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Abstract

This thesis addresses contemporary challenges in managing extensive datasets, with
a specific focus on the transition from traditional relational databases to non-relational
databases (NoSQL). The focus is on enhancing the accessibility of NoSQL databases for
non-expert users through natural language queries. Recognizing the prevalence of non-
relational databases across industries and the imperative for effective natural language
interfaces, the primary contributions of this research include the introduction of a syn-
thetic dataset creation method and the utilization of Large Language Models (LLMs)
for natural language to NoSQL translation. This decision stems from the recognition of
the absence of an existing dataset tailored to the specific requirements of the research.
The dataset, created for NL-to-SQL translation incorporates the WikiSQL dataset, lever-
ages Query templates, NL templates, and data augmentation strategies. This method
incorporates learnings from established methodologies to guide the process of creating
the synthetic dataset effectively addressing challenges related to time and resource con-
straints inherent in manual pairing. The evaluation indicates that the synthetic dataset is
well-structured, diverse, and efficiently optimized for training natural language to NoSQL
translation models. The model section outlines the fine-tuning process for LLMs to re-
fine their capabilities and enhance performance in the specific task of translating natural
language queries into NoSQL queries. The Supervised Fine-Tuning is done following a
Parameter-Efficient Fine-Tuning (PEFT) methodology through QLoRA. Optimal prompt
design takes into account user language and database context. The fine-tuning process of
LLaMa2 Large Language Model (LLM), demonstrates good improvements in translating
natural language queries into NoSQL queries. Comparing the fine-tuned model with the
base model reveals significant advancements, with a trade-off observed as the fine-tuned
model’s generalization capacity slightly decreases, especially for requests deviating sig-
nificantly from those in the training dataset. Exploring fine-tuning with larger models
presents a promising avenue for overall performance improvement, although challenges
related to memory constraints and GPU limitations should be addressed. This research
aims to contribute valuable insights to the field of natural language interfaces for NoSQL
databases, addressing the critical need for a tailored dataset in the early stages of the
research and emphasizing potential improvements and the dynamic evolution of natural
language interfaces for NoSQL databases.



Contents

1 Introduction 3

2 Dataset 7
2.1 Synthetic Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Previous approaches for NL-to-SQL query generation . . . . . . . 8
2.1.2 DBPal in details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dataset creation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Model 13
3.1 Text to SQL/NoSQL translation . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Different Approaches to text-to-SQL translation . . . . . . . . . . . . . . 14

3.2.1 Deep Learning for text-to-SQL . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Text-to-SQL Empowered by Large Language Models . . . . . . . . 16
3.2.3 Using LLMs for Text-to-NoSQL . . . . . . . . . . . . . . . . . . . 17

3.3 Fine-Tuning of LLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Fine tuning for Text-to-NoSQL . . . . . . . . . . . . . . . . . . . . 18

3.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methods 21
4.1 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Model Fine Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Results 25
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion 29

Bibliography 31

2



Chapter 1

Introduction

In today’s interconnected world, where data reigns supreme, effective management and
utilization of information have become a critical aspect for businesses, organizations,
and even individuals. The backbone of this digital infrastructure lies within databases,
sophisticated systems designed to organize, store, and retrieve data efficiently. Among
the database technologies, relational databases have long been the traditional choice,
offering structured data storage and a standardized querying language known as SQL
(Structured Query Language). However, the exponential growth of data in recent years
has strained the capabilities of traditional relational databases. As datasets increase
in size and complexity, organizations seek alternative solutions that can handle these
challenges adeptly. This quest has led to the rise of NoSQL databases, a diverse family of
database management systems that diverge from the rigid structures of their relational
counterparts.

At the heart of this shift is the recognition that not all data fits neatly into tables
and rows. NoSQL databases offer a flexible approach to data modeling, accommodating
various types of data structures, including key-value pairs, document-oriented collections,
wide-column stores, and graph databases. MongoDB, CouchDB, Cassandra, and Redis
are just a few examples of popular NoSQL databases, each tailored to specific use cases
and data requirements. The adoption of NoSQL databases brings forth a paradigm shift
not only in data storage but also in querying methodologies. Unlike the standardized SQL
queries used in relational databases, NoSQL databases employ their own query languages,
which vary widely based on the database model and vendor. These query languages often
prioritize flexibility and scalability, allowing developers to perform complex operations on
semi-structured and unstructured data with ease.

Central to the operation of any database is the ability to query and retrieve informa-
tion efficiently. Database queries serve as the bridge between users and the underlying
data, enabling them to extract meaningful insights and drive informed decision-making.
A database query is essentially a request for specific information from a database, typ-
ically formulated using a query language supported by the database management sys-
tem. These queries can range from simple searches for individual records to intricate
operations involving multiple data sources and complex conditions. In the context of
NoSQL databases, querying takes on a more diverse and nuanced form. For instance,
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in document-oriented databases like MongoDB, queries often revolve around the struc-
ture of JSON (JavaScript Object Notation) documents, leveraging nested fields and array
elements for data retrieval.

Despite the versatility and power of NoSQL databases, there remains a barrier for
non-technical users to interact with these systems effectively. While developers and data
engineers may possess the requisite skills to craft queries in NoSQL query languages,
the same cannot be said for business analysts, managers, or domain experts who may
lack proficiency in programming or database administration. This disparity underscores
the need for a user-friendly interface that can bridge the gap between natural language
communication and database querying. By enabling users to formulate queries in ev-
eryday language, without the need to deal with the intricacies of query languages or
database schemas, organizations can democratize access to data-driven insights and em-
power decision-makers at all levels.

It is within this context that this research endeavors to make a significant contribution.
By focusing on the translation of natural language queries into NoSQL queries, we aim to
provide a practical solution for users to interact with non-relational databases intuitively.
Our approach seeks to democratize access to data analytics tools and unlock the full
potential of NoSQL databases for a broader audience.

One of the fundamental challenges in natural language processing (NLP) tasks, such
as NL-to-NoSQL translation, lies in the availability of high-quality training data. Tradi-
tional approaches often rely on manually annotated datasets, where human annotators
meticulously label examples of natural language queries paired with their corresponding
NoSQL equivalents. While effective, this manual annotation process is labor-intensive,
time-consuming, and inherently limited in scalability. Recognizing this bottleneck, our
research attempts to circumvent the reliance on manual annotation by introducing a novel
approach to dataset creation: synthetic dataset generation. By leveraging the principles
of data synthesis and generation, we aim to produce a diverse and representative corpus of
training examples that capture the breadth and variability of real-world query scenarios.

The utilization of a synthetic dataset holds immense promise for enhancing the fine-
tuning process of Large Language Models (LLMs) for NL-to-NoSQL translation. By
systematically crafting a diverse array of query examples spanning various query types,
database structures, and linguistic patterns, we can effectively expose the LLM to the rich
landscape of NoSQL query semantics. This exposure allows the model to learn the in-
tricate mappings between natural language expressions and their corresponding NoSQL
representations. Moreover, the synthetic dataset affords us the flexibility to tailor the
training data to specific use cases, domain-specific terminology, and query complexities.
By enriching the training data with nuanced variations and edge cases that may be under-
represented in conventional datasets, we empower the LLM to generalize more effectively
and exhibit greater robustness in handling unseen query patterns and linguistic nuances.
In essence, the synthetic dataset serves as a catalyst for enhancing the adaptability,
accuracy, and efficacy of the LLM in the domain of NL-to-NoSQL translation, laying
the groundwork for more proficient and user-friendly interactions with non-relational
databases.
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Our main contributions include:

• Synthetic Dataset Creation: Introducing a practical solution for dataset generation
by creating a synthetic dataset encompassing a broad range of NoSQL query types.
This addresses the limitations of manual pairing and the associated labor-intensive
and costly efforts.

• NL-to-NoSQL Translation Fine-tuned LLM: Utilizing Large Language Models (LLMs)
for NL-to-NoSQL translation by fine-tuning them on the unique characteristics of
non-relational databases. This approach leverages the power of advanced neural
networks to improve the accuracy and efficiency of natural language queries con-
version into meaningful NoSQL queries.

The thesis is organized as follows. In Chapter 2, we delve into the process of Synthetic
Dataset Creation. This exploration takes us through the significance and nuances involved
in crafting a synthetic dataset tailored for Natural Language to NoSQL interactions.
Chapter 3 is dedicated to the NL-to-NoSQL Translation Model. Here, we detail our
proposed methodology for the translation of natural language queries into syntactically
and semantically correct NoSQL queries. In Chapter 4 the focus is on the fine-tuning
process of Large Language Models (LLMs), where we adapt and optimize these models
to address the unique challenges posed by non-relational databases. As we progress to
Chapter 5, the spotlight is on the results obtained during the syntehtic dataset creation
process and the LLM fine-tuning for the NL-to-NoSQL translation. Through systematic
evaluation, we aim to validate the effectiveness and efficiency of our proposed approaches.
Chapter 6 marks the conclusion of the thesis and we synthesize the findings, highlight
our contributions, and propose avenues for future research.
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Chapter 2

Dataset

Recently, there has been a growing interest in neural machine translation (NMT) ap-
proaches that formulate the text-to-SQL problem as a language translation problem, and
train a neural network on a large amount of NL query/SQL pairs. These approaches
have bloomed due to the recent advances in deep learning and natural language process-
ing (NLP), along with the creation of two large datasets (WikiSQL [51] and Spider [48])
for training text-to-SQL systems.

Text-to-SQL maps natural language questions on the given relational database into
SQL queries [2,13]. Most previous works [11,16,17,40,49] focus on extracting the question-
to-SQL patterns and generalizing them by training an encoder-decoder model with Text-
to-SQL corpus. In recent years, large language models (LLMs) have emerged as a new
paradigm for Text-to-SQL. Different from prior studies, the core problem in LLM-based
Text-to-SQL solution is how to prompt LLM to generate correct SQL queries, namely
prompt engineering.

In today’s digital age, non-relational databases are used in almost every industry
to store information. Non-Structured Query Language (NoSQL) databases are increas-
ingly being used for large-scale data sets, search engines, and real-time web applications.
Many organizations are gradually looking into approaches to understand and analyze this
enormous unstructured data.

Natural language is a promising alternative interface to DBMSs because it enables
non-technical users to formulate complex questions in a more concise manner than SQL
or NoSQL. The core problem with existing approaches is that they require an enormous
amount of training data in order to provide accurate translations. This training data is
extremely expensive to curate, since it generally requires humans to manually annotate
natural language examples with the corresponding NoSQL queries (or vice versa). The
lack of an existing dataset requires a systematic exploration of methods and previous
works to guide the creation of a dataset [6,18,41,43,44] that reflects the special features
of natural language queries and their corresponding NoSQL counterparts.
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2.1 Synthetic Dataset Construction

Creating a synthetic dataset for Natural Language (NL) requests and NoSQL queries
offers a practical solution, especially when faced with the challenges of time and resources
involved in manually pairing each request with its corresponding query. Traditionally,
generating datasets for NL-to-NoSQL interactions required meticulous manual efforts to
match NL requests with suitable NoSQL queries. However, this approach is not only
labor-intensive but also costly, limiting the dataset’s scale and diversity. Our proposed
solution suggests the creation of a synthetic dataset that encompasses a broad range of
NoSQL query types.

The lack of an existing public dataset requires a systematic exploration of previous
methods to guide the creation of a dataset [6,18,41,43,44] that reflects the special features
of natural language queries and their corresponding NoSQL counterparts.

2.1.1 Previous approaches for NL-to-SQL query generation

The paper ”Question Generation from SQL Queries Improves Neural Semantic Pars-
ing” [6] attempts to uncover the path to achieving state-of-the-art accuracy in neural
semantic parsing with a reduced amount of supervised training data, focusing its in-
vestigation on WikiSQL, the largest hand-annotated semantic parsing dataset. At its
core, the approach involves a Question Generation Component that takes SQL queries
as inputs and generates natural language questions. Leveraging a small-scale supervised
training dataset, the generated question-SQL pairs act as pseudo-labeled data, enriching
the training of the semantic parser, abbreviated as STAMP (Syntax- and Table-Aware
Semantic Parser). The Semantic Parsing Model operates in an end-to-end fashion, with
STAMP taking a natural language question as input and generating a SQL query for
execution on a table to obtain the answer. The Question Generation Model relies on
sequence-to-sequence learning, adopting a copying mechanism to replicate rare words
from SQL queries and incorporating latent variables for diversity. Notably, the introduc-
tion of question generation proves instrumental in achieving state-of-the-art performance
with a reduced amount of supervised data. The paper concludes by suggesting future
work involving the incorporation of table information and external knowledge to further
enhance the question generation model.

Addressing the challenge of constructing sizable training datasets for natural language
to SQL (NL2SQL) translation in database management systems, the ”DBPal: A Fully
Pluggable NL2SQL Training Pipeline” [43] paper highlights a common hurdle in existing
deep learning approaches: the demand for extensive manually curated training data, a
time-consuming and costly effort. They propose DBPal, a fully pluggable NL2SQL train-
ing pipeline designed to circumvent these challenges. The primary objective is to enhance
translation accuracy, fortify the model against linguistic variations, and tailor it for spe-
cific databases. DBPal’s system architecture is comprehensive, featuring a Generator that
uses the database schema and seed templates to generate an initial set of NL-SQL pairs.
Augmentation comes into play by leveraging general-purpose data sources and models
to linguistically modify the NL part of each pair. A Lemmatizer normalizes the repre-
sentation of individual words in the resulting NL-SQL pairs. Data instantiation involves
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Query Templates using SQL templates to instantiate different possible SQL queries based
on the database schema. Corresponding NL Templates are defined for direct translation,
using dictionaries of synonymous words and phrases to fill in NL slots. Instances are
balanced by randomly sampling from possible instances. The Data Augmentation strat-
egy encompasses automatic paraphrasing using the Paraphrase Database (PPDB) and
introducing missing information by randomly dropping words and subphrases from NL
training queries. These strategies enhance the model’s robustness to varying contexts.

The ”Data Augmentation with Hierarchical SQL-to-Question Generation for Cross-
domain Text-to-SQL Parsing” [44] paper introduces a straightforward yet effective data
augmentation framework that sidesteps the need for human involvement in creating
datasets. The proposed Data Augmentation Approach involves SQL Query Generation
using Abstract Syntax Tree Grammar (ASTG) to generate SQL queries with varying
complexity levels. Hierarchical SQL-to-Question Generation decomposes SQL queries
into clauses, translating each clause into a subquestion using a Seq2Seq model with a copy
mechanism. The model then assembles these subquestions into a complete natural lan-
guage question, maintaining the execution order of clauses. The Clause-to-Subquestion
Translation Model relies on a standard Seq2Seq model, with SQL tokens represented
by word embeddings and token type embeddings. Training Data Construction involves
aligning tokens in SQL queries and NL questions, ensuring a seamless mapping. The
contributions lie in presenting a resource-cheap data augmentation framework for cross-
domain text-to-SQL parsing and proposing a hierarchical SQL-to-question generation
model.

2.1.2 DBPal in details

DBPal’s [43] innovative approach revolves around a novel training pipeline designed for
Natural Language Interfaces to Databases (NLIDBs). It leverages the concept of weak
supervision, wherein the database schema becomes a pivotal input for automatically
generating a substantial volume of NL-SQL pairs. Unlike traditional methods, DBPal
liberates itself from the shackles of manual annotation, offering a more scalable and
efficient solution.

System Architecture: DBPal’s pipeline unfolds in three key stages: Generator,
Augmentation, and Lemmatizer.

• Generator: The initial step involves the Generator utilizing the database schema
and seed templates to create an initial training set. These seed templates, covering
typical classes of SQL queries, require minimal one-time composition effort and
remain independent of the target database. This innovative approach assumes that
the database schema provides human-understandable table and attribute names,
which are then employed to instantiate the templates.

• Augmentation: A cornerstone of DBPal’s efficacy is the Augmentation step. This
phase dynamically expands the training data by linguistically modifying the NL part
of each pair, ensuring robustness to diverse linguistic variations. Techniques like
automatic paraphrasing using external resources add layers of linguistic diversity,
enriching the training dataset.
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• Lemmatizer: The final stage involves lemmatization, normalizing the representation
of individual words in NL-SQL pairs. This process, applied at runtime, simplifies
the analysis by mapping different forms of the same word to its root.

Data Instantiation - Crafting Query Templates: The main observation of the
instantiation step is that SQL, as opposed to NL, has significantly less expressivity. We
therefore use query templates to instantiate different possible SQL queries that a user
might phrase against a given database schema, such as ”Select Attribute(s) From Table
Where Filter”. For each SQL template, we define one or more NL templates as coun-
terparts for direct translation, such as: ”SelectPhrase Attribute(s) FromPhrase Table(s)
WherePhrase Filter”. To account for the expressivity of NL compared to SQL, our tem-
plates contain slots for speech variation (e.g., Select-Phrase, FromPhrase, WherePhrase)
in addition to slots for database objects (e.g., tables, attributes). Then, to instantiate
the initial training set, the Generator repeatedly instantiates each of our NL templates
by filling in the corresponding slots. Table, column, and filter slots are filled using in-
formation from the database’s schema, while a diverse array of NL slots are filled using
manually crafted dictionaries of synonymous words and phrases.

Maintaining a balanced distribution of NL-SQL pairs during training data instantia-
tion is crucial. A naive approach, replacing template slots with all possible combinations,
risks biasing the model towards templates with more slots. This imbalance can lead to
a skewed training set, favoring certain translations due to frequency. To address this,
random sampling ensures diverse coverage, preventing dominance by specific templates
and maintaining a balanced number of instances per template.

Data Augmentation - Embracing Linguistic Diversity: To address the inher-
ent diversity in expressing the same idea in NL, DBPal employs two key augmentation
strategies:

• Automatic Paraphrasing: Leveraging the Paraphrase Database, DBPal generates
duplicate NL-SQL pairs by paraphrasing words/subphrases in the NL query. Ad-
justable parameters govern the extent of paraphrasing, providing a nuanced control
over linguistic variations.

• Missing Information Handling: Recognizing the challenge of missing or implicit
information, DBPal introduces a strategy to drop words and subphrases from NL
training queries. Tunable parameters ensure controlled removal, enhancing the
model’s resilience to missing context.

2.2 Dataset creation method

In our quest to develop a robust Natural Language to SQL (NL2SQL) translation model,
we find inspiration in the DBPal paper’s approach. Deep learning approaches for NL2SQL
demand substantial amounts of meticulously labeled data, making the manual creation
process time-consuming and resource-intensive. DBPal offers a solution through a pipeline
that automates the generation of synthetic training data. Data instantiation in DBPal
involves the use of Query Templates and NL Templates, which are instantiated based on
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SQL templates and corresponding NL templates. The paper underscores the significance
of achieving a balanced dataset by employing random sampling from potential instances.
This approach ensures that the dataset is both diverse and representative, contributing
to more robust and unbiased model training.

The data augmentation strategies employed by DBPal include automatic paraphras-
ing, using the Paraphrase Database (PPDB) [28] or a pertained paraphrasing model, to
generate duplicate NL-SQL pairs, introducing noise by randomly dropping words and sub-
phrases from NL training queries. These strategies contribute to a more robust NL2SQL
model.

We are in a situation where we lack an existing dataset to kickstart our model. Unlike
the other two papers discussed, DBPal’s approach aligns with our initial need to bootstrap
the translation model without relying on pre-existing datasets. By leveraging DBPal, we
can avoid the need to train intermediate models for NL question creation, simplifying our
initial steps. Furthermore, DBPal’s emphasis on a automated pipeline aligns seamlessly
with our objective of efficiently developing the model without the overhead of manual
curation or the need for additional training steps. DBPal’s methodology offers a practical
and scalable solution, setting the stage for the development of a robust translation model.

2.2.1 Implementation

The proposed concept involves leveraging a public dataset, the WikiSQL dataset intro-
duced in the paper ”Seq2SQL: Generating Structured Queries from Natural Language
using Reinforcement Learning” [51]. In this context, the WikiSQL dataset serves as a
valuable resource for extracting SQL statements responsible for creating tables within a
database. The extraction process is targeted at obtaining both the names of tables and
their associated fields from the SQL statements. Following this extraction, a meticulous
cleaning process is applied to refine the collection of table names and fields. This involves
removing extraneous words and elements that may not contribute meaningfully to the
subsequent steps.

Once a curated collection of table names and fields is obtained, the next phase of the
process involves their integration into parametrized NoSQL queries. These parametrized
queries serve as versatile templates, encompassing a comprehensive range of potential
”find()” requests that a user might formulate. For example, a parametrized query like

"find({ $LOG: [{ FIELD1: { $OP1: ’VALUE1’ }},
{ FIELD2: ’VALUE2’ }] })"

could be completed by substituting the general parameters LOG, OP1, FIELD1,
VALUE1, FIELD2, and VALUE2. The parameters constituting a collection field will be
replaced with those extracted previously from the SQL dataset. A final example could
be:

"find({ $and: [{ position: { $gt: 3 }},
{ driver: ’Fernando Alonso’ }] })".
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The natural language request, which is also parametrized, will be completed by replac-
ing the parameters with the corresponding fields. For instance, ”What are the COLLEC-
TION where the FIELD1 is OP1 VALUE1 LOG the FIELD2 is VALUE2?” transforms
into ”What are the races where the position is greater than 3 and the driver is ’Fernando
Alonso’?”

After obtaining the dataset, the next step in enhancing its richness involves the appli-
cation of augmentation techniques, with a specific focus on paraphrasing. This technique
aims to diversify the dataset by generating alternative versions of Natural Language (NL)
requests corresponding to the same NoSQL query, thus enriching the dataset with varied
expressions of the underlying queries.

To implement the paraphrasing method, we employed ”Parrot”, a framework grounded
in the T5 algorithm developed by Google [32]. The choice of Parrot stems from its ef-
fectiveness in preserving meaning while introducing variations in sentence structures,
aligning with the objective of creating a more comprehensive and diverse dataset.

Key Metrics for Paraphrases:

• Adequacy (Preservation of meaning): Parrot is designed to ensure that the gener-
ated paraphrases maintain the original meaning of the NL requests, contributing to
the accuracy and coherence of the augmented dataset.

• Fluency (Grammatical correctness): Another critical metric addressed by Parrot is
the grammatical correctness of the paraphrased sentences, ensuring that they are
linguistically sound and contextually appropriate.

• Diversity (Lexical/Phrasal/Syntactical changes): Parrot introduces variations in
lexical choices, phrasing, and sentence structures, enhancing the diversity of the
paraphrased sentences. This diversity is crucial for capturing the nuances and
breadth of potential user inputs.

Parrot offers flexibility through adjustable parameters for Adequacy, Fluency, and
Diversity, allowing customization to align with specific needs. In the context of conver-
sational engines, Parrot primarily focuses on augmenting texts typed into or spoken to
conversational interfaces, making it a suitable choice for our NL-to-NoSQL augmenta-
tion task. It’s worth noting that the pre-trained model is optimized for text samples of
a maximum length of 32, aligning with the typical interaction length in conversational
interfaces.

In leveraging the capabilities of Parrot and its adherence to key metrics, the para-
phrasing process becomes a valuable tool in expanding the dataset’s expressiveness, en-
suring a robust and nuanced representation of user queries for training and evaluating
NL-to-NoSQL translation models.
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Chapter 3

Model

The challenge of translating natural language queries to NoSQL query equivalents involves
not only comprehending the nuances of the input NL query but also constructing a
syntactically and semantically correct NoSQL query based on the underlying database
schema. NL queries demand a robust understanding of both the user’s intent and the
intricacies of the database schema to produce accurate and meaningful NoSQL queries.

Drawing inspiration from the most effective models in translating questions into SQL
queries [11,16,17,40,49] and from previous works in Natural Language to NoSQL Query
Conversion [8,24,36], a significant area to explore involves adapting these methodologies
to the domain of NoSQL queries. The foundational basis for this extension of the successes
achieved in SQL translation to the diverse landscape of NoSQL databases is rooted in the
commonalities of attribute extraction from natural language queries between SQL and
NoSQL scenarios. Despite format differences, shared attributes within queries offer an
opportunity for strategic model transformation.

3.1 Text to SQL/NoSQL translation

Natural Language Interfaces for Databases (NLIDBs) play a crucial role in facilitating
interactions between users and databases by allowing users to express queries in natural
language, which are then translated into the corresponding database query language.
This process is particularly essential for both SQL and NoSQL databases, although there
are differences in their approaches.

SQL databases: NL to SQL translation involves converting natural language queries
into Structured Query Language (SQL) statements. SQL is a standardized language used
for managing and manipulating relational databases. The translation process typically
includes several key steps:

• Semantic Understanding: The system must understand the meaning behind the
natural language query, discerning the user’s intent in relational database terms.

• Query Structuring: Once the intent is understood, the system structures the query
into a valid SQL statement. This involves identifying the specific elements such as
SELECT clauses, WHERE conditions, and JOIN operations.
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• Database Schema Mapping: NL to SQL translation requires mapping natural lan-
guage entities to corresponding elements in the database schema. This includes
matching natural language terms to table names, column names, and other rela-
tional constructs.

• Syntax Generation: The translated query must adhere to the syntax rules of SQL.
This involves ensuring that the generated SQL statement is grammatically correct
and semantically accurate.

NoSQL databases: the translation process is conceptually similar but adapted to
the specific characteristics of NoSQL query languages, which are often less structured
than SQL. NoSQL databases support a variety of query languages, such as MongoDB’s
Query Language for document databases. The translation process involves:

• Intent Recognition: Understanding the user’s intent in the context of NoSQL
databases, which may involve querying collections of documents.

• Query Formulation: Structuring the natural language query into a valid NoSQL
query, considering the flexible and schema-less nature of NoSQL databases.

• Document Structure Mapping: The translation process includes mapping natural
language terms to document fields.

• Syntax Adaptation: Adapting the syntax to the specific NoSQL query language,
ensuring that the translated query is both syntactically and semantically correct.

In both NL to SQL and NL to NoSQL translation require a robust understanding of
the user’s intent, although the specific nuances of intent may vary based on the database
type. Both processes involve mapping natural language entities to database constructs.
In SQL, this includes tables and columns; in NoSQL, it involves documents fields. The
translation processes share the commonality of generating queries with correct syntax.

3.2 Different Approaches to text-to-SQL translation
In the realm of Deep Learning for Natural Language (NL) to SQL translation, two primary
approaches have garnered attention. Deep learning techniques often employ sequence-to-
sequence models, leveraging either recurrent neural networks (RNNs) or transformers.
The objective is to capture the sequential nature inherent in both NL questions and
NoSQL queries, fostering a holistic understanding of the relationship between the two.
Another technique involves the incorporation of attention mechanisms. These mecha-
nisms enhance the model’s capability to focus selectively on specific segments of the
input sequence. This heightened focus aids in comprehending and translating complex
NL structures, contributing to the overall efficacy of the translation process.

For the specific task of Text-to-NoSQL translation, fine-tuning Large Language Mod-
els (LLMs) plays a pivotal role. The utilization of pre-trained LLMs, such as GPT-4 or
LLaMA, serves as a robust foundation for Text-to-NoSQL endeavors. These models, hav-
ing undergone training on extensive text corpora, exhibit a comprehensive understanding

14



3.2 – Different Approaches to text-to-SQL translation

of natural language, providing a valuable starting point for the translation task. Super-
vised Fine-tuning the LLMs involves the utilization of task-specific training data to align
the behavior of the pre-trained models with the intricacies of NoSQL query generation.
This supervised fine-tuning process enhances the LLM’s performance, tailoring its capa-
bilities to the nuances of the targeted downstream task in Text-to-NoSQL translation.

3.2.1 Deep Learning for text-to-SQL

Early approaches to Natural Language Interfaces for Databases (NLIDBs) relied on
database schema and indexes, extracting SQL queries based on the NL query’s key-
words and their relationships in the database graph [9, 10, 22, 52]. Parsing-based meth-
ods delved into grammatical structures, mapping NL questions to desired SQL queries
[12,15,29,42,47]. In recent years, Neural Machine Translation (NMT) approaches gained
prominence, treating text-to-SQL as a language translation task [7,40,51]. These leverage
vast datasets like WikiSQL and Spider, coupled with advancements in deep learning and
natural language processing.

Generating SQL queries using a sequence-based decoder was initially avoided as it
could produce syntax, however recent works [19, 34, 45] have changed the landscape by
introducing a series of techniques that minimise the possibility of errors by sequence-based
decoders. These techniques have made the use of very powerful pre-trained encoder-
decoder models [14, 31] a viable and high-performing option, allowing the systems that
use them to achieve top performance in both the Spider and WikiSQL benchmarks.

Deep Learning key steps

The first step is Schema Linking. It involves uncovering portions of Natural Language
Queries (NLQ) that reference database elements. This process is not without challenges,
contending with vocabulary disparities, diverse phrasing, and discrepancies in expressing
conditions. Schema linking plays a pivotal role in aligning natural language queries
with the corresponding database elements. Performing no schema linking is possible
too, in fact, while most recent systems incorporate some form of schema linking in their
workflow, earlier ones (e.g. Seq2SQL [51], SQLNet [46]) and even some recent ones (e.g.
HydraNet [23], T5+PICARD [34], SeaD [45]) simply rely on their neural components to
make predictions.

Given that the inputs (NLQ, DB, schema links) are mainly textual, Natural Lan-
guage Representation is responsible for creating an efficient numerical representation
that can be accepted by the encoder. The evolution in Natural Language Represen-
tation has witnessed a shift from word embeddings to Transformer-based Pre-trained
Language Models (PLMs) (T5 [31], BERT [8], BART [14], RoBERTa [21]). This transi-
tion is accompanied by an emergent focus on tailoring PLMs for specialized tasks, such
as text-to-SQL.

Input Encoding is the process of further structuring the inputs in a format that
can be accepted by the encoder. The significance of Input Encoding lies in transforming
heterogeneous inputs into a format compatible with neural networks. Finally, Output
Decoding consists of designing the structure of the predictions that the network will

15



Model

make. Output Decoding is a critical step in generating the final SQL output from the
neural network. Output Refinement can be applied during the decoding phase in order
to reduce the possibility of errors and to achieve better results (PICARD [34]).

3.2.2 Text-to-SQL Empowered by Large Language Models

While previous works concentrated on extracting question-to-SQL patterns, the emer-
gence of LLMs, opened a new paradigm exploring the transformative impact of Large
Language Models (LLMs) on the Text-to-SQL task [5,20,33,35,39]. Large Language Mod-
els (LLMs) such as GPT-4 [26] and LLaMA [37] have emerged as transformative tools,
pre-trained on massive text corpora to perform various natural language tasks. The core
challenge in applying LLMs to Text-to-NoSQL is prompt engineering [20,25], finding the
optimal prompt for effective translation. In-context learning [4], a process where LLMs
learn from contextual examples during inference, has proven effective, with recent studies
emphasizing the significance of including examples for improved performance. Supervised
fine-tuning (SFT) further enhances LLMs’ Text-to-SQL capabilities by using additional
task-specific training data. Question representation [30, 35], in-context learning, and su-
pervised fine-tuning are identified as essential components in large language model-based
Text-to-SQL.

Supervised Fine-Tuning for Text-to-SQL

In the realm of Text-to-SQL, where the goal is to automatically translate natural language
questions into SQL queries, supervised fine-tuning emerges as a promising avenue for
enhancing the performance of Large Language Models (LLMs).

In the context of Text-to-SQL, the objective of supervised fine-tuning is to improve
the performance of a given large language model M using a set of training data T . The
training data is represented as T = (q, s, D), where q and s denote the natural language
question and its corresponding SQL query on database D. The goal is to minimize the
empirical loss, employing a loss function (L) that measures the disparity between the
generated query and the ground truth query. Similar to question representation, σ is
the function that decides the question representation, incorporating relevant information
from the schema in the database D. Supervised fine-tuning for Text-to-SQL encompasses
two sub-tasks:

• fine-tuning the given LLM M with the supervised data T to obtain the optimal
LLM M∗ and

• searching for the optimal question representation σ

For the general domain, each item in the supervised data consists of an input prompt
p and an expected response ri from the LLM. To align with the inference process, super-
vised fine-tuning generates prompt-response pairs from a given Text-to-SQL dataset T .
Specifically, the fine-tuning process involves using the target question and the associated
database as a prompt (pi = σ(qi, Di)), treating the desired query as the response (ri = si).
Once the data is prepared, existing packages can be employed to perform fine-tuning on
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the LLM M . This can be achieved through either full fine-tuning or parameter-efficient
fine-tuning, depending on the available computational resources. After fine-tuning, the
optimized LLM M∗ can be utilized for inference, generating queries in response to natural
language questions. Importantly, the same question representation σ is used in both the
fine-tuning and inference processes.

3.2.3 Using LLMs for Text-to-NoSQL

Translating natural language (NL) questions into database queries, specifically into SQL
or NoSQL queries, is a challenging task due to the inherent complexity of human language
and the intricate structures of database query languages. In this context, the focus is on
the problem of translating NL questions into NoSQL queries, and two primary method-
ologies stand out: employing Deep Learning techniques or leveraging Large Language
Models (LLMs) with fine-tuning for the Text-to-NoSQL task.

Challenges in NL to NoSQL Translation:

• Semantic Ambiguity: Natural language questions often exhibit semantic ambiguity,
making it challenging to precisely capture user intent and map it to database query
constructs.

• Diverse Query Structures: NoSQL databases, characterized by their schema-less na-
ture, can support a wide variety of query structures. This diversity adds complexity
in determining the appropriate structure for a given NL question.

The utilization of Large Language Models (LLMs) for Text-to-NoSQL offers several
advantages. Firstly, LLMs possess a broad understanding of natural language as they are
pre-trained on extensive text corpora. This foundational knowledge encompasses a wide
array of linguistic patterns and structures. Additionally, LLMs reduce the dependency on
task-specific feature engineering, thanks to their ability for transfer learning. This adapt-
ability allows them to fine-tune their pre-existing knowledge for specific Text-to-NoSQL
tasks with minimal manual engineering efforts, distinguishing them from traditional deep
learning models.

Moreover, LLMs exhibit flexibility in handling varied query structures commonly
found in NoSQL databases. The schema-less nature of these databases introduces diverse
query patterns, and LLMs, with their contextual understanding, can navigate through
these without requiring task-specific model modifications. Fine-tuning LLMs specifically
for the Text-to-NoSQL task further enhances their performance by tailoring their adap-
tation to the nuanced intricacies of query generation.

The effectiveness of LLMs in this task is closely tied to the quality of the supervised
fine-tuning data. To optimize model performance, it is imperative to ensure that the
training dataset is diverse, representative, and aligns with the complexities of the target
task.
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3.3 Fine-Tuning of LLM

Large language model (LLM) fine-tuning is the process of taking pre-trained models and
further training them on smaller, specific datasets to refine their capabilities and improve
performance in a particular task or domain. Fine-tuning is about turning general-purpose
models and turning them into specialized models. It bridges the gap between generic pre-
trained models and the unique requirements of specific applications, ensuring that the
language model aligns closely with human expectations. Unlike the pre-training phase,
with vast amounts of unstructured text data, fine-tuning is a supervised learning process.
This means using a dataset of labeled examples to update the weights of LLM.

Once the instruction dataset is ready we divide the data set into training and test
splits. During fine-tuning, we select prompts from the training dataset and pass them
to the LLM, which then generates completions. When the model is exposed to a newly
labeled dataset specific to the target task, it calculates the error or difference between its
predictions and the actual labels. The model then uses this error to adjust its weights,
typically via an optimization algorithm like gradient descent. Over multiple iterations
(or epochs) of the dataset, the model continues to adjust its weights, honing in on a
configuration that minimizes the error for the specific task. The aim is to adapt the
previously learned general knowledge to the nuances and specific patterns present in the
new dataset, thereby making the model more specialized and effective for the target task.
During this process, the model is updated with the labeled data. It changes based on the
difference between its guesses and the actual answers. This helps the model learn details
found in the labeled data. By doing this, the model improves at the task for which it’s
fine-tuned.

Parameter-efficient fine-tuning

Training a language model is a computationally intensive task. For a full LLM fine-tuning,
we need memory not only to store the model, but also the parameters that are necessary
for the training process. Simple hardware cannot handle this amount of hurdle. This is
where PEFT is crucial. While full LLM fine-tuning updates every model’s weight during
the supervised learning process, PEFT methods only update a small set of parameters.
This transfer learning technique chooses specific model components and ”freezes” the rest
of the parameters. The result is logically having a much smaller number of parameters
than in the original model (in some cases, just 15-20% of the original weights). This
makes memory requirements much more manageable. Not only that, but PEFT is also
dealing with catastrophic forgetting. Since it’s not touching the original LLM, the model
does not forget the previously learned information.

3.3.1 Fine tuning for Text-to-NoSQL

The main idea of creating a model capable of translating a natural language (NL) request
into a NoSQL query involves fine-tuning an open-source Large Language Model (LLM).
Due to the unaffordable cost of fine-tuning OpenAI LLMs, we focus on open-source
LLMs and we choose LLaMA-2-CHAT-7B/13B/70B [38], an up-to-date version of LLaMA
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[37]. The fine-tuning was executed using the QLoRA methodology [3]. This approach
was selected for its efficiency in reducing memory consumption while maintaining high
performance. The process took place on Google Colab, leveraging a T4 GPU.

The primary objective is to determine the optimal prompt for an effective translation,
taking into account the user’s natural language and the specific context of the database
to be queried, defining the information required by the model to generate a semantically
correct NoSQL query. It can be also taken into consideration to use specific task-related
data examples, aiming to achieve a thorough understanding of the nuances of natural
language and the peculiarities of the targeted database. In summary the emphasis is on
the optimal design of queries to maximize the effectiveness of the translation process.

Idea of prompt with database information:

/* Given the following NoSQL database collection: */
users: id, name, surname, role, company, experience
Answer the following: Which users have the manager role?

3.4 Model Evaluation
In the pursuit of a comprehensive and fair evaluation, we adhere to the methodology
established in a previous study [50]. This metric quantifies the accuracy of matched
keywords between the predicted query and its corresponding ground truth. To rigorously
assess the performance of the fine-tuned model, the evaluation of translation correctness
was conducted using the BLEU score [27], a widely recognized metric in the field of
machine translation (MT). While BLEU is the de facto standard, its reliance on geometric
mean calculations of n-gram precisions can occasionally exhibit poor correlation with
human judgment at the sentence level. In response to this, we used the smoothing
techniques proposed in [1] tailored for enhancing the sentence-level BLEU comparisons.
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Chapter 4

Methods

4.1 Dataset Construction

In this section we delve into the specific details of the implementation process of construct-
ing a synthetic dataset for Natural Language (NL) to NoSQL translation, focusing on the
key considerations and steps taken during the construction of this synthetic dataset.

Fisrt thing we extracted table names and their corresponding fields from the pub-
lic dataset ”kaxap/pg-wikiSQL-sql-instructions-80k” available on Hugging Face. This
dataset is a converted, cleaned, and syntax-checked version of the SQLWiki dataset, en-
compassing all SQL statements, including CREATE TABLE statements. From these
CREATE TABLE statements, we were able to extract the table names and fields, con-
structing a collection for the creation of our synthetic dataset.

Create Table Statement
CREATE TABLE ”members” ( ”name” text, ”birthdate” text, ”role” text,
”characteristics” text );
CREATE TABLE ”tv_ratings” ( ”episode” text, ”rating” real, ”share” real,
”viewers_millions” real );
CREATE TABLE ”song_list” ( ”number” real, ”song_title” text, ”lyricist”
text, ”singer” text );
CREATE TABLE ”race_calendar” ( ”race” real, ”circuit” text, ”state” text,
”date” text );

Table 4.1. Some examples SQLWiki dataset’s Create Table Statements

Once this collection was obtained, it underwent a cleansing process to yield table
names and fields most suitable for our context, where some words, when taken indi-
vidually, might lack meaningfulness. To achieve this, words with excessive underscores,
those containing attached numbers, or those shorter than 2 characters were eliminated.
Subsequently, a manual review was conducted to eliminate any remaining words deemed
unsuitable or unclear for our use case. The final collection contains 1800 samples of table
names and their corresponding fields.
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Collection Fields
”members” ”name [text], birthdate [text], role [text], characteristics [text]”

”tv_ratings” ”episode [text], rating [real], share [real], viewers_millions [real]”
”song_list” ”number [real], song_title [text], lyricist [text], singer [text]”

”race_calendar” ”race [real], circuit [text], state [text], date [text]”

Table 4.2. Some examples of collections extracted from SQLWiki dataset

Regarding the templates used to create NL/NoSQL pairs, ten distinct types of ”find()”
NoSQL queries were formulated. Each query type was pre-coupled with various expres-
sions of the corresponding requests in natural language to already encompass a high
number of potential ways to articulate the same query. These templates are fully param-
eterized concerning request keywords (NL or NoSQL) and the names of fields to which
the request pertains. Other parameters were strategically inserted to allow for the mod-
ification of the quantity of NL/NoSQL pairs created, ensuring a homogeneous dataset
where the number of different query types corresponds to the same number of samples in
the dataset.

Choosing LLaMa2 as the reference Large Language Model (LLM), after creating the
dataset with NL/NoSQL pairs (retaining the collection name and all its fields in the
dataset), the final dataset was constructed for the fine-tuning of the model. This in-
volved generating samples to match the LLaMa2 prompt format. In the realm of prompt
engineering, meticulous consideration has been given to construct an optimal prompt that
extracts the most accurate and contextually relevant answers from the Large Language
Model (LLM). Leveraging the knowledge of the collection name and its associated fields,
the prompts are carefully designed to encapsulate the essence of the intended NoSQL
query. An illustrative example of such prompt engineering is evident in the following
formulation:

Text
”<s>[INST] Given the following structure of a NoSQL collection about mem-
bers: name, birthdate, role, characteristics, convert the following natural lan-
guage question into a NoSQL query (the structure of the query should be
db.members.find(...)): Select the members where the name is Frank [/INST]
find({ name: ”Frank” }) </s>”

In this instance, the prompt provides explicit details about the structure of the NoSQL
collection, highlighting the fields. By framing the natural language question within the
context of the specific collection and its attributes, the prompt ensures that the LLM is
equipped with sufficient information to generate a precise and contextually fitting NoSQL
query, thereby enhancing the overall effectiveness of the translation process.

Concerning the data augmentation phase, specifically paraphrasing, we employed the
Parrot framework. Following the methodology outlined in DBPal [43], we augmented
the dataset by generating duplicate Natural Language (NL) to NoSQL pairs. This aug-
mentation process involves the random selection of words or subphrases from the NL
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query, subsequently paraphrasing them using Parrot. During paraphrasing, words and
subphrases within the input NL query are randomly replaced with alternative paraphrases
provided by Parrot.

An essential consideration is the level of aggressiveness applied in automatic para-
phrasing. To address this, we used two parameters for tuning automatic paraphrasing
in alignment with DBPal. The first parameter, ”sizepara”, defines the maximum size of
sub-clauses (in terms of the number of words) to be replaced in a given NL query. The
second parameter, ”numpara”, establishes the maximum number of paraphrases gener-
ated as linguistic variations for each subclause. For instance, setting sizepara = 2 would
replace subclauses of size 1 and 2 (i.e., unigrams and bigrams) in the input NL query
with paraphrases sourced from Parrot. Furthermore, setting numpara = 3 implies that
each unigram and bigram can be replaced by up to 3 paraphrases.

Given the computational expense and time constraints associated with the intensive
paraphrasing process, especially when dealing with a substantial volume of samples for
augmentation, we propose a simplified data augmentation method. In this approach, we
selectively choose 20% to 30% of samples from the original dataset, and through Parrot,
generate duplicate Natural Language (NL) to NoSQL pairs. This streamlined strategy
aims to strike a balance between computational efficiency and the augmentation of the
dataset, providing a pragmatic compromise for datasets of larger scales.

The dataset utilized for fine-tuning the LLama2 Large Language Model (LLM) was
curated by incorporating 1000 samples for each type of ”find()” query. To accelerate the
paraphrasing process, the simplified approach was employed, selecting 20% of the samples
for duplication. This method facilitated an efficient yet robust dataset for the fine-tuning
phase, optimizing the model’s performance in NL-to-NoSQL translation.
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4.2 Model Fine Tuning
In the process of fine-tuning the LLama2 Large Language Model (LLM) for text-to-
NoSQL translation, we adopted an approach that leverages the Quantization through
Low-Rank Adaptation (QLoRA) technique [3]. This method stands out for its ability to
significantly reduce memory usage during fine-tuning without sacrificing performance.

QLoRA’s core methodology involves the implementation of 4-bit quantization, a pro-
cess that compresses a pre-trained language model by reducing the storage precision of
its parameters. The quantized model’s parameters are then frozen, and a small num-
ber of trainable Low-Rank Adapter layers are introduced. During the subsequent fine-
tuning phase, QLoRA strategically backpropagates gradients exclusively through these
Low-Rank Adapter layers. This ensures that the frozen 4-bit quantized model remains
unaltered, with only the adapters being updated. It’s worth noting that the 4-bit quan-
tization employed by QLoRA doesn’t compromise the performance of the model; rather,
it serves as a memory-efficient alternative to traditional fine-tuning methods.

Contrasting with traditional fine-tuning methods that necessitate updating all model
parameters, our approach, known as Parameter-Efficient Fine-Tuning (PEFT), selectively
updates a small subset of the model’s parameters, optimizing computational efficiency.
Supervised fine-tuning (SFT) played a pivotal role, facilitated by the TRL library from
HuggingFace, which provides a user-friendly API for creating and training SFT models
with minimal code. The SFT Trainer, initialized with relevant parameters including the
model, dataset, Lora configuration, tokenizer, and training parameters, facilitated the
integration of supervised fine-tuning into the reinforcement learning framework. This
meticulous fine-tuning methodology not only optimizes the LLama2 LLM for accurate
and efficient Natural Language to NoSQL translation but also enhances accessibility and
usability for real-world applications.

Figure 4.1. This is the loss during the fine tuning.
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Chapter 5

Results

5.1 Dataset
The process of constructing a synthetic dataset for fine-tuning the LLama2 Large Lan-
guage Model (LLM) for Natural Language (NL) to NoSQL translation demonstrated its
efficacy addressing the challenges associated with time and resource constraints inher-
ent in manual pairing. Our approach to creating NL/NoSQL pairs was marked by a
thoughtful integration of Query Templates, NL Templates, and insights derived from the
DBPal framework. This meticulous parameterization, involving request keywords (NL
or NoSQL) and field names, ensured the creation of a homogeneous dataset, where the
number of different query types matched the samples in the dataset. Following are de-
scriptions of the 10 different "find()" queries that have been considered, along with some
samples extracted from the final synthetic dataset that has been created.

• Type 1: Retrieve documents where a field’s value is greater than or less than a
specified value.

• Type 2: Retrieve documents where a specified field is equal to a given value.
• Type 3: Retrieve documents where a specified field not equal to a given value.
• Type 4: Retrieve documents within a specified range of values for a field.
• Type 5: Retrieve documents where a field exists
• Type 6: Retrieve documents where a field does not exist.
• Type 7: Combine multiple conditions using logical operators like $and and $or.
• Type 8: Retrieve documents where the an array field contains a specific element.
• Type 9: Retrieve documents where an array field matches any of the proposed

elements.
• Type 10: Find the document with the maximum / minimum value in a specific

field.
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Query Type NL Request NoSQL Query
Type 1 Select all the douments that have less

than 21 posts
find({ posts: { $lt: 21 }})

Type 2 Select the documents where the size is
4

find({ size: 4 })

Type 3 Find the documents that have year not
equal to 1994

find({ year: { $ne: ’1994’ }})

Type 4 Find documents with score values rang-
ing from 25 to 44

find({ score: { $gte: 25, $lte: 44
}})

Type 5 Select documents where the model field
exists

find({ model: { $exists: 1 }})

Type 6 Retrieve the documents where the loca-
tion field is not defined

find({ location: { $exists: 0 }})

Type 7 Show the documents where the minutes
are lower than 13 and the city is Miami

find({ $and: [{city: ’Miami’},
{minutes: { $lt: 13} }]})

Type 8 Select records where the names array
includes John

find({ names: ’John’ })

Type 9 Get documents where the states array
includes all the elements found Italy,
France and Belgium

find({ states: { $in: [’Italy’,
’France’, ’Belgium’] }})

Type 10 Take the document with the greater
rank value

find().sort({rank:-1}).limit(1)

Table 5.1. Samples from the synthetic dataset

In the realm of prompt engineering, particular attention was given to construct
prompts that encapsulate the essence of the intended NoSQL query, leveraging the knowl-
edge of the collection name and its associated fields. The subsequent data augmentation
phase, focused on paraphrasing using the Parrot framework, added another layer of rich-
ness to our dataset.

In the fine-tuning phase, the dataset, carefully curated with 1000 samples for each
type of ”find()” query, demonstrated its efficiency in optimizing the LLama2 LLM’s per-
formance in NL-to-NoSQL translation. The streamlined approach of selecting 20% of
samples for duplication through Parrot struck a pragmatic balance between computa-
tional efficiency and dataset augmentation, proving particularly effective for larger-scale
datasets.

In summary, the synthetic dataset creation process resulted in a well-structured, di-
verse, and efficiently optimized dataset. This dataset served as a robust foundation for
training models in natural language to NoSQL translation. The successful fine-tuning of
the LLama2 LLM showcased the efficacy of our approach, emphasizing its potential for
real-world applications in handling NL-to-NoSQL translation challenges.
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5.2 Model
The fine-tuning process of the Large Language Model (LLM), specifically LLaMa2-CHAT-
7B, exhibited good improvements in translation capabilities for natural language queries
into NoSQL queries. Applying a 4-bit quantization technique through QLoRA facilitated
efficient fine-tuning on a T4 GPU without compromising performance. By fine-tuning
the LLM specifically for the task of NL-to-NoSQL translation, we effectively streamline
its focus, enabling it to prioritize the essential task of query conversion without the
extraneous information and complexities introduced by the base LLM. This targeted
refinement ensures that the model dedicates its cognitive resources solely to understanding
the semantic nuances of natural language inputs and generating syntactically correct
and contextually relevant NoSQL queries. Consequently, the fine-tuned LLM exhibits
improved performance in capturing the subtle intricacies of NoSQL query languages, while
also reducing the likelihood of erroneous translations or irrelevant output. In essence, the
fine-tuning process serves as a catalyst for optimizing the model’s utility in practical
applications, facilitating smoother and more intuitive interactions between users and
NoSQL databases.

Model Accuracy (%) Error Rate (%)
Base Model 65 25

Fine Tuned Model 82 18

The correctness of the model’s translations was evaluated using the BLEU score, a
widely adopted metric in natural language processing tasks. This evaluation method in-
volved comparing the candidate solution queries generated by the fine-tuned LLM against
reference queries, which served as ground truth representations of the intended NoSQL
queries. To facilitate this comparison, key words and phrases were extracted from both
the reference and candidate queries. For example, from a query such as "find({ age: {
$gt: 25} })", the extracted phrase would be "find age gt 25". Subsequently, the similarity
between the extracted phrases from the reference and candidate queries was quantified
using the BLEU score, which measures the overlap of n-grams between the candidate and
reference sentences. A higher BLEU score indicates greater similarity and thus a more
accurate translation. This rigorous evaluation approach allowed for a comprehensive
assessment of the model’s performance in capturing the semantics and structure of nat-
ural language requests and effectively converting them into syntactically correct NoSQL
queries.

BLEU is not entirely effective but offers several interesting benefits like quick, easy
to calculate, language-independent, highly interactive with human interpretation, and
widely used.

P = mt

wt

where, mt is the estimate of tokens from the candidate text that are found in the reference
text, and wt is the total estimate of words in the candidate query. The accuracy is
calculated using the equation

Accuracy = P · 100%
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NL Request Original Query Test Query Accuracy
Retrieve the sta-
dium_and_locations that
have Kattie Shields as
short_name

find({ short_name: ’Kattie
Shields’ })

find({ short_name: ’Kattie
Shields’ })

100

Show the clubs that have 74
matches

find({ matches: { $eq: 74 }
})

find({matches: { $gt: 74 }}) 75

List the major_awards
where the title is not cham-
pionship or the prize is
money

find({ $or: [{ title: { $ne:
’championship’ }}, { prize:
’money’ }]})

find({ $or: [{ title: { $ne:
’championship’ }}, { prize: {
$ne: ’money’}}]})

75

Retrieve the from bat-
ting_averages where the
not_outs is less than 162 or
the runs is 726

find({ $or: [{ not_outs: {
$lt: 162 }}, { runs: 726 }]})

find({ not_outs: { $lt: 162
}, runs: { $gt: 726 }})

50

Table 5.2. Accuracy of the ”Base” Large Language Model on some examples

The BLEU scores obtained for the base model on the test dataset provide a quanti-
tative measure of the model’s performance in terms of precision in matching key-words
between the predicted NoSQL query and its ground truth. These scores, analyzed collec-
tively, allow us to measure the model’s strengths and weaknesses in capturing the nuances
of NoSQL queries. These scores indicate a relatively modest level of precision in n-gram
matching, suggesting a possible enhancement in translation correctness.

NL Request Original Query Test Query Accuracy
Retrieve the sta-
dium_and_locations that
have Kattie Shields as
short_name

find({ short_name: ’Kattie
Shields’ })

find({ short_name: ’Kattie
Shields’ })

100

Show the clubs that have 74
matches

find({ matches: { $eq: 74 }
})

find({matches: { $eq: 74 }}) 100

List the major_awards
where the title is not cham-
pionship or the prize is
money

find({ $or: [{ title: { $ne:
’championship’ }}, { prize:
’money’ }]})

find({ $or: [{ title: { $ne:
’championship’ }}, { prize:
’money’ }]})

100

Retrieve the from bat-
ting_averages where the
not_outs is less than 162 or
the runs is 726

find({ $or: [{ not_outs: {
$lt: 162 }}, { runs: 726 }]})

find({ not_outs: { $lt: 162
}, runs: { $eq: 726 }})

75

Table 5.3. Accuracy of the Fine Tuned Large Language Model on some examples

The BLEU scores obtained for the fine-tuned model on the test dataset quantita-
tively measure the model’s precision, indicating a substantial improvement over the base
model’s scores. Comparing the fine-tuned model with the base model revealed some
advancements, however a trade-off was observed, as the model’s generalization capac-
ity slightly decreased, especially for requests that deviated significantly from those in
the training dataset. Despite this, the improved performance in challenging scenarios
positions the fine-tuning LLMs as a promising advancement in the field.
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Chapter 6

Conclusion

Concluding this research, several areas for improvement and future considerations emerge,
shaping the trajectory of advancements in natural language to NoSQL translation.

Dataset Considerations: The synthetic dataset creation approach has proven valu-
able, the consideration of employing a larger dataset could significantly enhance the
model’s training comprehensiveness. The created dataset is well-structured, diverse, and
optimized for training natural language to NoSQL translation models. Introducing a
broader array of diverse and complex Natural Language variations of the same request,
either through the incorporation of additional templates or by increasing the intensity
of paraphrasing, has the potential to augment the dataset’s richness. This enhancement
could contribute to a more robust and nuanced training environment, fostering improved
performance and adaptability of the model in handling a wider spectrum of user queries.

Model Evaluation: The fine-tuned model exhibits improved translation capabilities,
especially in handling challenging queries. However, there is a trade-off, as the model may
lose some generalization capacity, particularly for requests that deviate significantly from
those in the training dataset. This nuanced understanding of the model’s strengths and
limitations underscores the need for ongoing refinement and exploration in the realm of
natural language to NoSQL translation.

Future Enhancements: Exploring the fine-tuning of larger models, such as LLama
13B and 70B, presents a promising avenue for improving overall performance. These
larger models, with increased parameters and complexity, offer the potential for more
nuanced learning. However, this opportunity comes with its own set of challenges, par-
ticularly in the context of memory constraints and GPU limitations.

This research lays the groundwork for future endeavors, highlighting possible im-
provements. The ongoing evolution of natural language interfaces for NoSQL databases
remains a dynamic field, poised for continued exploration and innovation.

29



30



Bibliography

[1] Boxing Chen and Colin Cherry. A systematic comparison of smoothing techniques
for sentence-level BLEU. In Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia, editors,
Proceedings of the Ninth Workshop on Statistical Machine Translation, 2014.

[2] Naihao Deng, Yulong Chen, and Yue Zhang. Recent advances in text-to-SQL: A
survey of what we have and what we expect, 2022.

[3] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:
Efficient finetuning of quantized llms, 2023.

[4] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun,
Jingjing Xu, Lei Li, and Zhifang Sui. A survey on in-context learning, 2023.

[5] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu
Lin, and Dongfang Lou. C3: Zero-shot text-to-sql with chatgpt, 2023.

[6] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao,
Peng Chen, and Ming Zhou. Question generation from SQL queries improves neural
semantic parsing, 2018.

[7] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. Towards complex text-to-SQL in cross-domain database with in-
termediate representation. In Anna Korhonen, David Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

[8] Kazi Hossen, Mohammed Uddin, Minhazul Arefin, and Md Ashraf Uddin. Bert
model-based natural language to nosql query conversion using deep learning ap-
proach. International Journal of Advanced Computer Science and Applications,
2023.

[9] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient ir-style
keyword search over relational databases, 2003.

[10] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in rela-
tional databases, 2002.

[11] Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, Bowen Li, Jian Sun, and
Yongbin Li. S2sql: Injecting syntax to question-schema interaction graph encoder
for text-to-sql parsers, 2022.

[12] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. Learning a neural semantic parser from user feedback. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2017.

31



Bibliography

[13] George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning
approaches for text-to-sql, 2023.

[14] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020.

[15] Fei Li and H. V. Jagadish. Constructing an interactive natural language interface
for relational databases. Proc. VLDB Endow., 2014.

[16] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: Decoupling schema
linking and skeleton parsing for text-to-sql, 2023.

[17] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo,
Fei Huang, Wenyu Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained
transformers with graph-aware layers for text-to-sql parsing, 2023.

[18] Yuming Li, Rong Zhang, Xiaoyan Yang, Zhenjie Zhang, and Aoying Zhou. Touch-
stone: Generating enormous Query-Aware test databases, 2018.

[19] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Bridging textual and tabular
data for cross-domain text-to-sql semantic parsing, 2020.

[20] Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. A comprehensive evaluation of
chatgpt’s zero-shot text-to-sql capability, 2023.

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019.

[22] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword query
in relational databases, 2007.

[23] Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, and
Zheng Chen. Hybrid ranking network for text-to-sql, 2020.

[24] Suravi Mondal, Prasenjit Mukherjee, Baisakhi Chakraborty, and Rezaul Bashar.
Natural language query to nosql generation using query-response model. 2019 Inter-
national Conference on Machine Learning and Data Engineering (iCMLDE), 2019.

[25] Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang,
Arman Cohan, and Dragomir Radev. Enhancing few-shot text-to-sql capabilities of
large language models: A study on prompt design strategies, 2023.

[26] OpenAI. Gpt-4 technical report, 2023.
[27] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak,
and Dekang Lin, editors, Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, 2002.

[28] Ellie Pavlick and Chris Callison-Burch. Simple PPDB: A paraphrase database for
simplification, 2016.

[29] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates.
Modern natural language interfaces to databases: Composing statistical parsing with

32



Bibliography

semantic tractability. In COLING 2004: Proceedings of the 20th International Con-
ference on Computational Linguistics, 2004.

[30] Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learn-
ing of text-to-sql with self-correction, 2023.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. Journal of Machine Learning Research,
2020.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer, 2023.

[33] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-
sql capabilities of large language models, 2022.

[34] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incre-
mentally for constrained auto-regressive decoding from language models. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, 2021.

[35] Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha,
Pengcheng Yin, and Tomas Pfister. Sql-palm: Improved large language model adap-
tation for text-to-sql, 2023.

[36] Pradeep T, Rafeeque P C, and Reena Murali. Natural language to nosql query
conversion using deep learning, 2019.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, TimothÃ©e Lacroix, Baptiste RoziÃ¨re, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. Llama: Open and efficient foundation language models, 2023.

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou,
Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ran-
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat mod-
els, 2023.

[39] Immanuel Trummer. Codexdb: Generating code for processing sql queries using
gpt-3 codex, 2022.

33



Bibliography

[40] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. RAT-SQL: Relation-aware schema encoding and linking for text-to-
SQL parsers, 2020.

[41] Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. Learning to syn-
thesize data for semantic parsing, 2021.

[42] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expres-
sive sql queries from input-output examples. SIGPLAN Not., 2017.

[43] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,
Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin HÃ¤ttasch, Steffen
Eger, Ugur Cetintemel, and Carsten Binnig. Dbpal: A fully pluggable nl2sql training
pipeline, 2020.

[44] Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang,
and Haifeng Wang. Data augmentation with hierarchical sql-to-question generation
for cross-domain text-to-sql parsing, 2022.

[45] Kuan Xu, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. Sead: End-
to-end text-to-sql generation with schema-aware denoising, 2023.

[46] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries
from natural language without reinforcement learning, 2017.

[47] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query
synthesis from natural language. Proc. ACM Program. Lang., 2017.

[48] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
Spider: A large-scale human-labeled dataset for complex and cross-domain semantic
parsing and text-to-sql task, 2019.

[49] Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun Wang, and Changshan Li.
Hie-sql: History information enhanced network for context-dependent text-to-sql
semantic parsing, 2022.

[50] Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-SQL with
distilled test suites. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, edi-
tors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[51] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning, 2017.

[52] Tok Wang Ling Zhong Zeng, Mong Li Lee. Answering keyword queries involving
aggregates and group-bys in relational databases, 2015.

34


	Introduction
	Dataset
	Synthetic Dataset Construction
	Previous approaches for NL-to-SQL query generation
	DBPal in details

	Dataset creation method
	Implementation


	Model
	Text to SQL/NoSQL translation
	Different Approaches to text-to-SQL translation
	Deep Learning for text-to-SQL
	Text-to-SQL Empowered by Large Language Models
	Using LLMs for Text-to-NoSQL

	Fine-Tuning of LLM
	Fine tuning for Text-to-NoSQL

	Model Evaluation

	Methods
	Dataset Construction
	Model Fine Tuning

	Results
	Dataset
	Model

	Conclusion
	Bibliography

