
POLITECNICO DI TORINO

Master’s Degree in electronic engineering

Master’s Degree Thesis

New techniques for assessing and
enhancing the reliability of DNNs

Supervisors

Prof. Matteo SONZA REORDA

Prof. Marco LEVORATO

Dr. Juan David GUERRERO BALAGUERA

Candidate

Francesco PESSIA

2024

Summary

Nowadays, machine learning (ML) algorithms are being exploited in a variety of
applications, from health care to avionics, from computer vision to natural language
processing. Furthermore, an increasing number of tasks exploiting deep learning
are being performed on edge devices such as smartphones or drones through new
programming paradigms, like dynamic neural networks or split computing [1],[2].
Semiconductors manufacturers produce AI accelerators, such as GPUs, able to
provide outstanding power consumption and latency performances, leaving out
reliability, which is a crucial factor in safety-critical applications, such as autonomous
vehicles. In fact, the increasingly miniaturization of systems on chip (produced
using 7 nm, 10 nm, 20 nm technology), exposes them to manufacturing defects
escaping end-of-production tests or fault activation due to electromigration or aging
during in-field utilization. This work aims at evaluating the effects introduced by
hardware permanent ("stuck at" model) faults in GPU architectures while executing
DNN workloads. Furthermore, it proposes new techniques for software-based fault
detection and application hardening as well as a new version of an accelerator able
to compute them.

ii

Acknowledgements

ACKNOWLEDGMENTS

My sincere regards are devoted to Prof. Sonza for coordinating my activities and
sharing his network with me. This experience would have not been possible without

your supervision.

A special acknowledgement goes to Prof. Levorato for hosting me in his research
laboratory in Irvine. Meeting you and your phD. students has been enlightening.

Greetings to Dr. Balaguera for sharing his knowledge and paper writing skills with
me. I would also like to thank you to help improving my interest towards scientific

research.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 State of the Art 3
2.1 GPU Architecture . 4

2.1.1 NVDLA . 4
2.2 GEMM Execution on GPUs . 5
2.3 Scheduling Protocols . 6
2.4 Fault Detection Techniques . 8

3 Fault Injection 10
3.1 Fault Examination Methodology . 10

3.1.1 GPUs Emulation and Injection 11
3.1.2 Data Evaluation . 12

3.2 Error Model . 16
3.2.1 Model Generation . 16
3.2.2 Model Validation . 20

4 Fault Detection 23
4.1 The Problem . 23
4.2 Binary Decision Tree as a Fault Detector 24

5 Hardening Techniques 29
5.0.1 Motivation . 29

5.1 Pooling Techniques for Hardening LENET5 Execution by NVIDIA
GeForce GTX 1500 Ti . 29
5.1.1 Experiment Set Up . 30
5.1.2 Pooling Size = 2 . 31

v

5.1.3 Pooling Size = 3 . 33
5.2 LeNet5 Injected Though Error Models 33
5.3 MEDIANVDLA . 34

5.3.1 Address Space . 35
5.3.2 Planar Data Processor Data Path 38
5.3.3 Median Core . 38
5.3.4 Functional Simulations . 42

6 Conclusion 44

A Additional Informations 46
A.0.1 Queue . 46
A.0.2 MAC Normalization . 46
A.0.3 Error Models Golden Values 47
A.0.4 Compression example . 47

Bibliography 49

vi

List of Tables

3.1 GPUs structures evaluated by the fault injection campaign 11
3.2 Rounding procedure of averages to complete masks 18
3.3 Refined bit flip masks according to verification threshold 19
3.4 Validation convolution layers. Shapes are expressed in AxBxC where

B is the common dimension of GEMM input tensors. RB stands for
residual block. 20

3.5 Failing rate levels . 22

4.1 Fault detector data set features. The leftmost features are exploited
by binary decision tree to generate F/NF as a prediction that is
compared against the corresponding value in dataset to estimate
detection accuracy. 25

5.1 Evaluating Med Pooling performances against Avg Pooling for each
fault, pooling size = 2 . 32

5.2 Evaluating Med Pooling performances against Avg Pooling for each
fault pooling size = 3 . 33

5.3 Filters performances . 34

A.1 Set of golden values. The AxBxC format indicates the shape of
input tensors with B being common dimension 47

A.2 Compression example for 1 bit inputs 47

vii

List of Figures

2.1 Small NVDLA system block diagram 5
2.2 Imm2Col algorithm to transform single channel input tensors 6
2.3 Scheduler static allocation of a pool of 16 CTAs across a hypothetical

GPU comprising 4 SMs with a 2 CTAs wide buffer, divided on 2
clusters . 7

3.1 CTA allocation probabilities for GEMM with output matrix dimen-
sions(120 x 120) for Distributed Block and Global Round Robin
schedulers on Jetson AGX 32 . 13

3.2 Flow Chart describing masks generation algorithm 17
3.3 Experimental relation between Clustering Threshold (Th) and Com-

pression Factor (CF) for the shape-wise error model from the 100X
GEMM. 19

3.4 Different Levels of Cross Correlations for every test layer according
to masks generated from different set of golden values 21

4.1 Detection accuracy of fault detector across different error models
clustered according to classification accuracy loss 26

4.2 Detection Accuracy of Fault Detector across different layers of LeNet5 27

5.1 TCU faults propagation across different layers 31
5.2 Peak Signal to Noise Ratios for each Pooling technique with GEMM

performed with different schedulers 32
5.3 Address space of PDP . 35
5.4 DFGs for several kernel configurations (2x2,3x3) and different data

formats. Leftmost DFG represents the data flow for 2x2 kernel
exploiting INT8 parallelism. On the right, the DGF for 3x3 kernel
with INT16 . 38

5.5 Data packing at the end of second level of operations in Median3x3
DFGs . 41

viii

Chapter 1

Introduction

Semiconductor manufacturers produce AI accelerators, such as GPUs, able to pro-
vide outstanding power consumption and computational performances, but often
neglecting reliability, which is a crucial factor in most safety-critical applications,
such as autonomous or semi-autonomous vehicles. In fact, new generation systems
on chip might be affected, with a not irrelevant probability, by manufacturing
defects escaping end-of-production test or fault activation (due to electromigration
or aging) during utilization. Nevertheless, dependability study over such complex
architectures is most of the times problematic due to platforms complexity. On the
other hand, to increase the reliability of hardware platforms, several testing tech-
niques allowing fault detection during utilization have been already implemented,
such as Design for Testability, Built-in Self-Test and Software-Based Self-Test
(SBST). For instance, an outstanding Software-Based Self-Test solution has been
designed by NVIDIA researchers able to obtain a fault coverage up to 92.4% in
Tensor Core Units (TCUs), crucial platforms for deep learning (DL) applications,
with a latency of only 100ms [3]. Although providing very high fault coverage,
overhead is introduced to monitor hardware integrity reducing application perfor-
mances by 2% in the automotive domain. Therefore, the mentioned methodologies,
despite obtaining optimized test coverage, either require modification of architec-
ture RTL description or block application execution. In this regard, detection
procedures, based on Convolution Neural Networks (CNN) behavior, need to be
devised. Nevertheless, fault injection campaigns at the application level, based
on an accurate description of underlying hardware require sensitive simulation
time. Therefore, alternative fault injection methodologies, designed to optimize
simulation complexity, have been already proposed. Nevertheless, the proposed
solutions only target single-cycle, single flip flop bit flip failures, belonging to the
category of "transient faults". For the best of our knowledge, no work has been
proposed yet for modeling permanent faults (for the purpose of this work resorting
to the stuck-at fault model) in TCUs. In this work, we will resort to experimental

1

Introduction

data gathered from multiple fault injection campaigns to extract patterns in faults
behavior and propose a modeling methodology able to accurately replicate the
effects of standard injection procedures. Subsequently, exploiting discrepancies in
the CNN response with respect to fault-free scenarios, we propose a software-based
fault detection technique able to provide a good level of fault coverage (78% of
targeted faults) without reducing application performances. To conclude, training
similar CNNs with several pooling filters (Average, Max, Median) we discovered
that other hardware resources of GPUs (i.e., planar processors) can be exploited to
mitigate faults in TCUs, at times compensating their effects. In particular, Median
filter-based CNNs provide higher classification accuracy with respect to Average
and Max filters, when GPUs are damaged. Nevertheless, Median pooling is very
rarely exploited in commercial applications and more used in research. Therefore,
to the best of our knowledge, no modern Systems on Chip (SoCs) support the
execution of this layer. In this work, we developed a new version of NVDLA
(NVIDIA deep learning accelerator) able to execute median filters with small kernel
shapes (2x2, 3x3) with identical latency of Max and Average pooling.

The final manuscript, structured in chapters, provides: i) an overview about
the state of the art with particular emphasis both on modern GPU hardware
resources and cutting edge software-based detection techniques; ii) a survey about
the environment exploited to perform fault injection campaigns and observations on
gathered experimental results, that led us to devise a modeling procedure able to
accurately map TCU permanent faults into bit flip masks; iii) a Software-based fault
detection technique able to monitor the hardware integrity exploiting LeNet5 be-
havior and finally iv) some software-based application-aware hardening techniques,
together with an hardware accelerator designed to efficiently execute them.

2

Chapter 2

State of the Art

As the utilization of GPUs is getting popular among edge devices, especially for ML
applications [4], reliability analysis mandated by safety protocols (ISO262) must be
performed over such complex hardware structure. Semiconductor vendors designed
highly parallelised platforms, such as GPUs, to optimize power consumption and
latency that are key factors to estimate the performances of edge computing devices
[2]. In fact, embedded systems executing computer vision algorithms for self-driving
vehicles aim to reduce Machine Learning (ML) models inference latency, in order
to exploit as much as possible the maximum frame rate of cameras. In order to
meet such strict computational requirements, either specifically designed hardware
is devised according to ML model parameters, or software-based techniques are
exploited to improve model execution efficiency on general purpose SoCs. While
the former option is usually implemented on FPGAs, the latter benefits from the
high flexibility of general purpose structures, like GPUs.
In this chapter we provide a survey about GPUs structures with particular emphasis
on the hardware resources exploited during CNNs computation. In this regard, we
provided a short overview of a core called Streaming Multiprocessor (SM) that is
the basic computational unit of GPUs. We will mainly focus on illustrating the
hardware resources embedded in SMs exploited in ML applications (i.e. Tensor
Core Unit). Starting from a short survey about the GPU architecture, we explain
how the workload is generated (i.e, threads allocation) and assigned to available
hardware resources (Scheduling Policies). The illustrated architecture inspired the
design of a parametric GPU simulator, equipped with fault injection infrastructures,
exploited to perform reliability studies. To conclude a short survey on cutting-edge
software-based fault detection techniques is provided as a benchmark to evaluate
the inedited proposed solution.

3

State of the Art

2.1 GPU Architecture
Modern GPUs are composed of several computational units called Streaming multi-
processors (SMs). Each SM can include up to 64 general-purpose parallel processing
cores to execute integer and floating-point operations and several hardware acceler-
ators for matrix multiplications or highly parallellized operations, such as Special
Function Units (SFUs) or Tensor Core Units (TCUs). In particular, TCUs are hard-
ware arrays of Dot-Product-Units (DPUs) comprising several Multiply-and-Add
(MAC) cores specially designed to efficiently execute GEMM operations in the DL
domain [5], [6]. Through a single (or a minimal set of) assembly instruction for the
TCU, a 4x4 matrix multiplication multiply and accumulate operation (e.g., D = AB
+ C) can be computed. TCUs can support mixed precision operations (input FP16,
output FP32) and compressed precision, such as INT4, INT8. In general, most
GPU architectures include SMs with at least 2 TCUs. In high-performance class
GPUs, such as the Titan V, the number of TCUs rises up to 8. Every SM core is
equipped with internal Cache memory (L1) and specialized registers to merge cache
miss to minimize redundant memory accesses. Furthermore, SMs are organized
into clusters to device a scalable design. All SMs in a cluster share a Network
on Chip (NoC) and have to compete against each other for memory bandwidth,
potentially causing bottleneck effects [7]. Intra-cluster cohaleshing units (ICCU)
merge data requests from all SMs in a cluster and access an upper level of Cache
memory (L2) shared across all clusters. The power consumption for GPUs mainly
stems from memory access rather than computational units. Therefore, ICCUs
might optimize drastically energy consumption if SMs on the same cluster work on
similar data. Semiconductor vendors implemented in hardware several scheduling
policies to distribute application workload across available computational resources.
The performances of schedulers are mainly measured through Intra-Cluster Locality
(ICL) that stems from redundant data requests without taking into consideration
reliability (more about this on hardening techniques chapters).

To conclude, some families of NVDIA GPUs such as Jetson Xavier, also comprise
NVDLA (NVDIA Deep Learning accelerator) in their architecture.

2.1.1 NVDLA
The NVDIA Deep Learning accelerator is an open source system on chip, designed
to optimize the execution of CNNs. It supports a pipeline with up to 13 stages,
each computed by a different computational unit. It can support both fusion and
independent layer computation. While the former execution mode joins the output
of a pipeline stage to the input of next one, the second configuration performs
memory-to-memory operations. In fact, an AMBA AXI 4 bus master/slave interface
(DBBIF) provides direct access to an external DRAM (see Fig. 2.1). Furthermore,

4

State of the Art

a host system (NVDLA wrapper) leverages on a Configuration Space Bus (CSB)
interface, based on a valid/request protocol, to accesses and configure NVDLA
address space. Through a 32 bits data bus and a 16 bits address, registers are
written in order to modify control signals of functional units data path. In order
to minimize configuration latency, a ping-pong synchronization has been devised
to access the address space. According to this synchronization paradigm, for
each computation unit, two identical address spaces are allocated: consumer
and producer. During execution, while the configuration of consumer address
space is exploited to drive control signals of data path, the producer address space
can be modified through the CSB interface. Alternating producer and consumer
address spaces in driving control signals, improves drastically configuration latency
and therefore system performances. Some systems may have the need for more
throughput and lower latency than the DRAM can provide, and may wish to use
a small SRAM as a cache to improve the NVDLA’s performance. A secondary

Figure 2.1: Small NVDLA system block diagram

AXI4-compliant interface (SRAMIF) is provided for an optional SRAM to be
attached to the NVDLA. Nevertheless, in this work we will resort on the so called
Small NVDLA system to evaluate functional tests keen to validate our modification
on this accelerator. Our new version of NVDLA supports the computation of new
operations geared toward alleviation of TCU permanent faults effects. NVDLA
supports both half integer (INT8, INT16) and floating point (FP16) precision.

2.2 GEMM Execution on GPUs
Graphics Processing Units (GPUs) are based on the multiple instructions multiple
data (MIMD) programming paradigm. During CNNs inferences, convolutions and

5

State of the Art

fully-connected layers are mapped into General Matrix Multiplications (GEMM)
suitable for single instruction multiple data (SIMD) programs. Nevertheless, in
order to fit convolution layers into general matrix multiplications (GEMMs), whose
workload is efficiently executed by GPUs, the imm2col algorithm is exploited,
increasing memory redundancy and zero sparcity [8] (see Fig. 2.2). On the other
hand, linear algebra theorems, implemented in software through cuBLASS libraries
for NVDIA GPUs, can now be exploited during GEMM to partition and distribute
the computation workload across several parallel cores [8].

Figure 2.2: Imm2Col algorithm to transform single channel input tensors

During GEMM computation, a single kernel function is exploited to perform dot
products between vectors. Therefore, multiple threads are issued, each executing
the same kernel function across different sets of data. In order to fit data flow into
Cache memory levels and exploit as much as possible all available parallel cores,
the computation of the GEMM output matrix (also known as tensor), is split in
sub-blocks or "tiles" [9]. Each tile is computed through a set of threads called
Cooperative Thread Array (CTA). Therefore, each thread executes kernel functions
through multiply and accumulate (MAC) operations over few data, threads are
grouped into warps to cover sub-vector dot products, and finally warps are merged
into CTAs to compute tiles or sub-matrices of output tensors. Each tile is computed
through a series of sub-matrices multiply and accumulate operations (D = AB +C).
Input tensors are sliced, according to tiling size, respectively into Mx ×Ks ×Ny

and Mx × Ny blocks [9]. Tensors blocks are fed to operational units (SM) for
computation resorting on an hierarchical memory structure.

2.3 Scheduling Protocols
In this work, the role of 5 frequently implemented scheduling policies has been
evaluated in case of permanent faults in TCUs:

6

State of the Art

Figure 2.3: Scheduler static allocation of a pool of 16 CTAs across a hypothetical
GPU comprising 4 SMs with a 2 CTAs wide buffer, divided on 2 clusters

1. Two Level Round Robin: CTAs are distributed on SMs of different clusters
until every cluster has at least one SM with a CTA allocated (see Fig. 2.3).
Subsequently, this process is repeated as long as all SMs on GPU have been
provided with a CTA. According to data request arrival time, additional CTAs
are allocated to SMs following the same paradigm.

2. Global Round Robin: CTAs are allocated across a new cluster if and only
if all the SMs of a previously scheduled cluster have at least one CTA. Once
all SMs of GPU have data to compute execution is triggered and once more
according to data request arrival time new threads array are scheduled

3. Greedy: unless SMs support multiple allocation through data buffers, this
scheduler behaves exactly as Global Round Robin. Otherwise, in order to
move allocation to a new cluster, all buffers of all SMs in current scheduled
cluster must be filled completely.

4. Distributed Schedulers: while Greedy or Round Robin might generate un-
balanced workload across parallel processing units for applications with limited
amount of CTAs, schedulers designed following the paradigm of distributed
allocation ensure that workload is equally distributed across clusters. In fact,
before scheduling is initiated, spatially continuous CTAs are divided into pools
of uniform size. Furthermore, due to continuity, CTAs in the same pool tend to
reuse same data, improving number of mergeable Cache miss. This behaviour
results in limited number of redundant data request, improving ICL. In fact
according to literature, distributed schedulers have the best performances in
terms of power consumption [7]. Nevertheless, optimized level of ICL might
reduce performances of these schedulers while evaluating their reliability. Two

7

State of the Art

commonly devised distributed schedulers are:

i) Distributed CTA: CTAs belonging to same pool are allocated across SMs
until all of them have been scheduled. Then, if SMs support multiple
allocation through buffers, the schedulers resumes allocation until all
buffers are full. Once execution is triggered, additional CTAs are scheduled
according to data request arrival time

ii) Distributed Block: unless SMs are provided with buffers it behaves exactly
as Distributed CTA, otherwise allocation on buffer belonging to a SM
is prioritized with respect to scheduling across SMs on the cluster. This
procedure improves data locality of CTAs computed by the same SMs,
increasing number of merged Cache miss of L1 Cache memory.

2.4 Fault Detection Techniques
Tech companies raised serious concerns about hardware faults impact both on
training and inference of DNNs. The probability of fault occurrences in big data
centres, running training scripts across multiple GPUs is not negligible (few cores
over several thousands server machines [10], [11]). Google has conducted a deep
study assessing impact of transient faults during training [12]. In particular, they
underlined the necessity of good detection techniques in order to accredit training
accuracy divergence to hardware. This necessity stems from the incredible amount
of time spent by their engineers to review training scripts looking for fictitious
software bugs. They suggest to exploit gradient history, calculated according to
Adam optimization algorithm, comparing its value against a threshold. In addition,
they discovered that majority of faults express their effect generally after two
training iterations. Therefore, they suggest to save training status accordingly
in order to restore the simulation from a valid configuration in case of abrupt
training accuracy divergence caused by transient fault. Nevertheless, this detection
methodology requires labelled inputs to calculate loss function, making it unsuitable
for in field utilization. Furthermore, NVDIA researchers conducted a study to
analyse and asses the impact of permanent faults on Object Detection Algorithms
such as YoloV5 [13]. To mitigate simulation complexity, they modelled faults by
applying single bit flip masks on the weights, emulating the effects of stuck-at faults
of memory cells. In order to improve stability of YoloV5 execution, they suggest
to implement hardware logic to sustain information redundancy such as Parity
bits, Hamming code. Once concurred that a fault is present, the damaged portion
of hardware usually is detected and isolated though Build-in Self-test (BIST) or
Software-based self-Test (SBST). A study [14] has presented a methodology to
generate a SBST for NVDLA exploiting Deep Neural Networks (DNNs) architecture.
They suggest to map Test Vectors (TVs), generated through ATPG from RTL

8

State of the Art

descriptions of open source NVDLA SoC, into a fictitious CNN, exploiting fixed
network architecture and CNNs predicable execution procedure. Nevertheless, the
ATPG was able to generate TVs only across the logic in charge of convolution
computation due to the limited amount of sequential logic. Different strategies
should be adopted to test other units such as control units that have complex
sequential logic. This elaborate will present a new software-based technique to
detect if faults are present and quantifies its performances in terms of detection
accuracy. Furthermore, the new methodology is designed to run in parallel with
the application, only slightly increasing its computation latency. Nevertheless, this
procedure will only establish hardware integrity, eventually triggering additional
tests to identify and isolate damaged circuitry.

9

Chapter 3

Fault Injection

Dependability evaluation of modern hardware structures requires clever investiga-
tion techniques producing reliable numeric results without relying on exhaustive
test. In fact, according to the granularity of hardware description (i.e, high-level,
RT-level, gate-level model) the computation time required by fault injection cam-
paigns might became not negligible. Evaluating the effects of hardware faults
during DNN inference can be computationally prohibitive without generating repre-
sentative error models with low computation cost. Some studies have tried to asses
performances degradation of CNNs caused by hardware faults through applying bit
flip masks on weights [13]. Nevertheless, this procedure mainly targets "stuck-at"
faults in memory cells, that can be easily detected through information redundancy
(Hamming code) and eventually identified and isolated through BIST. Modelling
the effects of TCUs stuck-at faults exploiting low computation error models such
as bit flip masks is the goal of this fault injection campaign (FIC). Subsequently
the generated error model will be exploited to implement software-based detection
procedures on this crucial hardware resource for GEMM.

3.1 Fault Examination Methodology
To study the effects of permanent faults in TCUs we leverage on several GPU emula-
tors equipped with fault injection infrastructures to perform reliability evaluations.
Through gathered experimental results, we propose a modeling procedure to map
faults behaviour in an alternative low computationally cost injection methodology
(bit flip masks). The proposed injection procedure performs fault injections at the
application level in acceptable amount of time (e.g, few hours instead of 10,000 days)
without losing the accuracy of classical injection methodology. Through a model
able to inject hardware-aware errors, detection procedures as well as hardening
techniques, based on discrepancies of CNNs behaviour w.r.t. fault free scenario,

10

Fault Injection

can be proposed and evaluated.

3.1.1 GPUs Emulation and Injection
In order to evaluate the reliability of different scheduling policies, as well as modeling
faults behavior, several GPU structures have been studied (see Table 3.1). For
each GPU structure and for each scheduler, a FIC is performed targeting a single
SM identified as faulty.

GPU name clusters SMs per cluster
Jetson AGX 32 2 7
Jetson AGX 64 2 8

Jetson Nano 1 1
Jetson TX2 1 2

Jetson Xavier 1 7

Table 3.1: GPUs structures evaluated by the fault injection campaign

GEMM operations have been computed through an instruction-accurate TCU
model (PyOpenTCU [15]) able to execute tiles (16x16) of output tensor. Further-
more, the TCU model includes a Fault Injector (FI), able to inject stuck at faults
on data-path. In addition, behavioural scheduler algorithms have been designed
to allocate GEMM computations across the available SMs. Therefore, parametric
GPUs emulators have been designed able to compute CNNs workload. Tuning
computation resources (i.e, SMs, TCUs per SM, scheduler) through a configuration
file, the user can arbitrarily target any commercial GPU for reliability evaluations.
The TCU high-level model description comprises 86,000 locations accessible for
fault injection campaigns. A Statistical Fault Injection campaign (SFI) has been
performed with a confidentiality level of 95% and error margin of 1% injecting only
8,600 faults [16]. For each injected fault a seed matrix multiplication is calculated
and tiles are allocated to SMs according to scheduling policy under examination.
The output tensor, calculated by the faulty GPU, is compared against fault-free
scenario and key information about fault spatial and scalar effects are stored. The
methodology has been implemented exploiting high-level programming language
(Python) modules:

1. Golden: this module is in charge of calculating the fault-free scenario. It
randomly generates normalized activation (a ∈ (0, 1]) for seed GEMM and
calculates golden values by leveraging on a ’Mock’ scheduler that allocates
tiles only to one TCU emulator lacking FI. All tensors are stored in files for
post processing by other modules

11

Fault Injection

2. Fault List generator: in this work we only injected stuck at faults (no
transient faults) uniquely identified through an integer identifier associated to
a fault in the TCU data path by FI. This module generates a list of randomly
selected fault identifiers (FIDs) from exhaustive test pool as well as configuring
target GPU structure for FIC.

3. Injector: this module performs a single fault injection. The scheduler be-
havioural algorithm is triggered to allocate CTAs to TCUs of SMs. In order
to optimize simulation complexity, only tiles allocated to faulty TCUs are
computed leveraging on pyOpenTCU module. CTAs scheduled to reliable
resources are computed exploiting matrix multiplication algorithms provided
by numpy class. In addition, to further compress FIC complexity, this module
has been designed to support multiprocessing execution. Hence, multiple fault
injections, each associated to a process, can be executed in parallel. Through
a Queue (see Ap. A.0.1), faulty GEMMs are provided to an additional process
executing Validator module that extracts faults features.

4. Validator: the execution of this module, is triggered as soon as the Fault list
generator module is completed. As soon as data have been pushed into the
Queue, comparisons against fault free scenario extrapolate faults features. In
particular the absolute coordinates (x, y) of corrupted GEMM elements are
exploited to model faults spatial propagation Furthermore, the mean absolute
error (MAE), defined as the average of absolute errors of corrupted elements,
and mean relative error (MRE) are computed for fault classification (e.g.
critical faults (CF) not observed (NO) faults). To conclude, the hexadecimal
representation (IEEE 754 float16 parallelism) of corrupted elements and
expected golden values are stored to model hardware-aware errors able to
correctly replicate faults scalar effects.

3.1.2 Data Evaluation
Spatial Propagation

To replicate different faults behavior, it is imperative to determine which elements of
faulty GEMMs are going to be effected by damages in TCU data-path. Subsequently,
data corruption, exploiting low computation error models, will only occur in forecast
GEMM elements. Corrupted elements position in output tensor mainly depends on
4 factors: i) GPU target structure, ii) scheduler allocation, iii) the fault location and
iv) data capability to activate the faults. Therefore, storing absolute coordinates
of corrupted elements in fault injection campaign (FIC) executing a study case
GEMM, is not going to correctly generalize the fault spatial propagation. One of
our publications has shown that spatial propagation of faults strongly depends on

12

Fault Injection

Figure 3.1: CTA allocation probabilities for GEMM with output matrix dimen-
sions(120 x 120) for Distributed Block and Global Round Robin schedulers on
Jetson AGX 32

different levels of Intra-cluster locality (ICL) associated to scheduling policies [17].
In particular, for GPU structures comprising more than one cluster and leveraging
on distributed scheduler for CTAs allocation, the observed effects of TCU faults
are localized. Furthermore, Distributed Schedulers can increase up to 6 % the
corruption effects of TCU permanent faults with respect to Round Robin Schedulers
in large GPUs such as Jetson AGX32 [17]. In order to quantitatively evaluate the
region of interest (ROI) of fault effects propagation we proposed to leverage on
CTA corruption probability (eq. 3.1) :

PCT A(Scheduler, CTAid) =
q#faults−1

id=0 Corruption(Scheduler,CT Aid)
#faults

Corruption(Scheduler, CTAid) =
I

1 : CTAid ∈ CTAallocation(Scheduler)
0 : others

CTAallocation(Scheduler) = Scheduler.allocate(FaultySM)
(3.1)

The propagation probability is calculated for each CTAid of GEMM and quan-
tifies the likelihood of a scheduler to allocates that CTA to faulty SM workload
(.allocate method). Through dividing the number of faults corrupting CTAid

by total injected faults, scheduler role in faults spatial propagation is evaluated.
Schedulers with very efficient ICL such as Distributed Block are characterized by
localized ROI (PCT A(CTAid) > 0 , see Fig. 3.1). The corruption localization
stems from the allocation procedure. In fact, distributed schedulers statically divide
spatially continue CTAs into the same pool, scheduled to a cluster. Hence only
a localized portion of the output tensor is going to be executed by the cluster
comprising faulty SM. On the other hand, Round Robin schedulers evenly dis-
tribute CTAs, corrupting a larger portion of faulty tensor. In fact, only the CTAs
statically allocated at the beginning of execution to reliable SMs have no corruption
probability (see Fig. 3.1). Aforementioned, while this patterns is only visible for

13

Fault Injection

GPU structures with more than one cluster(Jetson AGX 32, Jetson AGX 64 see
Tab. 3.1), for smaller GPUs such as Jetson Nano there is no relevant difference
between examined schedulers. Furthermore, for every scheduling policy we noticed
that in ROIs, CTAs probability of corruption is evenly distributed, precluding the
possibility of exploiting these probabilities to model Schedulers behaviour. In fact,
scheduler allocation is determined only at run time according to data request arrival
times. Therefore, the same scheduler allocation can change from GEMM to GEMM.

On the other hand, though gathered experimental results, we noticed that only
CTAs executed by faulty SM comprised elements discrepant with respect to fault
free scenario. Therefore, we propose to model faults spatial behavior leveraging on
scheduler behavioral algorithm to determine CTAs allocation. Data corruption is
performed only on CTAs elements scheduled to faulty TCU. Nevertheless, TCU
comprise multiple Dot Product Units (DPU) and, according to fault location, only
one DPU is damaged at the time. Hence, only the elements computed by faulty
DPU are going to be corrupted. According to this reasoning, we propose to leverage
on corruption probabilities to determine the CTA elements computed by faulty
DPU. As a first step, we collapsed all corrupted elements positions (x,y) into a
coordinate system bounded by tiling size (x’, y’) exploiting reminder operator (see
eq. 3.2).

x′ = x%Mx

y′ = y%Ny
(3.2)

Afterwards, we evaluated corruption probabilities P(x’,y’) for each element of
CTA (see eq. 3.3 where g and f are respectively the golden and faulty output
tensor). Through Propagate function, called recursively for all corrupted entrances
(x,y), it is possible to evaluate how often a coordinate (x’, y’) is injected. Therefore,
dividing the corruption frequency of each element by the total scheduled CTAs to
faulty TCU, a set of probability is computed to model fault behaviour.

P (x′, y′) =
q

x

q
y

P ropagate(x,y,x′,y′)
#CorruptedCT A

Propagate(x, y, x′, y′) =
I

1 : x′ == (x%Ms) ∧ y′ == (y%Ns)
0 : otherwise

∀x, y : g(x, y) /= f(x, y)
∀x′ ∈ [0, Ms),∀y′ ∈ [0, Ns)

(3.3)

As expected, independently to studied fault, the majority of coordinates (x’, y’)
are associated to null propagation probability. In general, up to two coordinates are
associated to a corruption probability of about 90% and standard deviation about
20%.

14

Fault Injection

To conclude, we proposed to determine the elements of output tensor effected
by each fault through:

i) Performing Tiling to slice output tensor in blocks Ns ×Ms

ii) Call scheduler behavioral algorithm to determine CTAs allocation

iii) Determine absolute coordinates of corrupted elements through corruption
probabilities and scheduler allocation.

The proposed spatial propagation modelling procedure is flexible with respect
to input tensors dimensions. Notably, CNNs inference is calculated through several
layers with different number of parameters. Therefore, the number of CTAs to
schedule and compute is a peculiarity of each convolution layer. Modeling spatial
propagation at CTA level device an injection methodology feasible for any CNNs.

Data Corruption

Aforementioned, the goal of this FIC is to emulate fault behaviour through bit
flip masks. This error modelling strategy, provides both a flexible procedure to
interpolate experimental results and a relatively low computation cost injection
procedure. Therefore, in order to asses and reproduce the scalar effects introduced
by every fault, bit flip probabilities have been calculated for each bit in IEEE 754
float 16 standard (see eq. 3.4).

Pb =
q

x,y
F lipped(x,y,b)q

x,y

qn

i=0 F lipped(x,y,i)

Flipped(x, y, i) = ([g(x, y)⊕ f(x, y)] ∧ 2i) >> i
∀x, y : g(x, y) /= f(x, y),∀b ∈ [0, n)

(3.4)

Flipped function receives as input a bit position (i) and a corrupted coordinate
(x,y). It compares hexadecimal representation of golden and faulty elements through
XOR operator in order to underline corrupted bits. Subsequently it inspects if input
bit (i) has been injected. Exploiting this function recursively across all injected
coordinates and bit positions, it is possible to asses which bits are more likely to be
effected by fault under examination. To leverage on bit flip probabilities to device
corruption masks, it is mandatory to design a mask generation algorithm aware of
numbers parallelism. In fact, while for integer numbers bit flip probabilities alone
can correctly replicate faults scalar effects, in floating point 16 numbers, bits are
clustered in Sign, Exponent and Mantissa. Hence additional metrics are necessary.
As expected, while critical faults have a bit flip probability distribution shifted
towards exponent bits, not observed faults have a probability distribution shifted
towards least significant bits of mantissa.

15

Fault Injection

Nevertheless, it is imperative to distinguish between exponent corruption caused
by "stuck at" faults in exponent bits with respect to exponent corruption caused by
normalization of MAC (see Ap. A.0.2) operations processing corrupted mantissas.
In fact, while in former case the fault generate huge mean absolute error, the
latter compensate the corruption of exponent through several bit flips in mantissa.
Therefore, without distinguish between these two corner cases the error introduced
by fault might be overestimated. Probability of exponent corruption (PEC) is
calculated as ratio between faulty elements with at least one bit flip in the exponent
over the total number of elements effected by the fault (see eq. 3.5). Through this
probability it is possible to easily identify the corner cases illustrated above since
while for the former PEC is high, the latter is characterized by low corruption
probability. In fact, normalization procedure strongly depends on input data.

PEC =
q

x

q
y

ExpCorruption(x,y)
#corruptedentrances

ExpCorruption(x, y) =
I

1 : ((f(x, y)⊕ g(x, y)) ∧ 0x7C00) /= 0
0 : otherwise

∀x, y : f(x, y) /= g(x, y)

(3.5)

Additional information relevant to Mask generation algorithm (see Sec. 3.2) are
extrapolated from experimental data for each fault :

• Bits that are always flipping: as the logic AND of bit flip masks of all corrupted
coordinates (see eq. 3.6)

• Average number of bit flips in Mantissa when the exponent is not corrupted
(ABfMEg)

• Average number of bit flips in the exponent (ABfE)

• Average number of bit flips in Mantissa if exponent is corrupted (ABfMEc)

I r(g(x, y)⊕ f(x, y))
∀x, y : g(x, y) /= f(x, y) (3.6)

3.2 Error Model
3.2.1 Model Generation
Exploiting all information obtained during FIC results analysis, a methodology
has been hypothesized to replicate faults behaviour through bit flip masks. The
error models (Effective Application-level Error Modeling of Permanent Faults on
AI Accelerators publication proposal) consist of bit flip masks spatially distributed

16

Fault Injection

in the output tensor. Pairs of coordinates to inject and masks to apply directly on
golden values, are associated to each fault to effectively reproduce faults effects.
The coordinates are expressed in the CTA coordinate system (see sec. 3.1.2). The
CTA coordinates are mapped back into absolute coordinates according to scheduler
allocation which in turn depends on target GPU structure. Therefore, for each
GEMM, the scheduler behavioural algorithm is called and data corruption will only
occur on elements whose computation is scheduled to faulty hardware. The masks
are generated following the flow illustrated in Fig. 3.2.

Figure 3.2: Flow Chart describing masks generation algorithm

First of all, bits that are always flipping are introduced in the mask. Then if
exponent has been already injected or the fault is characterized by high PEC the
masks is "completed" exploiting both average bit flips in exponent and average bit
flips in mantissa. Otherwise, the masks is completed only using average bit flip in
mantissa . According to averages rounded values, bits are introduced inside mask
by randomly generating their position using bit flip probabilities. The averages
are rounded up or down according to outcome from random event generator with
probabilities proportional to fractional magnitude (see Tab. 3.2).

In order to reduce simulation complexity, error models have been generated only
for Jetson AGX32 supporting Two Level Round Robin scheduler. Unfortunately,
although spatial propagation has been generalized and can be exploited to inject
any CNN, we hypothesized that masks faults replication strongly relies on data.
Therefore a refinement procedure is performed to isolate the masks able to correctly

17

Fault Injection

Algorithm 1 Error model generation and refinement algorithm.
Input:MxMfaultfree, MxMfaulty, faultIDs, Pb,PEC,ABf MEg,ABf E,ABf MEc

Output:errormodels

1: function MaskGen(Pb,PEC,ABf MEg,ABf E,ABf MEc)
2: if random(PEC) then
3: mask = random(Pb, ABf E, ABf MEc)
4: else
5: mask = random(Pb, ABf MEg)
6: end if
7: return mask
8: end function
1: errormodels = []
2: for all faultID in faultIDs do
3: MxMmask = []
4: for all element in MxMfaultfree do
5: mask =MaskGen(Pb,PEC,ABf MEg,ABf E,ABf MEc)
6: elementm = element⊕mask
7: MxMmask ← elementm

8: end for
9: MAEmask = MAE(MxMmask, MxMfaultfree)

10: MAEfaulty = MAE(MxMf aulty, MxMfaultfree)
11: if 1/Th < MAEfaulty/MAEmask < Th then
12: errormodelsrefined ← [mask, elementpos]
13: end if
14: end for
15: return errormodels

Fractional magnitude Probability Rounding Up Probability Rounding Down
< 0.2 0% 100 %
< 0.4 25% 75%
< 0.6 50 % 50 %
< 0.8 75% 25%

>= 0.8 100 % 0 %

Table 3.2: Rounding procedure of averages to complete masks

replicate faults behavior. The error models generation and refinement procedure
relies on an iterative process (see Alg. 1). As a first step, for every fault, pairs of
coordinates and masks are generated through data analysis performed on gathered
results of a first FIC. A second fault injection campaign is performed randomly
generating seed GEMM for each fault. The MAEs associated to each fault are
stored (MAEfaulty). At this stage, golden values are corrupted through bit flip

18

Fault Injection

High
error accuracy

High compression

Low
error accuracy0

2

4

6

8

0 5 10 15 20 25 30

C
om

pr
es

si
on

 F
ac

to
r (

C
F)

Threshold (Th)
Figure 3.3: Experimental relation between Clustering Threshold (Th) and Com-
pression Factor (CF) for the shape-wise error model from the 100X GEMM.

masks are their effects are evaluated (MAEmask). Through comparing different
injection methodologies effects (see Alg. 1, line 11), error models are refined to
isolate masks able to properly reproduce faults scalar effects. Verified masks are
characterized by good replication accuracy through ensuring a MAE with same
order of magnitude with respect to standard injection procedures. The verification
threshold can be tuned according to required replication accuracy (see Tab. 3.3).
According to verification threshold only a portion of the bit flip masks were able to
pass refinement stage. Nevertheless, up to 66% of faults have been modeled with
high accuracy (Th to 3). Furthermore, by increasing the verification threshold to
10, 93% of studied faults have been modeled.

Th 1 3 5 10 20
Bit-flip-masks (%) 8.96 66.37 81.25 93.0 100.0

Table 3.3: Refined bit flip masks according to verification threshold

"Unmodellable" faults injected both high and low absolute error on faulty
elements. In fact, the introduced minimum absolute error was at least two order
of magnitude lower with respect to maximum absolute error, complicating faults
behaviour replication. Refined error models are clustered in order to further improve
computation complexity required by fault injection campaign at the application
level. Error models are grouped according to faults spatial propagation and scalar
effects. In particular, faults collapsed on the same cluster are characterized by
identical spatial propagation and MAEs respecting a clustering threshold (we
imposed MAEs with same order of magnitude). The clustering threshold can be
tuned to trade-off error accuracy with compression factor (see Fig. 3.3).

Nevertheless, at this stage, seed GEMMs are still generated with fixed tensor
dimensions. We supposed that masks replication accuracy is enhanced if generated

19

Fault Injection

through fault injection campaign results obtained starting from a seed GEMMs
with shapes similar to GEMM to inject. In particular, according to GEMM size
and tiling, the number of sub-matrix multiply and accumulate operations per tile
changes. Since these operations are recursively computed by the same faulty TCU,
we supposed a strong correlation between the numeric effects of faults and the
GEMM shape. Therefore, size aware error models need to be generated for each
fault to correctly inject CNNs. Multiple FICs have been performed with different
set of input tensors (see Ap. A.0.3). For each golden value set, faults are modeled
into error models. Furthermore, error models undergo refinement and clustering
procedures.

3.2.2 Model Validation
Several test layers have been exploited to evaluate replication effectiveness of
different error models when varying GEMM tensor shapes (see Tab. 3.4).

CNN Layer Inputs Shape Mac/entrance
LeNet5 6x75x576 75

ResNet18 RB1 64x147x12544 147
ResNet18 RB2 64x576x12544 576

YoloV5 32x27x102400 27
MobileNetV2 3x3x12544 9

Table 3.4: Validation convolution layers. Shapes are expressed in AxBxC where
B is the common dimension of GEMM input tensors. RB stands for residual block.

For each validation layer, a fault injection campaign is performed using Jetson
AGX32 emulator injecting only one fault per cluster. The MAEs are calculated
for each fault for validation (see Ap. A.0.3). We propose to rely on vector cross-
correlation coefficient to evaluate replication accuracy of masks generated from
different golden values. This statistical indicator is calculated exploiting MAEs
of faults injected both through masks and classical reliability procedures. A high
level of cross correlation indicates a stronger replication of faults through a set
of bit flip masks for that particular test layer. Comparing several levels of cross
correlation associated to the same test layer underlines the set of bit flip masks
with stronger replication accuracy. Surprisingly, the supposed relationship between
replication accuracy of masks and GEMM shape has not been fully proved by
experimental data. In fact, according to set of golden values (see Ap. A.0.3)
exploited for error models generation and test layers shapes (see Tab. 3.4), masks
obtained through 100x100x100 golden GEMM should have been enhancing faults
behaviour replication for LeNet5, Yolov5, MobileNetV2 and ResNet18 Residual

20

Fault Injection

Block 1 convolutions. On the other hand, due to similar MAC operations per
entrance, masks obtained from 200x200x200 were supposed to optimize faults
behaviour recreation in ResNet18 Residual Block 2. Masks from 300x800x300
and 400x1200x400 golden GEMMs should have been characterized by low cross
correlation regardless to the test layer.

Figure 3.4: Different Levels of Cross Correlations for every test layer according
to masks generated from different set of golden values

As shown in the histogram above (see Fig. 3.4), the bit flip masks obtained
by 100x100x100 GEMM, enhanced faults numeric effect replication for every
test layer. The histogram above is characterized by clusters of bars, associated
to a test layer. Each bar in the same cluster, represents a cross correlation
associated to a particular group of error models extrapolated starting from a seed
GEMM. From left to right we have respectively error models devised through
FIC using: 100x100x100, 200x200x200, 300x800x300 and 400x1200x400 input
tensors. As expected, cross correlations between errors introduced from masks
extrapolated though 300x800x300 and 400x1200x400 GEMMs and fault injection
campaigns is relatively low for every test layer. Surprisingly, faults replication of
200x200x200 GEMM error models, is poor for almost every test layer. In fact,
this set of bit flip masks is characterized by a cross correlation larger than 50%
only when tested against MobileNetV2 convolution. To conclude, cross correlations
have been calculated only taking into consideration masks injecting a MAE with
at least two order of magnitude similarity with respect to fault injection (e.g
0.01 < MAEmask/MAEfault < 100). Otherwise, the error model is discarded,
reducing maximum reproducible fault coverage for fault injection campaign at the
application level. According to test layer, the amount of error models failing this
test was between 5-11 %. The failing rate is almost a peculiarity of validation layer
and seems to not depend on the error models seed GEMM shape (see Tab. 3.5)

To conclude, error models generated and refined from 100x100x100 seed GEMM

21

Fault Injection

Failing Rate Golden GEMM Test Layer
5.6 % 100x100x100 LeNet5
5.54 % 200x200x200 LeNet5
10.81 % 100x100x100 ResNet18 BB1
10.17 % 200x200x200 ResNet18 BB1
9.84 % 300x800x300 ResNet18 BB1

Table 3.5: Failing rate levels

FIC replicate fault behaviour with decent levels of cross correlation against all
validation layers. On the other hand, these error models are characterized by
slightly higher failing rate. Overall, their performances in terms of replication
effectiveness enabled, fault injection campaign at the application level. Therefore,for
this particular golden values set, from the 8,600 injected faults, 93.17 % has been
modelled and refined, into 1330 clusters (error models). Testing obtained error
models against LeNet5 validation layer , 91% of studied faults are also reproducible
through masks with decent level of emulation robustness against input tensor
dimensions. This enabled the possibility to perform a fault injection campaign
at the application level with a fault coverage comprising 7905 faults. On the
other hand, we strongly underline that results obtained in following chapters are
characterized by uncertainty.

22

Chapter 4

Fault Detection

4.1 The Problem

Fault injection campaign at the application level relying on an accurate description
(gate level) of underling hardware require sensitive time. For example, 10,000 days
are necessary to inject only 1,000 faults in LeNet5 simulated with the FlexGripPlus
GPU model[18]. Furthermore, the simulation complexity remains a substantial issue
regardless to the hardware description level. In fact, about 4 days are necessary
for SFI campaign on LeNet5 corrupting one inference per fault through high-level
description of Jetson AGX32. Currently, Fault Injection (FI) campaigns are often
conducted at the application level, to assess the resilience of DNNs with respect to
hardware defects, through corrupting the synapses (i.e., random bit-flips on the
weights) or the neurons (i.e., random bit-flips on the feature maps) [13]. However,
such FI approaches are hardware-agnostic, meaning that they do not take into
account the underlying hardware. Any proposed detection technique based on
the CNN response either does no consider permanent faults [12] or are hardware-
agnostic [13]. Furthermore, none of the available detection procedures are both
suitable for in-field utilization and application-aware. For example, SBST devised
for TCU [3], despite providing outstanding fault coverage, is application-agnostic,
meaning does not consider the application behavior for detection but only rely on
the target hardware structure. Such approach is hardware-specific and not flexible
w.r.t. design modifications required by new generation platforms. In addition,
being application-agnostic, it requires to block the application itself to conduct
reliability analysis, degrading performances. Furthermore, a specific SBST needs
to be designed for each computational unit, increasing integrity check analysis time
for complex hardware platforms. In this work we propose an application-aware
fault detection technique able to provide good fault coverage without reducing
application performances. We propose to monitor the application behavior and

23

Fault Detection

associate unexpected responses to damages in the underlying hardware. Leveraging
on the application misbehavior, a flexible detection procedure can be devised able
to monitor multiple hardware resources (i.e, planar data processor, TCU) in parallel.
Nevertheless, in order to evaluate the proposed fault detection procedure, it is
mandatory to monitor the application response both when varying the inputs and
the faults. For example, in computer vision tasks, leveraging on CNNs, the behavior
of hidden layer neurons strongly depends on the input video. This huge injection
space requires sensitive simulation time and clever investigation techniques. In
this regard, through Error Modeling we proposed an alternative hardware-aware
injection methodology that despite losing accuracy w.r.t. traditional FI procedures,
speeds up execution by 225X. In fact, while about 8h are required to conduct a SFI
campaign with 100x100x100 seed GEMM through pyOpenTCU, error models can
be injected in 2,26 min. Therefore, few days long simulations compute multiple
inferences (about 250) of LeNet5 for each studied fault. This enabled the possi-
bility to explore with a decent level of freedom the injection space and propose
reliable software-based detection methodologies that can trace back the cause (i.e.
application performances degradation) to the effect (i.e. error model). Therefore,
the utilization of SBST can be limited to either booting procedures or unexpected
application behavior, improving application performances. Followig our approach,
safety standard protocols can be respected without drastically reducing application
performances.

The results of this chapter have been obtain injecting Jetson AGX 32 error models.
In particular, the masks are generated and refined starting from a 120x120x120 seed
GEMM (14,400 MAC per entrance). Furthermore, a cross correlation coefficient
of 75% has been achieved w.r.t. classical injection methodologies while validating
against LeNet5 convolution layers.

4.2 Binary Decision Tree as a Fault Detector
Error models enabled fault injection emulation at DNN level. Several inferences
can be computed and corrupted to determine which faults of TCU if activated can
generate failure at the application level. As a study case, we focused our effort
on designing software based detection technique to identify with high accuracy
the faults degrading LeNet5 performance in terms of classification accuracy loss.
Leveraging on PyTorch libraries, it has been possible to customize convolution
and fully connected layers. In fact, exploiting imm2col algorithm, input tensors
are reshaped, multiplied, corrupted and reconstructed. According to scheduler
allocation, hidden layers neurons are injected with error models. A binary classifier
provide versatile algorithm able to generate decent level of detection accuracy

24

Fault Detection

with moderate computation cost. These characteristics made it a very suitable
candidate for detection since its execution can be performed in parallel with appli-
cation without increasing drastically computation latency. Nevertheless, a data set
generation methodology is mandatory to train it. We propose to exploit statistical
information about DNN hidden layers activations to establish weather or not the
application is being executed by faulty hardware (F/NF). In particular, according
to classification output, several information about the layer under examination
(l) have been extracted such as sum of activations, number of weak activations,
maximum activation position and value and more (see Tab. 4.1). These information
have been collected across several inferences (250 for each error model) both in
fault free scenarios and injecting error models.

Weak Sum Std PSNR Max MaxPos(A) Class(o) F/NF
al < 0.05 q

al σ(al) (see eq.4.1) max(al) c,w,h [0,10) 1/0

Table 4.1: Fault detector data set features. The leftmost features are exploited
by binary decision tree to generate F/NF as a prediction that is compared against
the corresponding value in dataset to estimate detection accuracy.

MAo(c, w, h) = qN
i=0 al(c, w, h)/N

∀o ∈MNISTclass

PSNR(Al, MA, o) = −10 log10(
qC,W,H

c,w,h
(Al(c,w,h)−MAo(c,w,h))2)

C∗W ∗H
)

(4.1)

The peak signal to noise ratio (PSNR) feature has been calculated between
hidden layers activations (Al) and "mean activation" tensor (MA). For each possible
classification output (o), a MA is computed running N fault free inferences and
calculating the average activation of each neuron across them (see eq. 4.1). During
data set features calculation, according to predicted output, eventually different
to CNN fault free classification, PSNR is calculated to quantify distortion with
respect to DNN average behavior [19]. During in filed utilization, the presented
detection methodology will generate a prediction with a computation complexity of
O(C ×W ×H). In fact, assuming single image batches, and a system with enough
memory to store all mean activation tensors, the features required for prediction
can be computed in parallel. Nevertheless, in order to find optimal position in
DNN in terms of detection accuracy, for each hidden layer a new data set must
be generated increasing simulation time consistently especially for deep CNNs.
In addition to features listed in Tab. 4.1, each vector of data set is associated
to the error model injected while computing it to trace back the effect to the
cause. The fault free inferences have been associated to an error model wit empty
bit flip masks. Subsequently, error models have been clustered, using K-means

25

Fault Detection

unsupervised learning algorithm, according to application performances degradation.
Application degradation has been measured through classification accuracy loss, as
the discrepancy between LeNet5 fault free classification accuracy and classification
precision while injecting the errors. The overall idea is to partition the data
set according to faults criticality at application level. Nevertheless, the majority
of faults in fault coverage (∼ 90%) tend to introduce low to none classification
accuracy loss (< 5%, see Fig. 4.1)

Figure 4.1: Detection accuracy of fault detector across different error models
clustered according to classification accuracy loss

Nevertheless, as illustrate in Fig. 4.1, the binary decision tree, trained through
a data set comprising only features of application critical faults, have a detection
accuracy larger than 80%. The detection accuracy is obtained locating the binary
classifier at output of second convolution layer of LeNet5. In addition, consider-
ing masked faults [12], [20] contribution in training data set, decreases detection
accuracy down to 54%. In fact, faults injecting low mean absolute error, tend to
have neurons activation statistics very similar to fault free scenario. Although
always balancing training data set between fault free and faulty scenarios, when
considering also masked faults in detection, number of false positive increased
drastically during validation. In fact, although overall detection accuracy is about

26

Fault Detection

54%, the binary classifier was able to identify 78% of fault coverage. Therefore, a
low level of classification precision is caused by a large number of false positives.

Figure 4.2: Detection Accuracy of Fault Detector across different layers of LeNet5

Repeating the presented detection methodology across 3 different layers of
LeNet5 provided us the optimal position for the binary classifier in terms of de-
tection accuracy (see Fig. 4.2). In fact, the activations at the output of second
convolution layer seems to enhance detection accuracy with respect to other layers
neurons. This suggested that positioning the classifier deep in CNNs improves
classification outcome. Therefore, neurons activation discrepancy with respect
to fault free inferences is proportional to number of faulty convolutions. In fact,
convolution layers are recursively computed by same faulty GPU, hence at each
iteration new neurons will be injected and already corrupted neurons will propa-
gate, generating an avalanche effect. Nevertheless, pooling layers reduces tensor
dimensions, decreasing the number of exploitable neurons for detection. Therefore,
locating fault detector too close to fully connected layers reduces its detection
performances.

27

Fault Detection

Entropy-based triggering procedure has been hypothesized to enable fault de-
tection. Through training a triggering threshold when classification was uncertain,
application performances can be further boosted by calling detection procedures
only when strictly necessary. This methodology has been already exploited in
Deep-One Classifiers [21]. According to their work, it was possible to train a CNN
to map an input image into a n-th dimensional circle. If an input image was
mapped inside that circle it meant that DNN was trained with similar images,
otherwise the input was an anomaly. Furthermore, they suggest to trigger this
classifier every single time in-field application output was not certain (classification
entropy). Nevertheless, we obtained a very optimized classification entropy (always
0.0) both during fault free inferences and injecting our error models. In fact, data
set simplicity (MNIST) and very high fault free accuracy (∼ 99%) might have
caused certain misclassifications. Therefore, it is has not been possible in our
study case to exploit Entropy of neurons at SoftMax layer output to trigger fault
detection. On the other hand, we propose to exploit a polling methodology to
periodically trigger fault detector to ensure hardware integrity.

28

Chapter 5

Hardening Techniques

5.0.1 Motivation
Although faults can compromise application performances, suitable countermea-
sures have been already proposed to avoid catastrophic consequences for in field
applications [22]. Some hardware-software solutions have been implemented to
guarantee tasks execution despite faults [23]. Nevertheless, the majority of fault
protection procedures still strongly rely on modification of hardware description
and are application-agnostic (i.e triple modular redundancy [24]). Software-based
solutions always proved to be the most preferred approach from companies to ensure
reliability. In this chapter we propose an application-aware hardening solution
based on pooling layers computation. The proposed solution is suitable to mitigate
faults in TCU executing DNN applications. Nevertheless, despite being a software-
based solution, its computation is not optimized through specialized libraries or
hardware accelerator in current GPU versions.The proposed solution, although
improving resilience of applications executed by damaged TCUs, it can reduce
GPU performances. Therefore, we devised a customized version of an accelerator
already embedded in multiple GPU devices, able to support the proposed layer
computation with identical latency of traditional pooling layers.

5.1 Pooling Techniques for Hardening LENET5
Execution by NVIDIA GeForce GTX 1500
Ti

The idea behind this experiment set up is to study the overall distortion introduced
by hardware faults in Tensor core units, while propagating their effect through
different layers. While TCUs oversee the execution of dot products in convolutions,
activation layers and pooling layers are calculated by different hardware resources

29

Hardening Techniques

in GPUs (i.e, planar data processor), hence they could be exploited to mitigate
errors.

5.1.1 Experiment Set Up
CNN Structure

In order to obtain reliable numeric results, the golden values of convolution have
been generated starting from inputs and weights feeding the first convolution layer
of LetNet5 when an image from MNIST data set classified as numeric 0 is processed.
Nevertheless, after convolution layer computation is completed, ReLu activation
has been replaced by a Normalization Layer and a Tanh activation. This network
design was able to calculate mean square errors necessary to obtain Peak Signal to
Noise Ratio (PSNR) even when faults were corrupting tensor elements to float16
infinite (or nan) leveraging on Tanh layer. Furthermore, a by channel normalization
layer was crucial due to gradient vanishing problems introduced by hyperbolic
tangent. Therefore, a matrix multiplication of T1 (size 6 x 25) by T2 (size 25
x 784) is calculated to perform Convolution, the output tensor is reconstructed
T3(6 x 28 x 28), a by channel normalization is performed(T4), followed by tanh
activation(T5) and a pooling layer (T6). The channel normalization shrinks data
in the range between 0 and 1 (see eq. 5.1)

I
To[c, w, h] = (Ti[c, w, h]−min(Tg[c, :, :]))÷ (max(Tg[c, :, :])−min(Tg[c, :, :]))
∀c, w, h ∈ Ti

(5.1)
Minimum and maximum values required for normalization in each channel (c),

are selected from golden values. Three different pooling layers are fed by same
tensor produced after activation layer and PSNR is calculated w.r.t fault free
scenario to study which between Average, Max and Median pooling was generating
lowest distortion.

GPU Architecture

The GPU simulator has been configured to perform reliability study over NVIDIA
GeForce GTX 1500 Ti platform. The studied GPU structure comprises 2 clusters
each containing 5 Streaming multiprocessors (SM), each handling 2 CTA in the
buffer during scheduling. In order to provide an initial estimation of which pooling
layer compensates TCU permanent faults effects, classical fault injection campaign
has been conducted leveraging on pyOpenTCU. In fact, due to limited number
of CTAs in LeNet5 convolution and propagating faults through few CNN layers,
the simulation time required by classical fault injection campaign was lower than

30

Hardening Techniques

Figure 5.1: TCU faults propagation across different layers

few days. Furthermore, only application critical faults have been injected during
this evaluation to further mitigate computation complexity (about 10% of studied
faults of previous Chapters).

5.1.2 Pooling Size = 2
The tensor generated by faulty convolution propagates in the network described
previously and feeds different pooling layers, respectively Median Average and Max,
with kernel size and stride equal to 2 and no zero padding. Peak signal to noise
ratio is calculated against golden values to measure distortion with respect to fault
free scenario. When the pooling filters were mitigating fault effect completely, the
PSNR was saturated to 150 dB for the sake of representation.

Cutting the graphs (Fig. 5.2) vertically 3 intersections (counting intersecting
with x-axis) are generated, representing values of measured distortion at output
of pooling layers while propagating the same fault. The PSNRs have been sorted
according to distortion introduced by Max Pooling by hypothesizing a lower
resilience with respect to other studied pooling algorithms. Independently with
respect to scheduling policy, it can be established that the Median filter mitigates
better the effect of permanent faults with respect to Average and Max pooling layers.
The stronger numeric stability is indicated by a lower level of distortion with respect
to fault free scenario measured through an higher PSNR with respect to Average
Pooling. Furthermore, sometimes Median Pooling removes the effect of the fault
completely, as shown by pikes to 150 db. According to studied scheduling polices,
Median Pooling provides better performances with respect to Average Pooling in

31

Hardening Techniques

Figure 5.2: Peak Signal to Noise Ratios for each Pooling technique with GEMM
performed with different schedulers

the range between 65 % to 70 % of injected faults (Tab. 5.1). Furthermore, data
suggests that Greedy scheduling policy provides better performances in term of
reliability with respect to other policies.

SCHEDULING POLICY MED VS AVG AVERGE PSNR MED (dB)
Two-Level-Round Robin 67.85 % 57.70166764680866

Global Round Robin 67.85 % 57.70166764680866
Greedy 71.3 % 60.5917261645620

Distributed CTA 68.95 % 59.540405686236554
Distributed Block 66.6 % 59.42639558354495

Table 5.1: Evaluating Med Pooling performances against Avg Pooling for each
fault, pooling size = 2

32

Hardening Techniques

Greedy, exploited together with Median Pooling might be the best solution in
order to amortize faults effect when pooling size is small. In fact due to decent
ICL, this scheduling policy is characterized by the best balance between number of
pooling filters comprising at least one faulty element and number of filters having
more.

5.1.3 Pooling Size = 3
Data seems to suggest that increasing kernel size improves the performance of
Median algorithm. In fact, by increasing the number of activation feeding the
filter, the probability of compromising the median value is lower. Furthermore,
Distributed CTA and Distributed block now have a better average distortion than
Greedy. Global Round Robin and Two-Level Round Robin seem to have worst
performances with respect to remaining scheduling policies regardless to pooling
size.

SCHEDULING POLICY MED VS AVG AVERGE PSNR MED (dB)
Two-Level-Round Robin 71.45 % 65.60639909447866

Global Round Robin 71.45 % 65.60639909447866
Greedy 77.85 % 70.86309969900103

Distributed CTA 78.4 % 73.42546600567651
Distributed Block 72.21 % 72.2155914689443

Table 5.2: Evaluating Med Pooling performances against Avg Pooling for each
fault pooling size = 3

5.2 LeNet5 Injected Though Error Models
Although providing an initial evaluation of resilience with respect to TCU permanent
faults of several pooling filters, the results illustrated in section above must be
supported by data obtained from a fault injection campaign at the application level.
Nevertheless, to mitigate simulation time, faults have been injected though error
models instead of TCU emulator. Therefore, the data illustrated in this section
are subjected to uncertainty introduced by the injection model. In particular,
exploiting the bit flip masks, generated through multiple fault injection campaigns
performed using Jetson AGX 32 emulator, several LeNet5 CNNs performances have
been evaluated while corrupting hidden layers neurons. In fact, three customized
CNNs have been studied, each exploiting a different filter in pooling layers (e.g.
Avg, Max, Med). The models have been trained using MNIST images though 12

33

Hardening Techniques

epochs. Fault free classification accuracy has been measured for each one of trained
CNN exploiting a validation data set (see Tab. 5.3).

F/NF AVG LeNet5 Max LeNet5 Median LeNet5
Fault Free 97.8 % 98.6 % 97.7 %

Faulty 82.88 % 83.48 % 95.99 %

Table 5.3: Filters performances

Although the CNNs are characterized by similar fault free detection accuracy,
the performances change drastically when injecting error models. In fact, for
each inference of validation data set, an error model, associated to a group of
permanent faults, has been injected. Comparing the faulty predictons against image
labels, a new classification accuracy has been measured. Classification accuracy
of CNN trained exploiting median filters seems almost unchanged during fault
injection campaign. Therefore, its numeric stability and resilience can be firmly
established. Nevertheless, median filters require a sorting algorithm whose compu-
tation complexity (O(nlog(n)) is larger than average and max filters. Therefore,
in order to implement on silicon this sophisticated filter, the kernel sizes must be
bounded (at the most 3x3). To conclude as a future reference, for applications
exploiting pooling layers with filters size larger than 3x3, we suggest to implement a
MIN/MAX filtering procedure. Median pooling algorithm numeric stability stems
form a pooling procedure that propagates only one neuron for each kernel. Having
the loss function dependent only on one activation for each pooling kernel and
avoiding selecting maximum value, ensures strong numeric stability . Therefore,
performing min operations between neurons on the same row of pooling filter and
subsequently finding the maximum across the obtained minimums, will ensure the
stability condition mentioned previously. Nevertheless, the numeric stability of
such filtering algorithm has not been evaluated rigorously in this work but only
hypothesized.

5.3 MEDIANVDLA
Pooling layers are executed by the Planar Data Processor (PDP) in NVDLA SoC
through at most 2 pipeline stages. In fact, while fusion mode only requires one
stage (PDP), in independent mode an additional pipeline stage (PDP RDMA) is
necessary to write DRAM. Through CSB interface an external CPU can modify the
embedded address spaces of PDP unit. According to the content of the POINTER
register, the write operations from CPU are converged either to consumer or
producer address space. By default, CSB inputs modify consumer address space.
Once the operation is enabled, consumer address space configuration drives control

34

Hardening Techniques

signals in PDP core data path. Simultaneously, POINTER register is modified
by hardware to converge CSB signals to producer address space. Therefore, the
external CPU can start configuring next operation control signals without waiting
for past operations to ultimate, hence optimizing configuration latency. Once
the CPU completes the write operations required by future layer execution, a
polling strategy is exploited to monitor the status register. As soon as the data
path completes the execution of a pooling layer, the status register is updated
and if additional operations have been scheduled, consumer and producer address
spaces are interchanged. The implemented configuration protocol can be referred
as ping-pong synchronization.

5.3.1 Address Space
In this section the address space of PDP is illustrated as well as the modifications
required to implement median pooling.

Figure 5.3: Address space of PDP

35

Hardening Techniques

D_OPERATION_MODE_CFG 0xD024

• Pooling Method[1 : 0] :

i) "00" : Avg pooling
ii) "01" : Max pooling
iii) "10" : Min pooling
iv) "11" : Med pooling

• Unused[3 : 2] : zero hardwired

• fling mode[4]

• Unused[8 : 6] : zero hardwired

• Split Num[16 : 9]

• Unused [31 : 17] : zero hardwired

Pooling Method bits can now support a new configuration ("11") to compute
Median Pooling. Through the introduced configuration, the output of median pool-
ing core can propagate either to DBBIF interface in independent layer computation
or to next pipeline stage in fusion mode.

D_POOLING_KERN_CFG 0xD034

• Kernel width [3 : 0]

• Unused bits [7 : 4]

• Kernel height [11 : 8]

• Unused bits [15 : 12]

• Kernel stride in width direction [19 : 16]

• Kernel stride in height direction [23 : 20]

The bits of this control register are used to configure the pooling kernel shape and
strides. The maximum kernel dimension are bounded by data path bus parallelism
(more in Sec. 5.3.2). Median pooling supports square kernel shapes not larger than
3x3.

36

Hardening Techniques

D_POOLING_PADDING_CFG 0XD040

• Left Padding [2 : 0]

• Unused [3]

• Top Padding [6 : 4]

• Unused [7]

• Right Padding [10 : 8]

• Unused [11]

• Bottom Padding [14 : 12]

• Unused[31 : 15]

D_DATA_FORMAT 0xD084

• Data Precision [1 : 0]:

i) "00" : INT8
ii) "01" : INT16
iii) "10" : FP16

• Unused [31 : 2] : Zero hardwired

OTHER REGISTERS

• D_OP_ENABLE : this register is exploited to trigger execution with current
address space configuration

• S_POINTER : select which group of register is accessed by CSB Master

• D_DATA_CUBE_IN_WIDTH : input tensor width -1

• D_DATA_CUBE_IN_HEIGHT : input tensor height -1

• D_DATA_CUBE_IN_CHANNEL : number of channels of input tensor -1

• D_DATA_CUBE_OUT_HEIGHT : output tensor height -1

• D_DATA_CUBE_OUT_WIDTH : output tensor width -1

For additional information about the PDP address space or NVDLA address space
in general please refer to hardware manual in their official web site :
http : //nvdla.org/hw/v1/hwarch.html#pdp.

37

Hardening Techniques

5.3.2 Planar Data Processor Data Path
Through strobes, it has been possible to reverse engineer the data flow of Planar
data processor exploiting the scripts provided in verif/traces/traceplayer directory.
Behavioral simulations leverage on Verilator tool to translate Verilog RTL descrip-
tion of the core into C++ code. The Data Flow Graphs (DFGs) of max pooling are
reconstructed for two kernel configurations (see Fig. 5.4). Additional simulations
have been conducted to analyse data flow behavior against input data parallelism
(INT8/INT16). The operators of DFGs are executed in two different sub-cores :
PDP core cal1d and cal2d. Operations between neurons in same rows are executed
in cal1d unit and outcome is fed to cal2d unit through a series of FIFOs.

Figure 5.4: DFGs for several kernel configurations (2x2,3x3) and different data
formats. Leftmost DFG represents the data flow for 2x2 kernel exploiting INT8
parallelism. On the right, the DGF for 3x3 kernel with INT16

As shown in DFGs, while connections in cal1d unit are on 22 bits, sign extension
increases the parallelism up to 28 bits in cal2d unit. This design decision handles
overflow during average pooling execution with INT16 parallelism. Interestingly,
when configuring data parallelism to INT8 (see Fig. 5.4 leftmost DFG), the
operators handle two data in each edge of DFG. In fact, through concatenating two
INT8 in the same 22 bits bus, throughput is improved by doubling data processed
per clock cycle. To conclude, sporadically, some operations against null operands
are executed to clear/fill buffers.

5.3.3 Median Core
In order to exploit identical synchronization of control signals in pdp data path, the
median core unit has been designed as a fully combinational circuit. Unfortunately,
although performing partial sorting of neurons at each operator, all inputs must

38

Hardening Techniques

propagate from cal1d to cal2d unit. In fact, the operators need to determine the
sorting position of more than 50% of the inputs before dropping any neurons. In
this regard, operators in call1d unit mainly execute sorting and concatenation of
neurons. On the other hand, concatenation strongly depends on the architecture
parallelism and number parallelism. Therefore, the utilization of median core is
limited and does not have the same configuration flexibility of Max/Avg pooling.
Without changing drastically the data path of pdp, it has been possible to guarantee
correct execution of median pooling layers with square kernel size not larger than
3x3 and data precision up to INT8. This design constrain strongly depends on
cal1d and cal2d parallelism (respectively 22 and 28 bits). In addition, Median core
operators cannot support multiple data per edge as Max core when parallelism
is low (INT8). Therefore, although configuring the parallelism to INT16 in the
address space, data are expressed on 8 bits, lowering throughput.

Kernel 2x2

When configuring kernel shape to square 2x2 filter, operators in call1d unit perform:

i) MSBs drop: since input data are on 16 bits but information is only coded on
8 bits, the sign bits are dropped

ii) Sorting: signed comparison to perform partial sorting. Data are partially
sorted in order to reduce on chip area and improve hardware reusability.

iii) Packing: sorted data are packed into 16 bits. Concatenation is performed
taking into consideration sorting output. Hence devising a packing unpacking
procedure that propagates neurons order without additional sequential logic.
For example, when activation a1 is bigger then activation a2, a1 is packed in
the least significant bits (i.e, 7 downto 0) and a2 in the most significant bits
(15 downto 8).

Results from call1d sub-core are propagated to call2d in order to extrapolate
median points through:

i) Unpacking: at the input of call2d operator, 4 INT8 neurons are fed through 2
packets of 16 bits.

ii) Median point computation: the median value is obtained through a series of
comparisons of presorted inputs to determine the penultimate neuron (Median
point). In details, the larger neurons computed by cal1d unit are compared
to obtain the minimum between them. In addition, the maximum over the
presorted minimums is computed. Finally, the median value is obtained as
the minimum of the results of previous comparisons. Therefore with a critical
path of two INT8 comparators, the median point is extrapolated.

39

Hardening Techniques

Due to 22 bits parallelism, INT16 and FP16 parallelism are not handled. In
fact, concatenation would have required 32 bits busses.

Kernel 3x3

The maximum handled filter size is imposed by bus parallelism. In fact, for this
particular configuration, up to three INT8 neurons must be encoded on 22 bits
in the call1d unit. Therefore in order to support median sorting algorithm with
up to 9 neurons per kernel, a lossless compression methodology has been designed
to pack the inputs of call1d sub-unit and communicate them to call2d core. The
devised lossless compression technique exploits the sorted position of neurons to
encode MSBs in a more compacted form. Two operators are executed in cal1d for
this particular kernel configuration. While the first operator can simply perform
sorting/concatenation (as explained in Sec. 5.3.3), the second has to perform
compression through:

i) Unpacking and MSBs drop: through flag bits (bits 21 downto 16) written while
packing data in the previous operator, the design is able to recognize which
between the inputs comprises two neurons without leveraging on sequential
circuitry. The bus comprising two data is unpacked. At the same time MSBs
of the other bus are dropped.

ii) Sorting: the 3 INT8 numbers are sorted.

iii) LSBs Packing: the 5 least significant bits of each neuron are packed according
to partially sorted order.

iv) MSBs Compression: the Most significant bits (3 bits for each activation for a
total of 9) are fed to a LUT that encodes them on 7 bits (see Fig. 5.5).

The idea behind this compression is to exploit the packed order of least signifi-
cant bits to pay as a compression cost the order of MSBs. While decoding, the
shuffled MSBs are re-associated to their suffixes to reconstruct INT8 data with
the same sorting order of packed LSBs. Therefore, since MSBs order is irrelevant
for data reconstruction, equivalent permutations can be collapsed on the same
representation (code). During decoding, the code is used as a key to access the
Compression LUT to obtain back shuffled MSBs. Through dropping equivalent
permutations of the same MSBs (see example in Sec. A.0.4) , it has been possible to
compress 9 bits to 7 respecting bus parallelism without losing valuable information.
Through a python simulation, all possible combinations of 3 signed INT8 are fed
to a behavioral description of the proposed compression methodology and losless
has been ensured.

40

Hardening Techniques

Figure 5.5: Data packing at the end of second level of operations in Median3x3
DFGs

The 22 bits packets of 3 INT8 numbers are fed to cal2d unit that through
2 operators (latest executed operators in Max pooling DFG for 3x3 kernel configu-
ration) extrapolates median point. Firstly two packets, each comprising 3 neurons
are fed to a operator that:

i) Unpack & Reconstruct : for each input bus, unpacks the least significant
bits and codes. Access the LUT through codes to decode MSBs. Associates
shuffled MSBs to their relative LSBs in order to reconstruct neurons with
same sorting order of packed least significant bits.

ii) Partial Sorting: through a comparison based, binary decision tree, 6 neurons,
pre-sorted in groups of 3, are ordered with an overall latency of 1 INT8
comparison

iii) Extremes Dropping: the lower activation and biggest activation can be dropped
at this stage since they are not going to be the median point. In fact, at this
stage about 66% of the inputs have been sorted and data can be dropped.

iv) Compression and Packing: 4 INT8 neurons must be packed on 28 bits bus.
Furthermore, requiring at least one bit as a flag to recognize the number of
neurons comprised in the bus, the overall data need to be represented using
27 bits. The 4 LSBs of each neuron are packed and the MSBs are fed to a
second LUT that compresses 16 bits into 12. Nevertheless, 12 bits code and 16
bits packed LSBs and 1 flag bit end up exceeding the output bus parallelism.
Therefore, the lowest activation is rounded to the nearest even in order to
save one bit, generating a potential loss. Nevertheless, this design decision
stems from the huge LUT size required to encode MSBs 5 bits wide to enhance
compression performances.

If one among the inputs has an active flag, the following operator is executed to
obtain median value:

i) Unpacking & Decoding: both busses are unpacked and codes are exploited to
access LUTs to decode 4 and 3 neurons respectively

41

Hardening Techniques

ii) Median tree : through an additional comparator based binary decision tree,
median value is computed with a latency of 1 INT8 comparison

iii) Sign extension: since the data format is imposed on INT16 parallelism, the
sign of median value is extended

5.3.4 Functional Simulations
All code is open source and available on GitHub at:

https://github.com/fpessia/MEDIANVDLA/tree/main

Exploiting Verilator to convert RTL description of NVDLA SoC, designed
through verilog, into C++ code, behavioural simulations are performed to ensure
correct functionality. First of all, short stand alone tests have been performed both
on call1d and call2d modifications (Median core itself). Through terminal interface
("$display"), it has been possible to monitor I/O of median core. Two stand alone
tests ensure correct functionality of DFGs executed both in 2x2 (verif/traces/tra-
ceplayer/pdp_med2x2_pooling_int_8/Tb_Kernel2) and 3x3 kernel configuration
(verif/traces/traceplayer/pdp_med3x3_int8/Tb_Kernel3). Subsequently the ME-
DIANVDLA SoC undergoes a full functional test executing a Median Pooling Layer
with fictitious input tensor. Exploiting a Python script (LayerIOgeneration.py) a
random input tensor is generated and fed to a Median Filter. The golden values
are stored in binary files (input_feature_map.dat & output_feature_map.dat) with
memories organized in Little Endianess and Surface Packed. Through Perl scripts,
NVDIA engineers provided a simple text based programming language to drive
CSB and DBB interface during C++ simulations. Therefore, through so called
traces, the address space can be modified as well as DRAM content.

1 #!/ bin/bash
2

3 # Cloning GitHub repo
4 git clone git@github .com: fpessia / MEDIANVDLA .git
5 # running configuration tree script
6 cd MEDIANVDLA
7 make
8 # Computing golden values
9 cd verif/ traces / traceplayer / pdp_med2x2_pooling_int8

10 python LayerIOgeneration .py
11 # Compiling Soc with Verilator V5 .019
12 # configured from source code (Ubuntu 20.04)
13 cd ../../../../
14 ./ tools/bin/tmake -build verilator
15 # Running simulation script 2x2 kernel conf
16 cd verif/ verilator

42

Hardening Techniques

17 make run TEST= pdp_med2x2_pooling_int8
18 #or 3x3
19 #make run TEST= pdp_med3x3_int8

Listing 5.1: Bash script for 2x2 or 3x3 median functional tes

A trace (./pdp_med2x2_pooling_int8/input.txt) has been programmed to drive
control signals to execute a Median Pooling layer with following parameters:

i) I : 64x8x8

ii) K : 2x2

iii) Stride : 1x1

iv) O : 64x7x7
In order to run this functional test, all bash commands listed above (see Lising 4.1)
must be executed. Furthermore, by simply changing pdp_med2x2_pooling_int8
into pdp_med3x3_int8 in all of its occurrences it is possible to run a test with the
following layer parameters:

i) I : 64x8x8

ii) K : 3x3

iii) Stride : 1x1

iv) O : 64x6x6
The random neurons of input tensor are all even integers for 3x3 kernel configuration,
in order to perform an error free simulation. Nevertheless, when also taking into
consideration odd numbers a small error up to one unit can be introduced.

Core Limitations

As already mentioned in previous subsections, the main drawback of MEDIANVDLA
design is limited configurability. Nevertheless, while configuring kernel size larger
than those handled, the execution doesn’t crash but performs MIN/MAX filtering
(mentioned in Sec. 5.2). The same strategy has been adopted when dealing with a
parallelism different than INT16 (e.g. FP16). An additional limitation is caused by
buffer filling/cleaning. In fact, although comparison against null operators doesn’t
effect computation of MAX pooling layers, for what concerns MIN and MEDIAN
pooling this dataflow can corrupt some neurons. A zero discard mechanism is
implemented in MEDIAN core to neglect null operands. Nevertheless, being unable
to distinguish between null operands and zero activations, this version of the core
doesn’t support zero padding. Furthermore, zero activations must be represented
in the following format 0xFF00 in order to not being discarded by the core.

43

Chapter 6

Conclusion

This work explored and analysed the criticality of hardware faults for applications
relying on matrix multiplications such as CNNs. Through modeling TCU permanent
faults behavior in errors we propose a different approach to perform fault injection at
the application level targeting massive architectures. Relying on classical injection
procedures, faults have been modelled through a scalar and spatial characterization.
In order to produce hardware-aware errors, multiple fault injection campaigns have
been exploited for feature extraction. Unfortunately, experimental data suggest
that an universal representation of TCU permanent faults through bit flip masks is
not obtainable. In fact, errors magnitude depends both on fault location (hardware)
and GEMM size (application). In this regard, size-aware errors have been modelled.
Our approach has shown good reproduction capabilities (up to 92% correlation)
optimizing drastically simulation complexity (225× injection time gain). We firmly
believe that our is one of the first steps towards a different approach in the field
of reliability analysis. Although Moore’s slow is slightly slowing down, System on
Chips will surely comprise an increasing number of components due to parallelization
in the future. Classical fault injection will slowly became obsolete to asses the effects
of hardware faults in applications. With our contributions to the field we hope to
have clarified the criticality of new procedures to map/extrapolate faults features
into errors. In our work we propose to leverage bit flip masks, but alternatives
need to be considered. For example, saturation masks (OR masks, AND masks,
or a combination of both) can be exploited to model those faults that have been
labelled as "unmodellable" in our approach (about 8% of strudied faults for seed
GEMM 100x100x100). In addition, we point out the necessity to support Median
Pooling in modern SoCs. CNNs trained through this pooling algorithm have shown
outstanding application stability. For LeNet5 trained through Median filters, the
classification accuracy loss is marginal (about 2%) with respect to performance
degradation of LeNet5 trained with Avg and Max pooling (more than 20%). Our
version of NVDLA is not meant to be a final product but a first step towards more

44

Conclusion

sophisticated designs supporting this keen operation for safety critical applications.
Machine Learning is growing in popularity in our every day life and we would be
unconscious to neglect safety.

45

Appendix A

Additional Informations

A.0.1 Queue

The Queue is a Python class of multiprocessing module. This class provides
an interface for different process data sharing. In fact, for each issued process, a
different address space is allocated. Although variables are characterized by identical
names of father process, their content is associated to a different memory location
in child process. Therefore, data sharing is either performed through files, global
variables (not suggested by literature, requires locks) or FIFOs (Queue). In the
fault injection campaign, a process, running Validator module, waits until data are
pushed into the FIFO and extracts them for processing. On the other hand, Injector
module, pushes data into the FIFO as soon as it completes GEMM. Through this
paradigm it is possible to enhance computation performances, exploiting multiple
CPUs during FIC.

A.0.2 MAC Normalization

MAC (Multiply & accumulate) operations are executed though a multiplication
and a sum between 3 floating point numbers. In fact, two inputs (from now
on A and B) are multiplied and the result is summed with an accumulator (C).
Normalization can either occur during multiplication or addition. In particular,
in order to support overflow for FP16 multiplications, 20 bits are allocated to
store the multiplication between 10 bits mantissas. Normalization is performed in
order to represent mantissa multiplication result on 10 bits, updating the exponent
accordingly. Furthermore, normalization process can occur also during floating
point sum in order to obtain two operands with identical exponent to perform
mantissa addition. Nevertheless, while the former normalization can propagate
faults in mantissa into corrupting the exponent, the latter does not.

46

Additional Informations

A.0.3 Error Models Golden Values
Bit flip masks have been generated starting from multiple fault injection campaigns
with several input tensor shape (see Tab. A.1).

Input tensor dimension MAC/operand
100x100x100 100
200x200x200 200
300x800x300 800
400x1200x400 1,200

Table A.1: Set of golden values. The AxBxC format indicates the shape of input
tensors with B being common dimension

A.0.4 Compression example

Input1 Input2 Code
00 00 0
00 01 1
00 10 2
00 11 3
01 00 1
01 01 4
01 10 5
01 11 6
10 00 2
10 01 5
10 10 7
10 11 8
11 00 3
11 01 6
11 10 8
11 11 9

Table A.2: Compression example for 1 bit inputs

This subsection aims at providing a simple example of how LUT in Median core
compresses MSBs in a lossless code. For example, lets consider a simple 2 busses 2
bits wide. All 16 possible combinations (listed in Tab. A.2) are compressed in only
10 codes since identical permutations are characterized by identical compression.

47

Additional Informations

Through increasing number of inputs and bus size, the compression methodology
performances improve and bits can be saved.

48

Bibliography

[1] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
Dynamic Neural Networks: A Survey. 2021. arXiv: 2102.04906 [cs.CV] (cit.
on p. ii).

[2] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. BottleNet:
A Deep Learning Architecture for Intelligent Mobile Cloud Computing Services.
2019. arXiv: 1902.01000 [cs.DC] (cit. on pp. ii, 3).

[3] Saurabh Hukerikar and Nirmal Saxena. «Runtime Fault Diagnostics for GPU
Tensor Cores». In: 2022 IEEE International Test Conference (ITC). 2022,
pp. 524–528. doi: 10.1109/ITC50671.2022.00065 (cit. on pp. 1, 23).

[4] Jongmin Jo, Sucheol Jeong, and Pilsung Kang. «Benchmarking GPU-Accelerated
Edge Devices». In: 2020 IEEE International Conference on Big Data and
Smart Computing (BigComp). 2020, pp. 117–120. doi: 10.1109/BigComp486
18.2020.00-89 (cit. on p. 3).

[5] Md Aamir Raihan, Negar Goli, and Tor Aamodt. Modeling Deep Learning
Accelerator Enabled GPUs. 2019. arXiv: 1811.08309 [cs.MS] (cit. on p. 4).

[6] Brent Ralph Boswell et al. Generalized acceleration of matrix multiply accu-
mulate operations. U.S. Patent 10,338,919. July 2019 (cit. on p. 4).

[7] Lu Wang Xia Zhao David Kaeli Zhiying Wang Member and Lieven Eeckhout.
«Intra-Cluster Coalescing and Distributed-Block Scheduling to Reduce GPU
NoC Pressure». In: 14 (Aug. 2015), p. 15 (cit. on pp. 4, 7).

[8] Vivienne Sze Yu-Hsin Chen Tien-Ju Yang and Joel S. Emer. Efficient Process-
ing of Deep Neural Networks: A Tutorial and Survey. 2017. arXiv: 1703.09039
[cs.CV] (cit. on p. 6).

[9] Jianyu Huang Chenhan D. Yu Robert A. van de Geijn. «Implementing
Strassen’s Algorithm with CUTLASS on NVIDIA Volta GPUs». In: (Aug.
2018), p. 22 (cit. on p. 6).

49

https://arxiv.org/abs/2102.04906
https://arxiv.org/abs/1902.01000
https://doi.org/10.1109/ITC50671.2022.00065
https://doi.org/10.1109/BigComp48618.2020.00-89
https://doi.org/10.1109/BigComp48618.2020.00-89
https://arxiv.org/abs/1811.08309
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039

BIBLIOGRAPHY

[10] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. «Cores That
Don’t Count». In: Proceedings of the Workshop on Hot Topics in Operating
Systems. HotOS ’21. Ann Arbor, Michigan: Association for Computing Machin-
ery, 2021, pp. 9–16. isbn: 9781450384384. doi: 10.1145/3458336.3465297.
url: https://doi.org/10.1145/3458336.3465297 (cit. on p. 8).

[11] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason,
Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. Silent Data
Corruptions at Scale. 2021. arXiv: 2102.11245 [cs.AR] (cit. on p. 8).

[12] Yi He Mike Hutton Steven Chan Robert de Grujil Rama Govindaraju Nishant
Patil Yanjing Li. «Understanding and Mitigating Hardware Failures in Deep
Learning Training Accelerator Systems». In: (June 2023), p. 16 (cit. on pp. 8,
23, 26).

[13] Atieh Lotfi, Saurabh Hukerikar, Keshav Balasubramanian, Paul Racunas,
Nirmal Saxena, Richard Bramley, and Yanxiang Huang. «Resiliency of au-
tomotive object detection networks on GPU architectures». In: 2019 IEEE
International Test Conference (ITC). 2019, pp. 1–9. doi: 10.1109/ITC44170.
2019.9000150 (cit. on pp. 8, 10, 23).

[14] Yi He, Takumi Uezono, and Yanjing Li. «Efficient Functional In-Field Self-
Test for Deep Learning Accelerators». In: 2021 IEEE International Test
Conference (ITC). 2021, pp. 93–102. doi: 10.1109/ITC50571.2021.00017
(cit. on p. 8).

[15] Robert Limas Juan David Balaguera Josie E. Rodriguez Condia Matteo Sonza
Reorda Sierra. «Analyzing the Impact of Different Real Number Formats
on the Structural Reliability of TCUs in GPUs». In: 2023 IFIP/IEEE 31st
International Conference on Very Large Scale Integration (VLSI-SoC). 2023,
pp. 1–6 (cit. on p. 11).

[16] R. Leveugle A. Calvez P. Maistri P. Vanhauwaert. «Statistical Fault Injection:
Quantified Error and Confidence». In: () (cit. on p. 11).

[17] Robert Limas Sierra Juan-David Guerrero-Balaguera Francesco Pessia Josie
E. Rodriguez Condia Matteo Sonza Reorda. «Analyzing the Impact of Schedul-
ing Policies on the Reliability of GPUs Running CNN Operations». In: to be
appeared in 42nd IEEE VLSI Test Symposium (2024) (cit. on p. 13).

[18] Josie E. Rodriguez Condia, Boyang Du, Matteo Sonza Reorda, and Luca
Sterpone. «FlexGripPlus: An improved GPGPU model to support reliability
analysis». In: Microelectronics Reliability 109 (2020), p. 113660. issn: 0026-
2714. doi: https://doi.org/10.1016/j.microrel.2020.113660. url:
https://www.sciencedirect.com/science/article/pii/S002627141930
7978 (cit. on p. 23).

50

https://doi.org/10.1145/3458336.3465297
https://doi.org/10.1145/3458336.3465297
https://arxiv.org/abs/2102.11245
https://doi.org/10.1109/ITC44170.2019.9000150
https://doi.org/10.1109/ITC44170.2019.9000150
https://doi.org/10.1109/ITC50571.2021.00017
https://doi.org/https://doi.org/10.1016/j.microrel.2020.113660
https://www.sciencedirect.com/science/article/pii/S0026271419307978
https://www.sciencedirect.com/science/article/pii/S0026271419307978

BIBLIOGRAPHY

[19] Onur Keleş, M. Akın Yılmaz, A. Murat Tekalp, Cansu Korkmaz, and Zafer
Dogan. On the Computation of PSNR for a Set of Images or Video. 2021.
arXiv: 2104.14868 [eess.IV] (cit. on p. 25).

[20] Yi He, Prasanna Balaprakash, and Yanjing Li. «FIdelity: Efficient Resilience
Analysis Framework for Deep Learning Accelerators». In: 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 2020,
pp. 270–281. doi: 10.1109/MICRO50266.2020.00033 (cit. on p. 26).

[21] Philipp Liznerski, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks,
Marius Kloft, and Klaus-Robert Müller. Explainable Deep One-Class Classifi-
cation. 2021. arXiv: 2007.01760 [cs.CV] (cit. on p. 28).

[22] Juan Pimentel and Jennifer Bastiaan. «Characterizing the Safety of Self-
Driving Vehicles: A Fault Containment Protocol for Functionality Involving
Vehicle Detection». In: 2018 IEEE International Conference on Vehicular
Electronics and Safety (ICVES). 2018, pp. 1–7. doi: 10.1109/ICVES.2018.
8519488 (cit. on p. 29).

[23] Weichen Liu, Jiang Xu, Xuan Wang, Yu Wang, Wei Zhang, Yaoyao Ye,
Xiaowen Wu, Mahdi Nikdast, and Zhehui Wang. «A Hardware-Software Col-
laborated Method for Soft-Error Tolerant MPSoC». In: 2011 IEEE Computer
Society Annual Symposium on VLSI. 2011, pp. 260–265. doi: 10.1109/
ISVLSI.2011.48 (cit. on p. 29).

[24] Shubu Mukherjee. Architecture design for soft errors. Morgan Kaufmann,
2011 (cit. on p. 29).

51

https://arxiv.org/abs/2104.14868
https://doi.org/10.1109/MICRO50266.2020.00033
https://arxiv.org/abs/2007.01760
https://doi.org/10.1109/ICVES.2018.8519488
https://doi.org/10.1109/ICVES.2018.8519488
https://doi.org/10.1109/ISVLSI.2011.48
https://doi.org/10.1109/ISVLSI.2011.48

	List of Tables
	List of Figures
	Introduction
	State of the Art
	GPU Architecture
	NVDLA

	GEMM Execution on GPUs
	Scheduling Protocols
	Fault Detection Techniques

	Fault Injection
	Fault Examination Methodology
	GPUs Emulation and Injection
	Data Evaluation

	Error Model
	Model Generation
	Model Validation

	Fault Detection
	The Problem
	Binary Decision Tree as a Fault Detector

	Hardening Techniques
	Motivation
	Pooling Techniques for Hardening LENET5 Execution by NVIDIA GeForce GTX 1500 Ti
	Experiment Set Up
	Pooling Size = 2
	Pooling Size = 3

	LeNet5 Injected Though Error Models
	MEDIANVDLA
	Address Space
	Planar Data Processor Data Path
	Median Core
	Functional Simulations

	Conclusion
	Additional Informations
	Queue
	MAC Normalization
	Error Models Golden Values
	Compression example

	Bibliography

