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Abstract

Egocentric object detection is a critical aspect of robotic navigation and interaction
within dynamic and complex home environments. The primary objective of this
research is to explore the challenges and solutions associated with achieving temporal
consistency in egocentric object detection, particularly in the scope of the Open-
Vocabulary Mobile Manipulation (OVMM) challenge. This is contextualized within
the HomeRobot 3D simulation environment, where a robot (Hello Robot Stretch) is
tasked with navigating a household and bring an object from one place to another.
The perception module of the robot is enabled by open-vocabulary object detection
models, such as DETIC (Detecting Twenty-thousand Classes using Image-level
Supervision). These models have shown to be promising in recognizing a wide
range of objects, given any prompt. However, the performance is often hindered
by the egocentric view and the lack of a temporal coherence, leading to “noisy”
predictions and inconsistencies across consecutive frames. This problem arises
as the model is processing each frame in isolation, leading to predictions which
lack continuity and coherence across time. To address this, we investigate the
integration of Spatio-Temporal Adapters (ST-Adapters) within the DETIC model,
aiming to enhance the model’s ability to maintain temporal consistency, without
compromising its open-vocabulary capabilities. We highlight the limitations of
DETIC in maintaining temporal consistency, particularly in the detection of small
or partially obscured objects. By incorporating ST-Adapters, we investigate an
approach to instill the model with a spatio-temporal dimension, allowing for more
coherent and reliable object detections over time. The HomeRobot simulation
environment leverages a subset of the Habitat Synthetic Scenes Dataset (HSSD),
featuring high-quality 3D scenes. For our analyses, we extracted frames from video
explorations, complete with objects’ ground truths. To assess the performance of
the models, we conduct evaluations using two distinct test sets: one in-domain,
consisting of scenes similar to those encountered during the training phase, and
another out-of-domain, comprising household scenes not seen in training. Therefore,
the hypothesis to verify is that an improvement in the frame detections would
translate into enhanced temporal consistency in the 3D simulation environment.
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Chapter 1

Introduction

1.1 Background

The advent of household robotic assistants represents a pinnacle of achievement and
a continuous source of inspiration in the field of robotics. This enduring ambition
has catalyzed significant strides across multiple research domains within robotics,
encompassing vision, manipulation, and the integration of complex tasks and
benchmarks. The ultimate goal is to develop a robot that is not only proficient
in recognizing a vast array of objects but also capable of interacting with the
environment and navigating intelligently in a world where sensory information is
inherently limited.

This broad spectrum of research has driven advancements in various related fields,
including navigation [1, 2|, service robotics [3, 4], language understanding
[5, 6] and the integration of task and motion planning [6].

These endeavors are unified under the challenge of Open-Vocabulary Mobile
Manipulation (OVMM). The essence of OVMM lies in the development of a
robot capable of identifying and relocating arbitrary objects within the dynamic
and unpredictable confines of a home environment.

1.2 Open-Vocabulary Mobile Manipulation

The concept of Open-Vocabulary Mobile Manipulation (OVMM) is an
advanced directive in robotics that combines three significant aspects to address
the challenges of operating within home environments:

e Open-Vocabulary: the robot’s ability to recognize and understand a wide
array of objects without being limited to a pre-defined set of items. In
traditional settings, robots are programmed to identify and interact with
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specific objects they have been trained on. However, an open-vocabulary
approach enables the robot to adapt to new and unforeseen objects, enhancing
its functionality in real-world scenarios. This capability is crucial in a home
environment, where the variety of objects can be vast. The “open-vocabulary’
aspect allows the robot to process and act upon commands involving any object
it encounters, leveraging advanced machine learning and natural language
processing techniques.

Y

o Mobile: the robot’s capability to autonomously navigate and move across
different areas within the home. Unlike stationary robots, a mobile robot
can traverse various terrains and obstacles, such as stairs or doorways. This
mobility is fundamental for performing tasks across multiple rooms or areas,
enabling the robot to efficiently go where its assistance is required. Technologies
like SLAM (Simultaneous Localization and Mapping) are integral, allowing
the robot to understand, map its environment in real-time, and navigate
effectively.

e Manipulation: the robot’s ability to physically interact with objects by
moving them from their initial location (start receptacle) to a designated
target location (goal receptacle). This requires not only the robot’s capa-
bility to identify and grasp various objects but also to understand the most
appropriate methods for transporting these items safely and efficiently to their
intended destinations. Manipulation, therefore, involves precise control and
coordination, underlining the robot’s ability to assist with a broad range of
household tasks through direct physical interaction with the environment.

Combining these elements, Open-Vocabulary Mobile Manipulation rep-
resents a comprehensive approach to developing robotic systems capable of au-
tonomously performing a wide range of tasks within the unpredictable and dynamic
environments of human homes. OVMM robots are designed not only to understand
and interact with any object and move freely throughout the space but also to ma-
nipulate items effectively, making them invaluable for advancing home automation
and assistance.

1.2.1 The Modules of OVVM

Historically, research in this area has often simplified the context significantly,
employing discrete action spaces, limiting the diversity of objects, or confining
the scope to small, single-room environments that can be easily navigated. These
constraints have hindered the application of these advancements in large, continuous,
real-world settings. Nevertheless, recent breakthroughs in bridging language and
vision, primarily through multi-modal models like CLIP [7], have broadened
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the horizon for robots to generalize across diverse object categories, surpassing
traditional limitations.

A pivotal aspect of this research is the challenge posed by the integration of
three main modules: perception, planning, and action. The perception module
is responsible for recognizing and segmenting objects, the planning module for
generating a sequence of actions to reach the target object, and the action module
for executing these actions.

1.2.2 The Role of Perception in OVMM

In the perception module, DETIC plays an essential role: providing object seg-
mentation inputs for both heuristic and Reinforcement Learning (RL) navigation
strategies. This means that the goal of creating versatile and effective general-
purpose home assistants necessitates a comprehensive approach that deeply connects
the elements of perception, planning, and action. In this work, however, our focus
narrows to the perception aspect, recognizing it as the foundational step in this in-
tricate pipeline. By concentrating on enhancing perception, we lay the groundwork
for subsequent improvements in planning and action.

1.3 Problem Statement

The development of robotic assistants for household environments requires the
integration of advanced capabilities in object detection, navigation, and interaction
within dynamic and unpredictable settings. A critical challenge in this domain
is achieving reliable and consistent object detection in an egocentric perspective,
which is essential for the effective functioning of such robots. This challenge is
amplified in the context of Open-Vocabulary Mobile Manipulation (OVMM), where
the robot must identify and interact with a wide variety of objects within complex
home environments.

Despite significant advancements in robotics, particularly in the areas of vision,
manipulation, and task integration, the specific issue of temporal consistency in
egocentric object detection remains a notable gap. This inconsistency arises due to
the limitations of current perception models, such as DETIC, which, despite their
ability to recognize a broad range of objects, struggle with maintaining continuity
across consecutive frames. This results in "noisy" predictions and hampers the
robot’s ability to interact effectively with its environment, especially when dealing
with small or partially obscured objects.
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1.4 Objectives

The primary objectives of this research are outlined as follows:

1. To Understand the Current Limitations of Egocentric Object De-
tection: Examine the existing challenges in achieving temporal consistency
in object detection, particularly in the context of Open-Vocabulary Mobile
Manipulation (OVMM). This involves a comprehensive review of the DETIC
model and its performance in dynamic and complex home environments.

2. To Investigate the Integration of Spatio-Temporal Adapters (ST-
Adapters): Explore the potential of incorporating ST-Adapters into the
DETIC model to enhance its ability to maintain temporal consistency. This
includes understanding how spatio-temporal dimensions can be leveraged to
achieve more coherent and reliable object detections across consecutive frames.

3. To Evaluate the Performance of Enhanced Object Detection Mod-
els: Conduct testing and evaluation of the modified DETIC model with
ST-Adapters in the HomeRobot 3D simulation environment. This involves
comparing the model’s performance on two distinct test sets: one in-domain
(scenes similar to the training phase) and another out-of-domain (unseen
household scenes).

4. To Assess the Impact of Improved Temporal Consistency on Robotic
Navigation and Interaction: Analyze how enhancements in object detection
temporal consistency affect the overall capabilities of robots in navigating and
interacting within home environments. This includes exploring the implications
for subsequent modules of planning and action in the robotic operation.



Chapter 2

Literature Review

2.1 Egocentric Object Detection

Egocentric object detection (EOD) is a challenging task that requires the detection
and localization of objects from a first-person perspective. This task is particularly
relevant in the context of home robotics, where robots must understand and interact
with objects in their environment. However, the unique challenges posed by EOD
have made it difficult to develop robust and accurate detection systems.

While progress has been made in computer vision, particularly in naming objects
and activities in Internet photos or video clips, current systems and datasets repre-
sent a limited definition of visual perception. Today’s models excel in interpreting
isolated moments from a third-person "spectator" view, fueled by significant dataset
and benchmark efforts. However, the realm of robotics demands an understanding
from a first-person or "egocentric" perspective, where the input is a long, fluid
video stream that captures the world through the eyes of an actively engaged agent.
Unlike Internet photos, captured intentionally by a human photographer, egocentric
footage from an always-on wearable camera lacks active curation. Moreover, first-
person perception requires a persistent 3D understanding of the wearer’s physical
surroundings and an interpretation of objects and actions within a human context.
This necessitates attention to human-object interactions and high-level social be-
haviors, pushing the boundaries of how we define and tackle visual perception in
computer vision.
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2.1.1 Challenges in EOD

Egocentric object detection (EOD) presents unique vision challenges that stem from
the nature of first-person perspective imaging. These challenges significantly impact
the development of robust and accurate detection systems. Key vision-related
challenges include:

e Dynamic environment changes, such as varying lighting conditions, clut-
ter, and occlusion, significantly affect the detection quality.

» The egocentric perspective introduces challenges such as motion blur and
scale variation due to the camera’s movement, and a limited field of view that
captures only a portion of the scene from the robot’s or user’s perspective.

o The reliance on third-person data for pre-training egocentric video models
introduces challenges due to a sizeable domain mismatch between the
training datasets and real-world egocentric applications. Large-scale annotated
datasets such as Kinetics [8], AVA [9], UCF [10], ActivityNet [11], HowTol00M
[12], ImageNet [13], and COCO [14] focus primarily on third-person Web data,
exhibiting a significant domain mismatch when applied to egocentric video
understanding.

Figure 2.1: Left: Detecting objects in a real-life environment. Right: Detecting
objects in a 3D simulated environment (Al Habitat).

Beyond the immediate vision challenges, egocentric object detection (EOD)
encompasses a broad spectrum of challenges that extend into robotics and human-
computer interaction. These include:

e Human-object interactions: understanding how humans interact with
objects in their environment, which is critical for robots to assist or cooperate
with humans in daily tasks. It involves recognizing not just the objects but
also the purpose and nature of the interaction.
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o Activity recognition: identifying the activities being performed by humans
from the egocentric perspective. Recognizing activities can help in understand-
ing the context of the scene and predicting future actions, which is crucial for
robots to interact appropriately in human environments.

o Anticipation: predicting future actions or events before they occur. This
is especially important in dynamic environments where robots need to plan
their actions in advance to avoid obstacles or assist humans proactively.

o Inferring the camera wearer’s body pose: estimating the posture and
orientation of the person wearing the camera, which is crucial for understanding
the person’s current activities and intentions. Accurate pose estimation can
enhance the robot’s understanding of the user’s actions and improve interaction
quality.

The expansion of egocentric datasets and the evolution of machine learning
techniques, including the integration of temporal information and spatial context,
signify the ongoing efforts to overcome the inherent challenges of EOD. These
advancements are critical for the development of robust and accurate egocentric
object detection systems that can be effectively deployed in home robotics and
other real-world applications.
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2.1.2 Open-Vocabulary Object Detection

Open-vocabulary object detection, also known as zero-shot object detection,
represents a significant leap forward in the field of computer vision, aiming to
identify and localize objects that fall outside the predefined categories encountered
during model training. Traditional object detection models are limited by their
training datasets; they can only recognize objects they have been explicitly trained
to identify. In contrast, open-vocabulary models break this constraint by leveraging
language embeddings to bridge the gap between seen and unseen objects.

|:| : Novel categories

. : Base categories

Figure 2.2: Illustration of an open-vocabulary object detection system in action,
showcasing the ability to associate multiple descriptive captions with detected
objects. The system accurately identifies various toys with different levels of
specificity, from basic category labels such as toy to more detailed descriptions
such as toy elephant and toy duck. The varied captions, with confidence scores,
demonstrate the model’s capability to recognize and describe objects beyond its
base training categories. Adapted from Open-vocabulary Object Detection via Vision
and Language Knowledge Distillation

The core innovation in open-vocabulary object detection lies in its use of lan-
guage embeddings as a replacement for the final classification layer typically
found in object detection architectures. Language embeddings are high-dimensional
representations of words or phrases that capture semantic relationships between
them. By integrating these embeddings, an open-vocabulary model can understand
and detect a broader array of objects, including those not present in its training
data. This approach relies on the semantic connection between the language repre-
sentation of an object and the visual features extracted from images. For example,
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even if a model has never seen a "zebra" during training, it can infer its presence in
an image by associating the visual features with the semantic context provided by
language embeddings related to animals or patterns known to the model.

In practice, when an open-vocabulary object detection model encounters an
image, it generates predictions for object locations and uses the integrated language
embeddings to semantically interpret and label these objects, extending its detection
capabilities to include categories beyond its training scope. This technique not only
enhances the model’s versatility and applicability to diverse real-world scenarios
but also addresses the scalability issue of continually updating models with new
object classes.

2.2 Robotics in Home Environments

The integration of robotics within home environments poses a unique set of chal-
lenges and opportunities, highlighting the necessity for comprehensive benchmarks
and standardized platforms that facilitate innovation, evaluation, and comparison
across different robotic systems.

Home environments are inherently complex and dynamic, featuring diverse
layouts, obstacles, and a variety of objects that robots must navigate and ma-
nipulate. This complexity necessitates robust, versatile robotic systems capable
of understanding and interacting with their surroundings in a meaningful way.
However, benchmarking these systems has historically been difficult due to the
variability in hardware used and the tasks performed. Many robotics challenges
have allowed participants to use their own platforms, complicating fair comparisons
of algorithms and systems [3]. Conversely, events providing a standardized robotic
platform often changed tasks over time, making it challenging to track progress
[16].

The pursuit of standardized robotics benchmarks has been a longstanding goal
within the field. Efforts have included open-sourcing robot designs and introducing
low-cost robots [17] to democratize access to cutting-edge research. However,
the varied environments in which these robots operate often lead to the isolated
evaluation of components—such as object navigation and Simultaneous Localization
and Mapping (SLAM)—without considering their impact on the system as a whole.
This gap highlights the need for end-to-end benchmarking platforms that evaluate
individual components within the context of a fully integrated system.

Recognizing these challenges, recent initiatives have focused on creating repro-
ducible benchmarks that support a wide range of tasks in complex, human-centric
environments. The definition of Open-Vocabulary Mobile Manipulation (OVMM)
as a key task for in-home robotics represents a significant step forward [18, 19, 20,
21, 22, 23, 24, 25]. This approach emphasizes the importance of developing and
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evaluating full-stack integrated mobile manipulation systems capable of operating in
diverse settings with open object sets. By providing benchmarks and infrastructure
both in simulation and the real world, researchers can build systems that are not
only effective in controlled environments but also adaptable to the unpredictability
of real-world applications.

2.3 OVMM: Open-Vocabulary Mobile Manipula-
tion

The introduction of the OVMM benchmark marks the first reproducible mobile-
manipulation benchmark designed for real-world applications, complemented by an
associated simulation component. In simulation, the use of a dataset comprising
200 human-authored interactive 3D scenes [26], instantiated in the AI Habitat
simulator [27, 28], creates a variety of challenging multi-room problems with a broad
range of objects. This setup tests the robots’ abilities to navigate and manipulate
objects they have seen during training and those they have not. Similarly, in the
real world, a controlled apartment environment serves as the benchmarking space,
featuring a mix of seen and unseen object categories. The use of the Hello Robot
Stretch [29] — a compliant and affordable robot — underscores the benchmark’s
commitment to accessibility and practical application in home environments.

This comprehensive approach to benchmarking in robotics research underscores
the importance of creating standardized, reproducible platforms that facilitate the
development, evaluation, and comparison of robotic systems.

2.4 HomeRobot 3D Simulation Environment

HomeRobot [30] is an affordable robot designed for navigating homes and manipu-
lating objects to perform daily tasks. The HomeRobot software framework
supports benchmarking in simulated and physical environments, featuring identical
APIs across these settings. This allows for experiments to be consistently repli-
cated, facilitating a direct comparison between simulated and real-world application
outcomes.

The significance of employing simulation in the training and testing of embodied
AT agents stems from several limitations associated with real-world interactions.

e Real-world training is inherently slow, as it cannot exceed or be parallelized
beyond real-time speeds.

« It also poses potential dangers, where inadequately trained agents might cause
harm to themselves, humans, or their environment.
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o Moreover, the costs associated with physical agents and environments are
substantial, and controlling or reproducing specific conditions or experiments
in the real world is challenging.

In contrast, simulations offer a safer, cost-effective, and controllable environment
that can operate significantly faster than real-time and be scaled across computing
clusters. This approach not only ensures the safety and feasibility of developing and
testing Al agents but also allows for systematic and fair benchmarking of progress.
Once validated in simulation, these advancements can then be adapted to physical
platforms.

Habitat-Lab, a component of AI Habitat, is a high-level library designed
for end-to-end development in Embodied Al. It encompasses the definition of
Al tasks, configuration of agents, training methodologies, and benchmarking of
agent performance across standardized metrics. Habitat-Lab facilitates research by
providing a comprehensive framework for exploring various aspects of Embodied Al,
from navigation and interaction to instruction following and question answering.

HomeRobot is a framework developed on top of AI Habitat, inheriting and
significantly extending its capabilities, with a focus on applications tailored for
domestic environments. This sophisticated framework is designed to enable the
development of robots capable of performing everyday tasks in these settings,
achieving high levels of autonomy and adaptability. A key component of the
HomeRobot simulation environment is its use of a subset of the Habitat Synthetic
Scenes Dataset (HSSD), as described in Section 2.4.6, which offers a rich collection
of synthetic scenes designed to mirror real-world domestic spaces closely. The
incorporation of HSSD not only enriches the HomeRobot framework with a broad
spectrum of scenarios and objects for simulation but also enhances the realism
and relevance of the simulated tasks, ensuring the robots developed within this
framework are well-equipped for real-world applications in domestic settings.
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Figure 2.4: Habitat Synthetic Scenes Dataset (HSSD) in the HomeRobot 3D
Simulation Environment.
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2.4.1 HomeRobot Key Features

Overall, the HomeRobot framework incorporates several key features:

o Transferability: A fundamental aspect of HomeRobot is its unified state
and action spaces across simulation and real-world environments for each task.
This facilitates an effortless transition between testing modes, allowing for
control over the robot using either high-level action spaces, such as pre-defined
grasping policies, or through low-level continuous joint control for detailed
manipulation tasks.

e Modularity: HomeRobot’s architecture supports modularity in perception
and action components. This includes the incorporation of high-level states,
such as semantic maps or segmented point clouds, and high-level actions, such
as moving to a specified goal position or executing object pickup tasks. This
modularity enhances the robot’s interaction capabilities with its environment
and simplifies the integration and testing of new features.

« Baseline Agents: Included within HomeRobot are baseline agents that
utilize the stack’s capabilities to offer basic functionalities necessary for Open
Vocabluary Mobile Manipulation (OVMM) tasks. These agents are equipped
with policies that facilitate fundamental operations, including navigation to
particular locations and object manipulation.

2.4.2 OVMM Task

The Open-Vocabulary Mobile Manipulation (OVMM) task focuses on
executing precise movement instructions for small, manipulable household items
within a domestic environment. The task instructions are centered and emphasized
as follows:

"Move (object) from the (start_receptacle) to the
(goal_receptacle)."

Here, the object represents any small household item such as a cup, stuffed toy,
or box, while the start_receptacle and goal_receptacle refer to larger pieces
of furniture that can support these items.

The primary challenge for the robot is to function within an unknown single-floor
home environment, such an apartment, successfully identifying and manipulat-
ing the specified object based on the labels of start_receptacle, object, and
goal _receptacle. The initial placement of the object on the start_receptacle
acts as a directive for the robot to initiate its retrieval and relocation operation.
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Find Object on Start Receptacle Pick Object from Start Receptacle Find Goal Receptacle Place Object on Goal Receptacle
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rﬂ
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.
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Figure 2.5: Sequential stages of the Open-Vocabulary Mobile Manipulation (OVMM)
task performed in HomeRobot. Top row: The robot locates a toy animal on a chair
(start_receptacle), grasps it, identifies the table (goal_receptacle), and places the
object upon it. Bottom row: The robot finds a pitcher within a drawer, retrieves
it, then moves to the serving cart (goal_receptacle), where it completes the task by
placing the pitcher. These images illustrate the task’s components: object detection,
manipulation, and goal-oriented navigation within a home environment. Adapted from
HomeRobot: Open-Vocabulary Mobile Manipulation [30].

Therefore, each episode is defined by the three elements: start_receptacle,
object, and goal receptacle. The agent is successful in an episode if the specified
object is indeed moved from a start_receptacle on which it began the episode,
to any valid goal_receptacle. The evaluation process awards points for each step
of the task:

e FindObj/FindRec: Locate an object on a start_receptacle; or find a
goal _receptacle.

o Gaze: Move close enough to an object to grasp it, and orient head to get a
good view of the object. The goal of the gaze action is to improve the success
rate of grasping.

e Grasp: Pick up the object. The framework provides a high-level action for
this, since they do not simulate the gripper interaction in Habitat.

e Place: Move to a location in the environment and place the object on top of
the goal_receptacle.
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In the context of the Open-Vocabulary Mobile Manipulation (OVMM) chal-
lenge, the agent is designed to recognize and interact with a predefined set of 150

classes. These classes include a variety of receptacles and objects, highlighted in
Appendix A.1.
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Figure 2.6: Examples of object models involved in the OVMM tasks. Adapted
from HomeRobot: Open-Vocabulary Mobile Manipulation [30].
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2.4.3 HomeRobot Structure

The structure of the HomeRobot framework is a direct reflection of its key features.
The HomeRobot library is organized into three distinct repositories, each serving a
specific purpose:

o home_robot: This repository houses shared components essential for the
framework’s operation, including Environment interfaces, controllers, and
modules for detection and segmentation. It forms the core of HomeRobot,
where most policies are implemented, reflecting the framework’s emphasis on
modularity.

home robot_sim: Dedicated to the simulation stack, this repository builds on
the capabilities of Habitat to provide Environments tailored for simulation.
It underscores the framework’s transferability feature by ensuring that the
simulated environments mimic real-world conditions as closely as possible.

home_robot_hw: Focused on the hardware stack, it includes server processes
that run directly on the robot, a client API designed for the GPU workstation,
and Environments constructed using this client API. This setup facilitates
real-world applications of the HomeRobot, allowing for direct control and
interaction with the physical robot.

Within HomeRobot, functionality is divided between Agents and Environments,

adopting a structure common to many reinforcement learning benchmarks. This
separation enhances the framework’s modularity:

o Agents are responsible for executing policies. HomeRobot implements agents
that utilize a combination of heuristic policies and those learned through
Reinforcement Learning on scene datasets. This dual approach enables the
framework to support a wide range of tasks and adapt to various challenges
encountered in robotic applications.

Environments provide the logical framework that interacts with Agents. They
supply Observations to the Agents and offer a function to apply the Agent’s
actions within the environment, whether real or simulated. This design allows
for a clear delineation of responsibilities, simplifying the development and
testing of new functionalities within the HomeRobot framework.
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2.4.4 Open Vocabulary Manipulation Agent

The HomeRobot framework outlines two primary baseline approaches: the heuristic
baseline, which relies on established motion planning techniques and simple rules
for grasping and manipulation, and a reinforcement learning baseline, leveraging
the DD-PPO algorithm for policy learning. In this study, we focus on the heuristic
baseline within the HomeRobot framework, aiming to enhance its capabilities
for executing Open-Vocabulary Mobile Manipulation (OVMM) tasks with the
Stretch robot. Set in both simulated and real indoor environments, the challenge
involves moving an object from a start to an end receptacle, both of which are
classes of furniture that may be present in multiples places within the environment.
For instance, if the end receptacle is a "table", any table within the environment
qualifies as a correct destination.

The heuristic baseline agent is designed with a structured skill set, encompassing
detection, exploration, navigation, picking, and placing:

1. Detection involves object detection and segmentation using the agent’s
camera RGBD images and constructing a Bird’s Eye View (BEV) map to
identify semantic areas within the environment.

2. Exploration entails searching the environment to locate the start and end
receptacles, and exploring the vicinity of start receptacles to find the target
object.

3. Navigation directs the agent towards a specified goal, which could be the
object itself or the start/end receptacle, facilitating movement within the
environment.

4. Picking comprises lifting the object, supported by a high-level action command
that abstracts the complexities of simulated gripper interaction, a feature not
present in Habitat. This skill is enabled by multiple grasping strategies and
policies for learning optimal grasping techniques.

5. Placing adjusts the agent’s position to accurately place the object at the end
receptacle, completing the task.

The execution of these skills follows a specific sequence, starting with a 360°
turn by the agent to survey its immediate surroundings. Utilizing the Exploration
skill, the agent seeks the object, moving towards it upon discovery and employing
the Picking skill to secure it. If the end receptacle is not immediately found, the
agent re-engages in exploration; otherwise, it navigates towards the nearest end
receptacle, concluding the task with the Placing skill. Throughout its operation,
the agent continuously applies the Detection skill to gather information on potential
start and end receptacles, even when the primary goal is object retrieval.

17



Literature Review

i heuristic skill
Observation Agent unsuccessful

Instruction

i successful successful i successful
Nawgate © ——— > Pickobect ——— > NEVEEID —— > Place object
object receptacle

e ) )

RGB Image Segmentation

Figure 2.7: The architecture of our agent. It is build as a state machine with six
states: Find object, Navigate to object, Pick object, Find end receptacle, Navigate to
end receptacle, and Place object. In the Find-phases, the Exploration skill is used. The
agent’s perception model is Detic, it segments the object and receptacles in the RGB
image. This segmentation, together with other observations such as the pose, joints and
a depth image, are the input to the agent. Adapted from UniTeam: Open Vocabulary
Mobile Manipulation Challenge [31].

The perception capabilities are powered by the Detic model, which gener-
ates masks for objects and receptacles, enabling the agent’s understanding of its
environment and influencing its actions.

2.4.5 3D Scene Datasets

Recent advancements in embodied Al have been significantly supported by the
development and use of 3D scene datasets, which are essential for training Al
agents to navigate realistic environments, follow language instructions [32], find
and rearrange objects [33, 34, 28, 35|, among other tasks.

These datasets have become the cornerstone of simulation platforms [2, 36, 37,
38|, facilitating safe, systematic, and scalable training and evaluation of Al agents.
3D reconstructions and synthetic datasets, with arrangements of human-designed
objects, have been central to mimicking real-world complexity and diversity [39,
40, 41, 42]. However, reconstruction datasets often come with challenges such
as noise, missing geometry, and other artifacts that could potentially skew the
training process and lead to overfitting. The labor-intensive nature and difficulty
in scaling the acquisition and annotation of these reconstructions, combined with
their rigid, non-manipulable nature, limit their usefulness in scenarios requiring
environmental interaction [33]. As a result, there has been a shift towards synthetic
3D scenes, constructed from human-authored objects, to better represent real-
world environments [43, 44, 28]. Despite their widespread use, there’s been little
systematic analysis comparing the scale and realism of these datasets, or how these
factors impact the generalizability and performance of Al agents. Additionally,
while procedural scene generation [43] offers potentially limitless scaling of datasets,
the benefits of this scale on task performance remain underexplored.
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2.4.6 HSSD: Habitat Scene Synthesis Dataset

The Habitat Synthetic Scenes Dataset (HSSD-200) marks a significant con-
tribution towards achieving realism in synthetic environments for embodied Al
research. This dataset comprises recreations of real residential spaces, constructed
using a diverse array of 18,656 unique and high-quality 3D models of real-world
objects. Set to be open-sourced and freely available under an academic research
license, HSSD-200 offers an unprecedented level of visual fidelity, accurate scene
dimensions, and realistic object occurrence statistics compared to previous synthetic
datasets. Through systematic evaluation, including a scale versus realism study,
HSSD-200 has demonstrated its superiority in training ObjectGoal navigation
agents. These agents, tasked with navigating towards specific objects (e.g., bed, tv,
chair), exhibit enhanced performance and generalization to real-world scenes, such
as those from HM3DSem [40] and MP3D [39], even when trained on a considerably
smaller number of scenes from HSSD-200. Remarkably, training on merely 122
scenes from HSSD-200 results in better generalization than training on 10,000
scenes from ProcTHOR [43]. Beyond navigation, the compositional nature of
HSSD-200 facilitates research in object manipulation and rearrangement tasks [28],
offering flexibility for adding or removing objects.

Figure 2.8: Examples of scenes from the Habitat Synthetic Scenes Dataset
(HSSD).

The HomeRobot simulation environment [30] is built on a subset of the
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Habitat Synthetic Scenes Dataset (HSSD), incorporating high-quality 3D scenes
that enhance its functionality and realism. This integration allows HomeRobot
to provide a more realistic and engaging experience for testing and developing
embodied Al agents, facilitating research in navigation, object manipulation, and
other tasks requiring interaction with an environment that closely mirrors the
real world. The use of HSSD’s meticulously designed scenes ensures that agents
trained within the HomeRobot simulation can benefit from the dataset’s attention
to detail in visual fidelity, spatial accuracy, and object diversity, promising better
preparation for real-world application.
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Figure 2.9: Examples of object models involved in the OVMM tasks. Adapted
from HomeRobot: Open-Vocabulary Mobile Manipulation [30].

21



Literature Review

2.4.7 Episode Generation

Episode generation in the Open-Vocabulary Mobile Manipulation (OVMM) frame-
work starts with selecting scenes from the Habitat Synthetic Scenes Dataset (HSSD).
The first step in generating an episode is to identify the largest navigable indoor
area in each scene to define the agent’s operational space. After determining this
area, the next step involves filtering out receptacles within the scene that are too
small for object placement, ensuring only viable receptacles are used for start and
goal locations. An object is then placed on one of these filtered start receptacles,
and a goal receptacle is chosen for the object’s intended placement. The agent
is finally spawned at a random point within the navigable area of the house to
start the episode. This process ensures that the episodes are set up in a way that
maximizes the variety available for navigation and manipulation.

Episode start Find object Find receptacle Place object

== .

Pick a multiport hub from a stool and place it on a table.

Figure 2.10: Examples of OVMM task episodes. The top row demonstrates the
sequence of an episode: from the initial spawn point of the agent ("Episode start’),
through 'Find object’, to 'Find receptacle’, and finally "Place object’.
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2.5 DETIC: Detecting Twenty-thousand Classes
using Image-level Supervision

DETIC, standing for Detector with Image Classes, marks a pioneering approach
within the object detection domain by addressing its two principal challenges:

1. Localization: The identification of objects’ presence and location within an
image.

2. Classification: Assigning accurate labels to each detected object.

Unlike conventional methods that merge these tasks—requiring datasets with
bounding box annotations for all classes—DETIC recognizes a significant gap in
dataset capacities. For instance:

« LVIS detection dataset [45] offers more than 1,000 classes across 120,000
images.

» Openlmages [46] encompasses 500 classes within 1.8 million images.

 Contrastingly, ImageNet [47] for image classification, features 21,000 classes
from 14 million images.
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Figure 2.11: Number of images in LVIS, ImageNet, and Conceptual Captions
per class (smoothed by averaging 100 neighboring classes). Classification datasets
have a much larger vocabulary than detection datasets. Adapted from Detecting
Twenty-thousand Classes using Image-level Supervision [48]
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This disparity, especially the lack of extensive annotations for many classes,
poses a challenge for training robust object detectors.
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Figure 2.12: An example of strong and weak annotations in object detection. Adapted
from «Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical
Image Segmentation»

DETIC seeks to bridge this gap by utilizing image-level supervision alongside
traditional detection training, expanding the model’s vocabulary and its object
classification capability. It decouples the localization and classification tasks,
capitalizing on modern region proposal networks’ ability to localize objects without
direct supervision. Specifically, DETIC:

» Focuses on the classification challenge by employing image-level labels to train
the classifier.

o Implements a straightforward classification loss targeting the largest proposal
within the image, without supervising other outputs for image-labeled data.
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Figure 2.13: Approach Overview: The model is trained using both detection data
and image-labeled data. With detection data, standard detection losses are applied
to train both the classifier (W) and the box prediction branch (B) of the detector. In
contrast, when image-labeled data is utilized, training is exclusively focused on the
classifier through a modified classification loss. This loss targets the features extracted
from the largest-sized proposal within the image. Adapted from Detecting Twenty-
thousand Classes using Image-level Supervision [48]
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This method significantly broadens the detection vocabulary and simplifies the
model’s training process.

In contrast to existing weakly-supervised detection methodologies [50, 51, 52, 53]
that navigate both localization and classification with weakly labeled data, DETIC
innovates by solely concentrating on the classification aspect when leveraging
classification data. This avoids the complex prediction-based label assignment
process—a circular challenge where accurate label assignment depends on precise
detections, which in turn requires extensive labeled data for training.

The DETIC model enhances its detection capabilities by employing CLIP
embeddings as classification weights, a strategic move that significantly broadens
its ability to perform open-vocabulary object detection. This approach enables
DETIC to:

o Identify objects beyond its initial training set, addressing the challenge of
zero-shot object detection.

o Offer a more nuanced understanding of class names and expand its detection
range, advancing beyond models that utilized other language embeddings.

DETIC integrates CLIP embeddings, distinguishing itself from previous
models such as OVR-CNN [54], ViLD [15], OpenSeg [55], langSeg [56]. These
models also utilize CLIP embeddings to improve their language models, but DETIC
sets itself apart by:

o Directly applying CLIP embeddings as classification weights without relying
on feature distillation from CLIP’s image features.

o Employing a co-training method with additional image-labeled data, thereby
simplifying the model architecture and enriching the training dataset to
enhance its object classification capabilities.
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2.5.1 DETIC Model Overview

The DETIC model utilizes the Swin Transformer [57] as its foundational struc-
ture for image processing. This model processes an RGB image frame by initially
breaking it down into smaller patches through a process known as patch parti-
tioning. These patches are then linearly encoded and passed through the Swin
Transformer blocks, which are arranged in stages that build upon each other.
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Figure 2.14: The DETIC model architecture, featuring the Swin Transformer
backbone and the Region Proposal Network (RPN) for object detection.

The first two stages consist of few Transformer blocks (denoted by ‘x2*), which
serve to extract preliminary features from the image. These stages capture basic
visual elements and set the stage for more complex pattern recognition. The third
stage, however, significantly increases in complexity (indicated by ‘x18‘) and is
dedicated to deeply analyzing the image data to identify intricate details that are
crucial for accurate object recognition.

Swin Transformer’s approach involves calculating self-attention within local
windows which are shifted at each layer to cover different parts of the image. This
strategy allows the DETIC model to maintain computational efficiency while
scaling to handle larger images and more complex patterns. It’s this hierarchical
and overlapping window-based self-attention mechanism that allows the Swin
Transformer to capture a wide variety of visual features, from the most granular
details to broader structural patterns, which is particularly advantageous for image
classification tasks that require understanding both the parts and the whole.

After the Swin Transformer refines the image features, the DETIC model employs
Region Proposal Network (RPN) to generate candidate object bounding boxes.
These proposals are refined through a Region of Interest (Rol) pooler, which
resizes the features to a fixed size, making them ready for classification. Within
the Rol heads, DETIC employs CLIP weights to classify a broad array of object
classes effectively, using zero-shot learning capabilities. The final step involves
DETIC producing a set of scores for each object class and refining the bounding
box coordinates for localization.
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In conclusion, the DETIC model is composed of three key components:

o A backbone that leverages the Swin Transformer, providing a powerful
architectural foundation for feature extraction.

o A Heatmap based Proposal Generator utilizing CenterNet2, which effi-
ciently generates object proposals within the scene.

« Cascade Rol Heads that refine the object proposals through a cascaded
process, leading to precise object detection and segmentation. The classifica-
tion stage of the Rol heads is enhanced by the integration of CLIP weights,
enabling zero-shot object detection capabilities.

In our further discussions and enhancements, we will primarily focus on the backbone
with the Swin Transformer and the Cascade Rol Heads with the CLIP weights for
classification.
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2.5.2 Swin Transformer Backbone

The Swin Transformer represents a novel adaptation of the Transformer model,
traditionally utilized for language processing tasks, to the domain of vision, in-
troducing a hierarchical vision transformer architecture. This approach
addresses the unique challenges of visual data, including the varying scale of visual
entities and the high resolution of images, by constructing a hierarchical repre-
sentation with shifted windowing schemes. Such a design significantly enhances
computational efficiency by limiting self-attention computation to non-overlapping
local windows, while simultaneously enabling cross-window connections through
a shifting strategy. As a result, the Swin Transformer scales linearly with the
image size, demonstrating its suitability for a broad array of vision tasks, ranging
from image classification to dense prediction tasks such as object detection and
semantic segmentation.
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Figure 2.15: (a) The Swin Transformer builds hierarchical feature maps by
merging image patches (shown in gray) in deeper layers and has linear computation
complexity to input image size due to computation of self-attention only within
each local window (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks. (b) In contrast,
previous vision Transformers produce feature maps of a single low resolution and
have quadratic computation complexity to input image size due to computation
of self-attention globally. Adapted from Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows [57].
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The hierarchical architecture begins by dividing the input image into fixed-size
patches, treating each patch as a "token" in the initial layer, akin to words in
a text for language models. This structure starts with small-sized patches and
gradually merges them in deeper layers, maintaining a hierarchy that supports
modeling at various scales and complexities. The core of the Swin Transformer
block is its unique approach to self-attention, employing a shifted window-based
self-attention (SW-MSA) mechanism.

The model alternates between two window partitioning configurations across
consecutive layers to compute self-attention. Initially, it employs regular window
partitioning, followed by a diagonal shift in the next layer. This alternating
scheme ensures efficient computation and introduces connections across windows,
significantly enhancing the model’s ability to capture relationships between different
parts of the image. By restricting self-attention to local windows and leveraging a
hierarchical structure, the Swin Transformer achieves a computational complexity
that scales linearly with the image size. This represents a critical improvement
over traditional Transformer models that exhibit quadratic complexity. The
hierarchical nature of the Swin Transformer, combined with its efficient self-attention
mechanism, makes it adaptable to a wide spectrum of vision tasks, achieving state-
of-the-art results on benchmarks for image classification, object detection, and
semantic segmentation.

The process begins with initial patch partitioning, where the input image is
divided into fixed-size patches (e.g., 4x4 pixels). Each patch is then flattened
and passed through a linear embedding layer to transform its raw pixel RGB
values into a higher-dimensional feature vector. Swin Transformer blocks process
these tokens, with each block consisting of a shifted window-based multi-head
self-attention mechanism and a multilayer perceptron (MLP). The model employs
Layer Normalization (LN) before each attention and MLP module, and residual
connections after each module. Patch merging layers play a crucial role in the
network’s depth, gradually merging adjacent patches (e.g., groups of 2x2 patches)
into larger patches. This effectively reduces the resolution while increasing the
feature dimension, simulating the effect of pooling layers in CNNs and facilitating
a hierarchical representation.
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Figure 2.16: Shifted window strategy in Swin Transformer. Layer ¢ demonstrates
self-attention within local windows. Layer i 4+ 1 applies a window shift, enabling
cross-window connectivity. A cyclic shift precedes self-attention, followed by a
reverse to maintain relative positions. Adapted from «Meta-TR: Meta-Attention
Spatial Compressive Imaging Network With Swin Transformer» [58]
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Figure 2.17: Two successive Swin Transformer Blocks. Adapted from Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows [57].
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2.5.3 Region of Interest (Rol) Heads with CLIP weights

Open-vocabulary object detection extends the capabilities of traditional object
detection models, allowing for the recognition of objects outside the limited scope
of the training dataset’s predefined classes. The problem is twofold:

« Localization: Identifying all objects in an image I € R3*"*® and their
locations, represented by bounding boxes b; € R*.

» Classification: Assigning a class label ¢; € Cie to each detected object,
where Cl is the class vocabulary defined at test time by the user.

Object detection systems utilize various class vocabularies during training and
testing:

o Clest: Vocabulary of classes for testing.

o Cget: Vocabulary of classes used during the training of the detector.

The approach to handling these vocabularies differs between closed and open
vocabulary detection:

e Closed Vocabulary Detection: The test and detection class vocabularies
are the same (Ciest = Clet)-

e Open Vocabulary Detection: The test class vocabulary can include classes
not present in the detection training (Ciest # Clet)-

An object detection model often follows a two-stage approach. First, a Region
Proposal Network (RPN) generates initial object proposals. Then, the Rol Heads,
central to the classification stage, refine these proposals. The Rol Heads receive
pooled features for each proposed region and perform classification and regression
tasks. Utilizing CLIP weights in the DETIC model, the Rol Heads facilitate
zero-shot learning by aligning refined image features with textual descriptions
through language embeddings, allowing the recognition of classes outside Cyet, as
shown in Figure 2.18.

Therefore, the innovation in open-vocabulary object detection comes with al-
lowing Cies; # Caet- Substituting the classification weights W with fixed language
embeddings transforms a standard detector into an open-vocabulary detector.
The model is trained so that region features align with these language embeddings.
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Figure 2.18: One stage of Region of Interest (Rol) Heads. Integration of CLIP
weights in DETIC’s Rol classification stage, enhancing zero-shot classification capabilities.
Refined features from the Rol Head are mapped to class scores using CLIP embeddings.

The DETIC model, which was considered in this work, adopts the language
embeddings from CLIP as classification weights following [15]. This model the-
oretically enables detection across any class, though practical applications may
show varying results. DETIC addresses this by enhancing region features to better
match the language embeddings, improving its ability to identify a diverse array of
objects at test time as specified by Ciegt-

During the model preparation phase, an essential step involves the integration
of CLIP embeddings for the 150 classes pertinent to the challenge. These classes
coincide with those found in the dataset compiled for training.

A distinctive aspect of this process is the appending of a prompt, specifically the
article "a", to each class name before generating the embeddings. This procedure
is not arbitrary; it is rooted in the architecture and training methodology of CLIP
(Contrastive Language-Image Pre-training).
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CLIP has been trained on a vast corpus of images and their corresponding
textual descriptions, learning to associate the visual content with natural language
annotations. By prepending a simple article such as "a" to the class names, we
mimic the structure of the sentences found in the training data of CLIP, thereby
aligning our input more closely with the model’s learned representations.

This alignment is crucial for enhancing the model’s ability to accurately generate
embeddings that are semantically rich and contextually relevant to the given classes.
These embeddings, once created, are utilized to reset the classifier of the target
model, ensuring that the model is considering only the classes of the specific
categories of interest in the challenge.

\.
-
S,

_____________ Brittany

Natural Augmented e
data data Class: dog Class: cat

Figure 2.19: An example of contrastive learning in CLIP applied to distinguish between
different classes of animals. The model is trained to pull closer the representations of
augmented versions of the same image (e.g., different pictures of French Bulldogs) while
pushing apart the representations of different classes (e.g., French Bulldogs versus Beagles
or Persians). Adapted from 'Understanding Contrastive Learning’ by the Stanford AI
Lab (https://ai.stanford.edu/blog/understanding-contrastive-learning/)
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2.6 Temporal Consistency in Object Detection

Temporal consistency in object detection is a critical aspect for robots operating in
dynamic environments, such as those encountered in household navigation tasks.
Achieving this consistency entails the object detection system’s ability to recognize
and track objects across consecutive frames within a video sequence, despite changes
in object appearance, camera perspective, and environmental conditions. This
becomes particularly challenging in egocentric vision, where the viewpoint shifts
with the robot’s or user’s movements.

The concept of Parameter-efficient Transfer Learning has been pivotal
in adapting knowledge from large pre-trained image-based models to the video
domain with minimal additional parameters. In the NLP field, state-of-the-art
performances across various tasks have been attained through such models, known
as foundation models [59], like BERT [60] and GPT [61, 62]. Adaptation techniques
range from complete fine-tuning to partial adjustments, such as linear probing.
However, with the growing size and complexity of these foundation models, fully
fine-tuning for each task becomes impractical due to exorbitant training costs and
storage requirements [63, 64]. This poses significant challenges for their application
in real-world settings.

This trend toward efficiency has sparked interest in the computer vision commu-
nity. The success of the CLIP model [7], trained on a vast number of web image-text
pairs, is testament to this. In the video domain, although the computational cost
is substantially higher, the principles remain the same. Training video variants
of such models can be restrictive due to the scarcity of large video datasets and
the enormity of the required computing resources [65]. Hence, leveraging large
pre-trained image models as the starting point for video tasks remains a favorable
strategy.

2.6.1 Parameter-efficient Transfer Learning

Efficient adaptation of large pre-trained image models to video downstream tasks
is a critical challenge, particularly in the context of action recognition. The need
for efficiency arises from the significant differences in computational resources and
training time required for video models compared to image models [66]. Bridging the
gap between static images and dynamic videos during transfer learning is complex,
as pre-trained image models lack the ability to decode temporal structures, which
is essential for video interpretation.

State-of-the-art video models [67, 66, 68, 69] predominantly focus on incorporat-
ing the temporal aspect into existing image architectures. The process of adapting
these models to video tasks often requires significant changes to the architecture,
going well beyond simple fine-tuning. For each specific video task, models are
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typically subjected to thorough retraining or extensive fine-tuning. This is not just
to fine-tune the model’s spatial recognition abilities—which have been pre-learned
from images—but also to develop its capacity to understand temporal sequences, a
critical dimension in video understanding. The goal of such adaptations is to find
an optimal balance: the models must retain the sophisticated spatial understanding
obtained from pre-trained image models while also gaining the ability to interpret
the temporal context that is essential for analyzing videos.

2.6.2 ST-Adapter: Spatio-Temporal Adapter

Incorporating dynamic temporal understanding into pre-trained image models, such
as the Vision Transformer (ViT), is a critical step in adapting them to video-related
tasks such as action recognition. State-of-the-art approaches typically involve
integrating a temporal learning module and subsequently performing full network
fine-tuning [70, 71]. However, this method is not parameter-efficient, as it produces
a distinct, large-scale model for each task, demanding extensive computational
resources.

Addressing this inefficiency, the ST-Adapter (Spatio-Temporal Adapter) [72]
presents a more streamlined solution by introducing a spatio-temporal reasoning
capability within a compact structure. The ST-Adapter allows an image model,
which initially lacks temporal processing abilities, to analyze and understand video
content. It does so with a minimal per-task parameter increase—less than 8% —and
requires roughly 20 times fewer updated parameters compared to its full fine-tuning
counterparts.

The pre-trained model weights remain frozen, ensuring the existing knowledge
is retained, while only the weights of the adapter are updated during training. By
focusing only on training this lightweight adapter, significant computational savings
are achieved. This efficiency does not sacrifice performance; on the contrary, the
ST-Adapter has been shown to match or even outperform full fine-tuning methods
[73, 70, 66], offering an economical and effective approach to video task adaptation.
The result is a highly parameter-efficient, cost-effective model that maintains, if
not enhances, the accuracy for video understanding tasks.
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Figure 2.20: Architectural comparison between full fine-tuning and the incorpo-
ration of a Space-Time Adapter (ST-Adapter) into a Vision Transformer (ViT) for
video tasks. (a) Traditional methods fully fine-tune the pre-trained image model,
resulting in a high parameter cost for each downstream task. (b) The ST-Adapter
approach introduces a compact module specifically designed for spatio-temporal
reasoning, enabling efficient adaptation to video content with a minimal increase
in parameters. Adapted from ST-Adapter: Parameter-Efficient Image-to-Video
Transfer Learning [72]
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Chapter 3

Methodology

3.1 Overview

This study focuses on enhancing temporal consistency in egocentric object de-
tection for robotic navigation and interaction in dynamic home environments.
Within the context of the Open-Vocabulary Mobile Manipulation (OVMM)
challenge, our research is situated in the HomeRobot 3D simulation environ-
ment, utilizing a simulated Hello Robot Stretch for object manipulation tasks.
The core of our methodology leverages open-vocabulary object detection models,
specifically DETIC, which is capable of recognizing a broad array of objects based
on image-level supervision. Despite DETIC’s expansive detection capabilities, its
application in an egocentric perspective is challenged by temporal inconsistencies,
leading to fluctuating predictions across consecutive frames.

To address this, we integrated Spatio-Temporal Adapters (ST-Adapters)
into the DETIC framework, aiming to incorporate the model with a spatio-temporal
awareness that maintains detection consistency over time without sacrificing its
open-vocabulary proficiency. The goal is to achieve reliable object detection in
a 3D simulation, directly impacting the robot’s ability to navigate and interact
within complex, ever-changing domestic spaces.

Our methodology encompasses the generation of test sets from the Habitat
Synthetic Scenes Dataset (HSSD), where the in-domain test sets consist of the
same household scenes as those used in the training and validation phases. Con-
versely, the out-of-domain test sets comprise entirely different household scenes, not
seen during training or validation, to assess the model’s generalization capabilities
in unfamiliar environments.
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To provide a more clear understanding of the issues with temporal consistency
in object detection, we examine an example featuring two sets of four RGB frames
each, representing consecutive timesteps and capturing the same scene from a home
environment. The scene depicts a bedroom, where we can observe a bed with
cushions and a blanket, a potted plant, and a shelf with various items. These
frames represent typical data that a robot would encounter as it navigates through
a room. Small differences in appearance from frame to frame—due to the robot’s
movement or changes in camera angle—can lead to errors in the detection models,
particularly when the same object appears slightly different at each timestep. This
often results in "noisy" predictions, where the model’s interpretations of what is in
each frame vary from one moment to the next, even though the environment has
not significantly changed.

Figure 3.1: First set of consecutive timestep RGB frames of a bedroom scene,
arranged from left to right.

Figure 3.2: Second set of consecutive timestep RGB frames of the same bedroom
scene, arranged from left to right.
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bed: 64% bed: 89%

couch: 85% bed: 70%

toy_sofa: 88% prediction changed again
prediction changed couch: 83% (but now it is correct)

prediction recovered

Figure 3.3: Sequence of DETIC predictions over the first set of consecutive frames,
demonstrating temporal inconsistencies in object detection.

In examining the predictions of DETIC for the first set of frames, we observe a clear
illustration of the challenges related to temporal consistency. The sequence shows how
the model’s certainty in identifying objects fluctuates. Initially, certain elements in the
room, such as a bed and couch, are identified. However, as we progress to the next
frames, the model momentarily loses the predictions (prediction lost) or changes them
(prediction changed), due to the change in viewing angle or occlusion. In the initial frame,
the model identifies a bed with 64% confidence. Moving to the next frame, this prediction
vanishes entirely, indicating a lost prediction of the bed. Subsequently, the model regains
confidence and identifies the bed again, now with a higher certainty of 89%. Similarly,
the model initially recognizes a couch with an 85% confidence level, but in the following
frame, it incorrectly labels it as a toy_sofa at 88%. The third frame shows a reversion
back to couch at 83% confidence, with ongoing mislabeling. In the fourth frame, the
model changes its prediction to the correct bed class with a 70% confidence score.
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toy_sofa: 79%
bed: 92% prediction changed

Em-............;

no prediction

shoe_rack: 53%
prediction recovered
(but wrong)

toy_lamp: 64% plant_container: 45%
prediction changed
(but now it is correct)

Figure 3.4: Sequence of DETIC predictions over the second set of consecutive frames,
demonstrating temporal inconsistencies in object detection.

In the second set of frames analyzed, the challenges of model consistency are further
demonstrated. The first frame shows an object incorrectly identified as toy_lamp
with 64% confidence. In the subsequent frame, the model adjusts its prediction to
plant_container at 45% confidence, correcting the previous mistake. Meanwhile, the
bed is initially detected with high certainty at 92%, but in the third frame, the prediction
erroneously shifts to toy_sofa with 79% confidence. The third frame results in no
prediction for an object that was previously identified, leading to the fourth frame where
a completely new (incorrect) prediction emerges as shoe_racket with 53% confidence.
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3.2 Integrating Spatio-Temporal Adapters
in DETIC

To mitigate temporal inconsistencies in object detection, we integrate Spatio-Temporal
Adapters (ST-Adapters) into the DETIC framework. The architecture of these adapters

has been detailed in chapter 2.6.2.
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Figure 3.5: Architecture of DETIC with integrated ST-Adapters for improved

temporal consistency in object detection.

The design of ST-Adapters is systematic, composed of an upsample process, followed
by a three-dimensional convolution (conv3d), and concluded with a downsample step.

The role of each is as follows:
¢ Upsample: This step increases the feature maps’ resolution, making the spatial
dimensions suitable for the next stage of processing.

e Conv3D: This is the central element for temporal data integration. It extends
beyond 2D convolutions by processing data across consecutive frames, thus capturing
the object’s temporal behavior and motion. This enables the model to detect patterns

over time, enhancing the detection stability across frames.

¢ Downsample: The last step reduces the resolution of feature maps after temporal
processing, which simplifies the data and focuses on the most relevant features for

object detection.
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Figure 3.6: Schematic representation of the Spatio-Temporal Adapter (ST-
Adapter) architecture, demonstrating the sequential process of upsample, 3D
convolution, and downsample operations to enhance temporal feature integration.
Image adapted from ST-Adapter: Parameter-Efficient Image-to-Video Transfer
Learning [72].
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Figure 3.7: Comparison of 2D and 3D convolution operations. The left image
illustrates a single 2D convolutional layer processing spatial information in isolation,
while the right image shows a 3D convolutional layer that processes both spatial
and temporal data, integrating information across consecutive frames as indicated
by the arrow direction
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The adapter’s input is a tensor X with dimensions (BT, L,C), where B represents
the batch size, T' the number of consecutive frames, L the feature length per frame,
and C the number of channels. This configuration indicates that each batch contains a
series of elements, each comprised of T related consecutive frames, thereby forming a
continuous segment over time. This setup allows the adapter to process a sequence of
frames collectively, preserving the temporal continuity among them.

This reconfiguration of the input tensor X from (BT, L,C) to explicitly include
temporal dimensions, and subsequently its processing through the adapter, is designed to
ensure compatibility with the original model architecture. The Swin Transformer, which
forms the backbone of the model, typically receives input with dimensions (B, L,C),
where each batch B consists of single frames. Adapting the input in this manner allows the
model to incorporate sequences of frames as if they were single frames, thus enabling the
analysis of temporal information within what is originally a spatial processing framework.

During the forward pass, the input tensor X is initially transformed into a sequence
of batched images, each set of T' consecutive frames treated as a separate group within
the batch. This step aligns with the data organization during training, facilitating the
adapter’s interpretation of temporal dynamics across each frame series.

Algorithm 1 Adapter Forward Pass

Require: Input tensor x with dimensions (BT, L, C), height H, width W
Ensure: Output tensor with incorporated spatio-temporal information
procedure ADAPTERFORWARD(z, H, W)
T < Number of frames per sequence

B+ BT/T

C, < Adapter channels

Tig & T > Preserve the original input tensor
x < FCl(x) > Upsample
x <+ xview(B, T, H,W,C,)

x < x.permute(0,4,1,2,3) > Reorganize for 3D convolution
x < Conv3D(z) > Apply 3D convolution
x < x.permute(0, 2,3, 4, 1).view(BT, L, C,)

x + FC2(x) > Downsample
Toutput < Tid + T > Residual connection

return Zouiput
end procedure
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Figure 3.8: The Spatio-Temporal Adapter, highlighted in red, is integrated within
the Swin Transformer blocks, following the normalization layer and preceding the
multi-head self-attention mechanism. This placement is crucial for the temporal
enhancement of feature maps across sequential data.

The integration of the Spatio-Temporal Adapter within the Swin Transformer blocks
is aimed at enhancing the model’s capability to process sequences of data that contain
both spatial and temporal information. Positioned after the normalization layer within
each Transformer block, the adapter is set to modify the intermediate representations
before they are passed to the window-based multi-head self-attention mechanism.

The adapter enriches the feature maps with temporal context, which is crucial for
tasks requiring an understanding of object continuity and motion over time. The temporal
aspect becomes particularly important when dealing with video or any sequential data
where subsequent frames carry information that influences the current state.

The design choice to include the adapter within every Transformer block ensures that
the temporal information is not merely appended at one level but is instead considered
in all the feature extraction process. This allows the model to build upon the temporal
information iteratively, layer by layer, creating a more nuanced and temporally aware
representation at every stage.

By incorporating the adapter, the model processes each frame considering the se-
quence’s history, recognizing that each frame is supposedly connected and influences the
next. The insertion of the adapter, therefore, is supposed to provide the Transformer
with an enhanced ability to understand the temporal dynamics of the data, leading to
more consistent and reliable object detection across frames.
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3.3 Open Vocabulary Data Gathering

In the process of refining the Spatio-Temporal Adapters, it was necessary to train the
weights of these adapters. As a proof of concept, we utilized the Habitat Synthetic Scenes
Dataset (HSSD), referenced in 2.4.6. The data collection was conducted by deploying
the open vocabulary manipulation agent, outlined in 2.4.4, within the 3D HomeRobot
environment based on HSSD. As the agent navigated this space, we systematically
captured screenshots at each timestep, effectively transforming the rich 3D environmental
data into a structured 2D dataset.

Each captured frame was annotated with ground truth data available from within
the environment. This privileged information included both the segmentation masks and
the corresponding class names for each object in view. The collected dataset, therefore,
consists of a series of frames with detailed annotations that identify each object and
delineate its boundaries, for a comprehensive basis for training the adapter layers.

For the Open-Vocabulary Mobile Manipulation (OVMM) challenge, the agent was
tasked with recognizing and handling objects from a list of 150 different classes. These
classes, detailed in Appendix A.1, span a range of everyday items and receptacles found
within a home. The frames in the dataset were labeled with these 150 classes, ensuring
that the model could learn to identify and interact with the broad spectrum of objects it
might encounter in the challenge. This detailed labeling across numerous classes forms
the basis for the comprehensive training of the Spatio-Temporal Adapters in DETIC.

During this data gathering approach for the Spatio-Temporal Adapters, we encountered
challenges due to discrepancies between the ground truth annotations within the 3D
environment and the predefined classes set for detection. The process of extracting
accurate ground truth data had involved reverse engineering the environment’s code to
obtain annotations. However, these annotations were often inconsistent with the defined
classes, leading to ambiguity.

This behavior is to be expected, as the HSSD environment was not designed with the
OVMM challenge in mind. Given that DETIC needs to operate within the confines of
its 150-class vocabulary, the model is constrained to only recognizing those classes. The
environment’s object classes did not align perfectly with the OVMM classes, resulting in
such discrepancies between the ground truth annotations and the model’s predictions.
This is important for evaluating the model’s performance, as the ground truth labels
should supposedly matched with the model’s predictions to assess its effectiveness.
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RGB frame Environment ground truth DETIC prediction

Figure 3.9: Comparison between ground truth annotations and DETIC predic-
tions, highlighting some inconsistencies between ground truth annotations and the
classes defined in the OVMM Challenge.

In the figure, the comparison between DETIC predictions and ground truth annotations
illustrates key points about handling object classifications within the 150 predefined classes.
When DETIC correctly identifies table, it aligns with the classes. The misclassification
of basket as vase poses a question of semantic closeness and whether such predictions
should be deemed partially correct. DETIC’s prediction of book for magazine—mnot
in the 150 classes—suggests a reasonable semantic match. Similarly, potted_plant
being predicted as plant_container should be considered a valid prediction due to the
semantic overlap.

To mention other examples, when the ground truth is labeled as "table_lamp" (not
included in our vocabulary) and the model predicted "lamp" (included in our vocabulary),
such a prediction should be deemed partially correct due to the overlap in semantic
meaning despite the discrepancy in terminology. Also, despite phonetic differences
between words, the labels may share the same semantic meaning. An example involves a
model predicting "towel" when the ground truth is labeled as "rag".
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In the context of Open-Vocabulary Segmentation (OVS), assessing the match between
predicted and true categories transcends simple binary evaluations of right or wrong.
To navigate this complexity, we can employ two principal methodologies: similarity
assessments through BERT embeddings and Path Similarity via WordNet. For predictions
analyzed with BERT, we apply cosine similarity in the embedding space, considering
a prediction as a true positive (TP) if the similarity exceeds a certain threshold. This
approach appreciates the spectrum of accuracy in predictions, recognizing the value of
close matches based on contextual resemblance.

On the other hand, WordNet, with its extensive lexical database of 82,115 noun
synsets, provides a structured framework for semantic analysis. The Path Similarity
technique within WordNet offers four key advantages for open-vocabulary tasks:

o It yields moderate similarity scores, avoiding extreme valuations.
e It is capable of distinguishing polysemy, recognizing multiple meanings of words.
e It remains unbiased by training data, offering a neutral evaluation ground.

e It closely aligns with human cognitive processes, reflecting natural language under-
standing.

The preference for the WordNet’s Path Similarity method is supported by by the
paper Rethinking Evaluation Metrics of Open-Vocabulary Segmentaion [74]. WordNet
is a large lexical database of English, where nouns, verbs, adjectives, and adverbs are
grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.
Synsets are interlinked by semantic and lexical relationships. The Path Similarity method
within WordNet quantifies how similar two word senses are, based on the shortest path
that connects their synsets in the semantic space. This distance is inversely proportional
to semantic similarity: the shorter the path, the more similar the words. Through
this method, we aimed to establish a coherent set of Open Vocabulary metrics that
accommodate the semantic variance in object labeling.

ijum of exchange scale

currency money Richter scale

AN
coinage fund

coin budget

ckel dime

Figure 3.10: An illustration of the WordNet lexical database hierarchy showcasing the
semantic relationship between words. Notably, the diagram also exemplifies an erroneous
link (indicated by a dotted line), demonstrating how 'Richter scale’, which belongs
to a different semantic field, can sometimes be mistakenly associated with ’standard’,
illustrating the complexity and challenges of automated semantic classification.
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The provided algorithm is a systematic approach designed for enriching object detection
datasets with open vocabulary annotations. The process begins with the input of a
list of scenes S, a set of 150 challenge classes C' identified for the Open Vocabulary
Mobile Manipulation (OVMM) challenge, and a predefined similarity threshold 6. The
intended output is a collection of annotated RGB frames. These annotations either
directly correspond to one of the OVMM challenge classes or to a closely related class
determined by semantic similarity. Eventually, such annotations will serve as a dataset
for training the Adapters in the DETIC model.

Algorithm 2 Open Vocabulary Data Gathering

1: Input: Scene list S, OVMM 150 challenge classes C', Similarity Threshold 6
2: Output: Annotated frames with classes from C' or closely related classes based
on similarity

3: for each scene S; do

4: for each episode E; in S; do

5: while agent navigates EF; do

6: save the rgb frame Fj,

7: retrieve masks and ground truths {(M;, G})}

8: for each (M;,G)) do

9: if GG; in C then > Immediate match in OVMM classes
10: save (M;, G})

11: else > Find closest class based on WordNet similarity
12: S$tMypaz < 0

13: Chest < null

14: for each class (), in C do

15: sim <— WordNetPathSimilarity (G, C,,)
16: if sim > sim,,., then

17: STMmaz < SITM

18: Chrest — Cr

19: end if
20: end for
21: if sim,,qe > 0 then
22: save (M, Chest)
23: end if
24: end if
25: end for
26: end while
27: end for
28: end for
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For each scene within the scene list, the algorithm iterates through each generated
episode. Within these episodes, as an agent navigates the environment, it performs
multiple tasks at each timestep: it saves the current RGB frame and retrieves the
associated object masks along with their ground truth labels. For each mask and its
corresponding label, the algorithm checks if the label is among the predefined OVMM
challenge classes. If so, the pair (mask and label) is saved directly.

In cases where the ground truth label does not match any of the predefined classes,
the algorithm employs a semantic similarity measure, specifically the WordNet path
similarity, to compare the label against each of the 150 challenge classes. It selects the
class with the highest similarity score. If this score exceeds the similarity threshold 6,
indicating a strong semantic relation, the algorithm saves the mask with the most closely
related challenge class as its new label.
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Figure 3.11: Examples of frame successions annotated with objects and receptacles
ground truths, showcasing the complexity of the scenarios encountered in the 3D envi-
ronment.
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3.4 Dataset Splits

For the data collection methodology of this research, we employed an egocentric per-
spective to capture frames as the agent navigated through various environments using
the HomeRobot framework. This setup involved twelve distinct scenes from the Habitat
Synthetic Scenes Dataset (HSSD), each representing a unique household environment.
Within these environments, a total of 1,200 episodes were conducted—100 episodes per
scene—where each episode featured a different, randomly determined starting point and
a distinct arrangement of objects within the scene. Throughout each episode, the agent
traversed the environment for approximately 120 steps, yielding around 120 frames
per episode to capture the diversity and complexity of household navigation and object
interaction.

The dataset was divided into several splits to facilitate comprehensive training,
validation, and testing of the models:

e 9 in-domain scenes (accounting for 900 episodes), simulating environments that
the models were expected to become familiar with during their training. From this
subset:

— 70% (approximately 630 episodes) for the training set,
— 10% (about 90 episodes) for the wvalidation set,
— 20% (circa 180 episodes) for the in-domain test set.

e 3 out-of-domain scenes (comprising 300 episodes), to challenge the models with
previously unseen environments and assess their generalization capabilities, featuring
households that were not encountered by the models during training.

In terms of dataset composition:

o The training split contained an estimated 61,7k images and 300k annotations across
630 episodes.

e The walidation split contained an estimated 8,7k images and 41k annotations across
90 episodes.

e The in-domain testing contained an estimated 18k images and 88,5k annotations
across 180 episodes.

e Lastly, the out-of-domain test split contained an estimated 31,4k images and 271k
annotations across 300 episodes set in unfamiliar environments.
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Figure 3.12: Overview of dataset splits for model evaluation. This figure depicts
the division of the scenes into various splits, providing a structured approach to
training, validation, and testing.
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Chapter 4
Implementation Detalils

We now delve into the technical aspects of the implementation, focusing on the key
components and methodologies employed to enhance the model’s performance in temporal
consistency. This chapter provides a detailed overview of the techniques used to prepare
the model for training, the evaluation metrics employed, and the modifications made to
adapt the model to handle multiple frames. This methodology is implemented within
Detectron2 [75], a popular deep learning framework developed by Facebook AI Research.
The framework offers a flexible and modular structure, enabling the integration of our
custom components and functionalities to enhance the model’s capabilities.

4.1 Detectron2 Custom Dataset

Integrating the handling of multiple consecutive frames into Detectron2 required extending
its core components to support temporal data, for object detection in video sequences.
The original Detectron2 framework is designed around processing single images; thus,
our modifications introduce a new approach to process sequences of images, considering
them as unified entities during both training and inference. This is achieved through the
introduction of specialized classes derived from existing Detectron2 components, which
have been adapted to manage sequences of frames.

mamw

Figure 4.1: A sketch of a batch comprising 4 different and unrelated series of frame
sequences. Each column represents a batch element containing a sequence of frames (T),
where T denotes the number of consecutive frames.
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The ConsecutiveFramePredictor class is an extension of Detectron2’s predictor
functionality, designed to handle multiple input images as a series of consecutive frames.
Unlike the original predictor, which processes single images, this class accepts a list
of images and processes them together, maintaining their temporal relationship. This
modification enables the model to consider temporal information when making predictions,
crucial for tasks such as object tracking and activity recognition in video streams.

Figure 4.2: A batch comprising 4 different and unrelated series of frame sequences.
These sequences are independent of each other and are processed collectively as one batch
in the model. The diversity within the batch reflects different temporal contexts, which
are crucial for the model to learn from varying scenarios.

Similarly, the ConsecutiveFrameDataset class modifies the way datasets are handled.
Derived from Detectron2’s DatasetFromList, this class is tailored to load and return
groups of consecutive frames rather than individual images. By doing so, it aligns the
dataset’s structure with the temporal nature of the tasks at hand, ensuring that the model
receives appropriately formatted input. This is particularly important for training models
on video data, where the temporal context of an object’s appearance and movement can
provide additional insights beyond static images.

The ConsecutiveFrameDatasetMapper serves as a bridge between the dataset and
the model, transforming the raw data into a format suitable for model consumption. As an
adaptation of the DatasetMapper in Detectron2, it applies necessary transformations to
each frame in a sequence, such as resizing, normalization, and augmentation. Furthermore,
it ensures that the frames are correctly batched together, preserving their temporal order.
This class plays a crucial role in preparing the data for the model, ensuring that the
temporal information contained in sequences of frames is effectively captured and utilized
during both training and inference.



Implementation Details

4.2 Weights Initialization

During the initial phase of preparing the model, particular attention is given to initializing
the weights of the adapter layers. This step is crucial because it sets the starting point
for how these layers learn and adapt during training. We employ two main methods for
this initialization:

o For Convolutional 3D (nn.Conv3d) layers, we use the Kaiming Normal
method. This method is chosen because it suits layers that use the ReLLU activation
function. The idea here is to initialize the weights in a way that helps prevent the
gradients from becoming too small or too large as they backpropagate through the
network.

o For Linear (nn.Linear) layers, the Xavier Uniform initialization is applied.
This method adjusts the scale of the weights based on the number of input and
output neurons, aiming for a uniform distribution of weights. This balance is
important for maintaining a stable gradient flow across layers, especially at the
start of training, making it easier for the model to learn.

After initialization, the model’s parameters are updated with the pre-trained weights.
This process allows the model to retain its previously acquired knowledge, serving as a
foundation for learning new information.

A crucial aspect of this preparation phase is the selective freezing of the model’s
parameters, with the exception of those within the adapter layers. Gradients are
disabled for all parameters except those in the adapter layers. This approach preserves
the model’s pre-existing knowledge while focusing training on improving the adapters’
capability to understand and manage spatio-temporal data.

Backpropagation:

(e | [

Figure 4.3: Selective freezing of the model’s parameters, with the exception of
those within the adapter layers. Gradients are disabled for all parameters except
those in the adapter layers.
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The last step sets the model to training mode, activating functions such as dropout
and batch normalization, which are important during training but not used during model
evaluation. Identifying which parameters can change during this phase highlights the
beginning of a targeted training, aiming to improve the model’s handling of spatio-
temporal data while trying to mantain its original object detection performance.

Algorithm 3 Prepare Model for Training

1: procedure PREPAREMODEL(model, con fig)

2 // Initialize weights of the adapter layers

3 for each name, module in model.named_modules() do
4 if "adapter” in name then

5: if module is nn.Conv3d then

6 Initialize module.weight with Kaiming Normal
7 else if module is nn.Linear then

8 Initialize module.weight with Xavier Uniform
9: if module.bias is not None then
10: Initialize module.bias with Zeros

11: end if
12: end if
13: end if

14: end for
model.weights < weights from cfg. MODELW EIGHTS
15: // Disable gradients for all parameters

16: for each param in model.parameters() do

17: Set param.requires__grad to False

18: end for

19: // Enable gradients only for parameters in adapter layers
20: for each name, param in model.named_ parameters() do
21: if "adapter” in name then

22: Set param.requires__grad to True

23: end if

24: end for
25: // Set the model to training mode
26: model.train()
return model
27: end procedure
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4.3 Evaluation Metrics Overview

In the field of object detection and segmentation, the metrics employed to evaluate model
performance can significantly vary depending on the vocabulary scope—namely, whether
the evaluation is conducted in a closed vocabulary or an open vocabulary context:

e Closed vocabulary evaluations focus on a predefined set of classes known to the
model during training, offering a controlled environment to measure precision and
recall.

e Open vocabulary evaluations represent a more challenging and dynamic scenario
where the model encounters objects and classes not seen during training, necessitat-
ing metrics that can effectively capture the model’s adaptability and generalization
capabilities.

This work primarily employs open vocabulary metrics to assess the performance
of object detection and segmentation tasks. This approach aligns with the discussed
challenges of robotic navigation and interaction within home environments, where a robot
may encounter a objects beyond those it was explicitly trained on. Open vocabulary
metrics, including modifications to the classical mean Intersection over Union (mloU)
and the introduction of similarity metrics, allow us to evaluate the model’s ability to
generalize its detections to previously unseen objects, providing a comprehensive view of
its performance in realistic and dynamic settings.

4.3.1 Mean Intersection over Union (mloU)

In evaluating segmentation tasks with a closed vocabulary, the classical Intersection over
Union (IoU) is a fundamental metric. This metric measures the precision of predictions
compared to the ground truth. Predicted results are categorized into three groups:

o True Positives (TP): Instances where the model correctly predicts the presence
of a class.

o False Positives (FP): Instances where the model incorrectly predicts the presence
of a class.

o False Negatives (FIN): Instances where the model incorrectly predicts the absence
of a class.

The IoU is calculated as IoU = %, where |TP|, |FP|, and |FN| indicate
the numbers of pixel-level true positives, false positives, and false negatives, respectively.

Therefore, the mloU is defined as:

mloU = L iIoU- here IoU; = 2]
k1Y "= |TP|+ |FP| + |FN|

where IoU; represents the IoU for class 7, and k41 is the total number of classes in the
dataset being evaluated. This measure provides an overview of the model’s segmentation
accuracy across different classes and object sizes.
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As discussed in 3.3, the traditional metrics overlook the significance of the similarity
between the predicted and actual categories. For instance, in a scenario where the ground
truth is >table’, the conventional methodology would assign a zero true positive (TP)
score to predictions labeled as ’cabinet’ or ’chest’. Such an approach contradicts the
intuitive human understanding that these predictions should not be outright dismissed.
This discrepancy highlights the necessity for a revised evaluation framework that more
accurately gauges a model’s performance in open-world settings, serving as the founda-
tion for our exploration into more appropriate methods for assessing open-vocabulary
segmentation models.

In the context of evaluating Open-Vocabulary Segmentation (OVS), the concept of
mean Intersection over Union (mloU) is adapted to accommodate the open vocabulary
paradigm, incorporating nuanced definitions of True Positives (TP), False Positives (FP),
and False Negatives (FN) based on semantic similarities. This adaptation, referred to as
Open mloU, integrates the flexibility of open vocabulary by leveraging similarity scores
between predicted and ground truth categories.

The Open mloU calculation maintains the core principle of mloU but refines the
criteria for TP, FP, and FN to reflect the open vocabulary setting. For instance, in a
scenario where the ground truth label ¢; differs from the predicted label c;, the assignment
of TP, FP, and FN is governed by the similarity score S.,.; between the two categories.
Such similarity score is based on the Path Similarity via WordNet, as discussed in in 3.3.
The refined definitions are as follows:

 Soft True Positive (TP),,: The similarity score Sc,., acts as a soft measure for
TP, quantifying the degree of correctness in the prediction relative to the ground
truth category.

+ False Positive (FP),,: Defined as 1 — S.,.;, this metric captures the portion of
the prediction that does not align with the ground truth, considering the semantic
gap between ¢; and c;.

 False Negative (FN),,: Similarly, 1 —S,.; is used to quantify the missed detection
of the ground truth category by the model, taking into account the semantic
discrepancy.

This approach to Open mloU enables a more nuanced evaluation of model performance
in OVS tasks, accounting for the inherent variability and richness of open vocabularies.
It recognizes that not all mismatches between predictions and ground truth are equally
erroneous, allowing for partial correctness based on semantic proximity. This method
aligns with the goal of assessing model effectiveness in scenarios where the exact category
match is less critical than the conceptual and semantic alignment between prediction
and ground truth.
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Algorithm 4 Open mloU Calculation for Open-Vocabulary Segmentation

1: Input: Predicted Regions P, Ground Truth Regions GT', Similarity Function
Sim

2: Output: mloU

3: Initialize Matches < [ ]

4: Initialize AssociatedGT < () > Track associated ground truths
5. for each p € P do

6: bestloU «+ 0

7 best Match <— None

8: for each gt € GT do

9: if gt not in AssociatedGT then

10: simScore <— Sim(p_ class, bestMatch_ class)
11: IoU <« CalculateloU(p, gt, simScore)

12: if ToU > bestloU then

13: bestloU < IoU

14: bestMatch < gt

15: end if

16: end if

17: end for
18: if bestMatch #+ None then

19: AssociatedGT < AssociatedGT U {bestMatch}
20: Matches.append((p, bestMatch, bestiolU))

21: end if

22: end for

23: IoU < Mean of all calculated IoU values
24: return mloU

The algorithm provided outlines the process for calculating the Open mean Intersection
over Union (mloU) during the evaluation of a segmentation model in an open-vocabulary
context. The procedure is an enhancement of the traditional mIoU calculation that
includes a similarity function to account for the semantic relationship between predictions
and ground truths. For each predicted region, the algorithm searches for the best matching
ground truth region based on the highest IoU score, ensuring that each ground truth
region is uniquely associated with a prediction. The inclusion of the similarity function,
Sim, allows the algorithm to compute a similarity score alongside the IoU, reflecting the
semantic relatedness of the predicted and ground truth classes. This approach rewards
predictions that are semantically similar to the ground truth, thus providing a more
nuanced assessment of the model’s open vocabulary performance. The calculated IoUs
for the best matches are then averaged to obtain the mloU, which is returned as the
output of the algorithm. By integrating semantic similarity into the evaluation metric,
the algorithm aligns more closely with human judgment, acknowledging the complexity
of real-world categorization and the open-vocabulary nature of the segmentation task.
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4.3.2 Success Rate over Navigation Episodes

In our setup, the OVMM task is defined by instructions such as: "Move (object)
from the (start_receptacle) to the (goal_receptacle)". The specified object
is typically a small, manipulable household item, while the start_receptacle and
goal_receptacle are larger pieces of furniture capable of holding these items. The robot
begins in a single-floor home environment, such as an apartment, with the challenge of
locating and moving an object from its known starting location on a start_receptacle
to any designated goal_receptacle. Success in this context is not binary; we award
partial credit for completing stages of the task: locating the starting receptacle with
the object, securing the object, finding the goal_receptacle, and finally placing the
object appropriately.
Simulation success is detailed across four stages:

e FindObj: The agent is successful if it reaches a position within 0.1 meters of the
target object on the start_receptacle, ensuring the object occupies at least
0.1% of the camera frame pixels.

o Pick: After successful FindObj, the agent must activate its gripper when the object
instance is in view and within 0.8 meters, upon which the object is 'snapped’ to
the gripper in the simulation.

e FindRec: After successful Pick, the agent must approach within 0.1 meters of
a viewpoint where the goal_receptacle is visible, similarly with the object
occupying at least 0.1% of the camera frame pixels.

e Place: After successful FindRec, the agent needs to place the object at the
goal_receptacle, with the object’s stability defined by maintaining contact and
velocities below specified thresholds for 50 contiguous steps, without any collision
events during placement.

An episode is declared successful if the robot completes all four stages within
1250 steps. Evaluation metrics include the number of steps taken (num_steps) and
success in each phase (find_object_phase_success, pick_object_phase_success,
find_recep_phase_success). Overall success (overall_success) signifies the robot’s
competence in executing the complete task, while partial success is computed as the
average of success across all individual phases and overall task completion:

1
partial_success = Z(find_object_phase_success +

pick_object_phase_success +
find_recep_phase_success +

overall_success)

These metrics offer a comprehensive measure of the robot’s proficiency in navigating
and interacting within its environment.
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Chapter 5

Results

5.1 Global mIOU Performance Analysis

In this section, we conducted a global analysis by focusing on the Global mean Intersection
over Union (mIOU), providing a macroscopic view of the models’ performance across all
object categories and scenarios without delving into specific size bins or object types. We
conducted a comparative analysis between the baseline off-the-shelf DETIC model and
versions of DETIC enhanced with trained adapters, focusing specifically on variations in
the temporal dimension (T) of the adapters. The adapters were examined with 7' = 1,
T=4,and T = 5.

The T = 1 setup restricts the model to spatial reasoning, lacking temporal analysis,
and it is used to understand the impact of incorporating historical data. All the model
configuration selected for comparison utilized a learning rate of 10~ and a batch size of 4,
with the best models chosen at around 90,000 iterations, based on validation performance.

Comparative results highlighted significant improvements in Global mIOU when
temporal reasoning was introduced via trained adapters. The following table summarizes
these findings:

Model Configuration Global mIOU
DETIC 0.140

DETIC with 2DConv (T = 1) | 0.330
DETIC with 3DConv (T = 4) | 0.391
DETIC with 3DConv (T = 5) | 0.372

Table 5.1: Comparison of Global mIOU on the out-of-domain dataset for different
DETIC model configurations, illustrating the model’s generalization capabilities.
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These findings underscore the value of integrating temporal information for improving
object detection performance in dynamic environments. The optimal global performance
was observed with T' = 4, suggesting a balanced incorporation of temporal dynamics that
significantly exceeds the spatial-only analysis and slightly outperforms the more extended
sequence analysis of T' = 5. This evidence guided our selection of the DETIC model
with conv3d adapters trained with T' = 4 as the preferred model, demonstrating the
advantages of temporal reasoning in enhancing the model’s comprehension of complex
scenes.

The preference for 4 adapter frames over the other settings also stems from the
temporal characteristics of the dataset. Given the temporal distance between frames, a
setup of more frames might introduce too much variability, making it challenging for the
model to discern consistent patterns. Reducing the adapter frames to 4 enables the model
to focus on immediate temporal relationships, and balance computational complexity
given by the temporal context.

5.2 Object Size mIOU Performance Analysis

Understanding the model’s performance across a variety of object sizes is critical for
assessing its robustness and applicability. We included configurations with different
temporal dimensions, specifically T' =1, T'= 4, and T = 5, as in the previous global
analysis. This examination enabled us to assess spatio-temporal adaptability of the
model across objects of varying sizes. Objects of different sizes may present unique
challenges in detection and recognition, particularly in dynamic environments where
perspective and scale can vary significantly.

To evaluate the performance across varying object sizes, we divided the detection
scenarios into five bins, based on the objects’ pixel dimensions within a 640x480 pixel
frame (307200 pixels). The bins are defined as follows, based on the object’s size in
pixels:

o Very Small (0-20%): Objects occupying 0 to 61440 pixels in the frame.

o Small (21%-40%): Objects occupying 61441 to 122880 pixels in the frame.

o Medium (41%-60%): Objects occupying 122881 to 184320 pixels in the frame.
o Big (61%-80%): Objects occupying 184321 to 245760 pixels in the frame.

Very Big (81%-100%): Objects occupying 245761 to 307200 pixels in the frame.
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Model Configuration | Very | Small | Medium | Big Very | Global
Small Big mloU
DETIC 0.143 | 0.141 | 0.133 0.116 | 0.100 | 0.140

DETIC 2DConv (T =1) | 0.337 | 0.298 | 0.268 0.154 | 0.139 | 0.331
DETIC 2DConv (T = 4) | 0.395 | 0.324 | 0.322 0.214 | 0.176 | 0.391
DETIC 2DConv (T = 5) | 0.377 | 0.320 | 0.361 0.244 | 0.200 | 0.372

Table 5.2: Comparison of Mean IoU per size bin and Global Mean IoU for different
DETIC model configurations, showcasing performance across varying object sizes
in the out-of-domain dataset.

The results presented in the table show more clearly the performance differences across
DETIC model configurations when analyzed through the lens of object size. Notably,
the DETIC 2DConv (T = 4) configuration outperforms DETIC 2DConv (1" = 5) in the
"Very Small" size bin, achieving a Mean IoU of 0.395 compared to 0.377. The improved
detection of very small objects using (7" = 4) can be explained by its effective use of
time-related data without focusing too much on repetitive patterns, which are not as
common in very small objects. This balance helps the model recognize small details
better without getting confused by less consistent information over time.

In contrast, for sizes beyond "Small", particularly in the "Medium", "Big", and "Very
Big" categories, we observe an inverse relationship where T' = 5 starts to outperform
T = 4. This shift is particularly noticeable in the "Very Big" size bin, where 7' = 5
achieves a Mean IoU of 0.200 compared to T = 4 value of 0.176. Importantly, as the
agent gets closer to an object, making it appear larger (or "Very Big"), the accumulated
spatial-temporal information becomes increasingly significant. The model sees the same
object more frequently as it gets closer to it, which enhances its ability to recognize and
classify the object correctly due to the accumulation of detailed spatial-temporal features.
This mechanism explains why larger objects benefit more from a longer temporal context
(T'), as the extended analysis captures more of these crucial accumulated interactions.
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Mean loU by Object Size for Different Model Configurations
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Figure 5.1: Mean IoU per size bin for different DETIC model configurations.

By arranging the results in a histogram (Figure 5.1), we can see a pattern of linear
growth in Mean IoU with increasing T values, particularly for larger object sizes. The
linear growth in Mean IoU with increasing T" values for larger object sizes highlights the
incremental value of temporal information in enhancing model performance for objects
that dominate the scene. This effect likely stems from the model’s ability to aggregate
spatial information over time, providing a richer context for identifying and classifying

larger objects.
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5.3 Qualitative Analysis

In this section, we delve deeper into the practical implications of the findings presented
earlier, particularly focusing on a comparative study of the off-the-shelf DETIC model,
and the DETIC models enhanced with Conv2D T' = 1 and Conv3D T = 4. As highlighted
in Section 3.1, we introduced an example scenario involving a bedroom scene to underscore
the challenges associated with achieving temporal consistency in object detection. This
scene features everyday objects such as a bed with cushions, a potted plant, and a shelf.
In this section, we focus our qualitative analysis on the same bedroom scene.

This qualitative analysis aims to illustrate the differences in model performance,
especially in handling the nuances of temporal consistency. The erratic nature of "noisy"
predictions, driven by minor variances in object appearance due to the robot’s movement
or shifts in camera angle, presents a significant challenge. These variances, though
seemingly trivial, can drastically affect the detection models’ reliability, with the same
object being perceived differently across successive frames, despite no real change in the

scene.

By comparing the off-the-shelf DETIC model with its adapter (T = 1) and adapter
(T = 4) counterparts, we aim to visually demonstrate how the incorporation of temporal
information influences the models’ ability to maintain consistent object identification
over time.

set1 v
set2

Figure 5.2: The representative bedroom scene for qualitative analysis. We consider
7 consecutive frames, divided into 2 overlapping groups of 4 frames each.
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Figure 5.3: Comparative visualization of DETIC model configurations.
DETIC with Conv3D T = 4 shows more consistency in segmentation mask colors across
frames, indicating the model’s capability to maintain stable predictions over time.
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In our analysis presented in the previous figure, we compare the performance of
the DETIC model, DETIC with 2DConv adapters (7' = 1), and DETIC with 3DConv
adapters (T' = 4). In particular, the scene under consideration features a bed in the
foreground and a couch in the background, providing a basis for evaluating the models’
detection and consistency capabilities.

o DETIC with 2DConv adapters (7' = 1) tends to make more dense predictions for
the same object, notably the couch, producing different masks. This phenomenon
is attributed to the spatial adaptation capabilities of the 2DConv adapters, which,
while enhancing object delineation, may not contribute to temporal consistency.

e DETIC with 3DConv adapters (T" = 4), on the other hand, demonstrates an
improved ability to correctly predict the bed in the foreground as opposed to the
couch, likely due to leveraging temporal information from previous frames (not
shown here) where the model had already accurately identified the bed. This
underscores the effectiveness of 3DConv adapters in enhancing temporal consistency
across frames.

o However, the same level of accuracy is not observed for the couch in the background
with DETIC with 3DConv adapters (7' = 4), as it erroneously predicts the couch as
a bed but maintains this prediction across frames. In this study, the primary focus
is on consistency rather than outright correctness, and in this regard, DETIC with
3DConv adapters (T' = 4) exhibits the desired trait of preserving its predictions
over time.

e Similar observations are made for the plant container in the background, which
remains consistently identified unlike the results from DETIC with 2DConv adapters
(T'=1). This trend also applies to the shelves object, illustrating that when the
robot turns or goes forward, DETIC with 3DConv adapters (T' = 4) is more likely
to maintain consistent identification of objects across the scene.
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5.4 Success Rate Analysis

In the final evaluation, we conducted simulations in the HomeRobot environment to
measure the performance of both the original model and the adapted model equipped
with Spatio-Temporal Adapters. These simulations were carried out across 60 episodes,
focusing on the 3 out-of-domain scenes that were not seen during the training phase.
Each episode was capped at a maximum of 1250 steps, ensuring that the simulation
would automatically conclude after reaching this limit, regardless of the task’s completion
status.

Both models operated under the same environment and policy, differing only in the
object detection model utilized. This approach allowed us to systematically compare the
effectiveness of the original DETIC model against the modified version with adapters in
navigating and performing object manipulation tasks within unfamiliar environments.
Through this comparative analysis, we aimed to identify any performance improvements
or declines, in the context of egocentric object detection and temporal consistency.

Simulation Metric Original Model Model Ground
Model with with Truth
Adapters Adapters
(T=1) (T = 4)

num_steps 950 985 1050 705
find_object_phase_success 9.99% 11.66% 13.33% 62.7%
pick_object_phase_success 3.33% 3.33% 3.33% 29.7%
find_recep_phase_success 0.0% 0.0% 0.0% 43.3%
partial_success 3.33% 3.74% 4.16% 33.92%

Table 5.3: Comparison of simulation metrics between different agent perception
configurations.

Table 5.3 provides a detailed comparison of simulation metrics across different configu-
rations of agent perception models, contrasting the impact of incorporating adapters with
temporal settings (7' = 1 and T' = 4) against the original model, with reference to ground
truth values for context. In this analysis, the agent operates under an heuristic policy, as
detailed in Section 2.4.4. For the ground truth scenario, the agent functions without the
perception module, instead directly receiving ground truth masks to inform the heuristic
policy. This method serves to delineate the perception module’s contributions from the
agent’s inherent performance capabilities.

The findings for each metric are explained as follows:

e Number of Steps (num_steps): All models required more steps than the ground
truth (705 steps), suggesting an area for improvement. The addition of temporal
information appears to prompt a more cautious navigation approach, as seen in the
increased steps for the T'=1 and T" = 4 models compared to the original.
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o Find Object Phase Success (find_object_phase_success): An improvement
in object detection is noted with the use of temporal adapters, especially with T' = 4
showing the highest success rate. However, a considerable gap remains compared to
the ground truth success rate of 62.7%, indicating the challenge in meeting ground
truth performance with current detection capabilities.

e Pick Object Phase Success (pick_object_phase_success): This metric mea-
sures the success rate of the agent’s ability to pick up an object. In HomeRobot,
this step is a high-level action rather than a policy. Given this approach, it is
expected that the adaptation of temporal information via adapters does not yield
improvements in this phase. The action’s success is influenced more on the accuracy
of object detection itself and previous agent positioning rather than the temporal
consistency of object identification.

o Find Receptacle Phase Success (find_recep_phase_success): The success
rate for identifying a suitable receptacle remained unchanged across all model
configurations, being never accomplished. An explanation for this outcome is that the
episodes likely concluded before the agent could successfully locate a goal receptacle.
This early termination of episodes suggests a need for further optimization in earlier
phases of the task sequence to allow the agent more opportunity to demonstrate
improved performance in locating receptacles.
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Chapter 6

Conclusions

In conclusion, this thesis tackled the challenge of improving temporal consistency in
egocentric object detection for robots operating in home environments. By integrating
Spatio-Temporal Adapters (ST-Adapters) into the DETIC model, we aimed to enhance
the model’s ability to consistently recognize objects across consecutive frames, crucial for
the Open-Vocabulary Mobile Manipulation (OVMM) challenge within the HomeRobot
3D simulation environment.

Our experiments, utilizing the Habitat Synthetic Scenes Dataset (HSSD), revealed
that adding temporal information processing to DETIC significantly reduced "noisy"
predictions, leading to more reliable object detection. Specifically, the model with
T = 4 showed improvements in the find_object_phase_success rate, demonstrating
the added value of incorporating temporal data.

Despite these advancements, there is a scope for further development. Future efforts
should concentrate on refining these models, with a particular emphasis on enhancing
temporal reasoning capabilities. A critical area for future work involves moving beyond the
heuristic agent used in our experiments by evaluating the reinforcement learning baseline
of HomeRobot. This shift could potentially yield more dynamic and adaptive behaviors in
complex environments. Additionally, testing with a more extended history (more frames)
should be pursued; the current limitation to (T = 4) frame values was primarily due to
computational constraints. Lastly, transitioning from simulated datasets to real-world
datasets and environments represents an important step for future developments. While
simulation provides a controlled setting for initial testing and development, incorporating
real-world datasets is crucial for evaluating the model’s performance under different
conditions.

Overall, this work aimed to contribute to the field by testing a method to improve
temporal consistency in robotic vision systems, setting the stage for further research
in creating more reliable and context-aware robotic assistants for complex domestic
environments.
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Appendix A

Appendix

A.1 OVMM Classes List

In the context of the Open-Vocabulary Mobile Manipulation (OVMM) tasks, the agent
is designed to recognize and interact with a predefined set of 150 classes. These classes
include a variety of receptacles and objects, selected to encompass a broad spectrum of
common household items. Below is the comprehensive list of classes that the OVMM

agent is focusing to recognize and manipulate:

NN NN

hssd__thing_ classes = classes = |
"action_figure",

"android_ figure",

"apple",

"backpack",

"baseballbat ",

"basket ",

"basketball",

"bath_towel",

"battery_ charger",

"board__game" ,

"book" ,

"bottle",

"bowl" ,

"box ",

"bread",

"bundt_pan"

"butter_dish",

"c—clamp" ,
"cake pan",
"can',
"can_ opener"
"candle ",
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24 "candle__holder"
25 "candy_ bar"

26 "canister",

27 "carrying_ case",
28 "casserole ",

29 "cellphone",

30 "clock ",

31 "cloth ",

32 "credit__card",

33 "cup",

34 "cushion" |

35 "dish",

36 "doll",

37 "dumbbell" |

38 "egg",

39 "electric_kettle",
40 "electronic__cable",
11 "file sorter",

42 "folder",

43 "fork ",

44 "gaming console",
45 "glass ",

46 "hammer" |

a7 "hand towel",

48 "handbag" ,

49 "hard_drive",

50 "hat",

51 "helmet ",

52 "jar",

53 "jug",

54 "kettle",

55 "keychain",

56 "knife",

57 "ladle ",

58 "lamp ",

59 "laptop ",

60 "laptop__cover',
61 "laptop_stand",
62 "lettuce",

63 "lunch__box",

64 "milk_frother_cup",
65 "monitor_stand",
66 "mouse_pad",

67 "multiport__hub",
68 "newspaper"' ,

69 "pan" |

70 "pen",

71 "pencil_ case",

72 "phone_stand",
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73
74

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

118
119
120
121

Appendix

"picture_ frame",
"pitcher",
"plant__container",
"plant__saucer",
"plate",

"plunger ",

' pOt ' )

"potato ",

"ramekin" ,

"remote"
"salt_and_pepper_shaker',
scissors ',
screwdriver ",

] shoe n ,
n Soap n ,
"soap_dish",

soap_ dispenser ",
spatula",
spectacles",
spicemill",
sponge ",

spoon" |
spray__bottle" |
squeezer ",
statue"

"stuffed toy",
"sushi_ mat",
"tape",

"teapot ",
"tennis_racquet",
"tissue_box",
"toiletry ",
"tomato ",
"toy__airplane"
"toy__animal" |
"toy_bee",
"toy__cactus",
"toy_construction_set",
"toy_ fire_truck",

"toy_food",
"toy_ fruits",
"toy_lamp",

"toy__pineapple",
"toy_rattle",
"toy_refrigerator",
"toy_sink",
"toy_sofa",

"toy_ swing",
"toy_table",
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122
123
124

126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144

146

"toy__vehicle",

"tray",

"utensil holder_ cup"',
"vase",
"video__game_cartridge",
"watch"

"watering_can",
"wine_bottle",

"bathtub",

"bed"

"bench"

"cabinet ",

"chair"

"chest_of drawers",
"couch",

counter" ,

"filing cabinet",
"hamper" ,
"serving_cart",
"shelves",

shoe_ rack",
sink ",

"stand ",

"stool"
"table"
"toilet ",
"trunk ",
"wardrobe" ,
"washer_dryer"
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