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Abstract

In the complex world of financial markets, the quest for innovative methods to
analyze and interpret market behavior is ongoing. This thesis explores the potential
of Supervised Contrastive Learning (SCL) as a novel approach to classifying stock
market states, aiming to offer a more nuanced understanding of market dynamics.
By constructing a dataset from NASDAQ 100 index prices, the study employs
a deep neural network model to examine how SCL performs in comparison to
traditional machine learning and deep learning techniques. This thesis attempts to
contribute to the broader discourse on financial technology innovation, underlining
the importance of continued exploration and experimentation in the development
of financial analysis tools.

The focus is on the process and methodology of applying SCL to financial time
series analysis, emphasizing the exploratory nature of this research in seeking new
pathways for financial analysis. The research provides valuable insights into the
applicability of SCL in financial markets, suggesting directions for future work
in enhancing the accuracy and efficiency of market state classification. The task
involves categorizing financial time series into three main trends: buy, hold, and
sell, over different future time frames—specifically 3, 5, and 7 days following the
targeted period. In addition to the empirical evaluation of SCL against traditional
and deep learning models, this thesis embarks on a qualitative analysis of the
latent representations generated by the SCL model, compared with other models,
such as TS2Vec. This analysis seeks to uncover whether these representations
can illuminate significant patterns within the financial time series data, offering
insights into the underlying mechanisms of market behavior. The ultimate aim
is to showcase how the Supervised Contrastive Learning (SCL) approach can be
effectively applied to forecast financial time series.
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Chapter 1

Introduction

In today’s digital age, the term "Big Data" has become synonymous with the vast
expanse of information generated every second across various sectors. One of the
most common forms of this data is time series data, which is represented sequence
of information measured at successive steps in time. Time series data is prevalent
in many fields including finance, healthcare, engineering, and more. The analysis
of time series data is crucial for uncovering underlying patterns and trends which,
in turn, are instrumental in making informed decisions.

Machine Learning (ML), a subset of artificial intelligence (AI), has proven to be
a powerful tool in extracting meaningful insights from big data. Coined by Arthur
Samuel while working for IBM in 1959, the ML term describe the pattern recognition
tasks that delivered the “learning” component on the pioneering systems.[1] ML
algorithms can learn from this vast amount of information and improve over time,
making them highly effective for various tasks, like forecasting, clustering, or
classification. However, traditional ML approaches often require manual feature
engineering and may fall short in capturing temporal dependencies present in time
series data.

This challenge has led to the rise of Deep Learning (DL), an advanced subset of
ML that excels in identifying complex patterns in large datasets without explicit
programming. DL is particularly adept at processing time series data, thanks to
neural networks and, more recently, transformer models, which can learn directly
from raw data.

One of the most impacted fields by DL is certainly finance. In the financial
domain, the analysis of time series data is quintessential. Financial time series data,
such as stock prices, trading volumes, and other related metrics, are crucial for a
myriad of financial tasks including but not limited to forecasting, risk management,
and algorithmic trading. The ability to accurately classify or predict financial
time series data can lead to more informed and timely decision-making, which is a
critical asset in the fast-paced and often volatile financial markets.
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Introduction

Before the advent of artificial intelligence (AI) and machine learning (ML),
classification problems in financial markets were often approached using statistical
methods. One such method is logistic regression, which has been widely used in
finance for binary classification problems, like predicting whether a stock price
will go up or down based on historical data. With the advent of AI, the approach
towards classification problems in financial markets has evolved significantly. The
emerging use of deep algorithms within financial systems is said to be disrupting
and transforming industries and societies [2]. The financial services industry, in
particular, has entered what’s described as the AI phase of the digital marathon,
where companies have transitioned from core systems modernization to intelligent
automation enabled by AI.

The evolution of AI techniques in finance, propelled by the increasing computa-
tional power and abundance of available data, has allowed for more sophisticated
analysis and decision-making processes. This transition has also brought about
a shift from traditional statistical methods to more advanced ML techniques, in-
cluding deep learning, which is particularly adept at handling time series data.
As you delve deeper into the domain of finance, you could highlight the critical
importance of being able to classify financial time series data accurately, especially
when it comes to predicting market states like bearish or bullish trends which are
essential for informed decision-making in the stock market. Deep Learning has
shown promise in tackling financial time series data. By employing sophisticated
neural network architectures, DL can help in deriving meaningful patterns from
financial time series data, aiding in the classification or prediction of stock market
states, which is essential for guiding investment decisions.

The problem of classifying stock market states into bearish (downtrending) or
bullish (uptrending) states based on time series data poses a significant challenge
yet holds immense value. Accurate classification can provide actionable insights for
investors, traders, and financial analysts, aiding in the formulation of investment
strategies and risk management practices. This thesis aims to explore the applica-
tion of supervised contrastive learning techniques for time series classification, with
a primary focus on classifying market stock states to aid in financial decision-making.

This thesis explores the application of supervised contrastive learning, a novel
technique in ML, for the classification of financial time series data, specifically
aiming to differentiate between uptrending (bullish) and downtrending (bearish)
market states. Such classifications are invaluable for investors, traders, and analysts,
offering insights that can guide strategic investment decisions and risk management.
Focus of this work, supervised contrastive learning enhances the ability of models
to understand and differentiate between data points by learning from contrasts or
comparisons. Unlike traditional supervised learning, which focuses on matching
inputs directly to labels, supervised contrastive learning works by comparing how
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similar or different data points are to each other, even within the same class. This
approach is particularly useful in tasks where understanding the nuanced differences
and similarities between data points can lead to more accurate classifications. In
extension to the focus on SCL and deep learning techniques, this thesis incorporates
a comprehensive discussion on the broader field of representation learning from time
series data. It delves into various techniques developed for extracting meaningful
information from time series, emphasizing their relevance in financial analysis. This
section aims to bridge the gap between traditional time series analysis methods
and the cutting-edge approaches facilitated by machine learning.

By integrating these aspects, the thesis aims to offer a holistic view of the
current state and future potential of machine learning applications in financial
time series analysis. It contributes to the academic discourse by providing a
detailed examination of SCL’s role in financial decision-making, alongside a critical
comparison with unsupervised learning models.

Structured to provide a comprehensive overview of deep learning and supervised
contrastive learning techniques, this thesis delves into their application in financial
time series analysis. It begins with the development of a model based on deep
neural networks, designed to efficiently encode time series data. The efficacy of
this model is initially tested against a benchmark dataset to validate the approach.
Subsequent analysis focuses on real-world data, employing a novel dataset compiled
from NASDAQ 100 index stock prices [3]. The final goal is to demonstrate
the practical value of the proposed model through rigorous experimentation and
analysis.

By contributing to the field of financial time series classification through advanced
ML techniques, this work aims to enhance financial decision-making processes,
offering a valuable resource for both academic research and practical applications
in the financial industry. Through rigorous experimentation and analysis, this
work aspires to contribute to the growing body of knowledge in applying advanced
machine learning techniques to financial time series classification, with a vision
to enhance decision-making processes in the financial domain. Furthermore, this
thesis extends its exploration by conducting a qualitative analysis of the latent
representations generated through supervised contrastive learning (SCL). This
analysis aims to discern whether these representations can unveil significant patterns
within the analyzed financial time series data, thereby contributing to a deeper
understanding of market dynamics. By comparing these representations with those
derived from unsupervised models, such as TS2Vec, this work seeks to highlight
the nuances and potential advantages of SCL in capturing the intricate details of
financial time series data.

In the course of this research, the model developed demonstrated promising
performance on a controlled dataset. This achievement underscores the potential
of supervised contrastive learning as a method for distinguishing between different
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representations under simplified conditions.
However, when transitioning from the controlled environment to the complex-

ity and unpredictability of real-world financial data, the model faced significant
challenges. The results on real-world data did not meet the expectations set by its
previous performance. This discrepancy highlights the intricate and often unpre-
dictable nature of financial markets, where numerous variables and external factors
can influence outcomes in ways that are difficult to replicate in a controlled setting.

It’s important to view these findings within the larger narrative of scientific
progress, where every outcome, regardless of its immediate applicability, contributes
to our understanding and sparks further inquiry. The exploration of supervised
contrastive learning in this context has shed light on the limitations and challenges of
applying new machine learning techniques to financial time series data. This insight
is invaluable, as it delineates areas for future research, such as refining the model,
exploring additional data preprocessing techniques, or integrating domain-specific
knowledge into the learning process.

In conclusion, while the model did not achieve the anticipated results in real-
world data application, this research contributes to the evolving dialogue on machine
learning applications in finance. It lays the groundwork for future studies to build
upon, guiding them toward areas ripe for discovery and improvement.

4



Chapter 2

AI, Machine Learning and
Deep Learning Foundations

2.1 Artificial Intelligence
Artificial Intelligence (AI) is a branch of computer science that aims to create
machines capable of intelligent behavior. It seeks to develop algorithms, models,
and techniques that enable computers to perform tasks that typically require human
intelligence. These tasks include problem-solving, speech recognition, planning,
learning, perception, reasoning, and the ability to move and manipulate objects.

The concept of AI has been around for centuries, but it was formally introduced
in the 1950s. As defined by John McCarty, AI is the science and engineering of
making intelligent machines, especially intelligent computer programs. It is related
to the similar task of using computers to understand human intelligence, but AI
does not have to confine itself to methods that are biologically observable.[4]

Contrary to what people might think, artificial intelligence (AI) is hardly a new
topic. It has been around since 1956 when the seminal summer workshop was
organized at Dartmouth College, New Hampshire, US.

For long time, AI remained a simple field of research in universities, or an
inspiration for science-fiction writers. Nevertheless, thanks to the acceleration in
new technologies, both hardware and software, AI began to cover a pivotal role in
real-world applications, including business context. [5] The raising of AI, and even
more of DL, is due to three important aspects:

• Data availability: the new era of so called "Big Data" made the rising of these
technologies possible. Everything around us produces data, from our smart-
watch, to out television, from our domotic-house devices, to our smartphones.

• Computing power: recently, GPUs have significantly improved cost-efficiency
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in computing, prompting a shift in knowledge acquisition. As the demand for
advanced GPUs rises, they are expected to address computational challenges
in their own design. While Moore’s Law continues its exponential trajectory,
advancements in GPU technology will likely represent the supporting data
points for this trend.

• Algorithm efficiency: the emergence of generative AI and tools like Midjourney
or ChatGPT has showcased the remarkable capabilities of these tools to a
wider audience, making unprecedented abilities readily accessible to everyone.

Figure 2.1: Annual global corporate investment in AI, by type.[6]

2.1.1 Artificial Intelligence in Finance
Consequences of this rapid growth, venture-capital (VC) investments in artificial-
intelligence startups and companies have increased sharply in recent years, from
less than $50 billions to over $250 billions in 2021, as shown in Fig.2.1.

In the realm of finance, the application of artificial intelligence (AI) spans across
five primary sectors[5]:

6
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• Investment and Asset Management: Algorithms can sift through a
plethora of data to identify correlations between global events and their
repercussions on asset values. They can also harness information from public
social media channels to predict market trends.

• Credit Analysis and Underwriting: Machine learning can bolster the
accuracy of credit underwriting decisions by lenders. Additionally, advanced
computer vision technology, leveraging geospatial and aerial imagery, proves
instrumental in insurance or property underwriting processes.

• Regulatory Adherence and Fraud Detection: By employing advanced
pattern-recognition analytics, various data channels and types can be scruti-
nized for any fraudulent activities. In contemporary anti-money laundering
procedures, automated scans of both inbound and outbound transactions are
conducted based on preset criteria like country of origin/destination, customer
name, etc. The prevailing systems tend to generate numerous false positives,
which are then individually controlled by middle-office or compliance personnel.
Machine learning can refine this process by identifying users for whitelisting,
discerning patterns for rule engine inclusion, and significantly reducing false
positive occurrences. This not only curtails costs but also enhances the quality
of the screening process.

• Market Research and Reporting: Intelligent agents are capable of curating
and semantically indexing financial market research content. They can also
automate the creation of reports, personalized websites, emails, articles, and
more utilizing natural language generation software. This work aims at
producing a tools which can guide decision making, through classification of
market states. This goals fits the model produced both in this sectors as much
as in the first cited above.

• Customer Support and Assistance: Intelligent agents can analyze in-
coming communications, streamline case routing, provide precise suggestions
to customer service representatives, or aid in optimizing personal finance
management.

2.2 Machine Learning
We now further explore more in detail how AI works, and what is beneath the
surface. Key concepts of AI include Machine Learning (ML), a subset field that
focuses on the development of algorithms that can learn from and perform predictive
or other kinds of analytics based on data. ML provides a robust framework to delve
into complex data-driven tasks, paving the way for deeper insights and real-world
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solutions in various domains, including finance. Machine learning models fall
into three primary categories: Supervised, Unsupervised, and Semi-Supervised
learning.[7] We can further include an extension of supervised learning type, which
is Reinforcement Learning.

Figure 2.2: Supervised, Unsupervised and Reinforcement Learning representa-
tion.[8]

2.2.1 Supervised Learning
Supervised learning is a type of learning paradigm where the model is trained on
labeled data. The training dataset includes input data along with corresponding
correct labels. Through iterative learning, the algorithm analyzes the training data
and learns a function f such that y = f(X), where X is the data input and y is the
output label. It aims to minimize the error in predicting the labels of the training
data and eventually generalizes well to unseen data. Common supervised learning
algorithms include Artificial Neural Networks (ANNs), Logistic Regression, Linear
Regression, Support Vector Machine (SVM), and Random Forest. Applications
span across various domains including image recognition, fraud detection, financial
forecasting, predictive maintenance, and medical diagnosis.

Self-Supervised Learning

Self-supervised Learning is a hybrid approach aiming to mitigate the limitations
of supervised learning, particularly the need for extensive labeled data. In this
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paradigm, the algorithm generates its own supervisory signal from the data itself,
thus creating a pretext task that it can learn from. This learning paradigm consists
of two phases:

• Feature Extraction: Initially, task-independent features are extracted from the
data in an unsupervised manner.

• Task-Specific Learning: The extracted features are then utilized for the main
task, transferring the knowledge gained from the first phase.

Self-supervised learning finds its applications predominantly in natural language
processing (e.g., Word2Vec, GloVE, fastText, BERT), image processing, and time
series forecasting. The methods within self-supervised learning can be broadly
categorized into:

• Generative Methods: Aimed at learning the data distribution to generate new
data points.

• Adversarial Methods: Employ game theory to train models in a competitive
manner.

• Contrastive Methods: Learn representations by contrasting positive and nega-
tive examples.

Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning, similar to supervised
learning, where an agent learns how to behave in an environment by performing
actions and observing the consequences of those actions. Unlike supervised learning,
where the correct answers are explicitly provided, in reinforcement learning, the
agent receives feedback in the form of rewards or penalties, which guide the learning
process.

The learning process in RL consists of the following components:

• Agent: The decision-maker in the system.

• Environment: The external system with which the agent interacts.

• State: A specific situation or configuration the environment can be in.

• Action: Operations that the agent can perform.

• Reward: Immediate feedback received post-action to indicate the benefit of
the action.

9
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The agent interacts with the environment by executing actions, transitioning
between states, and receiving rewards. The goal is to find a policy, a strategy for
choosing actions over time, that maximizes the cumulative reward, often referred
to as the reward signal.

The process is iterative, with the agent continually updating its understanding
of the environment and improving its policy as it gathers more experience. The
exploration vs exploitation dilemma is a core challenge in RL, where the agent
needs to balance the exploration of unknown, potentially rewarding actions, and
the exploitation of known, rewarding actions.

Reinforcement Learning is used in various fields including robotics, game playing,
natural language processing, and finance among others.

Reinforcement Learning’s strength lies in solving complex, interactive, and
uncertain problems, making it a crucial paradigm within machine learning and AI.

2.2.2 Unsupervised Learning

Unsupervised Learning, on the other hand, works with datasets without labels.
The objective here is to discover inherent patterns and structures within the data.
The primary tasks within unsupervised learning include:

• Clustering: Grouping data points based on similarity.

• Association: Identifying relationships and rules among data objects.

• Anomaly Detection: Recognizing outliers or unusual data points.

• Dimensionality Reduction: Like autoencoders, reducing the number of variables
under consideration to discover a simpler structure in the data.

Unsupervised learning facilitates the analysis of data in scenarios where labeled
data is scarce or unavailable. Semi-supervised Learning

2.2.3 Semi-Supervised Learning

Semi-supervised Learning strikes a balance between supervised and unsupervised
learning by utilizing a small amount of labeled data to guide the learning process
on a larger set of unlabeled data. This paradigm is beneficial in situations where
obtaining labeled data is expensive or time-consuming, like in medical image
analysis.
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2.3 Deep Learning
Deep Learning (DL) is a further subset of ML, involving algorithms inspired by the
structure and function of the brain called artificial neural networks. Deep learning
algorithms are excellent for handling large amounts of data and identifying patterns,
making them crucial for various AI applications. Natural Language Processing
(NLP) is the ability of a computer program to understand human language as it is
spoken, and is used in chatbots, translators, and personal assistants like Siri and
Alexa. Robotics is a field of engineering focused on the design and manufacturing
of robots, aiming to develop machines that can substitute for humans, especially in
hazardous or repetitive tasks.

2.3.1 Neural Networks
Deep learning utilizes multi-layer neural networks to analyze data. The architecture
comprises input, hidden (one or more), and output layers. Each layer consists of
nodes (neurons) connected by weighted pathways. As data propagates through
the network, each layer processes an aspect of the data, refining the input for
the subsequent layer. One of the key aspects of NN architectures and algorithms
is backpropagation. This is a vital step in DL which adjusts the weights of the
connections in the network to minimize the error between the predicted and
actual outcomes. Through multiple iterations, the network learns and improves its
performance. [9]

Deep learning can be applied in supervised, unsupervised, and self-supervised
learning contexts, adapting to the data availability and task requirements. It can
handle labeled, partially labeled, or unlabeled data, making it a versatile tool for
various domains.

Some DL application domains are:

• Computer Vision: Deep learning excels in image and video recognition tasks,
enabling applications like facial recognition, object detection, and autonomous
vehicles.

• Natural Language Processing (NLP): It powers language translation, chatbots,
and sentiment analysis by understanding and processing human language.

• Audio Recognition: It’s used in voice-activated assistants, speech-to-text
systems, and other audio recognition tasks.

TensorFlow and PyTorch: These are among the most popular frameworks for
developing deep learning models due to their robustness and community support.
For the sake of this work, the framework use is the latter.
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Figure 2.3: Neural Network Design. [10]

2.3.2 Residual Networks
The work presented here utilizes a special type of NN, born to encode images
information, but soon applied for wider contexts. Residual Networks, or ResNet,
paved the way for better performance in deep learning tasks by tackling the
vanishing gradient problem which hampers the training of deep networks. The
notable introduction of "skip connections" allows certain layers to be skipped during
the forward pass of the network, which facilitates the training of very deep networks
by learning residual functions with respect to the layer inputs. [11]

In the realm of finance, where time series data is a fundamental piece, ResNet has
found its footing. Analyzing financial time series data, like stock prices or trading
volumes, requires a keen understanding of the temporal dependencies present
in the data. Deep learning models like ResNet provide a way to capture these
dependencies and unveil the underlying patterns that govern market dynamics.

The architecture of ResNet, with its various configurations, has been instrumental
in tackling challenges tied to financial time series analysis. The skip connections
in ResNet allow for the efficient backpropagation of gradients even in very deep
networks, making it a suitable architecture for handling the sequential nature of
financial data.

Moreover, the ResNet architecture has spurred further innovation. For instance,
its principles have been adapted to create new architectures tailored for time series
data, enhancing the capability of models to better understand financial markets
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and provide more accurate forecasts.
The foray of ResNet into the financial domain highlights the flexibility and

power of deep learning architectures in tackling domain-specific challenges. By
delving into the temporal intricacies of financial data, ResNet and its derivatives
are aiding financial analysts, traders, and decision-makers in making more informed
and data-driven decisions.
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Chapter 3

Contrastive Learning
Techniques

3.1 Introduction
The domain of machine learning has continually evolved with the underlying goal
of enabling machines to learn from data and make predictions or decisions without
being explicitly programmed. One significant avenue through which this objective
has been pursued is the development of algorithms capable of learning meaningful
representations from data, which forms the crux of representation learning. Among
the various approaches toward representation learning, contrastive learning has
emerged as a compelling paradigm, especially in the realm of unsupervised and
self-supervised learning.

Historically, the roots of contrastive learning can be traced back to the idea
of learning by comparison. The seminal work by Hadsell et al. in 2006 laid
down the foundation of this concept by introducing a contrastive loss function
aimed at learning a metric space where "neighbors are pulled together and non-
neighbors are pushed apart.[12] This early endeavor demonstrated the potential of
learning representations by harnessing the power of contrast, setting the stage for
subsequent advancements in this domain. As the field matured, numerous variations
and enhancements to the original idea of contrastive learning were proposed. The
introduction of triplet loss by Schroff et al. in 2015 [13] further propelled the
development of contrastive learning techniques by extending the notion of pairwise
comparisons to triplets, comprising an anchor, a positive sample, and a negative
sample.

In recent times, the principles of contrastive learning have been extended to the
supervised setting, giving rise to Supervised Contrastive Learning (SCL). Unlike
traditional contrastive learning, which operates in an unsupervised or self-supervised
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manner, Supervised Contrastive Learning leverages label information to guide the
learning of representations.

3.2 Contrastive Learning principles
Contrastive learning emerges as a beacon within the representation learning land-
scape, particularly under unsupervised or self-supervised settings. Its foundational
idea lies in learning robust representations by contrasting positive pairs (instances
that are similar or related) against negative pairs (instances that are dissimilar or
unrelated). This paradigm facilitates the learning of a feature space where similar
instances are mapped close together, while dissimilar instances are mapped far
apart.

3.2.1 Loss Function
Central to the mechanism of contrastive learning are contrastive loss functions,
which quantify the similarity and dissimilarity among instances. The seminal work
by Hadsell et al.[12] introduced a contrastive loss function that aims to minimize
the distance between similar instances while maximizing the distance between
dissimilar instances. This loss function is defined as:

L(xi, xj, y) = (1 − y) · 1
2D(xi, xj)2 + y · 1

2 max(0, m − D(xi, xj))2 (3.1)

where:

• xi · xi and xi · xj are instances,

• y is a binary label indicating whether the instances are similar (0) or dissimilar
(1),

• D is a distance metric,

• and m is a margin that specifies a radius within which similar instances are
pulled together.

Triplet-loss

Following this foundational work, the concept of triplet loss was introduced by
Schroff et al.[13], which extends the pairwise comparison to triplets consisting of an
anchor, a positive sample, and a negative sample. The triplet loss aims to ensure
that the anchor is closer to the positive sample than to the negative sample by at
least a margin m, and is defined as:
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L(xa, xp, xn) = max(0, D(xa, xp) − D(xa, xn) + m) (3.2)

where:

• xa, xp, and xn are, respectively, the anchor, the positive, and the negative
instances,

• D is a distance metric,

• and m is the margin.

As shown in Fig.3.1, the goal is to bring the anchor and the positive, which share
the same label or are augmentations of each other, closer in the feature space, and
push the anchor and the negative farther apart. This way, over time, the algorithm
learns to place similar items close together and dissimilar items far apart in the
feature space, aiding in tasks like classification or retrieval.

Figure 3.1: Representation of Contrastive Learining [14]
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Embedding Space and Similarity Metrics

The effectiveness of contrastive learning is heavily contingent on the choice of
the embedding space and the similarity metric. The objective is to learn an
embedding space where the contrastive loss is minimized, leading to a meaningful
separation of similar and dissimilar instances. Common similarity metrics include
Euclidean distance and cosine similarity, each with its own set of advantages and
considerations.

The construction of positive and negative pairs is a crucial aspect of contrastive
learning. Various strategies can be employed to form these pairs, such as random
sampling, hard negative mining, or data augmentation. Data augmentation, in
particular, has shown to be effective in generating varied yet semantically consistent
views of the data, thereby enriching the set of positive pairs and facilitating better
representation learning.

3.2.2 Data Augmentation
Data augmentation techniques encompass a diverse array and must be judiciously
selected to introduce varying perspectives of a particular instance without sacrificing
or distorting the inherent information. The efficacy and appropriateness of these
techniques can be contingent on the domain of application. For instance, in the
realm of instance discrimination-based contrastive learning for image data, prevalent
augmentation methods include:

• Colour Jittering: This technique entails random alterations in the brightness,
contrast, and saturation of an RGB image. It aids in ensuring that a model does
not overly rely on color attributes for object recognition. While the resultant
image colors might appear aberrant to human observers, such augmentations
prompt the model to discern object edges and shapes beyond mere color
characteristics.

• Image Rotation: Images are subjected to random rotations within a specified
range, typically 0-90 degrees. Given that rotation preserves the fundamental
information within an image (e.g., a depicted dog remains identifiable as
a dog), this technique trains models to exhibit rotation invariance, thereby
enhancing prediction robustness.

• Image Noising: Random noise is integrated into the images on a pixel-
wise basis, challenging the model to distinguish signal from noise, and hence
bolstering its robustness against image alterations during testing phases. For
instance, the introduction of salt-and-pepper noise by randomly toggling some
pixels to white or black exemplifies this technique.
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Figure 3.2: Image data augmentation [15]

In the context of time series data, the intricacies of augmentation escalate,
necessitating domain-aware techniques to prevent information loss or distortion
within the time series stream. Several time series data augmentation strategies
exist, such as:

• Jittering: Adding small random noise to the time series data to enhance the
model’s robustness.

• Scaling: Multiplying the time series data by a random scaling factor to learn
scale-invariant representations.

• Slicing: Extracting sub-sequences from the original time series to expand the
dataset and enable the model to learn from shorter sequences.

• Permutation: Rearranging chunks of the time series data to create new
sequences while retaining the inherent dynamics.

• Time Warping: Altering the speed of certain sections of the time series to
simulate variations in the temporal dynamics.

• Window Slicing: Generating multiple shorter sub-sequences from a longer
time series to increase the diversity of the training data.

These augmentation techniques strive to diversify the training dataset and
furnish the model with a broader understanding of the underlying patterns and
variations within the time series data, all while preserving the essential temporal
characteristics intrinsic to the domain.
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3.3 Supervised and Self-Supervised Contrastive
Learning

3.3.1 Supervised Constrastive Learning
Supervised Contrastive Learning (SCL) is a learning paradigm that leverages label
information to guide the learning of representations. Unlike traditional supervised
learning which directly optimizes for a discriminative task, Supervised Contrastive
Learning seeks to learn representations where similar instances (instances of the
same class) are pulled together, and dissimilar instances (instances of different
classes) are pushed apart in the embedding space. This is accomplished by employ-
ing a contrastive loss function which is minimized when similar instances are close
and dissimilar instances are far apart in the learned feature space.

The core advantage of Supervised Contrastive Learning is that it can learn
more informative representations by utilizing the available label information, which
can subsequently be used for a variety of tasks. Moreover, it can lead to better
generalization and performance on downstream tasks.

3.3.2 Self-Supervised Constrastive Learning
Self-Supervised Contrastive Learning, on the other hand, does not rely on external
labels but rather constructs its own supervisory signal from the data. A typical
approach in self-supervised contrastive learning is to create two augmented views
of each data instance and treat them as a positive pair, while all other instances
in the dataset are treated as negative examples. The objective then is to learn
representations such that the augmented views of the same instance are brought
closer together, while being pushed away from representations of other instances.

The primary allure of Self-Supervised Contrastive Learning is its ability to learn
useful representations from unlabeled data, thereby reducing the dependency on
large labeled datasets. This is particularly beneficial in domains where labeled
data is scarce or expensive to obtain.

Both supervised and self-supervised contrastive learning approaches leverage
the idea of learning by comparing similar and dissimilar instances. However, while
supervised contrastive learning benefits from the explicit guidance of labels, self-
supervised contrastive learning exploits the data itself to generate supervisory
signals. In the context of this work, we will overcome a typical lack of the financial
domaain, which is missing labels, taking advantage of SCL and auto-labeling the
time series windows from the stock market. The labeling method will be further
explained in the Methodology section.
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Chapter 4

Analysis and Classification
of Financial Time Series

4.1 Introduction

Financial Time Series analysis is a domain that unveils a plethora of techniques
to scrutinize financial market data, inherently temporal, aiming to prognosticate
future market behaviors. This domain is a linchpin for a multitude of stakeholders
like investors, financial analysts, traders, and policymakers, offering a prism through
which the dynamism and complexities of financial markets can be dissected and
comprehended. The meticulous analysis of financial data over time not only paves
the way for informed decision-making but also unveils underlying market trends
and potential investment opportunities.

One of the seminal approaches within this domain is Technical Analysis, defined
as the study of market action, primarily through the use of charts, with the objective
of forecasting future price trends [16]. The term "market action" encapsulates three
principal sources of information available to the technician: price, volume, and
open interest, the latter being pertinent only in futures and options. Although
the term "price action" is often utilized, it seems too narrow as most technicians
integrate volume and open interest as pivotal parts of their market analysis. With
this distinction delineated, the terms "price action" and "market action" are used
interchangeably throughout the discourse.

The philosophy of Technical Analysis, as reported by John J. Murphy in his assay
"Technical Analysis of the Financial Markets" [16], is based on three fundamental
premises:
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• Market action discounts everything,

• Prices move in trends,

• History repeats itself.

The cornerstone of Technical Analysis is the axiom, "market action discounts
everything." This axiom posits that every conceivable factor that could impact
the price - be it fundamental, political, psychological, or otherwise - is invariably
reflected in the market price. This implies that a thorough study of price action is
quintessential. The logic behind this premise grows more compelling with accruing
market experience. It’s stated that if all factors affecting market price are ultimately
mirrored in the market price, then a study of market price is all that’s requisite.
By analyzing price charts and a plethora of supporting technical indicators, the
chartist essentially allows the market to elucidate the most probable direction it’s
likely to take.

The concept of trend is indispensable to the technical approach. The primary
objective of charting the price action of a market is to identify trends in their
nascent stages for the purpose of trading in the direction of those trends. A
significant segment of technical analysis and the study of market action is dedicated
to understanding human psychology. Chart patterns, which have been recognized
and categorized over the past century, manifest certain pictorial representations
on price charts, reflecting the bullish or bearish psychology of the market. Given
that these patterns have demonstrated efficacy in the past, it’s conjectured that
they will continue to be efficacious in the future. They are predicated on the
study of human psychology, which tends to remain constant over time. This last
premise, that history repeats itself, underscores the importance of studying the
past, postulating that the future is but a repetition of the past.

4.2 Financial Time Series Analysis
Financial Time Series Analysis endeavors to unravel the complex dynamics of
financial markets through a temporal lens. The primary objective is to forecast
future price trends based on historical market data. This domain is broadly
bifurcated into technical and fundamental analysis, each with its unique set of
principles and methodologies.

4.2.1 Technical Analysis
Technical analysis is a methodology employed to evaluate investments and identify
trading opportunities by analyzing statistical trends gathered from trading activity,
such as price movement and volume. Unlike fundamental analysts who attempt
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to evaluate a security’s intrinsic value, technical analysts focus on charts of price
movement and various analytical tools to evaluate a security’s strength or weakness
and forecast future price changes.

John J. Murphy, in [16], delineates technical analysis as the study of market
action, primarily through the use of charts, with the aim of forecasting future
price trends. The term "market action" encompasses three principal sources of
information available to the technician: price, volume, and open interest (pertinent
only in futures and options). The belief is that all possible factors affecting prices,
whether they are fundamental, political, psychological, or otherwise, are already
reflected in the market price, hence, the focus on price action.

4.2.2 Fundamental Analysis

On the other end of the spectrum, fundamental analysis delves into the intrinsic
value of financial instruments by meticulously examining a multitude of economic,
financial, and other qualitative and quantitative factors. This analysis is rooted
in the examination of the economic health, performance metrics of companies,
and broader macroeconomic indicators. Fundamental analysts strive to ascertain
whether a security is overvalued or undervalued, providing insights into potential
investment opportunities.

Key components of fundamental analysis include the scrutiny of financial state-
ments, management and industry analysis, and the macroeconomic environment.
The objective is to garner a profound understanding of the underlying factors
driving the market, thereby aiding investors in making informed decisions.

4.2.3 Technical Versus Fundamental Analysis

While technical analysis zeroes in on the study of market action, fundamental
analysis is anchored on the economic forces of supply and demand that drive prices
to ascend, descend, or remain static. The fundamental approach delves into all
relevant factors affecting the price of a market to discern its intrinsic value based
on the law of supply and demand. If the intrinsic value is below the current market
price, the market is deemed overpriced and should be sold; if above, it’s undervalued
and should be bought.

Both these paradigms of market forecasting endeavor to resolve the quintessential
problem of determining the likely direction of price movements, albeit from divergent
vantage points. The fundamentalist delves into the causes of market movement,
while the technician studies the effects. The technician contends that the effect is
all that is requisite, rendering the causes or reasons as superfluous, whereas the
fundamentalist is always driven to know why.
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Traders often identify themselves as either technicians or fundamentalists. How-
ever, in reality, there exists a significant overlap. Many fundamentalists possess
a working knowledge of basic chart analysis tenets, while many technicians have
at least a passing awareness of fundamental principles. The best strategy would
involve fundamental and technical analyses tailored to the user’s investment goals
and risk tolerance.[17]

Market price acts as a precursor to the fundamentals or the prevailing conven-
tional wisdom. While known fundamentals have already been discounted and are
"in the market," prices are now reacting to unknown fundamentals. Some of the
most dramatic bull and bear markets in history have been inaugurated with little
or no perceived change in the fundamentals. By the time these changes became
conspicuous, the new trend was well on its course. In accepting the premises of
technical analysis, it becomes clear why technicians deem their approach superior
to fundamentalists. If the fundamentals are indeed reflected in market prices,
then studying those fundamentals becomes redundant. Chart reading emerges
as a streamlined form of fundamental analysis. On the flip side, fundamental
analysis does not encompass a study of price action. It’s conceivable to trade
financial markets using just the technical approach, whereas trading based solely
on fundamentals, without any consideration of the technical side of the market,
seems dubious at best.

4.3 Other Instruments for Technical Analysis
Technical indicators are pivotal tools utilized in technical analysis, providing a lens
through which market trends and dynamics can be analyzed. These indicators are
mathematical calculations based on price, volume, or open interest of a security. By
providing a graphical or numerical representation of market trends and patterns,
technical indicators aid traders and analysts in the formulation of trading strategies
and decision-making. Herein, we delve into some of the most well-regarded technical
indicators in the financial market analysis realm.

4.3.1 Basic Market Attributes
Technical analysis commences with a scrutiny of basic market attributes, which
encapsulate the essence of market activity within a specific timeframe:

• Open Price: The inaugural price at which a security trades upon the market’s
opening on a given trading day.

• Close Price: The terminal price at which a security trades before the market’s
closure on a given trading day.
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• High Price: The zenith price at which a security trades during the course of
the trading day.

• Low Price: The nadir price at which a security trades during the course of
the trading day.

• Volume: The aggregate number of shares or contracts traded in a security or
an entire market during a stipulated period.

These fundamental attributes serve as the underpinning for deriving more sophis-
ticated technical indicators, which furnish deeper insights into market dynamics.

4.3.2 Moving Average
Moving Averages (MAs) are quintessential trend-smoothing tools, employed to
average a security’s price over a specified span of periods, thereby ameliorating
random fluctuations and rendering a clearer depiction of the overall trend direction.

Simple Moving Average (SMA)

SMA = 1
n

nØ
i=1

Pi (4.1)

where n is the number of periods, and Pi is the price of the security at period i.

Exponential Moving Average (EMA)

EMA =
3

C − P

n

4
+ P (4.2)

where C is the current price, P is the previous period’s EMA, and n is the smoothing
factor.

4.3.3 On-Balance Volume - OBV
On-Balance Volume (OBV) is a cumulative indicator, leveraging volume and price
to discern whether a security is being accumulated or distributed.

OBV =
Ø

(V · D) (4.3)

where V is the volume of the security, and D is the direction of the price (1 if
the price increased, -1 if the price decreased).
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4.3.4 Bollinger Bands
Bollinger Bands are composed of a middle band being an NN-period simple moving
average (SMA), an upper band, and a lower band.

Middle Band

Middle Band = SMA(N) (4.4)

Upper Band

Upper Band = SMA(N) + (K · SD) (4.5)

Lower Band

Lower Band = SMA(N) − (K · SD) (4.6)

where N is the number of periods, K is the number of standard deviations, and
SD is the standard deviation of the price over N periods.

4.3.5 Further Technical Indicators
Transitioning beyond these indicators, the technical analysis landscape is replete
with a myriad of other indicators like the Relative Strength Index (RSI), Moving Av-
erage Convergence Divergence (MACD), Stochastic Oscillator, among others, each
providing unique lenses through which to analyze market behavior and formulate
trading strategies.

4.4 Market State Classification
Time series data is a cornerstone in financial analysis, providing a chronological
trail of market variables such as prices, trading volumes, and other financial metrics.
Each data point in a time series is time-stamped, thus preserving the temporal
order of observations. This temporal order is crucial as it encapsulates the dynamics
of market evolution.

Time series data in financial markets can be broadly categorized into two types:
univariate and multivariate.

• Univariate Time Series: A univariate time series consists of single observations
recorded sequentially over time. For instance, the daily closing prices of a
particular stock form a univariate time series. Each data point in a univariate
time series represents a single variable’s value at a specific time.
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• Multivariate Time Series: Contrarily, a multivariate time series comprises
multiple variables recorded at each time step. For example, the daily opening
price, closing price, high, low, and trading volume of a stock constitute
a multivariate time series. Each data point in a multivariate time series
encapsulates the values of multiple variables at a particular time.

The distinction between univariate and multivariate time series is crucial as
it influences the choice of analytical methods and the complexity of the analysis.
Market State Classification (MSC) is a robust analytical framework that ventures
to delineate different market states or regimes. The objective is to dissect the
underlying market dynamics that significantly transmute from one state to another.
Here’s a more detailed exposition:

4.4.1 Base Models for Financial Time Series Analysis
In the rapidly evolving landscape of financial markets, the ability to accurately
classify and predict market states has become a cornerstone for effective trading
and investment strategies. With the advent of machine learning and deep learning
techniques, the analytical capabilities available to financial analysts and traders
have significantly expanded. These technologies, leveraging algorithms like Support
Vector Machines (SVM) and Random Forests (RF), along with advanced deep
learning architectures, have redefined the approach to understanding and navi-
gating the complex dynamics of financial markets. This section delves into the
state-of-the-art methodologies employed in market state classification, highlighting
the role of clustering, classification, and complex system analysis, and how they
pave the way for constructing robust trading strategy ensembles. The incorporation
of frameworks like FinRL further exemplifies the shift towards automation, lever-
aging the predictive power of deep learning models to optimize trading strategies
dynamically.

Machine Learning Algorithms

Machine learning algorithms, particularly Support Vector Machines (SVM) and
Random Forests (RF), have shown high accuracy in classification tasks, including
market state classification (MSC). These algorithms, by learning from historical
data, have become vital tools for predicting or making decisions, especially in
classifying market states through both historical and real-time market data analysis.

The techniques of clustering and classification are pivotal in distinguishing
different market states, utilizing the historical and real-time data to group similar
data points. This enables the identification and understanding of market states and
their transitions, enhancing the analysis of complex systems that underpin market
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dynamics. Understanding these complex interactions is crucial for classifying
financial market states more accurately.

Furthermore, the classification of market states facilitates the construction of
trading strategy ensembles, improving navigation through diverse market conditions.
This approach not only allows for the comparison of results across different studies
but also highlights the effectiveness of various trading strategies under different
market conditions. These methodologies represent the forefront of market state
classification, offering sophisticated tools to financial analysts and traders for
navigating the complex landscape of financial markets. The growing prominence of
machine learning and statistical techniques promises to further refine the precision
and effectiveness of market state classification.

Advanced Deep Learning Architectures

Deep learning, with its advanced architectures, has revolutionized financial fore-
casting by identifying complex patterns in market data without manual feature
extraction. These models, categorized into individual and ensemble models, en-
hance prediction accuracy by combining multiple models’ strengths. Among these,
Deep Neural Networks (DNNs), with their multilayered architecture, have been
instrumental in capturing nonlinear relationships in financial data. They process
input through successive layers of neurons, each layer transforming the data to
higher abstraction levels, making DNNs particularly effective for complex prediction
tasks. However, they might not inherently capture temporal dependencies in time
series data, a limitation overcome by other specialized models.

1D CNNs excel in identifying local patterns within time series data, utilizing
convolutional filters to extract features across the temporal dimension. This thesis
work employs ResNet, a variant of 1D CNNs known for its deep architecture facili-
tated by skip connections, allowing it to learn from data effectively while avoiding
the vanishing gradient problem. This characteristic makes ResNet particularly
suited for financial time series analysis, where capturing long-term dependencies is
crucial.

RNNs and their variants, such as LSTM (Long Short-Term Memory) and GRU
(Gated Recurrent Unit), are designed to handle sequential data explicitly. By
maintaining a memory of previous inputs, they can capture temporal dependencies
within the series, essential for accurate financial forecasting. LSTMs, with their
unique gating mechanism, are adept at learning from long sequences without the
risk of gradient vanishing or explosion, making them a popular choice for financial
time series modeling. Beyond individual models, ensemble approaches combine
multiple predictive models to improve forecast accuracy. Hybrid models, like
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Convolutional-Recurrent Neural Networks (CRNNs), merge the spatial feature
extraction capabilities of CNNs with the temporal modeling strengths of RNNs,
offering a powerful tool for analyzing financial time series data that exhibits both
spatial and temporal dynamics.

In the realm of deep learning architectures, FinRL, short for Financial Rein-
forcement Learning, represents a cutting-edge intersection between finance and
reinforcement learning, offering a robust framework tailored for the development of
sophisticated automated trading strategies. It harnesses the predictive prowess of
advanced deep learning models, such as ResNet, to facilitate decision-making in
trading activities. The core functionality of FinRL lies in its ability to optimize
trading strategies dynamically over time by interacting directly with market data.
This is achieved through a process where the framework learns from the market’s
behavior, making adjustments to the trading strategies to maximize performance.

The integration of FinRL into the landscape of financial forecasting and trading
strategy development marks a significant shift towards the automation of trading
systems and the utilization of intelligent systems in decision-making processes. The
framework’s ability to leverage deep learning models for real-time decision-making
underscores the potential of AI in transforming financial strategy formulation and
execution. FinRL’s innovative approach to automated trading strategy development
not only streamlines the trading process but also enhances the capability of financial
models to adapt to changing market conditions, promising to revolutionize financial
market analysis and strategy development in the years to come.
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Chapter 5

Time Series Representation
Learning

5.1 Introduction
Time series data permeates every facet of the real world, from environmental
monitoring to financial markets. The quest to derive meaningful and actionable
insights from time series data has led to the evolution of various representation
learning methods. These methods aim to extract and infer valuable information
from time series data, facilitating a deeper understanding of complex dynamics
and informed decision-making processes. Among various approaches, deep learning
stands out for its exceptional ability to uncover hidden patterns and features
without the necessity for manual feature engineering. This chapter delves into
the state-of-the-art in time series representation learning, spotlighting significant
advancements and methodologies that have shaped the field.

5.2 State of the Art in Time Series Representa-
tion Learning

A time series comprises a sequence of data points collected in time order, capturing
the intricate behaviors of specific variables or events as they unfold. This type
of data encapsulates valuable insights across different fields at various moments,
facilitating strategic decisions and forecasts. Examples include sensor outputs in
the Internet of Things (IoT), data from cyber-physical systems, changes in stock
market prices, and physical activity tracked by wearable technology. Nonetheless,
deciphering the rich information embedded within such complex data sequences
necessitates a method for effectively representing time series. This necessity gave
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rise to research focused on time series representation. By developing new ways
to represent time series data, it becomes possible to adeptly conduct a range
of subsequent analyses, including but not limited to forecasting, classification,
regression, and identifying anomalies.

Represetantation
Method

Forecasting

Downstream Tasks

Classification

Anomaly Detection

Original Time Series New Representations
(representation space)

Figure 5.1: Basic concept of time-series representation methods.[18]

The landscape of time series representation learning is rich and varied, with deep
learning methods at the forefront of extracting intricate patterns from time series
data. A survey by Trirat et al.[18] introduces a novel taxonomy for universal time
series representation learning, categorizing methods based on neural architecture,
learning objectives, and training data utilization. This comprehensive review
illuminates how these components enhance the quality of learned representations
and sets the stage for future research directions in the field.

5.2.1 Time Series Properties
In this section, we delve into the distinct attributes of time series data identified
by previous research in the field of time series representation learning [19]. These
attributes highlight the intricate world of time series representation learning.

Temporal Dependency

Time series data is inherently dependent on chronological order, meaning the value
at a certain point is related to its preceding values. For a given input xt at time
t, the model might predict yt, but this input could lead to a different prediction
at another time. To capture this temporal dependency, models often use windows
or subsequences of previous observations. The challenge lies in determining the
optimal window length to effectively capture these dependencies, which might be
variable. Moreover, temporal dependencies can be local, relating to sudden changes
or noise, or global, relating to overarching trends or patterns.

Noise and Dimensionality

Time series data, especially from real-world sources, is typically noisy and high-
dimensional. Noise can stem from measurement inaccuracies or uncertainties.
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Techniques like dimensionality reduction and wavelet transforms help mitigate
these issues by filtering out noise and compressing the data. However, this process
can lead to the loss of crucial information and often requires domain-specific
expertise to choose the appropriate methods.

Relationships among Variables

This aspect is especially significant in multivariate time series data, where the
interaction between variables can be complex and not always apparent. Analyzing
a limited set of variables without considering inter-relationships may not fully
capture the dynamics of the system. For example, an array of sensors detecting
various gases to identify a specific smell or monitoring a single stock in a complex
financial system might not provide comprehensive insights into the overall state or
future trends.

Variability and Nonstationarity

Time series data exhibits variability and nonstationarity, with statistical properties
such as mean, variance, and frequency changing over time. These variations often
manifest as seasonal patterns, long-term trends, or fluctuations. Seasonality involves
repetitive cycles at regular intervals, while trends indicate directional shifts over a
longer period. Sometimes, changes in frequency are crucial to the analysis, making
frequency domain methods more advantageous than time-domain approaches.

5.3 State-of-the-Art Models for Time Series Rep-
resentation Learning

In the rapidly evolving field of time series analysis, the development of sophisticated
representation models has been pivotal in unlocking new insights and applications
across various domains such as finance, healthcare, and environmental monitoring.
We will now explore some of the state of the art models in this field, which
contributed to the foundations of this work.

5.3.1 TS2Vec: Towards Universal Representation of Time
Series

TS2Vec (Time Series to Vector) is a novel framework designed for learning repre-
sentations of time series data across various lengths and domains. This framework
aims to address the challenges of time series representation learning by providing
a flexible, efficient, and powerful method that captures the inherent temporal
dynamics and patterns within time series data.
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Methodology and Architecture

TS2Vec operates on the principle of self-supervised learning, where the model
learns rich representations by maximizing the agreement between representations
of different segments within the same time series under various augmentations.
This approach leverages contrastive learning, a technique that learns to distinguish
between similar (positive) and dissimilar (negative) pairs of data points.
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Figure 5.2: Proposed TS2Vec architecture, shown with a univariate time series
example, adaptable to multivariate inputs. In the diagram, each parallelogram
represents a timestamp’s representation vector for an instance.[20]

As shown in Figure 5.2, the TS2Vec model employs a hierarchical contrastive
learning objective that captures temporal dependencies at multiple scales. It uses a
convolutional neural network (CNN) architecture to process time series data. The
CNN extracts features from raw time series inputs, generating representations at
multiple layers of the network. These representations are then used in a contrastive
learning setting, where the model is trained to bring closer the representations of
augmented versions of the same time series segment while pushing apart represen-
tations of different segments.

To achieve this, TS2Vec utilizes a variety of data augmentation techniques that
preserve the temporal dynamics of the series, such as time warping, magnitude
scaling, and jittering. These augmentations ensure that the model learns invariant

32



Time Series Representation Learning

and robust features across different transformations of the input data. One of the
key advantages of TS2Vec is its flexibility in handling time series of varying lengths
and domains without the need for manual feature engineering or domain-specific
knowledge. This makes it a powerful tool for a wide range of applications, from
financial time series analysis to healthcare monitoring.

5.3.2 Time Series Classification from Scratch with Deep
Neural Networks: A Strong Baseline

In the paper ”Time Series Classification from Scratch with Deep Neural Networks:
A Strong Baseline” [21], the authors explore the effectiveness of deep neural net-
works (DNNs) in classifying time series data without the need for extensive data
preprocessing or feature engineering. Among the architectures evaluated, the
Residual Network (ResNet) model is of particular interest for its ability to handle
very deep architectures through the use of shortcut connections.
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Figure 5.3: The network structure of three tested neural networks in [21].

The ResNet model is designed to push the boundaries of how deep neural
networks can go. It introduces shortcut connections that skip one or more layers
to prevent the vanishing gradient problem and facilitate easier learning by allowing
the gradient to flow through the network more efficiently. This is particularly
beneficial for time series data, which may require capturing long-term dependencies
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that span across many time steps.
In the context of time series classification, each residual block within the ResNet

architecture uses a series of convolutional layers followed by batch normalization
and ReLU activation. The model employs a stack of three residual blocks with
varying numbers of filters, specifically designed to capture the temporal dynamics
and dependencies within time series data at different scales.

The paper highlights that while ResNet is capable of achieving state-of-the-art
performance on time series classification tasks, it also tends to overfit more easily
compared to other models, such as the Fully Convolutional Network (FCN). This is
attributed to the relatively small size and lack of diversity in the UCR time series
datasets used for evaluation. However, despite this tendency, ResNet’s inclusion
in the evaluation demonstrates its potential in handling complex patterns in time
series data when adequately regularized and tuned.

5.3.3 T-Loss and TNC (Temporal Neighborhood Coding)

This subsection delves into two significant contributions to time series representa-
tion learning: Temporal Neighborhood Coding (TNC)[22] and a Triplet Loss-based
approach (T-Loss)[23], highlighting their methodologies, innovations, and applica-
tions.

Temporal Neighborhood Coding (TNC)

Temporal Neighborhood Coding (TNC) emerges as a powerful self-supervised frame-
work tailored for complex, multivariate, and non-stationary time series data. At its
core, TNC exploits the concept of temporal neighborhoods—segments of time series
that share similar characteristics due to the local smoothness in their generative
processes. The uniqueness of TNC lies in its ability to learn representations by
differentiating between the distributions of neighboring and non-neighboring signals
within these temporal segments. This distinction is achieved through a debiased
contrastive learning objective, which ensures that representations maintain the
local stationary properties inherent to each neighborhood.

TNC’s applicability is particularly pronounced in medical settings, where un-
derstanding and tracking the dynamic nature of physiological signals can aid
in diagnosing, monitoring, and predicting patient states. The framework’s self-
supervised nature, requiring no explicit labels for learning, makes it an ideal
candidate for handling sparsely labeled or unlabeled time series data prevalent in
healthcare.
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Triplet Loss-Based Approach (T-Loss)

The Triplet Loss-based approach (T-Loss) for time series representation learning
offers a different perspective on capturing the nuances of time series data. By em-
ploying a triplet loss function, T-Loss aims to learn representations that bring closer
the embeddings of similar time series segments (positive pairs) while pushing apart
those of dissimilar segments (negative pairs). This method focuses on maximizing
the margin between positive and negative examples in the embedding space, thereby
enhancing the separability and interpretability of the learned representations.

T-Loss shines in scenarios where precise modeling of time series dynamics is
crucial for tasks like classification, clustering, or anomaly detection. Its ability to
handle high-dimensional, multivariate time series makes it suitable for a wide range
of applications, from financial time series analysis to environmental monitoring.

Both TNC and T-Loss introduce innovative ways to tackle the challenges of
time series representation learning. While TNC leverages the local stationarity
within temporal neighborhoods to encode time series data, T-Loss employs a
triplet loss function to differentiate between similar and dissimilar segments. These
methodologies offer new avenues for extracting meaningful and generalizable features
from time series, crucial for downstream tasks like classification, forecasting, and
anomaly detection.
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Chapter 6

Methodology

This chapter dives into the detailed methodologies adopted in our research, aiming
to explore the use of supervised contrastive learning techniques in time series
classification, specifically focusing on stock market data. Our main goal is to
improve the precision and efficiency of predicting financial market movements,
which requires leveraging cutting-edge deep learning models. Given the complexity
and unpredictability of financial markets, accurately classifying and forecasting
market trends is crucial for both theoretical research and practical applications in
financial analysis and trading.

6.1 Problem Definition
The cornerstone of our research involves understanding and optimizing the way
time series data X = x1, x2, . . . , xN , which includes N instances, is processed and
interpreted for the purpose of accurate classification. At the heart of this endeavor
lies the development of a sophisticated embedding function f , designed through
the capabilities of a deep neural network (DNN). The mathematical representation
of this embedding function is expressed as follows:

f : X → Rd (6.1)

Here, d symbolizes the dimensionality of the space into which the time series
data is embedded. This embedded space is conceived to encapsulate the intrinsic
patterns and characteristics of the data in a more compact and discriminative form,
thereby facilitating more nuanced and precise classification tasks.

The process begins with the organization of input data into batches, which are
then fed into a Residual Network (ResNet). ResNet is chosen for its remarkable
ability to mitigate the vanishing gradient problem common in deep networks, thus
enabling the learning of complex patterns without compromising network depth.
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The architecture of ResNet, featuring skip connections that allow gradients to flow
through the network more effectively, proves to be particularly adept at handling
the intricate patterns present in time series data. Once the data has been processed
through the ResNet, a projection network takes over to compute a supervised
contrastive loss on the outputs. This computation is pivotal, as it refines the
embeddings by enforcing a clear margin of separability between classes (inter-class
separability) and ensuring that instances of the same class are pulled closer together
in the embedded space (intra-class compactness). This step is critical for enhancing
the model’s ability to discern between different classes, a feature especially valuable
in the context of financial time series, where minute distinctions can significantly
impact classification accuracy.

To capitalize on the refined representations obtained through the supervised
contrastive loss, a dense network layer is subsequently introduced. This layer
is trained atop the embeddings, employing cross-entropy loss as its objective
function. The use of cross-entropy loss in this phase is instrumental in fine-tuning
the embeddings for optimal classification performance, effectively leveraging the
nuanced representations learned in the earlier phase for the direct task of classifying
the time series data.

Figure 6.1: Residual Network structure from [21]

6.2 Approach

6.2.1 Data pre-processing
One of the core tenets of this research is the emphasis on minimal preprocessing,
inspired by the approach outlined in [21]. This approach pivots away from tra-
ditional heavy preprocessing techniques, aligning with the broader objective of
harnessing Deep Neural Networks (DNNs) for end-to-end time series classification.
By doing so, the research aims to demonstrate the capability of DNNs to directly
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process and recognize patterns in raw time series data, eliminating the need for
intricate preprocessing steps or manual feature extraction.

The only preprocessing steps applied are ment to bring the dataset to the same
level of the benchmark of reference in TS2Vec [20]:

• Handling Missing Values: Given that real-world time series data can often
have gaps or missing values, a crucial preprocessing step is ensuring these
missing values are addressed. This is essential to maintain the consistency and
quality of the data, ensuring that DNNs can process them without disruptions.

• Centering Varying Length Series: Time series data, especially from
diverse sources or domains, can have varying lengths. To ensure uniformity
and facilitate efficient batching during training, the time series are centered
using a specialized function. This operation aligns the meaningful (non-NaN)
parts of the series, ensuring that any gaps or missing values are uniformly
distributed around the actual data.

By maintaining a near-zero preprocessing approach, this research underscores
the power and versatility of DNNs in handling raw time series data, pushing the
boundaries of what’s possible in time series classification.

6.2.2 Model Architecture
Deep neural networks, especially deep convolutional neural networks (CNNs), have
demonstrated impressive performance in various domains. One significant challenge
with deep networks is the degradation problem: as the network grows deeper, its
accuracy can saturate and then rapidly degrade. ResNet, or Residual Network,
was introduced to address this problem.

The core idea behind ResNet is the introduction of "skip connections" or "short-
cuts" that bypass one or more layers. These connections allow the network to learn
the "residual" functions, which, in essence, means that these layers can learn to
identify and forward the essential features without any modification if needed. This
mechanism helps in alleviating the degradation problem. For time series data, these
residual connections can capture both short-term and long-term dependencies in
the data, making ResNet architectures particularly effective.

The ResNet architecture employed in this research is specifically tailored for
time series classification. Taking inspiration by the model used in [21] and shown in
Fig.6.1, the network starts with an initial convolutional layer designed to capture
basic patterns in the time series data.

h0 = Conv1Dd
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where d is the dimensionality of the input time series data. This is followed
by batch normalization and ReLU activation. Each residual block in the network
is composed of two convolutional layers with batch normalization and ReLU
activations. Additionally, if there’s a change in the number of channels or if a
stride other than 1 is used, a shortcut connection with a 1x1 convolution and batch
normalization is introduced to match the dimensions. In the current architecture,
the blocks and their configurations are:

h1 = Blockk1(x)
h2 = Blockk2(x)
y = h2 + x

ĥ = ReLU(y)

Each block ensures that the network learns and captures both short-term and
long-term patterns in the data. After the residual blocks, the feature maps are
pooled to produce a fixed-size vector, effectively summarizing the features learned
from the entire time series through an AdapriveAvgPoll with output dimension
equals to 1.

The ResNet architecture described above is adept at processing time series data,
extracting essential features, and producing embeddings that can be further used for
classification or other downstream tasks. The residual connections, characteristic
of ResNet architectures, ensure stable and effective training even as the network
depth increases.

6.2.3 Supervised Contrastive Loss

Supervised Contrastive Learning is a recent learning approach that merges the
strengths of supervised learning with the principles of contrastive learning. While
traditional supervised learning focuses on predicting correct labels, contrastive
learning is concerned with the quality of the learned representations. Its primary
aim is to ensure that representations of samples from the same class (positive pairs)
are closer to each other in the embedding space, while those from different classes
(negative pairs) are farther apart.

The main objective of supervised contrastive learning can be described through
its loss function. As show by Wang et al. in [24], let i ∈ I ≡ {1,...,N} be the index
of an arbitrary sample, for a set of N randomly sampled sample/label pairs. For a
given one, with its representation zi, and another sample from the same class with
representation zp, the supervised contrastive loss is given by:
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Figure 6.2: Supervised vs. self-supervised contrastive losses: The self-supervised
contrastive loss (left) contrasts a single positive for each anchor (i.e., an augmented
version of the same image) against a set of negatives consisting of the entire
remainder of the batch. The supervised contrastive loss (right) considered in [24],
however, contrasts the set of all samples from the same class as positives against
the negatives from the remainder of the batch. As demonstrated by the photo of
the black and white puppy, taking class label information into account results in an
embedding space where elements of the same class are more closely aligned than in
the self-supervised case. [24]

LSCN =
Ø
i∈I

LSCN,i =

=
Ø
i∈I

−1
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log exp (zi · zp/τ)q
a∈A(i) exp (zi · za/τ) (6.2)

Here:

• zi is the representation of an instance from a class yi,

• A(i) ≡ I \{i}, distinct from i,

• the · represents their inner product,

• τ ∈ R+ is a scalar temperature parameter,
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• P(i) ≡ {p ∈ A(i) : yp = yi } is the set of indices of all positives in the batch,
and |P (i)| is its cardinality.

The essence of this loss function is to maximize the similarity between positive
pairs (samples from the same class) while minimizing their similarity with negative
pairs. Supervised Contrastive Learning promotes the learning of more informative
and discriminative features. This is achieved by ensuring that representations are
not just class-specific, but also distinct from representations of other classes. This
trains models to be more robust to variations within the class by emphasizing the
importance of intra-class variations. That often leads to better generalization on
unseen or noisy data. The representations learned via this loss are often more
transferable to other related tasks. This makes supervised contrastive learning a
powerful technique for pre-training models that can be fine-tuned for specific tasks.
The way on how this loss function works, and how it differs from self-supervised
techniques, is shown at high level in Fig.6.2.

In the context of this research, the principles of supervised contrastive learning
have been seamlessly integrated with the ResNet architecture tailored for time
series classification. The use of this loss during the training phase encourages the
ResNet model to derive representations that are both discriminative and compact in
the embedding space. This strategy has shown promise in enhancing classification
accuracy across benchmark datasets of time series data.

6.3 Dataset Building and Labeling

The empirical analysis conducted in this study leverages a diverse array of datasets
to ensure robustness and applicability across different domains. Primarily, the
UEA and UCR Time Series Classification Repository serves as a benchmark [25],
offering a wide range of datasets that span various fields. These repositories are
renowned for their comprehensive collection of time series data, facilitating the
evaluation of classification models across a spectrum of scenarios.

While the UEA and UCR datasets provide a valuable benchmark, the core
of our analysis is deeply rooted in financial datasets. These datasets not only
present unique challenges due to their volatility and noise but also offer significant
opportunities for impactful insights into market behavior and dynamics. Therefore,
our methodology prioritizes the construction and labeling of financial time series
data to better understand and predict market movements.
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6.3.1 Financial Datasets
The primary source for our financial dataset is the yfinance library [26], an ac-
cessible and reliable tool for extracting stock market data. From this library, we
meticulously gathered information on 75 tickers encompassed within the NASDAQ
100 index, spanning an extensive 12-year period from 2010 to 2022. The NASDAQ
100, known for its heavy representation of technology companies, reflects the compo-
sition of the U.S. market, where tech industries play a predominant role, as showed
in Fig.6.3. This deliberate selection of tickers is designed to capture a wide array
of market behaviors and trends, offering a rich and diverse dataset for our analysis.
By focusing on the NASDAQ 100, we not only align with the tech-centric nature
of current market dynamics but also ensure our dataset embodies the complexity
and innovation driving today’s financial landscape.

Figure 6.3: Selected NASDAQ tickers distribution among industries

Each ticker within our dataset represents daily stock activities, including Open,
High, Low, Close, Adj Close, and Volume. This daily granularity allows for detailed
examination of market fluctuations and trends. Furthermore, the diversity of
industries represented by these tickers—ranging from technology and finance to
manufacturing and healthcare—ensures a wide-ranging investigation into various
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market sectors.

6.3.2 Dataset Labeling
The dataset construction employs a sliding window approach, where each feature
set corresponds to information captured within a ten-day window. This window
slides forward by one day for each subsequent row of features, ensuring a compre-
hensive and continuous analysis of the time series data. To enrich the dataset with
actionable insights, each ten-day window is assigned three distinct labels: 3 Days,
5 Days, and 7 Days. These labels are determined based on the behavior of the
closing prices in the days immediately following the ten-day window, providing a
forward-looking perspective on market trends.

For the 3 Days label, the methodology focuses on the closing price difference
across the three days following the ten-day feature window (namely, the 11th, 12th,
and 13th days). The assignment of label values—ranging from 0 to 2—is contingent
upon the position of this closing price difference within the distribution of closing
price differences for the respective ticker:

• Label 0 is assigned if the closing price difference falls below the 33rd percentile
of the distribution, indicating a bearish market trend.

• Label 1 is assigned if the difference is between the 33rd and 66th percentiles,
suggesting a neutral market condition.

• Label 2 is given when the difference exceeds the 66th percentile, pointing to a
bullish market trend.

The labeling approach for the 5 Days and 7 Days labels mirrors that of the 3 Days
label, with the primary difference being the timeframe considered for the closing
price difference. For the 5 Days label, the difference between the closing prices of
the five days following the ten-day window is evaluated. Similarly, the 7 Days label
is based on the closing price difference of the seven days post the ten-day window.
The assignment of labels 0, 1, and 2 follows the same quantile-based criteria, fa-
cilitating a nuanced understanding of market behavior over different future intervals.

This labeling strategy aims to encapsulate the bearish or bullish behavior of the
market, providing a foundation for subsequent analysis and modeling efforts. By
categorizing the potential market trends in the days following the observed window,
the dataset offers a valuable tool for forecasting market movements and developing
trading strategies.
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Chapter 7

Experiments and Results

7.1 Implementation Details

7.1.1 Datasets
This section outlines the datasets utilized in our experiments, which form the
empirical basis for evaluating the performance of the Supervised Contrastive
Learning (SCL) model in stock market time series analysis.

Financial Market Dataset

Our primary dataset consists of stock price movements among the ones available
in the NASDAQ [3], providing a rich source of data for analyzing market behavior
over time. This dataset includes daily trading information such as opening and
closing prices, highest and lowest prices of the day, and trading volume, covering
a comprehensive period that allows for a robust examination of stock market
dynamics.

The choice of the NASDAQ 100 index was motivated by its representation of
large-cap technology and non-technology sector companies, making it a valuable
dataset for capturing a wide range of market sentiments and trends. This dataset’s
diversity and volume support our exploration into the effectiveness of SCL in
discerning and classifying nuanced patterns within financial time series data.

To accurately conduct our experiments, we focused on a subset of features from
the financial market dataset, specifically chosen for their relevance and impact on
stock price movements. These features include Open, High, Low, Close, Adj Close,
and Volume. Below is a detailed explanation of each feature:

• Open: The price at which a stock first trades upon the opening of an exchange
on a trading day. It is a critical indicator of market sentiment and potential
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price movements throughout the day. High: The highest price at which a
stock trades during the course of the trading day. This value is indicative of
the peak buying interest for the stock.

• Low: The lowest price at which a stock trades during the course of the trading
day, reflecting the minimum selling price that was accepted.

• Close: The price of a stock at the close of the trading day. It is used as a
benchmark for financial reporting and by traders to assess market sentiment.

• Adj Close: The closing price after adjustments for all applicable splits and
dividend distributions. This adjusted closing price gives a more accurate
reflection of the stock’s value.

• Volume: The number of shares or contracts traded in a security or an entire
market during a given period. It is a measure of the total demand and supply
for the stock and is often used to confirm trends and chart patterns.

These features were selected to provide a comprehensive understanding of
market dynamics and to facilitate the modeling of stock price movements using
the Supervised Contrastive Learning approach. The choice of features reflects an
emphasis on both the quantitative aspects of the market (such as price and volume)
and the adjustments made for external factors affecting stock valuations (reflected
in the Adj Close). This selection is foundational to our experiments, enabling a
nuanced analysis of the stock market’s behavior through the lens of deep learning
techniques.

UCR and UEA Time Series Classification Repositories

In addition to the financial market dataset, our experiments leverage datasets from
the UCR (Univariate Time Series Classification Repository) and UEA (Multivariate
Time Series Classification Repository) [25]. These repositories are well-regarded
within the time series analysis community, offering a broad spectrum of time series
datasets across various domains.

The inclusion of datasets from the UCR and UEA repositories allows us to
benchmark the performance of our SCL model against a wide range of standard time
series classification tasks. This comparative analysis helps establish the versatility
and efficacy of SCL in handling different types of time series data, beyond the
financial domain.

Together, these datasets provide a comprehensive platform for evaluating our
SCL model. The subsequent sections will detail the experimental design, followed
by an in-depth discussion of our findings.
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Hardware

• Processor Intel(R) Xeon(R) CPU 2.20GHz

• System Memory 15.0 GB

• GPU NVIDIA Tesla T4 - Memory 15.0 GB

Experiments Execution Times

Model Train Time (s)
SupCon ∼ 550
TS2Vec ∼ 750
Arima ∼ 180
Random Forest ∼ 0.35
GBoost ∼ 0.38

Table 7.1: Models Execution Times per Dataset Train

Tabel 7.1 refers to the execution times for the training of the different models
employed. SupCon and TS2Vec, with execution times of approximately 550 and
750 respectively, are more computationally intensive, likely due to their heavy deep
learning frameworks, more suitable in extracting complex patterns from financial
time series data, but also way more time consuming. ARIMA, on the other hand,
shows a significantly lower execution time of around 180, reflecting its nature as
a less computationally demanding statistical model suitable for linear trends and
seasonality in time series. Random Forest and GBoost, with execution times of
about 0.35 and 0.38 respectively, are the most efficient models listed. Their quick
execution times can be attributed to their ensemble learning techniques, which,
while efficient, may not capture deep temporal dependencies as effectively as the
more time-consuming deep learning models.

7.2 Benchmark Results
This section presents the benchmark results of our Supervised Contrastive Learning
(SupCon) model, evaluated across a selection of datasets from the UCR (Univariate)
and UEA (Multivariate) repository, which are renowned for their comprehensive
collection of time series datasets. The benchmarking process is crucial for assessing
the performance of our model in comparison to other state-of-the-art time series
classification methods. The datasets chosen span a wide range of domains, offering
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diverse challenges in time series classification. This diversity ensures a thorough
evaluation of our model’s adaptability and effectiveness across different types of
time series data.

The results are presented in a detailed table, listing the accuracy scores achieved
by our SupCon model alongside several other leading methods, including TS2Vec
[20], T-Loss [23], TNC [22], TS-TCC [27], TST [28], and DTW [29].

7.2.1 Univariate Benchmark Dataset
As presented in Table 7.2, the evaluation of our Supervised Contrastive Learning
(SupCon) model on the UCR univariate dataset showcases promising outcomes,
affirming the model’s robustness and versatility in handling time series data across
a diverse set of domains.

Dataset SupCon TS2Vec T-Loss TNC TS-TCC TST DTW

Coffee 1.000 1.000 1.000 1.000 1.000 0.821 1.000
Computers 0.788 0.660 0.664 0.684 0.704 0.696 0.700
DistalPhalanxOutlineCorrect 0.783 0.775 0.775 0.754 0.754 0.728 0.717
DistalPhalanxOutlineAgeGroup 0.720 0.727 0.727 0.741 0.755 0.741 0.770
DistalPhalanxTW 0.683 0.698 0.676 0.669 0.676 0.568 0.590
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748 0.719
ECG200 0.900 0.920 0.940 0.830 0.880 0.830 0.770
ECG5000 0.928 0.936 0.933 0.937 0.941 0.928 0.924
ElectricDevices 0.700 0.721 0.707 0.700 0.686 0.676 0.602
FaceAll 0.785 0.805 0.786 0.766 0.813 0.504 0.808
FordA 0.939 0.948 0.928 0.902 0.930 0.568 0.555
FordB 0.826 0.807 0.793 0.733 0.815 0.507 0.620
Ham 0.740 0.724 0.724 0.752 0.743 0.524 0.467
Herring 0.594 0.641 0.594 0.594 0.594 0.594 0.531
ItalyPowerDemand 0.930 0.961 0.954 0.928 0.955 0.845 0.950
PhalangesOutlinesCorrect 0.805 0.823 0.784 0.787 0.804 0.773 0.728
Plane 0.990 1.000 0.990 1.000 1.000 0.933 1.000
ProximalPhalanxOutlineCorrect 0.854 0.900 0.859 0.866 0.873 0.770 0.784
ProximalPhalanxOutlineAgeGroup 0.843 0.829 0.844 0.854 0.839 0.854 0.805
ProximalPhalanxTW 0.810 0.824 0.771 0.810 0.800 0.780 0.761
RefrigerationDevices 0.568 0.589 0.515 0.565 0.563 0.483 0.464
ScreenType 0.400 0.411 0.416 0.509 0.419 0.419 0.397
SmallKitchenAppliances 0.755 0.733 0.677 0.725 0.691 0.592 0.643
Strawberry 0.967 0.965 0.954 0.951 0.965 0.916 0.941
SwedishLeaf 0.820 0.942 0.914 0.880 0.923 0.738 0.792
SyntheticControl 1.000 0.993 0.987 1.000 0.990 0.490 0.993
ToeSegmentation1 0.830 0.947 0.939 0.864 0.930 0.807 0.772
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Dataset SupCon TS2Vec T-Loss TNC TS-TCC TST DTW

ToeSegmentation2 0.870 0.915 0.900 0.831 0.877 0.615 0.838
Trace 1.000 1.000 0.990 1.000 1.000 1.000 1.000
TwoPatterns 1.000 1.000 0.999 1.000 0.999 0.466 1.000
Worms 0.680 0.701 0.727 0.623 0.753 0.455 0.584
Chinatown 0.947 0.968 0.951 0.977 0.983 0.936 0.957
Crop 0.745 0.756 0.722 0.738 0.742 0.710 0.665
GunPointMaleVersusFemale 1.000 1.000 0.997 0.994 0.997 1.000 0.997
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000 0.838
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 0.872
MixedShapesRegularTrain 0.855 0.922 0.905 0.911 0.855 0.879 0.842
PowerCons 0.890 0.972 0.900 0.933 0.961 0.911 0.878
SemgHandGenderCh2 0.880 0.963 0.890 0.882 0.837 0.725 0.802
SmoothSubspace 0.987 0.993 0.960 0.913 0.953 0.827 0.827

Average score per model:
AVG 0.839 0.855 0.838 0.833 0.843 0.734 0.772
STD 0.147 0.148 0.153 0.141 0.148 0.190 0.177

Table 7.2: Accuracy scores of our method compared with those of other methods
of unsupervised representation on 41 UCR datasets.

Our SupCon model achieved remarkable performance, demonstrating superior or
competitive accuracy in numerous datasets, including achieving perfect scores in several
categories like Coffee, indicating its exceptional ability to capture and leverage time series
characteristics effectively.

Notably, the model outperformed traditional and some contemporary methods in
datasets with challenging patterns, such as Computers and Earthquakes, highlighting
its advanced feature extraction and representation learning capabilities. Even in highly
competitive scenarios, SupCon showed its strength by closely matching or outperforming
state-of-the-art methods, as seen in ECG5000 and FordB, underscoring its potential for
broad application in time series classification tasks.
The average accuracy score across all considered datasets positions our model as a strong
contender, illustrating its consistency and efficiency in extracting meaningful patterns
from complex time series data. These results underscore the effectiveness of Supervised
Contrastive Learning in enhancing classification performance, offering valuable insights
for future research and application in diverse time series analysis challenges.

7.2.2 Multivariate Benchmark Dataset
As shown in Table 7.3, results from the UEA datasets provide a comprehensive view of
the performance of our Supervised Contrastive Learning (SupCon) model in comparison
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with other state-of-the-art time series classification methods.

Dataset SupCon TS2Vec T-Loss TNC TS-TCC TST DTW
ArticularyWordRecognition 0.803 0.987 0.943 0.973 0.953 0.977 0.987
AtrialFibrillation 0.333 0.200 0.133 0.133 0.267 0.067 0.200
CharacterTrajectories 0.983 0.995 0.993 0.967 0.985 0.975 0.989
Cricket 0.862 0.972 0.972 0.958 0.917 1.000 1.000
Epilepsy 0.964 0.964 0.971 0.957 0.957 0.949 0.964
EthanolConcentration 0.315 0.308 0.205 0.297 0.285 0.262 0.323
FaceDetection 0.503 0.501 0.513 0.536 0.544 0.534 0.529
FingerMovements 0.490 0.480 0.580 0.470 0.460 0.560 0.530
HandMovementDirection 0.405 0.338 0.351 0.324 0.243 0.243 0.231
Heartbeat 0.722 0.683 0.741 0.746 0.751 0.746 0.717
JapaneseVowels 0.893 0.984 0.989 0.978 0.930 0.978 0.949
MotorImagery 0.500 0.510 0.580 0.500 0.610 0.500 0.500
NATOPS 0.950 0.928 0.917 0.911 0.822 0.850 0.883
PEMS-SF 0.872 0.682 0.676 0.699 0.734 0.740 0.711
PenDigits 0.989 0.989 0.981 0.979 0.974 0.560 0.977
PhonemeSpectra 0.150 0.233 0.222 0.207 0.252 0.085 0.151
RacketSports 0.925 0.855 0.855 0.776 0.816 0.809 0.803
SpokenArabicDigits 0.980 0.988 0.905 0.934 0.970 0.923 0.963
StandWalkJump 0.467 0.467 0.333 0.400 0.333 0.267 0.200
Average score per model:
AVG 0.689 0.687 0.676 0.670 0.673 0.632 0.663
STD 0.277 0.295 0.305 0.298 0.286 0.321 0.317

Table 7.3: Accuracy scores of our method compared on multivariate UEA datasets.

Our SupCon model demonstrates competitive performance across a wide range
of multivariate time series classification tasks, as evidenced by the accuracy scores
on various UEA datasets. Notably, the SupCon model excels in certain datasets,
indicating its robustness and adaptability to different types of time series data.
The comparison with other models such as TS2Vec, T-Loss, TNC, TS-TCC, TST,
and DTW reveals the strengths and limitations of our approach.

Performance

The SupCon model achieves the highest average score per model (0.689), marginally
outperforming the TS2Vec model (0.687) and showing noticeable improvement over
other models. This overall performance underscores the efficacy of the contrastive
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learning framework in capturing meaningful patterns in time series data.

The model shows substantial performance on datasets like NATOPS, PEMS-SF,
PenDigits, and RacketSports, achieving the highest accuracy scores among the
compared methods. These results highlight the model’s capability in handling
complex time series classification problems, especially where nuanced temporal

While the SupCon model leads in several datasets, there are instances where
other models outperform it, such as in the ArticularyWordRecognition and Charac-
terTrajectories datasets. These outcomes suggest opportunities for further refining
the model’s architecture or training procedure to enhance its sensitivity to subtle
temporal features.

The SupCon model’s performance across a variety of domains within the UEA
dataset collection demonstrates its versatility. This is particularly notable in its
ability to handle both physical activity data (e.g., NATOPS, PEMS-SF) and sensor
data (e.g., PenDigits), among others. The model’s top performance in datasets with
specific characteristics (e.g., HandMovementDirection, StandWalkJump) suggests
that contrastive learning is particularly well-suited to scenarios where distinguishing
between closely related time series is crucial.
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7.3 Stock Prices Datasets Results
The task of predicting stock market movements represents a significant challenge,
given the complexity and inherent unpredictability of financial markets. The Su-
pervised Contrastive Learning (SupCon) model’s evaluation on a comprehensive
dataset, covering a span of 12 years with a division between a 10-year period for
training and evaluation (2010 to 2020) and a 2-year period for testing (2021 to
2022), offers a nuanced insight into the model’s capabilities and the intricacies of
market prediction.
The performance metrics, including accuracy and F1 scores across different fore-
casting horizons (3-day, 5-day, and 7-day), provide a structured assessment of the
model’s predictive power. Despite the well-documented difficulties in financial
forecasting, due to factors such as market volatility, economic indicators, and
investor sentiment, the SupCon model demonstrates a promising ability to extract
meaningful patterns from historical data on which further investigations can be
performed.

7.3.1 Supervised Constrastive Learning Classification
The evaluation of the Supervised Contrastive Learning (SupCon) model across
3-day, 5-day, and 7-day forecasting intervals on the NASDAQ dataset revealed
consistent accuracy levels, with a marginal improvement observed as the forecast
horizon extends, as we can see from Table 7.4. Despite this, the model’s F1 Score
remains low, indicating challenges in harmonizing precision and recall. Another ob-
servation is the model’s varied recall and precision across different labels, reflecting
its nuanced ability to correctly identify specific market states.

label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
AVG 3D 0.44 0.20 0.61 0.04 0.34 0.26 0.02 0.17
AVG 5D 0.44 0.20 0.63 0.05 0.31 0.28 0.03 0.18
AVG 7D 0.45 0.20 0.64 0.07 0.27 0.28 0.03 0.14
STD 3D 5.40 0.02 0.48 0.19 0.47 0.20 0.08 0.23
STD 5D 6.24 0.02 0.47 0.24 0.44 0.20 0.10 0.21
STD 7D 5.85 0.03 0.47 0.20 0.45 0.21 0.14 0.25

Table 7.4: Average Scores of Supervised Contrastive Learning over NASDAQ
dataset.

The standard deviation values highlighted considerable variability in accuracy
across different evaluations, suggesting fluctuations in the model’s performance.
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This variability, combined with the consistent F1 Scores and the observed precision-
recall dynamics, underscores the need for further model optimization to enhance
predictive reliability and balance across different market states.

Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
AAL 3D 36.10 0.28 0.61 0.43 0.00 0.37 0.35 0.00
AAL 5D 32.05 0.16 1.00 0.00 0.00 0.32 0.00 0.00
AAL 7D 34.48 0.17 1.00 0.00 0.00 0.34 0.00 0.00
AAPL 3D 47.06 0.21 1.00 0.00 0.00 0.47 0.00 0.00
AAPL 5D 45.84 0.21 1.00 0.00 0.00 0.46 0.00 0.00
AAPL 7D 45.03 0.21 1.00 0.00 0.00 0.45 0.00 0.00
ADBE 3D 45.23 0.21 1.00 0.00 0.00 0.45 0.00 0.00
ADBE 5D 44.22 0.20 1.00 0.00 0.00 0.44 0.00 0.00
ADBE 7D 42.19 0.20 1.00 0.00 0.00 0.42 0.00 0.00
ADI 3D 45.44 0.21 0.00 0.00 1.00 0.00 0.00 0.45
ADI 5D 39.96 0.26 0.75 0.00 0.18 0.42 0.00 0.33
ADI 7D 42.60 0.20 1.00 0.00 0.00 0.43 0.00 0.00
ADP 3D 37.73 0.18 1.00 0.00 0.00 0.38 0.00 0.00
ADP 5D 39.55 0.19 1.00 0.00 0.00 0.40 0.00 0.00
ADP 7D 22.52 0.20 0.01 0.73 0.31 0.04 0.09 0.65
ADSK 3D 47.47 0.21 1.00 0.00 0.00 0.47 0.00 0.00
ADSK 5D 47.06 0.21 1.00 0.00 0.00 0.47 0.00 0.00
ADSK 7D 46.86 0.21 1.00 0.00 0.00 0.47 0.00 0.00
AKAM 3D 38.54 0.19 1.00 0.00 0.00 0.39 0.00 0.00
AKAM 5D 37.93 0.18 0.00 0.00 1.00 0.00 0.00 0.38
AKAM 7D 35.90 0.19 0.02 0.00 0.94 0.25 0.00 0.36
ALGN 3D 48.07 0.22 1.00 0.00 0.00 0.48 0.00 0.00
ALGN 5D 40.37 0.19 0.00 0.00 1.00 0.00 0.00 0.40
ALGN 7D 52.33 0.23 1.00 0.00 0.00 0.52 0.00 0.00
AMAT 3D 47.87 0.22 0.00 0.00 1.00 0.00 0.00 0.48
AMAT 5D 44.62 0.21 1.00 0.00 0.00 0.45 0.00 0.00
AMAT 7D 46.05 0.21 1.00 0.00 0.00 0.46 0.00 0.00
AMD 3D 47.26 0.21 1.00 0.00 0.00 0.47 0.00 0.00
AMD 5D 47.47 0.21 1.00 0.00 0.00 0.47 0.00 0.00
AMD 7D 47.67 0.22 1.00 0.00 0.00 0.48 0.00 0.00
AMGN 3D 40.77 0.19 1.00 0.00 0.00 0.41 0.00 0.00
AMGN 5D 39.35 0.19 1.00 0.00 0.00 0.39 0.00 0.00
AMGN 7D 40.16 0.20 1.00 0.00 0.02 0.40 0.00 1.00
AMZN 3D 50.91 0.22 1.00 0.00 0.00 0.51 0.00 0.00
AMZN 5D 51.93 0.23 1.00 0.00 0.00 0.52 0.00 0.00
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
AMZN 7D 38.95 0.19 0.00 0.00 1.00 0.00 0.00 0.39
ASML 3D 46.65 0.21 1.00 0.00 0.00 0.47 0.00 0.00
ASML 5D 48.07 0.22 0.00 0.00 1.00 0.00 0.00 0.48
ASML 7D 48.48 0.22 0.00 0.00 1.00 0.00 0.00 0.48
ATVI 3D 37.32 0.18 0.00 0.00 1.00 0.00 0.00 0.37
ATVI 5D 46.86 0.21 1.00 0.00 0.00 0.47 0.00 0.00
ATVI 7D 33.87 0.17 0.00 0.00 1.00 0.00 0.00 0.34
AVGO 3D 45.23 0.21 1.00 0.00 0.00 0.45 0.00 0.00
AVGO 5D 42.19 0.20 1.00 0.00 0.00 0.42 0.00 0.00
AVGO 7D 48.68 0.22 0.00 0.00 1.00 0.00 0.00 0.49
BIDU 3D 39.55 0.19 1.00 0.00 0.00 0.40 0.00 0.00
BIDU 5D 42.80 0.20 1.00 0.00 0.00 0.43 0.00 0.00
BIDU 7D 41.99 0.20 1.00 0.00 0.00 0.42 0.00 0.00
BIIB 3D 41.38 0.20 1.00 0.00 0.00 0.41 0.00 0.00
BIIB 5D 42.80 0.20 1.00 0.00 0.00 0.43 0.00 0.00
BIIB 7D 40.16 0.19 1.00 0.00 0.00 0.40 0.00 0.00
BKNG 3D 42.80 0.20 0.00 0.00 1.00 0.00 0.00 0.43
BKNG 5D 39.15 0.19 1.00 0.00 0.00 0.39 0.00 0.00
BKNG 7D 43.41 0.20 0.00 0.00 1.00 0.00 0.00 0.43
BMRN 3D 36.71 0.18 1.00 0.00 0.00 0.37 0.00 0.00
BMRN 5D 37.12 0.18 1.00 0.00 0.00 0.37 0.00 0.00
BMRN 7D 39.76 0.21 0.98 0.00 0.04 0.40 0.00 0.46
CDNS 3D 50.71 0.22 0.00 0.00 1.00 0.00 0.00 0.51
CDNS 5D 43.00 0.20 1.00 0.00 0.00 0.43 0.00 0.00
CDNS 7D 44.22 0.20 1.00 0.00 0.00 0.44 0.00 0.00
CHKP 3D 41.58 0.20 1.00 0.00 0.00 0.42 0.00 0.00
CHKP 5D 38.95 0.19 0.00 0.00 1.00 0.00 0.00 0.39
CHKP 7D 41.78 0.20 1.00 0.01 0.00 0.42 0.17 0.00
CHRW 3D 41.38 0.23 0.00 0.06 0.98 0.00 0.27 0.42
CHRW 5D 38.13 0.18 1.00 0.00 0.00 0.38 0.00 0.00
CHRW 7D 39.55 0.19 1.00 0.01 0.00 0.39 1.00 0.00
CMCSA 3D 39.76 0.19 0.00 0.00 1.00 0.00 0.00 0.40
CMCSA 5D 42.19 0.20 1.00 0.00 0.00 0.42 0.00 0.00
CMCSA 7D 40.77 0.21 0.93 0.00 0.03 0.42 0.00 0.17
COST 3D 50.30 0.22 0.00 0.00 1.00 0.00 0.00 0.50
COST 5D 33.67 0.20 0.86 0.09 0.00 0.36 0.10 0.00
COST 7D 52.33 0.23 0.00 0.00 1.00 0.00 0.00 0.52
CSCO 3D 41.18 0.19 1.00 0.00 0.00 0.41 0.00 0.00
CSCO 5D 38.13 0.18 0.00 0.00 1.00 0.00 0.00 0.38
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
CSCO 7D 39.15 0.19 1.00 0.00 0.00 0.39 0.00 0.00
CSX 3D 27.99 0.25 0.00 0.82 0.36 0.00 0.17 0.60
CSX 5D 44.02 0.20 1.00 0.00 0.00 0.44 0.00 0.00
CSX 7D 42.19 0.20 0.00 0.00 1.00 0.00 0.00 0.42
CTSH 3D 40.37 0.19 1.00 0.00 0.00 0.40 0.00 0.00
CTSH 5D 29.61 0.23 0.00 0.84 0.23 0.00 0.28 0.33
CTSH 7D 42.60 0.20 1.00 0.00 0.00 0.43 0.00 0.00
DLTR 3D 39.55 0.19 1.00 0.00 0.00 0.40 0.00 0.00
DLTR 5D 40.37 0.19 1.00 0.00 0.00 0.40 0.00 0.00
DLTR 7D 30.43 0.26 0.55 0.15 0.14 0.36 0.11 0.42
EBAY 3D 40.16 0.19 0.00 0.00 1.00 0.00 0.00 0.40
EBAY 5D 48.88 0.22 1.00 0.00 0.00 0.49 0.00 0.00
EBAY 7D 47.67 0.22 1.00 0.00 0.00 0.48 0.00 0.00
EXPD 3D 27.59 0.23 0.00 0.92 0.28 0.00 0.19 0.62
EXPD 5D 42.19 0.20 1.00 0.00 0.00 0.42 0.00 0.00
EXPD 7D 42.60 0.20 0.00 0.00 1.00 0.00 0.00 0.43
FAST 3D 38.74 0.19 1.00 0.00 0.00 0.39 0.00 0.00
FAST 5D 21.09 0.12 0.00 1.00 0.00 0.00 0.21 0.00
FAST 7D 39.15 0.19 1.00 0.00 0.00 0.39 0.00 0.00
GILD 3D 34.48 0.17 1.00 0.00 0.00 0.34 0.00 0.00
GILD 5D 34.48 0.17 0.00 0.00 1.00 0.00 0.00 0.34
GILD 7D 31.24 0.16 1.00 0.00 0.00 0.31 0.00 0.00
GOOG 3D 45.44 0.21 0.00 0.00 1.00 0.00 0.00 0.45
GOOG 5D 46.05 0.21 0.00 0.00 1.00 0.00 0.00 0.46
GOOG 7D 44.62 0.21 1.00 0.00 0.00 0.45 0.00 0.00
GOOGL 3D 45.64 0.21 0.00 0.00 1.00 0.00 0.00 0.46
GOOGL 5D 44.42 0.21 1.00 0.00 0.00 0.44 0.00 0.00
GOOGL 7D 44.83 0.21 1.00 0.00 0.00 0.45 0.00 0.00
GRMN 3D 42.60 0.21 0.99 0.00 0.02 0.42 0.00 0.62
GRMN 5D 19.88 0.16 0.00 0.92 0.13 0.00 0.17 0.39
GRMN 7D 42.80 0.20 1.00 0.00 0.00 0.43 0.00 0.00
HSIC 3D 41.78 0.20 1.00 0.00 0.00 0.42 0.00 0.00
HSIC 5D 40.16 0.19 1.00 0.00 0.00 0.40 0.00 0.00
HSIC 7D 38.34 0.18 1.00 0.00 0.00 0.38 0.00 0.00
IDXX 3D 44.02 0.20 1.00 0.00 0.00 0.44 0.00 0.00
IDXX 5D 47.47 0.21 0.00 0.00 1.00 0.00 0.00 0.47
IDXX 7D 45.23 0.21 1.00 0.00 0.00 0.45 0.00 0.00
INCY 3D 35.70 0.18 1.00 0.00 0.00 0.36 0.00 0.00
INCY 5D 35.29 0.17 1.00 0.00 0.00 0.35 0.00 0.00
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
INCY 7D 35.90 0.18 1.00 0.00 0.00 0.36 0.00 0.00
INTC 3D 44.02 0.20 1.00 0.00 0.00 0.44 0.00 0.00
INTC 5D 45.64 0.21 1.00 0.00 0.00 0.46 0.00 0.00
INTC 7D 35.29 0.28 0.00 0.35 0.87 0.00 0.30 0.37
INTU 3D 48.07 0.22 0.00 0.00 1.00 0.00 0.00 0.48
INTU 5D 42.80 0.20 1.00 0.00 0.00 0.43 0.00 0.00
INTU 7D 51.93 0.23 0.00 0.00 1.00 0.00 0.00 0.52
ISRG 3D 42.39 0.20 1.00 0.00 0.00 0.42 0.00 0.00
ISRG 5D 49.29 0.22 0.00 0.00 1.00 0.00 0.00 0.49
ISRG 7D 44.02 0.20 1.00 0.00 0.00 0.44 0.00 0.00
LBTYA 3D 34.69 0.17 1.00 0.00 0.00 0.35 0.00 0.00
LBTYA 5D 36.31 0.27 0.83 0.25 0.00 0.33 0.48 0.00
LBTYA 7D 37.32 0.33 0.36 0.58 0.11 0.32 0.40 0.47
LBTYK 3D 33.87 0.17 0.00 0.01 0.99 0.00 0.33 0.34
LBTYK 5D 32.66 0.18 0.00 0.92 0.03 0.00 0.34 0.14
LBTYK 7D 34.28 0.17 1.00 0.00 0.00 0.34 0.00 0.00
LULU 3D 47.26 0.21 0.00 0.00 1.00 0.00 0.00 0.47
LULU 5D 43.61 0.20 1.00 0.00 0.00 0.44 0.00 0.00
LULU 7D 46.86 0.21 0.00 0.00 1.00 0.00 0.00 0.47
MAR 3D 43.81 0.20 0.00 0.00 1.00 0.00 0.00 0.44
MAR 5D 41.99 0.20 1.00 0.00 0.00 0.42 0.00 0.00
MAR 7D 43.41 0.23 0.98 0.00 0.05 0.42 0.00 0.79
MAT 3D 35.50 0.17 1.00 0.00 0.00 0.35 0.00 0.00
MAT 5D 36.51 0.18 1.00 0.00 0.00 0.36 0.00 0.00
MAT 7D 34.69 0.17 0.00 0.00 1.00 0.00 0.00 0.35
MDLZ 3D 36.51 0.18 1.00 0.00 0.00 0.36 0.00 0.00
MDLZ 5D 34.48 0.17 1.00 0.00 0.00 0.34 0.00 0.00
MDLZ 7D 35.09 0.17 1.00 0.00 0.00 0.35 0.00 0.00
MELI 3D 45.03 0.21 0.00 0.00 1.00 0.00 0.00 0.45
MELI 5D 46.05 0.21 0.00 0.00 1.00 0.00 0.00 0.46
MELI 7D 43.00 0.20 0.00 0.00 1.00 0.00 0.00 0.43
MNST 3D 42.80 0.20 0.00 0.00 1.00 0.00 0.00 0.43
MNST 5D 43.81 0.20 1.00 0.00 0.00 0.44 0.00 0.00
MNST 7D 42.60 0.20 1.00 0.00 0.00 0.43 0.00 0.00
MSFT 3D 44.22 0.20 1.00 0.00 0.00 0.44 0.00 0.00
MSFT 5D 43.00 0.20 1.00 0.00 0.00 0.43 0.00 0.00
MSFT 7D 44.42 0.21 1.00 0.00 0.00 0.44 0.00 0.00
MU 3D 41.18 0.19 0.00 0.00 1.00 0.00 0.00 0.41
MU 5D 42.19 0.20 0.00 0.00 1.00 0.00 0.00 0.42
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
MU 7D 45.64 0.21 1.00 0.00 0.00 0.46 0.00 0.00
NFLX 3D 46.25 0.21 1.00 0.00 0.00 0.46 0.00 0.00
NFLX 5D 43.41 0.20 0.00 0.00 1.00 0.00 0.00 0.43
NFLX 7D 45.23 0.21 0.00 0.00 1.00 0.00 0.00 0.45
NTES 3D 46.65 0.21 1.00 0.00 0.00 0.47 0.00 0.00
NTES 5D 48.07 0.22 1.00 0.00 0.00 0.48 0.00 0.00
NTES 7D 46.86 0.21 1.00 0.00 0.00 0.47 0.00 0.00
NVDA 3D 45.84 0.21 1.00 0.00 0.00 0.46 0.00 0.00
NVDA 5D 47.06 0.21 1.00 0.00 0.00 0.47 0.00 0.00
NVDA 7D 45.84 0.21 1.00 0.00 0.00 0.46 0.00 0.00
ORLY 3D 51.32 0.26 0.06 0.00 0.96 0.31 0.00 0.53
ORLY 5D 54.77 0.24 0.00 0.00 1.00 0.00 0.00 0.55
ORLY 7D 53.95 0.23 0.00 0.00 1.00 0.00 0.00 0.54
PAYX 3D 49.29 0.22 0.00 0.00 1.00 0.00 0.00 0.49
PAYX 5D 41.58 0.20 1.00 0.00 0.01 0.41 0.00 0.67
PAYX 7D 38.95 0.19 1.00 0.00 0.00 0.39 0.00 0.00
PCAR 3D 38.13 0.19 0.99 0.01 0.00 0.38 0.20 0.00
PCAR 5D 38.34 0.22 0.06 0.00 0.97 0.35 0.00 0.39
PCAR 7D 26.37 0.14 0.00 1.00 0.00 0.00 0.26 0.00
PEP 3D 34.89 0.22 0.85 0.00 0.11 0.35 0.00 0.37
PEP 5D 34.69 0.17 1.00 0.00 0.00 0.35 0.00 0.00
PEP 7D 43.81 0.20 0.00 0.00 1.00 0.00 0.00 0.44
QCOM 3D 44.83 0.21 1.00 0.00 0.00 0.45 0.00 0.00
QCOM 5D 46.05 0.21 1.00 0.00 0.00 0.46 0.00 0.00
QCOM 7D 46.65 0.21 1.00 0.00 0.00 0.47 0.00 0.00
REGN 3D 40.77 0.19 1.00 0.00 0.00 0.41 0.00 0.00
REGN 5D 41.78 0.20 1.00 0.00 0.00 0.42 0.00 0.00
REGN 7D 38.34 0.18 1.00 0.00 0.00 0.38 0.00 0.00
ROST 3D 46.86 0.21 0.00 0.00 0.99 0.00 0.00 0.47
ROST 5D 44.42 0.21 1.00 0.00 0.00 0.44 0.00 0.00
ROST 7D 41.99 0.20 0.01 0.00 1.00 1.00 0.00 0.42
SBUX 3D 42.80 0.20 0.00 0.00 1.00 0.00 0.00 0.43
SBUX 5D 44.22 0.20 1.00 0.00 0.00 0.44 0.00 0.00
SBUX 7D 44.42 0.21 1.00 0.00 0.00 0.44 0.00 0.00
SIRI 3D 37.32 0.18 1.00 0.00 0.00 0.37 0.00 0.00
SIRI 5D 41.18 0.19 1.00 0.00 0.00 0.41 0.00 0.00
SIRI 7D 39.55 0.19 1.00 0.00 0.00 0.40 0.00 0.00
SNPS 3D 43.81 0.20 1.00 0.00 0.00 0.44 0.00 0.00
SNPS 5D 49.90 0.22 0.00 0.00 1.00 0.00 0.00 0.50
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
SNPS 7D 43.20 0.20 1.00 0.00 0.00 0.43 0.00 0.00
SRCL 3D 34.08 0.17 1.00 0.00 0.00 0.34 0.00 0.00
SRCL 5D 34.89 0.17 1.00 0.00 0.00 0.35 0.00 0.00
SRCL 7D 34.89 0.17 0.00 1.00 0.00 0.00 0.35 0.00
STX 3D 44.62 0.21 1.00 0.00 0.00 0.45 0.00 0.00
STX 5D 34.08 0.22 0.76 0.14 0.00 0.41 0.11 0.00
STX 7D 42.19 0.20 0.98 0.00 0.00 0.43 0.00 0.00
SWKS 3D 46.05 0.21 1.00 0.00 0.00 0.46 0.00 0.00
SWKS 5D 46.05 0.29 0.83 0.01 0.16 0.49 0.05 0.39
SWKS 7D 35.70 0.18 0.00 0.00 1.00 0.00 0.00 0.36
TMUS 3D 43.61 0.20 1.00 0.00 0.00 0.44 0.00 0.00
TMUS 5D 40.37 0.19 0.00 0.00 1.00 0.00 0.00 0.40
TMUS 7D 39.55 0.19 0.00 0.00 1.00 0.00 0.00 0.40
TXN 3D 45.64 0.21 0.00 0.00 1.00 0.00 0.00 0.46
TXN 5D 43.00 0.20 0.00 0.00 1.00 0.00 0.00 0.43
TXN 7D 41.38 0.20 0.00 0.00 1.00 0.00 0.00 0.41
VOD 3D 27.99 0.19 0.83 0.00 0.11 0.31 0.00 0.16
VOD 5D 48.68 0.22 0.00 1.00 0.00 0.00 0.49 0.00
VOD 7D 30.83 0.16 1.00 0.00 0.00 0.31 0.00 0.00
VRSK 3D 41.78 0.20 1.00 0.00 0.00 0.42 0.00 0.00
VRSK 5D 48.07 0.22 0.00 0.00 1.00 0.00 0.00 0.48
VRSK 7D 48.68 0.22 0.00 0.00 1.00 0.00 0.00 0.49
VRTX 3D 40.97 0.19 0.00 0.00 1.00 0.00 0.00 0.41
VRTX 5D 37.73 0.18 1.00 0.00 0.00 0.38 0.00 0.00
VRTX 7D 37.32 0.18 1.00 0.00 0.00 0.37 0.00 0.00
WBA 3D 30.83 0.16 0.00 1.00 0.00 0.00 0.31 0.00
WBA 5D 29.21 0.21 0.00 0.15 0.80 0.00 0.32 0.29
WBA 7D 37.52 0.18 1.00 0.00 0.00 0.38 0.00 0.00
WDC 3D 37.52 0.18 1.00 0.00 0.00 0.38 0.00 0.00
WDC 5D 36.31 0.18 1.00 0.00 0.00 0.36 0.00 0.00
WDC 7D 37.73 0.18 1.00 0.00 0.00 0.38 0.00 0.00
XEL 3D 40.97 0.19 0.00 0.00 1.00 0.00 0.00 0.41
XEL 5D 43.20 0.20 0.00 0.00 1.00 0.00 0.00 0.43
Average results:
AVG 3D 0.44 0.20 0.61 0.04 0.34 0.26 0.02 0.17
AVG 5D 0.44 0.20 0.63 0.05 0.31 0.28 0.03 0.18
AVG 7D 0.45 0.20 0.64 0.07 0.27 0.28 0.03 0.14
STD 3D 5.40 0.02 0.48 0.19 0.47 0.20 0.08 0.23
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Ticker label Acc F1 Score Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2)
STD 5D 6.24 0.02 0.47 0.24 0.44 0.20 0.10 0.21
STD 7D 5.85 0.03 0.47 0.20 0.45 0.21 0.14 0.25

Table 7.5: Scores of Supervised Contrastive Learning over NASDAQ dataset.

A detailed look at the results, shown in Table 7.5 reveals variability in the
model’s performance across different stocks (tickers), with certain instances show-
casing higher accuracy and F1 scores. This variability can be attributed to the
diverse nature of companies and sectors represented in the dataset, each subject
to unique market forces and investor behaviors. The model’s ability to achieve
notable accuracy, for the domain we are on, in specific cases highlights its potential
for targeted financial analysis.

The endeavor to forecast stock market movements is fraught with challenges,
primarily due to the dynamic and interconnected nature of global financial systems.
The SupCon model’s performance, while reflective of these challenges, also indicates
the viability of using advanced machine learning techniques, such as contrastive
learning, in deciphering the complex patterns underlying market trends.

The evaluation of the Supervised Contrastive Learning model on the financial
dataset underscores both the potential and the challenges of applying deep learning
techniques to stock market prediction. While the results highlight the difficulty
of achieving high accuracy in this domain, they also suggest avenues for future
research, particularly in refining models to better understand and predict the
multifaceted dynamics of financial markets. The concept of supervised contrastive
learning itself emerges as a powerful tool in the realm of deep learning for financial
analysis. Its ability to leverage complex patterns from time series data points
towards its potential for innovation in this field. Future explorations could include
varying the underlying neural network architectures, optimizing hyperparameters,
or integrating multimodal data sources to enhance predictive performance. This
approach’s flexibility and robustness make it a promising avenue for developing
more accurate and reliable financial forecasting models, indicating a fertile ground
for research and application in deciphering the intricacies of financial markets.

Configuration

A comprehensive grid of parameters was utilized to fine-tune the SupCon model. For
each dataset, the best parameter combination was selected based on the evaluation
phase, ensuring the most effective configuration for optimal model performance.

• batch size: Options included 16, and 32, allowing for variability in the number
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of samples processed before the model’s internal parameters are updated.

• learning rate: Tested values were 0.1, and 0.01, to adjust the rate at which
the model learns during the training phase.

• temperature: Experimented with values of 2, 2.8, and 1.8 to fine-tune the
scaling factor applied to the output of the dot product in the contrastive loss
calculation.

• epochs: The model was trained for 200 epochs, determining the number of
complete passes through the entire training dataset.

7.3.2 Performance Comparison with Different Models
In assessing our Supervised Contrastive Learning (SupCon) model’s performance
on the financial dataset, it is crucial to compare its results with those of other
models. This comparison includes TS2Vec, two shallow models (Gradient Boosting
and Random Forest), and ARIMA. Each model brings a unique approach to time
series forecasting:

• TS2Vec: A time series representation learning model that captures temporal
dynamics and dependencies in data.

• Gradient Boosting: An ensemble technique that builds models sequentially to
correct errors of the predecessors, using decision trees as the base learners.

• Random Forest: An ensemble learning method that operates by construct-
ing multiple decision trees during training for more reliable and accurate
predictions.

• ARIMA (AutoRegressive Integrated Moving Average): A classic statistical
model for analyzing and forecasting time series data, focusing on capturing
different aspects of temporal patterns.

These models represent a spectrum of methodologies, from machine learning
to traditional statistical approaches, offering a comprehensive view of current
capabilities in financial market prediction.

TS2Vec

The analysis of TS2Vec results across the different label types (3 Days, 5 Days, and
7 Days) reveals a clear pattern of performance degradation as the prediction horizon
extends. This trend is indicative of the increasing difficulty in forecasting market
movements over longer periods using TS2Vec. Specifically, the model struggles with
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precision and recall, showing a notable decline in accuracy and F1 scores as the
label type moves from 3 Days to 7 Days. This pattern underscores the challenges
inherent in predicting stock market behavior, where longer-term predictions be-
come progressively uncertain due to the growing influence of unforeseeable market
variables and events.

The performance of the TS2Vec model on a 3-day prediction window, Table
7.6, evaluated through the NASDAQ dataset, presents a multifaceted view of its
capabilities. With an average accuracy of 0.32, the model demonstrates a modest
ability to predict market behaviors accurately. The precision, recall, and F1 scores
across three labels (0, 1, and 2) reveal a nuanced performance: Label 1, associ-
ated with the highest recall of 0.57, indicates a better model sensitivity for this
category, albeit with a lower precision of 0.16, suggesting potential overfitting or
misclassification issues for other labels. The balance between precision and recall
is further illustrated by the F1 scores, with Label 2 showing a relatively better
balance compared to Labels 0 and 1.

Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AVG 0.32 0.27 0.25 0.24 0.16 0.57 0.18 0.27 0.36 0.29
STD 0.21 0.32 0.33 0.29 0.19 0.45 0.15 0.28 0.40 0.30

Table 7.6: Average Scores of TS2Vec on label 3D over NASDAQ dataset.

The standard deviation metrics highlight considerable variability in the model’s
performance across different runs, especially in precision and recall for all labels,
which points to the model’s sensitivity to the dataset’s characteristics.

Proceeding with an in depth view for the 3 Days label, Table 7.7, TS2Vec exhib-
ited moderate accuracy with certain stocks performing notably better than others,
such as AKAM and LULU, which showcased a decent balance between recall and
precision across classes. However, several stocks like AAPL and ADBE displayed
extremely poor performance, indicating a struggle in capturing the short-term
market movements accurately.

Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AAL 0.55 0.68 0.43 0.53 0.55 0.45 0.50 0.48 0.81 0.60
AAPL 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
ADBE 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
ADI 0.13 0.00 0.00 0.00 0.13 1.00 0.23 0.00 0.00 0.00
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)

ADP 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
ADSK 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
AKAM 0.64 0.64 0.79 0.71 0.89 0.07 0.13 0.63 0.83 0.71
ALGN 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.41 1.00 0.58
AMAT 0.45 0.38 0.01 0.03 0.00 0.00 0.00 0.45 0.98 0.62
AMD 0.52 0.81 0.18 0.30 0.00 0.00 0.00 0.48 0.96 0.64
AMGN 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
AMZN 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
ASML 0.06 0.00 0.00 0.00 0.06 1.00 0.12 0.00 0.00 0.00
ATVI 0.63 0.69 0.73 0.71 0.00 0.00 0.00 0.56 0.80 0.66
AVGO 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.49 1.00 0.65
BIDU 0.58 0.65 0.72 0.68 0.44 0.26 0.33 0.56 0.69 0.62
BIIB 0.52 0.53 0.76 0.63 0.00 0.00 0.00 0.50 0.67 0.57
BKNG 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
BMRN 0.57 0.56 0.79 0.66 0.00 0.00 0.00 0.59 0.76 0.66
CDNS 0.05 0.00 0.00 0.00 0.05 1.00 0.10 0.00 0.00 0.00
CHKP 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00
CHRW 0.52 0.69 0.43 0.53 0.27 0.06 0.10 0.47 0.89 0.62
CMCSA 0.19 0.00 0.00 0.00 0.19 1.00 0.33 0.00 0.00 0.00
COST 0.11 0.00 0.00 0.00 0.11 1.00 0.19 0.00 0.00 0.00
CSCO 0.57 0.54 0.87 0.67 0.31 0.04 0.07 0.64 0.57 0.61
CSX 0.58 0.53 0.94 0.67 0.00 0.00 0.00 0.79 0.39 0.53
CTSH 0.59 0.68 0.65 0.67 0.34 0.34 0.34 0.66 0.70 0.68
DLTR 0.49 0.45 0.64 0.53 0.00 0.00 0.00 0.55 0.58 0.56
EBAY 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
EXPD 0.51 0.57 0.43 0.49 0.25 0.46 0.32 0.68 0.61 0.64
FAST 0.20 0.00 0.00 0.00 0.20 1.00 0.34 0.00 0.00 0.00
GILD 0.40 0.36 0.98 0.52 0.00 0.00 0.00 0.67 0.25 0.37
GOOG 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
GOOGL 0.11 0.00 0.00 0.00 0.11 1.00 0.20 0.00 0.00 0.00
GRMN 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
HSIC 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)

IDXX 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
INCY 0.53 0.54 0.80 0.64 0.00 0.00 0.00 0.53 0.72 0.61
INTC 0.50 0.66 0.43 0.53 0.28 0.34 0.31 0.50 0.70 0.59
INTU 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
ISRG 0.67 0.71 0.65 0.68 0.00 0.00 0.00 0.65 0.80 0.72
LBTYA 0.54 0.60 0.58 0.59 0.48 0.43 0.45 0.54 0.64 0.59
LBTYK 0.57 0.61 0.76 0.68 0.53 0.32 0.40 0.55 0.68 0.61
LULU 0.72 0.75 0.74 0.74 0.00 0.00 0.00 0.69 0.83 0.75
MAR 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
MAT 0.47 0.66 0.56 0.61 0.35 0.66 0.46 0.62 0.22 0.32
MDLZ 0.23 0.00 0.00 0.00 0.23 1.00 0.37 0.00 0.00 0.00
MELI 0.49 0.90 0.14 0.24 0.00 0.00 0.00 0.46 0.98 0.62
MNST 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
MSFT 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
MU 0.53 0.76 0.34 0.47 0.00 0.00 0.00 0.47 0.93 0.63
NFLX 0.61 0.75 0.46 0.57 0.00 0.00 0.00 0.55 0.89 0.68
NTES 0.65 0.78 0.58 0.66 0.00 0.00 0.00 0.58 0.87 0.70
NVDA 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.49 1.00 0.66
ORLY 0.11 0.00 0.00 0.00 0.11 1.00 0.19 0.00 0.00 0.00
PAYX 0.13 0.00 0.00 0.00 0.13 1.00 0.24 0.00 0.00 0.00
PCAR 0.52 0.60 0.59 0.59 0.29 0.18 0.23 0.54 0.71 0.61
PEP 0.19 0.00 0.00 0.00 0.19 1.00 0.31 0.00 0.00 0.00
QCOM 0.61 0.68 0.58 0.62 1.00 0.10 0.18 0.55 0.83 0.66
REGN 0.49 0.44 0.95 0.60 0.00 0.00 0.00 0.73 0.28 0.40
ROST 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
SBUX 0.15 0.00 0.00 0.00 0.15 1.00 0.25 0.00 0.00 0.00
SIRI 0.26 0.00 0.00 0.00 0.26 1.00 0.41 0.00 0.00 0.00
SNPS 0.08 0.00 0.00 0.00 0.08 1.00 0.14 0.00 0.00 0.00
SRCL 0.49 0.65 0.39 0.49 0.37 0.53 0.43 0.57 0.56 0.57
STX 0.16 0.57 0.08 0.13 0.10 0.56 0.18 0.33 0.10 0.16
SWKS 0.54 0.65 0.50 0.56 0.00 0.00 0.00 0.47 0.81 0.59
TMUS 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)

TXN 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
VOD 0.52 0.51 0.64 0.57 0.56 0.42 0.48 0.47 0.56 0.51
VRSK 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
VRTX 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
WBA 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.29 1.00 0.45
WDC 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.00 0.48
XEL 0.16 0.00 0.00 0.00 0.16 1.00 0.27 0.00 0.00 0.00

Average results:
AVG 0.32 0.27 0.25 0.24 0.16 0.57 0.18 0.27 0.36 0.29
STD 0.21 0.32 0.33 0.29 0.19 0.45 0.15 0.28 0.40 0.30

Table 7.7: Scores of TS2Vec on label 3D over NASDAQ dataset.

Looking at 5-day results, Table 7.8, the model’s accuracy stands at a lower
average of 0.19, suggesting challenges in general prediction capabilities over this
timeframe. Precision and recall metrics highlight a pronounced discrepancy across
labels, indicating the model’s heightened sensitivity in identifying this particular
state, yet this is coupled with a low precision of 0.11, reflecting a tendency for false
positives. The F1 scores suggest difficulties in achieving a balanced precision-recall
trade-off.

Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AVG 0.19 0.02 0.01 0.01 0.11 0.76 0.19 0.08 0.22 0.12
STD 0.11 0.08 0.09 0.07 0.08 0.43 0.13 0.16 0.41 0.21

Table 7.8: Average Scores of TS2Vec on label 5D over NASDAQ dataset.

The standard deviation values indicate a significant variability in the model’s per-
formance, particularly in recall and precision across labels, showcasing the model’s
fluctuating reliability. This variability, especially noted in the F1 scores, underscores
the challenge of model consistency over the 5-day prediction horizon and highlights
the importance of further optimization to improve prediction accuracy and stability.

5 Days label complete results, Table 7.9, were generally lower in performance,
with many stocks showing a significant drop in accuracy and a tendency toward
predicting a single class, often leading to a high recall but extremely low precision
for that class. This suggests that as the prediction window widens, TS2Vec finds
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it increasingly difficult to make accurate predictions, possibly due to the added
complexity and variability in stock price movements over longer periods.

Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AAL 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.29 1.00 0.44
AAPL 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
ADBE 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
ADI 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
ADP 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
ADSK 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
AKAM 0.23 0.00 0.00 0.00 0.23 1.00 0.38 0.00 0.00 0.00
ALGN 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.40 1.00 0.58
AMAT 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
AMD 0.05 0.00 0.00 0.00 0.05 1.00 0.10 0.00 0.00 0.00
AMGN 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
AMZN 0.06 0.00 0.00 0.00 0.06 1.00 0.11 0.00 0.00 0.00
ASML 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
ATVI 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.51
AVGO 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.48 1.00 0.65
BIDU 0.25 0.00 0.00 0.00 0.25 1.00 0.40 0.00 0.00 0.00
BIIB 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.32 1.00 0.49
BKNG 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00
BMRN 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.51
CDNS 0.06 0.00 0.00 0.00 0.06 1.00 0.12 0.00 0.00 0.00
CHKP 0.20 0.00 0.00 0.00 0.20 1.00 0.33 0.00 0.00 0.00
CHRW 0.24 0.00 0.00 0.00 0.24 1.00 0.39 0.00 0.00 0.00
CMCSA 0.19 0.00 0.00 0.00 0.19 1.00 0.31 0.00 0.00 0.00
COST 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
CSCO 0.23 0.00 0.00 0.00 0.23 1.00 0.37 0.00 0.00 0.00
CSX 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
CTSH 0.26 0.00 0.00 0.00 0.26 1.00 0.41 0.00 0.00 0.00
DLTR 0.15 0.00 0.00 0.00 0.15 1.00 0.27 0.00 0.00 0.00
EBAY 0.13 0.00 0.00 0.00 0.13 1.00 0.23 0.00 0.00 0.00
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
EXPD 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
FAST 0.21 0.00 0.00 0.00 0.21 1.00 0.35 0.00 0.00 0.00
GILD 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.51
GOOG 0.10 0.00 0.00 0.00 0.10 1.00 0.18 0.00 0.00 0.00
GOOGL 0.10 0.00 0.00 0.00 0.10 1.00 0.17 0.00 0.00 0.00
GRMN 0.16 0.00 0.00 0.00 0.16 1.00 0.27 0.00 0.00 0.00
HSIC 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00
IDXX 0.06 0.00 0.00 0.00 0.06 1.00 0.11 0.00 0.00 0.00
INCY 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.50
INTC 0.21 0.00 0.00 0.00 0.21 1.00 0.35 0.00 0.00 0.00
INTU 0.07 0.00 0.00 0.00 0.07 1.00 0.14 0.00 0.00 0.00
ISRG 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
LBTYA 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.00 0.46
LBTYK 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.00 0.48
LULU 0.11 0.00 0.00 0.00 0.11 1.00 0.19 0.00 0.00 0.00
MAR 0.13 0.00 0.00 0.00 0.13 1.00 0.23 0.00 0.00 0.00
MAT 0.28 0.00 0.00 0.00 0.28 1.00 0.43 0.00 0.00 0.00
MDLZ 0.25 0.00 0.00 0.00 0.25 1.00 0.39 0.00 0.00 0.00
MELI 0.05 0.00 0.00 0.00 0.05 1.00 0.10 0.00 0.00 0.00
MNST 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
MSFT 0.10 0.00 0.00 0.00 0.10 1.00 0.19 0.00 0.00 0.00
MU 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
NFLX 0.10 0.00 0.00 0.00 0.10 1.00 0.18 0.00 0.00 0.00
NTES 0.42 0.31 0.02 0.04 0.00 0.00 0.00 0.42 0.96 0.58
NVDA 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.72 0.59
ORLY 0.10 0.00 0.00 0.00 0.10 1.00 0.17 0.00 0.00 0.00
PAYX 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
PCAR 0.24 0.00 0.00 0.00 0.24 1.00 0.39 0.00 0.00 0.00
PEP 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
QCOM 0.16 0.00 0.00 0.00 0.16 1.00 0.27 0.00 0.00 0.00
REGN 0.44 0.43 0.81 0.56 0.00 0.00 0.00 0.49 0.24 0.32
ROST 0.13 0.00 0.00 0.00 0.13 1.00 0.22 0.00 0.00 0.00
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
SBUX 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
SIRI 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
SNPS 0.05 0.00 0.00 0.00 0.05 1.00 0.10 0.00 0.00 0.00
SRCL 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.00 0.44
STX 0.17 0.00 0.00 0.00 0.17 1.00 0.29 0.00 0.00 0.00
SWKS 0.40 0.54 0.12 0.20 0.00 0.00 0.00 0.38 0.91 0.54
TMUS 0.15 0.00 0.00 0.00 0.15 1.00 0.25 0.00 0.00 0.00
TXN 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
VOD 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.22 1.00 0.36
VRSK 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
VRTX 0.23 0.00 0.00 0.00 0.23 1.00 0.37 0.00 0.00 0.00
WBA 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.00 0.47
WDC 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.32 1.00 0.48
XEL 0.16 0.00 0.00 0.00 0.16 1.00 0.27 0.00 0.00 0.00

Average results:
AVG 0.19 0.02 0.01 0.01 0.11 0.76 0.19 0.08 0.22 0.12
STD 0.11 0.08 0.09 0.07 0.08 0.43 0.13 0.16 0.41 0.21

Table 7.9: Scores of TS2Vec on label 5D over NASDAQ dataset.

The TS2Vec model’s performance over a 7-day forecasting period, Table 7.10,
displays a slightly improved accuracy of 0.20, offering a glimpse into its predictive
nuances for longer-term forecasts. The model exhibits low precision and recall
for Label 0 (Precision: 0.02, Recall: 0.01), indicating challenges in accurately
identifying this particular market state, as reflected in the negligible F1 score
(0.01). Contrastingly, Label 1 shows a stronger recall of 0.72, suggesting a relative
sensitivity in detecting this label. Label 2 presents an improvement in both recall
(0.26) and precision (0.09), achieving an F1 score of 0.14, hinting at a slightly better
balance in prediction performance for this category.

Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AVG 0.20 0.02 0.01 0.01 0.11 0.72 0.18 0.09 0.26 0.14
STD 0.11 0.08 0.10 0.06 0.08 0.45 0.14 0.17 0.43 0.23

Table 7.10: Average Scores of TS2Vec on label 7D over NASDAQ dataset.
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The standard deviation metrics highlight a considerable spread in performance
across evaluations, especially notable in the recall and F1 scores for Labels 1 and 2,
which indicates inconsistency in the model’s predictive reliability across different
instances of the dataset. This variability underscores the necessity for model
adjustments and enhancements to bolster predictive consistency and accuracy in
longer-duration forecasts.

The 7 Days label, shown in Table 7.11, analysis further confirmed the trend of
declining performance with an extended forecast horizon. Despite a few exceptions,
the overall ability of TS2Vec to generalize and accurately predict market movements
significantly waned, with most stocks showing an inclination towards single-class
predictions.

Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
AAL 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.00 0.44
AAPL 0.12 0.00 0.00 0.00 0.12 1.00 0.21 0.00 0.00 0.00
ADBE 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
ADI 0.13 0.00 0.00 0.00 0.13 1.00 0.23 0.00 0.00 0.00
ADP 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
ADSK 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
AKAM 0.24 0.00 0.00 0.00 0.24 1.00 0.38 0.00 0.00 0.00
ALGN 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.41 1.00 0.58
AMAT 0.09 0.00 0.00 0.00 0.09 1.00 0.16 0.00 0.00 0.00
AMD 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.45 1.00 0.62
AMGN 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
AMZN 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.39 1.00 0.56
ASML 0.06 0.00 0.00 0.00 0.06 1.00 0.12 0.00 0.00 0.00
ATVI 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.51
AVGO 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.49 1.00 0.65
BIDU 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.00 0.46
BIIB 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.32 1.00 0.49
BKNG 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
BMRN 0.26 0.00 0.00 0.00 0.26 1.00 0.41 0.00 0.00 0.00
CDNS 0.05 0.00 0.00 0.00 0.05 1.00 0.10 0.00 0.00 0.00
CHKP 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00

67



Experiments and Results

Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
CHRW 0.24 0.00 0.00 0.00 0.24 1.00 0.38 0.00 0.00 0.00
CMCSA 0.19 0.00 0.00 0.00 0.19 1.00 0.33 0.00 0.00 0.00
COST 0.11 0.00 0.00 0.00 0.11 1.00 0.19 0.00 0.00 0.00
CSCO 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
CSX 0.13 0.00 0.00 0.00 0.13 1.00 0.24 0.00 0.00 0.00
CTSH 0.24 0.00 0.00 0.00 0.24 1.00 0.38 0.00 0.00 0.00
DLTR 0.19 0.00 0.00 0.00 0.19 1.00 0.32 0.00 0.00 0.00
EBAY 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
EXPD 0.17 0.00 0.00 0.00 0.17 1.00 0.29 0.00 0.00 0.00
FAST 0.20 0.00 0.00 0.00 0.20 1.00 0.34 0.00 0.00 0.00
GILD 0.35 0.19 0.04 0.06 0.00 0.00 0.00 0.37 0.93 0.53
GOOG 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
GOOGL 0.11 0.00 0.00 0.00 0.11 1.00 0.20 0.00 0.00 0.00
GRMN 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
HSIC 0.18 0.00 0.00 0.00 0.18 1.00 0.31 0.00 0.00 0.00
IDXX 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
INCY 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.51
INTC 0.19 0.00 0.00 0.00 0.19 1.00 0.32 0.00 0.00 0.00
INTU 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
ISRG 0.08 0.00 0.00 0.00 0.08 1.00 0.14 0.00 0.00 0.00
LBTYA 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.00 0.44
LBTYK 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.00 0.44
LULU 0.08 0.00 0.00 0.00 0.08 1.00 0.15 0.00 0.00 0.00
MAR 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
MAT 0.31 0.00 0.00 0.00 0.31 1.00 0.47 0.00 0.00 0.00
MDLZ 0.23 0.00 0.00 0.00 0.23 1.00 0.37 0.00 0.00 0.00
MELI 0.06 0.00 0.00 0.00 0.06 1.00 0.12 0.00 0.00 0.00
MNST 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
MSFT 0.07 0.00 0.00 0.00 0.07 1.00 0.13 0.00 0.00 0.00
MU 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.40 1.00 0.58
NFLX 0.10 0.00 0.00 0.00 0.10 1.00 0.18 0.00 0.00 0.00
NTES 0.43 0.25 0.02 0.04 0.00 0.00 0.00 0.44 0.95 0.60
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Ticker Acc Prec(0) Rec(0) F1(0) Prec(1) Rec(1) F1(1) Prec(2) Rec(2) F1(2)
NVDA 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.49 1.00 0.66
ORLY 0.11 0.00 0.00 0.00 0.11 1.00 0.19 0.00 0.00 0.00
PAYX 0.13 0.00 0.00 0.00 0.13 1.00 0.24 0.00 0.00 0.00
PCAR 0.26 0.00 0.00 0.00 0.26 1.00 0.42 0.00 0.00 0.00
PEP 0.19 0.00 0.00 0.00 0.19 1.00 0.31 0.00 0.00 0.00
QCOM 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
REGN 0.40 0.39 0.85 0.53 0.00 0.00 0.00 0.48 0.18 0.26
ROST 0.09 0.00 0.00 0.00 0.09 1.00 0.17 0.00 0.00 0.00
SBUX 0.15 0.00 0.00 0.00 0.15 1.00 0.25 0.00 0.00 0.00
SIRI 0.26 0.00 0.00 0.00 0.26 1.00 0.41 0.00 0.00 0.00
SNPS 0.08 0.00 0.00 0.00 0.08 1.00 0.14 0.00 0.00 0.00
SRCL 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.00 0.44
STX 0.15 0.00 0.00 0.00 0.15 1.00 0.26 0.00 0.00 0.00
SWKS 0.38 0.53 0.12 0.19 0.00 0.00 0.00 0.36 0.90 0.52
TMUS 0.14 0.00 0.00 0.00 0.14 1.00 0.25 0.00 0.00 0.00
TXN 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
VOD 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.22 1.00 0.36
VRSK 0.12 0.00 0.00 0.00 0.12 1.00 0.22 0.00 0.00 0.00
VRTX 0.22 0.00 0.00 0.00 0.22 1.00 0.36 0.00 0.00 0.00
WBA 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.29 1.00 0.45
WDC 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.00 0.48
XEL 0.16 0.00 0.00 0.00 0.16 1.00 0.27 0.00 0.00 0.00

Average results:
AVG 0.20 0.02 0.01 0.01 0.11 0.72 0.18 0.09 0.26 0.14
STD 0.11 0.08 0.10 0.06 0.08 0.45 0.14 0.17 0.43 0.23

Table 7.11: Scores of TS2Vec on label 7D over NASDAQ dataset.

Comparing TS2Vec with the Supervised Contrastive Learning (SupCon) ap-
proach, SupCon demonstrates a more robust performance across all label types.
While both models face challenges in dealing with the unpredictable nature of stock
market data, SupCon’s method of leveraging contrastive learning appears to afford
it a resilience in capturing complex patterns and relationships within the data.
This is evidenced by its relatively higher accuracy and F1 scores. The comparison
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suggests that SupCon’s methodology, which focuses on learning representations by
contrasting positive and negative examples, may be better suited for the task of
financial time series forecasting, particularly in handling the nuanced and often
non-linear relationships that characterize market data.

This analysis underscores the value of exploring different deep learning architec-
tures and methodologies in the quest for more effective and reliable stock market
prediction models. The contrastive learning approach, as exemplified by SupCon,
offers a promising avenue for future research, potentially paving the way for ad-
vancements in predictive accuracy and model robustness in the face of the stock
market’s inherent volatility and complexity.

For the TS2Vec model, a standardized configuration was adopted to maintain
consistency across experiments:

• batch size: A fixed batch size of 8 was used, dictating the number of data
points processed in a single training step.

• epochs: The model underwent training for 30 epochs, providing a sufficient
number of iterations over the dataset to achieve substantial learning and
adaptation.

Shallow Models

The summarized performance metrics for Random Forest (RF) and Gradient Boost-
ing (GBoost) models, Table 7.12, over the NASDAQ dataset reveal insights into
their predictive abilities across different forecasting periods. Both models exhibit
comparable performance levels with accuracy hovering around the 0.40 mark, indi-
cating a moderate ability to correctly predict market states.

For RF, accuracy remains consistent across all prediction windows, suggesting
stability in its predictive capability. Precision and recall metrics across different
labels (0, 1, 2) for RF indicate a balanced ability to identify each market state,
with notable precision and recall for label 0 and label 2. However, both models
struggle with label 1, showing low precision and recall, highlighting difficulties in
predicting this specific market condition effectively.
GBoost shows a slight improvement in accuracy for the 5D predictions and main-
tains similar performance levels as RF in other aspects. It exhibits a slightly better
or comparable precision and recall for most labels across different time frames,
suggesting a nuanced edge in handling certain market conditions more effectively
than RF.
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Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

AVG RF 3D 0.39 0.40 0.47 0.15 0.11 0.43 0.43
AVG RF 5D 0.40 0.42 0.51 0.16 0.09 0.43 0.40
AVG RF 7D 0.40 0.39 0.44 0.17 0.10 0.42 0.46

STD RF 3D 0.07 0.09 0.27 0.13 0.15 0.08 0.26
STD RF 5D 0.06 0.10 0.27 0.18 0.14 0.13 0.27
STD RF 7D 0.06 0.12 0.29 0.19 0.15 0.12 0.29

Average results:
AVG GBoost 3D 0.40 0.42 0.46 0.16 0.11 0.43 0.44
AVG GBoost 5D 0.41 0.43 0.49 0.14 0.08 0.42 0.43
AVG GBoost 7D 0.40 0.43 0.41 0.16 0.11 0.43 0.49

STD GBoost 3D 0.07 0.06 0.29 0.21 0.19 0.08 0.28
STD GBoost 5D 0.07 0.10 0.29 0.18 0.17 0.13 0.29
STD GBoost 7D 0.06 0.13 0.30 0.22 0.18 0.12 0.29

Table 7.12: Average Scores of Random Forest (RF) and Gradient Boosting
(GBoost) over NASDAQ dataset.

The standard deviation values across metrics for both RF and GBoost indicate
a degree of variability in their performance, with GBoost showing a tendency for
higher variability in precision and recall for label 1 across prediction windows. This
suggests potential areas for model refinement, particularly in improving consistency
and reliability in predictions across different market states.

The examination of Random Forest (RF) and Gradient Boosting (GBoost)
models’ performance, Table 7.13, more in deep reveals distinct patterns and efficacy
in stock market prediction. Both models showcased variability in accuracy, pre-
cision, recall across different labels, indicating the complexity of stock movement
prediction and the sensitivity of models to different temporal scales.

For Random Forest, the average results show a moderate performance with slight
variations across different prediction horizons. The 3-day label predictions exhibit
a good response on average accuracy, precision, and recall, suggesting a balanced
but not highly accurate prediction capability. The 5-day and 7-day labels show a
slight increase in accuracy and precision, indicating a potentially better alignment
of the model’s predictive capability with slightly longer prediction horizons.

Gradient Boosting, on the other hand, displays a similar trend but with a
generally higher performance in accuracy and precision across the prediction labels.
This suggests that Gradient Boosting might be more adept at capturing the nuances
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of the stock market data for prediction purposes.
Comparing these results to the SupCon model, it’s evident that SupCon provides

a different approach to understanding and predicting stock market movements.
While RF and GBoost rely on traditional feature-based learning, SupCon’s con-
trastive learning framework might offer advantages in capturing complex, non-linear
relationships in the data. The choice between these models could depend on spe-
cific use cases, data characteristics, and the trade-off between interpretability and
predictive performance.

Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

AAL RF 3D 0.31 0.40 0.40 0.25 0.20 0.27 0.34
AAL RF 5D 0.38 0.40 0.61 0.40 0.42 0.21 0.08
AAL RF 7D 0.36 0.38 0.65 0.43 0.30 0.14 0.08
AAL GBoost 3D 0.34 0.41 0.29 0.36 0.31 0.28 0.41
AAL GBoost 5D 0.39 0.40 0.52 0.42 0.52 0.21 0.08
AAL GBoost 7D 0.39 0.41 0.52 0.47 0.32 0.29 0.32
AAPL RF 3D 0.15 0.39 0.17 0.04 0.55 0.67 0.08
AAPL RF 5D 0.42 0.28 0.10 0.00 0.00 0.44 0.82
AAPL RF 7D 0.39 0.28 0.09 0.00 0.00 0.41 0.81
AAPL GBoost 3D 0.25 0.43 0.37 0.04 0.38 0.54 0.11
AAPL GBoost 5D 0.43 0.36 0.14 0.00 0.00 0.45 0.80
AAPL GBoost 7D 0.40 0.30 0.09 0.00 0.00 0.41 0.82
ADBE RF 3D 0.49 0.51 0.31 0.25 0.03 0.48 0.72
ADBE RF 5D 0.43 0.43 0.53 0.00 0.00 0.45 0.40
ADBE RF 7D 0.41 0.44 0.24 0.07 0.13 0.49 0.60
ADBE GBoost 3D 0.48 0.49 0.22 0.00 0.00 0.48 0.80
ADBE GBoost 5D 0.46 0.45 0.50 0.00 0.00 0.47 0.48
ADBE GBoost 7D 0.45 0.46 0.30 0.09 0.07 0.48 0.65
ADI RF 3D 0.44 0.00 0.00 0.06 0.02 0.45 0.97
ADI RF 5D 0.45 0.44 0.95 0.00 0.00 0.58 0.08
ADI RF 7D 0.47 0.45 0.97 0.00 0.00 0.76 0.11
ADI GBoost 3D 0.45 0.50 0.01 0.00 0.00 0.45 0.99
ADI GBoost 5D 0.45 0.44 0.95 0.00 0.00 0.55 0.08
ADI GBoost 7D 0.47 0.45 0.96 0.00 0.00 0.74 0.13
ADP RF 3D 0.39 0.35 0.58 0.00 0.00 0.46 0.34
ADP RF 5D 0.40 0.39 0.97 0.00 0.00 0.56 0.04
ADP RF 7D 0.40 0.40 0.99 0.14 0.02 0.83 0.02
ADP GBoost 3D 0.15 0.28 0.04 0.13 0.90 0.33 0.03
ADP GBoost 5D 0.14 0.27 0.04 0.13 0.94 0.44 0.02
ADP GBoost 7D 0.40 0.40 0.99 0.00 0.00 0.88 0.03
ADSK RF 3D 0.44 0.51 0.41 0.08 0.10 0.46 0.53
ADSK RF 5D 0.45 0.51 0.47 0.17 0.07 0.43 0.54
ADSK RF 7D 0.47 0.51 0.48 0.06 0.04 0.48 0.54
ADSK GBoost 3D 0.43 0.55 0.29 0.07 0.12 0.46 0.64
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

ADSK GBoost 5D 0.45 0.50 0.41 0.00 0.00 0.41 0.62
ADSK GBoost 7D 0.46 0.49 0.44 0.00 0.00 0.43 0.58
AKAM RF 3D 0.37 0.40 0.53 0.16 0.08 0.40 0.39
AKAM RF 5D 0.41 0.42 0.44 0.26 0.13 0.42 0.54
AKAM RF 7D 0.39 0.45 0.48 0.17 0.05 0.38 0.52
AKAM GBoost 3D 0.39 0.42 0.48 0.26 0.13 0.40 0.47
AKAM GBoost 5D 0.43 0.47 0.48 0.22 0.02 0.41 0.64
AKAM GBoost 7D 0.37 0.40 0.41 0.12 0.03 0.38 0.56
ALGN RF 3D 0.47 0.48 0.62 0.00 0.00 0.44 0.36
ALGN RF 5D 0.50 0.55 0.69 1.00 0.03 0.39 0.31
ALGN RF 7D 0.47 0.65 0.19 0.00 0.00 0.44 0.89
ALGN GBoost 3D 0.49 0.51 0.64 0.00 0.00 0.45 0.39
ALGN GBoost 5D 0.51 0.57 0.69 0.00 0.00 0.40 0.36
ALGN GBoost 7D 0.47 0.65 0.23 0.00 0.00 0.43 0.85
AMAT RF 3D 0.49 0.48 0.95 0.00 0.00 0.57 0.07
AMAT RF 5D 0.46 0.45 0.96 0.00 0.00 0.57 0.06
AMAT RF 7D 0.44 0.23 0.01 0.00 0.00 0.44 0.96
AMAT GBoost 3D 0.46 0.47 0.92 0.00 0.00 0.48 0.04
AMAT GBoost 5D 0.46 0.45 0.96 0.00 0.00 0.60 0.06
AMAT GBoost 7D 0.43 0.17 0.01 0.00 0.00 0.44 0.94
AMD RF 3D 0.31 0.39 0.17 0.02 0.11 0.46 0.46
AMD RF 5D 0.47 0.46 0.34 0.00 0.00 0.48 0.66
AMD RF 7D 0.47 0.46 0.29 0.00 0.00 0.47 0.74
AMD GBoost 3D 0.29 0.43 0.20 0.03 0.21 0.49 0.39
AMD GBoost 5D 0.48 0.48 0.50 0.00 0.00 0.49 0.52
AMD GBoost 7D 0.44 0.43 0.25 0.00 0.00 0.45 0.73
AMGN RF 3D 0.43 0.44 0.48 0.00 0.00 0.44 0.60
AMGN RF 5D 0.45 0.44 0.70 0.10 0.02 0.52 0.43
AMGN RF 7D 0.42 0.42 0.60 0.29 0.02 0.42 0.45
AMGN GBoost 3D 0.44 0.44 0.47 0.00 0.00 0.44 0.64
AMGN GBoost 5D 0.45 0.44 0.65 0.00 0.00 0.46 0.49
AMGN GBoost 7D 0.48 0.45 0.83 0.00 0.00 0.55 0.38
AMZN RF 3D 0.50 0.53 0.64 0.00 0.00 0.44 0.40
AMZN RF 5D 0.46 0.52 0.55 0.00 0.00 0.40 0.42
AMZN RF 7D 0.45 0.55 0.43 0.50 0.06 0.37 0.54
AMZN GBoost 3D 0.48 0.51 0.63 0.00 0.00 0.43 0.37
AMZN GBoost 5D 0.41 0.49 0.44 0.00 0.00 0.36 0.43
AMZN GBoost 7D 0.45 0.56 0.38 0.00 0.00 0.38 0.62
ASML RF 3D 0.49 0.62 0.07 0.00 0.00 0.48 0.96
ASML RF 5D 0.48 1.00 0.00 0.00 0.00 0.48 1.00
ASML RF 7D 0.48 0.00 0.00 0.00 0.00 0.48 1.00
ASML GBoost 3D 0.48 0.50 0.01 0.00 0.00 0.48 0.99
ASML GBoost 5D 0.48 1.00 0.00 0.00 0.00 0.48 1.00
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

ASML GBoost 7D 0.48 1.00 0.00 0.00 0.00 0.48 1.00
ATVI RF 3D 0.38 0.40 0.27 0.33 0.01 0.37 0.68
ATVI RF 5D 0.39 0.49 0.30 0.08 0.01 0.35 0.72
ATVI RF 7D 0.36 0.46 0.19 0.00 0.00 0.34 0.80
ATVI GBoost 3D 0.39 0.42 0.25 0.00 0.00 0.38 0.75
ATVI GBoost 5D 0.39 0.47 0.32 0.00 0.00 0.36 0.69
ATVI GBoost 7D 0.37 0.49 0.21 0.00 0.00 0.33 0.78
AVGO RF 3D 0.48 0.00 0.00 0.00 0.00 0.48 1.00
AVGO RF 5D 0.48 0.00 0.00 0.00 0.00 0.48 1.00
AVGO RF 7D 0.49 0.00 0.00 0.00 0.00 0.49 1.00
AVGO GBoost 3D 0.48 0.50 0.00 0.00 0.00 0.48 1.00
AVGO GBoost 5D 0.48 0.00 0.00 0.00 0.00 0.48 1.00
AVGO GBoost 7D 0.49 0.00 0.00 0.00 0.00 0.49 1.00
BIDU RF 3D 0.32 0.33 0.21 0.30 0.32 0.32 0.44
BIDU RF 5D 0.33 0.39 0.22 0.26 0.26 0.33 0.52
BIDU RF 7D 0.32 0.44 0.25 0.24 0.22 0.31 0.52
BIDU GBoost 3D 0.36 0.39 0.32 0.34 0.23 0.35 0.52
BIDU GBoost 5D 0.33 0.44 0.26 0.30 0.29 0.30 0.46
BIDU GBoost 7D 0.32 0.43 0.30 0.25 0.21 0.28 0.44
BIIB RF 3D 0.40 0.48 0.37 0.25 0.17 0.39 0.58
BIIB RF 5D 0.39 0.49 0.44 0.23 0.10 0.35 0.56
BIIB RF 7D 0.38 0.44 0.43 0.22 0.06 0.35 0.59
BIIB GBoost 3D 0.37 0.41 0.27 0.33 0.03 0.36 0.68
BIIB GBoost 5D 0.39 0.47 0.39 0.29 0.03 0.35 0.68
BIIB GBoost 7D 0.37 0.43 0.36 0.00 0.00 0.34 0.71
BKNG RF 3D 0.40 0.41 0.68 0.17 0.06 0.42 0.27
BKNG RF 5D 0.43 0.43 0.77 0.24 0.14 0.53 0.23
BKNG RF 7D 0.45 0.45 0.77 0.16 0.08 0.57 0.28
BKNG GBoost 3D 0.43 0.42 0.30 0.23 0.04 0.44 0.71
BKNG GBoost 5D 0.43 0.43 0.78 0.23 0.10 0.50 0.24
BKNG GBoost 7D 0.33 0.40 0.37 0.12 0.30 0.58 0.30
BMRN RF 3D 0.35 0.38 0.46 0.25 0.15 0.36 0.41
BMRN RF 5D 0.34 0.38 0.41 0.28 0.18 0.34 0.41
BMRN RF 7D 0.37 0.40 0.48 0.21 0.08 0.36 0.45
BMRN GBoost 3D 0.36 0.35 0.41 0.20 0.01 0.37 0.58
BMRN GBoost 5D 0.37 0.39 0.33 0.20 0.01 0.37 0.73
BMRN GBoost 7D 0.40 0.46 0.41 0.00 0.00 0.36 0.67
CDNS RF 3D 0.46 0.27 0.06 0.00 0.00 0.48 0.87
CDNS RF 5D 0.50 0.44 0.03 0.00 0.00 0.51 0.97
CDNS RF 7D 0.48 0.46 0.96 0.00 0.00 0.69 0.11
CDNS GBoost 3D 0.46 0.29 0.07 0.00 0.00 0.48 0.86
CDNS GBoost 5D 0.50 0.47 0.31 0.00 0.00 0.52 0.72
CDNS GBoost 7D 0.49 0.40 0.05 0.00 0.00 0.49 0.93
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CHKP RF 3D 0.39 0.44 0.53 0.25 0.20 0.38 0.34
CHKP RF 5D 0.39 0.41 0.63 0.16 0.07 0.41 0.30
CHKP RF 7D 0.38 0.43 0.58 0.21 0.23 0.40 0.23
CHKP GBoost 3D 0.36 0.39 0.57 0.19 0.05 0.34 0.30
CHKP GBoost 5D 0.36 0.39 0.59 0.12 0.04 0.35 0.28
CHKP GBoost 7D 0.37 0.41 0.62 0.16 0.16 0.44 0.19
CHRW RF 3D 0.33 0.40 0.43 0.17 0.26 0.36 0.25
CHRW RF 5D 0.39 0.40 0.61 0.42 0.17 0.37 0.32
CHRW RF 7D 0.39 0.46 0.44 0.26 0.24 0.39 0.42
CHRW GBoost 3D 0.35 0.38 0.44 0.19 0.19 0.41 0.34
CHRW GBoost 5D 0.37 0.39 0.58 0.29 0.04 0.35 0.36
CHRW GBoost 7D 0.39 0.49 0.32 0.29 0.24 0.37 0.55
CMCSA RF 3D 0.39 0.43 0.41 0.19 0.10 0.40 0.50
CMCSA RF 5D 0.27 0.37 0.26 0.16 0.36 0.35 0.25
CMCSA RF 7D 0.32 0.33 0.20 0.09 0.06 0.36 0.59
CMCSA GBoost 3D 0.29 0.32 0.10 0.18 0.36 0.37 0.45
CMCSA GBoost 5D 0.31 0.45 0.28 0.17 0.37 0.39 0.32
CMCSA GBoost 7D 0.33 0.35 0.18 0.15 0.14 0.38 0.59
COST RF 3D 0.41 0.40 0.93 0.00 0.00 0.53 0.08
COST RF 5D 0.43 0.40 0.97 0.33 0.02 0.82 0.10
COST RF 7D 0.41 0.39 0.95 0.00 0.00 0.68 0.11
COST GBoost 3D 0.40 0.40 0.90 0.00 0.00 0.44 0.09
COST GBoost 5D 0.43 0.41 0.98 0.00 0.00 0.84 0.10
COST GBoost 7D 0.42 0.39 0.95 0.00 0.00 0.66 0.12
CSCO RF 3D 0.43 0.47 0.50 0.20 0.08 0.43 0.52
CSCO RF 5D 0.39 0.40 0.51 0.29 0.14 0.40 0.41
CSCO RF 7D 0.40 0.41 0.66 0.26 0.16 0.46 0.28
CSCO GBoost 3D 0.45 0.47 0.44 0.31 0.13 0.46 0.61
CSCO GBoost 5D 0.39 0.38 0.49 0.30 0.14 0.43 0.45
CSCO GBoost 7D 0.41 0.40 0.68 0.47 0.06 0.41 0.33
CSX RF 3D 0.38 0.43 0.61 0.17 0.29 0.53 0.17
CSX RF 5D 0.46 0.49 0.43 0.00 0.00 0.44 0.65
CSX RF 7D 0.39 0.46 0.46 0.00 0.00 0.37 0.45
CSX GBoost 3D 0.43 0.44 0.90 0.21 0.08 0.59 0.09
CSX GBoost 5D 0.52 0.49 0.87 0.00 0.00 0.62 0.33
CSX GBoost 7D 0.44 0.47 0.55 0.17 0.06 0.42 0.43
CTSH RF 3D 0.37 0.44 0.52 0.18 0.16 0.38 0.32
CTSH RF 5D 0.33 0.40 0.38 0.26 0.31 0.32 0.29
CTSH RF 7D 0.32 0.41 0.29 0.25 0.25 0.29 0.40
CTSH GBoost 3D 0.38 0.44 0.53 0.18 0.10 0.35 0.37
CTSH GBoost 5D 0.33 0.40 0.41 0.25 0.31 0.32 0.25
CTSH GBoost 7D 0.36 0.43 0.38 0.33 0.24 0.31 0.42
DLTR RF 3D 0.38 0.38 0.71 0.25 0.06 0.40 0.20
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DLTR RF 5D 0.39 0.40 0.78 0.10 0.01 0.36 0.16
DLTR RF 7D 0.40 0.39 0.78 0.19 0.04 0.46 0.20
DLTR GBoost 3D 0.39 0.40 0.75 0.00 0.00 0.37 0.21
DLTR GBoost 5D 0.39 0.40 0.81 0.17 0.01 0.34 0.13
DLTR GBoost 7D 0.41 0.41 0.79 0.56 0.05 0.43 0.22
EBAY RF 3D 0.42 0.43 0.24 0.35 0.15 0.42 0.72
EBAY RF 5D 0.43 0.49 0.70 0.11 0.03 0.33 0.23
EBAY RF 7D 0.36 0.39 0.22 0.18 0.04 0.36 0.67
EBAY GBoost 3D 0.43 0.48 0.22 0.27 0.07 0.43 0.80
EBAY GBoost 5D 0.45 0.50 0.72 0.17 0.01 0.34 0.27
EBAY GBoost 7D 0.41 0.47 0.54 0.33 0.01 0.35 0.42
EXPD RF 3D 0.42 0.41 0.93 0.29 0.02 0.51 0.10
EXPD RF 5D 0.41 0.41 0.65 0.25 0.01 0.39 0.29
EXPD RF 7D 0.40 0.40 0.81 0.25 0.01 0.42 0.16
EXPD GBoost 3D 0.41 0.40 0.95 0.00 0.00 0.56 0.09
EXPD GBoost 5D 0.39 0.39 0.63 0.00 0.00 0.39 0.29
EXPD GBoost 7D 0.41 0.41 0.96 0.00 0.00 0.44 0.04
FAST RF 3D 0.39 0.41 0.90 0.10 0.03 0.41 0.07
FAST RF 5D 0.39 0.41 0.85 0.27 0.26 0.75 0.04
FAST RF 7D 0.39 0.42 0.84 0.11 0.04 0.35 0.11
FAST GBoost 3D 0.40 0.41 0.87 0.32 0.10 0.43 0.11
FAST GBoost 5D 0.39 0.41 0.87 0.27 0.24 0.55 0.03
FAST GBoost 7D 0.40 0.42 0.86 0.11 0.03 0.41 0.13
GILD RF 3D 0.33 0.34 0.70 0.25 0.08 0.31 0.17
GILD RF 5D 0.30 0.31 0.80 0.38 0.05 0.20 0.08
GILD RF 7D 0.30 0.31 0.72 0.25 0.13 0.33 0.09
GILD GBoost 3D 0.35 0.35 0.73 0.41 0.08 0.35 0.22
GILD GBoost 5D 0.32 0.33 0.96 0.39 0.04 0.00 0.00
GILD GBoost 7D 0.30 0.31 0.76 0.27 0.11 0.26 0.07
GOOG RF 3D 0.47 0.47 1.00 0.00 0.00 0.57 0.02
GOOG RF 5D 0.32 0.50 0.60 0.10 0.45 0.80 0.02
GOOG RF 7D 0.47 0.28 0.02 1.00 0.04 0.47 0.98
GOOG GBoost 3D 0.46 0.46 0.99 0.00 0.00 0.25 0.01
GOOG GBoost 5D 0.32 0.47 0.63 0.08 0.33 0.40 0.02
GOOG GBoost 7D 0.48 0.31 0.02 0.80 0.08 0.48 0.99
GOOGL RF 3D 0.46 0.46 0.98 0.00 0.00 0.50 0.03
GOOGL RF 5D 0.45 0.45 0.98 0.00 0.00 0.35 0.03
GOOGL RF 7D 0.44 0.09 0.00 0.00 0.00 0.45 0.98
GOOGL GBoost 3D 0.46 0.46 0.99 0.00 0.00 0.60 0.03
GOOGL GBoost 5D 0.45 0.45 0.99 0.50 0.02 0.43 0.03
GOOGL GBoost 7D 0.44 0.22 0.02 1.00 0.02 0.45 0.97
GRMN RF 3D 0.44 0.50 0.20 0.29 0.09 0.44 0.82
GRMN RF 5D 0.25 0.45 0.20 0.14 0.51 0.33 0.20
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

GRMN RF 7D 0.25 0.52 0.20 0.12 0.46 0.35 0.22
GRMN GBoost 3D 0.44 0.48 0.19 0.00 0.00 0.43 0.84
GRMN GBoost 5D 0.24 0.45 0.20 0.14 0.53 0.30 0.17
GRMN GBoost 7D 0.21 0.36 0.12 0.10 0.36 0.30 0.24
HSIC RF 3D 0.30 0.41 0.52 0.15 0.34 0.26 0.04
HSIC RF 5D 0.36 0.37 0.48 0.04 0.01 0.38 0.40
HSIC RF 7D 0.39 0.39 0.76 0.27 0.04 0.39 0.20
HSIC GBoost 3D 0.42 0.42 0.90 0.11 0.01 0.45 0.09
HSIC GBoost 5D 0.41 0.41 0.93 0.10 0.01 0.50 0.07
HSIC GBoost 7D 0.40 0.40 0.96 0.14 0.01 0.48 0.05
IDXX RF 3D 0.46 0.44 0.76 0.00 0.00 0.50 0.24
IDXX RF 5D 0.49 0.50 0.27 0.00 0.00 0.48 0.76
IDXX RF 7D 0.42 0.46 0.57 0.04 0.06 0.47 0.33
IDXX GBoost 3D 0.44 0.44 0.62 0.00 0.00 0.46 0.34
IDXX GBoost 5D 0.47 0.47 0.13 0.00 0.00 0.47 0.87
IDXX GBoost 7D 0.40 0.48 0.50 0.04 0.11 0.48 0.35
INCY RF 3D 0.34 0.36 0.38 0.29 0.16 0.35 0.44
INCY RF 5D 0.36 0.38 0.37 0.20 0.05 0.36 0.62
INCY RF 7D 0.38 0.40 0.40 0.27 0.08 0.38 0.62
INCY GBoost 3D 0.40 0.45 0.23 0.17 0.01 0.39 0.85
INCY GBoost 5D 0.38 0.49 0.29 0.00 0.00 0.35 0.83
INCY GBoost 7D 0.35 0.39 0.23 0.00 0.00 0.34 0.80
INTC RF 3D 0.37 0.41 0.24 0.29 0.29 0.39 0.58
INTC RF 5D 0.35 0.46 0.26 0.25 0.14 0.32 0.59
INTC RF 7D 0.37 0.55 0.29 0.30 0.22 0.31 0.57
INTC GBoost 3D 0.40 0.47 0.21 0.30 0.31 0.41 0.67
INTC GBoost 5D 0.37 0.50 0.26 0.30 0.17 0.34 0.66
INTC GBoost 7D 0.32 0.46 0.22 0.22 0.15 0.29 0.57
INTU RF 3D 0.12 0.50 0.05 0.06 0.79 0.56 0.10
INTU RF 5D 0.49 0.44 0.06 0.00 0.00 0.49 0.94
INTU RF 7D 0.53 0.51 0.32 0.00 0.00 0.55 0.78
INTU GBoost 3D 0.12 0.50 0.06 0.06 0.82 0.57 0.09
INTU GBoost 5D 0.49 0.43 0.06 0.00 0.00 0.49 0.94
INTU GBoost 7D 0.53 0.49 0.36 0.00 0.00 0.55 0.75
ISRG RF 3D 0.44 0.41 0.46 0.00 0.00 0.48 0.50
ISRG RF 5D 0.39 0.43 0.59 0.07 0.13 0.50 0.26
ISRG RF 7D 0.43 0.43 0.70 0.08 0.02 0.47 0.25
ISRG GBoost 3D 0.46 0.37 0.17 0.00 0.00 0.48 0.78
ISRG GBoost 5D 0.41 0.40 0.65 0.21 0.09 0.45 0.27
ISRG GBoost 7D 0.43 0.43 0.64 0.00 0.00 0.43 0.31
LBTYA RF 3D 0.34 0.36 0.33 0.34 0.37 0.32 0.31
LBTYA RF 5D 0.32 0.33 0.30 0.33 0.31 0.31 0.35
LBTYA RF 7D 0.33 0.38 0.31 0.35 0.30 0.28 0.40
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LBTYA GBoost 3D 0.35 0.35 0.25 0.34 0.45 0.35 0.35
LBTYA GBoost 5D 0.29 0.31 0.21 0.33 0.32 0.26 0.35
LBTYA GBoost 7D 0.33 0.40 0.27 0.34 0.33 0.27 0.40
LBTYK RF 3D 0.34 0.37 0.37 0.33 0.33 0.31 0.31
LBTYK RF 5D 0.33 0.35 0.35 0.32 0.30 0.33 0.35
LBTYK RF 7D 0.33 0.36 0.36 0.33 0.30 0.30 0.34
LBTYK GBoost 3D 0.31 0.27 0.14 0.32 0.43 0.32 0.37
LBTYK GBoost 5D 0.32 0.26 0.20 0.35 0.34 0.33 0.44
LBTYK GBoost 7D 0.32 0.34 0.33 0.35 0.20 0.29 0.47
LULU RF 3D 0.49 0.50 0.53 0.25 0.03 0.48 0.51
LULU RF 5D 0.43 0.44 0.35 0.50 0.02 0.43 0.62
LULU RF 7D 0.50 0.53 0.29 0.12 0.02 0.49 0.78
LULU GBoost 3D 0.49 0.50 0.51 0.00 0.00 0.49 0.54
LULU GBoost 5D 0.45 0.47 0.29 0.00 0.00 0.45 0.71
LULU GBoost 7D 0.46 0.47 0.22 0.00 0.00 0.46 0.77
MAR RF 3D 0.45 0.43 0.35 0.25 0.01 0.46 0.69
MAR RF 5D 0.45 0.44 0.86 0.20 0.03 0.54 0.18
MAR RF 7D 0.44 0.44 0.90 0.08 0.01 0.52 0.16
MAR GBoost 3D 0.46 0.44 0.33 0.00 0.00 0.46 0.73
MAR GBoost 5D 0.45 0.43 0.87 1.00 0.03 0.52 0.17
MAR GBoost 7D 0.47 0.45 0.89 0.00 0.00 0.59 0.23
MAT RF 3D 0.35 0.35 0.43 0.33 0.37 0.39 0.27
MAT RF 5D 0.36 0.39 0.40 0.29 0.26 0.36 0.39
MAT RF 7D 0.33 0.37 0.24 0.29 0.41 0.36 0.34
MAT GBoost 3D 0.35 0.38 0.51 0.32 0.43 0.30 0.11
MAT GBoost 5D 0.31 0.35 0.27 0.20 0.16 0.34 0.48
MAT GBoost 7D 0.37 0.44 0.42 0.34 0.43 0.35 0.28
MDLZ RF 3D 0.37 0.31 0.18 0.25 0.01 0.39 0.76
MDLZ RF 5D 0.34 0.34 0.75 0.24 0.18 0.60 0.07
MDLZ RF 7D 0.38 0.38 0.91 0.27 0.11 0.54 0.07
MDLZ GBoost 3D 0.36 0.27 0.11 0.42 0.04 0.38 0.79
MDLZ GBoost 5D 0.36 0.35 0.91 0.29 0.05 0.67 0.08
MDLZ GBoost 7D 0.26 0.49 0.10 0.23 0.89 0.68 0.06
MELI RF 3D 0.46 0.50 0.23 0.00 0.00 0.45 0.78
MELI RF 5D 0.48 0.54 0.28 0.00 0.00 0.46 0.75
MELI RF 7D 0.43 0.47 0.25 0.50 0.12 0.41 0.68
MELI GBoost 3D 0.48 0.55 0.19 0.00 0.00 0.46 0.85
MELI GBoost 5D 0.49 0.56 0.24 0.00 0.00 0.47 0.80
MELI GBoost 7D 0.45 0.51 0.21 0.00 0.00 0.43 0.79
MNST RF 3D 0.47 0.45 0.81 0.14 0.01 0.55 0.30
MNST RF 5D 0.48 0.47 0.70 0.00 0.00 0.53 0.42
MNST RF 7D 0.46 0.48 0.63 0.11 0.10 0.55 0.41
MNST GBoost 3D 0.47 0.44 0.65 1.00 0.01 0.50 0.44
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

MNST GBoost 5D 0.48 0.49 0.42 0.00 0.00 0.48 0.71
MNST GBoost 7D 0.38 0.45 0.33 0.12 0.25 0.50 0.47
MSFT RF 3D 0.44 0.44 0.99 0.00 0.00 0.50 0.02
MSFT RF 5D 0.44 0.43 1.00 0.00 0.00 0.91 0.04
MSFT RF 7D 0.48 0.23 0.01 0.00 0.00 0.48 0.96
MSFT GBoost 3D 0.44 0.44 0.99 0.00 0.00 0.50 0.02
MSFT GBoost 5D 0.44 0.43 1.00 0.00 0.00 0.89 0.03
MSFT GBoost 7D 0.48 0.23 0.01 0.00 0.00 0.49 0.96
MU RF 3D 0.40 0.42 0.16 0.19 0.05 0.41 0.79
MU RF 5D 0.41 0.43 0.12 0.20 0.05 0.41 0.81
MU RF 7D 0.41 0.45 0.48 0.17 0.06 0.39 0.45
MU GBoost 3D 0.42 0.46 0.19 1.00 0.02 0.41 0.80
MU GBoost 5D 0.41 0.38 0.09 0.20 0.02 0.42 0.88
MU GBoost 7D 0.43 0.47 0.63 0.00 0.00 0.37 0.35
NFLX RF 3D 0.50 0.50 0.70 0.00 0.00 0.51 0.38
NFLX RF 5D 0.45 0.50 0.61 0.08 0.08 0.46 0.35
NFLX RF 7D 0.41 0.39 0.32 0.11 0.02 0.42 0.58
NFLX GBoost 3D 0.48 0.47 0.61 0.00 0.00 0.49 0.43
NFLX GBoost 5D 0.45 0.50 0.51 0.03 0.02 0.46 0.49
NFLX GBoost 7D 0.43 0.42 0.34 0.00 0.00 0.45 0.62
NTES RF 3D 0.42 0.42 0.22 0.00 0.00 0.42 0.71
NTES RF 5D 0.42 0.45 0.24 0.00 0.00 0.44 0.70
NTES RF 7D 0.45 0.47 0.30 0.00 0.00 0.46 0.69
NTES GBoost 3D 0.44 0.46 0.58 0.00 0.00 0.41 0.39
NTES GBoost 5D 0.43 0.46 0.21 0.00 0.00 0.43 0.76
NTES GBoost 7D 0.44 0.46 0.28 0.06 0.02 0.45 0.68
NVDA RF 3D 0.45 0.45 0.83 0.00 0.00 0.49 0.14
NVDA RF 5D 0.52 0.49 0.83 0.00 0.00 0.61 0.26
NVDA RF 7D 0.45 0.36 0.10 0.00 0.00 0.47 0.82
NVDA GBoost 3D 0.49 0.47 0.76 0.00 0.00 0.57 0.28
NVDA GBoost 5D 0.48 0.36 0.07 0.00 0.00 0.49 0.89
NVDA GBoost 7D 0.47 0.40 0.11 0.00 0.00 0.48 0.85
ORLY RF 3D 0.48 0.39 0.23 0.00 0.00 0.51 0.77
ORLY RF 5D 0.31 0.37 0.59 0.14 0.54 0.58 0.08
ORLY RF 7D 0.33 0.36 0.79 0.09 0.13 0.56 0.06
ORLY GBoost 3D 0.45 0.41 0.69 0.00 0.00 0.54 0.36
ORLY GBoost 5D 0.51 0.36 0.12 0.00 0.00 0.54 0.87
ORLY GBoost 7D 0.33 0.36 0.81 0.09 0.13 0.64 0.05
PAYX RF 3D 0.44 0.39 0.47 0.00 0.00 0.49 0.52
PAYX RF 5D 0.40 0.40 0.84 0.00 0.00 0.40 0.12
PAYX RF 7D 0.38 0.39 0.98 0.00 0.00 0.40 0.01
PAYX GBoost 3D 0.39 0.38 0.95 0.00 0.00 0.47 0.04
PAYX GBoost 5D 0.41 0.41 0.95 0.00 0.00 0.39 0.04
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

PAYX GBoost 7D 0.38 0.38 0.99 0.00 0.00 0.25 0.00
PCAR RF 3D 0.33 0.37 0.17 0.21 0.17 0.35 0.58
PCAR RF 5D 0.37 0.40 0.57 0.20 0.12 0.39 0.31
PCAR RF 7D 0.33 0.40 0.17 0.28 0.65 0.42 0.27
PCAR GBoost 3D 0.34 0.36 0.22 0.21 0.12 0.37 0.61
PCAR GBoost 5D 0.38 0.39 0.59 0.28 0.09 0.40 0.36
PCAR GBoost 7D 0.34 0.43 0.14 0.27 0.59 0.42 0.36
PEP RF 3D 0.37 0.37 0.85 0.34 0.14 0.43 0.08
PEP RF 5D 0.34 0.34 0.91 0.00 0.00 0.37 0.06
PEP RF 7D 0.39 0.38 0.89 0.26 0.05 0.55 0.10
PEP GBoost 3D 0.36 0.35 0.87 0.33 0.01 0.46 0.12
PEP GBoost 5D 0.34 0.34 0.92 0.00 0.00 0.29 0.04
PEP GBoost 7D 0.37 0.39 0.82 0.18 0.11 0.47 0.10
QCOM RF 3D 0.39 0.39 0.25 0.12 0.06 0.41 0.64
QCOM RF 5D 0.39 0.44 0.13 0.00 0.00 0.38 0.85
QCOM RF 7D 0.38 0.46 0.11 0.12 0.01 0.38 0.86
QCOM GBoost 3D 0.41 0.43 0.27 0.17 0.01 0.41 0.69
QCOM GBoost 5D 0.40 0.48 0.12 0.00 0.00 0.38 0.89
QCOM GBoost 7D 0.36 0.25 0.03 0.12 0.01 0.37 0.90
REGN RF 3D 0.42 0.42 0.66 0.17 0.06 0.47 0.33
REGN RF 5D 0.42 0.43 0.71 0.10 0.03 0.45 0.28
REGN RF 7D 0.41 0.41 0.77 0.14 0.03 0.47 0.23
REGN GBoost 3D 0.43 0.42 0.78 0.14 0.01 0.49 0.26
REGN GBoost 5D 0.44 0.43 0.72 0.00 0.00 0.46 0.32
REGN GBoost 7D 0.42 0.40 0.79 0.20 0.01 0.49 0.25
ROST RF 3D 0.46 0.47 0.58 0.09 0.03 0.46 0.41
ROST RF 5D 0.46 0.47 0.59 0.00 0.00 0.45 0.46
ROST RF 7D 0.45 0.49 0.57 0.00 0.00 0.43 0.41
ROST GBoost 3D 0.45 0.44 0.52 0.00 0.00 0.46 0.45
ROST GBoost 5D 0.44 0.45 0.51 0.00 0.00 0.43 0.49
ROST GBoost 7D 0.44 0.47 0.50 0.00 0.00 0.42 0.47
SBUX RF 3D 0.42 0.46 0.24 0.00 0.00 0.42 0.72
SBUX RF 5D 0.40 0.38 0.17 0.50 0.01 0.41 0.80
SBUX RF 7D 0.40 0.44 0.14 0.00 0.00 0.40 0.83
SBUX GBoost 3D 0.43 0.45 0.20 0.00 0.00 0.42 0.78
SBUX GBoost 5D 0.42 0.45 0.24 0.00 0.00 0.41 0.75
SBUX GBoost 7D 0.41 0.43 0.10 0.00 0.00 0.41 0.90
SIRI RF 3D 0.39 0.40 0.77 0.28 0.04 0.37 0.24
SIRI RF 5D 0.37 0.40 0.64 0.24 0.08 0.32 0.23
SIRI RF 7D 0.34 0.38 0.48 0.21 0.10 0.32 0.36
SIRI GBoost 3D 0.41 0.41 0.53 0.58 0.06 0.41 0.52
SIRI GBoost 5D 0.36 0.37 0.52 0.20 0.03 0.36 0.38
SIRI GBoost 7D 0.33 0.36 0.51 0.22 0.04 0.29 0.33
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

SNPS RF 3D 0.49 0.33 0.03 0.00 0.00 0.49 0.95
SNPS RF 5D 0.51 0.53 0.16 0.00 0.00 0.51 0.89
SNPS RF 7D 0.49 0.00 0.00 1.00 0.03 0.49 0.99
SNPS GBoost 3D 0.46 0.40 0.28 0.00 0.00 0.48 0.67
SNPS GBoost 5D 0.50 0.48 0.47 0.00 0.00 0.51 0.58
SNPS GBoost 7D 0.51 0.74 0.08 0.00 0.00 0.50 0.98
SRCL RF 3D 0.31 0.30 0.21 0.35 0.37 0.29 0.37
SRCL RF 5D 0.32 0.31 0.25 0.38 0.39 0.26 0.32
SRCL RF 7D 0.34 0.42 0.17 0.36 0.44 0.30 0.44
SRCL GBoost 3D 0.33 0.33 0.23 0.34 0.47 0.31 0.27
SRCL GBoost 5D 0.30 0.36 0.11 0.34 0.39 0.25 0.42
SRCL GBoost 7D 0.35 0.50 0.09 0.37 0.59 0.31 0.40
STX RF 3D 0.44 0.46 0.82 0.24 0.07 0.39 0.16
STX RF 5D 0.43 0.43 0.89 0.33 0.02 0.40 0.13
STX RF 7D 0.41 0.45 0.88 0.12 0.03 0.27 0.08
STX GBoost 3D 0.44 0.46 0.85 0.22 0.03 0.36 0.14
STX GBoost 5D 0.41 0.43 0.87 0.25 0.02 0.32 0.11
STX GBoost 7D 0.42 0.45 0.89 0.33 0.05 0.24 0.08
SWKS RF 3D 0.43 0.46 0.69 0.08 0.01 0.38 0.27
SWKS RF 5D 0.43 0.47 0.66 0.00 0.00 0.36 0.31
SWKS RF 7D 0.39 0.48 0.50 0.00 0.00 0.30 0.40
SWKS GBoost 3D 0.39 0.51 0.48 0.15 0.25 0.39 0.33
SWKS GBoost 5D 0.43 0.47 0.63 0.20 0.01 0.37 0.34
SWKS GBoost 7D 0.44 0.51 0.65 1.00 0.01 0.33 0.33
TMUS RF 3D 0.39 0.51 0.26 0.13 0.21 0.44 0.57
TMUS RF 5D 0.46 0.55 0.34 0.25 0.01 0.42 0.74
TMUS RF 7D 0.40 0.51 0.19 0.08 0.01 0.39 0.80
TMUS GBoost 3D 0.36 0.43 0.24 0.17 0.37 0.45 0.48
TMUS GBoost 5D 0.45 0.53 0.36 0.00 0.00 0.41 0.70
TMUS GBoost 7D 0.41 0.51 0.17 0.00 0.00 0.39 0.83
TXN RF 3D 0.45 0.45 0.82 0.00 0.00 0.51 0.18
TXN RF 5D 0.49 0.48 0.91 0.25 0.02 0.62 0.19
TXN RF 7D 0.33 0.40 0.01 0.13 0.34 0.43 0.69
TXN GBoost 3D 0.46 0.45 0.86 0.00 0.00 0.50 0.15
TXN GBoost 5D 0.50 0.48 0.89 0.00 0.00 0.61 0.22
TXN GBoost 7D 0.29 0.00 0.00 0.13 0.48 0.45 0.56
VOD RF 3D 0.28 0.23 0.20 0.37 0.23 0.25 0.47
VOD RF 5D 0.33 0.26 0.23 0.48 0.38 0.21 0.35
VOD RF 7D 0.40 0.27 0.15 0.46 0.69 0.20 0.11
VOD GBoost 3D 0.32 0.25 0.24 0.40 0.42 0.25 0.24
VOD GBoost 5D 0.35 0.27 0.25 0.43 0.49 0.23 0.19
VOD GBoost 7D 0.36 0.26 0.20 0.47 0.57 0.17 0.14
VRSK RF 3D 0.47 0.47 0.62 0.28 0.08 0.48 0.43
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Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

VRSK RF 5D 0.47 0.44 0.43 0.00 0.00 0.50 0.63
VRSK RF 7D 0.52 0.49 0.70 0.00 0.00 0.58 0.52
VRSK GBoost 3D 0.47 0.46 0.48 0.50 0.02 0.47 0.58
VRSK GBoost 5D 0.46 0.42 0.39 0.00 0.00 0.48 0.63
VRSK GBoost 7D 0.55 0.51 0.68 0.00 0.00 0.59 0.59
VRTX RF 3D 0.35 0.35 0.42 0.25 0.08 0.36 0.42
VRTX RF 5D 0.33 0.35 0.50 0.14 0.04 0.34 0.33
VRTX RF 7D 0.31 0.31 0.45 0.13 0.05 0.34 0.32
VRTX GBoost 3D 0.40 0.39 0.41 0.17 0.02 0.41 0.58
VRTX GBoost 5D 0.35 0.37 0.54 0.09 0.01 0.34 0.36
VRTX GBoost 7D 0.35 0.33 0.47 0.00 0.00 0.38 0.42
WBA RF 3D 0.33 0.37 0.42 0.28 0.29 0.33 0.26
WBA RF 5D 0.30 0.32 0.48 0.22 0.06 0.27 0.32
WBA RF 7D 0.30 0.34 0.51 0.22 0.07 0.26 0.30
WBA GBoost 3D 0.35 0.37 0.45 0.31 0.28 0.34 0.28
WBA GBoost 5D 0.32 0.35 0.37 0.22 0.09 0.32 0.50
WBA GBoost 7D 0.35 0.38 0.39 0.38 0.23 0.32 0.45
WDC RF 3D 0.36 0.41 0.48 0.27 0.18 0.34 0.39
WDC RF 5D 0.38 0.38 0.41 0.45 0.23 0.34 0.48
WDC RF 7D 0.35 0.39 0.46 0.31 0.24 0.32 0.32
WDC GBoost 3D 0.37 0.41 0.57 0.28 0.16 0.34 0.33
WDC GBoost 5D 0.39 0.40 0.66 0.60 0.16 0.32 0.33
WDC GBoost 7D 0.35 0.39 0.56 0.39 0.12 0.30 0.35
XEL RF 3D 0.42 0.46 0.51 0.09 0.02 0.41 0.48
XEL RF 5D 0.42 0.43 0.49 0.33 0.01 0.40 0.50
XEL RF 7D 0.44 0.44 0.62 0.19 0.04 0.47 0.43
XEL GBoost 3D 0.45 0.48 0.46 0.00 0.00 0.43 0.62
XEL GBoost 5D 0.41 0.44 0.46 0.21 0.09 0.41 0.48
XEL GBoost 7D 0.42 0.43 0.59 0.14 0.06 0.46 0.39

Average results:
AVG RF 3D 0.39 0.40 0.47 0.15 0.11 0.43 0.43
AVG RF 5D 0.40 0.42 0.51 0.16 0.09 0.43 0.40
AVG RF 7D 0.40 0.39 0.44 0.17 0.10 0.42 0.46

STD RF 3D 0.07 0.09 0.27 0.13 0.15 0.08 0.26
STD RF 5D 0.06 0.10 0.27 0.18 0.14 0.13 0.27
STD RF 7D 0.06 0.12 0.29 0.19 0.15 0.12 0.29

Average results:
AVG GBoost 3D 0.40 0.42 0.46 0.16 0.11 0.43 0.44
AVG GBoost 5D 0.41 0.43 0.49 0.14 0.08 0.42 0.43
AVG GBoost 7D 0.40 0.43 0.41 0.16 0.11 0.43 0.49

82



Experiments and Results

Ticker Model label Acc Prec(0) Rec(0) Prec(1) Rec(1) Prec(2) Rec(2)

STD GBoost 3D 0.07 0.06 0.29 0.21 0.19 0.08 0.28
STD GBoost 5D 0.07 0.10 0.29 0.18 0.17 0.13 0.29
STD GBoost 7D 0.06 0.13 0.30 0.22 0.18 0.12 0.29

Table 7.13: Scores of Random Forest (RF) and Gradient Boosting (GBoost) over
NASDAQ dataset.

ARIMA

Analyzing the performance of the ARIMA model across 3-day (3D), 5-day (5D),
and 7-day (7D) forecast horizons, the summarized metrics, Table 7.14, highlight its
distinct performance characteristics. The average accuracy gradually increases from
0.15 for 3D predictions to 0.18 for 7D forecasts, suggesting a modest improvement
in the model’s overall predictive ability with longer forecast horizons.

Remarkably, the ARIMA model exhibits a high recall for label 1 across all
periods, peaking at 0.99 for both 3D and 5D forecasts, which indicates its strong
capacity to identify this specific market condition. However, its ability to detect
label 0 and label 2 conditions remains significantly low, as reflected by the minimal
recall values. Precision scores vary across labels and time frames, with a noticeable
trend of improvement in the precision for label 2 (0.34 for 3D to 0.16 for 7D), albeit
starting from a higher baseline.

The F1 Score, a harmonic mean of precision and recall, remains low across all
forecasts, pointing to challenges in achieving a balanced predictive performance for
all market states. This suggests that while ARIMA is adept at recognizing certain
conditions, it struggles to maintain consistency across all market behaviors.

label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

AVG 3D 0.15 3-e4 0.99 2-e02 0.07 0.15 0.34 0.08
AVG 5D 0.17 3-e2 0.99 4-e02 0.19 0.17 0.18 0.09
AVG 7D 0.18 6-e2 0.97 0.02 0.19 0.17 0.16 0.10
STD 3D 0.09 0.00 0.00 0.00 0.25 0.09 0.47 0.04
STD 5D 0.09 0.01 0.01 0.01 0.33 0.10 0.30 0.04
STD 7D 0.10 0.01 0.12 0.12 0.33 0.09 0.26 0.04

Table 7.14: Average Scores of ARIMA over NASDAQ dataset.

Standard deviation metrics indicate variability in the model’s performance,
especially in precision across different labels, highlighting potential instability in
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the ARIMA model’s predictions across various runs. This variability, combined
with the overall performance metrics, underscores the need for cautious application
and potential model adjustments or integration with other models to enhance
reliability and predictive accuracy in financial time series forecasting.

The analysis of the complete ARIMA model results, Table 7.15, over the NAS-
DAQ dataset reveals a distinct performance pattern compared to the SupCon
approach. ARIMA’s average accuracy across different forecasting horizons (3D,
5D, and 7D) is notably lower. The precision and recall metrics indicate that
ARIMA struggles to correctly predict class 0 and class 2, with significantly higher
performance for class 1 predictions across all horizons. This suggests ARIMA’s
tendency to favor one class significantly over others, likely due to its nature of
capturing linear trends and seasonality, which may not adequately represent the
complex, non-linear patterns present in stock price movements.

Comparatively, the SupCon model demonstrated a more balanced performance
across classes, benefiting from its ability to learn complex, high-dimensional rep-
resentations of data through contrastive learning. This suggests that for the task
of stock market prediction, where data inherently contains non-linear patterns
and is influenced by a myriad of factors beyond historical prices, models that can
capture these complex relationships, like SupCon, may offer better performance
than traditional time series models like ARIMA.

In summary, while ARIMA provides a baseline for time series forecasting, its
limitations in handling the complexities of stock market data are evident. The
contrastive learning approach, represented by SupCon, shows promise in overcoming
some of these challenges by leveraging a richer representation of the data, ultimately
leading to improved prediction accuracy.

Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

AAL 7D 0.37 0.00 0.99 0.00 0.00 0.37 0.00 0.18
AAL 3D 0.33 0.00 1.00 0.00 0.00 0.33 0.00 0.16
AAL 5D 0.39 0.00 1.00 0.00 0.00 0.39 0.00 0.19
AAPL 7D 0.13 0.03 1.00 0.00 0.60 0.12 0.00 0.09
AAPL 3D 0.06 0.00 1.00 0.00 0.00 0.06 1.00 0.04
AAPL 5D 0.08 0.00 1.00 0.00 0.25 0.08 0.00 0.05
ADBE 7D 0.10 0.01 1.00 0.00 0.27 0.09 0.00 0.06
ADBE 3D 0.07 0.00 1.00 0.00 0.00 0.07 0.00 0.05
ADBE 5D 0.08 0.02 1.00 0.00 0.67 0.07 0.00 0.06
ADI 3D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
ADI 5D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
ADI 7D 0.14 0.00 0.97 0.01 0.00 0.13 0.27 0.09
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

ADP 5D 0.13 0.00 1.00 0.00 0.00 0.13 0.00 0.08
ADP 7D 0.09 0.01 0.93 0.00 0.08 0.09 0.00 0.06
ADP 3D 0.14 0.01 1.00 0.00 1.00 0.13 0.00 0.08
ADSK 7D 0.10 0.00 0.96 0.02 0.00 0.10 0.40 0.07
ADSK 3D 0.08 0.00 1.00 0.00 0.00 0.08 0.00 0.05
ADSK 5D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
AKAM 5D 0.23 0.00 1.00 0.00 0.00 0.23 0.00 0.13
AKAM 3D 0.23 0.00 1.00 0.00 0.00 0.23 0.00 0.12
AKAM 7D 0.23 0.00 0.99 0.00 0.00 0.24 0.00 0.13
ALGN 3D 0.06 0.00 1.00 0.00 0.00 0.06 0.00 0.04
ALGN 5D 0.07 0.00 1.00 0.02 0.00 0.06 0.56 0.06
ALGN 7D 0.08 0.00 1.00 0.04 0.00 0.07 0.60 0.07
AMAT 7D 0.11 0.00 1.00 0.05 0.00 0.09 0.58 0.08
AMAT 5D 0.08 0.00 1.00 0.01 0.00 0.08 0.20 0.06
AMAT 3D 0.06 0.00 1.00 0.00 1.00 0.05 0.00 0.04
AMD 7D 0.09 0.00 1.00 0.03 0.00 0.08 0.33 0.07
AMD 3D 0.06 0.00 1.00 0.00 0.00 0.06 1.00 0.04
AMD 5D 0.06 0.00 0.96 0.02 0.00 0.05 0.50 0.05
AMGN 5D 0.22 0.00 1.00 0.01 0.00 0.22 1.00 0.13
AMGN 7D 0.22 0.00 1.00 0.01 0.00 0.22 0.17 0.12
AMGN 3D 0.21 0.00 1.00 0.01 0.00 0.21 1.00 0.12
AMZN 7D 0.08 0.02 1.00 0.00 0.45 0.07 0.00 0.06
AMZN 5D 0.07 0.01 1.00 0.00 0.60 0.06 0.00 0.05
AMZN 3D 0.06 0.00 1.00 0.00 0.00 0.05 1.00 0.04
ASML 5D 0.09 0.00 0.98 0.01 0.00 0.08 0.33 0.06
ASML 3D 0.06 0.00 1.00 0.00 0.00 0.06 1.00 0.04
ASML 7D 0.08 0.00 1.00 0.02 0.00 0.07 0.45 0.06
ATVI 5D 0.19 0.02 0.99 0.00 0.80 0.19 0.00 0.12
ATVI 7D 0.18 0.02 0.99 0.00 0.67 0.18 0.00 0.11
ATVI 3D 0.17 0.00 1.00 0.01 0.00 0.17 1.00 0.10
AVGO 5D 0.10 0.00 1.00 0.01 0.00 0.10 0.67 0.06
AVGO 7D 0.09 0.00 0.96 0.00 0.00 0.09 0.17 0.06
AVGO 3D 0.07 0.00 1.00 0.00 0.00 0.07 1.00 0.05
BIDU 5D 0.25 0.00 1.00 0.00 0.50 0.25 0.00 0.14
BIDU 7D 0.28 0.00 1.00 0.00 0.00 0.28 0.00 0.15
BIDU 3D 0.27 0.00 0.99 0.00 0.00 0.27 0.00 0.14
BIIB 7D 0.28 0.00 0.98 0.01 0.00 0.28 0.29 0.15
BIIB 3D 0.22 0.00 1.00 0.00 0.00 0.22 0.00 0.12
BIIB 5D 0.25 0.00 0.99 0.00 0.00 0.25 0.00 0.13
BKNG 7D 0.15 0.00 1.00 0.00 0.00 0.15 0.00 0.09
BKNG 5D 0.18 0.00 1.00 0.00 0.00 0.18 0.00 0.10
BKNG 3D 0.17 0.00 1.00 0.00 0.00 0.17 0.00 0.10
BMRN 7D 0.27 0.03 1.00 0.00 0.86 0.26 0.00 0.16
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

BMRN 3D 0.29 0.00 1.00 0.00 0.00 0.29 0.00 0.15
BMRN 5D 0.29 0.00 1.00 0.01 0.00 0.29 0.33 0.15
CDNS 7D 0.07 0.02 1.00 0.00 0.83 0.06 0.00 0.05
CDNS 5D 0.06 0.00 1.00 0.00 0.00 0.06 0.00 0.04
CDNS 3D 0.05 0.00 1.00 0.00 0.00 0.05 1.00 0.04
CHKP 7D 0.18 0.00 1.00 0.00 0.00 0.18 0.00 0.10
CHKP 3D 0.20 0.00 1.00 0.00 1.00 0.20 0.00 0.11
CHKP 5D 0.20 0.00 1.00 0.00 0.20 0.20 0.00 0.12
CHRW 5D 0.24 0.00 1.00 0.01 0.00 0.24 0.50 0.13
CHRW 7D 0.23 0.00 1.00 0.00 0.00 0.24 0.00 0.13
CHRW 3D 0.19 0.00 1.00 0.00 0.00 0.20 0.00 0.11
CMCSA 7D 0.20 0.00 1.00 0.00 0.25 0.20 0.00 0.11
CMCSA 5D 0.19 0.00 0.99 0.00 0.20 0.19 0.00 0.11
CMCSA 3D 0.19 0.00 1.00 0.00 0.00 0.19 0.00 0.11
COST 5D 0.10 0.01 1.00 0.00 0.50 0.09 0.00 0.06
COST 3D 0.10 0.00 1.00 0.00 0.00 0.10 0.00 0.06
COST 7D 0.12 0.03 0.96 0.00 0.67 0.11 0.00 0.08
CSCO 3D 0.19 0.00 1.00 0.00 0.00 0.19 0.00 0.11
CSCO 5D 0.23 0.00 1.00 0.00 0.00 0.23 0.00 0.13
CSCO 7D 0.22 0.00 1.00 0.01 0.00 0.22 1.00 0.12
CSX 7D 0.15 0.00 1.00 0.03 0.00 0.14 0.50 0.10
CSX 3D 0.16 0.00 1.00 0.00 0.00 0.16 0.00 0.09
CSX 5D 0.14 0.00 1.00 0.00 0.00 0.14 0.00 0.08
CTSH 3D 0.22 0.00 1.00 0.00 0.00 0.22 0.00 0.12
CTSH 7D 0.24 0.02 1.00 0.00 1.00 0.24 0.00 0.14
CTSH 5D 0.26 0.00 0.99 0.00 0.50 0.26 0.00 0.14
DLTR 3D 0.17 0.00 1.00 0.00 0.00 0.17 0.00 0.10
DLTR 5D 0.15 0.00 1.00 0.00 0.00 0.15 0.00 0.09
DLTR 7D 0.19 0.00 1.00 0.00 0.00 0.19 0.14 0.11
EBAY 7D 0.16 0.00 0.96 0.03 0.00 0.15 0.60 0.11
EBAY 5D 0.13 0.00 0.97 0.01 0.00 0.13 0.40 0.08
EBAY 3D 0.16 0.00 1.00 0.00 0.00 0.16 0.00 0.09
EXPD 7D 0.17 0.01 0.99 0.00 0.67 0.17 0.00 0.10
EXPD 3D 0.17 0.00 1.00 0.00 0.00 0.17 0.00 0.10
EXPD 5D 0.14 0.00 0.99 0.00 0.00 0.14 0.00 0.08
FAST 7D 0.20 0.00 1.00 0.00 0.00 0.21 0.00 0.11
FAST 5D 0.21 0.00 1.00 0.00 0.00 0.21 0.00 0.12
FAST 3D 0.18 0.00 1.00 0.00 0.00 0.18 0.00 0.10
GILD 3D 0.31 0.00 1.00 0.00 0.00 0.31 0.00 0.16
GILD 5D 0.34 0.00 1.00 0.01 0.00 0.34 0.25 0.17
GILD 7D 0.32 0.00 1.00 0.00 0.00 0.32 0.00 0.16
GOOG 5D 0.11 0.00 1.00 0.01 0.00 0.10 0.50 0.07
GOOG 3D 0.08 0.00 1.00 0.00 0.00 0.08 1.00 0.05
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

GOOG 7D 0.10 0.00 1.00 0.00 0.00 0.10 0.50 0.06
GOOGL 5D 0.10 0.00 1.00 0.01 0.00 0.10 1.00 0.06
GOOGL 3D 0.09 0.00 1.00 0.00 0.00 0.08 1.00 0.05
GOOGL 7D 0.11 0.00 1.00 0.00 0.00 0.11 0.00 0.07
GRMN 3D 0.16 0.00 1.00 0.00 0.00 0.16 0.00 0.09
GRMN 5D 0.16 0.00 1.00 0.00 0.00 0.16 0.33 0.09
GRMN 7D 0.14 0.00 1.00 0.00 0.00 0.14 0.00 0.08
HSIC 3D 0.17 0.00 1.00 0.00 0.00 0.18 0.00 0.10
HSIC 5D 0.18 0.00 0.99 0.00 0.00 0.18 0.00 0.10
HSIC 7D 0.18 0.00 1.00 0.01 0.00 0.18 0.33 0.11
IDXX 7D 0.08 0.00 0.97 0.02 0.00 0.07 0.50 0.05
IDXX 5D 0.06 0.01 1.00 0.00 0.67 0.06 0.00 0.04
IDXX 3D 0.07 0.00 1.00 0.00 0.00 0.06 1.00 0.04
INCY 7D 0.30 0.00 1.00 0.00 0.00 0.30 0.00 0.15
INCY 5D 0.32 0.00 1.00 0.01 0.00 0.31 0.67 0.17
INCY 3D 0.28 0.00 0.99 0.00 0.00 0.28 0.00 0.14
INTC 3D 0.19 0.00 1.00 0.01 0.00 0.19 1.00 0.11
INTC 5D 0.21 0.00 0.99 0.00 0.00 0.21 0.00 0.12
INTC 7D 0.19 0.00 0.99 0.02 0.00 0.19 0.43 0.12
INTU 3D 0.07 0.00 1.00 0.00 1.00 0.07 0.00 0.05
INTU 7D 0.09 0.02 1.00 0.00 0.57 0.08 0.00 0.06
INTU 5D 0.09 0.03 1.00 0.00 1.00 0.07 0.00 0.06
ISRG 7D 0.09 0.01 1.00 0.00 1.00 0.08 0.00 0.06
ISRG 3D 0.08 0.00 1.00 0.00 0.00 0.08 1.00 0.05
ISRG 5D 0.10 0.01 1.00 0.00 1.00 0.09 0.00 0.06
LBTYA 3D 0.32 0.00 0.99 0.00 0.00 0.32 0.00 0.16
LBTYA 5D 0.38 0.00 0.99 0.01 0.00 0.38 0.67 0.19
LBTYA 7D 0.38 0.00 0.99 0.00 0.00 0.38 0.00 0.18
LBTYK 3D 0.31 0.00 0.99 0.00 0.00 0.31 0.00 0.16
LBTYK 5D 0.35 0.00 0.99 0.02 0.00 0.34 0.75 0.18
LBTYK 7D 0.37 0.00 0.99 0.01 0.00 0.37 0.25 0.19
LULU 5D 0.11 0.00 1.00 0.01 0.00 0.11 0.38 0.07
LULU 3D 0.07 0.00 1.00 0.00 0.00 0.07 1.00 0.05
LULU 7D 0.09 0.00 0.98 0.02 0.00 0.08 0.45 0.06
MAR 3D 0.13 0.00 0.99 0.00 0.00 0.13 0.00 0.08
MAR 5D 0.14 0.01 1.00 0.00 1.00 0.13 0.00 0.08
MAR 7D 0.16 0.02 1.00 0.00 0.67 0.15 0.00 0.10
MAT 3D 0.28 0.00 1.00 0.00 0.00 0.28 0.00 0.15
MAT 7D 0.31 0.00 0.98 0.00 0.00 0.31 0.00 0.16
MAT 5D 0.28 0.00 1.00 0.00 0.00 0.28 0.00 0.15
MDLZ 7D 0.23 0.03 0.99 0.00 0.83 0.23 0.00 0.14
MDLZ 3D 0.23 0.00 1.00 0.00 0.00 0.23 0.00 0.13
MDLZ 5D 0.25 0.01 1.00 0.00 0.50 0.25 0.00 0.14
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

MELI 7D 0.09 0.00 1.00 0.05 0.00 0.07 0.50 0.07
MELI 3D 0.05 0.00 1.00 0.00 0.00 0.05 1.00 0.04
MELI 5D 0.06 0.02 1.00 0.00 0.83 0.05 0.00 0.05
MNST 5D 0.14 0.00 1.00 0.00 0.00 0.14 0.00 0.08
MNST 7D 0.13 0.00 1.00 0.00 0.00 0.13 0.00 0.07
MNST 3D 0.15 0.00 1.00 0.00 0.00 0.15 0.00 0.09
MSFT 7D 0.07 0.00 1.00 0.00 0.00 0.07 0.00 0.05
MSFT 5D 0.10 0.00 1.00 0.00 0.00 0.10 0.00 0.06
MSFT 3D 0.09 0.00 1.00 0.00 0.00 0.09 0.00 0.05
MU 3D 0.13 0.00 1.00 0.00 0.00 0.13 0.00 0.08
MU 7D 0.15 0.00 0.97 0.01 0.00 0.14 0.33 0.09
MU 5D 0.12 0.00 1.00 0.00 0.00 0.12 0.17 0.07
NFLX 3D 0.08 0.00 1.00 0.00 0.00 0.08 0.00 0.05
NFLX 5D 0.11 0.02 0.98 0.00 0.62 0.10 0.00 0.07
NFLX 7D 0.11 0.02 1.00 0.00 0.38 0.10 0.00 0.08
NTES 5D 0.11 0.00 1.00 0.04 0.00 0.10 0.80 0.08
NTES 7D 0.12 0.00 1.00 0.06 0.00 0.09 0.87 0.09
NTES 3D 0.10 0.00 1.00 0.00 0.00 0.09 1.00 0.06
NVDA 5D 0.05 0.00 1.00 0.02 0.00 0.03 0.60 0.04
NVDA 3D 0.04 0.00 1.00 0.00 0.00 0.03 1.00 0.02
NVDA 7D 0.49 0.00 0.00 1.00 0.00 0.00 0.49 0.22
ORLY 3D 0.10 0.00 1.00 0.00 0.00 0.10 0.00 0.06
ORLY 5D 0.10 0.00 1.00 0.00 0.00 0.10 0.00 0.06
ORLY 7D 0.12 0.00 1.00 0.02 0.00 0.11 0.42 0.08
PAYX 7D 0.14 0.01 0.97 0.00 0.14 0.14 0.00 0.08
PAYX 5D 0.12 0.01 0.98 0.00 0.50 0.12 0.00 0.08
PAYX 3D 0.13 0.01 1.00 0.00 1.00 0.13 0.00 0.08
PCAR 7D 0.27 0.00 1.00 0.01 0.00 0.26 1.00 0.15
PCAR 5D 0.24 0.00 1.00 0.01 0.00 0.24 1.00 0.14
PCAR 3D 0.24 0.00 1.00 0.01 0.00 0.24 1.00 0.13
PEP 3D 0.19 0.00 1.00 0.00 0.00 0.19 0.00 0.11
PEP 5D 0.22 0.02 0.98 0.00 0.60 0.22 0.00 0.13
PEP 7D 0.20 0.03 1.00 0.00 0.60 0.19 0.00 0.13
QCOM 3D 0.14 0.00 1.00 0.00 0.00 0.13 1.00 0.08
QCOM 5D 0.16 0.00 0.99 0.00 0.00 0.16 0.00 0.09
QCOM 7D 0.14 0.00 0.97 0.00 0.00 0.14 0.00 0.08
REGN 7D 0.18 0.00 1.00 0.00 0.00 0.18 0.00 0.10
REGN 5D 0.16 0.00 1.00 0.00 0.00 0.16 0.00 0.09
REGN 3D 0.16 0.00 1.00 0.00 0.00 0.16 0.00 0.09
ROST 3D 0.07 0.00 1.00 0.00 0.00 0.07 0.00 0.05
ROST 5D 0.13 0.01 1.00 0.00 1.00 0.13 0.00 0.08
ROST 7D 0.10 0.02 1.00 0.00 0.67 0.09 0.00 0.07
SBUX 5D 0.16 0.02 1.00 0.00 0.83 0.15 0.00 0.10
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

SBUX 3D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
SBUX 7D 0.16 0.03 1.00 0.00 0.86 0.15 0.00 0.10
SIRI 3D 0.24 0.00 1.00 0.01 0.00 0.24 1.00 0.13
SIRI 5D 0.22 0.00 1.00 0.00 0.00 0.22 0.00 0.12
SIRI 7D 0.27 0.03 1.00 0.00 0.50 0.26 0.00 0.16
SNPS 3D 0.07 0.00 1.00 0.00 0.00 0.07 1.00 0.04
SNPS 7D 0.08 0.00 1.00 0.00 0.00 0.08 0.00 0.05
SNPS 5D 0.05 0.00 1.00 0.00 0.00 0.05 0.00 0.03
SRCL 5D 0.37 0.00 1.00 0.01 0.00 0.37 0.50 0.18
SRCL 3D 0.35 0.00 1.00 0.01 0.00 0.35 1.00 0.18
SRCL 7D 0.35 0.00 1.00 0.00 0.00 0.35 0.00 0.17
STX 7D 0.15 0.00 1.00 0.00 0.14 0.15 0.00 0.09
STX 5D 0.17 0.00 0.99 0.00 0.00 0.17 0.00 0.10
STX 3D 0.14 0.00 1.00 0.00 0.00 0.14 0.00 0.08
SWKS 7D 0.16 0.00 1.00 0.04 0.00 0.15 0.70 0.11
SWKS 5D 0.15 0.00 0.99 0.02 0.00 0.15 0.50 0.10
SWKS 3D 0.14 0.00 1.00 0.00 0.00 0.13 1.00 0.08
TMUS 7D 0.15 0.02 1.00 0.00 1.00 0.14 0.00 0.10
TMUS 3D 0.14 0.00 1.00 0.00 0.00 0.14 0.00 0.08
TMUS 5D 0.15 0.01 1.00 0.00 0.67 0.15 0.00 0.09
TXN 3D 0.10 0.00 1.00 0.00 0.00 0.10 1.00 0.06
TXN 5D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
TXN 7D 0.13 0.00 0.97 0.01 0.00 0.13 0.33 0.08
VOD 7D 0.47 0.00 0.99 0.00 0.00 0.47 0.00 0.21
VOD 5D 0.49 0.00 1.00 0.02 0.00 0.49 0.67 0.23
VOD 3D 0.44 0.00 1.00 0.00 0.00 0.44 0.00 0.20
VRSK 7D 0.13 0.03 0.97 0.00 0.42 0.13 0.00 0.09
VRSK 5D 0.13 0.02 1.00 0.00 1.00 0.12 0.00 0.09
VRSK 3D 0.12 0.00 1.00 0.00 0.00 0.12 0.00 0.07
VRTX 7D 0.22 0.00 1.00 0.00 0.00 0.22 0.00 0.12
VRTX 5D 0.22 0.00 0.99 0.00 0.00 0.23 0.00 0.12
VRTX 3D 0.21 0.00 1.00 0.00 0.00 0.21 0.00 0.12
WBA 3D 0.30 0.00 1.00 0.00 0.00 0.30 0.00 0.16
WBA 5D 0.33 0.00 0.99 0.03 0.00 0.32 0.80 0.18
WBA 7D 0.34 0.00 0.98 0.03 0.00 0.33 0.44 0.18
WDC 7D 0.30 0.00 0.99 0.00 0.00 0.31 0.00 0.16
WDC 5D 0.32 0.00 1.00 0.00 0.00 0.32 0.00 0.16
WDC 3D 0.30 0.00 1.00 0.01 0.00 0.29 1.00 0.16
XEL 7D 0.17 0.03 0.99 0.00 0.88 0.16 0.00 0.11
XEL 3D 0.17 0.00 1.00 0.00 0.00 0.17 0.00 0.09
XEL 5D 0.16 0.01 0.99 0.00 0.50 0.16 0.00 0.10

Average results:
AVG 3D 0.15 3-e4 0.99 2-e02 0.07 0.15 0.34 0.08
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Ticker label Acc Rec(0) Rec(1) Rec(2) Prec(0) Prec(1) Prec(2) F1 Score

AVG 5D 0.17 3-e2 0.99 4-e02 0.19 0.17 0.18 0.09
AVG 7D 0.18 6-e2 0.97 0.02 0.19 0.17 0.16 0.10
STD 3D 0.09 0.00 0.00 0.00 0.25 0.09 0.47 0.04
STD 5D 0.09 0.01 0.01 0.01 0.33 0.10 0.30 0.04
STD 7D 0.10 0.01 0.12 0.12 0.33 0.09 0.26 0.04

Table 7.15: Scores of ARIMA over NASDAQ dataset.
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7.3.3 Qualitative Analysis
In the domain of financial markets, the pursuit of analytical precision transcends
mere quantitative metrics, ushering in the indispensable realm of qualitative analy-
sis. This realm, far from being ancillary, complements and enriches the numerical
rigor of quantitative assessments, providing a multi-dimensional view of the intricate
schema of market dynamics. This comprehensive approach is particularly pivotal
when delving into the complex interplay of market forces, where numerical data
alone may not fully capture the subtleties of market sentiment, investor behavior,
and the undercurrents shaping market trends.

Qualitative analysis, therefore, stands not as a secondary or optional endeavor
but as an essential counterpart to quantitative methodologies. It allows for a
nuanced exploration of the factors that quantitative metrics may overlook, such as
the qualitative aspects of company management, brand value, market sentiment,
and emerging trends that might not yet be reflected in the numbers. In this context,
the qualitative analysis of t-SNE visualizations of a sample of stock market data,
namely ADP - Automatic Data Processing Inc., AMGN - AMGEN Inc., and MSFT
- Microsoft Corporation tickers, obtained through Supervised Contrastive Learning
(SupCon), and compared with the one extracted from TS2Vec exemplifies the
synthesis of numerical precision and qualitative insight.

The t-SNE (t-Distributed Stochastic Neighbor Embedding) visualizations serve
as a powerful tool for distilling the essence of complex, high-dimensional data into
comprehensible, two-dimensional maps. This transformation, while preserving the
relative proximities of data points, unveils patterns, clusters, and anomalies that
might remain obscured in the high-dimensional space. In the realm of financial
data analysis, such visualizations offer a window into the learned representations
of market states, beyond what traditional metrics can convey. Furthermore, the
juxtaposition of t-SNE visualizations with other financial indicators and charts,
such as candlestick plots and Bollinger Bands, enriches the qualitative analysis. It
allows for a holistic view of how the model’s representations align with or deviate
from traditional technical analysis indicators. This alignment or deviation, in turn,
can offer insights into the model’s sensitivity to various market signals and its
potential for uncovering novel patterns or trends not captured by conventional
analysis.

ADP Ticker Analysis

Our visual inspection commences with the separability of classes in the t-SNE
plots. The distinctiveness of class clusters serves as an indicator of the model’s
ability to discriminate between different classes. The observed visualizations depict
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a scarse degree of class separability, with notable overlap between Class 0 and Class
1, as shown in Fig. 7.1, Fig. 7.2, and Fig. 7.3. Such overlap is indicative of the
model’s challenges in learning discriminative features that could facilitate a clear
delineation of classes.

The t-SNE projections demonstrate consistency in cluster shapes across various
dimensions, suggesting a degree of stability in the learned feature space. Despite
this, the varying spread of points within clusters points to the model’s inconsistent
representation of features, possibly hinting at its sensitivity to the dimensionality
of input data. The data point density within clusters varied significantly. Areas
of high density suggest higher model confidence, whereas the more dispersed ar-
rangements imply lower certainty. This variance in density highlights the potential
inconsistencies in the model’s confidence across the dataset, which could impact
the model’s predictive accuracy.

Figure 7.1: SupCon t-SNE visualization of ADP embeddings for 3D label type

The presence of outliers, as evident in the visualizations, raises concerns re-
garding anomalies and noise within the data. Such discrepancies could stem from
extraordinary market events or artifacts introduced during the feature extraction
process, underscoring the need for robust feature engineering and noise reduction
techniques. Considering the temporal span of the dataset (2021-2022), a period
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Figure 7.2: SupCon t-SNE visualization of ADP embeddings for 5D label type

Figure 7.3: SupCon t-SNE visualization of ADP embeddings for 7D label type
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characterized by significant market volatility, the overlap in class representations
may reflect the temporal instability inherent in financial time series. The model’s
poor performance could be attributed to the non-stationary nature of stock prices,
where patterns evolve and the discriminative power of features diminishes over time.

Building upon the previous qualitative analysis of feature representations ob-
tained from supervised contrastive learning, we extend our examination to include
the t-SNE visualization of the dataset used for feature extraction. Looking at
Figures 7.4, 7.5, and 7.6, comparative analysis aims to discern patterns and corre-
lations between feature representations and the actual data distribution, offering
deeper insights into the model’s learning behavior.

Figure 7.4: t-SNE visualization of ADP dataset for 3D label type

The additional t-SNE visualizations annotate points with corresponding dates,
revealing the temporal progression within the feature space. By comparing these
plots with the earlier visualizations, we can examine how well the temporal dimen-
sion is captured within the feature representations. It appears that data points that
are temporally closer tend to cluster together, suggesting the model is capturing
some aspects of temporal continuity. When observing the dispersion of points from
the same class across different times, a pattern emerges where certain classes drift
over the feature space as time progresses. This drift could be symptomatic of the
model’s adaptation to evolving market conditions, reflected in the time series data.
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Figure 7.5: t-SNE visualization of ADP dataset for 5D label type

Figure 7.6: t-SNE visualization of ADP dataset for 7D label type

Such a phenomenon underscores the non-stationary nature of the financial time
series data and the challenges it poses for feature extraction and subsequent learning.
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A direct comparison of dataset and feature representation visualizations show-
cases discrepancies in the model’s ability to maintain temporal coherence. Certain
dates, such as periods of market volatility, seem to result in more scattered rep-
resentations, indicating that the model’s performance is susceptible to external
market dynamics.

To deepen the qualitative analysis of the supervised contrastive learning model
for stock price prediction, we also integrate technical analysis components, including
Bollinger Bands, volume data, and candlestick patterns, as shown in Figures 7.8,
7.9, and 7.7. These elements are traditionally used in stock market analysis to
understand market sentiment, volatility, and price trends. We correlate these
technical indicators with the t-SNE feature representations to provide a holistic
understanding of the model’s performance and the underlying data characteristics.

Figure 7.7: Candlestick visualization of ADP dataset

Bollinger Bands, a measure of volatility and price levels relative to moving aver-
ages, are depicted in one of the provided charts. The t-SNE visualizations, when
compared alongside Bollinger Bands, show that feature representations correspond-
ing to periods of high volatility (where the bands widen) might be contributing to
the more dispersed clusters in the t-SNE plots. This suggests that the model might
be sensitive to volatility, capturing the dramatic shifts in price movement within the
feature space. Volume charts reflect trading activity intensity. By examining the
volume spikes and their corresponding dates, we can identify periods of high market

96



Experiments and Results

Figure 7.8: Bollinger Bands visualization of ADP dataset

Figure 7.9: Volumes visualization of ADP dataset

activity that may correlate with anomalies or outliers in the t-SNE plots. Such a
correlation might imply that significant trading volumes impact the model’s ability
to form consistent feature representations, leading to potential misclassifications or
poor performance in stock price prediction.

The candlestick chart provides insights into the price action. Analyzing the
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candlestick patterns alongside the t-SNE feature representations, one can discern if
specific price movements, like bullish periods or bearish reversals, correspond to
the clustering of points in the t-SNE visualizations. If certain patterns consistently
correspond to misclassified points or cluster boundaries, this would indicate the
model’s response to short-term price movements, as opposed to capturing more
long-term trends effectively.

To enhance our analysis, we now consider also a comparison between the features
extracted from the Supervised Contrastive Learning model and, as shown in Figures
7.10, 7.11, and 7.12, Time Series to Vectors (TS2Vec). By visualizing and comparing
their resulting t-SNE plots, we aim to understand the differences in feature space
representations, which may offer insights into each method’s strengths and potential
improvements for stock price prediction models.

Figure 7.10: TS2Vec t-SNE visualization of ADP embeddings for 3D label type

The t-SNE plots of the features extracted through Supervised Contrastive
Learning depict clusters that are somewhat entangled, with overlaps between
classes. This might suggest that while the model is capable of learning a nuanced
representation of the data, it may struggle with clearly demarcating the boundaries
necessary for high-precision classification tasks. The t-SNE visualizations of features
extracted via TS2Vec show different clustering patterns. These plots appear to have
distinct clusters with less overlap between classes than the Supervised Contrastive
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Figure 7.11: TS2Vec t-SNE visualization of ADP embeddings for 5D label type

Figure 7.12: TS2Vec t-SNE visualization of ADP embeddings for 7D label type
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Learning features. The more defined separation could indicate that TS2Vec is
capturing more discriminative features conducive to distinguishing between different
classes in the dataset, but less marked patterns in the information extracted. This
could imply that TS2Vec extracts features less sensitive to the noise and variance
within the time series data. In contrast, the Supervised Contrastive Learning
representations, while indicating some degree of separation, suggest a feature space
where the boundaries between classes are less clear. This may result from the
contrastive loss function prioritizing relative distances over absolute positioning,
which can sometimes lead to a trade-off between class compactness and separability.

AMGN Ticker Analysis

The t-SNE visualizations for the AMGN ticker, based on features extracted from
the Supervised Contrastive Learning (SupCon) model, present an informative view
of the feature space’s extracted by our main model.

Figure 7.13: SupCon t-SNE visualization of AMGN embeddings for 3D label
type

Considering the plot for 3Days type label, Fig. 7.13, we observe a moderate
degree of class overlap, particularly between Classes 0 and 2, suggesting potential
challenges in delineating these classes. Class 1, however, appears relatively more
distinct, indicating some level of effective feature separation. Proceeding with plot
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Figure 7.14: SupCon t-SNE visualization of AMGN embeddings for 5D label
type

in Fig. 7.14, the dispersion of data points suggests a higher level of feature space
complexity, due to also the highest complexity in trying to predict fluctuations
in a larger time span. The clusters for each class are somewhat scattered, with
significant intermixing, which could imply a lack of distinct boundaries necessary
for high-precision classification tasks. Eventually, Fig. 7.15 visualization further
highlights the blending of Class 0 and Class 2, with Class 1 maintaining a semblance
of separation. The tendency of points to form elongated clusters may reflect certain
temporal patterns within the data.

The patterns observed suggest that the SupCon model might be capturing mean-
ingful temporal dynamics, yet may struggle to consistently differentiate between
classes in higher-dimensional feature spaces.

As presented for ADP tickers, the t-SNE visualizations of the dataset annotated
with dates offer an additional dimension of analysis by incorporating the temporal
sequence of the data. This provides a perspective on how the feature space adapts
over time for each dimensionality considered.

Refering to figure 7.16, this visualization indicates that the raw data possesses
an inherent temporal pattern, with clusters formed around certain dates poten-
tially corresponding to specific market behaviors or events. As we move to a 5D
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Figure 7.15: SupCon t-SNE visualization of AMGN embeddings for 7D label
type

Figure 7.16: t-SNE visualization of AMGN dataset for 3D label type
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representation, the temporal labels reveal overlapping time periods within clusters.
This overlap may suggest that the data for these dates share similar characteristics
or that the market conditions during these periods result in similar stock behaviors,
as reflected in the dataset. The 7D t-SNE plot further emphasizes the complex
interplay between time and data structure. The spread of temporal points within
clusters is indicative of the multifaceted nature of stock data, capturing more
nuanced time-related patterns and variances in the stock’s behavior.

Figure 7.17: t-SNE visualization of AMGN dataset for 5D label type

As done for the previous ticker, we shall now extend our qualitative analysis by
examining traditional technical indicators such as Bollinger Bands, volume data,
and candlestick patterns alongside the t-SNE visualizations of the AMGN dataset.

By observing the periods where the bands widen, we can infer increased market
volatility, which could correspond to regions of greater dispersion or overlapping
clusters in the t-SNE plots. This indicates that the data during volatile periods
might be more challenging to cluster distinctly, a factor that should be considered
when interpreting the t-SNE visualizations.

The volume charts reflect the intensity of trading activity, with spikes often
coinciding with significant price movements or market events. When examining the
candlestick patterns instead, in relation to the t-SNE clusters, it might be possible
to identify how certain patterns of price movements are represented within the
feature space, potentially as outliers or boundary points between clusters.

Integrating technical indicators with t-SNE visualizations for the AMGN features
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Figure 7.18: t-SNE visualization of AMGN dataset for 7D label type

underscores again the intricate relationship between market dynamics and the data’s
representational structure.

Figure 7.19: Candlestick visualization of AMGN dataset

104



Experiments and Results

Figure 7.20: Bollinger Bands visualization of AMGN dataset

Figure 7.21: Volumes visualization of AMGN dataset

Eventually, the t-SNE visualizations based on TS2Vec features, Figures 7.22,
7.23, and 7.24, appear to show a different pattern, with clusters being more defined
and less inter-class overlap. This could indicate that TS2Vec is capturing unique
aspects of the data that allow for better class separation, potentially making it
more suitable for classification tasks that require clear discrimination between
different states of the stock. However, neither in this case the separation between
classes is evident, and both models are poorly performing the target task.
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Figure 7.22: TS2Vec t-SNE visualization of AMGN embeddings for 3D label type

Figure 7.23: TS2Vec t-SNE visualization of AMGN embeddings for 5D label type
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Figure 7.24: TS2Vec t-SNE visualization of AMGN embeddings for 7D label type

MSFT Ticker Analysis

We eventually conduct an analysis of the MSFT stock dataset by examining t-SNE
visualizations of features extracted through the Supervised Contrastive Learning
(SupCon) model.

Exploring the feature representations of the MSFT dataset obtained from Su-
pervised Contrastive Learning, we’ve found a pattern that aligns with observations
from other stock tickers we’ve analyzed. Specifically, in Figures 7.25, 7.26, and
7.27, the displayed class overlaps and the spread of the clusters show that, although
there is some discernible structure in the data, it’s not quite enough for a clear-cut
distinction among the classes.

The t-SNE plots reveal that classes aren’t as neatly separable as we would like,
suggesting that the model might not be capturing all the nuances necessary to
distinguish one class from another accurately. This problem is compounded by an
apparent preference for clustering the data into one or two classes, which may point
to a tendency of the model to ’favor’ certain data patterns. Such favoritism can lead
to skewed representations, potentially causing some classes to be underrepresented
in the feature space.

As we delve into the t-SNE representations for the MSFT dataset, it becomes

107



Experiments and Results

Figure 7.25: SupCon t-SNE visualization of MSFT embeddings for 3D label type

Figure 7.26: SupCon t-SNE visualization of MSFT embeddings for 5D label type
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Figure 7.27: SupCon t-SNE visualization of MSFT embeddings for 7D label type

Figure 7.28: t-SNE visualization of MSFT dataset for 3D label type
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Figure 7.29: t-SNE visualization of MSFT dataset for 5D label type

Figure 7.30: t-SNE visualization of MSFT dataset for 7D label type

evident that there are patterns present that echo the findings from the embeddings
analysis. Notably, the overlap of classes in the t-SNE plots could be indicative
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of significant market activities, which is an observation that becomes particularly
interesting when juxtaposed with additional financial metrics. By integrating this
insight with other economic indicators represented in Figures 7.32, 7.31, and 7.33,
we’re able to discern a pattern of daily high trading activity. Such vigorous trading
can contribute to the challenge of distinguishing between different classes, as it
introduces a layer of complexity to the stock’s behavior.

Figure 7.31: Candlestick visualization of MSFT dataset

Moreover, the Bollinger Bands provide a visual narrative of high volatility,
particularly during the winter of 2021 and the fall of 2022. This volatility is not
just a simple fluctuation; it adds substantial noise to the dataset, which could be
one of the factors that make class differentiation more challenging. In wrapping
up this analysis, it’s clear that while the t-SNE visualization aids in identifying
data patterns, the inherent market activity and volatility reflected in the economic
indicators further complicate the separation of classes.

Examining the t-SNE feature representations obtained from the Time Series to
Vectors (TS2Vec) model on the MSFT dataset gives us an insightful perspective
into the extracted temporal patterns. The TS2Vec model, known for its capability
to learn deep representations of time series data, provides us with a different angle
to observe the clustering behavior of the stock market data.

The t-SNE visualizations derived from the TS2Vec model exhibit certain traits
of clustering, which might reflect the underlying temporal dynamics captured from
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Figure 7.32: Bollinger Bands visualization of MSFT dataset

Figure 7.33: Volumes visualization of MSFT dataset

the MSFT time series. Unlike the Supervised Contrastive Learning model, the
TS2Vec appears to organize the data into more outlined clusters.

Across the 3D, 5D, and 7D t-SNE visualizations, there is a visible tendency
for the classes to form distinct groupings, although some overlap persists. This
clustering behavior suggests that TS2Vec is learning somehow some sort of rep-
resentations that encapsulate significant features of the time series, potentially
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Figure 7.34: TS2Vec t-SNE visualization of MSFT embeddings for 3D label type

Figure 7.35: TS2Vec t-SNE visualization of MSFT embeddings for 5D label type
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Figure 7.36: TS2Vec t-SNE visualization of MSFT embeddings for 7D label type

improving the discriminability between different periods or market conditions.

It’s crucial to note that the presence of class overlaps may still pose challenges
for any downstream tasks, such as forecasting or anomaly detection. Hence, there
may be a need for further model tuning or combining TS2Vec with additional
feature engineering techniques to enhance class separability.

7.3.4 Cross-Analysis Summary
Throughout the comprehensive analysis of feature representations from the Super-
vised Contrastive Learning and Time Series to Vectors (TS2Vec) models on three
distinct stock datasets — ADP, AMGN, and MSFT — we have gleaned valuable
insights into the intricate dynamics of financial time series data. Our qualitative
analysis, underpinned by t-SNE visualizations, revealed recurring themes of class
overlap and varying degrees of cluster density across all tickers, highlighting the
challenges in achieving clear class separability in high-dimensional feature spaces.

These qualitative observations are further contextualized by the quantitative
analysis conducted in previous discussions. The numerical assessments comple-
mented our visual findings, quantifying the degree of class dispersion and the
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models’ discriminative power. Where t-SNE plots suggested class biases or fea-
ture space complexities, quantitative metrics provided objective evidence of the
models’ performance, including their accuracy in classifying and forecasting market
trends. In combining both qualitative and quantitative analyses, we arrive at a
multidimensional understanding of feature extraction models in financial time series.

The datasets examined posed incredibly challenging scenarios for feature extrac-
tion. The complex nature of financial data, characterized by non-linear relationships
and influenced by a multitude of external factors, was mirrored in the subtleties
these models sought to unravel. Particularly, the Supervised Contrastive Learning
model, though falling short in performance metrics, brought to light the demanding
nature of financial datasets. Its struggle to distinctly separate classes within the
feature space was telling of the inherent difficulty presented by such sophisticated
data. Despite the SupCon model’s limitations in performance, it has laid a foun-
dation for further investigation. Its qualitative outcomes have provided us with
directional cues for deeper inquiry and have prompted a rethinking of approach
and methodology.
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Chapter 8

Conclusions and Future
Works

This thesis embarked on an exploratory journey into the innovative realm of Su-
pervised Contrastive Learning (SCL) for the classification of market stock series.
It set out with the ambition to delve into the intricacies of financial time series
analysis and leverage the potential of SCL as a novel approach in this domain.
Through a rigorous methodology, encompassing minimal data preprocessing and
the deployment of a deep Residual Network (ResNet), we aimed to train a model
capable of discerning between different market states with high accuracy. Despite
the challenges encountered, particularly the model’s performance on the financial
dataset, this research journey has been both enlightening and enriching.

The investigation provided valuable insights into the application of deep learning
techniques, particularly SCL, in the analysis of financial time series data. The
approach demonstrated promise in theoretical discussions and initial benchmarks,
illustrating the potential of SCL to enhance classification tasks by fostering robust
and discriminative feature learning. Although the expected performance uplift in
real-world financial data classification was not realized, the exploration shed light
on the complexities and challenges inherent in financial time series analysis. It
underscored the nuanced nature of market data and the intricate patterns that
dictate market behaviors.

This thesis contributes to the broader academic and practical discourse on finan-
cial technology innovation, highlighting the importance of continuous exploration
and experimentation in developing analytical tools for financial markets. The
journey through this research has reaffirmed the belief in the potential of deep
learning and contrastive learning techniques to transform financial analysis, despite
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the challenges encountered.

The path of research is never-ending, and every conclusion opens new paths for
exploration. The journey undertaken in this thesis lays the groundwork for future
investigations into the application of Supervised Contrastive Learning in time
series classification, particularly within the financial domain. Several directions are
identified for future works:

• Exploring Alternative Base Models: The current research utilized a Residual
Network as the base model. Future work could explore alternative architectures,
such as Transformer models or more advanced CNNs, to evaluate their efficacy
in conjunction with SCL for financial time series analysis.

• Diversifying Domains: While this thesis focused on the financial market,
SCL’s application could be tested across various domains where time series
data is critical, such as healthcare, energy consumption, or climatology. Such
exploration could uncover domain-specific insights and model adaptability.

• In-Depth Data Augmentation and Preprocessing: This thesis adopted minimal
data preprocessing to maintain the raw essence of financial time series. Future
studies could delve into sophisticated data augmentation and preprocessing
techniques to uncover potentially hidden patterns within the data, enhancing
model performance.

• Hybrid Models and Ensemble Techniques: Combining SCL with other learning
paradigms, such as unsupervised learning or reinforcement learning, could
offer innovative approaches to time series classification. Ensemble methods
that integrate multiple models could also be explored to improve prediction
accuracy.

In conclusion, while the model did not meet all the anticipated outcomes in
classifying financial time series data, the research underscores the complexity of
financial markets and the potential of advanced machine learning techniques in
navigating them. The exploration of Supervised Contrastive Learning in this
context opens up new horizons for innovation in financial analysis, promising a
future where machine learning not only aids but also enhances decision-making in
the financial industry. The journey continues, and the quest for knowledge and
improvement remains relentless.
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