
Politecnico di Torino

Media and Cinema Engineering
A.Y. 2023/2024

Graduation session April 2024

A web-based platform for improving
Erasmus experience management

Supervisor:

Luigi De Russis

Candidate:

Giovanni Mercorillo

Abstract

Task management systems and cloud drives play a key role in enhancing productivity
and organization, benefiting both individuals and teams. These solutions provide
methods for managing tasks, deadlines, priorities, and documents. However,
actual available solutions often lack a mixed approach between them, especially
for student’s usage. During his Erasmus internship the candidate worked on the
Costabex site, a project with the abroad students’ mental health as the main theme
and developed an interactive customized service for student’s life-work management
called the Costabex checklist to fill the early mentioned insufficiency. Following
digital interaction design principles, the prototype combines a document drive and
a task management tool to address the bureaucratic and ordinary challenges faced
during an Erasmus exchange. Within the thesis, the Costabex project will be
presented, along with the work carried out during the internship. This includes the
development of the Costabex checklist web app, the listing and focus on the state
of the art and lastly the main tools, future objectives and the principles used.

Acknowledgements

I want to express my sincere thanks to my supervisor: prof. Luigi De Russis for all
the help and advice he gave me during my thesis work, from the beginning of my
internship abroad to its very last making day.

To my family, I am not grateful enough for being with me all the time, your
unstoppable support and love has always been a great source of strength at every
stage of the journey.

To my friends, thank you for having been there with me in both the good and
bad times of this ride through my years studying. Your encouragement has been
the greatest gift to me. This thesis was a hard job, but with your support I was
able to accomplish it.

I am thankful for everything and thrilled to go on my way with the knowledge
and skills acquired. Thank you all for being part of this important chapter in my
life.

Giovanni

ii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Context . 1
1.2 Goal . 2
1.3 Thesis structure . 3

2 Background 5
2.1 Digital design . 5

2.1.1 User-centered design . 5
2.1.2 Interaction design . 6
2.1.3 The 5 IxD dimensions . 7

2.2 Additional features . 9
2.2.1 Usability . 9
2.2.2 Feedback, Affordances, and Signifiers 10
2.2.3 Accessibility . 10
2.2.4 Navigation and Information Architecture 10
2.2.5 Prototyping, Testing, and Iteration 10

2.3 Design thinking fundamentals . 11
2.3.1 Design thinking actions . 11

2.4 What happens if the user is trascurated? 13
2.5 Future Trends and Technologies . 13
2.6 Applications in Costabex project 13

2.6.1 Informative module - Costabex website 13
2.6.2 Interactive module - Costabex checklist 13

3 The Costabex project 15
3.1 Introduction . 15
3.2 Site structure . 16

3.2.1 Landing page . 16
3.2.2 Training section . 16

iv

3.2.3 Counseling section . 18
3.2.4 Checklist section . 20
3.2.5 For institutions section . 21
3.2.6 About section . 22

4 The Costabex checklist 27
4.1 The state of the art . 27
4.2 Presentation . 28
4.3 Mock-ups . 28
4.4 The prototype . 31

4.4.1 Landing page . 31
4.4.2 Registration and login page 31
4.4.3 Dashboard page . 33
4.4.4 Add task page . 35
4.4.5 Show task page . 36
4.4.6 Edit task page . 37
4.4.7 Account page . 39
4.4.8 Error page . 39

4.5 Future developments . 40

5 Implementation 41
5.1 Introduction . 41
5.2 Front-end development and tools 41

5.2.1 CSS and flexbox . 41
5.2.2 Bootstrap . 42
5.2.3 EJS and Partials: . 42
5.2.4 Views Folder with Layouts and Public Folder 42
5.2.5 Flash package . 43

5.3 Back-end development and tools . 43
5.3.1 JavaScript . 43
5.3.2 DOM, AJAX, AJAJ . 44
5.3.3 Node.js . 44
5.3.4 Express, Express Router and Session 45
5.3.5 MongoDB . 45
5.3.6 Mongoose . 46
5.3.7 Middlewares and error handling 46
5.3.8 Passport authentication . 46
5.3.9 Authorization . 46
5.3.10 Joi schema validation . 47
5.3.11 Cloudinary . 47

5.4 Code overview . 48

v

5.4.1 App.js file . 48
5.4.2 Models . 52
5.4.3 Public folder . 57
5.4.4 Routes . 57
5.4.5 Controllers . 63
5.4.6 Middlewares . 67
5.4.7 Views . 69
5.4.8 Joi validation and utils . 76

6 Conclusions 78

Bibliography 79

vi

List of Figures

2.1 UX, UI and IxD . 6
2.2 First IxD dimension . 7
2.3 Second IxD dimension . 7
2.4 Third IxD dimension . 8
2.5 Fourth IxD dimension . 8
2.6 Fifth IxD dimension . 9
2.7 Design actions . 11
2.8 Actions process . 12
2.9 Convergence-divergence model . 12

3.1 Costabex logo . 15
3.2 Costabex landing page . 16
3.3 Costabex training page . 17
3.4 Workshop details . 17
3.5 Counselling page . 18
3.6 List of topics related to the mobility period 18
3.7 Specific topic article . 19
3.8 Counseling contacts . 19
3.9 Counseling checklist page . 20
3.10 Checklist topic article . 20
3.11 For institution - handbook . 21
3.12 For institution - materials . 22
3.13 Costabex about page . 24
3.14 Costabex results page . 25
3.15 Costabex partners . 25
3.16 Costabex partners . 26
3.17 Costabex news . 26

4.1 Mockup landing page . 28
4.2 Mockup register page . 29
4.3 Mockup login page . 29

vii

4.4 Mockup dashboard . 30
4.5 Landing page . 31
4.6 Sign up page . 32
4.7 Login page . 32
4.8 Student dashboard . 34
4.9 Tutor dashboard . 34
4.10 Add task - student . 35
4.11 Add task - tutor . 36
4.12 Show task - student . 37
4.13 Show task - tutor . 37
4.14 Edit task - student - tutor assigned task 38
4.15 Edit task - tutor . 38
4.16 Account page . 39
4.17 Error page . 40

5.1 Prototype’s files . 48
5.2 Public folder . 57
5.3 Views folder . 69

viii

Chapter 1

Introduction

1.1 Context

In a world becoming increasingly connected, student exchange programs similar to
Erasmus plus have become essential parts of higher education, giving the students a
chance to develop academically, culturally, and personally. Issues like bureaucratic
obstacles, balancing academic workload with personal well-being, however, could
be overwhelming sometimes. For this reason, task management systems and remote
drives are some necessary tools when it comes to deal with these challenges, as they
provide great features for organizing tasks, deadlines, and collaboration among
students and teams. Though they are beneficial, current solutions do not offer a
complete tool with proper integration between task and file management. It is
also important to remember how the pandemic drastically changed the perception
of students’ mental health, giving more importance to it, opening psychological
support platforms and organizing meetings for them. To better understand and face
this topic some programs like Mental Health Unboxed by ESN [1] were conducted
with some volunteers trying to answer to some questions like how did the pandemic
influence volunteer’s education and work as well as their personal and social
life; what were the challenges they have faced and factors that have contributed
to their mental health issues; what type of support they have received and the
support they think should and/or would like to receive. This synthetically results
on trying to have as many social events, training and preparatory workshop as
possible for all people participating, leading them to make a strong network and
give them good preparation before, during and after the mobility without taking
anything for granted. Additionally, huge progress was made on the digital tools,
even if some more improvements can be done. During Erasmus plus internship
for Academia Institute of Technology in Maribor (Slovenia), conducted within
the context of the Costabex project, the candidate had direct experience facing

1

Introduction

these issues and embarked on a mission to address the trials and tribulations by
developing a first, tailored solution aimed at enhancing student well-being and
productivity: the Costabex checklist, a combination of storage and task management
functionalities, which has been specifically prototyped to facilitate the Erasmus
students’ documents and tasks’ management. This thesis is a comprehensive
representation of the Costabex project through which the Costabex checklist web
application’s evolution was traced, from the initial concept to the development and
implementation. By doing hands-on experience, the complexities of students’ life-
work balance were explored, and the intricate challenges faced during international
exchanges were tried to be solved, prototyping creative solutions for tackling them
through technological tools.

1.2 Goal
The goal of the thesis is to showcase the development process and functionality of
the Costabex website, as well as detailing the interaction between students and
Erasmus tutors facilitated by the Costabex checklist. This project aims not only
to provide a comprehensive digital platform for academic and logistical support,
but also to enhance the whole abroad experience for both students and tutors
by streamlining communication and documents’ exchange processes. The work is
divided into two complementary stages, each with distinct but linked objectives
and expected outcomes:

1. The creation of the layout, graphic aspects, and content design of
the Costabex’s informative module (Costabex website).

• Objective: to develop an intuitive, engaging, and informative website that
serves as the first touchpoint between the program and its participants.
This includes the integration of user-friendly navigation, aesthetically
pleasing graphic elements, and comprehensive content that effectively
communicates all necessary information about the Erasmus experience.

• Expected Outcome: a fully functional, visually appealing, and content-
rich website that enhances user engagement, improves access to informa-
tion, and supports the educational objectives of the Erasmus program.

2

Introduction

2. The full implementation of the interaction module (Costabex check-
list)

– Objective: to facilitate a seamless interaction channel for efficient and
effective communication and document sharing between students and
their Erasmus tutors. This involves creating a user-friendly interface that
encourages active participation and engagement.

– Expected Outcome: an operational interaction module that simplifies
the document exchange process, ensuring students and tutors have timely
access to important information, thereby improving the overall abroad
experience and support system.

1.3 Thesis structure
The thesis is structured into several chapters, described as follows:

• Chapter 2. Background: the principles presented in the second chapter
are the ones related with design thinking methodologies. User interaction and
User experience are some of the main features to take into account when a
service involving people usage is developed. It’s how some of the rules and
best practices indicated in these theories were followed in order to make the
informative (Costabex website) and interactive modules (Costabex checklist)
easier to deal with.

• Chapter 3. The Costabex project: in the third chapter, the complete
analysis of the Costabex project is drawn up. The topics shown are the struc-
ture of the site, presented in a detailed way in order to properly explain every
page contents and front-end design made during the candidate’s internship,
the mental health project presentation, the project’s objectives and programs.

• Chapter 4. The Costabex checklist: after a brief introduction of the
state of the art, The thesis’ fourth chapter is a complete introduction to the
interactive module of the Costabex project, the Costabex checklist. A solution
entirely thought, designed, and implemented by the candidate to reduce the
communication gap among students and tutors interaction during Erasmus ex-
perience. Mock-ups, tutor tasks and personal tasks management and workflow
are some of the features presented. Lastly, its future developments.

3

Introduction

• Chapter 5. Implementation: the fifth and core chapter of the thesis covers
the technical aspects of the web-app development, from the concept’s dawns
to the final prototype of the application. The main sections are constituted
by the front-end and back-end making process with particular emphasis on
code and scripts evolution, packages, libraries and features applied.

• Chapter 6. Conclusions: the sixth and conclusive chapter regards the
results obtained and future direction of the Costabex checklist prototype,
highlighting opportunities for development, refinement, and integration within
the bigger picture of student’s mental health support Costabex project.

4

Chapter 2

Background

In this chapter, a few concepts regarding digital interaction design, which include
both User Interface (UI) and User Experience (UX) design, are presented. These
concepts concern about how to make digital products that are useful and, at
the same time, enjoyable. This overview covers the principles, processes, and
methodologies that designers use to produce user-friendly and intuitive digital
spaces. Some of them constituted and were considered for the process, design and
development of the Costabex services. Design is the conscious act of conception,
planning and prototyping products, environments, systems and services to reach a
goal. This approach must lead to useful, desirable and sustainable contents and
behaviors for users. The requirements for designs are the comprehension of users
needs and technology related constraints, for this reason, the analysis should be
oriented for both people and technology.

2.1 Digital design
Digital design is the activity related to the realization of digital products, ser-
vices and systems, automatic elaboration of contents, distance transmittable and
replicable data and services being usable through different devices.

2.1.1 User-centered design
During last years the product development shifts from a machine-centered approach,
where the users were supposed to adapt their usage to the machine behavior to a
user-centered approach focused on the users’ needs, behaviors, and satisfaction in
the first place. This design re-orientation toward user needs demands a good grasp
of target users, which can be achieved through techniques such as user personas,
user interviews, and journey mapping. Through user-centered design, designers

5

Background

are able to put the users at the center of the build out process, and thus ensure
that the final product is relevant to the intended audience and meets their explicit
needs.

2.1.2 Interaction design

All the products have a status and a behavior, digital ones tend to have multiple
of them so they request proper process to support designer action, putting the user
at the center of the project development. Using John Kolko definition, Interaction
design is the creation of a dialogue between a person and a product, system, or
service. This dialogue is both physical and emotional in nature and is manifested
in the interplay between form, function, and technology as experienced over time.
Considering the various aspects related to the interaction design, they mainly
converge from UX and UI to the overall Interaction experience Design (IxD). The

Figure 2.1: UX, UI and IxD

former consider the whole using experience of a products (reference target, user
personas, branding, design, and usability tests) while the latter is based on the
physical interaction and is a crucial part of the user experience because it is focused
on the exact use moment. The reason for trying to develop these concepts is for
creating products that make people reach a goal in the easiest and efficient possible
way, considering and coordinating factors like aesthetics, sound, movement, and
space. [2]

6

Background

2.1.3 The 5 IxD dimensions
There are 5 dimensions related to the IxD which are a good reference to make
proper products and pleasant user experience. They are:

Text: must have a significance and be easy to understand.

Figure 2.2: First IxD dimension

Visual representation: pictures, font, icons through which the user interacts.
The better these things are optimized, the faster user interface comprehension will
be.

Figure 2.3: Second IxD dimension

7

Background

Physical objects / space: related to the device through which the user interacts
with the product. In addition, the physical space where it is used. Both elements
influence the interaction.

Figure 2.4: Third IxD dimension

Time: the related time to do an action and what influence the user like animations,
feedback and more.

Figure 2.5: Fourth IxD dimension

8

Background

Behaviour: how the user reacts to both interactions (how the actions are executed
in the system) and reactions (how the user responds to feedback) [3]

Figure 2.6: Fifth IxD dimension

2.2 Additional features
In interaction design theory there are other features to take into account during
the development process and some of them are: Usability, Feedback, Affordances
and Signifiers, Accessibility, Navigation and Information Architecture, Prototyping,
Testing, and Iteration.

2.2.1 Usability
Usability is the fundamental principle of effective interaction design in digital
environment. The ease of use is a concept that covers the simplicity with which
users can operate a digital product and complete the tasks in a timely manner. The
major elements are simplicity, ease of acquisition, and error prevention. Usability
testing like A/B testing, usability labs, and remote testing, are an important part
of the process. These tests help to show the obstacles and problems that a user
faces during his journey, thus the designers will be able to make the interface better
and more effective. [4]

9

Background

2.2.2 Feedback, Affordances, and Signifiers

In practice, successful digital interaction design allows users to understand the
system status through feedback and also uses affordances and signifiers to show
how to use the interface. Feedback can be visual, auditory or haptic, and it is
very immediate and intuitive, thus helping the user to guide his or her actions. In
the Costabex checklist prototype, they are applied through Flash messages. The
affordances encourage the user to interact with the buttons that appear to be
clickable and the signifiers, such as icons and labels, provide information of their
functions. [5]

2.2.3 Accessibility

Designing for accessibility means that any digital product is usable by people
with different abilities, including those who are visually impaired, have hearing
difficulties or with motor or cognitive disabilities. Accessibility considerations
include creating keyboard-navigable interfaces, using suitable color contrast, and
providing alternative texts for images. Through compliance with standards like the
Web Content Accessibility Guidelines (WCAG), designers can design participatory
experiences that are accessible to all. In Costabex website accessibility is supported
by UserWay plugin. [2]

2.2.4 Navigation and Information Architecture

An effective navigation system and a good information architecture are the essen-
tial elements for users to find information and perform tasks. This will include
organizing content logically, designing navigational menus that are user-friendly,
and using clear labels. The well-designed information architecture and navigation
systems decrease the cognitive load, giving the users the opportunity to understand
how to use a digital product and to find the needed information. [6]

2.2.5 Prototyping, Testing, and Iteration

Prototyping and the iterative design are the dynamic processes that enable designers
to explore concepts, test ideas with users and refine the solutions. From low-
fidelity sketches to high-fidelity interactive prototypes, these tools assist in the
experimentation and feedback’s process. Iteration, based on the user testing and
analysis, provides a process by which the design adapts to the actual user needs
and behavior. [2]

10

Background

2.3 Design thinking fundamentals
Design thinking is a human-centered approach to innovation that focuses on
understanding the needs, desires, and behaviors of users. It consists of a sequence
of cyclic stages that are used to identify and solve complex problems in a creative
and caring manner. The process is made up of several stages such as empathizing,
defining, ideating, prototyping, and testing. [7]

Figure 2.7: Design actions

2.3.1 Design actions
Empathize: the first design thinking stage is about getting to know users’ needs,
motivations and challenges. This usually includes conducting interviews, observa-
tions, and other types of research to acquire the user’s experiences and perceptions.

Define: after the users’ needs have been identified, the next step is to formulate
the problem statement or challenge that the design team will tackle. This implies
the integration of the research outcomes to arrive at a clear and implementable
problem statement that will help in the design process.

Ideate: during this stage, design teams come up with a variety of possible solutions
for the problem settled in the define stage. Quality is not the focus, but the number
of ideas and diversity is what counts in order to stimulate creativity and innovation.
Techniques, like brainstorming, mind mapping and rapid prototyping are usually
employed to come up with, and explore, ideas.

Prototype: after brainstorming, the design team makes models or drafts of the
possible solutions. Prototypes can be represented in many ways, ranging from
sketches and wire frames to physical models or digital mock-ups. The main purpose
of prototyping is to find the best ideas fast and cheap, and to get users’ feedback.

11

Background

Test: finally, the design thinking process concludes with a testing phase of pro-
totypes with users to collect feedback and refine the design. This often involves
usability testing, interviews, and observations to find out how good the prototypes
meet the needs of users. The design team takes the feedback and makes the
necessary adjustments and improvements to the prototypes, repeating the design
process as needed.

Figure 2.8: Actions process

The best feature of this approach is that all these processes are not sequential, and
there’s complete freedom for going ahead or back. This leads to divergent thinking
and convergent thinking based on the fact that the process start from the analysis
and end to a synthesis or the vice versa.

Figure 2.9: Convergence-divergence model

12

Background

2.4 What happens if the user is trascurated?
Considering designing and developing application without consider the user needs
and behavior would result in a raw product/service, with no easy comprehension
for the user. That requires a big effort and makes easy operation complex. The
good thing, as a developer, is to always think about the users without comparing
them to himself, trying to reach the user desired expectations. [3]

2.5 Future Trends and Technologies
Emerging techs like voice interfaces, AR, VR and AI are broadening the horizon
of interaction design in digital realm. Designers need to be always aware of such
developments in order to exploit the new technologies as a way to improve user
experience and taking into account ethical issues and the risks for the society too.
[8]

2.6 Applications in Costabex project

2.6.1 Informative module - Costabex website
The project team incorporated some principles of user-center design and design
thinking throughout the site development process. Initially, student research
and feedback were utilized to empathize with the needs and preferences of the
target audience. After internship beginning, this involved direct engagement of
the candidate to gather insights on potential improvements and desired features
for the main project. Although his involvement in the main project was initially
indirect, having joined after the initial stages were already begun, he actively
contributed by providing continuous feedback and collaborating with partners on
further enhancements, designing the site pages’ layout and identity.

2.6.2 Interactive module - Costabex checklist
In contrast, for the interactive module, entirely managed by the author, these
principles were directly apply from the outset. Engaging in feedback research and
gathering, directly asking colleagues for exchange programs needs and missing tools,
doing brainstorming sessions and subsequently defining potential improvements
and desired features. With this information, initial design mock-ups were created
and iteratively refined the project’s logic and functionality through prototyping was
done. Subsequently, these insights were translated into actionable design decisions

13

Background

by optimizing the application. Ideas were refined through feedbacks, ensuring that
the product met the identified user needs and expectations.

14

Chapter 3

The Costabex project

3.1 Introduction
This chapter describes the informative module of the Costabex project, the Costabex
website, with all pages’ main features description and how they were implemented
and thought, applying some of the previously seen interaction design principles
as well as following IxD dimensions or design thinking actions like definition,
ideation and prototyping. Every page was implemented with the help of the
candidate during his internship in one of the program’s institutional partner:
Academia Institute of Technology in Maribor, Slovenia. Features like colors’
palette, pictures and layout are some of his work part. The project website responds
to the necessity of providing project-related materials accessible to all students.
The decision to establish this platform stems from recognizing the significance
of prioritizing the digitization of educational resources, with the objective of
ensuring all project-related materials being readily available online. The website
will primarily feature the online component of the educational program for students
along with supplementary materials associated with it.[9]

Figure 3.1: Costabex logo

15

The Costabex project

3.2 Site structure
3.2.1 Landing page
This page briefly introduce what actually Costabex is, a mental health support
for Erasmus plus students and an educational program focused on their mental
health, aimed to prepare to potential risks and problems that may occur during
their mobility. It shows the program main activities: training and counselling,
giving to the user a direct link to better understand in which they consist.

Figure 3.2: Costabex landing page

3.2.2 Training section
This page is dedicated to the training section of the site, seven workshops are
included here regarding different topics: how to deal with stress, culture shock,
mental health, crisis situations, intercultural communication, conflicts and finance
management. Clicking on every workshop, a dedicated page appears. In this
specific pages students find advices, video explanations and audio related to that
topic. An additional page where students can listen and download meditation
audio is present too.

16

The Costabex project

Figure 3.3: Costabex training page

Figure 3.4: Workshop details

17

The Costabex project

3.2.3 Counseling section
These pages present the counseling section of the site. It is constituted by several
elements. Firstly, the tips for student page which shows different topics, based on
the abroad experience’s periods: before, during and after the mobility. Clicking
on them, the mentioned specific topics are listed with a deep explanation for each
one. This part of the site is the one from the Costabex checklist prototype takes
inspiration for tasks management, basing them on periods and topics shown in this
page.

Figure 3.5: Counselling page

Figure 3.6: List of topics related to the mobility period

18

The Costabex project

Figure 3.7: Specific topic article

The page related with counseling contacts is the last element of this section where
students can find contacts from the partners’ institutions in order to receive help
in different fields: psychological, career, special needs, international office, study
and law support.

Figure 3.8: Counseling contacts

19

The Costabex project

3.2.4 Checklist section
This page will be the one where the costabex checklist web app will be placed.
Right now, it includes an extra page where additional info are displayed in order
to give to students a comprehensive overview of what can’t be missed during the
mobility and what instead could be considered irrelevant for the experience scopes.

Figure 3.9: Counseling checklist page

Figure 3.10: Checklist topic article

20

The Costabex project

3.2.5 For institutions section

These pages are the ones where it is possible to view and download all the detailed
and helpful materials sent by email to the students and tutors in order to get the
best preparation for the experience. They are composed by two subsections: the
handbook and the materials.

Handbook

The handbook is a project result still under development, specifically prepared
for the employees of the university’s international department. It is a booklet
containing information about all the outputs together with the information on how
to employ them at any European university available. The goal of the handbook is
to serve as a manual on how to approach the online counselling service, how to
train employees and students so that they are able to provide advice and support
to outgoing students in need and how to use the materials which will be freely
available on the project’s web page. The handbook will include a manual on how to
implement the program using the preparatory activities for the outgoing students
at their respective universities. There will also be a manual on how to administer
the project’s web page so that the employees might update the posted information
based on the current development of risks associated with the mobility of their
students.

Figure 3.11: For institution - handbook

21

The Costabex project

Materials

The other page present in the For institution section is the one where all the
materials needed for both students and tutors are allocated. The purpose of these
materials is to enable Erasmus plus coordinators at the institution to offer advice
and support to outgoing students in need. They can freely utilize these resources
for effective assistance.

Figure 3.12: For institution - materials

3.2.6 About section
The about pages are the ones where the entire project is described: It’s a summary
of its main purpose, for what it’s meant to. They are related with:

Project’s objective description

The main target of the project is to increase the inclusiveness of the Erasmus
plus program. By introducing a preparatory pre-departure educational course,
those going on mobility will be informed of possible challenges and risks that can
come along the way and will be equipped with the right strategies to cope with
them. Subsequent assistance, provided through an online counseling service and
all educational materials placed on the project’s website, will aim to strengthen
and make students feel more secure. These project outcomes are targeted to help
mitigate the fears and concerns that often constitute the main barriers preventing
students from going abroad. To be more specific, there is a will to heighten the
enthusiasm of students dealing with mental health problems and with insufficient
support who are looking for possibilities to study abroad.

22

The Costabex project

Mental health program description

The Mental Health program, which is an integral part of the project, aims to
help students cope with the stress of moving and make their mobility experience
a pleasant one. The aim is achieved by delivering the training course before the
departure, offer help during mobility and continuing to provide assistance after the
return. This will make students feel more involved in Erasmus plus program and
assure that the university is committed to facilitate the enjoyable and rewarding
mobility experience. With the continuing decrease in the number of students who
are outgoing, measures are focused on making the numbers go up. It is considered
vital to constantly work on providing a complete package of convenience and good
experience.

Online counseling service description

The online counseling service and the materials available at the website are used
to maintain contact with the students in the exchange programs to ensure they
have a favorable and fulfilling experience. The objective of the partners is to create
the situation when students come back from the time they spent abroad satisfied
and with unique experiences which will be helpful for their academic, professional
and personal development. The educational program will be the main means for
students to develop the competencies to manage the multiple hazards that may
be faced. In case the situation calls for, the student may visit the university’s
counseling center for help. By engaging the returned students as mentors of the
students that will be going out, the chances of their experiencing reverse culture
shock is reduced and their reintegration into their home environment is easy.
Another goal that the partners are pursuing is to build an intercultural student
community that would help students to help each other and share information.
Ultimately, the project aims at raising the awareness on the fact that mental health
should be a topic of discussion and that outgoing students should feel free to
disclose any psychological problems they might have, in order to eliminate the
stigma that surrounds them. The dissemination of the project’s outcomes will be
necessary for the implementation of the standardized approach to supporting the
departing students across the university of Europe.

Educational program and webinars description

The training program is the main output of the project. The aim of the program is
to develop a series of educational activities (presentation workshops, educational
and motivational videos, online webinars, articles etc.) that will help the staff
of the international departments of European universities to prepare students for
going abroad.

23

The Costabex project

Online counselling for students description

Another key output of the project is an online counselling program. The main goal
of it is to support students throughout the entire duration of Erasmus+ mobility,
from the preparation for departure to reintegration after returning home. The
counseling program consists of the series of informational e-mails which are divided
into the three parts: before, during and after mobility, and sent to students on the
appropriate timeline. E-mails cover useful information about studying abroad, e.g.,
mobility process, finding accommodation and – most importantly – focus on student
psychological preparation and well-being with topics on stress management, cultural
adaptation, work-rest balance and many others (that will be the costabex checklist
categorizing base). A separate part is dedicated for resources and useful contacts
to ensure that students are assisted when further help or information is necessary.
The content of each e-mail includes general information and insights collected
from international officers, students with mobility experience and psychologists,
therefore, can be applied by all higher education institutions.

Figure 3.13: Costabex about page

24

The Costabex project

Figure 3.14: Costabex results page

The partners

This page shows the different partners participating in the Costabex project
development that are the Czech Technical University of Prague, the Vilnius
Gedeminas Technical University, the Palacky University Olomouc and finally
Academia Institute Of Technology.

Figure 3.15: Costabex partners

25

The Costabex project

Figure 3.16: Costabex partners

News section

The last page present in the about section is the one related with news about
real experiences from other students. Here is possible to read articles regarding
students’ direct experiences that could be helpful to encourage future ones to take
part in the outgoing experience.

Figure 3.17: Costabex news

26

Chapter 4

The Costabex checklist

4.1 The state of the art
Nowadays, there are many tools for managing tasks and files, few combine these
functions into one platform but no one of them integrate functionalities for managing
mobility for Erasmus students or abroad students in general. This lack of integration
could be attributed to several reasons:

1. Fragmented workflow: most task management and file management tools
work separately, which creates a disjointed workflow for users. People have to
switch between different apps to manage tasks and access related files, which
can be frustrating.

2. Limited Integration: although some task management tools can integrate
with file storage services like Google Drive or Dropbox, this integration is
often basic. They don’t provide advanced features or a seamless workflow. In
addition to this, no students’ tailor solution is present on the market

3. Lack of Standardization: there is no standard way for task management
and file management tools to communicate with each other. This makes
it challenging to create cohesive platforms that integrate both functions
effectively.

4. Different Development Focus: task management and file management
tools are often developed by different teams with different goals. This can
lead to a lack of collaboration and understanding between the teams, making
it difficult to create integrated solutions.

in the following rows, an initial prototype will be presented, and it could be seen
as a first approach for solving these issues.

27

The Costabex checklist

4.2 Presentation
Considering some of the concepts presented in the previous chapters and keeping
in mind the previously listed state-of-the-art assumptions, the Costabex cheklist
application was designed to seamlessly bridge the communication and workflow
gap between students and tutors in the context of an Erasmus exchange program.
The app, with its dual interface, caters to the relative needs of both students and
tutors, facilitating a streamlined, efficient, and engaging educational experience
abroad. Every section of this chapter shows the service’s views and features and
how it is supposed to work. In the next chapter, a deeper technical explanation
will be done for a better comprehension.

4.3 Mock-ups
The first developing stage was characterized by the creation of first mock-ups
of the application. Canva was the software used in order to make them. The
pages designed were the landing page, register page, login page and the principal
dashboard of the app. In this phase the main thought was to create a coherent
look and feel, being similar, in color palette and style, to the Costabex website.

Figure 4.1: Mockup landing page

28

The Costabex checklist

Figure 4.2: Mockup register page

Figure 4.3: Mockup login page

29

The Costabex checklist

Figure 4.4: Mockup dashboard

30

The Costabex checklist

4.4 The prototype
4.4.1 Landing page
The landing page is the one used to give to the user a first approach to the app.
It is characterized by the nav-bar, present in every page of the app, that, in this
page, has just the Costabex logo on the left side. Additional features in this page
are the app presentation with Welcome to the Costabex checklist text and a brief
description of the main scope of it. Finally, the login and register link buttons.

Figure 4.5: Landing page

4.4.2 Registration and login page
Registration page

The register page is the one used to add a new user to the service database. The
information requested here are the user first name, last name, institution, username,
mail, password and the user role: student or tutor. In case of tutor role, an
additional input field appears to insert the tutor key word to verify if the user is
actually a tutor.

31

The Costabex checklist

Figure 4.6: Sign up page

Login page

The login page it’s obviously the one through which the user can access to its own
dashboard with username and password input fields to fill in order to be done.

Figure 4.7: Login page

32

The Costabex checklist

4.4.3 Dashboard page
The dashboard is the app’s core. it is formed by 2 main sections: the current
user information on the left side of the page and the task section on the right one.
In all pages related to an active login session the nav-bar has, in addition to the
Costabex logo, three buttons: a list shaped button that redirects to the dashboard,
an account button that redirect to the account info page and a logout button that
close the session. The overall dashboard page is similar for both kind of users role
with little differences presented below.

For the student

Account section The account information left side of the dashboard presents
user principal information related to account picture (which click redirects to the
account info page), first name, last name and institution. Under these infos there
are three buttons: the checklist button that allow the categorized listing of the
tasks basing it to the mobility periods and different topics related (equal to periods
and topics subdivision of the counseling page in the Costabex counseling section),
the all tasks button that allows to see all the tasks related to the user and finally
the add task button that redirect to the add task page.

Tasks section the dashboard’s tasks section is where the tasks are displayed. If
the checklist button is clicked, the top part of it is constituted by three buttons
indicating the mobility periods and the specific categories related to each period
below. In this case, just tasks linked with that specific period and category will
be displayed. As mentioned before, in case of all tasks button pressed, the whole
tasks related to that user will be displayed. The last part of this section presents,
of course, the task listing table with different information related to it: task status
that could be pending or completed, task name, period, category, creation date,
deadline and additional button for editing or deleting the task, enabled in case of
own tasks, disabled in case of tutor assigned tasks (that will be distinguished by
personal ones with a different background-color. Furthermore, every table’s column
allow the user to sort the tasks in an ascending or descending manner basing the
order on every t-head present (status, name, category, period, creation date and
deadline).

33

The Costabex checklist

Figure 4.8: Student dashboard

For the tutor

When the current logged user is a tutor, the dashboard is essentially the same with
the only difference that he can’t see students’ personal tasks but just his own ones
and the ones assigned to students, which he obviously can edit or delete.

Figure 4.9: Tutor dashboard

34

The Costabex checklist

4.4.4 Add task page
For the student

When the user click the add task button, present in the dashboard’ account section,
it will redirect to the add task page. In this page, a task related form will be shown
that allows the student to set different data: task name, task status, category
related to it (that automatically set the mobility period too), a PDF file input and
a deadline. The creation date will be automatically registered once the user will
click the add task submit button.

Figure 4.10: Add task - student

For the tutor

In case of a user with tutor as a role, the page it’s mainly the same with the
possibility to assign the task to a specific student or keep it as a personal one
selecting the Not Assigned dropdown’s option.

35

The Costabex checklist

Figure 4.11: Add task - tutor

4.4.5 Show task page
For the student

The show task page is the one used to read the specific task data. Here there is a
preview file button enabled or disabled depending on the file’s presence. In case of
own made task, the student will see two delete buttons: for the entire task and to
remove the file from it. Another button is the edit task one that redirects to the
edit task page. In case of tutor assigned task, the student can’t delete or edit the
task but just upload a file related to it and only if the task file is not approved or
countersigned as done by the tutor.

For the tutor

In case of tutor user, the show page will be exactly the same but without the
students’ limitations related to task assigned tasks previously described.

36

The Costabex checklist

Figure 4.12: Show task - student

Figure 4.13: Show task - tutor

4.4.6 Edit task page

For the student

The edit task page is the one where it is possible to edit task data (except for the
task name). The user can change data related to the task and upload a new file. In
case of tutor assigned task, only this last data could be changed, and a notification
will consequently appear in tutor’s dashboard.

37

The Costabex checklist

Figure 4.14: Edit task - student - tutor assigned task

For the tutor

In case of tutor user, the edit page will be exactly the same but without the
students’ limitations related to task assigned tasks previously described.

Figure 4.15: Edit task - tutor

38

The Costabex checklist

4.4.7 Account page
The account page is the one where the user can view its own info and update his
profile picture. It is accessible from the nav-bar button or clicking on the profile
picture in the dashboard page. This page is exactly the same for both student and
tutor.

Figure 4.16: Account page

4.4.8 Error page
In the entire web-app, Error handling is properly settled in both client-side and
server-side way. In the next chapter will be explained in which way it was done.

39

The Costabex checklist

Figure 4.17: Error page

4.5 Future developments
The presented prototype is just the basic version of what will be the complete
web-app service. Future implementations to add will be mainly related with the
notification system and mail management. Right now, the notifications are just
dropped and displayed as flash messages to the students and tutors. When a file is
uploaded by a student to the tutor, to check the task and approve the uploaded
file or not. In the opposite way, a student is notified when a task is assigned by
a tutor to him. Future development will be related with the optimization of this
notification system with mail usage integration. A complete app overview guide will
be even added to the landing page to give the user thorough details on how to use
the service. Another step will regard the implementation of a mobile app version,
even if the entire application is already completely responsive to accomplish the
actual browser standard.

40

Chapter 5

Implementation

5.1 Introduction
In this chapter, the Costabex checklist implementation is presented. Before doing
the web-app code overview, all the features, tools and packages used are listed to
give a global introduction and facilitate the subsequent explanation when them
will be cited.

5.2 Front-end development and tools
Creating a compelling and user-friendly front-end for a web application, such as
a platform facilitating interactions between students and tutors in an Erasmus
exchange program, requires a deep dive into the synergies between styling frame-
works, templating engines, and the organization of the application’s structure. The
main tools used are now explained:

5.2.1 CSS and flexbox
The abbreviations for CSS are Cascading Style Sheets. It is a markup language,
which in most cases is used with HTML and other markup languages (such EJS
for the app) for the purpose of defining the web pages’ visual appearance, as well
as the style and format. CSS serves as a tool used to manipulate elements and
to have control over their fonts, colors, spacing, layout, and any other thing that
could affect the design’s look. Its aim is to have the same effect across various
browsers and screens. It basically mandates website selection of HTML elements
and apply styles to them. This can be done within an HTML document or through
an external CSS file so that the content remains separated from its stylesheet.

41

Implementation

Flexbox or Flexible Box Layout is a CSS designed feature for exhibiting well-built
and more flexible web pages layouts. It lets to apply containers accordingly to any
elements that’ll be arranged inside, even if these might be different in terms of
size or order. With flexbox, it’s easier to drive the draping, ordering and partition
elements along one axis (either horizontal or vertical) or along both the axes in
a single go. In summary, Flexbox is basically an awesome helper for creating
responsive designs and complex layouts with less code, saving time and efforts.

5.2.2 Bootstrap
Bootstrap is a prevalent front-end framework that can be used to make websites or
apps that are responsive and mobile adaptive. Created by Twitter’s developers, it
is an open source framework that provides a library consisting of predefined HTML,
CSS, and JavaScript components such as buttons, forms, navigation bars, and
grids, to make fast prototyping and integration possible. Bootstrap’s grid system
empowers developers to make flexible and responsive designs which are adapted to
diverse screen sizes and various devices. Furthermore, Bootstrap features various
template themes, abundant documentation, and a big community which makes it
user-friendly and a commonly preferred tool for web developers.

5.2.3 EJS and Partials:
EJS is another templating language for JavaScript that helps to easily generate
dynamic contents within web applications. It features a code to which the JavaScript
scripts can be directly embed inside an HTML-like template, which, in turn, allows
the creation of reusable components and dynamic views. Thus, it is possible to
directly inject values from JS files by only writing simple codes inside it and print
out the data on the web pages. Partials are the reusable components or sections
of a web page that can be embedded into another page or view. Partials allow
diminishing repetition and work more effectively, which is made possible by the
feature of defining a component once and then apply it as many times as needed. In
the EJS, partials are usually implemented by using the ‘<%- include(’partial-name’)
%>‘ syntax; ’partial-name’ specifies the file that contains the code for the partial
part. Developers, thus, are able to break the code into smaller parts and then
combines them together to create reusable components. This helps in creating a
more structured and manageable web applications.

5.2.4 Views Folder with Layouts and Public Folder
The organization of a web application’s front-end architecture often includes a ’views’
folder and a ’public’ folder. The ’views’ folder typically contains the application’s

42

Implementation

EJS templates, including layouts and partials. Layouts define a base template
for the application (e.g., a template that includes the header and footer partials),
which can be extended or overridden by specific views to alter the content displayed
within the common layout structure. This setup enables a consistent look across
different pages while allowing content variation. The ’public’ folder is used to
store static files that need to be directly accessible by clients, such as CSS files,
JavaScript files, and images. These files are referenced in the EJS templates and are
crucial for the styling and interactivity of the client-side interface. The separation
of static files into the ’public’ folder helps in organizing the application’s structure,
making it easier to manage the resources needed for the front-end.

5.2.5 Flash package
The Flash package provides a way to send temporary messages between requests.
These messages, often called flash messages, are typically used to display feed-
back or notifications to users after certain actions, such as form submissions or
authentication events. Flash messages are stored in the session and are available
only for the next request, making them ideal for displaying one-time messages.
The Flash package, thus, simplifies the process of managing applications’ feedback
by providing middleware (lately explained) for setting, retrieving, and clearing
messages.

5.3 Back-end development and tools
5.3.1 JavaScript
JavaScript is a high level programming language that is mostly used for designing
dynamic and interactive logic into web pages. Originally created for browser-based
scripts, JavaScript has recently expanded to the multipurpose client and server-side
development, mobile apps, game, and so on. Previously, most use of JavaScript
was to modify the DOM of the web page, in order to change HTML content, style
elements, react to users’ interactions, and do a lot of other things right when
an event occurred. JavaScript is also frequently used for filling out online forms,
animation, server data retrieval (AJAX and AJAJ), and client-side code within web
applications. The multi-paradigms feature of the JavaScript code is well-known
because it supports functional as well as object-oriented programming paradigms.
It is an ecosystem of libraries and frameworks, which include React, Angular, and
Vue.js to ensure that it covers the needs of a developer in making web development
simpler and easier. Generally, JavaScript is a key circle in modern web application
development, which provides an opportunity for programmers to make websites
with a large variety of functions that run smoothly on any computers and devices.

43

Implementation

5.3.2 DOM, AJAX, AJAJ

The DOM (Document Object Model) is a structure that enables interactions with
web documents via programming. It represents the parts of the document which
include elements, attributes, as well as text. It may be arranged in a tree-like
structure resembling HTML and XML documents. The DOM enables how the
programs can virtually supply, access to and change the content, structure, and
style of webpages. Through JavaScript, developers can access the user’s DOM,
which gives them the ability to make websites more dynamic and interactive by
adding/removing or changing elements, styles, as well as react to a user’s action.
AJAX (Asynchronous JS and XML) is a website development method employed
for the purpose of non-blocking requests to a web server to get and send data.
It permits more responsive and interactive web apps and information could be
exchanged via the browser and the server in a hidden manner. It is a process where
JavaScript is used without obstructing the user’s interaction with the webpage
sending asynchronous requests to the server, receive the server’s response and update
the webpage dynamically. AJAJ is similar to AJAX but use JSON (JavaScript
Object Notation) files to redefine data communication between the client and the
server instead of simple XML, this upgrade was made because it is lighter and
easier to parse. JSON is a compact and simple data format that can easily be
utilized, and this is one of the key reasons why it is preferred for web browser and
server communication with structured data.

5.3.3 Node.js

Node.js is a run time environment written in JavaScript which enables the back-end
developers to run the code independently of the browser. It is commonly used for
its event handling capability, in which process is asynchronous and makes it the
perfect choice for implementing various types of web applications such as real-time
ones, APIs, microservices, and server-side applications in general. Among the great
features of Node.js, there’s a package system called NPM (Node Package Manager)
which makes all open-source packages (including plugins) to be easily integrate
into Node.js based applications. This comprehensive ecosystem combined with
Node.js is based on strong features: flexibility, high performance and option to
build a wide variety of web and server applications that made it highly popular
among developers. Thus, Node.js gives developers an opportunity to use JavaScript
everywhere for developing very fast, scalable and efficient back-end code thanks to
the language’s familiarity and flexibility. Every package present in the Costabex
checklist was installed thought NPM package manager.

44

Implementation

5.3.4 Express, Express Router and Session

Express is a minimal and flexible node.js framework, responsible for improving
developer’s web application development experience and faster production time. It
is a robust API offering different features including handling requests and responses,
routing, and middlewares integration and, at the same time, is pretty simple
to use. Among the members of the Node.js community, Express is one of the
most used package, and is recognized for its high speed, flexibility, and scalability.
Express Router is the inbuilt routes service of the Express framework, through
which developers can split their program’s routes and endpoints into separate
modules. It solves the clustering issue where the routes for an old application
would otherwise be unorganized and scattered across multiple big files or modules,
eventually making the codebase unwieldy and not easy to maintain. Developers
can use Express Router to define route handlers, responding to different HTTP
methods, such as GET, POST, PUT, DELETE. It is important to mount them
to certain URL paths, which will enable better organization and separation of
concerns implementation in Express applications. Express Session is a service that
helps with user session handling for applications that use Express as the basis
for web server development. Sessions allow such users to save data specifically
related to them for longer time than what the browser can handle and across
multiple interactions with a server too. Express Session enables formation and
control of them, ensuring session data’s persistence on the server in association
with the session identifier (usually client-side cookie). This pairs with capabilities
such as user authentication, authorization, and personalized user experiences for
web applications. In addition to this, it enables different session storage options,
including internal memory sessions, database back-end sessions, and even external
session stores, like Redis or MongoDB, making Express applications more flexible
and scalable when managing several users.

5.3.5 MongoDB

MongoDB is an open-source NoSQL database with a focus on efficiency, scalability,
and high performance. It stores data in BSON format that resembles JSON. In
contrast to the relational databases that use tables and rows, the MongoDB is built
on collections and documents. This document-oriented approach allows diverse
data structures and nested data models that can represent different data types
and structures. MongoDB has been designed to be highly available and scalable,
with replication and sharding being inherent in its architecture. It is commonly
found in the present-day web applications, big data solutions and in cases where
the development process is rapid, and the data schema is flexible.

45

Implementation

5.3.6 Mongoose
Mongoose is an ODM (Object Data Modeling) library for MongoDB and Node.js.
It is a solution based on a schema that used to model application data. It comes
with inbuilt type casting, validation, query building, business logic hooks, and so
on. Mongoose enables the whole process of defining schemas which correspond
to specific MongoDB documents. These schemas are the blueprints upon which
models are built and represent documents in a MongoDB collection. Mongoose
models offer the chance of writing functions that perform actions like creating,
editing, retrieving, and deleting records.

5.3.7 Middlewares and error handling
The middleware function is a function that access the request object (req), execute
and then send the response object (res), then call the next function that is involved
in the application. Tasks such as logging, authentication, and parsing of data
can be performed by these functions. They behold the ability to call the next
middleware function in the stack or end the request-response cycle. Consequently,
they constitute a strong principle to provide more functionality to the Express
framework in a way that can be logically arranged and reusable. Express Error
Handling support is an implemented mechanism for handling errors during requests
handling. The function syntax for errors is a middleware function with the adding
error parameter within the syntax (err, req, res, next). This kind of middleware
play the role of handling the error and sending the right response to the client.

5.3.8 Passport authentication
Passport is a package suite for authentication in Node.js apps, particularly effective
with Express integration. Passport allows the state of user authentication to
be included and restored during web requests, which has the effect of enabling
a smooth user experience. It uses its middleware functions for authentication
purposes where, for instance, the only authenticated users pass the routes whereas
the unauthenticated ones can be redirected to the login pages or a response with an
error can be returned. Passport is immensely valuable because it has modularity
and extensibility, which gives programmers an opportunity to have a simple and
seamless authentication without requiring any huge efforts. This makes Passport a
good choice as well as its documentation and community.

5.3.9 Authorization
Permission middlewares act as services that monitor incoming request, made to
the protected parts of the website, checking if the user is permitted to get a

46

Implementation

specific page. The middleware functions, at the same time, tailor solutions for
database management or permissions into account for giving or banning access.
Authorization middleware are generally embedded into express routes and authorize
users to access the sensitive information according to predefined rules defined in
the application.

5.3.10 Joi schema validation
Joi is a powerful validation JavaScript library. It is primarily used for the validation
and sanitation of user inputs in Node.js applications. This removes the need for
writing fancy and complex validation rules, since the field types are program-
matically declared. Developers can define their data structure, constraints, and
verification rules which include required fields, data types, existing values, strings’
length, regular expressions, and many more. With Joi, developers can simply
do validation to various data types, providing a bundle of built-in methods and
functions basing on different need. These can be ‘string()‘, ‘number()‘, ‘required()‘,
‘min()‘, ‘max()‘, ‘valid()‘, ‘email()‘, ‘regex()‘, and others. Besides using complex
data structures, nested schemas, custom validation functions and error handling, it
is a one solution that can cover all data validation in Node.js applications. In short,
Joi ensure that all data coming in satisfies given rules without risks of security
loopholes, data accuracy problems, and programming errors.

5.3.11 Cloudinary
Cloudinary is a cloud-based media platform which allows users to store, manage,
and serve images, visuals, and videos for their app and websites. It is feature-rich
and allows uploading files smoothly by offering image and video pulling, stor-
age, transformation, optimization, and delivery thought content delivery network
(CDN). With APIs and SDKs, Cloudinary facilitates developers in adding media
management functions to their applications, performing dynamic growing, crop-
ping, compression, and transformation of data that have to be modified instantly.
Moreover, it grants many advanced options such as image format converting and
compression for responsive generation, being reliable and persistent in multimedia
data management.

47

Implementation

5.4 Code overview
This part of the chapter explains how previous tools were involved and used and
gives a complete overview of the final product.

Figure 5.1: Prototype’s files

5.4.1 App.js file
This file it’s the prototype core, it sets the web application using Node.js, Express,
and other libraries to provide functionalities such as environment configuring,
database connection, session management, authentication, and error handling. Its
main elements are:

• environment configuration: adds a ‘.env‘ file that is loaded by the appli-
cation if it is not in the production mode, and thus the development and
production settings are separated.

• express application setup: instantiates an Express app, configuring various
middleware such as handling HTTP requests (body parsing, static files serving),
bypassing method overrides, and setting up template engines EJS and ejs-mate,
used to extend the templating features.

48

Implementation

• database connection: defines the connection to a MongoDB database
through Mongoose, which is responsible for modeling and managing application
data.

• session and Flash messages: sets ‘express-session‘, used for session man-
agement, flash messages are implemented by ‘connect-flash‘ and they are used
for storing data (for example, error messages or form inputs) across requests.

• authentication: passport is the module requested for passport authentication
and configuring session with local strategy and session support. Incorporates
users’ serialization/deserialization to keep a track of sessions.

• routes: provides the routes to the tasks and user operations, which keeps the
concerns separate and makes the codebase more modular and manageable. It
provides a landing page route and applies middleware for the given settings
(for example, current user and flash messages) to all the requests.

• error handling: it sets a catch-all route for unmatched paths and if no match
is found, it returns an HTTP status code of 404 and has an error-handling
middleware to format and display the errors using a dedicated template.

• server initialization: through the listen port (app.listen), the application
server runs and listens for incoming requests.

49

������� ��	
��
�����������������	���	���
����
��!	"# 		��$� ��
��
�����!��
�% &
!'()* +,-�.	�/�����	�	��$� ��
��/������!'0 +,-�.	1��	�	�/�����
!'2 +,-�.	�1�3	�	��$� ��
��1�3�!'4 +,-�.	5��3
������ ��	�	��$� ��
�5��3
�6
���� ���!'7 +,-�.	�8�91��	�	��$� ��
��8�651���!': +,-�.	�1��3;�<��	�	��$� ��
��=�� >�=�1��3;�<���!'	�? +,-�.	�/��������
�	�	��$� ��
��=�� >�=�/��������
��!'	�� ==	5
�&

���# +,-�.	5
�&

��	�	��$� ��
�5
�&

���!'	�(51 �
!��1��3

���!	�@	�
��
>��>
&
���!!'�* ��A-+	�B-+.�,-	C��-
!	"�0 		�D��.	5
�&

����
�����
�5
�&
�EF==�#4�?�?��F#4?�4=�
��1E�/6�3��G> ���!'�2)�4 ==1��	����
��7 +,-�.	����
�	�	��$� ��
��/�����6����
��!'	�: +,-�.	����
�H
�% &	�	"#? 		������F	���&���
�I#� 		���1��F	%1>��I## 		�1��J� � � 1> K��F	����I#(�

G �F	"#* 				3�����><F	����I	==E1� �	����� �<#0 				�/� ���F	�1����
L
!	M	�???	N	2?	N	2?	N	#*	N	4I#2 				51/;&�F	�???	N	2?	N	2?	N	#*	N	4I#4)I#7)'#: ==1��	%>1�3(? +,-�.	%>1�3	�	��$� ��
��
�����6%>1�3�!'	(� ==1��	�1���
��(# +,-�.	�1���
��	�	��$� ��
��1���
���!'	((+,-�.	O
�1>P��1��&<	�	��$� ��
��1���
��6>
�1>�!'(* ==	����	5
��>(0 +,-�.	J���	�	��$� ��
��=5
��>�=�����!'(2 ==	Q1�G	�
����(4 +,-�.	�1�G�R
����	�	��$� ��
��=�
����=�1�G�8��!'	(7 ==	J���	�
����(: +,-�.	����R
����	�	��$� ��
��=�
����=������!'	*?*� ==	����
�	1��	%>1�3*# 1������
����
�
����
�H
�% &!!'*(1������
%>1�3
!!'***0 ==	%>1�3	M	�1�3	5 ��>�L1��*2 1������

��$I	���I	��/�!	�@	"*4 		����>
�1>���������R
���	�	��$��1�3'*7 		����>
�1>���������	�	��$�%>1�3
���������!'*: 		����>
�1>�����
�	�	��$�%>1�3
����
��!'0? 		��/�
!'0�)!'0#0(==	P��	1��	���0* 1������
�� �L	��& ���I	��8��!'	==�8�651��	�1>>	%
�	�/�����00 1������
�� �L��I	�1�3�8
 �
��� ��15�I	�� �L��!!'02 1������
�/��������>���
���
"	�/������F	����)!!'04 1������
�/��������1� �
�1�3�8
 �
��� ��15�I	���E> ��!!!'

�� �������	
���
���������	��
���
�������� ����������	������������������� !!������
���"
�#���$ �������	�����
���������%�&�	����' �������	�����
��������
�	����(�����
������)*+�,
"�%-������.	/������������"���	������ �����
��������%�&�/���	/���������%�&�/���	����� �����
����������%�&�/���	/�����������%�&�/���	����0 !!������
���
���%�1�����
���������������� �������		��2���������3���45�6�� ������%
"�%��"������/����4���2������0� ����3�	��0 7��0$0' !!�89-:-�;�/8<-0(�������	�!���=�������=�;
������0�0� !!�/-<;�;�/8<-00 �������	�!�������;
������0�0� !!�,������������� �������	�!���	��2�������45�6� ��"
��
%��%
�	��������������$ ��!!�,
��
�������������#������>������"����������
��' ��?@�	��2���9�������"����	���6�(������2�%
�
��		��45�67���� ��7�� ������������	��

�����0 7������ !!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA��� �����%%	�B���	��2���������3���45�6�$ ����3�)*+�<3�����<��
�	�C�����
��#
������(�(����' ��!!�����������"�	�!���
�����!!��������
���
�����"
��
%��(7������ !!����
��
���%�1����0 �������		�������2���������3���45�6�� ��DE)FG�6�������H
���4�����7�4������� ��?@�	I����
������������
�������4��-

�������1����1�
���� �� ������������	������H
����������	����
�����6�����7���!!���
��������
��������
���������
�%��� � 7�� �$ �' !!�;
���J�%�������� �(!!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA �� ����%�����	'�����	��45�6 �� ��"
��
%��%
�	�%���������
��H
���K�3A"��"=%�����
����� �0 7�� �� �

Implementation

5.4.2 Models
Schemas and models in a web application are used for defining the structure and
behavior of data. Schemas establish the blueprint for data entities by specifying
their properties and validation rules, ensuring data integrity. Models, on the
other hand, represent these schemas in code and provide methods for interacting
with the database. They handle operations like querying, inserting, updating,
and deleting data, serving as the bridge between the application’s logic and the
database. Overall, schemas and models are essential components for organizing
and managing data effectively.

Task model

the task model is the one used for task management, and it is formed by different
features like name, period, category and others. This file defines a schema and
model for a Task entity using Mongoose. The purpose of this model is to structure
and manipulate tasks within the database. Its components are:

• dependencies: for importing the necessary libraries (Mongoose, Joi, . . .).

• categories array: defines a list of categories (‘categories‘) under which
tasks can be categorized. These categories cover a range of topics relevant
to students, such as mobility, formalities, finance, and personal development,
among others, the same as the Costabex website counselling part.

• task Schema: a TaskSchema is defined using mongoose’s ‘Schema‘ construc-
tor. This schema outlines the structure of a task document in the MongoDB
database, including fields for the task’s name, status (checked or not), period
(before, during, or mobility), category (which must be one of the predefined cat-
egories), author, student, document details (URL, filename, approval status),
creation date, and deadline.

• name: a string that is required for each task.

• checked: a boolean indicating whether the task has been completed.

• period: a string that must be one of three values: before, during, or after,
indicating when the task should be performed.

• category: a string that must match one of the predefined categories listed in
the ‘categories‘ array.

• author and student: both are ObjectIds linking to a User model, indicating
the creator of the task and the student assigned to it, respectively.

52

Implementation

• document: an object containing details about an associated document (PDF
format in the app), including its URL, filename, and whether it has been
approved.

• createdAt: a date indicating when the task was created, defaulting to the
current time.

• deadline: a date indicating the task’s deadline, with a far future default value
as a placeholder of “Not specified” for tasks without a specific deadline

• model export: the schema is compiled into a model with the name Task,
which is then exported. This model is used throughout the application to
interact with the ‘tasks‘ collection in the database, allowing for the creation,
querying, updating, and deletion of task according to the defined schema.
This file essentially sets up a structured way to manage tasks in MongoDB,
with a focus on enforcing consistency and providing a convenient interface for
data manipulation.

53

��������	�
���
 ������������������������������� ! ������"�#$��%�������������"�#$��%��� & ������'()�"*���"�#$��%�+'()�"* ,- ������.*%/'()�"*�����0�'()�"*��1 ��#*"�2��3 ����456�2�'4��#$78 �����������92�4���7: ���7
; ��()�(/�92��

 ����456�2�<����*#7
! �����������92�4���7
& ���7
, ��6����92��
- ����456�2�'4��#$7
1 �����#�"2�=���>����7��9���#$�7��*>4���?7
3 ���7
8 ��(*4�$��52��
: ����456�2�'4��#$7!; �����#�"2�(*4�$����%7!
 ���7!! ��*�4)��2��!& ����456�2�'()�"*+.56�%+@���(4A97!, ������>2��B%���7�CC���>���#(��4��4)��"�9��!- ���7!1 ��%4�9�#42��!3 ����456�2�'()�"*+.56�%+@���(4A97!8 ������>2��B%���7�CC���>���#(��4��4)��"�9��!: ���7&; ��9�(�"�#42��&
 �������2��&! ������456�2�'4��#$7&& ������9�>*��42��#�#��7&, �����7&- ����>���#*"�2��&1 ������456�2�'4��#$7&3 ������9�>*��42��#�#��7&8 �����7&: ����*66��D�92��,; ������456�2�<����*#7,
 ������9�>*��42�>*�%�,! �����,& ���7,, ��(��*4�9E42��,- ����456�2�F*4�7,1 ����9�>*��42�F*4�+#�G7�CC�'�4�9�>*��4�D*����4��(����#4�9*4�,3 ���7,8 ��9�*9��#�2��,: ����456�2�F*4�7-; ����9�>*��42���0�F*4���::::H
!H&
.!&2-:2-:I��7�CC�'�44�#$�4)��9�>*��4�D*����4��4)��"*J�"�"�9*4�-
 ���-!-& �� -,-- "�9���+�J6��4%���"�#$��%�+"�9����.*%/�7�.*%/'()�"*� -1 �

Implementation

User model

the user model is the one used for user management, and it is formed by different
features like first name, last name, mail, password and others. This file defines a
schema and model for a User entity using mongoose. It also utilizes ‘passport-local-
mongoose‘ for adding username and password fields to the schema and facilitating
user authentication. Its components and functionalities are:

• dependencies: imports necessary libraries such as mongoose for database
interaction, ‘passport-local-mongoose‘ for simplifying user authentication with
Passport.js, and ‘Schema‘ from mongoose.

• user schema: the ‘UserSchema‘ is defined using Mongoose’s ‘Schema‘ con-
structor. It outlines the structure of a user document in the MongoDB
database, including fields for email, first name, last name, institution, role,
and account picture details.

• email: a string representing the user’s email address, which is required and
must be unique.

• firstname and lastname: strings representing the user’s first and last names,
respectively, both of which are required.

• institution: a string representing the user’s institution, also required.

• role: a string indicating the user’s role, which must be one of two values:
student or tutor. This field uses an enum to enforce a specific set of values.

• accountPicture: an object containing details about the user’s account picture,
including its URL and filename. Both fields have default values, providing
fallback options if a user doesn’t upload a custom picture.

• passport-local-longoose package: the ‘passport-local-mongoose‘ plugin
is applied to the schema using ‘UserSchema.plugin(passportLocalMongoose)‘.
This automatically adds username and password fields to the schema, along
with additional methods and functionality for user authentication.

• model export: the schema is compiled into a model with the name User,
which is then exported. This model can be used throughout the application to
interact with the ‘users‘ collection in the database, allowing for the creation,
querying, updating, and deletion of user documents according to the defined
schema.

55

����������	
���
������������������������������������
�����!"#��$�����������%!"#��$�&
�����'$��'��()�"$*+�������������������'$��'��(,*�"$*,�����������-.
�����/���!"#��$�����0�!"#��$�12 ����$�*3�14 ����(5'�3�!(����67 �����������83�(���69 ����������3�(���6�: ��;6�� ��<���(�$��3�1� ����(5'�3�!(����6�& �����������83�(���6�- ��;6�. ��*$�(�$��3�1�2 ����(5'�3�!(����6�4 �����������83�(���6�7 ��;6�9 �����(�(�(���3�1 : ����(5'�3�!(����6 � �����������83�(���6 ��;6 & ����*�3�1 - ����(5'�3�!(����6 . ��������3�=��(�8��(�6��(�(���>6 2 ��;6 4 ��$""���(?�"(���3�1 7 ������*3�1 9 ������(5'�3�!(����6&: ������8�<$�*(3&� ���������#(('�3@@(-%<("8�%��(@A'�@: @ 9@4.@7&@ -:BCB 94.7& 7B4D7AEFEA(G+�F2��CH)C#I�J')�KG2)7%A'��6& ����;6&& ����<�*��$��3�1&- ������(5'�3�!(����6&. ������8�<$�*(3��8�<$�*(,$""���(,'�"(���%A'��6&2 ����;6&4 ��;6&7 ;��&9-: /���!"#��$%'*�����'$��'��()�"$*+����������-�- ��8�*�%�D'��(������������%��8�*��/����6�/���!"#��$��-& �

Implementation

5.4.3 Public folder
The public folder is the one containing all the static files served to others. This
includes icons and pictures, JS scripts and stylesheets linked to EJS views.

Figure 5.2: Public folder

5.4.4 Routes
The routes involved in costabex checklist are the one related with tasks and user
management, through these routes is possible to catch HTTP requests and react
to them via responses sent thought the specific routes.

57

Implementation

Tasks routes

This file defines routes for handling CRUD (Create, Read, Update, Delete) opera-
tions related to the tasks. These are the relative sections:

dependencies: imports necessary dependencies such as Express, the Express
Router, controller functions for handling tasks, middleware functions for error
handling and authentication, and Multer for handling file uploads.

router initialization: initializes an Express Router by calling ‘express.Router()‘.
The ‘mergeParams: true‘ option is passed to allow access to parameters from the
parent router, which is useful when using nested routers.

file upload setup: Multer package is configured to handle file uploads. It
utilizes a storage configuration provided by a function named ‘storage‘ imported
from ../cloudinary. The ‘upload‘ variable is then initialized with this storage
configuration.

routes definition:

• GET "/new" renders a form for creating a new task. Requires the user to
be logged in (‘isLoggedIn‘ middleware) and is handled by the ‘newTaskForm‘
controller function.

• POST "/" handles the creation of a new task. Requires the user to be logged in
(‘isLoggedIn‘ middleware), validates the task data (‘validateTask‘ middleware),
and handles file upload (if any). It is processed by the ‘addTask‘ controller
function.

• GET "/" renders a page displaying all tasks. Requires the user to be logged
in and is handled by the ‘showTasks‘ controller function.

• GET "/:id" renders a page displaying details of a specific task identified by
its ID. Requires the user to be logged in and is handled by the ‘taskDetails‘
controller function.

• GET "/:id/edit" renders a form for editing an existing task. Requires the user
to be logged in, checks if the user is the author of the task (‘isTaskStudent‘
middleware), and is handled by the ‘editTaskForm‘ controller function.

• PUT "/:id" handles updating an existing task. Requires the user to be logged
in, checks if the user is the author of the task (‘isAuthor‘ middleware), validates
the task data (‘validateTask‘ middleware), and handles file upload (if any). It
is processed by the ‘editTask‘ controller function.

58

Implementation

• DELETE "/:id" handles deleting a task. Requires the user to be logged in and
checks if the user is the author of the task. It is handled by the ‘deleteTask‘
controller function.

• GET "/:id/removeFile" handles removing a file associated with a task. Re-
quires the user to be logged in and checks if the user is the author of the task.
It is handled by the ‘removeTaskFile‘ controller function.

exporting router: the router instance is exported, making these routes available
for use in other parts of the application. To summarize, this code sets up routes
for managing tasks, ensuring proper authentication, validation, and file handling
along the way.

59

����������	
���
�����������������������������������
��������������������� !������"�#��$�%&�&#�'������(��)
������&�*�+������������ ,-�.���//���,�&�*����0
�����-&�-12�3.-������������ ,���/�,-&�-12�3.-����,,������1&.4/�.$��������#�.�5
�����"���6�$$�47.8�9&/�4&��:&�*8���2��1��8���:&�*;��4�.��(������������ ,<�44/�=&������>? ,,�#�/����&44����.�@A�B����#&$����/�&4C
�����#�/���������������#�/������D
�����"�����&$��(������������ ,-/��4�.&�3����E
�������/�&4���#�/����"�����&$��(������ ,,�+!�4��&�*�) ������ $����,.�=�8���6�$$�47.8�-&�-12�3.-��&�*�+ .�=:&�*F��#����0�5 ������ ������> ���,�8�? ����6�$$�47.8�C ��9&/�4&��:&�*8�D ����/�&4 ��.$/���4�-�#�.���8�E ��-&�-12�3.-��&�*�+ &44:&�*��� �����) ������ $����,�8���6�$$�47.8�-&�-12�3.-��&�*�+ �1�=:&�*�����0�5 ������ $����,'�4�8���6�$$�47.8�-&�-12�3.-��&�*�+ �&�*G��&�/�����>�? ,,�-�H4��&�*�C ������ $����,'�4,�4���8���6�$$�47.8���:&�*;��4�.�8�-&�-12�3.-��&�*�+ �4��:&�*F��#����D)E ������ ����)� ���,'�4�8)� ����6�$$�47.8)) ����2��1��8)0 ��9&/�4&��:&�*8)5 ����/�&4 ��.$/���4�-�#�.���8)> ��-&�-12�3.-��&�*�+ �4��:&�*�)? ��)C)D ,,�-��G��&�*�0E ������ 4�/�����,'�4�8���6�$$�47.8���2��1��8�-&�-12�3.-��&�*�+ 4�/���:&�*���0�0� ,,�!����������#�9���&�*�B�/�0) ������ $����,'�4,��#�9�F�/��8���6�$$�47.8���2��1��8�-&�-12�3.-��&�*�+ ��#�9�:&�*F�/����0005 #�4�/� �����������������0> �

Implementation

Users routes

Users routes are the ones relative to the users’ URLs, allow user management
actions like add new ones or getting their data.

dependencies: it imports necessary libraries such as Express for route handling,
controllers for handling user-related actions, Passport.js for authentication, and
multer for handling file uploads.

router initialization: it initializes an Express Router by calling express.Router().

file upload setup: multer is configured to handle file uploads. It utilizes a
storage configuration provided by the function named storage2 imported from
"../cloudinary". The upload variable is then initialized with this storage configura-
tion.

routes definition

• POST "/register": handles user registration. Renders a registration form on
GET request (userC.showRegisterPage) and processes registration data on
POST request, adding a new user to the database (userC.addUser).

• POST "/login": handles user login. Renders a login form on GET request
(userC.showLoginPage) and processes login data on POST request, authen-
ticating the user using Passport.js local strategy. If authentication fails, it
redirects to the login page with a flash message. If successful, it redirects to
the account page (userC.login).

• GET "/logout": handles user logout, invoking the userC.logout controller
function to log the user out of the application.

• GET "/account": renders the user’s account page, displaying account details
(userC.account).

• PUT "/account": handles updating the user’s profile picture. Processes a file
upload of a new profile picture (accountImage) and updates the user’s account
picture in the database (userC.updateAccountPicture).

• GET "/account/remove": handles removing the user’s profile picture. Invokes
the userC.removeAccountPicture controller function to remove the user’s
account picture from the database.

exporting router: the router instance is exported, making these routes available
for use in other parts of the application.

61

�������������	�
 �����
�������
�
�������������������� �����
������
�
����������������� �����
����!
�
�����������"#�$���%%���"��������& �����
�'������
�
����������'���������(�����
#'�#)*�+$#
�
�����������"���%�"#'�#)*�+$#���, �����
-�%���
�
���������-�%������. �����
/
����'0��
1
�
�����������"#%��2�$'�+���3 �����
��%�'2
�
-�%����/
����'0�4
����'0��
1��5
6 ������
""
��0�����

��������"��0�������
�

�0�������!��)�7��0�����8'0��

������#'�#)*�+$#�����!�'229������
&
(������
""
:�0�$
,

��������"%�0�$��
.

�0�������!��)�7:�0�$8'0��
3

������
5

�'�������'��)�$��#'����%�#'%�;
/�6

<'�%���=%'�)4
����;�

<'�%�����2���#�4
�"%�0�$�;��

1�;�

����!�%�0�$�&

���(�, ""
%�0����. �������0����"%�0����;
����!�%�0������3�5 �������0����"'##��$��;
����!�'##��$��� 6
 ""
�2��
���<�%�
��#���� � �����������

�"'##��$��; &

��%�'2���$0%���'##��$�>-'0���; (

#'�#)*�+$#�����!���2'��*##��$�8�#����� , �� . 3 ""
�����
��
��-�?�
'##��$�
��#���� 5 �������0����"'##��$�"��-�?��;
����!���-�?�*##��$�8�#������&6&
 -�2�%���������
�
�������&�

Implementation

5.4.5 Controllers
Controllers define the specific functions called where a route where they are applied
is triggered, and HTTP verbs are executed. In Costabex checklist, controllers are
directly connected with task and user routes and consist in different related actions.

Tasks controllers

Tasks controllers consist in tasks management functions relative to addition, editing,
showing and deleting actions. ShowTasks and taskDetails are the ones exposed.

• newTaskForm: renders a form for creating a new task and fetches necessary
data.

• addTask: processes form data to create a new task, including file uploads, and
saves it to the database.

• showTasks: fetches and displays tasks based on specified criteria.

• taskDetails: retrieves and displays detailed information about a specific task.

• editTaskForm: renders a form for editing an existing task and fetches task
details.

• editTask: processes form data to edit an existing task, including file uploads,
and updates it in the database.

• deleteTask: deletes a task from the database.

• removeTaskFile: removes the file associated with a task from Cloudinary and
updates the task in the database.

63

�����������	�
����
�� ������������������������ !
�"�� #��$% ���& !' () ����� (���*��% +���,��- . ! ��$�$���-/ 00 1����+� 2��� ���*�� �3� +���,��- 4��� ��� $���- ���*3,56 ��" (7 ��� �����/89 :; #���*�� << +���,��-& (= 00 >*���� ����� 2- 2��� ���*�� �3� +���,��-? ����� !
@
:� �����4*3�#(���*��% +���,��- .&���������#A������A% A����A&/�B . ���� :; #���*��& (�� 00 >*���� ����� 2- ���*�� �3�-�) ����� !
@
:� �����4*3�#(���*�� .&���������#A������A% A����A&/�5 . ���� (�6 00 >��+� ��� ����� *4 3� ���*�� ���+*4*���7 ����� !
@
:� �����4*3�#(.&���������#A������A% A����A&/�8 .�9�= 00 >*���� ��� ����� �*����� �3 ����+*���� �������? ����� ! ������4*����##����& !' �����������&/)B ������3���#A�����0�����C3���A% ()� �����%)) ���*��D ���*�� EE A���A%)5 +���,��-D +���,��- EE A���A%)6 +���,��-F����D +���,��- EE 3���%)7 ���*��F����D ���*�� EE A���A%)8 .&/)9 . �
��G #�����& ()= +�3����������#A1���� 4��+�*3, �����DA% �����&/)? ����������#7BB&���3�#AC3���3�� H��I�� 1����A&/5B .5� ./5)55 00 0D*� ,��56 �������������������J���*�� !
�"�� #��$% ���% 3���& !' (57 ����� (*� . ! ��$�������/58 ����� ���� !
@
:� �����4*3�K-C�#*�&���������#A������ �����3�A&/59 +�3�������,#����&/5= :; #L����& (5? 3���#��@ 1������1����#AF�,� 3�� 4��3� M' ��� �����A% 6B6&&/6B ���N�� �������*��+�#A0�����A&/6� .6) ������3���#A�����0����A% (���� .&/65 ./

Implementation

Users controllers

Users controllers enabled user management functions relative to users’ registration,
data getting or showing, login, logout, deleting actions and handles user-related
actions within the application. The ones shown below are the showRegisterPage
and addUser ones.

• showRegisterPage: renders the registration page. If a user is authenticated, it
logs them out before rendering.

• addUser: processes registration form data to create a new user. If the role is
"tutor", it checks the tutor key before registration. After successful registration,
it logs the user in and redirects them to the tasks page.

• showLoginPage: renders the login page. If a user is authenticated, it logs them
out before rendering.

• login: processes login form data, flashes a welcome message, and redirects the
user to the tasks page or the previously visited page.

• logout: logs the user out and redirects them to the home page ("/").

• account: renders the user’s account page.

• updateAccountPicture: handles updating the user’s account picture. It uploads
the new picture to Cloudinary, deletes the previous picture, updates the user’s
account with the new picture details, and redirects to the account page.

• removeAccountPicture: removes the user’s account picture from Cloudinary,
updates the user’s account with the default picture details, and redirects to
the account page.

65

�����������	
�������
 �������������������������������������� ! ���"������#������$��#%��&����&����'�����"(�)* ������'�����"(�)������������'�����"(�)���$! +, ������-��#���-�#. ��������/0��#���%�12�-��#��3(-����4�5�������6�������7�89 �����:�-���#�#%��������&�#%���;��("�('#�$��������"< ��=>��������?�#%�"#�'(#������8@ ����4A4=��������-��#�����7�8B�
C ��B

 ��'�"�������-����-��#���0(-���
! ��������"�������������-��#����
* B
+
, ������-��#���0��#
. ��������/0��#��(���������4�5�������6����6�"�/#���7�8
9 ����5�8
< ����������8�����6�#�#��D�)�B�������E��) ����F/#�('#������("��#�#��D�)�&��������E��)
@ ����������-��#�������� !C!
 �������G%�'H��&�#%�����������#�#����("���&�#%��#�#��D�)����'����'#!! ����=>������������#�#����II�#�#��D�)�J����#�#��0(�����8!* ����������&�(�%��������6��K"$(����#�#���H�)�� !+ ���������
�������������'#�����-��#���� ����2�����'#�E('H�#��#%����-��#�(#��"�0(-�!, ����B!.!9 �������G��(#��������EL�'#�E(�����"��/#�('#�������M(#(!< �������������������A����������E��)� !@*C �������K&����������#�#���6���#�(���#��"(��0��0��#)�&���#�#��D�)*
 ����=>������������#�#�����8*! �����������#�#��D�)���#�#��D�) ** ����B*+*, �������2�-��#�������*. ������-��#�����������4A4=���������-��#�������6�����E��)�0(��1���� *9*< ��������������-�"*@ ����������-�"���-��#��������6��������7�8+C ������=>����������
���"�/#����� +
 ����������������'#��#(�H��� +! ����B� +* ��B��4��N�����8++ ��������&�(�%��������6�������(-�� +, ��������������'#��#(�H��� +. ��B+9 B

Implementation

5.4.6 Middlewares
The middlewares implemented in the Costabex checklist app are mainly used for
tasks and users’ authorization and validation.

• isLoggedIn: checks if the user is authenticated. If not, it redirects them to the
login page with an error message. It also stores the original requested URL in
the session for redirection after login.

• validateTask: validates the task data received in the request body using Joi
schema. If there’s an error, it throws an ExpressError with the details of the
validation error.

• isAuthor: checks if the authenticated user is the author of the task or has
appropriate permissions. If not, it redirects with an error message.

• isTaskStudent: checks if the authenticated user is the student assigned to the
task. If not, it redirects with an error message.

67

����������	
�	�
��	�������������������� !"�#��$����%&�����������$'�� !"�#(
��	��)�$���*!�+,'� ��-��������������.!�+,'� ���%&/
��	��012����0��!����������������$�#��012����0��!��%&34 ���#!5�6� �""#�7���8 !"�#���12!�$����9!55�":6�������;����;�6�1$%��<�)= ���>��?������@�$'�6$�,�$�"�%%�)A �������������!6���$��6�!�������!��5�6�#B�#&C ��������D#��'�����!��;��E!�� ��$�F����56�"��6�D���$?�%&�G �������H���������"���,$���#!5�6�%&�� ��-�(��6�1$�%&�/ -&�3�4 ���*!���,'� �� �""#�7����8 !"�#���12!�$��I�#�"�$������������;����;�6�1$%��<�)�= ��
��	��)����!��-���$���*!�+,'� ��I�#�"�$������F!"J�$���%&�A ���>�����!�%�)�C ����
��	�� �5������!��"�$��#�� �2���#%��<��#� ����5�%�.!�6��;�%&���$!��'!7�$'�� ����5���6�$'�����!��$� 2#�$�(G �����K��������012����0��!�� �5;�3GG%&(� ��-���	��)((����6�1$�%&(/ ��-(3 ��,!6�!#��#!5����!�%&(4 -&(8(= ���L�� ����!6� �""#�7���(A !"�#���12!�$����@�$'!�����	M�
�����;����;�6�1$%��<�)(C ��
��	��)��"�-�������2��� �&/G ��
��	��$�����������������D�6"NJ:"��"%&/� ���>��?$������$'!������#�����������O�"%�PP�����������!#��?�����$�"�6$�%�)/(��������D#��'�����!��;��E!��"!�6!$�'�I��2�� ����!6�$!�"!�$'����,$�!6��%&// �������H���������"���,$�Q�$�����R)�"-Q%&/3 ��-/4 ��6�1$�%&/8 -&/=/A ���S�""#�7����$!�,'�,���D�$'��,����6$���������$'���$�"�6$�����56�"�$!�$'��$���/C !"�#���12!�$��������+$�"�6$����	M�
�����;����;�6�1$%��<�)3G ��
��	��)��"�-�������2��� �&3� ��
��	��$�����������������D�6"NJ:"��"%�2!2�#�$����$�"�6$�%&3(��,!6�!#��#!5�$���%&3/ �����T'�,���D�$'���������,����6$�������6"��D�$'�J�����$'���$�"�6$�����56�"�$!�$'��$���33 ���>��?���������UU�?$������$'!�%�)34 ��������D#��'�����!��;��E!��"!�6!$�'�I��2�� ����!6�$!��"�$�$'���$�����%&38 �������H���������"���,$�Q�$�����R)�"-Q%&3= ��-3A ��6�1$�%&3C -&4G �

Implementation

5.4.7 Views
Views are the files used for displaying different tasks, users and app pages. Within
these files we have: boilerplate, partials, tasks views, users views, error view and
landing page view.

Figure 5.3: Views folder

Boilerplate

The boilerplate is the basic template included in all other views, it constitutes
the basic layout for all other pages, the skeleton of the app. It includes navbar,
flash messages and bootstrap styles embedding, validation scripts and includes the
necessary metadata, such as character set and viewport settings. Additionally, it
imports Bootstrap CSS and JavaScript files from CDN (Content Delivery Network)
sources to style and add interactive elements to the webpage. The ‘<body>‘
element is configured with classes for flexbox layout (‘d-flex flex-column vh-100‘)
to ensure proper alignment and responsiveness. Within the body, it includes a
navigation bar using an EJS partial <%- include("../partials/navbar") %>,
and the main content area (‘<main>‘) where the dynamic content will be injected.
At the bottom of the body, it imports a custom JavaScript file (‘validateForms.js‘)
for form validations using Bootstrap’s validation features.

69

��������	
����

�������������� ��������������� ������!"#$%&'#&�() ����*�+ ��������,-"./'0%&1�234&�5 ��������#"6'%&78'9:;.0&�,;#0'#0%&98<0-%<'78,'398<0-=�8#808"!3/,"!'%�>?&�@ ����������;/0"A'B�,-',C!8/0�D������4 ����33�A;;0/0.":�33�E �����FG�-.'H%&-00:/IDD,<#>J/<'!87.>#'0D#:6DA;;0/0.":K+>(> D<8/0D,//DA;;0/0.":>68#>,//&�.'!%&/0L!'/-''0&�8#0'$.80L%&/-"(4)3�(,5�;M85NO.PE�#'Q�;"@RB#"0SJ,�T�6U�VWBTR�UP/W�XD�99LC, V�Y4V ZQ&�,.;//;.8$8#%&"#;#L6;N/&��?�� ����[�����/.,%&-00:/IDD,<#>J/<'!87.>#'0D#:6DA;;0/0.":K+>(> D<8/0DJ/DA;;0/0.":>AN#<!'>68#>J/&�8#0'$.80L%&/-"(4)3�5RS/L#VEC\�.VQ'�4@A-E+�UQL]�-,�QWJ�Q\@RN̂�/LQD;?J!:,X4_L̀)5,�HO&�,.;//;.8$8#%&"#;#L6;N/&�<'H'.��D�[������ �(����33�:;::'.�33��) ����[�����/.,%&-00:/IDD,<#>J/<'!87.>#'0D#:6DK:;::'.J/D,;.'K >��>4D<8/0DN6<D:;::'.>68#>J/&�8#0'$.80L%&/-"(4)3M@�4XX�D8/6��2)-QM�JX:D]J7$L;!5X27RCWD7RaX,)J_C�a-X̀, :V4��'9"E.&�,.;//;.8$8#%&"#;#L6;N/&��D�[������+�5 ����[�����/.,%&-00:/IDD,<#>J/<'!87.>#'0D#:6DA;;0/0.":K+>(> D<8/0DJ/DA;;0/0.":>68#>J/&�8#0'$.80L%&/-"(4)3̂ 0̂!a'UbR$̀_P1VBb@:V9A�L�R)!�$a��+�a�5�:@_E_aS̀W5$TA<4+N)6U)_SWa&�,.;//;.8$8#%&"#;#L6;N/&�<'H'.��D�[������@�4 ����33�333�33��E ? �� � �

*	�,!"//%&<3H!'B�H!'B3,;!N6#�7-3�??&� ���c3��F[��*�d&>>D:".08"!/D#"7A".&e�c� (������F�,!"//%&,;#0"8#'.�603(&�) �����c3�A;<L�c� + ���D���F� 5 ����33�A;;/0.":�7"!8<"08;#/�33� @ ����[�����/.,%&DJ"7"/,.8:0/D7"!8<"0'2;.6/>J/&��D�[����� 4 �D

*	�

Implementation

Partials

Partials in Costabex checklist are view modules mainly used in the boilerplate.
Navbar or flash view page are an example of a partial.

task views

Task views are the files that allow the display of the tasks’ management pages.
NewTask view file is the one exposed below:

• edit task form (editTask.ejs): this file represents the view for editing a
task. It includes a form with fields to modify various aspects of a task, such as
its status, category, deadline, and document upload. The form is conditionally
rendered based on the user’s role and authorization to edit the task. If the
user is the author or a tutor, they can edit all fields, including the assigned
student and file approval status. If the user is the student assigned to the
task, they can only view certain fields and upload a document if the task is
not yet checked.

• new task form (newTask.ejs): this file represents the view for creating a
new task. It contains a form with fields to input task details, including the
task name, assigned student (for tutors), status, category, document upload,
and deadline. It also includes logic to conditionally display the "Assign to
Student" dropdown only if the user is a tutor.

• task details page (showTask.ejs): this file represents the view for displaying
detailed information about a single task. It includes details such as the
task name, status, period, category, author, assigned student (if applicable),
deadline, and file preview link. Additionally, it provides options for editing
the task (if authorized), deleting the task, and removing the associated file.

• dashboard (tasksIndex.ejs): this file represents the main dashboard view,
displaying a summary of tasks based on different periods and categories. It
includes options to filter and sort tasks by period and category and others
features, as well as buttons to view all tasks, navigate to the checklist, and
add a new task. The dashboard also displays a list of tasks with options to
edit or delete each of them, depending on the user’s role and authorization.
Additionally, it includes notification alerts for tutors to review tasks uploaded
by students.

71

���������	��
������
 ������������������������������� ��!"# �$��%!& ���'����()�����*�+,-./���!0 ���'����1�2�*�3��4������(�1��1�*�4�5�)*5�3�(�.4�5�)6��1�����.�(���*
78���!9 ������:�!;�4����<�����:�!= ���:�
	����*�������)�����)��>*��������)�����1�4,��<7(���!/ ��$��%!?
8 �@A%B!

 ���%���(����*�(�1���1���2�.#�!
" �����%���(����*���4�C����>�.(�1��1�.(�1����!
�������%���(����*�(��5��.&�!
& ���������$D������*�(����E�F#G=H/IJ��(����*�(��5.������!K55�,��<��$D!
0 �����������L��A
!
9 �����������MAN'��(���1*�����<���2��)�5*�������(����*�1��5�.3���5����1��1�3���5�����1(����*�2���������>��2.5����!
= �������������%���(����*�2�.#�!
/ ���������������:�@�:�>��*�1�2��!�@!O1�����,��<��@!��:�@�:!
? ����������������
PQ��(����*�>��2.(�1��������15�5.����������*���R���1�2�*�1�2����5*�1�2�����S����5�2�R��1T�)*�&8�����(�)��5��*�,��<�1�2��!"8 ��������������%��!"
 ����������������M��(����1�+����UU�(����1�+���7�����***�������� �V��!"" �������������W..�X)�4��)���K���T1����X��5�1���5���5�41��1����>��)������������������..!"# �������������%���(����*�2�.#�!"& ���������������:�@�:�>��*����5�1��!�@!K���T1����X��5�1���@!��:�@�:!"0 �����������������:�L��(����*�>��2.(�1�����>��2.����(�����15�5.������1�2�*����5�1����5*����5�1��!"9 �����������������AP��A
�3����*��!;���K���T1�5��AP��A
!��W..�Y����1�>���1�������T1�1T�����1�����5�1��..!"= ����������������������5�1��7>��Z�()����5�1��*!�V��!"/ �����������������AP��A
�3����*���*����5�1�7[�5��!�!��*����5�1�7>����1�2���!���*����5�1�7����1�2���!��AP��A
!"? �������������������\ J��!#8 ������������������:�L�!#
 ��������������%��!#" ���������������\��!## �������������%���(����*�2�.#�!#& ���������������:�@�:�>��*�()�(<�5�!�@!H�1�]��@!��:�@�:!#0 ����������������
PQ������*�()�(<��R��1�2�*�()�(<�5���5*�()�(<�5�!#9 ���������������:�@�:�>��*�()�(<�5�!̂ZX��:�@�:!#= ��������������%��!#/ �������������%���(����*�2�.#�!#? ���������������:�@�:�>��*�(���T����!�@!X���(���)��I���T�����@!��:�@�:!&8 �����������������:�L��(����*�>��2.(�1�����>��2.����(�����15�5.������1�2�*�(���T������5*�(���T����!&
 �������������������MAN��:���(���T�����>�(���T����� �V��!&" �����������������AP��A
�3����*���*�(���T�����!�!���*�(���T�����!���AP��A
!&# �������������������\��!&& ������������������:�L�!&0 ��������������%��!&9 �������������%���(����*�2�.#�!&= ���������������:�@�:�>��*��5>�!�@!�5>������5�������1�� ��@!��:�@�:!&/ ����������������
PQ��(����*�>��2.(�1��������15�5.����������*�>�����1�2�*�5�(�2�1����5*�5�(�2�1����((���*�7�5>�!&? ��������������%��!08 �������������%���(����*�2�.#�!0
 ���������������:�@�:�>��*�5��5��1��!�@!H��5��1���@!��:�@�:!

�� �������������������	�
��

�������
��� �������������� �!��" ������������� �!�
��

����#��
��������� ���������������$�		%��
��

��&���&�����'(��������#�"����������������������)�������*����$�		%���+ �������������� �!��, ������������-%./��0 ����������� �!�
��

���������1 �������������2�
��

��&���&�����'(���(��������
3
��)�
3��2�+4 ������������ �!�+5 ����������678	�%��+� �������� �!�+� ������ �!�+" ���� �!�+� ��$% 9�++

Implementation

User views

Users views are the files that allow the display of the users’ management pages.
Login one is exposed below.

• accountInfo.ejs: this file represents the user account information page. It
presents the user’s profile picture, name, and institution. Users can edit their
account picture by uploading a new image or removing the existing one. The
page includes a form for uploading a new picture and a button to remove the
current picture. JavaScript is used for form validation to ensure that only
JPEG or PNG files are uploaded, and a message is displayed to guide users
on the file format and recommended dimensions.

• login.ejs: the Login.ejs file serves as the login page for users. It presents a form
where users can input their username and password to log in. Additionally,
it utilizes Bootstrap icons for visual elements. JavaScript functionality is
included to allow users to toggle the visibility of the password field, enhancing
user experience by giving them the option to view or hide their entered
password.

• register.ejs: register.ejs represents the registration page for new users. It
displays a form where users can input their first name, last name, university,
username, email, password, and role (either student or tutor). The form
dynamically adjusts based on the selected role, showing an additional field for
the tutor key if the user selects the role of a tutor. JavaScript functionality
is included to enable users to toggle the visibility of the password and tutor
key fields, providing convenience and usability during the registration process.
Additionally, Bootstrap icons are utilized for visual elements throughout the
form.

74

������������	
���
���� ������������������������ !�����"��#$ ��%���&	�'���((�!� ������)���*�"��#+, �-�.'#/ ���0�1.�2*� ���3�456%7���#8 ���0�1.�9�:�3�;��<!� ���2�9��9�3�<�=�*3=�;�2�%<�=�*>��9�����%�2���3�(?���#@ ���1�1	�#A�B�9��1�1	�#7 ���	��C� ��3�������*�����* �)3��������*�������B�9(2���#D ��-�.'#�?�� �E
'F#�$ ���'���2����3�2�9���9� �:�%+�#�+ �����'���2����3� �<�G����)�%2�9��9�%2�9�� �#�, �������'���2����3�2��%:=%�$�#�/ ���������'���2����3�2� =�!%+�#�8 �����������'���2����3�2� =%��=��#�@ �������������-H�2����3�2� =%������#A�B�9��-H#�7 �������������I
�0��2���93����B�9��:��*�=3�JKL5��2����3�9��=�%;���=����9��9�;���=���#�D ���������������'���2����3�:�%$�#$? �����������������	.E�	�2����3�)� :%�������)� 3���� 9�:��#4�� 9�:���	.E�	#$� �������������������M�1�2����3�)� :%2�9� ��� ��9=�=%!�������!�3���N����=3���� 9�:���9�:�3���� 9�:�������)�2��� �O�� �=#$$ ����������������'��#$+ ���������������'���2����3�:�%$�#$, �����������������	.E�	�2����3�)� :%�������)� 3�!���<� =�#J���<� =��	.E�	#$/ �����������������'���2����3��9!��%B ��!�#$8 ���������������������M�1�2����3�)� :%2�9� ��� ��9=�=%!�������!�3�!���<� =���=3�!���<� =��9�:�3�!���<� =�� �O�� �=#$@ �������������������E�11
��2����3��9!��%B ��!%�==�9����!�3������9���=3���BB��J���<� =�#$7 �����������������������2����3������%���%����*�#���#$D ��������������������E�11
�#+? ������������������'��#+� ����������������'��#+$ ���������������'���2����3���N�%2�9�� �#++ �����������������E�11
��2����3���9���9%��B*��:�%$�!N%+� ��9=�=%!����#A�B�9��E�11
�#+, ����������������'��#+/ ��������������I
�0#+8 ������������'��#+@ ����������'��#+7 ��������'��#+D ������'��#,? ����'��#,�,$ ���P%%�Q����� �!��2�9��%%#,+ ���	��C�* �)3�*��!�R��2=9(G�=���; (9���9!:������� �!%�2�9�S�(7(��)�9�������� �!%�2�9�(2���� ��3�������*����#,, ����&��M1�� 23��G�;��2 �!�����B�9(G��#���&��M1#,/ ��E
'F#

Implementation

Error view

The error page template file sets up the basic structure of an error page within
an EJS document. It includes a layout directive to use the common "boilerplate"
layout for consistency across pages and provides a structured layout for presenting
error messages in a visually consistent manner.

Landing page view

This file serves as the landing page template for the application utilizing the
common boilerplate layout file too for consistent page structure and creates a
visually appealing landing page that invites users to engage with the application
by registering or logging in.

5.4.8 Joi validation and utils
The ‘taskJoiSchema‘ is used for generic validation of task data within the context of
an application that involves users and tasks. It ensures that the task object follows
a predefined structure and constraints, which are defined based on the Task model.
This schema validates properties such as the task name, whether it’s checked, its
period, category, author, student, document details, creation date, and deadline.
By enforcing these validation rules, the application can maintain data integrity
and consistency, enhancing overall reliability and usability.

The ‘catchAsync‘ function is a middleware wrapper designed to handle asynchronous
functions in Express routes. It takes another function ‘func‘ as an argument, which
is typically an asynchronous route handler. Inside ‘catchAsync‘, it returns a new
function that accepts ‘req‘, ‘res‘, and ‘next‘ as parameters. This returned function
invokes the original ‘func‘ function with these parameters. However, it adds a
‘.catch()‘ method to the invocation, passing ‘next‘ as the error handler. This allows
any errors that occur within the asynchronous function to be caught and forwarded
to Express’s error handling middleware (‘next‘). Essentially, ‘catchAsync‘ simplifies
error handling for asynchronous operations within Express routes, making the code
cleaner and more maintainable.

The ExpressError class handling file is designed to create custom error objects
specifically for use within an Express.js application. It extends the built-in Error
class. When instantiated, it takes a message and a status code as parameters,
allowing developers to create specific error instances with custom messages and
HTTP status codes. This facilitates error handling and response customization
within the application.

76

��������	
��
� ��

������������������������� ������� !"�#$�%���&$ ' �#�(�)* #�(�)�+�,-��& +&$ '���.!"�#$������+�/��!&�01 ��&$ '2����+�/��!&�03 ����4$#�2����+ &��45��+�������(��67 ����!"�!'�(2����+/��)�$4��+�������(��68 ����-����(2����+ &��45��+9$)�(��/�%����6��(���45�6��$%&����+�������(��6: ����!$&�5��;2����+ &��45��+9$)�(��< �������#�/�)�&;�-��!� �6�� �������%��#$)�&�� �6�� �������%�4$4!��#$4$5�#�4&�6�� �������)$45�$5��(�9�)�-#�4&�6�* �������$!!�#�($&��4�6�1 �������!�)&��$)�$($-&$&��4�6�3 ������� &�(�4& �"�)-�45� &�(�4& �6�7 ��������&= �-$!'�45�&�#��6�8 �������>"$&�!��)(�5��>��45�6�: ������� &�(;�$(9�!��6�< ������� &�� �#$4$5�#�4&�6�� �������"�>�&��#$4$5��$�!�� � �6�� �������>��'?�� &�/$)$4!��6�� ���������?�4&�;� "�!'�$4(�"�>�&��(�$)�>�&"��&�6�* �������-�� �4$)�(�9�)�-#�4&��1 �����+�������(��6�3 ����$�&"��2����+ &��45��+�������(��6��7 ��@�+�������(��6�8 @���:�< ����&�) �!$&!"A ;4!+� �� #�(�)�+�,-��& ����%�4!���B�0�� ��C��DC
�����6��� 6�4�,&���B�0�� ����%�4!����6��� 6�4�,&�+!$&!"�4�,&���* ��@��1 @��3�7 ����&�) �E,-�� E����+� �8 �F	

�GHIC�

GCC�C��H��
J
�GCC�C�0�: ����

�CD���C�#� $5�6� &$&� K�(���0*< ���� �-���������&= �5��45�&��!$))�&"��E�����!�4 &��!&��*� ����&"� +#� $5����#� $5��*� ����&"� + &$&� K�(���� &$&� K�(��*� ��@** @*1*3 #�(�)�+�,-��& ���E,-�� E�����*7*8*: �

Chapter 6

Conclusions

As this thesis draws to a close, it is evident that the development of the Costabex
checklist represents just the initial steps in a journey toward empowering students
during their Erasmus exchanges. User-friendly design, and practical implementation
has yielded a robust platform poised to support the way students manage their
academic, personal, and administrative tasks. However, it is important to recognize
that this is merely the beginning of a foundation upon which further enhancements,
refinements, and iterations can be built to better serve the evolving needs of
students in the dynamic landscape of international education.

The Costabex checklist operates at the intersection of document management
and task organization, offering a seamless and intuitive user experience tailored
specifically to the challenges faced by students during their Erasmus journeys. At
its core, the platform provides users with a centralized hub for storing and accessing
documents, such as visa applications, academic transcripts, learning agreements
and others allowing users to create, prioritize, and track their academic assignments,
extracurricular activities, and personal commitments. Central to the overarching
purpose of the app is the enhancement of student well-being related with the main
Costabex project.

In conclusion, the development of the Costabex checklist represents a first
step in the ongoing quest to enhance the student experience during Erasmus
exchanges. Future developments will regard costabex website completion thought
continuously partners and targets emphasize, define, ideate and testing design
thinking’s processes. Subsequently, future checklist service’s deployment, mail
management and notification system integration in addition to service workflow
explanation displayed in the landing page and more optimization based on improving
security issues to be safer for sensitive data ensuring the privacy of all users.

78

Bibliography

[1] url: https://www.esn.org/news/report-mental-health-and-internati
onal-mobility (cit. on p. 1).

[2] Donald A. Norman. The Design of Everyday Things. 2011 (cit. on pp. 6, 10).
[3] F.Moschetto G.Malnati F.Bobba. Digital interaction design Introduction -

digital interaction design course. 2017-2023 (cit. on pp. 9, 13).
[4] F.Moschetto G.Malnati. User centered design - digital interaction design course.

2019-2022 (cit. on p. 9).
[5] F.Moschetto G.Malnati. Modello di interazione (don Norman reference) -

digital interaction design course. 2019-2022 (cit. on p. 10).
[6] Bottà. D. User Experience Design. 2019 (cit. on p. 10).
[7] F.Moschetto G.Malnati. Design thinking - digital interaction design course.

2019-2023 (cit. on p. 11).
[8] Jan Nikka A. Estefani. The Future of UX Design in 2024. 2023. url: https:

//raw.studio/blog/the-future-of-ux-design-in-2024/#:~:text=In%
20the%20future%2C%20we%20can%20expect%20to%20see%20more%20and,
seamless%20and%20intuitive%20for%20users. (cit. on p. 13).

[9] url: https://costabex.eu/ (cit. on p. 15).

79

https://www.esn.org/news/report-mental-health-and-international-mobility
https://www.esn.org/news/report-mental-health-and-international-mobility
https://raw.studio/blog/the-future-of-ux-design-in-2024/#:~:text=In%20the%20future%2C%20we%20can%20expect%20to%20see%20more%20and,seamless%20and%20intuitive%20for%20users.
https://raw.studio/blog/the-future-of-ux-design-in-2024/#:~:text=In%20the%20future%2C%20we%20can%20expect%20to%20see%20more%20and,seamless%20and%20intuitive%20for%20users.
https://raw.studio/blog/the-future-of-ux-design-in-2024/#:~:text=In%20the%20future%2C%20we%20can%20expect%20to%20see%20more%20and,seamless%20and%20intuitive%20for%20users.
https://raw.studio/blog/the-future-of-ux-design-in-2024/#:~:text=In%20the%20future%2C%20we%20can%20expect%20to%20see%20more%20and,seamless%20and%20intuitive%20for%20users.
https://costabex.eu/

	List of Figures
	Introduction
	Context
	Goal
	Thesis structure

	Background
	Digital design
	User-centered design
	Interaction design
	The 5 IxD dimensions

	Additional features
	Usability
	Feedback, Affordances, and Signifiers
	Accessibility
	Navigation and Information Architecture
	Prototyping, Testing, and Iteration

	Design thinking fundamentals
	Design thinking actions

	What happens if the user is trascurated?
	Future Trends and Technologies
	Applications in Costabex project
	Informative module - Costabex website
	Interactive module - Costabex checklist

	The Costabex project
	Introduction
	Site structure
	Landing page
	Training section
	Counseling section
	Checklist section
	For institutions section
	About section

	The Costabex checklist
	The state of the art
	Presentation
	Mock-ups
	The prototype
	Landing page
	Registration and login page
	Dashboard page
	Add task page
	Show task page
	Edit task page
	Account page
	Error page

	Future developments

	Implementation
	Introduction
	Front-end development and tools
	CSS and flexbox
	Bootstrap
	EJS and Partials:
	Views Folder with Layouts and Public Folder
	Flash package

	Back-end development and tools
	JavaScript
	DOM, AJAX, AJAJ
	Node.js
	Express, Express Router and Session
	MongoDB
	 Mongoose
	Middlewares and error handling
	Passport authentication
	Authorization
	Joi schema validation
	Cloudinary

	Code overview
	App.js file
	Models
	Public folder
	Routes
	Controllers
	Middlewares
	Views
	Joi validation and utils

	Conclusions
	Bibliography

