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Abstract

As networks develop and permeate ever deeper many aspects of today’s society,
the need for performance monitoring techniques has become crucial in a wide
variety of contexts. Among such methods figure Explicit Host-to-Network Flow
Measurement techniques (EFM), which allow to extract network metrics from a
data transmission without accessing the connection’s endpoints.

The objective of this thesis is twofold: on one hand, it involves implementing
Spin Bit and Delay Bit, two EFM techniques capable of measuring in-network
latency; on the other, it aims to test these techniques on L4S, a state-of-the-art
network suite for TCP.

This research introduces the first functioning implementation of these EFM
techniques over TCP. As a result, it highlights both the Delay Bit’s intrinsic
advantages over the Spin Bit, and L4S’s improvements over classic TCP, presenting
various use-case scenarios tested on both physical and virtual platforms.





Summary

In the digital age networks have become so intertwined with every single aspect of
our lives that understating their relevance has become impossible: it’s therefore
self-evident that developing more fitting and efficient ways to measure the networks’
characteristics is nowadays critical in many situations. Host-to-Network Perfor-
mance Monitoring techniques are a new family of algorithms specifically designed
to gather network metrics in the most agile and least disruptive way possible, i.e.,
with no access to the endpoints, and without introducing any additional data on
the network under scrutiny.

The scope of this research encompasses two similar algorithms, specifically
tailored for latency evaluation: the Spin Bit and the Delay Bit. The main objective
of the thesis is deploying (for the first time ever) these algorithms over the TCP/IP
stack, assessing their validity, and comparing the two solutions to examine whether
the Delay Bit’s theoretical advantages over the Spin Bit hold true in real-life
scenarios. Most of the work hereby presented relies in fact on the patching of the
Linux kernel’s network stack, in order to allow network hosts to deploy, within the
network connection, the algorithm-defined markings which are then exploited by
an on-network observer to extract the required metrics. Performance Monitoring
techniques were initially developed to provide a built-in way of measuring QUIC
traffic, which hides by design any information from external observers. Still, their
many advantages make them a compelling alternative to traditional performance
evaluation solutions.

The network environment’s choice too fell on a state-of-the-art technology: in
order to better assess and evaluate the efficacy of the selected monitoring techniques,
they were in fact employed to compare the classic TCP protocol with L4S. L4S,
which stands for Low-Loss, Low-Latency, Scalable throughput, is an innovative
connection-oriented suite of protocols aiming at improving TCP’s performance,
ensuring, as the name suggest, low and consistent delay, and virtually zero losses,
translating into a stable, reliable, connection, which is critical for many cutting-edge
network applications, ranging from live streaming to cloud services. L4S achieved
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the status of IETF standard in early 2023 and many companies have been working
on their own custom implementation of this solution since.

L4S, as a suite of protocols, relies on two key components to provide the described
features. First, a brand new TCP Congestion Control algorithm is employed on
the endpoints, and it is both truly scalable and relying on an Accurate ECN
mechanism. Truly scalable CC algorithms are likewise defined as they can increase
their throughput independently from the RTT, while Accurate ECN means that the
algorithm constantly retrieves information regarding the state of the network, and
can adapt to the network’s conditions to optimize the flow and avoid saturation.

The second feature on which L4S is based is a Dual Queue solution, that must be
implemented on all routers that might experience congestion. The solution consists
in having two queues instead of one, with the latter specifically reserved for L4S
traffic. The router must therefore be able to tell L4S segments from classic TCP
segments, and by dividing the flows, it is able to recognize whether the queues
are filling: if that happens, which means that a congestion is likely to occur, the
queue overwrites L4S’s marking, warning the endpoints which are then able to
tune their transmission rate to avoid queue saturation, i.e., packet drops. This
is also instrumental in reducing the RTT and its fluctuations, as much of the
delay in a connection is created when packets have to wait in long queues before
being forwarded: maintaining a short queue on L4S’s side does not impact the
throughput, and allows for a lower and more consistent end-to-end network latency.
The scheduler handling both queues is also designed to avoid favouring any of the
two flows, thus maintaining for each connection the same resource share they would
acquire if the mechanism were not in place.

The testing environment put in place for this research had thus to accommodate
L4S both on the connection’s endpoints and on the routers: luckily, a ready-made
implementation of both a dual queue algorithm (with the dualpi2 protocol) and
of a L4S-compatible congestion control algorithm (in the shape of the Prague CC
protocol) has been developed on Linux for testing purposes by the research team
which worked on the IETF document. The first part of the whole research consists
in crafting and validating said environment. Actually, two different solution are
provided: a fully-virtualized network solely relying on Linux Network Namespace’s
virtualization primitives, which can be deployed on any Linux machine, and a more
complex, although still very straightforward, physical network, comprising Linux
servers filling in as both the endpoints and the network devices, as the Dual Queue
implementation was already available on Linux, while actual routers would have
required a custom implementation.
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Both test plants were designed with an identical layout: four endpoints are put
into two different LANs connected by a router. A network impairment is also used
to emulate real-life conditions on both test plants, like delays, reordering, jitter,
and losses. A congestion is put into place by managing the throughput, so that
the upstream flow on the router exceeds the downstream flow, allowing the hosts
upstream to generate more traffic than the router is able to drain. By doing so,
hosts have to adjust to the downlink channel’s capacity, thus requiring congestion
control. The two host pairs across the router generate each its own flow: one
over classic TCP with Cubic as Congestion Control protocol, and the latter an
L4S-compatible flow with Prague. By doing that the Dual Queue has to handle
each connection separately during the congestion, and the metrics acquired through
performance monitoring provide a means of comparing the connections’ behaviour,
and to assess whether L4S is behaving as expected, and if it provides any sizable
advantages over classic TCP.

Once the network environments were ready and validated, the most significant
part of the work could begin, i.e., patching the Linux kernel to implement the Spin
Bit and the Delay Bit. First though, it is necessary to understand how both these
algorithms work. The Spin Bit’s logic is very simple: the idea to mark a bit inside
each packet either with the value 0 or 1, according to the following rules: one of
the endpoints (the one starting the connection) starts sending packets all with the
same marking, and the latter endpoints simply reflects them with the same value.
As ACKs and other packets start coming back, the first endpoint knows that it
must mark all packets with the opposite value to the last one received, resulting in
a square wave which transitions once per RTT. This allows an on-network observer
to extract the end-to-end latency by just looking at the transitions. The only
issue is that in case reordering occurs, false transitions are created, resulting in
false measurements. This is the exact reason why the Delay Bit was implemented
by the TIM’s working group for research and innovation: the delay Bit replaces
the square waves with pulse waves, meaning only one packet is marked to one at
the beginning and reflected between the endpoints indefinitely, with the observer
taking measurements with each pulse. This solution is resilient to reordering as
even rearranging the packet containing the sample set to 1 does not change the
RTT measure by a meaningful amount, but is, at least in theory, susceptible to
losses, as if the marked sample is lost, the measure is lost too. Also, the endpoints
need a timer to be able to tell whether the marked bit was lost, and generate a
new one. Still, theoretically the risk of this to happen is very low as the marked
packet is one for each RTT, so the chance of losing exactly that packet is extremely
low provided loss ratios which are compatible with any real network connection,
albeit unstable.
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The first choice towards implementing these algorithms was finding a suitable
place inside the TCP/IP stack which could be used to carry the marking. The
most obvious solution was that which was in fact adopted, i.e., using one of the
reserved bits inside the TCP header. This choice proved fortuitous, as it’s clear
that both techniques require some connection-wide state variables to be stored
inside the kernel: during the implementation phase, both the marking action and
the control logic could therefore be implemented inside the TCP modules of the
Linux kernel, at layer four of the OSI model, avoiding inter-layer communication
which is in fact much more complex. It was in fact sufficient to define some state
variables, introducing a parsing mechanism to extract the incoming value and
update the state variable accordingly, and then an algorithm to mark the reserved
bit accordingly. This workflow was basically identical for both the Spin Bit and
the Delay Bit, even if in the latter case, some adjustments were needed to avoid
segmentation happening on the lower levels of the network stack from introducing
multiple samples on the same RTT.

The last piece of work consisted in deploying an on-network observer capable of
analysing the marking on the segment, and correctly extracting the metrics. This
time though, instead of developing a new custom solution, it was possible to rely
on Spindump, an open-source application which, among its capabilities, supports
Spin and Delay Bit parsing for QUIC traffic, and patching it to make it compatible
with TCP.

Once the whole testing environment was complete and validated, it was finally
possible to actually follow through with the experimentation. First, the Delay Bit
and the Spin Bit were compared with a host-based monitoring technique, which
acted as the benchmark for the analysis: the results confirmed the Delay Bit’s
resilience to network reordering, whereas the Spin Bit proved unusable, and its
reliability even when losses were introduced. All L4S’s analysis were therefore
conducted using the Delay Bit to gather latency information: by changing the
network conditions through the impairment, it was possible to obtain a wide array
of scenarios which were instrumental both to analyse the nuances in the suite’s
behaviour, and to assess its resilience in the most diverse situations. As a result,
L4S proved superior to classic TCP in almost every aspect and network conditions,
in full accordance with both its design and all expectations.

In conclusion, this experiment reached its main goal of deploying a working
implementation of two Host-to-Network EFM techniques, and comparing them
in a simulation of real-life applications. Furthermore, these results were achieved
while testing a new powerful connection-oriented technology which is collecting
much praise and attention from many vendors in the field. Lastly, both the only

v



currently available virtual L4S-compatible environment and the first Linux patch
implementing Spin Bit and Delay Bit are now publicly available for researching
and further developments.
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Chapter 1

Introduction

1.1 Performance monitoring and L4S

As networks continue to grow in complexity and significance within the digital
landscape, ensuring optimal performance and reliability has become an ever-present
challenge. Network operators, researchers, and service providers are seeking ways
to enhance the quality and performance of their networks to meet the demands
of today’s data-intensive applications. Performance monitoring techniques play a
crucial role in this context, offering valuable insights into the network behaviours,
efficiency, and responsiveness.

The primary objective of this thesis is the implementation of some performance
monitoring techniques on a L4S environment, in order to further validate their
employment and showcase their effectiveness within an established protocol like
TCP, but also in the context of a state-of-the-art testing ground. L4S was in
fact selected as the subject for this testing activity due to its innovative nature,
its relevance, and its ability to improve the performance of a traffic flow over
the network, thus providing the opportunity to compare flows with clear-cut
behaviours and assess the performance techniques’ prowess even in complex and
diverse conditions.

1.2 The objectives of this research

This research was conducted in collaboration with the TIM Group at the Telecom
Italia Lab in Turin. Its goals are thus relevant to TIM’s interest in the development
of new technologies to eventually improve their services’ performance.
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Introduction

The studies hereby presented aim at testing L4S’s performance on a cabled
network also hosting classic connections when congestion occurs. Comparing delay,
jitter and bandwidth occupation will allow us to obtain metrics to describe the
performance improvements offered by the architecture, draw some conclusions about
its advantages and disadvantages, and try to assess the gains network providers
might obtain through the adoption of this new technology.

All of this is done thanks to a set of passive monitoring techniques, whose
effectiveness in providing the results is equally of great interest: Explicit Flow
Measurement (EFM) techniques are relatively recent and were developed with
consistent contributions by the TIM’s working group for research and innovation:
their successful application is hence crucial in substantiating their value and
advocating for their adoption across diverse scenarios.

1.3 Thesis structure
This section contains a brief overview of each of the following chapters and their
content. Namely:

• Chapter 2 provides an overview of the L4S architecture, its characteristics and
its core elements, and illustrates its relevance in today’s network landscape.

• Chapter 3 illustrates the thought process behind the definition of the experi-
ment, its requirements and provides a logical overview of the main elements
required in the test plant.

• Chapter 4 provides an in-depth dive of passive performance monitoring, explicit
flow measurement as a whole as well as the specific EFM techniques employed
inside the the test plant.

• Chapter 5 describes actual configuration process of the test plant.

• Chapter 6 gives a detailed explanation of the implementation of the EFM
techniques on the physical hosts.

• Chapter 7 describes the tests aimed at comparing Spin Bit and Delay Bit,
provides and discusses the obtained results.

• Chapter 8 describes the use cases for L4S’s analysis and comparison with
classic TCP, provides and discusses the obtained results.

• Chapter 9 draws the conclusions of the experimentation and discusses future
work.
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Chapter 2

The L4S Architecture

2.1 Overview
The Low-Latency, Low-Loss, Scalable Throughput (L4S) suite represents a ground-
breaking standard for managing congestion control on the internet. Initially con-
ceived by Bob Briscoe, Greg White (CableLabs), and Koen De Schepper (Nokia),
L4S has been formally standardized in 2023 as a new component of the internet
protocol suite (TCP/IP) following its approval by the IETF committee[1]

The L4S network architecture is dedicated to internet applications that require
low latency to operate, like web applications, conversational video, online gaming,
remote desktop, and many cloud-based services. The main challenge that these
technologies have to face in order to ensure a seamless user interaction consists as
a matter of fact in the delays that might occur in any network connection: these
are not the base time that a packet takes to reach its destination (i.e., the RTT or
half-RTT), yet the additional intermittent latency mainly caused by the queuing
process that packets incur into as they have to be forwarded by the network devices
when a congestion occurs (which means the number of incoming packets is higher
than the capacity of the link on which they have to be forwarded to). Delays like
these add up and create spikes in the time required by the packets to reach their
destination.

The goal of the L4S architecture is therefore that of providing a connection with
as little transmission delays as possible, thus eliminating the jitter in the RTT and
ensuring a more seamless interaction between the endpoints.

L4S relies on two complementary technologies, namely:
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• a TCP congestion control algorithm able to quickly adjust its flow in order to
avoid queuing - and therefore delays - both fast and precisely, in order to fully
exploit the channel’s capacity at any given time;

• a differentiated queue on the network hosts prone to congestion, in order to
handle separately, but fairly, the L4S flow from the normal flow, and also to
inform the L4S endpoints if a congestion is likely to occur.

These two elements must be able to interact together through an Explicit Congestion
Notification (ECN) algorithm.

2.2 The congestion control algorithm
L4S requires a scalable congestion control algorithm, which is defined as "one where
the average time from one congestion signal to the next (the recovery time) remains
invariant as flow rate scales"[2]

This is critical for L4S technologies, due to the fact that in order to efficiently
exploit the available bandwidth at any given time, the flow rate must be able to
reach full capacity fast[3]. Classic CC algorithms like Reno take many round trips
to reach the channel’s full capacity: in fact TCP Reno increases its CWND linearly,
and while more efficient alternatives like CUBIC are faster, the constant trend of
network communications is moving towards links of greater and greater capacity
to accomodate for the ever increasing needs of the users, which hinders classic
protocols from being able to quickly fill up the channel.

Scalable congestion control algorithms are therefore necessary to ensure a good
starting point for the L4S architecture, and in the last years many options were
developed: DCTCP is a relatively affirmed solution, although it was developed
to work in data centers’ networks; a more recent solution is TCP Prague, which
extends the benefits of DCTCP for WANs.

2.3 The Accurate ECN mechanism
CC algorithms can be divided into three categories[4]:

• black box algorithms operating with no knowledge of the state of the network
other than the binary packet drop feedback upon congestion (e.g., Reno,
Cubic);
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• grey box algorithms operating with no direct knowledge of the network state,
but relying on measurements taken by the endpoints which provide some
degree of information about the situation of the link (e.g., Vegas);

• green box algorithms relying on signalling methods implemented by the routers
in order to obtain a direct knowledge of the network (e.g., BBR, DCTCP,
Prague),

While a scalable CC is the foundation of the L4S framework, the keystone of the
architecture is the accurate ECN mechanism, a green box solution that allow for a
timely flow reduction when needed.

ECN means explicit congestion notification, and it describes[5] algorithms relying
on the routers’ ability (usually through AQM) to mark packets when a congestion
is likely, instead of dropping them, thus signalling the endpoints ahead of the
actual congestion event: this allows them to reduce the flow and possibly avoid the
congestion from happening. ECN is a mechanism therefore able to differentiate
between what could be called "hard congestion signals", i.e., the actual packet losses
due to the congestion, from "soft congestion signals", namely the marking made by
the routers to inform the endpoints of an incoming congestion. In the latter case,
if the situation on the network isn’t servery compromised yet, the endpoints can
adjust the flow rate through a less severe reduction in order to avoid congestion
from actually happening, thus preserving the bandwidth.

Accurate ECN is a more sophisticated version of the standard ECN[6], that
provides more than one feedback signal per RTT in the TCP header, therefore
allowing for an even more precise control over the flow.

2.4 The dedicated queue
As mentioned above, the AccECN algorithm requires a signalling mechanism in place
on the routers in order to inform the endpoints of the approaching of a congestion
event. The aim of this section is therefore that of describing all requirements
that need to be taken in account on the router to successfully implement the L4S
framework.

L4S as a technology isn’t meant to be deployed alone in the entire network: as a
matter of fact, it’s unreasonable to think that a network technology that requires
both dedicated endpoints and network devices might become ubiquitous on the
internet: the L4S architecture was hence designed to work in mixed environment
with many flows and even unaware network devices. In fact, most routers on a
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WAN can potentially be totally unaware of the L4S solution, that needs to be
deployed only on the nodes where a congestion is likely.

First of all, capable routers must handle the L4S traffic in a dedicated way, and
in order to do that they require a queue dedicated to the L4S packets. This is due
to the fact that the delay the solution aims at eliminating originates in the queues
on the routers: while a buffer is really necessary to avoid too many packet losses,
it also introduces a space where packets can be queued up, considerably increasing
their forwarding time. Obviously a shallow buffer is not the solution, because it
makes the device less capable of handling a temporary burst of rate higher than
the router is able to handle, and results in an unreasonably (and unnecessarily)
high number of packet drops.

IP ECN 
Classifier

Base 
AQM

Co
up

lin
g 

Lo
gi

c

FIFO 
Scheduler

ECN 
Marker

Classic 
AQM

ECT(1)

Non-ECT 
ECT(0)

CE (if congestion is ahead)
relying on AccECN allows the L4S buffer to remain shallow

Figure 2.1: Schema of the dual queue structure with flows separation

The balance to strike here is having a queue which has a good capacity to deal
with temporary bursts, while keeping it mostly empty. Therefore the L4S solution
relies on a dedicated queue for the L4S traffic, which must therefore be flagged in
order to be told apart from the classic traffic. The dedicated queue is kept shallow
in order to decrease each packet’s waiting time before retransmission, and this is
done by informing the endpoints of an incoming congestion.

The only problem is that this solution must take into account that with two
parallel queues, the flows are basically handled in two different ways, in an approach
that might look like diffserv. L4S’s objective is though not that of creating a
privileged traffic service: to the contrary, it aims to enhance its flow performance
without hampering the other connections. Therefore, the bandwidth should be
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shared as fairly as possible, in order not to compromise the network usage by
non-L4S applications.

2.4.1 How to tell L4S packets apart from classic traffic
As previously mentioned the Dual Queue works by inserting L4S packets in a
different queue from the one used by the remaining traffic. This is possible as L4S
packet are required to have a specific marking inserted in the two-bit ECN field
inside the IP header. In fact, while traditionally the ECN field was used as follows:

• 00 → ECN not supported (Not-ECT),

• 01 or 10 → ECN Capable Transport (ECT(1) or ECT(0)),

• 11 → congestion experienced (CE);

the L4S standard redefined the codification to make space for the L4S traffic:

• 00 → ECN not supported (Not-ECT),

• 01 → traffic eligible for L4S treatment (ECT(1)),

• 10 → ECN Capable Transport (ECT(0)),

• 11 → congestion experienced (CE).

This allows the Dual Queue to differentiate between the two traffic classes and
avoid latency to build up in the buffer used by L4S due to less responsive CC
protocols.

2.4.2 How the endpoints are informed by the router
Lastly, the ECN field is also used, in true ECN fashion, by the queue itself to
inform the endpoints if a congestion is likely to occur: the CE value is set if the L4S
queue is growing, which means that a congestion is at least plausible. Outgoing
packets marked with CE then reach the endpoints, which can therefore adjust the
throughput trying to prevent packet loss.

2.5 The relevance of the L4S architecture
L4S as a technology is highly important for any internet provider: in fact web
technologies require more and more speed and performance, and while upgrading
the network infrastructure can accommodate for that, it’s obviously much more
expensive than simply deploying a new technology that can increase the efficiency
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of highly demanding applications. This acquires even more relevance by putting
into account the downward trend of consumer prices worldwide[7][8][9] which makes
the topic even more relevant.

On the other hand, many of today’s more crucial and promising technologies
rely heavily on real-time remote interaction, like cloud-based technologies, online
video-chat applications, internet video streaming and gaming, and might benefit
heavily from a differentiated, reliable connection over the internet. An equally
important perk L4S provides though relies in all the web applications and services
which do not yet exist, due to the lack of possibility to establish a high-bandwidth,
low-latency, reliable connection over the internet. Thus, implementing L4S also
offers a unique opportunity for the development of tomorrow’s innovations.
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Chapter 3

Testing Ground Architecture

3.1 Preliminary considerations
The best way to thoroughly examine the L4S architecture is analysing a congestion
scenario on a network hosting both L4S and classic traffic, in order to compare,
through EFM techniques, the flows’ behaviour when resources are limited and
must be shared. This scenario is indeed most interesting because it provides a
direct comparison aming different traffic flows with peculiar characteristics, and
also allows showcasing L4S’s behaviour in its most representative use case.

The test plant must therefore be a reflection of this objective: multiple hosts need
to be able to exchange traffic flows among one another, across a single congestion
point.

3.1.1 Active and passive monitoring
Equal attention must still be given to the measurement process to use in order to
obtain the data. Network measurement techniques for performance evaluation can
be broadly categorized in two main groups[10][11]:

• active monitoring, which require additional traffic to be injected in order to
obtain measurements;

• passive monitoring, which does not require additional traffic, thus representing
the less intrusive alternative.

Passive monitoring in most cases just requires the endpoints to implement a
packet marking technique, relying on the reserved bits inside the TCP header
(some techniques can also do without any marking), and offers therefore two great
advantages: once implemented it can be applied on any kind of existing traffic, and
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is therefore more suited to provide realistic metrics; furthermore, it makes it easier
for an observer placed on the network to gather information, because it doesn’t
need to perform any kind of deep inspection.

Still, passive monitoring requires a kernel-level patch at the endpoints, which is
not straightforward and will be discussed in depth in chapter 6.

3.2 Testbed architecture
In order to create a congestion between a classic and a L4S flow, four hosts are
needed as endpoints. The congestion scenario then implies the presence of a router,
which means that senders and receiver have to to be deployed on two separate
LANs.

A device must also be able to perform traffic monitoring according to the
requirements defined above. This device, which from now on will be called observer,
must be able to access the entirety of the traffic flowing through the test plant’s
network, and either store it or directly process it and provide with the required
metrics.

3.2.1 Endpoints characteristics
Two endpoints (one for each subnet) need to support a L4S-compatible TCP
protocol with an AccECN congestion control algorithm, while the other pair of
hosts just needs to be able to generate traffic through a classic TCP flavour. All
of them must also implement the required packet marking algorithms, and must
therefore allow for easy network stack modifications to be introduced.

We can define for each pair two distinct roles: server and client: the former
accepts incoming connections and generates the traffic, while the latter establishes
the connection while only acting as the receiving end of the transmission, by
acknowledging the incoming packets.

Regarding the TCP CC flavours the choice fell on Prague as the L4S-compatible
protocol, thanks to its design optimized to operate on the wide Internet network;
regarding the classic TCP CC protocol Cubic was chosen for its wide spread use
and good performance at moderate bandwidths.
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3.2.2 Router characteristics
The router needs just to have its NICs configured with the dualpi2[12], which is a
dual-queue AQM protocol built for L4S, thus also implementing the dual queue
(as described in 2.4) on the interface buffers. As the network’s single congestion
point, the router must also be deployed so that the congestion can actually be
triggered, meaning more traffic must be allowed to come in than the downwards
link’s capacity actually supports.

3.2.3 Network characteristics
The network must be divided into two LANs to have the traffic flowing across the
router, with both the clients’ pair and the servers’ pair each connected one network
interface respectivelt. Thus, servers generate traffic towards the same router port
(granted its bitrate is lower then the NIC’s capacity), which is then forwarded to
the NIC connected to the clients: if the latter’s link does not support the incoming
bitrate, a congestion occurs, and the AQM system is going to be able to ensure the
Prague flow’s correct behaviour.

Last but not least, a way to introduce a base delay on the network must be
considered: in fact Prague, being an AccECN congestion protocols rests on the
employment of multiple control messages over a single RTT. Thus, a test plant
striving to resemble a real-world scenario, should not stray from employing some
system to simulate delays (and possibly also additional losses) on its simulated
network.

Drawing from all requirements discussed in this chapter, the image below shows
a logical rendition of the test plant architecture:

Router

L4S Server L4S Client

Classic Server Classic Client

L2
Switch

L2
Switch

Prague Flow

Cubic Flow

dualpi2dualpi2

Clients contact their respective servers…

…from which they acquire data in download, triggering a bottleneck

Bottleneck here

Observer 
deployed here

Figure 3.1: Logical rendition of the test plant
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Chapter 4

Passive monitoring in depth

4.1 Packet marking for passive measurements
In section 3.1.1 the two main categories of network measurements techniques were
already presented, and a passive solution was deemed more suited for most real-life
scenarios. Still the provided definition remains broad and needs to be detailed to
understand the relevance of the the strategy here employed. Passive measurements
in fact may be also applied to the traffic as-is, for example by trying to extract
the latency metrics through the timestamp sometimes carried by the timestamp
option inside the TCP header, or by measuring the time elapsed between a packet
transmission and its acknowledgement. These strategies work but also carry some
problems: for this reason a new family of solutions was envisioned, relying on
packet marking techniques, i.e., algorithms that carry information that can be
decoded by an observer in charge of extracting the data and compiling the metrics.

4.1.1 Introduction to Explicit Flow Measurements
Passive monitoring solutions relying on packet marking were called Explicit Host-
to-Network Flow Measurement techniques[13]. They were in fact first developed
in close cooperation with the QUIC community in order to allow monitoring a
protocol designed for security, and thus hiding by nature all information which
might be exploited to perform monitoring activities. EFM techniques hence owe
their name to the fact that they carry explicit information in a context where
concealment is the keyword.

TCP nonetheless proves to be a suitable platform for passive monitoring im-
plementation, thanks to the reserved bits inside its header, which can be easily
repurposed to carry the marking bits all techniques require.

12



Passive monitoring in depth

4.1.2 EFM techniques
Currently there are several EFM techniques available for implementation, but most
of them just provide the same two metrics (i.e., delay and losses) in different ways.
Both dimensions are obviously critical for L4S’ performance evaluation, as the name
itself suggests that its characteristics are low latency and low loss. Throughput on
the other hand, while equally important, does not require any tailored technique
due to the straightforwardness of its measurement.

The original target of the research consisted in developing both latency and
loss techniques: unfortunately, the chosen loss technique, i.e., the Q Bit, wasn’t
implemented due to time constraints which didn’t allow to properly address the
technique’s integration in the context of TCP (the Q Bit is in fact already in
use in other network protocols). Losses metrics were therefore obtained from the
endpoints, while the Spin Bit and the Delay Bit were used to extract latency
metrics. The reason for this choice lies in the fact that the Spin Bit is the simplest
and most widespread latency EFM technique, while the Delay Bit is still a simple
yet more accurate alternative recently developed at TIM: assessing how the Delay
Bit fares in comparison to the more well-known Spin Bit has been in fact a key
target of the research, in order to further substantiate its benefits and advocate for
its adoption.

4.2 The Spin Bit
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Figure 4.1: Spin Bit algorithm

The Spin Bit[14] was the first packet mark-
ing technique to be conceived, and it’s
aimed at performing passive latency mea-
surements on a network. Currently, it’s
optionally implemented in the QUIC pro-
tocol.

The Spin Bit idea is to exploit a bit in-
side the packet’s header to create a square
wave signal on the data flow, whose length
is equal to the RTT. By doing so, an ob-
server in the middle can therefore mea-
sure the end-to-end RTT only by watching
the Spin Bit’s transition, granted it’s able
to perform packet inspection and knows
where the information is located.
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The Spin Bit technique works as follows:

• when the client receives a packet with the packet number larger than any
number seen so far, it sets the connection spin value to the opposite value
contained in the received packet;[14]

• when the server receives a packet with the packet number larger than any
number seen so far, it sets the connection spin value to the same value contained
in the received packet.[14]

This technique has its own limitations, mainly due to reordering which might blur
the edges of the square wave signal generated, which is the main reason why the
delay bit represents an improvement over this solution.

4.3 The delay Bit
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Figure 4.2: Delay Bit algorithm

While from a theoretical standpoint the
Spin Bit is a perfect technique to ob-
tain latency measurements, in a concrete
scenario packet reordering may blur the
edges of the square wave resulting in de-
creased accuracy.

The Delay Bit on the other hand sets
the marking bit just once per round trip,
resulting in a single packet (called delay
sample) bouncing back between the end-
points throughout the connection. This
allows the observer to measure both the
right and the left half trip delays, and
thus the whole RTT.

The algorithm’s behaviour is comprised of two phases: generation and reflection.

4.3.1 The generation phase
Generation of the delay sample is only entitled to the client, which is required to
maintain a variable dstime referencing the timestamp of the sample transmission.
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The variable must be updated at every subsequent re-transmission and it’s of
paramount importance for the following reasons:

• the delay sample might be lost or discarded.

• the server might have reduced its transmission rate, withholding the delay
sample.

In both situation the accuracy of the measurement is going to be compromised,
and therefore the timestamp comes in handy: when a packet is generated, the time
elapsed by the last delay sample transmission is checked, and if it’s greater than a
predefined variable Tmax, a new time sample is created and the variable reset.

Obviously the Tmax must be defined to be greater than the maximum RTT
on the network, plus a fixed amount, in order to avoid triggering unnecessary
retransmissions but also keep the mechanism idle for too long. The Tmax can be
either defined in advance, if the network topology and the traffic behaviour are
known, or dynamically computed during the transmission. As far as the scope of
this research goes, a fixed value is sufficient.

4.3.2 The reflection phase
The reflection phase is almost identical for client and server: both endpoints, upon
delay sample reception, mark the delay bit on the first packet produced in the
opposite direction, thus effectively "reflecting" the sample back to their counterpart.
The client then, as previously mentioned, is also bound to update its own dstime.

4.4 The Q Bit
The sQuare Bit (Q Bit) produces, similarly to the Spin Bit, a square wave between
client and server. In order to allow measuring the losses though, the client marks N
packets and then inverts its marking, thus generating a signal with period equal to
2 ∗ N. This simple method makes it possible for an external observer to count the
packets in one direction and check the upstream losses, between the server and the
observer. Thus, to evaluate the amount of packet lost throughout the connection,
each endpoint produces its square wave independently and the observer separately
analyzes each flow direction. The downstream losses can then be estimated as
equal (on average) to thee upstream losses in the opposite direction.

In order to do that though the observer needs to learn the number N making up
the Q block length, which is chosen by each endpoint and must be inferred by the
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observer. N must be a power of 2 and at least equal to 64. The power of 2 ensures
that the observer is able to guess the Q block size; furthermore, being reordering
a common event that can cause false measurements, the observer must count the
packets belonging to a Q block up until X packet after the transition occurred
(with X necessarily lower than N/2): this implies that a small number makes the
measurement less resistant to blurred edges, and in case of a spike in the losses
might also make harder to guess the right value for N.
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Chapter 5

Test Plant Setup

5.1 Premise
According to the considerations made in chapter 3 it’s now possible to actually
build the environment where the experiments will take place. There are basically
two possible alternative solutions which are now going to be discussed:

• creating a virtual environment which is capable to host the entire network

• deploying the network as a simple physical environment with real computers
and network devices

As both solutions have their own strengths and weaknesses, the only sensible
decision was to implement both the virtual and the physical test plants, and they
are in fact discussed in the following sections.

5.2 Virtual scenario
The virtual solution offers many obvious advantages, mainly:

• independence from peculiar behaviours and characteristics of the single ma-
chines, that might impact the performance measurements of one specific traffic
flow;

• higher simplicity, portability, reproducibility.
There are many different options to create virtual networks, basically either relying
on full virtualization or para-virtualization. Still, in the Linux world, both are
based upon virtualization primitives, i.e., Cgroups and Namespaces. The easiest
and most efficient solution is therefore that of using Network Namespaces to isolate
network functions inside a machine and thus mock the various elements of the test
plant.
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Figure 5.1: Virtual test plant representation

5.2.1 Kernel patch for L4S support
The L4S architecture relies on two technologies: a scalable congestion control
protocol on the endpoints and an additional dedicated queue on the nodes prone
to congestion. The L4STeam open source project on GitHub provides a patch for
the Linux 5.15 kernel version with both Prague and Dualpi2[15]. By just following
the guides provided inside the repository with a few a precautions, it it possible to
deploy the required functions on any Linux machine with an OS version supporting
the Linux 5.15 kernel. In order to install the kernel it’s sufficient to follow the
guide inside the README.md in the repository mentioned above. Any information
regarding the setup of a Linux host and deployment of the L4S architecture is
available at appendix A.

5.2.2 Deploying the Namespaces
At this point the host can utilize all the protocols defining the L4S architecture. The
next step is then that of creating, using virtual network interfaces and bridges, a
network topology mirroring the architecture described in 3.2. Network namespaces
are then used to isolate the virtual NICs in charge of generating and receiving the
traffic from one another as well as the router, thus creating completely independent
network environments that can be used as hosts in the experiment.

All information regarding how the configuration was achieved as well as a bash
script to reproduce this exact configuration are available at appendix B.
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5.2.3 Defining the bottleneck

Lastly, the network must be designed to host a reduction of the available bandwidth
in the path from the client to the server. It’s possible to achieve this by creating
100Mbps links connected to all hosts, and then to set up a 1Gpbs link connecting
the servers to the router: this allows all 200Mbps of traffic coming from the servers
to reach the NICs behaving as router. Still, by limiting the channel connecting the
remaining NIC to the clients to 100Mbps, a bottleneck on the router is created,
showcasing the behaviour of dualpi2 in the dealing with congesting flows.

5.2.4 Generating the flows

Both flows are generated via iperf3, a tool for network performance measurement
and tuning. Iperf3 offer many features for customizing flows, and most importantly,
it provides end-to-end retransmissions: since the Q bit couldn’t be implemented,
end-to-end techniques are the only way to measure the losses, which are essential
to evaluate all use cases hereafter examined.

The result (fig.5.1) is a fully-virtualized test plant deploying all the elements
needed to test L4S and compare it to a TCP Cubic flow. Each host can be directly
controlled by command line by just preceeding the instruction to execute with the
namespace command, as reported in the example below:

1 sudo ip netns exec [ namespace name ] [ a c tua l command ]

5.3 Physical deployment
On the other hand, while the physical rendition of the test plant might give back
less "universally valid" results, it is in fact maybe more interesting because it
allows to notice the actual constraints of a real network. Now then the physical
implementation of the test plant is discussed, both according to the considerations
made in chapter 3 and the machines which were available at TIM laboratories.

5.3.1 General setup for the physical machines

The TIM Lab had just four servers freely available, which are too few to have all
endpoints, the router and possibly an impairment each on a separate machine. For
this reason the endpoints were grouped with both traffic generators and both traffic
receivers on just one machine respectively. More details on that later.

19



Test Plant Setup

The available servers came without any OS yet, hence Ubuntu 22.04 was installed
in its server version on all machines, saved the router which required the desktop
version. The router is in fact the main observation point for the experiment
and Ubuntu Desktop allows an easier use of desktop-oriented applications like
Wireshark.

The OS choice fell upon Ubuntu 22.04, thanks to its compatibility with the Linux
Kernel 5.15 version, which was used by L4STeam to create the patch for Prague
and dualpi2. The installation of the new Kernel on all machines followed the exact
procedure detailed in section A.2.

After the installation, the servers were configured with static IP addresses and
connected to a management network, in order to enable their control via SSH (for
the endpoints) and RDP (for the router server).

5.3.2 Configuring the endpoints

As anticipated above, just four machines were available, while the experiment
architecture as it was designed requires at least five if not six entities (four endpoints,
a router, and possibly an impairment simulating delays on the network). The
solution presented here relies on the network namespaces techonlogy (ref. section
5.2.2) in order to have just two machines hosting respectively both servers and
both clients. This is possible as the servers have many physicals network interfaces
that can be assigned to isolated network environments, effectively replicating the
behaviour, of multiple hosts on the network. By doing that, only four machines
are needed, and there are also advantages in the synchronization of the traffic
generation process across multiple hosts.

5.3.3 Configuring the router

The router is the heart of the system, as it needs to deploy dualpi2 on its interfaces,
but also for it is the main observation point for test plant validation and data
collection, as all traffic flows across it. For this reason it required the installation
of Wireshark, a packet inspection tool, to check the correctness in the protocols’
behaviour, and Spindump, a command-line utility to at acquire in-network metrics.
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2. Physical Test Plant: cabled network
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Figure 5.2: Physical test plant representation

5.3.4 Setting up the experimental network
Once the hosts and the router were ready, the network for the experiment was set
up using Ethernet cables and L2 switches. According to the requirements discussed
previously two separate LANs were configured through assignation of the addresses
and the definition of the routing tables. Then, the channel’s capacity was set to
create a congestion by mirroring the configuration laid out in 5.2.3. Finally, iperf3
was used to generate the flows, as detailed in 5.2.4

A more in-depth guide of the configuration process is available at appendix C.
The achieved configuration is shown in fig. 5.2

5.4 Additional requirements for dualpi2 compat-
ibility

As better explained in appendix D, dualpi2 could not work properly when deployed
as-is: in fact, even though the Prague endpoints were operating correctly and were
thus able to keep low delay and zero retransmissions on the link, the share of traffic
was much lower than Cubic’s when a congestion was triggered.

After many researches and trials at least one solution arose: adding the traffic
control tbf discipline to all dualpi2 interfaces solved the issue and allowed to obtain
a fairer behaviour, when coupled with a reasonable latency parameter (at least a
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few milliseconds). This expedient was therefore employed throughout all tests as
an indispensable part of the L4S architecture.

1 sudo tc qd i s c add dev [ network i n t e r f a c e ] root handle 1 : tb f r a t e
1000mbps l a t ency 10ms burst 1540

2 sudo tc qd i s c add dev [ network i n t e r f a c e ] parent 1 :0 dua lp i2
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Chapter 6

Implementation of Passive
Monitoring Techniques

6.1 Introduction
The test plant is now completed, but it still lacks the traffic monitoring capabilities,
which have to be implemented both on the endpoints, in order to perform the
marking according to the selected algorithms, and on the router, which is the only
device that is able to act as the observer for the entire network.

The endpoints need thus to be able to mark the packets before transmission,
and to do that the Linux kernel can be modified according to the Spin Bit, Delay
Bit and Q Bit techniques. The observer can instead either save all transmitted
packets for further processing, or analyse them as they flow, returning only the
required metrics. The latter option is definitely more viable and can be implemented
without much struggle relying on Spindump[16], which is a software piece designed
to inspect the traffic flowing through the host or a specific interface, and provide
some valuable metrics like throughput and RTT.

Spindump is in fact especially viable due to its EFM support (including Spin
Bit, Delay Bit and Q Bit) for the QUIC traffic, and it can be patched to perform
the same analysis over a TCP connection.

6.2 Kernel patching
Kernel patching consists in modifying the TCP/IP stack in Linux, in order to
force TCP connections to employ one EFM technique. The solution proposed
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hereafter uses the Kernel patch for L4S developed by L4STeam[15] as the base
version for Spin Bit and Delay Bit, which does not mean that these are only
available when using a L4S connection, and are in fact fully integrated for any
TCP CC protocol. Appendixes E and F contain a detailed guide of the changes
made to the Prague kernel source code, which is publicly available on Github at
github.com/MatteoGuarna/linux_l4s_mod_for_passive_measurements.

Editing the kernel wasn’t easy, and in fact, while integrating the Spin Bit didn’t
bring along many concerns, the Delay Bit raised a very important issue with EFM
techniques which has been until now overlooked, and deserves to be discussed.

6.2.1 EFM and the topic of fragmentation

EFM techniques rely in fact on packet marking, which is performed in the transport
layer by TCP, as it requires connection-level information. Still, fragmentation most
of the times occurs at lower levels in the network stack, and might also happen
along the network (for example due to MTU changes at data link layer). It’s clear
then that packets containing the TCP segments are broken down into smaller sizes,
and crucially, their header is rewritten in each generated fragment. Depending on
how the code is written, at least three things may happen:

• each header is built anew, losing the marking on the reserved bits

• the original header reserved bits are kept in the first fragment, and cleared in
every other header

• the reserved bits are copied and kept in each fragment

The first issue is that according to the behaviour of the host performing the
fragmentation different algorithms may behave differently (e.g., the Spin Bit requires
the marking to be kept in each fragment, while the Delay Bit works only if the
field is cleared in all fragments saved one - better if the the first; the Q bit may fail
if fragmentation occurs anywhere on the network).

The silver lining is that most likely fragmentation happens on the endpoints,
as the MTU on border link is most definitely lower than along the network:
being it that a patch is already required to employ the chosen technique, the
endpoints can therefore be edited to support whatever technique they are using
where fragmentation occurs.
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Another challenge lies in the point inside the network stack where fragmentation
occurs: most likely packets are split between layer 3 and layer 2 (where the MTU
is known), which is well below the layer 4, and that means that connection-layer
data structures are unavailable, in accordance with the OSI model which states
that each layer should be isolated and unaware of the other layers. Algorithms like
the Q bit isn’t as trivial to implement even just on the endpoints, as layer 4 should
be able to control the number of consecutive marked packets, i.e., information
should be passed vertically across multiple layers. Unfortunately due to this very
issue more time would have been needed to adapt the Q bit to the Linux kernel
architecture: in fact only the Spin Bit and Delay Bit were eventually deployed,
while loss metrics were recovered on the endpoints via iperf3.

6.2.2 Fragmentation in L4S
As a side note, it’s worth adding that dualpi2, as it was implemented in the
Linux L4S Kernel, chooses to perform fragmentation by default when it receives
packet with size greater than 1500Bytes, as "Optionally, dualpi2 will split GSO
skbs into independent skbs and enqueue each of those individually. This yields
the following benefits, at the expense of CPU usage: Finer-grained AQM actions
as the sub-packets of a burst no longer share the same fate (e.g., the random
mark/drop probability is applied individually); Improved precision of the starvation
protection/WRR scheduler at dequeue, as the size of the dequeued packets will be
smaller."[17].

This creates an issue with EFM techniques if there are frames with size exceeding
1500Bytes travelling through the network, as the queue surely is a point where
fragmentation is bound to happen. The patch obviously ensures that fragmentation
performed by any queue is compatible with the supported EFM technique.

6.3 Spindump patching
Spindump was chosen as tool for acquiring the metrics as it is already compat-
ible with multiple EFM, including Spin Bit and Delay Bit. Still, the support
was available only for UDP QUIC datagrams and a patch was needed to ex-
tend the support to TCP. It was basically sufficient to add some code to parse
the TCP header and then provide the data to the functions already used for
QUIC. The process was much easier and straight forward, but is still thor-
oughly detailed in appendix G. The patch is public and available on Github
at github.com/MatteoGuarna/spindump_passive_measurements.
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6.3.1 Aquiring data with Spindump
Spindump now is able to acquire throughput and latency measurements, which
by default are shown in real time on the Linux shell. It’s also possible though to
retrieve a json file containing the data for each packet, and process it independently
to extract connection-wide information: by doing that it was possible to evaluate
not only the global RTT average, but also its standard deviation, as well as second-
by-second average values, which are more useful to create reader-friendly plots.
Appendix H contains the scripts that were used to parse the captures and perform
the calculations.
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Chapter 7

Testing the EFM techniques

7.1 Disclaimer
All experiments described from now on (where not specified differently) were run
on both the physical and the logical test plant. As expected, all tests produced
very similar results and while the numbers didn’t match perfectly (as it can be
expected due to the underlying hardware differences) no relevant difference was
found. Thus, all data here reported were retrieved from the logical test plant, as
they are easily replicable.

The experiments are divided in two sections: the current chapter aims at assessing
the Delay Bit’s validity and verify whether its advantages to the Spin Bit are in fact
real and relevant; chapter 8 aims at analysing Prague’s performance and adherence
to the standard. Both sections rely on simultaneous 60s Prague and Cubic flows
transmissions through the test plant as described in section 5 i.e., with a base RTT
of 60ms, a bottleneck of 200Mbps to 100Mbps, a 1500Bytes network MTU, and
neither jitter nor reordering. This scenario is from now on called "base scenario",
and all test stem from it changing one parameter at the time to analyse any change
in the system’s behaviour.

7.2 Comparing Spin Bit and Delay Bit
Spin Bit and Delay Bit are now both implemented and fully integrated, and are
necessary to obtain reliable latency measurements on the test plant. Still, both
techniques are identical in their objective: the first test aims thus at comparing
the results obtained with both techniques to assess which one should be employed
to test all all further scenarios.
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7.2.1 Pros and cons of Spin Bit and Delay Bit
The Spin Bit was designed to obtain latency measurements, by sniffing traffic
flowing through a specific point on the network. As a technique it is quite effective
and there’s plenty of academic evidence of its successful employment. Still, a well
known major flaw is its vulnerability to ordering events, which may cause additional
false wave fronts to be detected.

The Delay Bit was designed specifically to avoid this issue without introducing
additional major flaws. The only weakness the Delay Bit may have against the
Spin Bit come from the risk of losing the marked packet. Still, all our scenarios are
designed to work with heavy congestion, where losses are not only plausible, yet
voluntarily sought. The target of the next section is than that of assessing if the
Delay Bit can hold up against the Spin Bit, and, if this is the case, if it can really
outperform the Spin Bit when reordering is introduced.

7.3 The experiment
To attest the performance of both methods a simple test was run twice, retrieving
the results once with the Delay Bit and once with the Spin Bit.

7.3.1 Base scenario
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Figure 7.1: Average Latency over 60 ms - Spin Bit
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Figure 7.2: Average Latency over 60 ms - Delay Bit

Spin Bit and Delay Bit cannot be applied both simultaneously to the same flow,
and therefore the only way to compare the two solutions is to run the experiment
twice. For this reason the reader should not expect the same data and deem the
difference as flaws of either methods. In fact, by comparing the global metrics
acquired with either method (tab. 7.1) the throughput and losses look glaringly
similar.

It is therefore meaningful to try and compare the latency values obtained via
Spin and Delay Bit, by looking at both the global latency metrics and the trends
throughout the capture (fig. 7.1 and 7.2): not only the results live up to the
expectations derived from the system, but are also once again very comparable. It
is thus safe to conclude that in the base scenario Spin and Delay Bit are synonymous:
the losses are in fact very low even for Cubic and the Delay Bit measurements look
virtually unaffected.

Base Scenario - Average results
Spin Bit Delay Bit

reordering Prague Cubic Prague Cubic
Throughput 391 MB 317 MB 375 MB 331 MB
Latency(avg.) 60.3 ms 68.9 ms 60.4 ms 70.1 ms
Latency(std.dev.) 2.4 ms 7.2 ms 2.1 ms 9.0 ms
Retransmissions 0 11 0 15

Table 7.1: Spin Bit and Delay Bit average results
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7.3.2 Reordering impact over Spin Bit and Delay Bit
The next step consists in introducing reordering on the network. In most scenarios
reordering on the network happens (besides when losses occur) due to latency
variations and alternative routing. In order to replicate this phenomenon on a
simple network, it’s possible to virtually introduce reordering by running the netem
command variant

1 sudo tc qd i s c add dev [ network_inter face ] root netem delay [
delay_value ] r eo rde r [ reorder_percentage ]

on the impairment. Reordering percentages introduced are very low as in real-world
scenario reordering is never too pronounced, and in fact if even 1% reordering is
introduced, most TCP protocol variant stop being able to occupy the available
bandwidth and need huge retransmissions.

Average LATENCY (RTT 60 ms)
Socket Stats Spin Bit Delay Bit

reordering Prague Cubic Prague Cubic Prague Cubic
0 60.4 ms 70.4 ms 60.3 ms 68.9 ms 60.4 ms 70.1 ms
0.001% 60.5 ms 70.7 ms 37.6 ms 49.5 ms 60.4 ms 70.5 ms
0.01% 60.6 ms 65.3 ms 26.4 ms 44.4 ms 60.6 ms 65.2 ms
0.1% 61.1 ms 62.2 ms 20.2 ms 7.5 ms 62.3 ms 63.0 ms

Table 7.2: Heatmap comparing the average RTT according to SB, DB, and SSLATENCY standard deviation (RTT 60 ms)
Socket Stats Spin Bit Delay Bit

reordering Prague Cubic Prague Cubic Prague Cubic
0 0.0 ms 5.8 ms 2.4 ms 7.2 ms 2.1 ms 9.0 ms
0.001% 0.3 ms 5.8ms 23.3 ms 30.1 ms 2.4 ms 9.9 ms
0.01% 0.8 ms 6.1 ms 22.4 ms 26.4 ms 3.4 ms 10.1 ms
0.1% 1.0 ms 4.0 ms 21.0 ms 7.7 ms 5.6 ms 10.9 ms

Table 7.3: Heatmap comparing the RTT std. dev. according to SB, DB, and SS

After repeating the experiment with several reordering rates (0.001%, 0.01%,
0.1%), it’s sufficient to take a look at the global measurements 7.2 to see that the
results provided by the Spin Bit are not realistic: as the theory suggests, it’s fair
to assume that the Spin Bit is rendered useless by even the lowest reordering rate.
Concerning the Delay Bit instead, its results are plausible, but need to be compared
to those obtained through an already established method to be validated. Therefore,
the same tests was performed relying on socket statistics, a CLI command that
returns on-hosts measurements, and is thus unaffected by reordering. It’s easy to
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see that the average results are very close, and the standard deviation (tab. 7.3) is
acceptable, although higher. These results hence deem the Delay Bit a perfectly
viable instrument to obtain in-network end-to-end latency.

7.3.3 Delay Bit against losses
MTU - Average results

Retransmissions Prague Cubic
0 0 15
0.001% 0 14
0.01% 276 17
0.1% 511 436

Table 7.4: Prague and Cubic losses

It is now clear that the De-
lay Bit is immune to reorder-
ing: as a matter of fact, it
was designed with this pre-
cise purpose. Still, having
only one marked packet trav-
elling through the network at
any given moment, makes this
technique theoretically vulnerable to packet loss. The Delay Bit’s saving grace is
that, at least for TCP, losses occur on the network very sparsely, and a stable, prop-
erly functioning connection has losses in a still very small percentage compared to
the actually delivered packets. As a matter of fact, the losses the flows experienced
in the previous experiment are very high (tab. 7.4), but did not significantly affect
the results, further validating the Delay Bit’s viability.
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Chapter 8

Testing L4S

8.1 Evaluating L4S’ performance
The aim of this chapter is that of analyzing L4S’ behaviour in the envisioned testing
ground. The following experiments try to examine L4S’ characteristics by varying
one of the test plant’s parameters. All measurements are obtained through the
Delay Bit.

8.1.1 Base scenario
It’s best to start from the base scenario, which was specifically designed in order
to showcase L4S’ essence when deployed in a congested network.
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Figure 8.1: Bandwidth share - Prague and Cubic
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Figure 8.2: Latency comparison - Prague and Cubic

Figure 8.1 provides a connection-wide representation of the bandwidth share
via throughput measurements: Prague’s flow grows much slower than Cubic, and
surpasses it almost exactly 15 seconds in during the test, then the average values
remain more or less stable with a 60-40 ratio. Figure 8.2 presents an overview
of the RTT variation throughout the experiments, and clearly shows Prague as
consistently adherent to the 60 seconds base network latency. Cubic on the other
hand, as soon as the overall throughput reaches the channel’s capacity (around 8
seconds in) starts rising and oscillating widely.

Base Scenario - Average results
Prague Cubic

Throughput 375 MB 331 MB
Latency (avg.) 60.4 ms 70.1 ms
Latency (std. dev.) 2.1 ms 9.0 ms
Retransmissions 0 15
Table 8.1: Base Scenario average results

The average results’ (tab. 8.1)
reflect these observations, showing
a much lower standard deviation in
Prague’s latency. Furthermore, as
L4S’ name itself declares, no losses
occur for Prague, while the same
cannot be said for Cubic.

All gathered information are in
line with L4S’ objectives and show that in a controlled situation the architecture
behaves exactly as expected. The next steps consist in observing the changes
occurring when some test plant parameters are altered.
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8.2 Introducing reordering

As already partially detailed in 7.3, reordering can be added to the test plant to
see how L4S behaves. Likewise, the introduced reordering ratio remains low to
simulate a plausible network phenomenon.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (M

b/
s)

Time (s)

Delay Bit - 60 ms

Cubic 0%

Cubic 0.001%

Cubic 0.01%

Cubic 0.1%

Prague 0%

Prague 0.001%

Prague 0.01%

Prague 0.1%

Figure 8.3: Bandwidth share with multiple reordering ratios

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

La
te

nc
y 

(m
s)

Time (s)

Delay Bit - 60 ms

Cubic 0%

Cubic 0.001%

Cubic 0.01%

Cubic 0.1%

Prague 0%

Prague 0.001%

Prague 0.01%

Prague 0.1%
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It becomes evident that when high reordering is introduced (0.01% or more)
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Prague stops working properly: while in fact the delay remains low (more on that
later) the bandwidth share drops significantly. The reason for the latter can be
seen in tab 8.2, where very high losses are shown for Prague.

Reordering - Average results
Throughput Latency Retransmissions

Reordering Prague Cubic Prague Cubic Prague Cubic
0 375 MB 331 MB 60.4 ms 70.1 ms 0 15
0.001% 361 MB 347 MB 60.4 ms 70.5 ms 0 14
0.01% 256 MB 405 MB 60.6 ms 65.2 ms 276 17
0.1% 111 MB 419 MB 62.3 ms 63.0 ms 511 436

Table 8.2: Reordering scenario average results

8.2.1 Reduced Prague throughput scalability
As Prague does not expect losses to normally occur, as they arise they are interpreted
as a "hard congestion event", as opposed to the "soft congestion event" consisting
in a simple CE marking notification performed by the dual queue. Therefore, if
losses occur, Prague’s rate drops to zero, as it can be clearly seen in the graphs.
Cubic, on the other hand, doesn’t drastically reduce its CWND when a packet is
lost, and is therefore able to maintain a higher throughput, even when losses are
comparably high (i..e., with 0.1% reordering rate).

A second clearly-visible issue consists in Prague’s throughput increase: it becomes
in fact evident that the growth is linear, while a scalable TCP CC algorithm should
be able to promptly increase its CWND and swiftly occupy the available bandwidth.
This can be also observed at the beginning of the connection, and even in the base
scenario (graph. 8.1). The reasons for this peculiar behaviour are contained in the
latest ITEF draft for Prague, where the following is stated:

"So, in the Linux implementation of Prague, the Reduced RTT-Dependence
algorithm only comes into effect after D rounds, where D is configurable (current
default 500). Continuing the previous example, if actual rtt = 5ms and rtt_virt =
25ms, Prague would use the regular RTT-dependent algorithm for the first 500 ∗
5ms = 2.5s. Then it would start to converge to more equal rates using its Reduced
RTT-Dependence algorithm. If the actual RTT were higher (e.g. 20ms), it would
stay in the regular RTT-dependent mode for longer (500rounds = 10s), but this
would be mitigated by the actual RTT it uses at the start being closer to the virtual
RTT that it eventually uses (20ms and 25ms resp.)."[18]

This means that when a connection starts, in order to ensure that Prague remains
Reno-friendly, a AIMD algorithm is used for the first 500 round-trips (30ms in
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our experiment). This means that the rise is linear, as in fact it can be observed.
Likewise, the same behaviour was also kept when losses occur."[19]

8.2.2 Poor Prague performance with manually introduced
reordering

Still, there are two more observations that can be raised. The former is that too
many retransmissions occur (tab. 8.2), and that cannot be explained by a supposed
high latency addition caused by the reordering, as if that were the case Cubic
would have been affected at least equally if not more. The latter is that the Cubic’s
RTT decreases together with Prague’s flow drop, as the congestion softens with
the decreased rate, almost converging with Prague’s RTT when 0.1% reordering
is introduced, with the latter even rising slightly. Both these behaviours can be
partially ascribed to the fact that Prague itself should limit the reordering naturally
occurring on the network, and isn’t therefore as wired as Cubic to handle a high
rate of artificially introduced reordering. Furthermore, L4S’ implementation is still
experimental in nature, and isn’t reported ready for commercial use, which may
help explaining some issues with its performance.

8.3 Introducing multiple base latencies
In this use case the base network latency is changed, in order to find how Prague’s
and Cubic’s behaviours are influenced by the RTT.
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Figure 8.6: Latency comparison with multiple base latencies

8.3.1 Base latency adherence
Starting by the latencies graph, its easy to see that for low base latencies Cubic’s
RTT is much further above than the minimum RTT. Throughput’s share too is
reportedly lower, as it can be clearly seen in 8.3. Prague on the other hand shows
an average RTT which is very close to the network base latency in every test, which
highlight Prague’s capability to perform well independently from the network’s
characteristics.

Multiple latencies - Average results
Throughput Latency Retransmissions

Reordering Prague Cubic Prague Cubic Prague Cubic
0 375 MB 331 MB 60.4 ms 70.1 ms 0 15
0.001% 466 MB 238 MB 31.0 ms 42.4 ms 0 29
0.01% 466 MB 243 MB 16.4 ms 28.4 ms 0 35
0.1% 426 MB 287 MB 6.4 ms 19.7 ms 0 59

Table 8.3: Latencies scenario average results

8.3.2 Prague’s additive increase
The main observation inherited from the previous experiment concerns L4S’ reduced
scalability. The current scenario provides a more in-depth look on this behaviour, as
the additive increase algorithm is RTT-dependant, which means that for a smaller
RTT the CWND (and thus the throughput) growth should be faster.
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Indeed, by evaluating the linear regression over the first 500 round trips for each
trial (fig. 8.7), it’s fairly easy to spot a relation between between the base latency
and the slope of the line. The obtained relationship (fig. 8.8) is an almost perfect
inverted correlation (as the theory suggests) despite the presence of another flow
competing for the available bandwidth. It is also equally evident that as soon as
the first 500 round trips are over the scalable algorithm kicks in, which improves
Prague’s aim to an equal bandwidth share between the flows.
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All retrieved data are thus in full accord with the theoretical description of
Prague, and highlight its robustness compared to the classic TCP protocols.

8.4 Applying some jitter

Testing Prague for various base latencies is certainly useful, but it’s very common to
have a variable latency, due to many factors bound to the networks’ own complexity.
The idea is therefore that of introducing jitter virtually on the router through
netem:

1 sudo tc qd i s c add dev [ network_inter face ] root netem ra t e 1000
mbit de lay [ delay_value ] [ j i t t e r _ v a l u e ]

The experiment was conducted starting from the base scenario and introducing
progressively more jitter, slowing the flowing packets of an amount varying from
zero up until the maximum jitter value. The commands are defined in order to
avoid introducing any reordering, as the base netem jitter command (without the
rate parameter) works by applying a different delay to each packet, which may
often result in later packets being delayed for less then their predecessor. The rate
parameter is therefore necessary in order to avoid that from happening[20][21], thus
introducing a sort of "spring effect" over the segments, which are randomly delayed
but keep their original sequencing.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (M

b/
s)

Time (s)

Delay Bit - variuos jitters

Cubic 0ms

Cubic 2ms

Cubic 5ms

Cubic 10ms

Prague 0ms

Prague 2ms

Prague 5ms

Prague 10ms

Figure 8.9: Bandwidth share with multiple jitter values

39



Testing L4S

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

La
te

nc
y 

(m
s)

Time (s)

Delay Bit - variuos jitters

Cubic 0ms

Cubic 2ms

Cubic 5ms

Cubic 10ms

Prague 0ms

Prague 2ms

Prague 5ms

Prague 10ms

Figure 8.10: Latency comparison with multiple jitter values

Starting with figure 8.10, it’s worth noting that all latency graph are not traced
using the single values measured for each individual packet, but the averages for
each seconds of transmission, in order to be able to discern the trend more easily.
Then, despite the jitter, the average RTT values for each second for Prague remain
stable, while Cubic, as always, varies considerably. Obviously, Prague’s values are
higher the more jitter is introduced, as the average by each second is evaluated
over packets delayed by various amounts within the current maximum value.

Jitter - Average results
Throughput Latency Retransmissions

Jitter Prague Cubic Prague Cubic Prague Cubic
0 ms 375 MB 331 MB 60.4 ms 70.1 ms 0 15
2 ms 430 MB 269 MB 31.0 ms 67.8 ms 0 12
5 ms 298 MB 396 MB 16.4 ms 70.4 ms 0 15
10 ms 239 MB 410 MB 6.4 ms 71.6 ms 0 8

Table 8.4: Jitter scenario average results

Still, it’s easy to see that while the Cubic latency values never fall below Prague,
the global averages come closer for high jitter values (tab. 8.4): this can be explained
by looking at the throughput (figure 8.9): in fact, in order to keep its latency low
and stable, Prague’s throughput is reduced when high jitter is introduced, which
lessen the severity of the congestion, which allows Cubic’s average RTT to come
closer to Prague As a further proof for this phenomenon, Cubic’s retransmissions
also decrease highlighting that the congestion is lessened. Still, this should not be
attributed to a supposed Cubic’s ingrained resistance to network jitter, but solely
to Prague’s conservative rate management.
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8.5 Changing the MTU
Lastly, it may be interesting to check how the network behaves with different MTUs.
Iperf3 allows to specify the application layer MTU size, ranging from a minimum
of 88Bytes to a maximum of 1460Bytes (actually higher values are possible but
not useful in the current test plant as offloading is disabled and network interfaces
fragment packets over 1500Bytes). The application layer size isn’t comprehensive
of the TCP and IP header, which add 20Bytes each, pushing the highest MTU to
the maximum Ethernet payload (i.e., 1500Bytes).
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Figure 8.11: Bandwidth share with multiple MTU values
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Figure 8.12: Latency comparison with multiple MTU values
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For the sake of clarity, it’s worth reiterating that all results will be referenced in
terms of the application layer MTU.

MTU - Average results
Throughput Latency Retransmissions

L7 MTU Prague Cubic Prague Cubic Prague Cubic
1460 Bytes 375 MB 331 MB 60.4 ms 70.1 ms 0 15
1024 Bytes 377 MB 333 MB 60.3 ms 67.4 ms 0 28
512 Bytes 288 MB 405 MB 60.2 ms 64.8 ms 8 29
88 Bytes 65 MB 134 MB 60.8 ms 60.7 ms 1595 430

Table 8.5: MTU scenario average results

The results show that MTU size can affect greatly both Prague’s and Cubic’s
performance. While 1024Bytes of MTU have very little impact on the protocols
other than decreasing Cubic’s latency, as its delay is mainly due to the queues on
the bottleneck, and smaller packets create smaller queues, the situation changes
for smaller frames: with 512Bytes of MTU the throughput share varies drastically,
with a sharp decline of Prague in favour of Cubic. Still, with 88Bytes MTU Cubic’s
throughput too drops, even if remains double that of Prague.

8.5.1 MTU-throughput connection

Client Server Client Server

Ttx
Ttx

Tp

Tp

Ttx,CWND

Small MTU Large MTU

Ttx,CWND

Ttx,CWND

RTT

RTT

Figure 8.13: Small and Large MTU throughput compar-
ison

The throughput variation
isn’t linked to Prague’s or
Cubic’s behaviours per se,
and rather by the CWND
algorithm: let’s in fact
consider that the CWND,
and therefore the through-
put, is increased with each
Round Trip. Still, if the
MTU is very low, it will
take much more time to fill
the available bandwidth, as
the same number of pack-
ets sent on the network for
any round trips (which is
controlled by the CWND)
will carry much less data
than they would with a
higher MTU (fig. 8.13).
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In order to reach a stable situation where the MTU does not influence the
throughput any longer the total transmission time for the window must be equal
to the RTT, i.e., double the sum of the transmission and network propagation
times (eq. 8.1): when that happens, the transmission has reached the interface’s
maximum speed.

RTT = 2(Ttx + Ttx,propagation) = 2 · vtransmission · MTU + 2 · Ttx,propagation (8.1)
The window’s transmission time is obviously proportional to the window size in
Bytes (eq. 8.2), which depends though on the MTU: this translates for smaller
MTUs in both a slower growth and a later reach (if any) of the channel’s speed.

Ttx,CW ND = CWND · Ttx = CWND · vtransmission · MTU (8.2)
On a side note, obviously the RTT is dependent on the MTU too, but on a much
smaller level than the CWND’s transmission time: this is why for larger MTUs the
channel’s speed is reached earlier in the latter case.

The phenomenon can seen clearly for Prague in figure 8.14, as the protocol has
a linear growth (AIMD) which allows the reader to better appreciate the slower
rise the smaller the MTU.
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Cubic, as the name suggests, takes much less to grow to the channel’s capacity,
and therefore the behaviour cannot be appreciated for plausible MTUs, and in
fact, as soon as Prague slows its rise Cubic is able to obtain a larger share of the
channel.
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Still, it is evident that for 88Bytes of MTU Cubic too struggles to increase its
RTT). It’s hard to point out a reason for this behaviour, but it’s worth noting
that MTUs that small are not only unrealistic, but in fact practically non-existent
in real applications; furthermore, as the averages heatmap shows (tab. 8.5) the
retransmissions are really high for both Prague and Cubic, which is a contributing
factor in the protocols’ poor performance. The test suggests that both protocols
were not created to work in such conditions, which are again, very unrealistic;
furthermore, even Prague’s abysmal performance can be overlooked if even Cubic
performs similarly poorly.
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Chapter 9

Conclusions

9.1 Research’s Goals

The main goal of this research, i.e., deploying a working implementation of some
Host-to-Network EFM techniques, and assess their viability, can be deemed reached.
What’s especially relevant is the improvement obtained with the Delay Bit compared
to the much more popular Spin Bit: hopefully this work will be instrumental in
contributing to a more wide spread adoption of this powerful solution.

The EFM techniques’ implementation developed as a part of this work is fur-
thermore very useful as it is the first time they were employed over TCP/IP: this
achievement showcases the solutions’ validity in a wider array of scenarios than
only within QUIC, as it was originally conceived. As the TCP/IP stack is in fact
the most commonly used network solution by far, a working implementation on
the kernel linux, as well as a linux-based application capable of extracting the
metrics (i.e., the Spindump patch herein developed) make up an accessible solution
for testing and employing both the Spin Bit and the Delay Bit. Hopefully, future
works will help spreading and improve over this work.

Another relevant result consists in the deployment of a fully-operating L4S
environment, which can be (at least in its virtual form) easily replicated as a
demo of this new and promising technology. The results obtained with the EMF
techniques are for the most part exactly in line with the protocol’s description, and
lead to the expected improvements: this research will thus hopefully help the L4S
project gaining more momentum.
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9.2 Future works
Future developments over this research consist surely in the implementation of the
Spin Bit and Delay Bit on a vanilla version of the Linux kernel, and possibly a
contribution to the Linux foundation.

Another topic worth investigating is the implementation of the Q Bit, and loss
measurement EFM techniques more broadly, which did not find space in this work
due to time constraints, which did not allow for a more through analysis of the
fragmentation process in TCP/IP and its relation to the techniques here reported.

Lastly, testing both EFM-based solutions and the L4S architecture over more
complex and realistic network environments is needed to evaluate more thoroughly
how these technologies (both together and on their own) behave over the internet.
EFM techniques especially beg for this study, as their compatibility with devices
which are not designed to support them is due.
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Appendix A

L4s Deployment

Deploying a functioning Linux kernel supporting L4S is actually fairly easy, provided
you already have all the pieces of the puzzle. This appendix is a step-by-step guide
to ensure you can at least deploy a virtual environment where you can replicate
the experiments which were run in this thesis.

A.1 Creating a dual boot Linux partition from
Windows 11

The L4S patch I used is only available in Linux. This section gives you some
tips regarding how to create a working Linux environment inside a Windows 11
computer if you don’t already have a machine equipped with Linux. If you do, feel
free to skip to the next section.

There are many online guides explaining how to create a working Linux partition.
Personally I chose this guide[22] for it’s easy to understand and guides you with
most of the process.

One big issue you might find when trying to install the ISO form USB is that
no memory partition is recognized. This happens because many Windows-native
PC have a BitLocker function that encrypts the main memory to avoid data to be
copied and read by anyone besides the user. This prevents the installer to properly
recognize the created partition and thus to write in it. To solve this issue the only
solution is to disable the BitLocker encryption from the system settings BEFORE
creating the partition.
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A.2 Installing the L4S Kernel
Once you have a Linux machine running, you can rely on the Installation (Debian
derivatives)" section of the README.md inside the linux L4STeam repository[15].

You might need to disable memtest86 in order to complete the installation process
successfully.

1 sudo apt purge memtest86+
2 sudo update−grub

A.3 Switching to a new Kernel
You can easily check which kernel version is currently running by executing from
terminal:

1 uname −r

If you are using a dual-booted system, usually on boot the GRUB menu is loaded,
which allows you to choose among the different kernels you have installed. If the
following error messages appear:

1 Bad shim s i gna tu r e
2 you need to load the ke rne l f i r s t

you just need to disable the UEFI secure boot to be able to load the OS with a
different kernel.

If you cannot or do not want to use the GRUB menu you can follow the procedure
belows[23][24], or alternatively use grub-customizer[25]

• Find the correct kernel index inside the OS by using this command from
terminal:

1 cat / boot /grub/grub . c f g | grep −iE " menuentry ’Ubuntu , with Linux
" | awk ’ { p r i n t i++ " : " $1 , $2 , $3 , $4 , $5 , $6 , $7} ’

• Edit the GRUB setup file (found at this source) with a text editor...
1 sudo nano / e tc / d e f a u l t /grub

• ...by changing the line GRUB_DEFAULT=[something, probably 0] to:
1 GRUB_DEFAULT=" 1>[ the ac tua l k e rne l index ] "

• then you can update the grub and reboot the machine
1 sudo update−grub
2 sudo reboot
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Appendix B

Virtual Test Plant
Configuration

The whole configuration relies on virtual network elements like virtual bridges and
the virtual links. The routing function at the heart of the configuration relies on
the forwarding capability between network interfaces inside the same namespace,
which can be enabled as a system-wide setting through:

1 sudo s y s c t l −w net . ipv4 . ip_forward=1

B.1 Adding the L4S protocols

Most importantly, the dual queue AQM must be enabled on both the router’s
interfaces

1 sudo tc qd i s c r e p l a c e dev [ network_inter face ] root dua lp i2

The network namespaces are then set up creating totally separate environments
where network settings can be independently defined. This allows us to create
multiple local network with their own routing without triggering conflicts. The
Prague endpoints are then configured with Prague as CC protocol with the following
command:

1 sudo s y s c t l −w net . ipv4 . tcp_congest ion_contro l=prague
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B.2 Further specifications
At this point the basic protocols of L4S are in place, but still some attention must
be reserved for some settings which are required by the protocols or the setup to
work properly.

B.2.1 Network settings
First of all, being all links virtual, the speed must be reduced in order to create a
bottleneck from a well-known throughput to a smaller one. The basic tool for that
is usually ethtool, but due to it not working properly with virtual interface the best
solution is inserting a queuing discipline with traffic control:

1 sudo tc qd i s c add dev [ network_inter face ] root tb f r a t e 100 mbit
l a t ency 1ms burst 1540

This raises the issue of allowing more disciplines to coexists on the same network
interface. The solution to this issue is to rely on hooks and can be seen in the final
script.

Furthermore, as in specified 3.2.3 some delay needs to be introduced to mirror
L4S’ working condition, due to the virtual network obviously having really low
RTT (less than 2ms). Delays were therefore introduced via traffic control on the
bridges’ NICs through the command:

1 sudo tc qd i s c add dev [ network_inter face ] root netem delay 30ms

We settled on 30ms) on each LAN because 60ms) is a very plausible delay for most
real internet applications.

B.2.2 Additional settings to allow L4S to work properly
Lastly, we need to take into account L4S’ specifications. First of all, the GitHub
README.md file specifies that their Prague implementation is designed to work
with fair queue, which then needs to be enabled also on the Cubic endpoints to
allow the comparison to be as fair as possible:

1 sudo tc qd i s c add dev [ network_inter face ] root fq l i m i t 20480
f l ow_l imi t 10240

Equally, offloading capabilities are disabled everywhere to mirror the "standard
behaviour" of the network, with L2 frames not exceeding the channel’s MTU.
Section 6.2.1 describes more in detail how MTU variations and fragmentation may
impact on the EFM techniques; still, the kernel used is designed to perform the

50



Virtual Test Plant Configuration

fragmentation correctly and therefore is also compatible with the offloading enabled,
as detailed in sec. 6.2.2.

1 sudo e t h t o o l −K [ network_inter face ] t so o f f gso o f f gro o f f l r o
o f f

B.2.3 Virtual Configuration Script
the following script contains all settings hereby discussed and can be launched on
any Linux machine patched with the Prague-dualpi2 kernel provided by L4Steam.

Please consider that these are only the default settings for the experiment and
some tests require modifications to be done to the scripts: all changes are thoroughly
reported alongside the tests definitions.

1 #! / bin /bash
2 #This s c r i p t aims at c r e a t i n g a te s tbed f o r t e s t i n g L4S t r a f f i c
3

4 f unc t i on cleanup {
5 s e t +e
6

7 # Delete a l l the veth c rea ted in the s c r i p t
8 sudo ip l i n k de l veth1br
9 sudo ip l i n k de l veth2br

10 sudo ip l i n k de l veth3br
11 sudo ip l i n k de l veth4br
12 sudo ip l i n k de l veth5r t
13 sudo ip l i n k de l veth6r t
14 sudo ip l i n k de l br10
15 sudo ip l i n k de l br20
16

17 # Delete a l l the namespaces you c r e a t e in the s c r i p t
18 sudo ip netns de l ns1
19 sudo ip netns de l ns2
20 sudo ip netns de l ns3
21 sudo ip netns de l ns4
22

23 # Restore the root ns c o n f i g u r a t i o n
24 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=cubic
25 sudo s y s c t l net . ipv4 . tcp_ecn=2
26 }
27 trap cleanup EXIT
28

29 s e t −e
30
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31 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
32 echo " execut ion s t a r t e d "
33 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
34

35 #ROOT NS
36 #enable ip forwarding to turn the ns in to a route r
37 sudo s y s c t l −w net . ipv4 . ip_forward=1
38 forward=$ ( sudo s y s c t l net . ipv4 . ip_forward | cut −f 3 −d ’ ’ )
39 i f [ $forward −ne 1 ] ; then
40 echo " unable to execute ’ sudo s y s c t l −w net . ipv4 . ip_forward =1’ "
41 e x i t
42 f i
43 echo " s t a tu s o f ipv4 forward ing parameter s u c c e s s f u l l y enabled "
44

45 #add a l i n k ( veth5 ) towards br1 ns
46 sudo ip l i n k add veth5rt type veth peer name veth5br
47 #turn the veth5r t up
48 sudo ip l i n k s e t dev veth5r t up
49 #add ip address 10 . 10 . 10 . 254/24 to the veth5r t
50 sudo ip addr add 10 . 10 . 10 . 254/24 dev veth5rt
51

52 #add a l i n k ( veth6 ) towards br2 ns
53 sudo ip l i n k add veth6rt type veth peer name veth6br
54 #turn the veth6r t up
55 sudo ip l i n k s e t dev veth6r t up
56 #add ip address 10 . 10 . 20 . 254/24 to the veth6r t
57 sudo ip addr add 10 . 10 . 20 . 254/24 dev veth6rt
58

59

60 # NAMESPACE NS1
61 sudo ip netns add ns1
62 echo " namespace ns1 c rea ted "
63 #add a l i n k ( veth1 ) towards br1 ns
64 sudo ip l i n k add veth1br type veth peer name veth1ns
65 #move the veth veth1ns to the ns1
66 sudo ip l i n k s e t veth1ns netns ns1
67 #turn the veth1ns up
68 sudo ip netns exec ns1 ip l i n k s e t dev veth1ns up
69 #add ip address 10 . 1 0 . 1 0 . 1/ 24 to the veth1ns + route towards br idge
70 sudo ip netns exec ns1 ip addr add 1 0 . 10 . 1 0 . 1/ 24 dev veth1ns
71 sudo ip netns exec ns1 ip route add d e f a u l t v ia 1 0 . 1 0 . 1 0 . 2 5 4 dev

veth1ns
72 echo " ip address 1 0 . 1 0 . 10 . 1 /2 4 as s i gned to ns1 "
73

74

75 # NAMESPACE NS2
76 sudo ip netns add ns2
77 echo " namespace ns2 c rea ted "
78 #add a l i n k ( veth2 ) towards br1 ns
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79 sudo ip l i n k add veth2br type veth peer name veth2ns
80 #move the veth veth2ns to the ns2
81 sudo ip l i n k s e t veth2ns netns ns2
82 #turn the veth2ns up
83 sudo ip netns exec ns2 ip l i n k s e t dev veth2ns up
84 #add ip address 10 . 1 0 . 1 0 . 2/ 24 to the veth2ns + route towards br idge
85 sudo ip netns exec ns2 ip addr add 1 0 . 10 . 1 0 . 2/ 24 dev veth2ns
86 sudo ip netns exec ns2 ip route add d e f a u l t v ia 1 0 . 1 0 . 1 0 . 2 5 4 dev

veth2ns
87 echo " ip address 1 0 . 1 0 . 10 . 2 /2 4 as s i gned to ns2 "
88

89 # NAMESPACE NS3
90 sudo ip netns add ns3
91 echo " namespace ns3 c rea ted "
92 #add a l i n k ( veth3 ) towards br2 ns
93 sudo ip l i n k add veth3br type veth peer name veth3ns
94 #move the veth veth3ns to the ns3
95 sudo ip l i n k s e t veth3ns netns ns3
96 #turn the veth3ns up
97 sudo ip netns exec ns3 ip l i n k s e t dev veth3ns up
98 #add ip address 10 . 1 0 . 2 0 . 3/ 24 to the veth3ns + route towards root ns
99 sudo ip netns exec ns3 ip addr add 1 0 . 10 . 2 0 . 3/ 24 dev veth3ns

100 sudo ip netns exec ns3 ip route add d e f a u l t v ia 1 0 . 1 0 . 2 0 . 2 5 4 dev
veth3ns

101 echo " ip address 1 0 . 10 . 20 . 3 /2 4 as s i gned to ns3 "
102

103 # NAMESPACE NS4
104 sudo ip netns add ns4
105 echo " namespace ns4 c rea ted "
106 #add a l i n k ( veth4 ) towards br2 ns
107 sudo ip l i n k add veth4br type veth peer name veth4ns
108 #move the veth veth4ns to the ns4
109 sudo ip l i n k s e t veth4ns netns ns4
110 #turn the veth4ns up
111 sudo ip netns exec ns4 ip l i n k s e t dev veth4ns up
112 #add ip address 10 . 1 0 . 2 0 . 4/ 24 to the veth4ns + route towards root ns
113 sudo ip netns exec ns4 ip addr add 1 0 . 10 . 2 0 . 4/ 24 dev veth4ns
114 sudo ip netns exec ns4 ip route add d e f a u l t v ia 1 0 . 1 0 . 2 0 . 2 5 4 dev

veth4ns
115 echo " ip address 1 0 . 10 . 20 . 4 /2 4 as s i gned to ns4 "
116

117

118 # BRIDGE 10
119 sudo ip l i n k add br10 type br idge
120 sudo ip l i n k s e t dev br10 up
121

122 sudo ip l i n k s e t dev veth1br up
123 sudo ip l i n k s e t dev veth2br up
124 sudo ip l i n k s e t dev veth5br up
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125

126 sudo ip l i n k s e t veth1br master br10
127 sudo ip l i n k s e t veth2br master br10
128 sudo ip l i n k s e t veth5br master br10
129

130

131 # BRIDGE 20
132 sudo ip l i n k add br20 type br idge
133 sudo ip l i n k s e t dev br20 up
134

135 sudo ip l i n k s e t dev veth3br up
136 sudo ip l i n k s e t dev veth4br up
137 sudo ip l i n k s e t dev veth6br up
138

139 sudo ip l i n k s e t veth3br master br20
140 sudo ip l i n k s e t veth4br master br20
141 sudo ip l i n k s e t veth6br master br20
142

143

144

145 #Conf igure rootNS with prague and dua lp i2 ( to execute a f t e r a l l nss
are c rea ted otherwi se p r o p e r t i e s are i n h e r i t e d )

146 sudo tc qd i s c add dev veth5rt root handle 1 : tb f r a t e 100 mbit l a t ency
1ms burst 1540

147 sudo tc qd i s c add dev veth6rt root handle 1 : tb f r a t e 1000 mbit
l a t ency 1ms burst 1540

148 echo " bot t l eneck con f i gu r ed "
149 sudo tc qd i s c add dev veth5rt parent 1 : dua lp i2
150 sudo tc qd i s c add dev veth6rt parent 1 : dua lp i2
151 echo " dua lp i2 con f i gu r ed "
152

153 #add delay on the br idge s
154 sudo tc qd i s c add dev veth5br root handle 1 : netem delay 30ms
155 sudo tc qd i s c add dev veth6br root handle 1 : netem delay 30ms
156 echo " netem con f i gu r ed "
157 sudo tc qd i s c add dev veth5br parent 1 : p f i f o l i m i t 1000
158 sudo tc qd i s c add dev veth6br parent 1 : p f i f o l i m i t 1000
159 echo " p f i f o con f i gu r ed "
160

161 #Conf igure ns1 with prague and dua lp i2
162 sudo ip netns exec ns1 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=

prague
163 sudo ip netns exec ns1 sudo s y s c t l −w net . ipv4 . tcp_ecn=3
164

165 #Conf igure ns3 with prague and dua lp i2
166 sudo ip netns exec ns3 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=

prague
167 sudo ip netns exec ns3 sudo s y s c t l −w net . ipv4 . tcp_ecn=3
168
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169 #Ensure c o r r e c t ns2 c o n f i g i s kept
170 sudo ip netns exec ns2 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=

cubic
171 sudo ip netns exec ns2 sudo s y s c t l net . ipv4 . tcp_ecn=2
172

173 #Ensure c o r r e c t ns4 c o n f i g i s kept
174 sudo ip netns exec ns4 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=

cubic
175 sudo ip netns exec ns4 sudo s y s c t l net . ipv4 . tcp_ecn=2
176

177 #Disab le o f f l o a d i n g c a p a b i l i t i e s everywhere on the network ( most
important ly on the router ’ s i n t e r f a c e s )

178 sudo ip netns exec ns1 sudo e t h t o o l −K veth1ns t so o f f gso o f f gro
o f f l r o o f f

179 sudo ip netns exec ns2 sudo e t h t o o l −K veth2ns t so o f f gso o f f gro
o f f l r o o f f

180 sudo ip netns exec ns3 sudo e t h t o o l −K veth3ns t so o f f gso o f f gro
o f f l r o o f f

181 sudo ip netns exec ns4 sudo e t h t o o l −K veth4ns t so o f f gso o f f gro
o f f l r o o f f

182 sudo e t h t o o l −K veth1br t so o f f gso o f f gro o f f l r o o f f
183 sudo e t h t o o l −K veth2br t so o f f gso o f f gro o f f l r o o f f
184 sudo e t h t o o l −K veth3br t so o f f gso o f f gro o f f l r o o f f
185 sudo e t h t o o l −K veth4br t so o f f gso o f f gro o f f l r o o f f
186 sudo e t h t o o l −K veth5br t so o f f gso o f f gro o f f l r o o f f
187 sudo e t h t o o l −K veth6br t so o f f gso o f f gro o f f l r o o f f
188 sudo e t h t o o l −K veth5r t t so o f f gso o f f gro o f f l r o o f f
189 sudo e t h t o o l −K veth6r t t so o f f gso o f f gro o f f l r o o f f
190

191 #Conf igure the fq , l i m i t bandwith on a l l i n t e r f a c e s gene ra t ing
t r a f f i c

192 sudo ip netns exec ns1 sudo tc qd i s c add dev veth1ns root handle 1 :
tb f r a t e 100 mbit l a t ency 50ms burst 1540

193 sudo ip netns exec ns2 sudo tc qd i s c add dev veth2ns root handle 1 :
tb f r a t e 100 mbit l a t ency 50ms burst 1540

194 sudo ip netns exec ns3 sudo tc qd i s c add dev veth3ns root handle 1 :
tb f r a t e 100 mbit l a t ency 50ms burst 1540

195 sudo ip netns exec ns4 sudo tc qd i s c add dev veth4ns root handle 1 :
tb f r a t e 100 mbit l a t ency 50ms burst 1540

196 sudo ip netns exec ns1 sudo tc qd i s c add dev veth1ns parent 1 :0 fq
l i m i t 20480 f l ow_l imi t 10240

197 sudo ip netns exec ns2 sudo tc qd i s c add dev veth2ns parent 1 :0 fq
l i m i t 20480 f l ow_l imi t 10240

198 sudo ip netns exec ns3 sudo tc qd i s c add dev veth3ns parent 1 :0 fq
l i m i t 20480 f l ow_l imi t 10240

199 sudo ip netns exec ns4 sudo tc qd i s c add dev veth4ns parent 1 :0 fq
l i m i t 20480 f l ow_l imi t 10240

200

201 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
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202

203 read −p " Press ENTER to d e l e t e cur rent c o n f i g u r a t i o n . . . "
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Physical Test Plant
Configuration

The configuration of the physical test plant follows a very similar trail to that
taken in the virtual scenario discussed in appendix B. The followings paragraph
are dedicated to add some details to how the configuration described in section 5.3.

C.1 The endpoints
The lack of a sufficient number of machines at my disposal pushed me to rely
solely on two server to implement all endpoints (Arrakis and Harkonnen). This was
possible thanks to the fact that both servers had many physical network interfaces
which could be used to establish several simultaneous flows from different sources
on each machine. Still, Linux doesn’t allows to configure the TCP congestion
control protocol only as a global function, while each interface should support a
different protocol (Prague or Cubic). For this reason, the network namespaces were
once again employed to create a distinct network environment from the main one,
so that both configurations could exist. This time though the actual physical NICs
were brought inside the namespaces in order to keep the configuration as close to
the real scenario as possible, by eliminating virtual network elements.

1 sudo ip netns add [ namespace name ]
2 sudo ip l i n k s e t [ network i n t e r f a c e ] netns [ namespace name ]

I decided to keep Prague inside the default namespace and deploy Cubic in the
newly create environment due to fears that the still experimental implementation
of Prague might misbehave. Still, once the test plant was configured I repeated
my tests with Prague inside the namespaces and noticed no difference at all. I
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can therefore affirm with confidence that namespaces do not impact the network
performance of either protocol.

I created a script to set up the endpoints, which can be applied on both endpoints.
The general requirements for the interface setup are explained in appendix B:

1 #! / bin /bash
2 #This s c r i p t a l l ows to move the $NIC2 i n s i d e a Linux namespace , in

order to have i t working with the TLS CUBIC cubic f l a v o u r in s t ead
o f PRAGUE, which i s the de faut on t h i s machine .

3 #Furthermore , i t d i s a b l e s the e x p l i c i t marking (ECN) o f the t r a f f i c
sent through the NIC , and s e t s the speed o f both $NIC1 and $NIC2
to 100M.

4

5 NIC1=nic1_name
6 NIC2=nic2_name
7

8 f unc t i on cleanup {
9 s e t +e

10

11 #k i l l i p e r f 3 in both namespaces
12 sudo p k i l l i p e r f 3
13

14 #remove netem c o n f i g
15 sudo tc qd i s c de l dev $NIC1 root
16

17 # Delete a l l the namespaces c rea ted in the s c r i p t
18 sudo ip netns de l ns1
19

20 #Restore the d e f a u l t speed i n s i d e the root environment
21 sudo e t h t o o l −s $NIC1 speed 1000 duplex f u l l autoneg on
22 #Restore o f f l o a d i n g
23 sudo e t h t o o l −K $NIC1 tso on gso on gro on l r o on
24

25 #Keep Prague as d e f a u l t CC pro to co l
26 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=prague
27

28 echo " d e f a u l t c o n f i g u r a t i o n r e s t o r e d "
29 echo " "
30

31 }
32

33

34 trap cleanup EXIT
35

36 s e t −e
37
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38 c l e a r
39

40 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
41 echo " execut ion s t a r t e d "
42 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
43

44 #Set Prague as CC pro toco l
45 echo " Defau l t namespace : "
46 sudo modprobe sch_cake
47 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=prague
48 sudo s y s c t l net . ipv4 . tcp_ecn=3
49 echo " "
50

51 #change the adve r t i s ed l i n k speed i n s i d e the root environment to 100M
52 sudo e t h t o o l −s $NIC1 speed 100 duplex f u l l autoneg on
53 #d i s a b l e a l l o f f l o a d i n g c a p a b i l i t i e s on the l 4 s n i c
54 sudo e t h t o o l −K $NIC1 tso o f f gso o f f gro o f f l r o o f f
55

56

57 #c r e a t e a new network namespace
58 sudo ip netns add ns1
59 #move enp129s0f3 i n s i d e the namespace
60 sudo ip l i n k s e t $NIC2 netns ns1
61 #turn the n i c up
62 sudo ip netns exec ns1 ip l i n k s e t dev $NIC2 up
63 #give back the network address to the i n t e r f a c e
64 sudo ip netns exec ns1 ip addr add 192 .168 .201 .18/24 dev $NIC2
65 #c o n f i g u r e the route towards the br idge
66 sudo ip netns exec ns1 ip route add d e f a u l t v ia 192 . 168 . 201 . 19 dev

$NIC2
67

68 #s e t the TCP f l a v o u r and the ECN
69 echo " Namespace NS1 : "
70 sudo ip netns exec ns1 sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=

cubic
71 sudo ip netns exec ns1 sudo s y s c t l net . ipv4 . tcp_ecn=2
72 echo " "
73

74 #change the adve r t i s ed l i n k speed to 100M
75 sudo ip netns exec ns1 e t h t o o l −s $NIC2 speed 100 duplex f u l l autoneg

on
76 #d i s a b l e o f f l o a d i n g on cubic too f o r equ i ty
77 sudo ip netns exec ns1 sudo e t h t o o l −K $NIC2 tso o f f gso o f f gro o f f

l r o o f f
78

79

80 #introduce the de lay
81 #sudo tc qd i s c add dev $NIC1 root netem delay 15ms
82 #sudo ip netns exec ns1 tc qd i s c add dev $NIC2 root netem delay 15ms
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83

84

85 #s e t the fq queue on both NICs
86 sudo tc qd i s c add dev $NIC1 root handle 1 : tb f r a t e 100 mbit l a t ency

50ms burst 1540
87 sudo ip netns exec ns1 sudo tc qd i s c add dev $NIC2 root handle 1 : tb f

r a t e 100 mbit l a t ency 50ms burst 1540
88 sudo tc qd i s c r e p l a c e dev $NIC1 parent 1 : fq l i m i t 20480 f l ow_l imi t

10240
89 sudo ip netns exec ns1 tc qd i s c r e p l a c e dev $NIC2 parent 1 : fq l i m i t

20480 f l ow_l imi t 10240
90

91

92 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
93

94 echo " "
95

96 read −p " Press ENTER to d e l e t e cur rent c o n f i g u r a t i o n . . . "

C.2 The router

The router is where most of the trouble came from. In theory it would have been
sufficient to enable the Linux forwarding mode to allow the machine to behave as
a router, and then set up dualpi2 on both interfaces. Still, when trying to test the
achieved environment I observed that the Prague traffic was being starved by the
Cubic traffic. I spent a whole month trying to isolate the issue but all I could make
out was that dualpi2 wasn’t behaving as expected, and I even managed to discuss
it with some people behind design and implementation of the L4S architecture[26],
which were very kind and willing to help, and allowed me to have a clearer picture
of the issue itself. Still, any actual solution seemed unfathomable.

As a matter of fact the idea of deploying a virtual scenario came as one of many
tests to try and get a grasp on the issue. In fact it was thanks to the virtual scenario
that I found the solution: due to the fact that it’s not possible to set the network
speed via ethtool on virtual interfaces I fell back on tbf as additional queuing
discipline to restrict the traffic (which otherwise would have been unconstrained
and wouldn’t have allowed me to create the bottleneck). I then could attest that the
virtual scenario was in fact working, and being tbf the only difference in the router
configuration I migrated this modification on the real scenario (though without
constraining the NICs’ throughput). Doing that I could finally make the physical
scenario work.
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My conclusion is than that in order to correctly configure dualpi2, tbf has to also
be added on the same interface. It is possible to use handles to deploy multiple
disciplines on the same interface, provided they fill in different roles (e.g., its not
possible to use two queues like dualpi2 and fq on the same time):

1 sudo tc qd i s c add dev [ network i n t e r f a c e ] root handle 1 : tb f r a t e
1000mbps l a t ency 10ms burst 1540

2 sudo tc qd i s c add dev [ network i n t e r f a c e ] parent 1 :0 dua lp i2

The script with all router’s settings is included below:

1 #! / bin /bash
2 #This s c r i p t i s u s e f u l in order to proper ly c o n f i g u r e the NICs queue

to dua lp i2
3

4 NIC1=nic1_name
5 NIC2=nic2_name
6

7 f unc t i on cleanup {
8 s e t +e
9

10 p k i l l spindump
11

12 # Restore the root ns c o n f i g u r a t i o n
13 sudo tc qd i s c d e l e t e dev $NIC1 root
14 sudo tc qd i s c d e l e t e dev $NIC2 root
15 sudo ip addr de l 192 .168 .201 .19/24 dev $NIC1
16 sudo ip addr de l 192 .168 .202 .20/24 dev $NIC2
17

18 sudo e t h t o o l −s $NIC2 autoneg on speed 1000 duplex f u l l
19 sudo e t h t o o l −s $NIC1 autoneg on speed 1000 duplex f u l l
20 }
21 trap cleanup EXIT
22

23 s e t −e
24

25 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
26 echo " execut ion s t a r t e d "
27 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
28

29 sudo c l e a r
30

31 sudo ip addr add 192 .168 .201 .19/24 dev $NIC1
32 echo " $NIC1 con f i gu r ed with ip address 192 . 168 . 201 . 19 "
33 sudo ip addr add 192 .168 .202 .20/24 dev $NIC2
34 echo " $NIC2 con f i gu r ed with ip address 192 . 168 . 202 . 20 "
35 sudo s y s c t l net . ipv4 . ip_forward=1
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36

37

38 #sudo tc qd i s c add dev $NIC1 root dua lp i2
39 #sudo tc qd i s c add dev $NIC2 root dua lp i2
40 sudo tc qd i s c add dev $NIC1 root handle 1 : tb f r a t e 1000 mbit l a t ency

100ms burst 1540 #la t ency 10ms burst 1540
41 sudo tc qd i s c add dev $NIC2 root handle 1 : tb f r a t e 1000 mbit l a t ency

100ms burst 1540 #la t ency 10ms burst 1540
42 echo " tb f added "
43 sudo tc qd i s c add dev $NIC1 parent 1 : dua lp i2
44 sudo tc qd i s c add dev $NIC2 parent 1 : dua lp i2
45 echo " dua lp i2 con f i gu r ed "
46 sudo e t h t o o l −s $NIC2 autoneg on speed 100 duplex f u l l
47 sudo e t h t o o l −s $NIC1 autoneg on speed 1000 duplex f u l l
48 echo " bo t t l eneck 1000>100 con f i gu r ed "
49 sudo e t h t o o l −K $NIC1 tso o f f gro o f f gso o f f l r o o f f
50 sudo e t h t o o l −K $NIC2 tso o f f gro o f f gso o f f l r o o f f
51 echo " o f f l o a d i n g d i s ab l ed "
52

53 spindump −−i n t e r f a c e $NIC2 2>/dev/ n u l l &
54

55 read " anything "

C.3 The network
The network setup relies on Ethernet links: in order to have multiple flows converg-
ing on the same router, I decided to use a L2 switch. Obviously, this requirement is
valid on both the server and the client side, and therefore two switches are needed.
Having just one switch at my disposal in the lab, I used L2 VLANs to separate the
flows on either side of the router.

The endpoint interfaces are set to 100Mbps and while the server side interface
supports 1Gbps of traffic to accommodate for all the incoming data and avoid a
bottleneck on the switch, the client side interface is set to 100Mbps, thus creating
a bottleneck.

Latency (and jitter too in some experiments) need to be introduced to simulate
a real network: Caladan was deployed to mimic a simple L2 switch in order to be
transparent to the rest of the network, saved for the delay introduced with netem
on each interface. The script used for its configuration is here reported:

1 #! / bin /bash
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2 #This s c r i p t aims at c o n f i g u r i n g the impairment to emulate r ea l − l i f e
network cond i t i ons , f o r t e s t i n g L4S t r a f f i c

3

4 NIC1=nic1_name
5 NIC2=nic2_name
6

7 f unc t i on cleanup {
8

9 sudo ip l i n k de l vbr idge
10 sudo tc qd i s c d e l e t e dev $NIC1 root
11 sudo tc qd i s c d e l e t e dev $NIC2 root
12 }
13 trap cleanup EXIT
14

15 s e t −e
16

17 sudo c l e a r
18

19 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
20 echo " execut ion s t a r t e d "
21 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
22

23 sudo ip l i n k add vbr idge type br idge
24 sudo ip l i n k s e t dev vbr idge up
25 sudo ip l i n k s e t $NIC1 master vbr idge
26 sudo ip l i n k s e t $NIC2 master vbr idge
27 sudo tc qd i s c add dev $NIC1 root handle 1 : netem delay 30ms
28 sudo tc qd i s c add dev $NIC2 root handle 1 : netem delay 30ms
29 sudo tc qd i s c add dev $NIC1 parent 1 : p f i f o l i m i t 1000
30 sudo tc qd i s c add dev $NIC2 parent 1 : p f i f o l i m i t 1000
31

32

33 echo " "
34 echo " br idge f u n c t i o n s enabled "
35 echo " added 30ms de lay on each d i r e c t i o n "
36 echo " "
37

38 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
39

40 read −p " Press ENTER to d e l e t e cur rent c o n f i g u r a t i o n . . . "
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Validating the Test Plants

D.1 Exploring the packets
In this section the correctness of the test plant is discussed. The first thing to check
was the correct marking of the IP header, which allows the Qual Queue algorithm
to treat the flows accordingly (see section 2.4.1). To do that the packet sniffing tool
Wireshark was used, and it was also very extensively used later for further testing.
Data was generated via iperf3, which is useful as it also shows the throughput for
each connection.

Figure D.1: ECN marking is ECT(1), in line with Prague’s specification

The capture shown in figure D.1 was performed on a single Prague flow and
clearly shows that packets carry the ECT(1) value (01) inside the ECN field, and
means that the queue is able to recognize and handle the flow.
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By simultaneously enabling both a Prague and a Cubic flow a congestion is
created, and in fact the iperf3 bitrate measurement show that the sum of the flows
is slightly less than 100Mbps (as it’s to be expected due to the header overhead).
By looking at new Wireshark captures a number of CE-marked Prague packets
is found (only after the router and towards the receiver), which means that the
Queue is notifying the endpoints of the congestion.

As far as the information that a visual examination can provide, all involved
protocols are working correctly. The next step is checking whether L4S’ behaviour
in congestion reflects its declared characteristics.

D.2 Taking a look at the connections metrics
Iperf3 offers end-to-end loss metrics and allows to easily attest that in fact Prague
flows have consistently 0 losses during 60 seconds parallel flow transmissions, while
several occur with Cubic. Furthermore we can observe the end-to-end RTT via
this command (to execute on each server before the transmission begins):

1 ( whi l e t rue ; do date ; s s −tenmoi ; s l e e p 1 ; done ) > / root / s s . txt

The results show lower and more consistent RTT values in the Prague connection
compared to Cubic, which is once again in line with all expectations.

D.2.1 The issue with Dualpi2
The real issue is though probably in the most obvious and most accessible mea-
surement: Cubic’s throughput is consistently four times higher than Prague’s, so
much that we might consider Cubic to be by all means "starving" Prague. The
source of the problem is evidently dualpi2, as delay, jitter, and losses are still lower
for Prague, which is a sign of the endpooints’ good behaviour; furthermore, if the
Dual Queue is replaced by a normal queue, delay, jitter and losses are comparable
with Cubic, but also the throughput: all these clues seem to suggest that dualpi2
is favouring the classic flow over L4S.

Trying to solve this issue was long and complex, and is more thoroughly discussed
in C.2. Still, it looks like daulpi2’s implementation as made available by the
L4STeam works only properly when paired with tbf (any reasonable parameter
should work):

1 sudo tc qd i s c add dev [ network i n t e r f a c e ] root handle 1 : tb f r a t e
1000mbps l a t ency 10ms burst 1540

2 sudo tc qd i s c add dev [ network i n t e r f a c e ] parent 1 :0 dua lp i2
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This expedient allows to have a much more even ratio between the flows: all
experiments in chapters 7 and 7 rely in fact on tbf and provide the reader with
sufficient data to attest its viability.
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Kernel Modifications for
Spin Bit support

E.1 Downloading, compiling and installing a new
kernel

As anticipated in chapter 6, the Spin Bit and Delay Bit implementation were
both developed upon L4STeam’s Kernel patch for L4S[15]. The github project’s
README.md contains a guide on how to download and compile the source code. I
am here providing a more detailed step-by-step walk-through of the whole procedure.

E.1.1 Downloading the source code
The first step consists in downloading the source from Github: this can be done
either through the website in .zip format, or via command line through the git
command, which allowed me (–depth parameter) to retain only the last version of
the repository, without the project’s history:

1 g i t c l one −−depth 1 https : // github . com/L4STeam/ l inux . g i t

I then created my own repository (which is now too publicly available on Github[27])
by following this guide[28]

E.1.2 Compiling and installing the new kernel
In order to recompile the kernel after any modification the first had to inherit
the kernel configuration I had previously obtained by installing the L4S kernel on
the machines, by copying it in the .config file in the same folder containing the
source code (this is quite important, do not make a new config as suggested as an
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alternative in the README for it is a very stripped down configuration over which
the built kernel doesn’t work). Then I compiled according to that configuration:

1 cp " / boot / con f i g −$ (uname −r ) " . c o n f i g
2 sudo make o l d d e f c o n f i g

In order to complete the compilation process with success the following modules
are required:

1 sudo apt i n s t a l l bui ld−e s s e n t i a l # bas i c t o o l to compi le c/c
++ so f tware

2 sudo apt i n s t a l l f l e x
3 sudo apt i n s t a l l b i son
4 sudo apt i n s t a l l l i b e l f −dev
5 sudo apt−get i n s t a l l l i b s s l −dev

Then the actual compilation can begin (it might take more than an hour the first
time, while following modifications take a variable time according to the edited
files’ dependencies.

1 sudo make −j$ ( nproc ) LOCALVERSION=−new−kerne l −name
2 sudo make modu le s_ins ta l l
3 sudo make i n s t a l l
4 sudo update−grub

After the installation is completed the instructions detailed in section A.3 are to
follow in order to test the new kernel version.

E.1.3 Clearing old kernel versions
To remove old kernels it’s sufficient to remove the old image and modules:

1 sudo cd / boot
2 sudo rm ∗−new−kerne l −name∗
3 sudo cd / l i b /modules
4 sudo rm −r ∗−new−kerne l −name∗

Alternatively, this guide[29] can be also used.

E.2 where the marking takes place
EFM rely on packet marking to convey information and make available of an
in-network observer, and need therefore a dedicated field inside the packet, possibly
on TCP header as these techniques operate in the connection layer.
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TCP works very well for that, as there are three reserved bits inside the header
which do not carry any information. Since our target is that of implementing
multiple marking techniques, it is best to define a way to advertise which method
is going to be used at the beginning of the connection, to allow the in-network
observer to tell the algorithm in action (otherwise it has no way to understand,
let’s say, if the Spin Bit or the Delay Bit is being used).

As the original objective of the research was that of implementing Spin Bit,
Delay Bit and Q Bit, the choice I made was the following:

• the 5th bit of the 13th Byte of the TCP header was renamed "loss bit"

• the 56h bit of the 13th Byte of the TCP header was renamed "time bit"
The idea was that of using the time bit to carry either the Spin Bit or the Delay
Bit marking, and using the loss bit to carry the Q bit. The algorithms were
codified inside the SYN and SYNACK packets to allow the observer to know which
technique would be used. Considering both the 5th and 6th bit together, in the
handshake the segments were marked as follows:

• 00 → no EFM

• 01 → Delay Bit

• 10 → Spin Bit

• 11 → Delay Bit + Q Bit

E.3 Editing the source code
The workflow for the Spin Bit implementation is the following:

• Identifying the structures hosting the connection-level TCP parameters, and
adding to them the flags necessary to check the current state of the algorithm
on each end of the connection

• Finding a way to define the roles of each endpoint (the Spin Bit requires the
two hosts to adopt two different behaviours, and thus there must be a way to
assign a different role to each of them)

• Finding the functions responsible for the parsing of the TCP header, allowing
them to extract the time and loss fields, and save the value in the connection-
level variables

• Finding the function responsible for the construction of the TCP header of the
outgoing segment, and marking it according to both the role and the current
state of the algorithm
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E.3.1 Identifying the connection-level structures
The TCP header flags are stored inside the struct sock_common, defined at line
164 of include/net/sock.h as part of the struct sock. This is a good place to
define the variables to host the information required by the algorithm to operate
as it is unique for each connection, and must always be attainable. In fact, since
these varaibles are to be updated according to the states of TCP, it is reasonable
to suppose that the struct sock_common will be always available in the functions
where said variables will be read or written.

Let’s therefore define the two emuns we’ll need to save the internal states of the
algorithm and place them in the file. Basically the only information we need to store
are the role (as each of the endpoints must behave either by reflecting the received
value, or by inverting it), and the internal value according to which the segments
must be marked. Therefore, I added at line 164 (above struct sock_common) the
following enums:

1 /∗SPIN BIT impl : r equ i r ed to d e f i n e the r o l e f o r the a lgor i thm ∗/
2 enum sp in_ro l e {
3 SPIN_ROLE_CLIENT, // s e t s the spin_value to the oppos i t e o f

the
4 // l a s t r e c e i v e d value
5 SPIN_ROLE_SERVER, // s e t s the spin_value to the same value

as the
6 } ; // l a s t r e c e i v e d one
7

8 /∗SPIN BIT impl : r equ i r ed to carry the value o f the a lgor i thm ∗/
9 enum spin_value {

10 SPIN_BIT_DOWN,
11 SPIN_BIT_UP,
12 } ;

Then, the actual variables need to be defined inside the struct (added at line 198):

1 /∗SPIN BIT impl : r equ i r ed to d e f i n e the r o l e f o r the a lgor i thm ∗/
2 enum sp in_ro l e __skc_spin_role ;
3 /∗SPIN BIT impl : r equ i r ed to carry the value o f the a lgor i thm ∗/
4 enum spin_value __skc_spin_value ;

Lastly, in order to gain access more easily to the variables from the parent struct
(struct sock), it’s useful to define some macros, as it’s done for all variables
contained in struct sock_common the aliases (line 411);

1 /∗SPIN BIT impl : d e f i n i n g macro to a c c e s s va lue s de f ined i n s i d e the
s t r u c t sock_common∗/

2 #d e f i n e sk_spin_value __sk_common . __skc_spin_value
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3 #d e f i n e sk_spin_role __sk_common . __skc_spin_role

E.3.2 Defining the roles
In order to define the roles the first idea that came to my mind was that of
looking for a connection-level variables that might hold whether or not the TCP
connection was started by that host or by its counterpart. Still, unfortunately, no
field inside the struct sock turned out to be useful, hence I had to come up with
a work-around.

There is a function inside net/ipv4/tcp.c called tcp_set_state that manages
the state changes of the TCP connection: the idea consists of using the state
transitions towards "connection established" and looking at the previous state: if
the previous state was "syn sent" then the host was the connection initiator, and we
can assign to it the role of the client, otherwise, if the old state was "syn received",
the host will fill in as server (line 2576):

1 /∗SPIN BIT impl : a s s i gn r o l e f o r a conve r sa t i on ∗/
2 i f ( o l d s t a t e == TCP_SYN_SENT && s t a t e == TCP_ESTABLISHED) {
3 /∗ t h i s i s the s e r v e r o f the connect ion ∗/
4 sk−>sk_spin_role = SPIN_ROLE_CLIENT;
5 sk−>sk_spin_value = SPIN_BIT_DOWN;
6 }
7 e l s e i f ( o l d s t a t e == TCP_SYN_RECV && s t a t e == TCP_ESTABLISHED) {
8 /∗ t h i s i s the s e r v e r o f the connect ion ∗/
9 sk−>sk_spin_role = SPIN_ROLE_SERVER;

10 sk−>sk_spin_value = SPIN_BIT_DOWN;
11 }

E.3.3 Parsing the incoming packets
This is the part that required more code analysis: fist of all there’s a structure
called struct tcphdr inside include/uapi/linux (line 25) which is used inside
various TCP functions to cast a pointer to the buffer containing the whole frame,
with the aim of extracting the TCP header fields. There I edited the "reserved"
field and added the space for the time and loss bits:

1 s t r u c t tcphdr {
2 __be16 source ;
3 __be16 dest ;
4 __be32 seq ;
5 __be32 ack_seq ;
6 #i f de f ined (__LITTLE_ENDIAN_BITFIELD)
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7 __u16 ae : 1 ,
8 /∗SPIN BIT impl ∗/
9 time : 1 ,

10 l o s s : 1 ,
11 r e s1 : 1 ,
12 d o f f : 4 ,
13 f i n : 1 ,
14 syn : 1 ,
15 r s t : 1 ,
16 psh : 1 ,
17 ack : 1 ,
18 urg : 1 ,
19 ece : 1 ,
20 cwr : 1 ;
21 #e l i f de f in ed (__BIG_ENDIAN_BITFIELD)
22 __u16 d o f f : 4 ,
23 r e s1 : 1 ,
24 /∗SPIN BIT impl ∗/
25 l o s s : 1 ,
26 time : 1 ,
27 ae : 1 ,
28 cwr : 1 ,
29 ece : 1 ,
30 urg : 1 ,
31 ack : 1 ,
32 psh : 1 ,
33 r s t : 1 ,
34 syn : 1 ,
35 f i n : 1 ;
36 #e l s e
37 #e r r o r " Adjust your <asm/ byteorder . h> d e f i n e s "
38 #e n d i f
39 __be16 window ;
40 __sum16 check ;
41 __be16 urg_ptr ;
42 } ;

Then, I found the function in charge of processing incoming TCP packets, which
is tcp_rcv_established at line 6263 of tcp_input.c. As its name suggests, the
function only processes the packets received after the three-way handshake, since
during the handshake the bits are used to advertise the algorithm in use. There I
called a new custom function in charge of updating the variable for the value to
match the value read in the header:

1 void tcp_rcv_establ i shed ( s t r u c t sock ∗sk , s t r u c t sk_buff ∗ skb )
2 {
3 const s t r u c t tcphdr ∗ th = ( const s t r u c t tcphdr ∗) skb−>data ;
4 s t r u c t tcp_sock ∗ tp = tcp_sk ( sk ) ;
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5 unsigned i n t l en = skb−>len ;
6

7 /∗SPIN BIT impl : c a l l custom func t i on to save the sp in value ∗/
8 tcp_set_spin_value ( sk , th ) ;

The new function was implemented at line 6455 inside the same file:

1 /∗SPIN BIT impl : save value o f the l a s t r e c e i v e d packet ∗/
2 void tcp_set_spin_value ( s t r u c t sock ∗sk , const s t r u c t tcphdr ∗ th ) {
3 i f ( th−>time ) sk−>sk_spin_value = SPIN_BIT_UP;
4 e l s e sk−>sk_spin_value = SPIN_BIT_DOWN;
5 }

Obviously, i also needed to insert the function header inside the associated .h file
(include/net/tcp.h at line 353):

1 /∗SPIN BIT impl : d e f i n e header f o r tcp_set_spin_value i n s i d e net / ipv4
/ tcp_input . c ∗/

2 void tcp_set_spin_value ( s t r u c t sock ∗sk , const s t r u c t tcphdr ∗ th ) ;

All these lines work together to update the internal state of the algorithm.

E.3.4 Implementing the Spin Bit logic
The actual Spin Bit logic is still missing, as it was implemented in the function man-
aging the actual TCP header generation: among the many function enrolled in the
output process, the one responsible for building the header is __tcp_transmit_skb
at line 1446 of net/ipv4/tcp_output.c. There let’s define the local variable which
will be pushed inside the header, and initialize it to the value to write during the
handshake phase:

1 /∗SPIN BIT impl : here i s de f i ned the value to wr i t e i n s i d e the
r e s e rved b i t ∗/

2 u8 spin_value = 0b10 ; // s e t to 10 in order to r e cogn i z e the sp in
a lgor i thm during the handshake ( by an e x t e r n a l obse rver )

Now the heart of the algorithm can finally be developed: the Spin Bit is very simple
as it is sufficient to update the local variable either the last received value if the
host is enacting the server’s role, or its opposite if the host is filling the role of the
client (line 1534):

1 /∗SPIN BIT impl : a s s i gn value to the v a r i a b l e ∗/
2 i f ( sk−>sk_state == TCP_ESTABLISHED && /∗ ! sk−>sk_state_change &&∗/

! ( ( tcb−>tcp_f lags ) & TCPHDR_SYN) ) { /∗ otherwi s e r o l e and value
are undef ined and might l ead to undef ined behaviours ∗/

3 i f ( sk−>sk_spin_value == SPIN_BIT_DOWN) spin_value = 0 ;
4 e l s e spin_value = 0b1 ;
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5 i f ( sk−>sk_spin_role == SPIN_ROLE_CLIENT) spin_value ^= 0b1 ; /∗
i n v e r t the value i f the r o l e i s that o f the c l i e n t ∗/

6 }

And then obviously, the value must be written alongside the rest of the header by
shifting it to the right place (line 1541):

1 /∗ Build TCP header and checksum i t . ∗/
2 th = ( s t r u c t tcphdr ∗) skb−>data ;
3 th−>source = inet −>inet_sport ;
4 th−>dest = inet −>inet_dport ;
5 th−>seq = hton l ( tcb−>seq ) ;
6 th−>ack_seq = hton l ( rcv_nxt ) ;
7 ∗ ( ( ( __be16 ∗) th ) + 6) = htons ( ( ( tcp_header_size >> 2) << 12) |
8 ( tcb−>tcp_f lags & TCPHDR_FLAGS_MASK) |
9 ( spin_value << 9) ) ; /∗SPIN BIT impl : wr i t e va lue

i n s i d e the header ∗/

On a final note, the logic written above only checks if the segment is a SYN, leaving
out the SYNACK case: that’s because SYNACK packets are created inside a
function of their own, i.e., tcp_make_synack at line 3759. There I just had to add
inserted the following line (line 3848):

1 /∗SPIN BIT impl : mark the header o f the SYNACK packet ∗/
2 th−>l o s s = 0b1 ;

E.4 Final attentions
These are all the modifications applied to the kernel, and can be used as-is without
any configuration to deploy the Spin Bit on any network, provided the conditions
for the fragmentation match the requirements defined in section 6.2.1 and both
endpoints are patched. To extract the information from an active connection a
capable observer is needed, like my Spindump patch, which is discussed thoroughly
in appendix G. enums
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Appendix F

Kernel Modifications for
Delay Bit support

F.1 Inheriting from the Spin Bit experience
The Delay Bit implementation process is very similar to that of the Spin Bit, aside
from the one major issue with the fragmentation which I’m going to discuss in the
next section. Obviously the process for the editing, compilation and installation of
the Delay Bit Kernel is identical (cf. E.1) aside from the fact that the Delay Bit
was added as a new branch of the already existing Github repository. The section
regarding the position of the marking algorithm advertisement (cf. E.2) applies
also to the Delay Bit, and the modifications performed to the kernel too are for
the most part completely identical other than from the variables’ names. Here I
am therefore reporting in brief just the pieces of the code concerning the Delay Bit
implementation, with minimal explanations, since it is already provided in section
E.3.

F.1.1 The code
Starting from the connection-wide structures in include/net/sock.h, only the
names are updated (line 164):

1 /∗DELAY BIT impl : r equ i r ed to d e f i n e the r o l e f o r the a lgor i thm ∗/
2 enum delay_ro le {
3 DELAY_ROLE_CLIENT, // s e t s the spin_value to the oppos i t e o f the
4 // l a s t r e c e i v e d value
5 DELAY_ROLE_SERVER, // s e t s the spin_value to the same value as the
6 } ; // l a s t r e c e i v e d one
7

8 /∗DELAY BIT impl : r equ i r ed to carry the value o f the a lgor i thm ∗/
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9 enum delay_sample {
10 DELAY_BIT_DOWN,
11 DELAY_BIT_UP,
12 } ;

A an additional variable is added to the struct sock_common to keep track of
the timestamp of the last transmitted delay value, in order to allow the client to
regenerate the marking if the segment carrying it is lost (line 198):

1 enum delay_ro le __skc_delay_role ;
2 /∗DELAY BIT impl : r equ i r ed to forward the de lay sample ∗/
3 enum delay_sample __skc_delay_sample ;
4 ktime_t __skc_ds_time ;

And of course, including its macro is also necessary (line 413):

1 /∗DELAY BIT impl : d e f i n i n g macro to a c c e s s va lue s de f ined i n s i d e the
s t r u c t sock_common∗/

2 #d e f i n e sk_delay_role __sk_common . __skc_delay_role
3 #d e f i n e sk_delay_sample __sk_common . __skc_delay_sample
4 #d e f i n e sk_delay_ds_time __sk_common . __skc_ds_time

The role definition in net/ipv4/tcp.c remains unvaried, as the Delay Bit too
requires the endpoints to adopt different behaviours (line 2576):

1 /∗DELAY BIT impl : a s s i gn r o l e f o r a conve r sa t i on ∗/
2 i f ( o l d s t a t e == TCP_SYN_SENT && s t a t e == TCP_ESTABLISHED) {
3 /∗ t h i s i s the c l i e n t o f the connect ion ∗/
4 sk−>sk_delay_role = DELAY_ROLE_CLIENT;
5 }
6 e l s e i f ( o l d s t a t e == TCP_SYN_RECV && s t a t e == TCP_ESTABLISHED) {
7 /∗ t h i s i s the s e r v e r o f the connect ion ∗/
8 sk−>sk_delay_role = DELAY_ROLE_SERVER;
9 }

The definition of the struct tcphdr inside include/uapi/linux/tcp.h (line 25)
remains the same:

1 s t r u c t tcphdr {
2 __be16 source ;
3 __be16 dest ;
4 __be32 seq ;
5 __be32 ack_seq ;
6 #i f de f ined (__LITTLE_ENDIAN_BITFIELD)
7 __u16 ae : 1 ,
8 /∗DELAY BIT impl ∗/
9 time : 1 ,

10 l o s s : 1 ,
11 r e s1 : 1 ,
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12 d o f f : 4 ,
13 f i n : 1 ,
14 syn : 1 ,
15 r s t : 1 ,
16 psh : 1 ,
17 ack : 1 ,
18 urg : 1 ,
19 ece : 1 ,
20 cwr : 1 ;
21 #e l i f de f in ed (__BIG_ENDIAN_BITFIELD)
22 __u16 d o f f : 4 ,
23 r e s1 : 1 ,
24 /∗DELAY impl ∗/
25 l o s s : 1 ,
26 time : 1 ,
27 ae : 1 ,
28 cwr : 1 ,
29 ece : 1 ,
30 urg : 1 ,
31 ack : 1 ,
32 psh : 1 ,
33 r s t : 1 ,
34 syn : 1 ,
35 f i n : 1 ;
36 #e l s e
37 #e r r o r " Adjust your <asm/ byteorder . h> d e f i n e s "
38 #e n d i f
39 __be16 window ;
40 __sum16 check ;
41 __be16 urg_ptr ;
42 } ;

Also no changes are applied to the handling of the incoming packets. So the
custom function invocation inside tcp_rcv_established stays the same (line 6269
of net/ipv4/tcp_input.c)

1 /∗DELAY BIT impl : d e f i n e header f o r tcp_set_spin_value i n s i d e net /
ipv4 / tcp_input . c ∗/

2 tcp_set_delay_sample ( sk , th ) ;

as well as its implementation (line 6456)

1 /∗DELAY BIT impl : save value o f the l a s t r e c e i v e d packet ∗/
2 void tcp_set_delay_sample ( s t r u c t sock ∗sk , const s t r u c t tcphdr ∗ th ) {
3 i f ( th−>time ) sk−>sk_delay_sample = DELAY_BIT_UP;
4 }

and its definition in include/net/tcp.h
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1 /∗DELAY BIT impl : d e f i n e header f o r tcp_set_delay_sample i n s i d e net /
ipv4 / tcp_input . c ∗/

2 void tcp_set_delay_sample ( s t r u c t sock ∗sk , const s t r u c t tcphdr ∗ th ) ;

Lastly, the Delay Bit logic is applied to __tcp_transmit_skb, starting with the
local variable at line 1462:

1 /∗DELAY BIT impl : here i s de f i n ed the value to wr i t e i n s i d e the
r e s e rved b i t ∗/

2 u8 delay_sample = 0 ; // s e t to 1 in order to r e cogn i z e the de lay
a lgor i thm during the handshake ( by an e x t e r n a l obse rver )

Its then time to apply the marking to the local variable: as for the Delay Bit the SYN
segment must be left alone, then segments with the "selective acknowledgement"
option are also barred from being marked as they take a different path inside the
network stack and might cause some issues with packet duplication in Cubic. At
this point the packet is marked if the algorithm state variable, meaning the Delay
Bit has been received, and the delay flag is cleared; then in that case, if the role is
that of the client, its associated timestamp is updated. This is necessary as when
the flag is not set, the client is required to check how much time has passed since
the transmission of the last marked segment: if the difference exceeds a maximum
value (here set to 100ms according to the developers’ suggested specifics) which
must be well above the RTT on the network, a new delay sample is generated.
Starting at line 1536:

1 /∗DELAY BIT impl : a s s i gn value to the v a r i a b l e ∗/
2 i f ( tcb−>tcp_f lags & TCPHDR_SYN) {
3 delay_sample = 0b1 ;
4 }
5 e l s e i f ( opts . num_sack_blocks ) { // avoid SACK marking to avoid

dup l i c a t e packets
6 delay_sample = 0 ;
7 }
8 e l s e i f ( sk−>sk_delay_sample == DELAY_BIT_UP) {
9 sk−>sk_delay_sample = DELAY_BIT_DOWN;

10 delay_sample = 0b1 ;
11 i f ( sk−>sk_delay_role == DELAY_ROLE_CLIENT) {
12 sk−>sk_delay_ds_time = ktime_get_coarse ( ) ; // r e s e t the

timestamp i f the r o l e i s that o f the c l i e n t
13 }
14 }
15 e l s e i f ( sk−>sk_delay_role == DELAY_ROLE_CLIENT && ktime_to_ms (

ktime_sub ( ktime_get_coarse ( ) , sk−>sk_delay_ds_time ) ) > 100 ) {
16 delay_sample = 0b1 ;
17 sk−>sk_delay_ds_time = ktime_get_coarse ( ) ;
18 }
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The result is then push to the newly formed header (line 1555):

1 /∗ Build TCP header and checksum i t . ∗/
2 th = ( s t r u c t tcphdr ∗) skb−>data ;
3 th−>source = inet −>inet_sport ;
4 th−>dest = inet −>inet_dport ;
5 th−>seq = hton l ( tcb−>seq ) ;
6 th−>ack_seq = hton l ( rcv_nxt ) ;
7 ∗ ( ( ( __be16 ∗) th ) + 6) = htons ( ( ( tcp_header_size >> 2) << 12) |
8 ( tcb−>tcp_f lags & TCPHDR_FLAGS_MASK) |
9 ( delay_sample << 9) ) ; /∗DELAY BIT impl : wr i t e

va lue i n s i d e the header ∗/

And lastly, as per the Spin Bit, the Delay Bit handshake codification is added to
the TCP header of the SYNACK packet (line 3862):

1 /∗DELAY BIT impl : mark the header o f the SYNACK packet ∗/
2 th−>time |= 0b1 ;

F.2 Making the Delay Bit compatible with frag-
mentation

The code as it now stands still doesn’t work, since a TCP segment is created
without the information regarding the network MTU, and what happens is than
as the segment descends the network stack, is tuned into packet and is going to
be encapsulated inside a L2 frame, a fragmentation may likely occur. As detailed
in section 6.2.1, fragmentation is a real issue for EFM, since as the TCP headers
created for each fragment, the reserved bight be copied or not: the delay bit
specifically requires the delay sample to be mantained on the first packet and
cleared on all others in order to keep working as expected. Fragmentation is
handled in dozens of places inside the Linux kernel, but after more than a month
of struggle I was able to identify the main function responsible for the actual
copy of the TCP header, i.e., __skb_gso_segment, inside net/core/dev.c. I then
changed the code as follows.

In file include/net/tcp.h at line 886 I created a mask for the time and loss
bits:

1 /∗DELAY BIT impl : d e f i n e mask ∗/
2 #d e f i n e TCPHDR_TIME 0x200
3 #d e f i n e TCPHDR_LOSS 0x400

Then, coming back to net/core/dev.c I imported the modified file (line 156)
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1 /∗DELAY BIT impl : import l i b r a r i e s to a l low TCP parse ∗/
2 #inc lude <net / tcp . h>

Hence I modified __skb_gso_segment, starting by adding a struct for the header
parsing, and two pointers to the struct sk_buff, a pointer to the buffer containing
the packet during its processing by the network stack (line 3383):

1 /∗DELAY BIT impl : nece s sa ry to c l e a r the de lay b i t ∗/
2 s t r u c t tcphdr _tcphdr ;
3 s t r u c t sk_buff ∗nskb ;
4 s t r u c t sk_buff ∗ next ;

Then I intervened right after the packet fragmentation by skb_mac_gso_segment
adding a while loop where I checked if the fragments were TCP segment, and in
that case, I cleared the marked bits from the header on each segment saved the
first one (line 3419 and onward):

1 s eg s = skb_mac_gso_segment ( skb , f e a t u r e s ) ;
2

3 /∗DELAY BIT impl : t ry to f i x the f ragmentat ion i s s u e f o r the de lay
b i t ∗/

4 nskb = seg s ;
5 whi le ( nskb ) {
6 next = nskb−>next ;
7 nskb = next ; // f i r s t row does not get i t s b i t c l e a r e d
8

9 /∗DELAY BIT impl : c l e a r the de lay b i t ∗/
10 i f ( nskb && nskb−>pro to co l == htons (ETH_P_IP) ) {
11 //IP conf irmed
12 s t r u c t tcphdr ∗ tcp_header = skb_header_pointer ( nskb ,

skb_transport_of f s e t ( nskb ) , s i z e o f ( _tcphdr ) , &_tcphdr ) ;
13 i f ( tcp_header ) {
14 //TCP conf irmed
15 ∗ ( ( ( __be16 ∗) tcp_header ) + 6) &= ~htons (TCPHDR_TIME) ;
16 }
17 }
18 }

Now the Delay Bit works too. The same requirements detailed in section E.4 apply
here to ensure the algorithm is correctly deployed.
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Spindump patch to extend
EFM to TCP

G.1 How does Spindump work
Spindump is an in-network latency measurement tool aimed at providing various
connection metrics, like data exchanged and end-to-end latency. In this chapter
I’m going to discuss how I patched Spindump in order to allow it to extract the
RTT from TCP connections employing either the Spin Bit or the Delay Bit.

Crucially, spindump already supports Spin Bit and Delay Bit for QUIC, which
means that it was sufficient to add a control on the functions processing TCP,
and to invoke the same functions used in QUIC, being only wary of potential
adjustments with the required arguments.

The workflow for implementing the support of both the Spin Bit and the Delay
Bit is quite simple: actually I tracked down the flow used in QUIC and mirrored it
for TCP, coming down to these five basic steps:

• defining and initializing the data structures that need to maintain the infor-
mation regarding the protocol for the TCP connection

• defining the function able to extract the information form the TCP header
(which method is used and which value is being carried)

• parsing the packet in order to obtain the carried information

• extracting the time values according to the algorithm in place

• invoking the function responsible for the actual RTT evaluations
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G.1.1 Managing the project
The project was managed through Github very similarly to what I already explained
in section E.1. In order to compile the source code it is sufficient to download the
source code from the online repository[16] and then (for Ubuntu linux) running
the following command to install the compiler and the essential tools:

1 sudo apt−get i n s t a l l pkg−c o n f i g cmake make gcc l ibpcap −dev
l i bncu r s e s 5 −dev l i b c u r l 4 −openss l −dev l ibmicrohttpd −dev

Then, from the project folder, compiling and installing with gcc:

1 cmake .
2 make
3 sudo make i n s t a l l

After a new version of the source code is ready, it is sufficient to uninstall the old
application before compiling and installing again:

1 sudo make u n i n s t a l l

G.2 Developing the code
Let’s now take a look at the modifications I managed to introduce to the application
according to the road-map traced above.

G.2.1 The connection-level structures
All connection-level structures in Spindump are saved in a single file named
spindump_connections_structs.h, and are used to keep track of all informa-
tion that needs to persist during the lifetime of each connection in order to provide
the user with the results. There I added a new enum definition needed to save the
current EFM technique in TCP (line 54):

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 enum spindump_tcp_EFM_technique {
3 spindump_tcp_no_EFM ,
4 spindump_tcp_EFM_spin ,
5 spindump_tcp_EFM_delay ,
6 spindump_tcp_EFM_delay_plus_q
7 } ;

Then, in the same file, I updated the tcp struct inside the self-explaining struct
spindump_connection with the new enum and the structs defined for Spin and
Delay Bit (line 156):
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1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 enum spindump_tcp_EFM_technique EFM_technique ; // nece s sa ry to t e l l

the EFM techn iques apart
3 s t r u c t spindump_spintracker spinFromPeer1to2 ; // t ra ck ing sp in b i t

f l i p s from s i d e 1 to 2
4 s t r u c t spindump_spintracker spinFromPeer2to1 ; // t ra ck ing sp in b i t

f l i p s from s i d e 2 to 1
5 s t r u c t spindump_delaybittracker delaybitFromPeer1to2 ; // t ra ck ing

de lay b i t from s i d e 1 to 2
6 s t r u c t spindump_delaybittracker delaybitFromPeer2to1 ; // t ra ck ing

de lay b i t from s i d e 2 to 1

The new structures are then to be added to the wider initialization of struct
spindump_connection: function spindump_connections_newconnection_aux in-
side spindump_connections_new.c takes care of that, thus inside it, at line 123 I
invoked the creation function and initilized the EFM enum:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 sp indump_sp in t racke r_ in i t i a l i z e (&connect ion−>u . tcp . spinFromPeer1to2 ) ;
3 sp indump_sp in t racke r_ in i t i a l i z e (&connect ion−>u . tcp . spinFromPeer2to1 ) ;
4 sp indump_de layb i t t r a cke r_ in i t i a l i z e (&connect ion−>u . tcp .

delaybitFromPeer1to2 ) ;
5 sp indump_de layb i t t r a cke r_ in i t i a l i z e (&connect ion−>u . tcp .

delaybitFromPeer2to1 ) ;
6 connect ion−>u . tcp . EFM_technique = spindump_tcp_no_EFM ; /∗may not be

nece s sa ry ∗/

G.2.2 Enabling the header’s parsing
The next step consists in creating a dedicated function which is able to parse the
header of a TCP segment and return the extracted value. To do that I created a
new file (which I then had to include inside the make file to ensure its compilation
and linking to the rest of the project) called spindump_analyze_tcp_parser.c
there I defined a function dedicated to recognizing the used algorithm, calling it
spindump_analyze_tcp_parser_check_EFM, returning the enum which points at
the EFM in use (spindump_tcp_EFM_technique) initialized accordingly. Then I
defined a function to extract the time bit, which would contain the spin or delay
value. Both function are very simple and just shift the reference to the TCP header
received as only argument to the right amount, and check the value through an
AND operation. Here I’m providing the whole file, stripped down of unnecessary
comments:

1 #inc lude <s t d l i b . h>
2 #inc lude <s t r i n g . h>
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3 #inc lude <l i m i t s . h>
4 #inc lude " spindump_util . h "
5 #inc lude " spindump_analyze . h "
6 #inc lude " spindump_analyze_tcp . h "
7 #inc lude " spindump_analyze_tcp_parser . h "
8

9 enum spindump_tcp_EFM_technique
10 spindump_analyze_tcp_parser_check_EFM ( const unsigned char ∗ header ) {
11

12 //
13 // Sanity checks
14 //
15

16 spindump_assert ( header != 0) ;
17

18 uint8_t of f_rsvd ;
19

20 // spindump_decodebyte ( of f_rsvd , header , pos ) ; // f f_rsvd
ge t s i t s memory a l l o c a t e d

21 of f_rsvd = header [ 1 2 ] ;
22

23 i f ( ( o f f_rsvd & 0x06 ) == 0x04 ) { //SPIN BIT
24 f p r i n t f ( s tde r r , "SPIN IS ACTIVE\n" ) ;
25 re turn spindump_tcp_EFM_spin ;
26 }
27 e l s e i f ( ( o f f_rsvd & 0x06 ) == 0x02 ) { //DELAY BIT
28 f p r i n t f ( s tde r r , "DELAY IS ACTIVE\n" ) ;
29 re turn spindump_tcp_EFM_delay ;
30 }
31 e l s e i f ( ( o f f_rsvd & 0x06 ) == 0x06 ) { //DELAY BIT + Q BIT
32 f p r i n t f ( s tde r r , "DELAY∗Q ARE ACTIVE\n" ) ;
33 re turn spindump_tcp_EFM_delay_plus_q ;
34 }
35 f p r i n t f ( s tde r r , "NO MARKING IS ACTIVE\n" ) ;
36 re turn spindump_tcp_no_EFM ;
37 }
38

39 i n t
40 spindump_analyze_tcp_parser_gettimebit ( const unsigned char ∗ header ) {
41 uint8_t of f_rsvd ;
42

43 //
44 // Sanity check
45 //
46 spindump_assert ( header != 0) ;
47

48 of f_rsvd = header [ 1 2 ] ;
49
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50 // i f ( (∗ o f f_rsvd && 0b00000010 ) == 0b00000010 ) { //SPIN OR DELAY
BIT

51 i f ( ( o f f_rsvd & 0x02 ) == 0x02 ) { //SPIN OR DELAY BIT
52 re turn 1 ;
53 }
54 e l s e re turn 0 ;
55 }

The creation of a new .h file (spindump_analyze_tcp_parser.h) was necessary
to export the functions:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 #inc lude " spindump_connections . h "
3

4 enum spindump_tcp_EFM_technique spindump_analyze_tcp_parser_check_EFM
( const unsigned char ∗ header ) ;

5 i n t spindump_analyze_tcp_parser_gettimebit ( const unsigned char ∗
header ) ;

Lastly, spindump_analyze_tcp_parser.h was included (for dependency reasons)
in spindump_connections_new.c at line 44:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 #inc lude " spindump_analyze_tcp_parser . h "

G.2.3 Parsing the header and invoking the algorithm
Let’s head now inside spindump_analyze_tcp.c, which contains the function
spindump_analyze_process_tcp, that, as its name suggest, is responsible for the
processing of a TCP segment. Let’s first include spindump_analyze_tcp_parser.h
here too (line 28):

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 #inc lude " spindump_analyze_tcp_parser . h "

spindump_analyze_process_tcp manages all possible states of the TCP connec-
tion: our first target is that of recognizing the algorithm in use, so I extracted the
algorithm inside the if branch managing the SYN packets (line 402):

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 //
3 //Check i f EFM techn iques are used
4 //
5 connect ion−>u . tcp . EFM_technique =

spindump_analyze_tcp_parser_check_EFM ( packet−>contents +
tcpHeaderPos i t ion ) ;
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Then it’s useful to double check that both endpoints are actually using the same
algorithm to avoid providing false measurements, so in the SYNACK branch I
added (line 462):

1 // san i ty check
2 enum spindump_tcp_EFM_technique efm =

spindump_analyze_tcp_parser_check_EFM ( packet−>contents +
tcpHeaderPos i t ion ) ;

3 i f ( connect ion−>u . tcp . EFM_technique != efm ) {
4 connect ion−>u . tcp . EFM_technique = spindump_tcp_no_EFM ; // check f o r

c o r r e c t n e s s : both SYN and SYNACK must ca r r ry the same marking ,
5 //

otherwise , do not apply the efm algorythm
6 }

Finally, if a connection has been established the header parsing can take place. Once
the value is retrieved, it is sufficient to call a customized function for either the Spin
Bit or Delay Bit RTT evaluation. Both are basically wrappers which extract times-
tamps from the associated structures I initialized above and then call the real func-
tion used to compute the RTT, i.e., spindump_connections_newrttmeasurement.
So here I just invoked the functions, which are further analyzed in the following
sections. It is sufficient to highlight that both receive a parameter which contains
the marking, which is the value we just parsed, and a timestamp of the packet
being processed. From line 636 onward:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 //Normal case o f connect ion e s t ab l i s h ed , check i f efm i s a c t i v e
3 i f (
4 connect ion−>s t a t e == spindump_connect ion_state_establ ished &&
5 connect ion−>u . tcp . EFM_technique == spindump_tcp_EFM_spin
6 ) {
7 // f p r i n t f ( s tde r r , " sp in eva lua t i on i s ongoing . . . " ) ;
8 // i f sp in b i t i s used , r e t r i e v e the sp in value :
9 i n t sp in = spindump_analyze_tcp_parser_gettimebit ( packet−>

contents + tcpHeaderPos i t ion ) ;
10 // c a l l f unc t i on f o r RTT measurement
11 i n t i s F l i p = 0 ;
12 sp indump_spintracker_observesp inandca lcu later t t ( s ta te , packet ,

connect ion , ( s t r u c t t imeval ∗) timestamp , spin , fromResponder ,
ipPacketLength ,& i s F l i p ) ;

13 }
14 e l s e i f (
15 connect ion−>s t a t e == spindump_connect ion_state_establ ished && (
16 connect ion−>u . tcp . EFM_technique == spindump_tcp_EFM_delay | |
17 connect ion−>u . tcp . EFM_technique ==

spindump_tcp_EFM_delay_plus_q
18 ) ) {
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19 // i f de lay b i t i s used , r e t r i e v e the de lay value :
20 i n t de lay = spindump_analyze_tcp_parser_gettimebit ( packet−>

contents + tcpHeaderPos i t ion ) ;
21 // c a l l f unc t i on f o r RTT measurement
22 sp indump_de layb i t t racker_observeandca lcu late r t t ( s ta te ,
23 packet ,
24 connect ion ,
25 ( s t r u c t t imeva l ∗)

timestamp ,
26 fromResponder ,

ipPacketLength ,
27 delay /∗

spindump_extrameas_delaybit ∗/ ) ; // not a c t u a l l y us e fu l , j u s t meant
f o r r e t r o c o m p a t i b i l i t y with QUIC

28

29 i f ( connect ion−>u . tcp . EFM_technique ==
spindump_tcp_EFM_delay_plus_q ) {

30 // implement q b i t l o g i c
31

32 }
33 }

Lastly, let us intervene on spindump_analyze_process_tcp_markackreceived,
which is the function processing the ACK segments: there we can see that once
again spindump_connections_newrttmeasurement is invoked, this time though
according to the default spindump specifications, i.e., associating the timestamp to
which the ACK was received to that of its counterpart and evaluating the RTT
according to these values: as for Spin and Delay Bit the function is already invoked,
it must not be called twice (aside from the fact that it does not work very well and
often does not update its measurements). So it is sufficient to place this condition
in front of the two spindump_connections_newrttmeasurement invocations (line
138 and line 170):

1 // avoid new r t t measurement i f connect ion i s e s t a b l i s h e d and any EFM
i s a c t i v e

2 i f ( connect ion−>u . tcp . EFM_technique == spindump_tcp_no_EFM | |
connect ion−>s t a t e != spindump_connect ion_state_establ ished )

G.2.4 Expanding the Spin Bit for TCP
The spindump_spintracker_observespinandcalculatertt is implemented in-
side spindump_spin.c and it’s fairly simple: it checks the value and the direction
of the spin (from which host it came) to figure out whether a transition (isFLip)
occurred. If if did occur, it associates the timestamp of the segment with that of
the last flip, and then invokes spindump_connections_newrttmeasurement. The
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only modification i did here was replicating the code for TCP to force the functions
to use the TCP structures instead. From line 164:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 i f ( connect ion−>type == spindump_connection_transport_tcp ) {
3 //mock the o r i g i n a l f unc t i on code but f o r tcp
4 i f ( fromResponder ) {
5 t r a cke r = &connect ion−>u . tcp . spinFromPeer2to1 ;
6 othe rDi r ec t i onTracke r = &connect ion−>u . tcp . spinFromPeer1to2 ;
7 } e l s e {
8 t r a cke r = &connect ion−>u . tcp . spinFromPeer1to2 ;
9 othe rDi r ec t i onTracke r = &connect ion−>u . tcp . spinFromPeer2to1 ;

10 }
11

12 i n t sp in0to1 ;
13 i f ( spindump_spintracker_observespin ( s ta te ,
14 packet ,
15 connect ion ,
16 t racker ,
17 ts ,
18 spin ,
19 fromResponder ,
20 ipPacketLength ,
21 &spin0to1 ) ) {
22

23 ∗ i s F l i p =1;
24 //
25 // Try to match the sp in f l i p with the most r e c ent matching

f l i p in the other d i r e c t i o n .
26 // Responder sp in f l i p s match with equal f l i p s , i n i t i a t o r f l i p s

match with i n v e r s e f l i p s .
27 //
28

29 s t r u c t t imeval ∗ otherSpinTime =
30 spindump_spintracker_match_bidirect ional_spin (

otherDirec t ionTracker ,
31 1 ,
32 fromResponder ?

sp in0to1 : ! sp in0to1 ) ;
33

34 i f ( otherSpinTime ) {
35 spindump_connections_newrttmeasurement ( s ta te ,
36 packet ,
37 connect ion ,
38 ipPacketLength ,
39 fromResponder , // 0 =

l e f t , 1 = r i g h t
40 0 , // b i d i r e c t i o n a l
41 otherSpinTime ,
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42 ts ,
43 "SPIN" ) ;
44 }
45

46 //
47 // Match sp in with prev ious in same d i r e c t i o n to obta in end to

end RTT.
48 //
49

50 otherSpinTime = spindump_spintracker_match_unidirect ional_spin (
t racker , sp in0to1 ) ;

51

52 i f ( otherSpinTime ) {
53 spindump_connections_newrttmeasurement ( s ta te ,
54 packet ,
55 connect ion ,
56 ipPacketLength ,
57 fromResponder ,
58 1 , // u n i d i r e c t i o n a l
59 otherSpinTime ,
60 ts ,
61 "SPIN_UNIDIR" ) ;
62 }
63 }
64

65 re turn ;
66 }

G.2.5 Expanding the Delay Bit for TCP
spindump_delaybittracker_observeandcalculatertt function can be found im-
plemented inside spindump_titalia_delaybit.c. As for the Spin Bit the algo-
rithm is very simple since it just checks whether the delay sample is marked and
it associates it to the last sample from the same direction: it retrieves the two
timestamps and then it invokes spindump_connections_newrttmeasurement. As
for the example before, I just doubled the code replacing the structures with those
initialized for TCP. From line 42 onward:

1 //ADDED TO ENABLE EFM SUPPORT FOR TCP
2 i f ( connect ion−>type == spindump_connection_transport_tcp ) {
3 i f ( ext rameasb i t s == 0) re turn ; // c a r r i e s de lay b i t i n f o
4 //mock the o r i g i n a l f unc t i on code but f o r tcp
5 s t r u c t spindump_delaybittracker ∗ t r a cke r ;
6 s t r u c t spindump_delaybittracker ∗ otherTracker ;
7 i f ( fromResponder ) {
8 t r a cke r = &connect ion−>u . tcp . delaybitFromPeer2to1 ;
9 otherTracker = &connect ion−>u . tcp . delaybitFromPeer1to2 ;
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10 } e l s e {
11 t r a cke r = &connect ion−>u . tcp . delaybitFromPeer1to2 ;
12 otherTracker = &connect ion−>u . tcp . delaybitFromPeer2to1 ;
13 }
14

15 unsigned long long d i f f = spindump_timedi f f inusecs ( ts , &tracker −>
lastDelaySample ) ;

16 f p r i n t f ( s tde r r , "DELAY RTT IS BEING CALCULATED: d i f f = %l l u \n " ,
d i f f ) ;

17 i f ( d i f f < spindump_delaybit_tmax ) {
18 spindump_connections_newrttmeasurement ( s ta te ,
19 packet ,
20 connect ion ,
21 ipPacketLength ,
22 fromResponder ,
23 1 , // u n i d i r e c t i o n a l
24 &tracker −>lastDelaySample

,
25 ts ,
26 "DELAYBIT_UNIDIR" ) ;
27 }
28

29 //
30 // Try to compute LeftRTT or RightRTT
31 //
32

33 d i f f = spindump_timedi f f inusecs ( ts , &otherTracker−>
lastDelaySample ) ;

34 i f ( d i f f < spindump_delaybit_tmax ) {
35 spindump_connections_newrttmeasurement ( s ta te ,
36 packet ,
37 connect ion ,
38 ipPacketLength ,
39 fromResponder , // 0 =

l e f t , 1 = r i g h t
40 0 , // b i d i r e c t i o n a l
41 &otherTracker−>

lastDelaySample ,
42 ts ,
43 "DELAYBIT" ) ;
44 }
45

46 //
47 // Save de lay sample timestamp
48 //
49

50 t racker −>lastDelaySample = ∗ t s ;
51

52 re turn ;
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53 }
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Appendix H

From Spindump captures to
connection metrics

H.1 Performing a capture
In order to perform a connection capture with Spindump it is sufficient to use the
following command ahead of the beginning of the connection:

1 spindump −−i n t e r f a c e [ interface_name ] −−tex tua l −−format j son 2>[
f i le_name ]

By doing that, a file is generated containing all data acquired by Spindump for
each packet. Having unaggregated metrics allows as to extract the information
most suitable to the experiment evaluation. I decided to retrieve second-by-second
throughput and latency values, as well as standard deviation for latency, in addition
to their connection-wide counterpart. In order to do that i crafted a bash script,
which I’m presenting in the next section.

H.2 Parsification and computation
The script below is made up of a main body, which extracts only the JSON objects
related to the flow under examination. It is tuned to iperf3 as any iperf3 connection
is preceded by another, which is used to exchange between the endpoints the
transmission parameter: the script thus only extracts the main connection. Then,
Prague and Cubic flows are separated, independently parsed to isolate just the
relevant information, and then scanned to evaluate second-by-second and global
throughput, latency average, and latency standard deviation. The results by the
second are packed in a .csv file, while the global values are kept in a .txt which
provides an overview of the whole flow.
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1 #! bin /bash
2

3 PRAGUE_IP1=
4 PRAGUE_IP2=
5 CUBIC_IP1=
6 CUBIC_IP2=
7

8 prague="$PRAGUE_IP1\ |PRAGUE_IP2"
9 cubic="$CUBIC_IP1\ |$CUBIC_IP2"

10

11 f unc t i on p r i n t _ f l o a t i n g ( ) {
12 i f ( ( $ ( echo " $number < 1 && $number != 0 " | bc −l ) ) ) ; then
13 number=$ ( echo " 0$number " )
14 f i
15 }
16

17 f unc t i on evaluate_avg ( ) {
18 avg=$ ( bc <<< " s c a l e =1; $sum/ $count " )
19 }
20

21

22

23 f unc t i on evaluate_std_dev ( ) {
24 sum_sq=0
25 whi le read l i n e
26 do
27 rt t_value=$ ( echo $ l i n e | cut −d " , " −f 2)
28 sum_sq=$ ( bc <<< " s c a l e =5; $sum_sq+($rtt_value−$avg ) ∗(

$rtt_value−$avg ) " )
29 done < temp4
30

31 std_dev=$ ( bc <<< " s c a l e =3; sq r t ( $sum_sq/ $count ) " )
32 }
33

34

35

36 f unc t i on parse_connect ion {
37 start_time=$ ( cat temp | head −n 1 | cut −d " , " −f 2)
38 sum_total=0
39 count_total=0
40

41 whi le read l i n e
42 do
43 timestamp=$ ( echo $ l i n e | cut −d " , " −f 2)
44 rt t_value=$ ( echo $ l i n e | cut −d " , " −f 3)
45 bytes1=$ ( echo $ l i n e | cut −d " , " −f 4)
46 bytes2=$ ( echo $ l i n e | cut −d " , " −f 5)
47
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48 timestamp=$ ( ( $timestamp−$start_time ) )
49 timestamp=$ ( ( $timestamp /1000000) )
50 rt t_value=$ ( bc <<< " s c a l e =1; $rtt_value /1000 " )
51

52 sum_total=$ ( bc <<< " s c a l e =1; $sum_total+$rtt_value " )
53 count_total=$ ( ( $count_total +1) )
54

55 echo " $timestamp , $rtt_value , $ ( ( bytes1+$bytes2 ) ) "
56 done < temp
57

58 global_avg=$ ( bc <<< " s c a l e =1; $sum_total / $count_total " )
59 }
60

61

62 f unc t i on eva luate_metr ic s ( ) {
63 sum=0
64 count=0
65 last_t ime=−1 #to a l low f i r s t l i n e computation
66 l a s t_bytes=0
67 last_sec_bytes=0
68

69 sum_sq_total=0
70

71 whi le read l i n e
72 do
73 timestamp=$ ( echo $ l i n e | cut −d " , " −f 1)
74 rt t_value=$ ( echo $ l i n e | cut −d " , " −f 2)
75 bytes=$ ( echo $ l i n e | cut −d " , " −f 3)
76

77 i f [ $timestamp −ne $last_time ]
78 then
79 i f [ $count −ne 0 ] #i f no packets were produced avoid

c a l c u l a t i n g metr ic which could r e s u l t in e r r o r s with a r i thmet i c
ope ra t i on s

80 then
81 evaluate_avg
82 cat temp3 | grep " $last_time , " > temp4
83 evaluate_std_dev
84 f i
85

86 i f [ $ last_time −ne −1 ]
87 then
88 number=$avg ; p r i n t _ f l o a t i n g ; avg=$number
89 number=$std_dev ; p r i n t _ f l o a t i n g ; std_dev=$number
90 number=$ ( bc <<< " s c a l e =1; ( $ last_bytes−

$last_sec_bytes ) /1024/128 " ) ; p r i n t _ f l o a t i n g
91 echo " $last_time , $number , $avg , $std_dev "
92 f i
93
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94 sum=$rtt_value
95 count=1
96 last_sec_bytes=$las t_bytes
97 e l s e
98 sum=$ ( bc <<< " s c a l e =1; $sum+$rtt_value " )
99 count=$ ( ( $count+1) )

100 f i
101 last_t ime=$timestamp #update last_t ime
102 sum_sq_total=$ ( bc <<< " s c a l e =5; $sum_sq_total+($rtt_value−

$global_avg ) ∗( $rtt_value−$global_avg ) " )
103 l a s t_bytes=$bytes
104 done < temp3
105

106 evaluate_avg
107 cat temp3 | grep " $last_time , " > temp4
108 evaluate_std_dev
109 tota l_bytes=$ ( ( $tota l_bytes−$las t_bytes ) )
110

111 number=$avg ; p r i n t _ f l o a t i n g ; avg=$number
112 number=$std_dev ; p r i n t _ f l o a t i n g ; std_dev=$number
113 number=$ ( bc <<< " s c a l e =1; ( $ last_bytes−$last_sec_bytes ) /1024/128 "

) ; p r i n t _ f l o a t i n g
114 echo " $last_time , $number , $avg , $std_dev "
115

116 std_dev_total=$ ( bc <<< " s c a l e =3; sq r t ( $sum_sq_total/ $count_total )
" )

117

118 number=$global_avg ; p r i n t _ f l o a t i n g ; global_avg=$number
119 number=$std_dev_total ; p r i n t _ f l o a t i n g ; std_dev_total=$number
120

121 echo " Fu l l connect ion metr i c s f o r $connect ion " >> $globa l_metr i c s
122 echo " exchanged data : $ ( ( ( $bytes ) /1024/1024) ) MBytes " >>

$globa l_metr i c s
123 echo " average RTT: $global_avg ms" >> $globa l_metr i c s
124 echo "RTT standard dev i a t i on : $std_dev_total ms" >>

$globa l_metr i c s
125 echo " r e t r a n s m i s s i o n s : $ r e t r " >> $globa l_metr i c s
126 echo " " >> $globa l_metr i c s
127 }
128 f unc t i on p r i n t _ f l o a t i n g ( ) {
129 i f ( ( $ ( echo " $number < 1 && $number != 0 " | bc −l ) ) ) ; then
130 number=$ ( echo " 0$number " )
131 f i
132 }
133 sudo c l e a r
134

135 i f [ $# −ne 3 ]
136 then
137 echo " Please the name o f the f i l e to parse : "
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138 read f i l e
139 echo " p l e a s e the number o f prague r e t r a n s m i s s i o n s "
140 read p_retr
141 echo " p l e a s e the number o f cub ic r e t r a n s m i s s i o n s "
142 read c_retr
143 e l s e
144 f i l e=$1
145 p_retr=$2
146 c_retr=$3
147 f i
148

149 f o l d e r=" $ ( echo " $ f i l e " | cut −d " . " −f 1) _fo lder "
150 sudo rm −r " $ f o l d e r " 2>/dev/ n u l l
151 mkdir $ f o l d e r 2>/dev/ n u l l
152

153 f i l e_prague=" $ f o l d e r /$ ( echo " $ f i l e " | cut −d " . " −f 1) _prague . csv "
154 f i l e _ c u b i c=" $ f o l d e r /$ ( echo " $ f i l e " | cut −d " . " −f 1) _cubic . csv "
155 g loba l_metr i c s=" $ f o l d e r /$ ( echo " $ f i l e " | cut −d " . " −f 1)

_global_metr ics . txt "
156

157 #get port o f f i r s t connect ion i n i t i a l i z e r
158 port=$ ( cat $ f i l e | grep TCP | grep " $prague \ | $cubic " | head −n 1 |

cut −d " , " −f 5)
159 #d e l e t e f i r s t i n i t i a t o r connect ion
160 cat $ f i l e | grep −v " $port " > temp2
161

162 #get port o f second connect ion i n i t i a l i z e r
163 port=$ ( cat temp2 | grep TCP | grep " $prague \ | $cubic " | head −n 1 |

cut −d " , " −f 5)
164 #d e l e t e second i n i t i a t o r connect ion
165 cat temp2 | grep −v " $port " > temp
166

167 #parse u s e f u l f i e l d s
168 cat temp | grep TCP | grep Fu l l | grep " $prague \ | $cubic " | cut −d " , "

−f 3 ,6 ,8 ,11 ,12 | cut −d " : " −f 2 ,3 ,4 , 5 ,6 | cut −d " [ " −f 2 | cut
−d " \ " " −f 2 ,5 ,7 ,9 ,11 > temp2

169

170 sed −i ’ s / " / /g ’ temp2
171 sed −i ’ s / , //g ’ temp2
172 sed −i ’ s / : / ,/ g ’ temp2
173

174 cat temp2 | grep $prague > temp
175 parse_connect ion > temp3
176 connect ion="PRAGUE"
177 r e t r=$p_retr
178 eva luate_metr ic s > $ f i l e_prague
179 echo " "
180 echo "> wr i t t en in to $ f i l e_prague : "
181 cat $ f i l e_prague
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182 echo " "
183

184 cat temp2 | grep $cubic > temp
185 parse_connect ion > temp3
186 connect ion="CUBIC"
187 r e t r=$c_retr
188 eva luate_metr ic s > $ f i l e _ c u b i c
189 echo "> wr i t t en in to $ f i l e _ c u b i c : "
190 cat $ f i l e _ c u b i c
191 echo " "
192

193 echo "> wr i t t en in to $g loba l_metr i c s : "
194 cat $g loba l_metr i c s
195

196 cat $prague | sed ’ s / , / | / g ’ | sed ’ s / . / , / g ’ > $prague
197 cat $cubic | sed ’ s / , / | / g ’ | sed ’ s / . / , / g ’ > $cubic
198

199 rm temp
200 rm temp2
201 rm temp3
202 rm temp4
203

204 mv $ f i l e $ f o l d e r
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