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Summary

The main objective of this Master’s thesis is to develop a comprehensive platform for testing and
deploying custom controllers for quadrotor drones for trajectory tracking and deploy and test
different version of EMRAC controllers on an actual flight control board.The toolchain is capable
of evaluating advanced control algorithms on real hardware using Software-in-the-Loop (SITL)
and Hardware-in-the-Loop (HIL) simulations. The thesis utilizes the PX4-Autopilot firmware,
an open-source software designed for autonomous aerial vehicles. The implemented advanced
control algorithm, EMRAC (Enhanced Model Reference Adaptive Controller), builds upon the
MRAC (Model Reference Adaptive Controller) to enhance performance. To benchmark EMRAC’s
effectiveness, PD and MRAC controllers were designed. These control algorithms were developed
using MATLAB/Simulink, facilitated by the PX4 toolbox (UAV Toolbox Support Package for
PX4 Autopilots). This toolchain allows testing controllers in a simulation environment (e.g.
jMAVSim) while also generating deployable code. The generated code can be executed on a
generic computer (SITL) or deployed on a real Pixhawk 6x flight controller (HIL). The algorithms
were also tested by increasing the mass and inertia of the quadrotor to demonstrate the EMRAC’s
potential to operate effectively under non-nominal conditions.
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Chapter 1

Introduction

1.1 Drones and Quadrotors

In recent years, the remarkable advancements in robotics and unmanned aerial vehicle (UAV)
technology have given rise to a diverse range of applications, with quadrotor drones taking centre
stage. These agile and versatile aerial machines have captured the imagination of researchers,
hobbyists, and industries alike due to their ability to perform complex manoeuvres and access
areas that are typically inaccessible or hazardous to humans. Quadrotor drones, also known as
quadcopters, belong to the family of multirotor UAVs and are characterized by their four rotors
arranged in a square or X configuration.

Quadrotor drones’ popularity stems from their exceptional features like hovering, VTOL, and
flight stability. This versatility makes them perfect for diverse applications: aerial photography,
surveillance, search and rescue, agriculture monitoring, package delivery, and beyond. As
technology advances, quadrotor drones continue to open new possibilities, pushing the boundaries
of what they can achieve.

1.2 Project’s Objective and Thesis Structure

The objective of this thesis is to create a platform able to simulate and deploy on real hardware,
some control algorithms focusing on adaptive controllers for trajectory tracking problems.The
target controller that has been implemented is the EMRAC algorithm that has been compared
with the benchmark controllers as PD and MRAC and also with different architectures of the
EMRAC controller. The main software used are MATLAB, Simulink and Jmavsim. The second
chapter is an overview about PX4 autopilot, the firmware used to perform SITL and HIL on
Jmavsim through UAV Toolbox Support Package for PX4 Autopilots.The third chapter is about
the configuration of the toolchain environment, explain how to set the MIL, SITL and HIL and
the logic behind those different kind of simulations.Both the software and hardware settings
were explained. The fourth chapter of this thesis introduces the mathematical model of the
quadrotor essential to understand how to control it. On the fifth chapter, different controllers are
introduced:PD, MRAC.Those controllers have been used as benchmark for the main objective of
this thesis: the design of the enhanced model reference adaptive controller(EMRAC).
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Chapter 2

PX4 overview

2.1 Autopilot hardware and software

2.1.1 Pixhawk autopilot board

Pixhawk, a highly advanced autopilot board, is widely recognized for its performance and
versatility in the field of unmanned aerial systems (UAS) and robotics. Its origins can be traced
back to a master thesis project at ETH Zurich in 2008. Over time, it has transformed into a
popular open-source solution, often combined with the PX4 flight stack. Serving as a functional
and cost-effective alternative for implementing flight control algorithms professionally, Pixhawk is
renowned for its user-friendly nature. It allows individuals to engage in advanced tasks without
requiring an extensive understanding of autopilot design. Instead, a basic knowledge of control
theory and high-level programming languages such as C++, Java, or Python is sufficient for
implementing automatic control solutions with Pixhawk.

The Pixhawk project also provides open hardware designs that serve as blueprints for assem-
bling various components like the CPU and sensors. These designs offer guidance on how to
connect and map the pins, enabling people to easily build and customize their own hardware.

It is important to note that there are multiple versions of Pixhawk. The Pixhawk project
utilizes a naming system called FMUvX (Flight Management Unit Version X) to designate each
version. Higher FMU numbers indicate newer versions, although they do not necessarily imply
increased capabilities. The most recent version, FMUv6C, is utilized in Pixhawk 6c.

14



PX4 overview
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Figure 2.1: Pixhawk FMU and I/O architecture [1]

2.1.2 PX4 Architecture
PX4 is diveded into two main layers [2]:
o the flight stack

¢ the middleware

In the figure 2.2 an overview of the essential blocks of PX4 is shown. The top part of the
figure shown the middleware blocks and the lower section shows the flight stack components.
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PX4 overview
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Figure 2.2: PX4 architecture [2]
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PX4 overview

The structure is organized in modules.Every block of the PX4 structure correspond to one or
more modules.As we can see, there’s the message bus uORB in the middle of the architecture that
are responsible to publish and subscribe data, letting modules communicate between each other.

uORB middleware

uORB (micro Object Request Broker) is a publish-subscribe messaging middleware that plays a
crucial role within the PX4 autopilot ecosystem. Developed specifically for real-time embedded
systems, uORB facilitates efficient and reliable communication between various modules and
components within the PX4 flight stack.The uORB is an asynchronous publish() / subscribe()
messaging APT used for inter-thread/inter-process communication. A component sends a message
by publishing it to a particular topic, such as vehicle_local position. Other components receive
the message by subscribing to that topic.

This decoupled communication mechanism ensures a modular and scalable architecture, allow-
ing PX4 to easily handle a wide array of sensors, actuators, and high-level control algorithms.Its
efficient publish-subscribe model allows data to flow between different modules without direct
dependencies, promoting code modularity and maintainability. Each module can publish data on
specific topics, and other modules can subscribe to those topics, receiving updates as soon as new
information becomes available.

Flight stack

The flight stack is a set of guidance, navigation and control algorithms for drones. In the figure
2.3 the flight stack architecture is shown.

m &amp; Attitude<br>E4
Position Controller de &amp; Rate Contryg Mixer Actuator

S

Figure 2.3: The flight stack [2]

As it’s shown in the figure above, the flight stack is composed by several blocks that are:

« Commander:contains information on the status of the drone and information on the modes
of flight, including failsafe;

o Navigator: It contains flight set points, such as launch points, takeoff and waypoints,
which are the main points for constructing the flight path;

e Mc__controller: It has two principal modules (position and attitude and_rate controller)

o« Mixer: its task is to map the controllers signals generated by mc_ controller into virtual
control signals sent to the drone actuators;

e Sensor hub:it is the core of the signals measured by the sensors: the low-level output data
are made available through the drivers and are made available to the controller;

17



PX4 overview

« EKF2(Extended Kalman Filter): it estimates the position and attitude;
e Drivers: They are the interface among the physical sensor and the firmware architecture;
e Mavlink: it implements the "MAVLINK" which is a communication protocol which sends
specific signals through uORB;
NuttX operating system

NuttX is a real-time operating system (RTOS) that serves as a key component in the PX4
autopilot ecosystem. NuttX is designed for embedded systems, making it an ideal choice for
PX4’s flight control applications. It is open source(BSD licence), highly portable, efficient and
stable. It is the base framework on which all the PX4 architecture works.

2.2 Development environment

2.2.1 Software

The operating system used was Windows 10.The software used were:

¢ QgroundControl: this software is the interface to the unmanned vehicle configuration
with PX4, and it’s the station for the planning and execution of the flight path that the
drone has to follow.

<
iesensTas \
&«

+0.0m *0.
+0.0m >0.0m/s £0.0m

Figure 2.4: QGC home

From the homepage, it’s possible to access to four section:

- Fly Plan:it allows planning the mission of the UAV. Some different points have to be
defined. The launch point, that is the point where the UAV goes up before starting the
flight, takeoff point, that is the point where the drone has to start the flight mission

18



PX4 overview

and the waypoints, that are the points that define the trajectory during the flight
mission;

- Vehicle Setup:In this section is possible to upload the firmware, to set some parameters
for the mission and to define the airframe;

- Analyse Tools:it allows downloading the mission file .ulog after the mission. These
files in order to be read needs "Flight Log analyser" a specific app available in MATLAB.

ANALYZER

+* O & @ & (A @ = &
New Open  Save  Import Add Add Add 7 Manage |Map | | Data | Export
Session Session Session v hd Custom Signal | Figure Function Function | View | | Cursor e
FILE DATA | SIGNAL MAPPING PLOT ANNOTATE VIEW | CURSORS | EXPORT =
¥ Figures o Map View Figure 1 @ | ¥ Details L
~ [ Figure 1
[] Air Speed
itude 47.3987
ongitude 8.54837
v Signals (-]
 Flight Modes o|g z Ll
2
Start End Flight s
Time (sec) |Time (sec) |Mode
0 6.5400 | Manual
6.5400 30.6840 | Loiter
306840 34,2720 | TakeOFF
34.2720 41.2920 | Loiter
e —— P—
~ Annotation o

Panner

From (sec) 0 | (& Resetlimits | To(sec) 1352 |

14 X bl

Figure 2.5: Flight Log Analyzer

- Application settings: this sections is used to set communication setting with the
flight control board, to set which measurement unit to use for the flight data. It is
also possible to set the flight file in CSV format.

mario.mihalkov@surrey.ac.uk

e PX4.Windows.Cygwin.Toolchain.0.8.msi This is the only software officially supported
for the PX4 firmware download on Windows

« MATLAB(R2023b): this is the main software used, provided my MathWorks.All the
control algorithm and data analysis has been built with this software, alongside the following
toolbox:

- Simulink: This is the tool for the modelling and dynamic simulations.Here, the control
laws were built and then were deployed.

- UAV Toolbox Support Package for PX4 Autopilots
UAV Toolbox Support Package for PX4 Autopilots enables you to create Simulink
models that work with the uORB middleware.[3]. This toolbox allows you to create
controllers, estimators, and navigators using Simulink. Once you design these in
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PX4 overview

Simulink, you can deploy them directly to PX4 Autopilot boards. By integrating the
Simulink-generated code with the PX4 flight stack, you can deploy your designs to the
PX4 Autopilots easily. This package has several blocks that provide interfaces with

the PX4 flight stack as shown in figure 2.6 [4].

Read Parameter
ATT_BIAS_MAX

Status

PX4
Datap

Read Parameter

PXA4 UORB Read P4 VORB Write PXd LORB.

:
xa Siokus PX4 P4
- o
Iy i oot o) N N
sonace_scoel M vehicle_gps_posiion vehicle_gps_position
Message
-
H E
H C

A
v
PX4 PX4 Status p
Status
< xp
Yp
5 termion
zp
Vehicie Attitude Accelerometer
PX4 Status| PX4 Status
X xp
¥ Yp
zp
Magnetometer Gyroscope

Figure 2.6: Simulink Package PX4 blocks
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-4
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:J,'Jl\muilude b

4
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PX4 Status

chi
@@ ch2
(.8 ens

Chd

A A

Radio Control Transmitter

PX4
Status )
4
)\Mm .

Vehicle Attitude

Arm

Set fadsafe|
ch1

Ch 2 Dovice: /devipwm_outputd

Pxa

PX4 PWM Output

Thanks to this package, it’s possible to design a controller from scratch using the
blocks that are able to write and read data through the uORB messages.

e jJMAVSim:This is the simulator provided my the toolbox. It’s only available for quad
rotors. It provides a 3D visualization of the UAV in a simulating environment.
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JMAVSIim

L2
\\\\ : 1 ‘ l'/z
\3’3! 3 /,/

-
6"/‘
-
-
e

= 3
rd \\
1/’.("3 (;\- >
S \
o T

Zoom mode: Dynamic @ 25,.00m

FOV: 60.00°
FPS: 59

Init MaNVLINk

Figure 2.7: jMAVsim

2.2.2 Hardware
For what concerning the hardware side, the following item was used:

e Pixhawk 6x: this is the controller on which the control laws have been implemented in
HIL mode.In figure 2.8 its design can be seen. All the hardware details can be seen in the
table :
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pxhawk 6x

(] ()
CERER

Figure 2.8: Pixhawk 6x

FMU Processor: STM32H753
Processors 32-Bit Arm Cortex-M7,480MHz
IO Processor: STM32F103
32-Bit Arm Cortex-M3,72Mhz
2 MB flash memory,1MB RAM
64KB SRAM
Accel/Gyro: ICM-20649
Accel/Gyro: ICM-42688-P

Sensors Accel/Gyro: ICM-42670-P
Mag: BMM150
Barometer:2xBMP388
16-PWM servo inputs
R/C input for Spektrum / DSM
Dedicated analog/PWM RSSI input and S.Bus output
Dedicated R/C input for PPM ans S.Bus input
4 general purpose serial ports
Interfaces 2 GPS ports
1 I2C port
1 Ethernet port
1 SPI bus
2 CAN Buses for CAN peripheral
2 Power inputs ports with SMBus

RAM

Table 2.1: Pixhawk 6x Hardware details

 Serial convertor CP2102/9 (from USB to TTL): It’s needed to configure the interface
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between Pixhawk and the host PC.Through this converted is it possible to deploy the
control algorithm and to analyse the executing Simulink model in the target hardware.

Figure 2.9: Serial converter CP2102/9

The main characteristics are:

- The analog input and output works at 3.3V. It can also be supplied at 5V or at 3.3V.

- It needs a driver that can be found to the official documentation in order to be
recognized with the host PC.After the installation, the converter can be seen in the
"Device Management" section in the host PC.

¢ JST connector:It is a 6 pin connector with two female terminals. It allows connecting
the Pixhawk to the host PC.One terminal goes to the TELEM1 port on the flight control
board, and another terminal goes to the CP2102/9 converter. It has 6 wires, 4 are needed to
connect with the CP2102/9 converter: the red one goes to the Vee(power supply), the blue
one goes to ground(GND), the yellow ones go to RXD (receiving) and TXD(transmitting).

DOA@DE®®

Figure 2.10: JST GH 1.25 mm connectors diagram [5]
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Pin Signal Volt
1(red) VCC +5V
2( ) | TX7/5/2 (out) | +3.3V
3( ) RX7/5/2 (in) +3.3V
4(black) | CTS7/5/2(in) | +3.3V
5(black)
6(black)

RTS7/5/2 (out) | +3.3V
GND GND

Table 2.2: Teleml, Telem2, Telem3 ports [5]

UART Device Port
USART1 | /dev/ttySO GPS
USART2 | /dev/ttyS1 TELEM3
USART3 | /dev/ttyS2 | Debug Console
UART4 | /dev/ttyS3 | UART4 & 12C
UART5 | /dev/ttySd | TELEM2
USARTG6 | /dev/ttyS5 PX410/RC
UART7 | /dev/ttyS6 | TELEMI
UART/ | /dev/ttyS7 GPS2

Table 2.3: Serial Port Mapping [5]
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Chapter 3

MIL,SITL and HIL

In order to design the new controllers implemented in the PX4 Autopilot firmware, a V-shaped
approach has been followed.The MIL,SITL and HIL were performed for each control law.In the
figure 3.1 the PX4 toolchain is shown [6]:

‘ 4\ MathWorks

MIL, SIL and HIL Workflows for UAV Simulation

Inputs

[

)
Ground Control Station

Model-in-the-Loop
(MIL)

v
C++ EXE on Host PC . Deploy on |

Simulator communicates

Simulator communicates
with the host PC

with the hardware

% Software-in-the-Loop
(SIL)

Figure 3.1: SITL and HIL workflows [6]

3.1 Setup and configuration

In order to use this toolbox, you need to install the PX4.Windows.Cygwin.Toolchain.0.8.msi
available on GitHub.Python38 is also needed to compile everything. All the links are available in
the setup setting on the UAV Toolbox support for PX4 autopilots is downloaded.

The following steps have to be followed [7] :
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e Installing Python 3.8.2 on Windows for Firmware Upload:when setting up the
toolbox,you are redirected to link where you can download Python 3.8.2.

¢ Setting Up Cygwin Toolchain and Downloading PX4 Source Code: To set up
Cygwin toolchain and download the PX4 source code that is used in UAV Toolbox Support
Package for PX4 Autopilots, follow these steps:

Download version 0.8 of PX4 Cygwin Toolchain MSI Installer, which is compatible
with PX4 Firmware v1.12.3;

Run the MSI installer and start the installation of the toolchain.
Change the installation folder for Cygwin to any local folder, and then click OK.

If you do not have the PX4 Source Code (PX4 Autopilot Firmware v1.12.3) downloaded
in the host computer, select the option Clone PX4 repository and Start Simulation,
and then click Finish. This option clones the current PX4 main Firmware. When you
click Verify Installation in Step 6 below, the firmware is checked out automatically to
v1.12.3.

o Selecting PX4 Autopilot Application[8]:In the Select Application in Simulink screen
of the Hardware Setup process, select the required option for the PX4 Autopilot algorithm
that you are going to design using the support package:

— Design Flight Controller Algorithm in Simulink — Select this option to design

a flight controller algorithm in Simulink. This selection results in an additional step
(Select System Startup Script in PX4) as you proceed further with the Hardware Setup
screens. In that step, you will get the option to select the preference for the startup
script for the Autopilot. If you select the PX4 default startup script rCS as the startup
script for the Autopilot, to avoid any interference with the default PX4 multi-copter
controller modules. Then mc_ pos_ control and mc_ att_ control modules are disabled
in the rCS startup script [8];

Design Path Follower Algorithm in Simulink — Select this option to design a
path follower algorithm in Simulink. This option can be used in general to design any
algorithms in Simulink apart from controllers or in scenarios where user would like
to keep the default PX4 controllers enabled and available during Autopilot boot-up.
This selection results in an additional step (Select Airframe for QGround Control) as
you proceed further with the Hardware Setup screens. The default PX4 startup script,
rCS, will be used for starting the modules. All the default modules existing in the rCS
including the multi-copter controller modules are kept enabled and no modules are
disabled with this selection.[8]

For our use, the Design Flight Controller Algorithm is chosen.

e Selecting Startup Script for PX4 Autopilot:In the Select System Startup Script in
PX4 screen of the Hardware Setup process, select the desired option for the PX4 Autopilot
startup script.

Use default startup script (rcS) — Select this option to use the PX4 default
startup script rCS as the startup script for the Autopilot. If you select Design Flight
Controller Algorithm in Simulink as the algorithm choice in the Select Application
in Simulink Hardware setup screen, the default PX4 multi-copter controller modules,
mc_ pos__control and mc_ att__control modules are disabled in the rCS startup script.
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If you select Design Path Follower Algorithm in Simulink, no modules are disabled in
the rCS. This selection results in two additional steps, Download QGroundControl and
Airframe in QGroundControl as you proceed further with the Hardware Setup screens.

- Use custom startup script (rc.txt):Select this option to use a custom startup
script called re.txt which will be placed in the SD card on the Autopilot as the startup
script.

According to what you want to perform(SITL or HIL), the target hardware has to be change, as
it will be explained later on in this chapter.

3.2 Model-in-the-loop

In MIL, no particular setting is requested.Ones installed the UAV Toolbox Support Package for
PX4 Autopilots, some examples will be available on your PC. In MIL both the controller and the
plant are simulated inside Simulink and there’s no interface with the PX4 firmware, but all the
processes that takes place in the PX4 firmware are simulated in the Simulink environment.In
order to visualize this example in Simulink, type:
openExample('prd/MonitorTuneP X4HostT arget Flight Plant Model Example’)

in the prompt command windows.

| 4\ MathWorks'

Model In the Loop

Simulated Waypoints

Model-in-the-Loop
(MIL)

Figure 3.2: MIL workflow [6]

In the figure 3.2 the MIL workflow is shown.Three main blocks are shown:

e Simulated Waypoints:in this block, the trajectory is defined.It can be defined both
through QGC and through a MATLAB function;

e Flight Controller: this is the block where the customized controllers have to be inserted;
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e Plant Model: this is the plant shown in figure 3.3 provided by Simulink that is based on
the jMAVsim simulator provided with this toolbox;

L ‘ Vo
L »ocuee
L b Fxyz '
Nyl
e — atrix =]
Multiply Ly nun{_khnn <
> Inputs [0-1]
PWM Inputs 5 \:]
—— —_— =
] Moxyz o
—3
ot =
wb ly
Force and Moment Calculation BDOF Rigid body dynarmics — Create Stales Bus.

Based on jmavsim quadcopler model
1 in earth frams to body frame

ten in earth frame (NED fixed on takeoff location), we need to convert the frame.

Figure 3.3: UAV Dynamics

In MIL there’s no code generation, both the plant and the flight controller are simulated in the
Simulink environment on the host PC.

3.3 Software-in-the-loop

In SITL the controller is code generated and the controller output is fed to the plant model. Two
simulators are available: Simulink and jMAVsim.

28



MIL,SITL and HIL

| 4\ MathWorks'

Software-in-the-Loop (SIL)

Inputs

W,

Simulated Waypoints

4

C++ EXE on Host PC

Host
PC

S Software-in-the-Loop [

Figure 3.4: SITL workflow [6]

Both SITL and HIL can be run in two ways:

e Monitor and Tune:Monitor and Tune enables you to tune model parameters and evaluate
the effects of different parameter values on model results in real-time. When you change
parameter values in a model, the modified parameter values are communicated to the target
hardware immediately. You can monitor the effects of different parameter values by viewing
the output signals on Sink blocks or in Simulation Data Inspector (SDI). Doing so helps you
find the optimal values for performance. This process is called parameter tuning.Monitor
and Tune accelerates parameter tuning. You do not have to rerun the model each time you
change parameters.[9]

e Build, Deploy & Start:this option enables you to build and deploy the code directly
on the target, but you can’t tune the models parameters online you need to restart every
time the simulation. This is the best option because it runs at its own speed, rather than
Monitor and Tune that needs to adjust the execution time to MATLAB.

3.4 Hardware-in-the-loop

When the HIL mode is running, both QGC and the UAV model has to communicate with the
flight controller board.Nevertheless, just one of those application can run on the serial port.In
order to fix this problem, a MAV link bridge is used as is shown in figure 3.5
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Writes to UDR/TCP

; Reads from UDRTC
from connection

connection

# Simulink Plant =
send data to plant Receive data from plan

Reads from Pixhawk using serial Writes to Pixhawk using serial

I 1

Figure 3.5: PX4 HIL workflow [10]

3.4.1 Pixhawk configuration via QGC

Firstly,the firmware upload is needed via QGC: MATLAB 2023b is the compatible with the
firmware version 1.12.3. For this project, the stable release v1.12.3 called px4_ fmu-v6x_ default.px4
has been loaded through the QGC:

e Open QGC and through Vehicle setup,select Firmware;
e Connect the Pixhawk board to PC via USB type-C;

e From the right column upload the firmware,selecting the version and wait till the download
is completed;

Now, the board configuration is needed:
e In the Safety section enable HIL mode;
e In the Airframe section, select HIL Quadcopter X;

o in the Flight Modes section, set up the 6 channel for the flight mode(the user is free to
choose);

Then go to the Application setting area. In Autoconnect to the following devices,
clear all the option except for UDP; This setting stops the communication among QGC and
Pixhawk through USB, that it’s possible just through the simulator bridge. If you want to start
communicating via USB, just click on Pixhawk option. Now you need to go in Vehicle setup
section and in the Parameters area the following parameters have to be set up:

« COM_RC_IN_MODE to Joystick/No RC Checks. This allows joystick input and
disables RC input checks.
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e« COM__DISARM_ LAND to -1. This disables the timeout for auto-disarm when QGC
detects a landing. This helps in avoiding a potential PX4 failsafe when drone motors stops
at the highest take-off point momentarily.

« NAV__ACC_RAD to 10;

¢« NAV_RCL__ACT to Disabled. This ensures that no RC failsafe actions interfere when
not running HITL with a radio control.

Now the sidebar of the Vehicle setup does not have any red elements, except for the power
sidebar as shown in figure 3.6:this will not be a problem for the simulation. All these settings
have been implemented following the MathWorks HIL documention.

B vehicle setup

Figure 3.6: Final QGC setting

3.4.2 Hardware setup via UAV Toolbox Package for PX4 Autopilots

After having set all the parameters in QGC, MATLAB has to be configured.From the main page,
go to Manage Add-ons, select the UAV package for PX4 autopilots settings:

e Go to Hardware setup and install the toolchain, following the instruction:it’s important
to select the option Clone PX4 repository and start simulation.This option will create
the "Firmware" folder that has all the tools we need for the project;

o After having selected the target, firmware building is required;

e once firmware building is done, before select Next, the identification of the COM port is
required for the firmware upload.So go to Device Management and plug the Pixhawk
via USB. The COM port will be displayed, use it for the firmware upload.

o After having upload the firmware, select "Get Accelerometer data'. A warning will be
displayed, do not worry, this is because the firmware is HIL mode.

Ones, everything has been done, typing open__system(’px4demo__ QGCWaypointFollower__hitl’)
a Simulink project with the default controller linked with QGC is opened. This is the starting
point for the design of the implementation of the custom controllers.

There are two ways for the HIL mode, as said before:
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e Monitor and tune: This option allows you to deploy your controller and tuning the
parameter at the same time. As shown in figure 3.7, the Pixhawk communicate via FTDI
converter with the Simulink controller and via MAVlink with the simulator.

YmavLine

—-H Simulator

Pixhawk 4 5\ Simalink

Host Computer

Figure 3.7: HIL with Monitor and Tune

e Build Deploy & Run:This option allows you to upload the code without Simulink
running. There’s just the communication between the simulator and the Pixhawk via
MAVlink (through USB). In this way, the simulator is free to run the uploaded code.

YMAVLINK
Simulator
PixhAawik 4

I
-
I N —
.
] || [ ]
.

Pixhawk 4

Host Computer

Figure 3.8: HIL with Build,Deploy & run
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Chapter 4

Modelling

4.1 Mathematical Model

4.1.1 Euler angles and Coordinate Systems

The mathematical model used, was for a "x" mode quadcopter[11].The two reference frame used
for this model are the inertial NED (North,East,Down) reference frame x — y — z and the body
reference frame ' — 3/ — 2’. In the figure 4.1 the coordinate system used is shown.

Rotor 3: Clockwise . X'

Roll angle(¢);
Angularvelocity: p

Rotor 1: Counterclockwise

x (north)

Pitch angle(0);
?) Angularvelocity: q

2 y y (east)
Rotor 4: Clockwise

Yaw angle(g);
Angularvelocity: r

z (down)

global coordinate system

Figure 4.1: Euler Angles and the coordinate system [12]
Here, ¢ = [z,y,2]T are the positions in global coordinate system; v=[p, q, r|7 are angular
velocity in the drone body frame;n=[¢,0,9]7 are Euler angles.Also, we show in the figure the
motors and the direction of each motor rotation in the drone body reference frame.Regarding
Euler angles, we have the following discussions. From global coordinate system to body reference
frame, we can first rotate ¢ angle around z axis firstly; then rotate 6 angle around y axis; finally
rotate ¢ angle around x axis. Through this series of rotations of Euler angles, we could obtain
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the complete coordinate system conversion.

This model is based on the model jMAVsim. In fact, in order to check this, we can go in the
simulator source code. In the Firmware/Matrix folder theres’s Euler.hpp where the PX4 rotation
order is shown as in figure 4.2

1 f**
2 * @file Euler.hpp
3 *
4 * ALl rotations and axis systems follow the right-hand rule
5 *
6 * An instance of this class defines a rotation from coordinate frame 1 to coordinate frame 2.
7 * It follows the convention of a 3-2-1 intrinsic Tait-Bryan rotation sequence.
8 * In order to go from frame 1 to frame 2 we apply the following rotations consecutively.
9 * 1) We rotate about our initial Z axis by an angle of _psi.
10 * 2) We rotate about the newly created ¥' axis by an angle of _theta.
11 * 3) We rotate about the newly created X'' axis by an angle of _phti.
il *
13 * @author James Goppert <james.goppert@gmail.com>
14 */
15

Figure 4.2: PX4 rotation order: Euler.hpp file

4.1.2 Rotation Matrix

First of all, the reletionship between Euler angles changes rates and body angular velocities is
introduced. v represents the body angular velocity: v = [p, g,7]T. From global coordinate system
to drone’s body frame, we have [13]:

1 0 —sin(0)
v=1|0 cos(¢) cos(f)sin(¢) |n (4.1)
0 —sin(¢) cos(f)cos(¢)

Denoting W as [14]:

1 0 — sin(0)
W = 0 cos(¢) cos(f)sin(¢) |,
0 —sin(¢) cos(f)cos(p)
v = W (4.2)

W is invertible if 6 = (2k — 1)¢/2, (k € Z). (i.e. W is not singular).
From equation (4.1), we have:
n=w"1tv (4.3)

In order to find the rotation matrix between global coordinate reference frame and drone’s body
frame, the concept of some basic rotation matrices is introduced:

» Rotate 1 angle around z axis (in NED reference):
costy —siny 0

R.,=| sinyp cosyp O (4.4)
0 0 1
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» Rotate 6 angle around y axis (in NED reference):

cos@ 0 sind
R, = 0 1 0 (4.5)
—sinf 0 cos@

» Rotate ¢ angle around x axis (in NED reference):

1 0 0
R;,=10 cos¢ —sing (4.6)
0 sing cos¢

So the rotation matrix from body to inertial frame Rj can be derived as follow following the
rotation order mentioned above [13]:

CoCy  —CPSy + CySeSy  SypSyp + CyCypSe
Ry = R.(V)Ry(0)Ry(¢) = | CoSyp  CypCp + 505pSy  —S¢Cy + CpSoSy (4.7)
—Sg CoSyp CoCy

with ¢ = cos and s = sin
With the following constraints:

o - < ¢p<mand —m < 9 < m: the angles ¢ (roll) and ¢ (yaw) cover 2nradians. The interval
so defined is to indicate that for values greater than or equal to 0 the angle rotates in a
counterclockwise direction, following the counterclockwise, following the right hand rule,
vice versa for values less than 0;

o —m/2 < @ < m/2: the angle 6 (pitch) covers 7 radians, and the interval is thus defined for
the same reasons as for the other two angles;

It is possible to check that the rotation matrix is the same of the simulator looking for Dem.hpp
file as shown in the figure 4.3
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114 J**

115 * Constructor from euler angles

116 *

117 * This sets the transformation matrix from frame 2 to frame 1 where the rotation
118 * from frame 1 to frame 2 is described by a 3-2-1 intrinsic Tait-Bryan rotation sequence.
119 *

120 *

121 * @param euler euler angle instance

122 *f

123 Dcm(const Euler<Type> &euler)

124 {

125 Dcm &dem = *this;

126 Type cosPhi = Type(cos(euler.phi()));

127 Type sinPhi = Type(sin(euler.phi()));

128 Type cosThe = Type(cos(euler.theta()));

129 Type sinThe = Type(sin(euler.theta()));

130 Type cosPsi = Type(cos(euler.psi()));

131 Type sinPsi = Type(sin(euler.psi()));

132

133 dem(®, ©) = cosThe * cosPsi;

134 dem(®, 1) = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
135 dem(o, 2) = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
136

137 dem(1, ©) = cosThe * sinPsi;

138 dem(1, 1) = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
139 dem(1, 2) = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
140

141 dem(2, 8) = -sinThe;

142 dem(2, 1) = sinPhi * cosThe;

143 dem(2, 2) = cosPhi * cosThe;

144 }

Figure 4.3: PX4 Rotation matrix: Dcm.hpp file

4.1.3 Dynamic Equations

Using the rotation matrix in 4.7,the translational dynamics for the quadcopter can be computed
as follow:

x 0 0 Z - |z
. 1T . K o
g 1=10 +E'Rl;' 0 _El' -9l (4.8)
z g —(Th+To+T5+Ty) Z- |2

where T7_,4 are thrust of each propeller; and the aerodynamic forces are modeled as a second
order drag with respect to the velocity in order to stop the vehicle in absence of horizontal thrust,
where K is the air drag force coefficient.

Regarding the rotational dynamics, it is given by:

SM=J-v+vx(J v (4.9)

where J is the mass moment of inertia of the drone:

J. 0 0
J=|0 J, 0 (4.10)
0 0 J.

and J,, Jy, J, are inertial moments respectively around x, y, z axis.
From (4.9) the total torques applied to the drone around x,y,z axis can be easily derived:

(To+T5—T1 —Ty) -1
XM = (Tg +T4 - T1 - Tg) -1 - K2 V- |l/‘ (411)
(Q1+ Q2 — Q3 — Q)
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where Q1 _4 are anti-torques of each motor given by the propellers; and the aerodynamic moments
are modeled as a second order drag moments with respect to the angular velocity of the drone
to stop the vehicle rotation in the absence of thrust moments, where K5 is the air drag torque
coefficient. Therefore, using equations(4.9)(4.10)(4.11),the following equations are derived:

7%
7, %
[

(T4 T3 =Ty —Ty) —q-r(J. — Jy) — Ko - p- |p]]
2T +Ts—To—Ty) —p-r(Jo — J2) — Ko - q - |q] (4.12)
2(@Q14+Qa— Qs — Q) —p-r(Jy — Jz) — Ko -1+ |7]]

P

\S ol

= Q.
Il |
HHNH?\H

(@
Based on the equations (4.3)(4.7)(4.8)(4.12),the dynamic model of the quadcopter can be derived:

=
zZ =

p=
qg=

;=

T =

(Z:S:
9_: qcos ¢ — rsin ¢
¢ = coso

—L[(singsinty + cospsin@cos ) - (T +To + T3 +Ty) + Ky - i - | 2]
f%[(fsingbcosz/z+cos¢sin98inw) (Ty +T? +T3 +Ty)+ K19y
—l(cosgeos) - (T +To +T5 +Ty) + K1 -2 [2]] + ¢

L2UTy + T5 — Ty = Ta) —q-7(J. — Jy) — Kz - p- [p]

i[gl(ﬂ + T3 =Ty =Ty) —p-r(Jo — J2) — K2~ q - |ql] (4.13)
L2UQ1+ Q2 — Qs —Qa) —p-1(Jy — Ju) — Ko 7+ |1]

p+ gtanfsin ¢ + r tan 6 cos ¢

sin ¢ + rcoszb

cos 6

The loaded drone in jJMAVsim is characterized by specific parameters that can be modified
going into the java code located into the firmware folder.The Simulink plant implements the same
default parameters of the virtual environment. If you want to see or modify those data you need
to go into these two files in the Firmware folder:

Quadcopter.java In this section the structure of the quadcopter is defined through
quadcopter class.Within it, the Quadcopter attribute is passed the parameters shown in the

figure 4.4
Ve
* Generic quadcopter model.
*/

public class Quadcopter extends AbstractMulticopter {
private static final int rotorshum = 4;
private Vector3d[] rotorPositions = new Vector3d[rotorshum];
private int[] rotorRotations = new int[rotorshum];

JEx
* Generic quadcopter constructor.

*

* @param world world where to place the vehicle

* @param modelName filename of model to load, in .obj format

* @param orientation "x" oor "+

* @param style rotor position layout style. "default"/"px4" for px4, or "cw_fr" CW sequential layout starting at front motor
* @param armLength length of arm from center [m]

* @param rotorThrust full thrust of one rotor [N]

* @param rotorTorque torque at full thrust of one rotor in [Nm]

* @param rotorTimeConst spin-up time of rotor [s]

* @param rotorsoffset rotors positions offset from gravity center

* @param showGui false if the GUI has been disabled

*

public Quadcopter(World world, String modelName, String orientation, String style,
double armLength, double rotorThrust, double rotorTorque,
double rotorTimeConst, Vector3d rotorsoffset, boolean showGui) {

super(world, modelName, showGui);

Figure 4.4: Parameters given to the quadcopter class

e Simulator.java In this section there is the parameter initialization of the Quadcopter

object that builds the model as shown in the figure 4.5
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private AbstractMulticopter buildMulticopter() {

Vector3d gc new Vector3d(e.e, 0.0, ©.0);
AbstractMulticopter vehicle = new Quadcopter

Matrix3d I = new Matrix3d();

// Moments of inertia

I.me@ = 8.005; [/ X

I.mil = @.005; [/ Y

I.m22 = 9.009; [/ Z
vehicle.setMomentOfInertia(I);
vehicle.setMass(@.8);
vehicle.setDragMove(©.01);

SimpleSensors sensors = new SimpleSensors();
sensors.setGPSInterval(5e);
sensors.setGPSDelay(2@@);

sensors.setNoise Acc(@.e5f);
sensors.setNoise Gyo(e.01f);
sensors.setNoise Mag(@.0e5f);
sensors.setNoise Prs(e.1f);
vehicle.setSensors(sensors, getSimmillis());
//v.setDragRotate(0.1);

return vehicle;

// gravity center
(world, DEFAULT VEHICLE MODEL, "x",
.33 / 2, 4.0, 9.05, ©.005, gc, SHOW GUI);

Figure 4.5: Parameters definition passed to the quadcopter object
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Chapter 5

Control

The main goal of this chapter is to design different types of controllers and deploying them on PX4
firmware and analyse their performances.The controllers implemented will compute the amount
of thrust on each propeller in order to force the UAV to have a certain orientation,consequently a
desired position. Firstly in this chapter, under actuated system are analysed and the applied
solution will be discussed.Later in this chapter the controllers implemented into the inner loop
are described. For each controller HIL is performed.In conclution, the results of the different
controllers will be described whith respect to some Key Persormance Indicator.

5.1 Control Architecture

A quadcopter is an under-actuated system.When a system is under-actuated, it means that has
less input then the variable to be controlled.A quadrotors has 6 degrees of freedom and just 4
control variables.In order to fix this problem, two control loops are designed:the outer and the
inner control loop. The outer control loop is an altitude controller and it creates the missing
euler angles references for the inner loop.The inner loop is an attitude controller that takes as
input the two missing references created by the outer plus the known one (in our case the desired
yaw).In 5.1 the quadrotor control architecture is shown.

XY Z N Vi Vg B By B

Y

Outer Loop

tau_z

Xref YrafiZref

PWM convertion

Varef Vyref Varef Yy
Byref, Byref dzref »

roll_des pitch_des

Inner Loop
_ 3 y
tau_pitch tau_roll, tau_yaw
yaw_des A
roll, pitch, yaw

Figure 5.1: Quadrotor control architecture
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5.1.1 Outer Loop and Convertion Block

In order to solve the problem of under actuated system, the outer loop is designed. It creates
the missing references for the inner loop.In this project, the reference is the position and the
yaw angle 1 and their derivatives. The outer loop refers to the position control loop.It is always
implemented as a PID controller,while the inner loop has different controllers implemented.The
relationship that links the attitude and the linear acceleration is built on the position error PID
closed-loop equations of the drone.

Position control design

The outer loop design has been taken from [13]. Taking into account the matrix form of trasla-
tional equation with respect to the Earth Frame:

# 0 0 @i
Ggl=m|0|+R| 0 |—=kI| gyl (5.1)
Z g —Uy Z‘Z|

kwnowing that R is the rotation matrix defined as follow:

CoCy  —CeSy + CySeSy  SypSp T CyCypSe
R= coSyp cCypCp+ 505,54  —SyCy + CpS0Sy (5.2)
—Sg CoSyp CoCy

with ¢ = cos and s = sin

Control along z

Deriving the traslation equation along z axis [13]:

F=g— %(COS(Q)COS(@))Ul - %z|z| (5.3)

with uy =T1 + T + T3 + Ty = 4T y0. (T — 1). Defing z,. as the reference for z, the control law is

the following;:
m

AT a0 (cos ) (cos )

where v, = 2, — k,, (2 — %) — k., (2 — 2,) + w.In fact, replacing 77 into the model:

Tr=1- (=g + k12[2] 4+ v2) (5.4)
2=, (5.5)
defing the error as e, = z — z,,we have:
€, + ke + ke, =0. (5.6)
This is a LTI error system: the choice of k,, and k,, is such that:
P(s) = s>+ k., s+ k., (5.7)

have all the real poles strictly less than 0.Being a second order system, two poles have to be
chosen such that : k., = —(p,, + ps,) and k., = p.,p.,. The same has been done to the other
control laws
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Robust control action w
w is the robust control action defined as:

w p>0 (5.8)

_ P
I1q|
where ( is defined as:

(=D"Q¢ (5.9)

being D = [ IO ] and @ the solution to the the following equation:

HIQ+QH=-P (5.10)

where ﬁ is: o
~ I
H =(H —DK)= { _Kp —Kp } (5.11)

is a matrix whose eigenvalues all have negative real parts — Kp and Kp being positive definite
— which allows the desired error system dynamics to be prescribed.

Control along x and y

Defining the translation equations for small angles variations on the x and y axis [13]:
@] Alwax(rr —1) [ sing  costp o] 1 [k O & (5.12)
gl m —cos1) siny 0 m| 0 Kk Y|y '

77 is already known from the previous calculations,so all the data needed to compute ¢ and 0 are
known. Rewriting the system in a simpler way:

_ ATnax(tr —1) [ sing  cosy
P [ —cost  siny ] (5.13)
L[k 077 @4
G- m[ - ] [ i ] (5.14)

So it becomes:

)-r[5]-0

the chosen control law is:

{ g ] = F ' (Vay + G) (5.16)
The control action is defined as follows [13]:
(j:—jtr)} [w—xr] [mr]
Vay = —kz S — kg + | 2| +w 5.17
v v [ (5 — ) Ly iir (5:17)

whew w has been preavious defined. Replacing V,, into the translation system equation:
[ Zj ] = FF ' (Vo +G) =G =Vyy (5.18)

Now, the outer loop outputs are set 71 ¢, 0,.. 7p goes directly into the PWM convertion block
and ¢,,0, go to the inner loop.
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5.1.2 PWDM convertion

This block is responsable to create the virtual control input to the propellers.The thrust and
torques are inputs that are mappend in four control variables.The control variable in PX4
firmaware is the PWM that ranges from 1000 to 2000. Taking into account the mathematical
model preaviusly described [13]:

mV = P+ RFp — Fu
Juo+wx Juw=Mpg— My (5.19)
n=Wuw
where:
0 gh&
Fg = 0 Mp = glw,
—U Ugq
where u;(for i = 1,...,4) are the virtual control inputs. The model has to be rewritten in function
of the 7 signals that comes from the controllers. Making the following assumtion:

o The force that every propellers can generate is T; € [0, Tinaz), With Thnae = 45

e The torque that every propellers can generate is Q; = %le € [0, Qmaz] With Qmaz = 0.05
and there cp is the linear friction coefficient that is opposite to the propellers thrust and
¢y, is the angular friction coefficient opposing the rotation of rotor blades;

The normalized force generated by the i-th motor is v; = TT" € [0,1]. The relationship between

the virtual inputs u;, the control signals 7, 7r, 7p, Ty and the motor forces is:

Uy = 4Tmax(TT — 1) = T1 +T2 —|—T3 +T4
Ug = —4TpaxTR = —T1 + To + T3 =T}

s = ~ATpmap =Ty — Ty + T3 — T (5:20)
Lug =ATpaxty =Th + T =15 =T}
Dividing by Trnaz:
Adrp — 1) =v1 +v2 +v3+ vy
—4TR = —v1 + U2 + U3 — Vg
—4Tp = v1 — Vg + U3 — U4 (5'21)
Ay =vi+ve —v3— g
Rewriting the system in matrix form as follows:
1 1 1 1 (%1 4(TT — 1)
-1 1 1 -1 ve | —47gR
1 -1 1 -1 vy | —47p (522)
1 1 -1 -1 V4 4Ty
that:
(%1 1 -1 1 1 TT 1
v | |1 1 -1 1 TR | _ 1
vg | |1 -1 -1 -1 TP 1 (5.23)
V4 1 1 1 -1 TY 1
where the matrix:
1 -1 1 1
1 1 -1 1
M= 1 1 -1 -1 (5.24)
1 1 1 -1
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is the Mixer Matrix of the Mixer and Send to actuator block. Here PWM scaling also
takes place, so that the vector is generated:

v = ; (5.25)

which will go directly into the input to the simulated ESCs to generate the force and thrust
torques to control the drone. The scaling is defined as :

1)2 = Ui(Pmam - Pmin) + Prin € [Pmim Pmaz] (5’26)
with Py,q = 2000 and P,,,;, = 1000.So we have:

v, = 1000v; + 1000 (5.27)
and as a result: )
v

;= —— —1 5.28

Y= 1000 (5.28)

In 5.2, there’s the complete PWM allocation scheme,starting from the control signals 7; to the
actuation forces, going through PWM scaling and and their respective ESCs.

T [ 7" LW

- -

) ESC1 Molore 1
. V5 ’ -
Tp Control 2 > v N T>
allocation | ,_ sca;w:\f N w15 vi i {ESC2 |— Motore2 Quadotor
Tg | —. : in V3 vy T
LR (sui v;) * BN 3.0 EsC 3 Motore 3 =
Ty U4 i .
v, T
o vy 1 Esca » Matored | 1

Figure 5.2: PWM allocation [13]

5.2 Inner Loop

In this section, all the inner loop controllers are analysed.

5.2.1 PD Controller

The first controller implemented is the Proporsional-Derivative controller. This controller multi-
plies by a proportional and a derivative gain the state error and its derivative. The gains are
square matrices one for the state vector, the other one for its derivative:

Kp, 0 0
Kp=| 0 Kp 0 (5.29)
0 0 Kp,
Kp, 0 0
Kp=| 0 Kp, O (5.30)
0 0 Kp,



Control

The final outputs are:
To = Kng ((me - 90) + KDw.((pref - 30)
79 = Kp, (Gref — 9) + Kp, (Qre.f — 9) . (5.31)
Ty = KPw (wref - 1/1) + KD«/, ("/}Tef - w)

5.2.2 MRAC

Model reference adaptive control (MRAC) is a control methodology that dynamically adjusts
control gains based on errors computed relative to a reference model. It is particularly beneficial
in scenarios involving uncertainties in the system model, variations in system parameters, and
changes in environmental conditions (such as wind). By continuously updating control gains,
MRAC ensures robust performance even in the presence of these uncertainties and variations.
The reference model is:

Tref = ArefTref + Brefr(t) (5.32)

then,giving any bounded signals r(t), the control input u(¢) has to be chosen such that:
Jim [l — 2yep] = 0
The control law implemented is the follwing:
unmrac(t) = Kx (t)z(t) + Kr(t)r(t),

where: '
Kx =®x +STy.2T8x, and &x = STy.alax, (5.33)

Kr=®p+ SlyeTT,BR, and <i)R = STye’I"TOzR,

where y. is computed as:
ye = BL P.x., with P, being the solution of P.A,, + AL P, = —Q, (5.34)

where @ is a stricly positive matrix.The terms «,«;.,3;,0, are stricly positive diagonal matrices
that define the evolution of the gains over the time.These terms are the one that needs to be
tuned.

5.2.3 EMRAC

The EMRAC implementation enhances the MRAC algorithm by integrating adaptive integral and
adaptive switching control mechanisms. These additions fortify the control system’s capabilities,
enabling it to effectively adjust to changing dynamics and conditions [15]. The controller actions
are as follows:

u(t) = uprrac +up + ur + un +ULQR; (5.35)
where:
’LLMRAc(t) = Kx(t){l?(t) + KR(t)T(t)7 (536)
up(t) = Kp(t)d(t), (5.37)
UI(t) = K[(t)xj(t) (538)

where z; is the integral of the tracking error computed as:

21 =xe — o1 (||z1|]) pexr, and ze =z, — x, (5.39)
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where x. is the state tracking error, p is a positive diagonal matrix and o is the o-modification
strategy to prevent the drift of the integral of the tracking error.

The adaptive integral action uj; is designed to improve the tracking of the reference. The o-
modification strategy and the adaptive switching control action uy(¢) increases the robustness of
the closed-loop tracking performance.

The EMRAC controller architecture is shown in 5.3

Reference
Model

LQR reference
generator

xref

K+ m=

N
“
N
\
N
\
\
N
. \

Non linear |4
function

N
~
~

N

\

~

\
\
N
N

~

~

Adaptive
Mechanism

Figure 5.3: EMRAC architecture

Reference system

EMRAC is based on a reference system that describes the behaviour expected from the original
system. The reference system is defined as [15]:

T = ATy + Bpr + Epd (540)
where:
e I, € R"™ the reference model state, where n, is the dimensions of the state space;

e 7 € R™ is the reference input assumed to be bounded, with n, the dimension of the control
input;

e d € R™ the measurable disturbance and ng4 its dimension;

e« A, € Rw=X"= B € RW=X? F. € R"X" are the dynamics matrix, the input
matrix and the disturbance matrix of the reference model respectively;

The plant state space equation is the following:
&t =Ax+ Bu+ Ed+ G, x(ty) € R"™ (5.41)
where:
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e z € R™ is the state vector of the plant,n, is the dimensions of the state space;

e u € R™ is the plant input vector,n,, is the dimensions of the control input;

to € R is the initial time instant

e A € RwaXna B € R"X"u [ € R" X" are the dynamics matrix,the input matrix
and the matrix of the measurable disturbance, respectively, which are assumed constant
with unknown entries.

e G € R™ is the nonmeasurable disturbance;

Both the measurable and the non-measurable disturbances are considered to be bounded, meaning
that there exists G, > 0 and ds, > 0 such that

IGOI < Goor [dB)]] < doo VE > 1o (5.42)

It is assumed that there exist some constant matrices @ € R™*mu $y € R § € RwXna,
and an invertible matrix S € R™«*"u such that following matching conditions are satisfied

B,, = B®g,

A, = A+Bdy=A+B,0;'dx,

En, = E+B®,=A+B,%,'dp,

Py = dpS=5"3%>0 (5.43)

The ideal gains @R, @X, &JD can be collected in the matrix & € R Xnw ,With ny, = 2ng+n,+ng
and in the vector ¢ € R™ "™ defined as

P = [i’x dp dp ‘/I\)I} = b1 b2 - (Enw—l ¢A7nw (5.44)
‘il = (Qnu,n;C (545)

~ T ~
b= 617627 b1 "0, | and 191 < M, (5.46)

Adaptive gains
The adaptive gains are defined as follows [15] :

Kx =®x +STy.2"Bx, and ®x = STy.2Tax + Fx, (5.47)
Kr=®r+STyr"Br, and &z =5Tyr"ag+ Fr, (5.48)

Kp=%®p+STy.d"Bp, and &p=STy.d"ap+ Fp, (5.49)
K;=®;+STy.2t B, and b, = STy.atar + Fr, (5.50)

where ax, Sx,ar, ;1 € R"™=*" qp B € R"™*™ and ap,Bp € R™*™ are strictly positive
diagonal matrices and F,,F; € R"*" Fp ¢ R"X" and Fp € R"*" are the locking
strategies for preventing the unbounded evolution of the gains in the presence of disturbances
and unmodeled dynamics defined as:

Fx = —o4(|[0])®xpx, (5.51)
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Fr = —o4(||9l)®rp1, (5.52)
Fr=—04(|[¢])®rPR, (5.53)
Fp = _U¢(H¢||)(I>DPDa (5.54)

where px, pr € R%=*"s pp € R™>" and pp € R™*" are strictly positive diagonal
matrices. Moreover,y, is computed as

Yo = BETPexe7 with P, being the solution of P, A,, + AﬁPe =—Q, (5.55)

where ) € R"=*"= ig a strictly positive matrix.

o-modification
The o modification strategy is implemented to prevent the unbounded evolutions of the gains. In
order to prevent the drift of the integral error, in 5.39 the following o modification strategy is
implemented [15]:

0 if [loll <M;

el = § nr (122 —1) if < s < 200 (5:56)
I
nroif ||zl = 2M;

where n; and ]\/4\1 are strictly positive constants.
In 5.51,5.53,5.52 the o modification is implemented as:

0 if |l¢ll < M,
oo(ll6ll) = n¢<'f“’”1> i My < llwol| < 20, (5.57)

¢ .
ng if |lwgll > 2M,

The constraints are computed as:

Amax(T,Tat ® P;)
Amin(Tolat @ P

_ 3
M, > My, and 1pAmin (r,,r;l ® P(;l) > D@ (5:58)

with ® being the Kronecker product and the strictly positive matrices I'y, I'; € R™»*™> defined
as:
Iy = Alax,ag,ap,ar) = diag(ay, ag, ..., Q) (5.59)

L', = A(px, pr, pp, p1) = diag(p1, p2, - Pn.,,) (5.60)

Adaptive switching control action

The adaptive switching control action uy (t) has two different formulations u$y (¢) and w47 (¢) [15]:

a0 = KL @ K = 5T (5.61)
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Do = anoho(||velle) — ono(||@ o) pro® o (5.62)
) ) = K (¢ K¢ = 5To 5.63
uy (1) = Kn " (DY (Ye), N N (5.63)
P(ye) = [sen(Ye,) sgn(ye,) - - sen(ye,,)]” (5.64)
dnj = anshy (lvel) = ong (1n;]) pn; g, G=1,- - n0 (5.65)
where O € R, @y = diag (Pn1, PN2,y..., Pu,,) € R™ and the o modification is defined as:
0 if [|®n,l <My,
Py, o~ —
on, ([[®n;[) = nn, (AA/[NJH - 1> if  My; <|[|®n;|| < 2MN; (5.66)
Nj

TIN; Zf H(I)N]H 22MN;‘

where [|y||o with Q € R™*™« is a strictly positive matrix and an;,, pn,, 7w, ]\//.TNJ. ,j=1,,n,

strictly positive constants. My, and 7y, are defined as:

— 5 . S
M o d My, > 222 5 =1, ... 5.67
NO>>\min(SP_15,T); an Nj> é} s J ) Ty ( )
The h-function are defined as:
[lyella™
ho = (llyelle) = ~ (5.68)
€0 +70llyella™
hy = esl) = —25 =1, (5.69)
&+ [yel
considering &;, (;,7; with j =0, - - -, n,, strictly positive constants.

LQR control action

An LQR controller has been used to generate the r(t) reference signal that track the reference
euler angles. It has also been used as a direct control action for the quadrotor attitude control,
but it is smaller than the adaptive control actions.
LQR is an optimal control techniques that aims to steer the dynamics of the quadrotor while
minimizing the energy used in the control [16]. The goal of the LQR control is to steer the state
variable from an initial value xy to the origin £y — 0 while minimizing the following cost
function:
1 T T 1 T
J= 5/ (" Qup + u Rigrw) dt + Sx(tr) Halty) (5.70)
ta
where Q,H,R are design weight symmetric matrices such that Q, H are positive semi definite and
R is positive definite.
The solution of the optimization problem leads to a control input of the form:
v(t) = =R BT K (t)z(t) (5.71)
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where K (t) is the symmetric matrix solution of the Riccatti differential equation(DRE)

K=-KA—A"K - Qi+ KBR;\B"K, K(tf)=H (5.72)
With the following condition:

o System is linear time invariant (LTI) and controllable

o Cost function is defined over an infinite time interval (t; — 00)

e Weight matrices are constant with terminal cost H = Ogxg

K(t) — Kss as t; — oo. Where K, is the solution of the algebraic Riccatti equation (ARE)

0=-KA—-A"K — Qi + KBR,B"K (5.73)
derived from the DRE by setting K(t) = 0.This form of LQR is known as Infinite Hori-
zon LQR problem and can be solved with the lgr command in Matlab using the command:
"[F,K]=lqr(A,B,Qigr, Rigr)" where F = R, BT H. Therefore,5.71 can be rewritten as

lgr
v(t) = —Fx(t) (5.74)

The aim of the LQR algorithm is to achieve the tracking of the desired Euler angles state x4.Taking
into account the following system dynamics:

z(t) = Ax(t) + Bu(t) (5.75)
where:
0 0 01 11 0 0 O
0 0 0 1 1 1 0 0 O
0 0 0 1 1 1 0 0 O
A=l 0000 0 ™ B=11 ¢
0 0 0 0O 0 O 01 0
0 0 0 0 0 O 0 0 1
Recalling the reference system equation 5.40,where:
r(t) = Faq (5.76)
Defining the following terms:
A, = A-BF
B, = B
E, = FE (5.77)
and setting:
vLQr = F(zq — ) (5.78)

the reference system tracks the euler angles vector state.
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Chapter 6

Simulation and Analysis

In this chapter, the trajectory implemented for each simulation is going to be explained. The
tuning of all the parameters of all controllers is also presented.

6.1 Simulation Objective

The objective of this project is to test different control algorithm performing the same trajectory,
comparing their performances.The control algorithm tested are the following (Outer+Inner):

« PD+PD

« PD+MRAC

o PD+C-EMRAC-UV
o PD+C-EMRAC-EW
« PD+D-EMRAC-UV

The trajectory chosen is a helix with 12 cycles with radius of 8 meters with a climbing rate of
1 meter per cycle.This choice allows us to assess key performance indicators (KPIs) in relation
to the number of helix cycles. Since the gains are initially set to zero at the beginning of the
simulation, time is required to achieve gain convergence.The simulation starts at 100 seconds and
runs for 120 seconds. Before the helix trajectory starts, the drone will hover at 1 meter for the
first 100 seconds. The pause will allow the simulation environment to finish its setup and start
recording all signals sent to the workspace within Simulink.

All the simulation has been performed with the nominal values of mass and inertia(m =
0.8kg, I, = I,y = 0.05 and I, = 0.09) for each control algorithm.

In order to test the potentiality of the adaptive algorithms and to compare their results with the
benchmark controllers(PD and MRAC), all controllers previously mentioned have been tested
increasing the mass and inertia percentage of the quadrotor as follows:

e +10%
e +20%
e +30%

e« +50%
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6.2 Simulation parameter

6.2.1 Outer loop tuning

All the controllers have been tested, keeping the same tuning of the outer loop for consistency
during comparison.

yZn! DPxy2 DPz1 D22
-1.1 1 -9 | -8.8

Table 6.1: Outer loop parameters

where kz1 = _(pzl + pzz)v kzo = pzlpzwkmyl = _(pﬂ?yl + pmyz) and kiﬂyo = Py Pay,-

6.2.2 PD tuning

In the equations 6.1 the tuned parameter of the PD controller are shown.

008 0 0
Kp=| 0 008 0
0 0 08
00l 0 0
Kp=| 0 001 0 (6.1)
0 0 01

It can be notice that the gains are the same of x and y-axis while on the z-axis is one order of
magnitude greater. This is because the quadcopter is symmetric along x and y so it has the same
inertia along those axes I, = I, = 0.05 while along z-axis I, = 0.09.

6.2.3 MRAC tuning

MRAC
ap | [0.1,0.1,0.1,0.1,2,2] T
a, [0.01,0.01,0.2] I,
Bz 0.1*ay
By 0.1%a,

Table 6.2: MRAC « and (3 parameters

Considering n = 3 and [ = 2, I,;; and I, are defined as a (6 x 6) and a (3 x 3) identity matrix,
respectively.

6.3 EMRAC tuning

6.3.1 Centralized EMRAC controller

In the centralized EMRAC controller, there’s just one EMRAC algorithm that control the
orientation of the drone.
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C-EMRAC-UV C-EMRAC-EW
ax | [0.1,0.1,0.1,0.1,2,2]T,; | [0.1,0.1,0.1,0.1,0.1,2,2]T,.;
ar [0.01,0.01,0.2]T,, [0.01,0.01,0.2]1,,
a; | [0.1,0.1,0.2,0.2.2.2]T,; | [0.1,0.1,0.2,0.2,2,2] T
an 100000 [2,5,5]
ﬂX 0.10&){ 0.104)(
ﬁR O.laR 0.1OéR
6[ 0.10[[ O.].Oé]

Table 6.3: Centralized EMRAC « and [ parameters

C-EMRAC-UV | C-EMRAC-EW

PX 10~° 1y 10751,

PR 107°1, 107°1I,

" 10~°1, 10~°1,

PN 1075]nl 1075Inl

My 81071 8107

M; 4 4
My 0.15 0.15

Table 6.4: Centralized EMRAC o-modification parameters

6.3.2 Decentralized EMRAC algorithm

In the decentralized version of this algorithm, a controller for each euler angle is designed.So it
means there are three EMRAC controllers to control pitch(¢),roll(9) and yaw(1)).

Pitch Roll Yaw
D-EMRAC D-EMRAC | D-EMRAC

ax | [0.015,0.015]1, | [0.02,0.02]I, 2,2]1,,
aR 0.015 0.015 0.1
ar 13,311, 13,311, 8,81,
an 10° 10° 10°
ﬂX 0.10[)( 0.10&){ O.lOzX
BR O.laR O.lOzR O.laR
[3[ 0.104[ 0.101[ 0.10[]

Table 6.5: Decentralized EMRAC « and [ parameters

considering n = 2, I,, is defined as a (2x2) identity matrix.
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Pitch Roll Yaw
D-EMRAC | D-EMRAC | D-EMRAC

PX 10-° nl 10-° nl 10-° I
PR 10~°1, 10~°1, 107°1,
PI 10751—”1 1075[71[ 10751711
PN 10751, 10751, 10-°1,
My 0.0054 2-1074 0.0050
My 1 1 0.2
My 0.45 0.4 20
nr 1 1 1
nnN 1 1 1
Ne 1 1 1

Table 6.6: Decentralized EMRAC o-modification paramaters

Considering n = 3 and [ = 2, I,;; and I,, are defined as a (6 x 6) and a (3 x 3) identity matrix,
respectively.
M-terms define the threshold values for the activation of the o-modified strategy. When ||¢|],||® n;||
and ||zr|| passes or exceeds these pre-defined threshold bands, the o modification strategy is
triggered.

6.4 KPI Results

As it has already been said at the beginning of this chapter, several simulations have been
performed testing the drone at nominal and no-nominal conditions with all the controllers
algorithms previously described in order to underline the capabilities of the EMRAC. The KPIs
used to compare each of the controllers are the Root Mean Square Error (RMSE) and the
maximum error(ME).

The RMSE of a vector x,.; with respect to the state vector x is computed as follows:

RMSE =

=t (6.2)

where n is the number of samples in the vector and z; is the ¢ — th sample of the vector x.
Furthermore, ME is computed in the following way:

ME = max(Tyey — ) (6.3)
Having designed different inner controllers with the same outer algorithms, the attitude error
has been taken into account. The most important KPI used to compare the attitude tracking
performance has been the RMSE attitude error.
The histograms below show the progression of RMSE as a function of number of cycles in helix.
The importance of this presentation is that it shows how EMRAC algorithms need time for gains
to converge. It is important to note that errors are higher in the early stages of the simulation
and decreases as the trajectory cycles increase.
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Reference trajectory
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Figure 6.1: Trajectory

In the figure 6.1 a trajectory comparison among the reference and the trajectory performed
by each controller is shown.
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6.4.1
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RMSE euler derivatives
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Figure 6.5: 10%:RMSE euler derivatives
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Figure 6.6: 20%:RMSE orientation
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Figure 6.7: 20%:RMSE euler derivatives

56




Simulation and Analysis

6.4.4 +30 % mass and inertia
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Figure 6.11: 50%:RMSE euler derivatives
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6.5 Analysis

All the controllers have been tested keeping the same tuning of the outer loop for consistency
during comparison. Analysing the previous histograms, it can be stated that:

e In nominal mass condition, EMRAC controller achives smaller orientation error with respect
to PD controller;

e Increasing mass and inertia values, EMRAC controllers are able to adapt and achieve even
smaller attitude errors with respect to the PD controller;

o« EMRAC and MRAC sustain a larger mass increment with respect to the PD (50% vs 20%
mass increment limit, respectively);

e« EMRAC controllers achieve significantly smaller attitude error compared to MRAC using
the same tuning for a and [, showing the beneficial effect of the enhanced control actions
(integrative and switching);
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Chapter 7

Conclusion and Future work

From the results obtained, it can be stated that EMRAC has a smaller orientation error with
respect to the benchmark controllers. The adaptive controllers have better performance in not
nominal condition.The PD stops working at 20% mass and inertia increment, while the adaptive
algorithms perform with a small attitude error till 50% mass and inertia increment.As can be
seen from the histograms, the algorithm that performs better is the C-EMRAC-EW.The MRAC
has the same tuning of the EMRAC algorithms and it has the worst KPIs. This has been done
to better compare the base algorithm with the augmented one. After the 50% increment, the
EMRAC stops working due to physical limitation of the rotors.

The code from Simulink has been generated and deployed on an actual flight control board, and
the tests were performed on a realistic simulator(jMAVsim).

The following can be stated:

e Successful Hardware-in-the-Loop implementation and deployment of EMRAC on Pixhawk
6x;

o All quadrotor simulations are carried on jMAVsim simulator considering sensor feedback
noise;

This thesis project can be continued with further improvements as:
e Design adaptive solutions for the outer-loop controller;
e Augment the inner loop with a Neural Network control actions;

e Deploy the code on an actual drone

60



Appendix A

MATLAB Code

A.1 Trajectory function

function ref= fcn(t,T_start)
radius=8;
freq=2xpi*0.1;

if t<T start
x=0;
y=0;
z=—1;
dx=0;
dy=0;
dz=0;
ddx=0;
ddy=0;
ddz=0;

else

;| t=t—T _start;

% Position

x=radiusx*sin (freqxt);
y=radiusx*cos (freqxt)—radius;
z=—0.1xt —1;

3| % Velocities

dx=freq*radiusx*cos (freqxt);
dy=—freq*radius=*sin (freq=t);
dz=-0.1;

%Acceleration

ddx=—freq " 2+radius*sin (freqx*t);
ddy=—freq 2*radius*cos (freqx*t);
ddz=0;

end

ref=[x,y,z,dx,dy,dz,ddx,ddy,ddz];
end
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A.2 Position control along z

[13]

\label{}

function tau_Thrust = fcn(z,vz,angle,ref ,Q,kz_p,kz_d)

desz=ref (3);
vzdes=ref (6);
zdotdotdes=ref (9);
% Drone parameters
m=0.8;

g=9.81;

k1=0.01;

Tmax=4;

T=4xTmax;

roll=angle (3);
pitch=angle (2);

%1‘()})11St action

rho_z=0.01;

xi=[z—desz ,vz—vzdes] ;%error position and velocity vector
D=[0;1];

zeta=D’*Qxxi ;

eps=0.001;

if abs(zeta)>=eps

w=(rho_z/abs(zeta))x*zeta;
else

w=(rho_z/eps)*zeta;

end

% Control on Z axis
Vz=kz_dx(vz—vzdes)—kz_px(z—desz)+zdotdotdes+w;

sl ul=(mx(g—Vz)—klxvzxabs(vz))/(cos(roll)xcos(pitch));

tau_ Thrust=(ul/T)+1;

5| end

A.3 Position control on x and y

[13]

function [des_roll ,des_pitch] = fen(x,y,vx,vy,yaw,ref ,Q,kxy_p,kxy_d,tau_Thrust)

% Reference position
desx=ref (1);

desy=ref (2);

% Reference velocities
desvx=ref (4);

desvy=ref (5);

% Reference Acceleration
desxdotdot=ref (7);
desydotdot=ref (8);

% Drone parameters
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3lm=0.8; %kg

g=9.81; %mn/s "2
k1=0.01;

Tmax=4; %N

7| T=4xTmax ;
ul=Tx*(tau_Thrust—1);

% x and y control
F=(—ul/m) *[sin (yaw) ,cos (yaw);—cos (yaw) ,sin (yaw) | ;
G=(k1/m) *[vxxabs (vx);vy*abs(vy) |;

% Robust control action

rho_xy=0.01,;

xi=[x—desy ,y—desy ,vx—desvx ,vy—desvy] ';%error position and velocity vector
D=[zeros (2);eye(2)];

sl zeta=D"*Qxxi;

w=(rho_xy/abs(zeta))*zeta;

% eps=0.001;

% if abs(zeta)>=eps

%

3|% else

% w=(rho_xy/eps)#*zeta;

5| % end

© o

Y%control law
Vxy=kxy_d*[vx—desvx;vy—desvy]|—kxy_p=*[x—desx;y—desy]+[desxdotdot;desydotdot]+w;
out=F\ (Vxy+G); % inv (F)*(Vxy+G) is less accurate

des_roll=out (1) ;

des__pitch=out (2);

end

A.4 Setup controllers script

N

close all
clear all
clc

5| %

o0

SampleTime=0.01;

7| T__start=100;
Tf=60+T_start;

% Helix parameters
radius=8§;
freq=2%pi*0.1;

3| % OUTER

%% 7 control

9PD action
%eigenvalues

| pz1=-09;

pz2=—8.8;

kz__p=pzl*xpz2;
kz_d=—(pzl+4pz2);

% Robust control action
P_z=eye(2);
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H hat z=[0,1;—kz p,—kz d];
5| Q_z=lyap (H_hat_z,P_z); %solution of the lyapunov eq.

%% X and Y control

25| % PD eigenvalues

plxy=—1.1;

p2xy=—1;

kxy_ p=plxy=*p2xy;

kxy d=—(plxy+p2xy);

3|%robust control xy

P_xy=eye (4);

5| H hat xy=[zeros(2), eye(2),—kxy pxeye (2),—kxy_ dxeye(2)];
i| Q_xy=lyap (H_hat_xy,P_xy); %solution of the lyapunov eq.

38| %% CONTROLLERS

o oo oo

o o
SRS I R O

o

o

k=input (’Controller to be run, type: \n 1->PD \n 2—>CEN EMRAC \n 3—>DEC EMRAC \n
4—>MRAC BASE \n’);

if (k~=1 && k~=2 && k~=3 && k~=4 && k~=5)

disp ( 'TERROR: Controller not valid’)

return

end

switch k
case 1 % PD

Kp=0.08xdiag ([1 1 10]);
Kd=0.01xdiag ([1 1 10]);
disp ('PD load’)

case 2 YCEN EMRAC
EMRAC_CEN_ setup_ Igr
disp ( '"CEN_EMRAC loaded )

case 3 YDEC EMRAC
DEC_EMRAC_PHI_setup_ LQR
DEC_EMRAC_THETA setup LQR
DEC_EMRAC_PSI_setup_ LQR
disp ( 'DEC_EMRAC loaded )

case 4 % MRAC base
MRAC__base_Iqr
disp ( '"MRACbase loaded ’)

5| end

A.5 Setup EMRAC script
A.5.1 Centralized EMRAC

I

0w~

67
37
3;

)

55?3
?rﬁ*

EMRAC. P_ phi=1;

EMRAC. S=eye (3) ;

%% LQR reference model
n=3;

np = 3;
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66

68
69
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71

MATLAB Code

= 2;

Ip ;
A = [zeros(3%(2—1),3%(2—1)), eye(3x(2—
B =

1)); zeros(3x(2—1), 3%2)];

)
[zeros (3%(2—1),3%(2—1)); eye(3*(2—1))];

EMRAC. GAMMA _alpha = diag ([diag (EMRAC. alpha X); diag(EMRAC.alpha R);
diag (EMRAC. alpha D) ; diag(EMRAC. alpha I)]);

EMRAC.GAMMA rho = diag ([diag (EMRAC.rho X); diag (EMRAC.rho R);
diag (EMRAC.rho_D); diag(EMRAC.rho I)]);

65

QR reference model

Q_lagr = 1000%diag ([20 20 20 0.01 0.01 0.01]);

R_lqr = lxeye(n);

Kbl = 1qr (A,B,Q_lgr,R_lqr);

EMRAC.A m = A—BxKbl;

EMRAC.B m = B;

EMRAC.E m = zeros (npxlp,n);

%% LQR feedforward

Q_fw=le—3xdiag([1 1 1 1 1 1]);

R_fw=1000000%diag ([1 1 1]);

F = lqr (A,B,Q_fw,R_fw);

disp (’loaded )

9% adaptive weights

EMRAC. alpha_ X = 0.1xdiag([1 1 2 2 10 10]); %nx*nx dimension positive diagonal
EMRAC. alpha_R = 0.01xdiag([1 1 10]); %nu*nu dimension positive diagonall
EMRAC. alpha_ D = 10xdiag ([1 1 1]); %nd*nd dimension positive diagonal

EMRAC. alpha_ I = 0.1xdiag([1 1 2 2 20 20]); %nx#nx dimension positive diagonal
;| EMRAC. alpha_ N = 100000; %positive constant

EMRAC. alpha_ N__ew = [2 5 5]; %positive constant

%beta

EMRAC. beta_ X = 0.1+EMRAC. alpha_X; %positive

EMRAC. beta_ R = 0.1%EMRAC. alpha_ R; %positive

EMRAC. beta_ D = 0.1+EMRAC. alpha_D; %positive

EMRAC. beta_I = 0.1xEMRAC. alpha_1I; %positive

disp (’loaded ")
i| %% sigma modification parameters

EMRAC. sigma__active=1; %activate sigma modification parameters

if EMRAC. sigma_ active =— 0

disp ( ’Sigma Modification OFF’)
else
disp ( ’Sigma Modification ON’)

end

EMRAC. rho__e = 10e—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive diagonal
EMRAC.rho X = 10e—6xdiag ([ones(n_x,1)]); %nx#nx dimension positive diagonal
EMRAC.rho_R = 10e—6xdiag ([ones(n_u,1)]); %nusnu dimension positive diagonal
EMRAC.rtho D = 10e—6xdiag ([ones(n_d,1)]); %nuxnu dimension positive diagonal
EMRAC.rho_1 = 10e—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive diagonal
)|EMRAC. rho_ N = 0.1; %positive constant

EMRAC.rho_N_ ew =le—3%[1 1 1]; %positive constant
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99
100
101
102
103
104

105

16

MATLAB Code

%y_e gain

EMRAC.Q = diag ([ones(n_x,1)]); Y%nx*nx dimension positive
EMRAC.P_e = lyap (EMRAC.A m’ ,EMRAC.Q); %gain of y e
EMRAC.K x 0=[0.1xeye(3) 0.0lxeye(3)];

EMRAC.K_r_ 0=0.1xeye(3);

EMRAC. M__phi = 0.0008;

EMRAC.M_phi hat = sqrt(max(eig (kron(EMRAC.GAMMA rho*inv (EMRAC.GAMMA alpha) ,inv (

EMRAC. P_ phi)

/min(eig (kron

EMRAC. M_ phi;
EMRAC.M_1_hat
EMRAC.M_N_ hat

EMRAC. eta__ I
EMRAC. eta_ phi
EMRAC. eta_ N

). ..

))
(EMRAC. GAMMA_ rho* inv (EMRAC. GAMMA_ alpha) ,inv (EMRAC.P_phi)))))=*

%positive constant

Y%positive constant

0.15;

;| EMRAC.M_N_hat_ew=6e—4x[1 1 1];

= 1; Y%positive constant
= 1;
= 1; %positive constant

EMRAC.eta_ N_ew=[le—3 le—3 le—3];

EMRAC. Omega

Yh(y_e)
EMRAC. sigma_ 0

7| EMRAC. gamma_ 0

EMRAC.xi 0
%hi(y_e)

calculat

diag ([1 1 1]); %nu*nu dimension positive diagonal

ion uv
2;
le—5;
= ]_;

calculation ew

EMRAC. sigma__ew = 2x%[1 1 1];
EMRAC. gamma._ ew = le—5%[1 1 1];
EMRAC. xi__ew = 1x[1 1 1];

Ysign y_e

EMRAC. epsilon
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A.5.2 Decentralized EMRAC

PHI EMRAC
n_x=2;
n_u=1;
n_d=2;

_ )

PHI_EMRAC. P_ phi=1;
PHI_EMRAC.S=1;
Ts=SampleTime;

n=1;
np =1;
Ip = 2;
PHL EMRAC.A = [zeros(np*(lp—1),npx(lp—1)), eye(np*(lp—1)); zeros(np*(lp—1), npxlp)
1;
s|PHL EMRAC.B = [zeros (np*(lp—1),np*(lp—1)); eye(npx(lp—1))];
5| 7QR
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PHL_EMRAC. Kbl

7|PHL EMRAC.Q_lqr =leOxdiag ([2e3 1lel]);
«|PHL EMRAC.R_Iqr = 1;

lqr (PHI_EMRAC. A,PHI_EMRAC.B,PHL_EMRAC. Q_lqr ,PHL_EMRAC.R_lqr) ;

PHI_EMRAC.A m = PHI_EMRAC.A—PHI _EMRAC.B«PHI_EMRAC. Kbl ;
PHIL EMRAC.B_m = PHI EMRAC.B;
PHI EMRAC.E m = zeros (npx*lp ,n+1);

;| %% adaptive weights

PHI_EMRAC. alpha_ X = 0.01xdiag ([ones(n_x,1)]); %nxsnx dimension positive
diagonal
PHI EMRAC. alpha R = 0.01xdiag ([ones(n_u,1)]); %nuxnu dimension positive
diagonal
PHL EMRAC. alpha_D = llxdiag ([ones(2,1)]); %nd*nd dimension positive diagonal
PHI EMRAC. alpha_I = 2xdiag ([ones(n_x,1)]); %nx*nx dimension positive diagonal
PHL EMRAC. alpha_ N = 10000000; %positive constant
PHI EMRAC. beta X = 0.1«PHI_EMRAC. alpha_ X; %positive
5| PHIL_ EMRAC. beta_ R = 0.1%xPHI_EMRAC. alpha_R; %positive
s| PHL. EMRAC. beta D = 0.1«PHI_EMRAC. alpha_D; %positive
7| PHL EMRAC. beta_ I = 0.1%xPHL_EMRAC. alpha_1; %positive

9% sigma modification parameters
EMRAC. sigma__active=1; %activate sigma modification parameters

if EMRAC. sigma_ active = 0
disp ( ’Sigma Modification OFF PHI’)

else
disp ( ’Sigma Modification ON PHI”)

end

PHL EMRAC.rho_e = le—6xdiag ([ones(n_x,1)]); %nmx*nx dimension positive
diagonal

PHI EMRAC.rho_X = le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive
diagonal

PHI EMRAC.rho_R = le—6xdiag ([ones(n_u,1)]); %nu*nu dimension positive
diagonal

PHI EMRAC.rho_ D = le—6xdiag ([ones(2,1)]); %nuxnu dimension positive diagonal

PHL EMRAC. rho_I = le—6xdiag ([ones(n_x,1)]); %nmx*nx dimension positive
diagonal

PHI_EMRAC.rho N = le—6; %positive constant

Y%y_e gain

PHL EMRAC.Q = diag ([1 1]); Ynx*nx dimension positive

PHIL_ EMRAC.P_e = lyap (PHL_ EMRAC.A m’ ,PHI EMRAC.Q); %gain of y e

PHI EMRAC.GAMMA _alpha = diag ([ diag (PHL EMRAC.alpha X); diag(PHL EMRAC.alpha_R);

diag (PHL EMRAC. alpha D); diag (PHL EMRAC. alpha I)]);

PHI EMRAC.GAMMA rho = diag ([diag (PHL_EMRAC.rho_X); diag (PHL_ EMRAC.rho_R);

diag (PHL EMRAC.rho D); diag(PHL EMRAC.rho I)]);

PHIL_ EMRAC.M = 0.0002;

;7| PHL EMRAC.M_phi hat = sqrt(max(eig (kron (PHL EMRAC.GAMMA rhoxinv (PHI EMRAC.

GAMMA_alpha) ,inv (PHL EMRAC.P_phi)))) ...
/min (eig (kron (PHL EMRAC.GAMMA rhoxinv (PHL EMRAC.GAMMA alpha) ,inv (PHL EMRAC.
P_phi)))))«PHL EMRAC.M;
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PHI_EMRAC.M_1_hat = 1; %positive constant

PHI_EMRAC.M_N_ hat = 0.45; %positive constant

PHI EMRAC. eta_I = 1; %positive constant sigma mod for integral action xIdot
PHL EMRAC. eta_ phi = 1;

PHI_EMRAC. eta_ N = 1; Y%positive constant

PHL_EMRAC. Omega = diag ([ones(n_u,1)]); %nuxnu dimension positive diagonal
%h(y_e) calculation

PHL _EMRAC. sigma__ 0 = 2;

PHL EMRAC. gamma_ 0 = le—5;

PHI_EMRAC. xi_ 0 = 1;

i| %sign y_e

PHI_EMRAC. epsilon = 5;

THETA EMRAC

)

2
1.
2

)

5B B
D-‘ﬁx

— )

THETA EMRAC. P_ phi=1;
THETA EMRAC.S=1;

n=1;

np =1

Ip = 2;

THETA EMRAC.A = [zeros (np*(lp—1),npx(lp—1)), eye(npx(lp—1)); zeros(npx(lp—1), npx*
Ip)1;

THETA_EMRAC.B = [zeros (np*(lp—1),np*(lp—1)); eye(np*x(lp—1))];

YLQR

THETA EMRAC. Q_lgr = leOxdiag([2e3 lell]);

7| THETA_ EMRAC. R_1qr = lxeye(n);

THETA EMRAC. Kbl = lqr (THETA EMRAC.A,THETA EMRAC.B,THETA EMRAC.Q_lqr ,THETA EMRAC.

R_lqr);
THETA_EMRAC.A m = THETA EMRAC.A-THETA EMRAC.B«THETA EMRAC. Kbl;
THETA EMRAC.B m = THETA EMRAC.B;
3| THETA EMRAC.E m = zeros (np*lp ,n+1);
;| %% adaptive weights
THETA_EMRAC. alpha_ X = 0.01xdiag ([ones(n_x,1)]); %nx*nx dimension positive
diagonal
THETA_EMRAC. alpha_ R = 0.01xdiag ([ones(n_u,1)]); %nmuxnu dimension positive
diagonal
THETA EMRAC. alpha D = 1llxdiag ([ones(n_d,1)]); %nd*nd dimension positive
diagonal
THETA EMRAC. alpha_ I = 2xdiag ([ones(n_x,1)]); %nx*nx dimension positive diagonal
THETA_EMRAC. alpha_ N = 10000000; %positive constant
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34| THETA_EMRAC. beta_ X 0.1+THETA EMRAC. alpha_ X ; %positive

35| THETA EMRAC. beta_ R = 0.1+«THETA EMRAC. alpha_R; %positive
36| THETA__EMRAC. beta_ D = 0.1+THETA EMRAC. alpha_D; %positive
37| THETA_EMRAC. beta_ I = 0.1+THETA_EMRAC. alpha_1I; %positive

35| %%
30| %sigma modification parameters
10| EMRAC. sigma_ active=1; %activate sigma modification parameters

12| if EMRAC. sigma__active =— 0

13 disp ( ’Sigma Modification OFF THETA’)
11| else

15 disp ( ’Sigma Modification ON THETA’)
16| end

15| THETA _EMRAC. rho__e
diagonal
10| THETA EMRAC.rho_ X
diagonal
50| THETA_ EMRAC.rho_ R
diagonal
51| THETA _EMRAC.rho_D
diagonal
52| THETA. EMRAC. rho_ I
diagonal

le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive

le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive

le—6+diag ([ones(n_u,1)]); %nusnu dimension positive

le—6xdiag ([ones(n_d,1)]); %nu*nu dimension positive

le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive

53| THETA_ EMRAC. rho_ N = le—6; %positive constant

54

55| %y_e gain

56| THETA. EMRAC.Q = lxdiag ([ones(n_x,1)]); Ymx*nx dimension positive
57| THETA EMRAC.P_e — lyap (THETA EMRAC.A m’ ,THETA EMRAC.Q); %gain of y e

61| THETA EMRAC.GAMMA alpha = diag ([ diag (THETA EMRAC. alpha X); diag (THETA EMRAC.

alpha_R); ...
62 diag (THETA__ EMRAC. alpha_D); diag(THETA EMRAC. alpha_1I)]);
63| THETA_ EMRAC. GAMMA_ rho = diag ([diag (THETA_EMRAC.rho_X); diag(THETA EMRAC.rho_R);
64 diag (THETA EMRAC.rho D) ; diag (THETA EMRAC.rho I)]);
65
s6| THETA_ EMRAC.M = 0.0002;

67| THETA EMRAC.M_ phi_hat = sqrt(max(eig (kron (THETA EMRAC.GAMMA rhoxinv (THETA EMRAC.
GAMMA _alpha) , inv (THETA EMRAC.P_phi)))) ...

68 /min (eig (kron (THETA EMRAC.GAMMA rhoxinv (THETA EMRAC.GAMMA alpha) ,inv (
THETA_EMRAC. P_ phi) ) ) ) ) *THETA_EMRAC.M;

s| THETA_EMRAC. Omega

diag ([ones(n_u,1)]); %nu*nu dimension positive diagonal

71| THETA_ EMRAC.M_I_ hat = 1; %positive constant

72| THETA_EMRAC.M_ N_ hat = 0.4; Y%positive constant

73

74| THETA EMRAC. eta I = 1; Y%positive constant
75| THETA. EMRAC. eta_ phi = 1;

76| THETA. EMRAC. eta_ N = 1; Y%positive constant

so|%h(y_e) calculation

s1| THETA _EMRAC. sigma_ 0 = 2;
s2| THETA EMRAC. gamma_ 0 = le—5;
s3| THETA__EMRAC. xi_ 0 = 1;

85| %sign y_e
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s6| THETA__EMRAC. epsilon = 5;

PSI EMRAC

I;
5| PSL_EMRAC.B

s| PSI_EMRAC.rho e

2;
1;
=1;

- )

BB B
G—-$|:-|'><

5| PSL_EMRAC.P_ phi=1;
)| PSL_EMRAC. S=1;

n=1;
np =1;
Ip = 2;

PSI EMRAC.A = [zeros (npx*(lp—1),np*x(lp—1)), eye(np*(lp—1));zeros(np*(lp—1), npxlp)

[zeros (np*(lp—1) ,npx(Ip—1)); eye(npx(lp—1))];

PSI EMRAC.Q_lqr = leOxdiag ([2e3 1lel]);

PSL EMRAC.R_lqr = 1;

PSI EMRAC. Kbl = lqr (PSI EMRAC.A,PSI EMRAC.B,PSI EMRAC. Q_lqr,PSI EMRAC.R_1lqr);

9% sigma modification parameters

PSI_ EMRAC.A m = PSI_EMRAC.A-PSI EMRAC.B«*PSIL_EMRAC. Kbl ;

PSI_ EMRAC.B m = PSI_EMRAC.B;

PSI_EMRAC.E m = zeros (npxlp ,n);

5| %% adaptive weights

PSI_EMRAC. alpha_ X = lxdiag ([ones(n_x,1)]); %nx*nx dimension positive diagonal
PSI_EMRAC. alpha_R = 0.1xdiag ([ones(n_u,1)]); %nusnu dimension positive diagonal
PSI_EMRAC. alpha_D = 1lxdiag ([ones(n_d,1)]); %nd+«nd dimension positive diagonal
PSI_EMRAC. alpha_I = 3xdiag ([ones(n_x,1)]); %mx*nx dimension positive diagonal
PSI_EMRAC. alpha_ N = 100000; %positive constant

PSI_EMRAC. beta_ X = 0.1%PSIL_EMRAC. alpha_X; %positive

PSI EMRAC. beta_ R = 0.1%PSI_EMRAC. alpha_R; %positive

PSI EMRAC. beta_ D = 0.1%xPSIL_EMRAC. alpha_D; %positive

PSI EMRAC. beta 1 = 0.1%xPSI_EMRAC. alpha_1; %positive

EMRAC. sigma__active=1; %activate sigma modification parameters

if EMRAC.sigma__active =— 0

disp ( ’Sigma Modification OFF PSI’)

else

disp ( ’Sigma Modification ON PSI’)

;| end

diagonal

le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive

PSL_EMRAC.rho_X = le—6xdiag ([ones(n_x,1)]); %nx*nx dimension positive
diagonal
PSI EMRAC.rho R = le—6xdiag ([ones(n_u,1)]); %nusnu dimension positive

diagonal
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PSI EMRAC.rho_ D = le—6xdiag ([ones(n_d,1)]); %nuxnu dimension positive
diagonal

PSI_ EMRAC.rho_1I = le—3xdiag ([ones(n_x,1)]); %nx*nx dimension positive
diagonal

PSI EMRAC.rho N = le—6; %positive constant

%y_e gain

;| PSL_EMRAC.Q = bxdiag ([ones(n_x,1)]); Ymx*nx dimension positive

PSI_ EMRAC.P_e lyap (PSL_EMRAC.A_m’ ,PSI EMRAC.Q); %gain of y_ e

PSI_ EMRAC.GAMMA_ alpha = diag ([ diag (PSI_EMRAC. alpha_X); diag (PSL_EMRAC.alpha_ R);

diag (PSI_EMRAC. alpha D) ; diag (PSI_EMRAC. alpha_1)]);
PSL_EMRAC.GAMMA tho = diag ([diag (PSL EMRAC.rtho_X); diag(PSL EMRAC.rtho_R);
diag (PSI_EMRAC.rho_D); diag (PSL EMRAC.rho 1I)]);

PSI_EMRAC.M 0.005;

PSI_EMRAC.M_ phi_hat = sqrt (max(eig (kron (PSI_EMRAC.GAMMA rhoxinv (PSL_EMRAC.
GAMMA _alpha) ,inv (PSI EMRAC.P_phi))))/min(eig (kron (PSI EMRAC.GAMMA rhoxinv (
PSL_EMRAC. GAMMA _alpha) , inv (PSL_EMRAC. P_ phi)))) ) *PSL_EMRAC.M;

PSI._ EMRAC.M_I_hat = 0.2; %positive constant
PSI_EMRAC.M_N_ hat = 20; Y%positive constant

PSI EMRAC.eta 1 = 1; Y%positive constant
PSI._ EMRAC. eta_ phi = 1;

PSI_ EMRAC. eta_ N = 1; Y%positive constant

PSI_ EMRAC. Omega

diag ([ones(n_u,1)]); %nusnu dimension positive diagonal

%h(y_e) calculation

PSI._ EMRAC. sigma_ 0 = 2
PSI_EMRAC. gamma_0 = le—5;
PSI_EMRAC.xi_ 0 = 1;

%sign y_e
PSI_EMRAC. epsilon = 5;
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Appendix B

KPIs results

B.1 Nominal conditions
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Figure B.1: RMSE position nominal condition
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Figure B.2: ME position nominal condition

72




KPIs results
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Figure B.3: RMSE velocities nominal condition
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Figure B.4: ME velocities nominal condition

RMSE euler derivatives
30 T T T T T T

T
I \RAC
I D i
[ 1DEC EMRAC
I CEN EMRAC UV
10 [ CEN EMRAC EW | |

[av
o
I

N° cycles

Figure B.5: RMSE euler derivatives nominal condition
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ME euler derivatives
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Figure B.6: ME euler derivatives nominal condition
B.2 10% mass and inertia increament
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Figure B.7: RMSE position +10%
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Figure B.8: ME position +10%
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Figure B.9: RMSE velocities +10%
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Figure B.10: ME velocities +10%
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Figure B.11: RMSE euler derivatives +10%
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ME euler derivatives
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Figure B.12: ME euler derivatives +10%

B.3 20% mass and inertia increment
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Figure B.13: RMSE position +20%
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Figure B.14: ME position +20%
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Figure B.15: RMSE velocities +20%

6 ME velocity
| | | T T
I MRAC
4 N FD i
o "1 DEC EMRAC
£ I CEN EMRAC UV
2 [ CEN EMRAC EW | |
0
N° cycles
Figure B.16: ME velocities +20%
RMSE euler derivatives
40 T T T T T T T T
I \VIRAC
= N PD
D o0 L [ IDEC EMRAC |
2 I CEN EMRAC UV
- [ CEN EMRAC EW

N° cycles

Figure B.17: RMSE euler derivatives +20%
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ME euler derivatives
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Figure B.18: ME euler derivatives +20%
B.4 30% mass and inertia increment
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Figure B.19: RMSE position
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Figure B.20: ME position 30%
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Figure B.21: RMSE velocities 30%
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Figure B.22: ME velocities 30%
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Figure B.23: RMSE euler derivatives 30%
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ME euler derivatives
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Figure B.24: ME euler derivatives 30%
B.5 50% mass and inertia increment
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Figure B.25: RMSE position 50%
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Figure B.26: ME position 50%
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Figure B.27: RMSE velocities 50%
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Figure B.28: ME velocities 50%
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Figure B.29: RMSE euler derivatives 50%
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Figure B.30: ME eculer derivatives 50%
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Appendix C

Graphs

C.1 C-EMRAC-UV control action
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Figure C.1: C-EMRAC-UV ux
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Figure C.3: C-EMRAC-UV u;
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Figure C.6: C-EMRAC-UV g,
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C.2 C-EMRAC-UYV gains
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Figure C.8: C-EMRAC-UV Kp
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Figure C.10: C-EMRAC-UV Ky

87



Graphs

C.3 C-EMRAC-UV og-modification
0.06 | Sigma modification ¢ |
=
0.04 — “—
003 " =
0.02 — ]J —
0 I | | | | 1
Figure C.11: C-EMRAC-UV ¢-modification
Sigma modification qu
. ‘ ‘ lloyll
0.25 Mon
02 "K ZMON,
0.15
0.05 — -
o \ ! ! \ \ \
80 100 120 140 160 180 200 220
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Figure C.13: C-EMRAC-EW ux
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C.5 C-EMRAC-UYV gains
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C.6 C-EMRAC-UV og-modification
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