon the foundations laid in this study. The following themes
represent promising directions for advancing the fields of file infector analysis and charac-
terization. One crucial aspect of future research involves the analysis of a more extensive
and diverse dataset of samples. While our study was limited to 350 samples due to resource
constraints, future research endeavors should prioritize the analysis of a more extensive
sample pool. By expanding the sample size, researchers can gain deeper insights into
the behavior of file infectors across various contexts and environments, enhancing the
robustness and generalizability of the proposed framework. In addition to refining current
methodologies, future research initiatives should investigate alternative features for file
infector classification. Although similarity scores derived from similarity analysis served
as the primary feature in our study, there is potential to incorporate additional features
beyond similarity scores. Researchers could explore the integration of supplementary
features, such as distinct disparities in specific section table entries, to augment their
analysis and develop a more robust classifier. Improving the capabilities of PE executable
differ tool represents another area for future exploration. Addressing challenges such as
the hierarchical alignment problem is essential for enhancing the accuracy and reliability
of this tool in identifying and comparing modifications between PE files.

36

Bibliography

[1] John E Sawyer, Mary C Kernan, Donald E Conlon, and Howard Garland. «Responses
to the Michelangelo Computer Virus Threat: The Role of Information Sources and
Risk Homeostasis Theory 1». In: Journal of Applied Social Psychology 29.1 (1999),
pp. 23–51.

[2] Berni Dwan. «The Computer Virus—From There to Here.: An Historical Perspective.»
In: Computer Fraud & Security 2000.12 (2000), pp. 13–16.

[3] Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino Vitale, Juan Ca-
ballero, Davide Balzarotti, and Leyla Bilge. «Decoding the Secrets of Machine Learn-
ing in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and
Model Performance». In: Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’23. <conf-loc>, <city>Copenhagen</city>,
<country>Denmark</country>, </conf-loc>: Association for Computing Machin-
ery, 2023, pp. 60–74. isbn: 9798400700507. doi: 10.1145/3576915.3616589. url:
https://doi.org/10.1145/3576915.3616589.

[4] Eric Filiol. Computer viruses: from theory to applications. Springer Science & Business
Media, 2006.

[5] Fred Cohen. «Computer viruses: Theory and experiments». In: Computers & Security
6.1 (1987), pp. 22–35. issn: 0167-4048. doi: https://doi.org/10.1016/0167-
4048(87)90122-2. url: https://www.sciencedirect.com/science/article/
pii/0167404887901222.

[6] Peter Szor. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005. isbn: 0321304543.

[7] Jerome H Saltzer and Michael D Schroeder. «The protection of information in
computer systems». In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308.

[8] Ed Skoudis and Lenny Zeltser. Malware: Fighting malicious code. Prentice Hall
Professional, 2004.

[9] Jesse Kornblum. «Identifying almost identical files using context triggered piecewise
hashing». In: Digital Investigation 3 (2006). The Proceedings of the 6th Annual
Digital Forensic Research Workshop (DFRWS ’06), pp. 91–97. issn: 1742-2876.

37

https://doi.org/10.1145/3576915.3616589
https://doi.org/10.1145/3576915.3616589
https://doi.org/https://doi.org/10.1016/0167-4048(87)90122-2
https://doi.org/https://doi.org/10.1016/0167-4048(87)90122-2
https://www.sciencedirect.com/science/article/pii/0167404887901222
https://www.sciencedirect.com/science/article/pii/0167404887901222

BIBLIOGRAPHY

doi: https://doi.org/10.1016/j.diin.2006.06.015. url: https://www.
sciencedirect.com/science/article/pii/S1742287606000764.

[10] Vassil Roussev. «An evaluation of forensic similarity hashes». In: digital investigation
8 (2011), S34–S41.

[11] Jonathan Oliver, Chun Cheng, and Yanggui Chen. «TLSH – A Locality Sensitive
Hash». In: 2013 Fourth Cybercrime and Trustworthy Computing Workshop. 2013,
pp. 7–13. doi: 10.1109/CTC.2013.9.

[12] Jason Upchurch and Xiaobo Zhou. «Variant: a malware similarity testing frame-
work». In: 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE). IEEE. 2015, pp. 31–39.

[13] Ahmad Azab, Robert Layton, Mamoun Alazab, and Jonathan Oliver. «Mining
malware to detect variants». In: 2014 fifth cybercrime and trustworthy computing
conference. IEEE. 2014, pp. 44–53.

[14] Fabio Pagani, Matteo Dell’Amico, and Davide Balzarotti. «Beyond Precision and
Recall: Understanding Uses (and Misuses) of Similarity Hashes in Binary Analysis».
In: Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy. CODASPY ’18. Tempe, AZ, USA: Association for Computing Machinery,
2018, pp. 354–365. isbn: 9781450356329. doi: 10.1145/3176258.3176306. url:
https://doi.org/10.1145/3176258.3176306.

[15] Halvar Flake. «Structural comparison of executable objects». In: DIMVA 2004, July
6-7, Dortmund, Germany (2004).

[16] Using SABRE BinDiff. v1. 6 for Malware analysis.
[17] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil D. B. Bruce, Yang

Wang, and Farkhund Iqbal. «Malware Classification with Deep Convolutional Neural
Networks». In: 2018 9th IFIP International Conference on New Technologies, Mobility
and Security (NTMS). 2018, pp. 1–5. doi: 10.1109/NTMS.2018.8328749.

[18] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. «A Survey on
Malware Detection Using Data Mining Techniques». In: ACM Comput. Surv. 50.3
(June 2017). issn: 0360-0300. doi: 10.1145/3073559. url: https://doi.org/10.
1145/3073559.

[19] Ömer Aslan Aslan and Refik Samet. «A Comprehensive Review on Malware Detection
Approaches». In: IEEE Access 8 (2020), pp. 6249–6271. doi: 10.1109/ACCESS.2019.
2963724.

[20] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady Marinescu, and Anil
Thomas. «Malware classification with recurrent networks». In: 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015,
pp. 1916–1920. doi: 10.1109/ICASSP.2015.7178304.

[21] VirusTotal. Accessed: 11/2023. url: https://www.virustotal.com.

38

https://doi.org/https://doi.org/10.1016/j.diin.2006.06.015
https://www.sciencedirect.com/science/article/pii/S1742287606000764
https://www.sciencedirect.com/science/article/pii/S1742287606000764
https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1145/3176258.3176306
https://doi.org/10.1145/3176258.3176306
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ICASSP.2015.7178304
https://www.virustotal.com

BIBLIOGRAPHY

[22] Silvia Sebastián and Juan Caballero. «AVclass2: Massive Malware Tag Extrac-
tion from AV Labels». In: Proceedings of the 36th Annual Computer Security
Applications Conference. ACSAC ’20. <conf-loc>, <city>Austin</city>, <coun-
try>USA</country>, </conf-loc>: Association for Computing Machinery, 2020,
pp. 42–53. isbn: 9781450388580. doi: 10.1145/3427228.3427261. url: https:
//doi.org/10.1145/3427228.3427261.

[23] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis Poly-
chronakis. «Spotless Sandboxes: Evading Malware Analysis Systems Using Wear-
and-Tear Artifacts». In: 2017 IEEE Symposium on Security and Privacy (SP). 2017,
pp. 1009–1024. doi: 10.1109/SP.2017.42.

[24] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone Aonzo, and Da-
vide Balzarotti. Longitudinal Study of the Prevalence of Malware Evasive Techniques.
2021. arXiv: 2112.11289 [cs.CR].

[25] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich, Vern Pax-
son, Norbert Pohlmann, Herbert Bos, and Maarten van Steen. «Prudent Practices
for Designing Malware Experiments: Status Quo and Outlook». In: 2012 IEEE
Symposium on Security and Privacy. 2012, pp. 65–79. doi: 10.1109/SP.2012.14.

[26] LordNoteworthy. Al-Khaser. Accessed: 01/2024. 2021. url: https://github.com/
LordNoteworthy/al-khaser.

[27] Alberto Ortega. Pafish. Accessed: 01/2024. 2021. url: https://github.com/
a0rtega/pafish.

[28] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. «Pinpointing
Representative Portions of Large Intel ® Itanium ® Programs with Dynamic Instru-
mentation». In: 37th International Symposium on Microarchitecture (MICRO-37’04).
2004, pp. 81–92. doi: 10.1109/MICRO.2004.28.

[29] Joe Sandbox. Accessed: 02/2024. url: https://www.joesecurity.org.
[30] sleuthkit. The Sleuth Kit. Accessed: 01/2024. url: https://github.com/sleuthki

t/sleuthkit.
[31] pickle. Accessed: 01/2024. url: https://docs.python.org/3/library/pickle.

html.
[32] Ero Carrera. pefile. Accessed: 10/2023. 2023. url: https://github.com/erocarre

ra/pefile.
[33] George Webster, Bojan Kolosnjaji, Christian Pentz, Julian Kirsch, Zachary Hanif,

Apostolis Zarras, and Claudia Eckert. «Finding the Needle: A Study of the PE32
Rich Header and Respective Malware Triage». In: July 2017, pp. 119–138. isbn:
978-3-319-60875-4. doi: 10.1007/978-3-319-60876-1_6.

[34] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. «Certified PUP:
Abuse in Authenticode Code Signing». In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. CCS ’15. Denver, Colorado,
USA: Association for Computing Machinery, 2015, pp. 465–478. isbn: 9781450338325.
doi: 10.1145/2810103.2813665. url: https://doi.org/10.1145/2810103.
2813665.

39

https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1109/SP.2017.42
https://arxiv.org/abs/2112.11289
https://doi.org/10.1109/SP.2012.14
https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser
https://github.com/a0rtega/pafish
https://github.com/a0rtega/pafish
https://doi.org/10.1109/MICRO.2004.28
https://www.joesecurity.org
https://github.com/sleuthkit/sleuthkit
https://github.com/sleuthkit/sleuthkit
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://doi.org/10.1007/978-3-319-60876-1_6
https://doi.org/10.1145/2810103.2813665
https://doi.org/10.1145/2810103.2813665
https://doi.org/10.1145/2810103.2813665

BIBLIOGRAPHY

[35] David MacKenzie, Paul Eggert, and Richard Stallman. GNU Diffutils Reference
Manual. London, GBR: Samurai Media Limited, 2015. isbn: 9789888381548.

[36] Frank Breitinger, F Breitinger, D White, B Guttman, M McCarrin, and V Roussev.
Approximate matching: definition and terminology. US Department of Commerce,
National Institute of Standards and Technology, 2014.

[37] Jason Upchurch and Xiaobo Zhou. «Variant: a malware similarity testing frame-
work». In: 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE). 2015, pp. 31–39. doi: 10.1109/MALWARE.2015.7413682.

[38] virusbulletin. Accessed: 01/2024. 2007. url: https://www.virusbulletin.com/
virusbulletin/2007/01/great-prepender-w32-nubys.

40

https://doi.org/10.1109/MALWARE.2015.7413682
https://www.virusbulletin.com/virusbulletin/2007/01/great-prepender-w32-nubys
https://www.virusbulletin.com/virusbulletin/2007/01/great-prepender-w32-nubys

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Related work
	File Infectors
	Fuzzy Hashes
	Executable Diffing
	Malware Detection and Classification

	Dataset
	Methodology
	Sandbox
	Image Differ
	PE Structure
	DOS Header
	DOS Stub
	Rich Header
	COFF File Header
	Optional headers
	Sections
	Attribute Certificate Table
	Overlay

	PE Differ
	Classifier

	Results
	Dynamic Analysis
	File Infector Characterization
	Appenders
	Prependers
	Impersonators

	Similarity Scores
	Classifier

	Conclusions
	Limitations
	Future Work

	Bibliography

