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“Last time, I asked: ‘What does mathematics mean to you?’, and some people
answered: ‘The manipulation of numbers, the manipulation of structures.’
And if I had asked what music means to you, would you have answered:

‘The manipulation of notes’?”
- Serge Lang
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Abstract

In the aerospace field there is a growing need for autonomous and precise landing ca-
pabilities, especially for the future colonization of Moon and Mars. Current operational
landing systems don’t have strict requirements in terms of landing zone radius. Since they
were developed for scientific and exploration purposes, they didn’t need precise landing
requirements. With the ambitious goals to build martian and lunar bases in the near fu-
ture, there is the growing need to precisely land human missions and cargo payloads, close
to the base, able to be retrieved by a Rover. In addition, precision landing capabilities
will be exploited more and more also to recover launchers primary stages, as achieved by
SpaceX Falcon 9, with a dramatic positive impact on launch costs.

The Entry, Descent and Landing (EDL) phase of martian and lunar missions is a
complex and critical endeavour. It involves navigating a spacecraft through the challenging
transition from interplanetary space to the surface of these celestial bodies. Achieving
precise landing in often hazardous terrain is vital for mission success.

This master’s thesis focuses on the development and implementation of the Landing
Vision System (LVS), tailored for lunar and Martian missions. The LVS’s primary goal
is to provide real-time corrections to the spacecraft’s horizontal coordinate estimates. It
works in combination with other essential sensors, such as the Inertial Measurement Unit
(IMU), which measures accelerations, and the Radar Doppler and Altimeter, providing
altitude and speed information in three dimensions. The LVS aims to reduce horizontal
position estimate errors in order to achieve a precise pinpoint landing, with a landing
precision of less than 100 meters.

This thesis explores the technical aspects of the Landing Vision System, including its
underlying principles, design considerations, and practical implementation. It delves into
the integration of image processing techniques and data fusion algorithms in the navigation
part of the GNC loop, to enable real-time position corrections during the EDL phase.

In a time when martian and lunar exploration is becoming increasingly relevant, the
Landing Vision System offers a pragmatic solution to enhance the accuracy and safety of
planetary landings.

This thesis is built on the foundation laid by a study promoted by the Italian Space
Agency (ASI) called Mars Moon Landing (MML) as part of a research effort on cutting
edge technologies for the aerospace field.



iv

Figure 1: Mars Landing. Reference to MSL mission of JPL.
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Glossary

ALT Altimeter sensor.

CAT Catalog for on-board processing and landmark
based navigation.

EDL Entry, Descent and Landing phases of a land-
ing operation on a target planet.

EKF Extended Kalman Filter.
ENU East, North, Up variant of the LVLH (Local

Vertical Local Horizonal) reference frame.

GNC Guidance, Navigation and Control loop.
GUI Guidance, a component of the GNC loop.

IMU Inertial Measurement Unit sensor.

KF Kalman Filter.

LVLH Local Vertical Local Horizonal reference
frame.

LVS Landing Vision System, a camera landmark-
based navigation architecture.

MA Matching Algorithm.

NAV Navigation, a component of the GNC loop.

RCS Reaction Control System.
RDA Radar Doppler Altimeter sensor.

TRN Terrain Relative Navigation.
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Notation and Conventions

Given the reference frames A and B, then

qAB

is the quaternion representing the orientation of the reference system B w.r.t. A.
In our context:

RM RB RC RI

RM : is the Mars/Moon (target planet) ground reference frame (fixed).
RB: is the Lander body reference frame.
RC : is the camera reference frame (center in the pinhole point W).
RI : is the image reference frame (center in the camera center CC, at distance f along

the zc axis of the RC reference frame.

The relative orientations and translations are described by the following quaternion-
s/rotation matrices:

rMMB, qM
B , A

M
B , rBBC , qB

C , A
B
C

rMMB: is the position vector of the Body Ref. Frame origin w.r.t. the Mars Ref. frame
origin, expressed in the Mars Ref. Frame.

qM
B , A

M
B : is the orientation of the Body Ref. Frame w.r.t. the Mars Ref. Frame.

rBBC : is the position vector of the Camera Ref. Frame origin w.r.t the origin of the
Body Ref. Frame, expressed in the Body Ref. Frame.

qB
C , A

B
C : is the orientation of the Camera Ref. Frame w.r.t. the Body Ref. Frame

(fixed).
Rotation matrices are direct cosine matrices with unit vectors arranged in columns.
With this convention, to transform a vector expressed in a rotated frame in the original

frame, the following transformation is needed:

r0 = A0
l r

l
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LVLH/ENU Reference Frame

The common reference frame is the LVLH (Local Vertical Local Horizontal), in the ENU
(East, North, Up) variant. The naming convention for the axis follow the standard for the
general LVLH, therefore the following equivalences are valid

East (E) → x

North (N) → y

Up(U) → z

Figure 2: Local Vertical Local Horizontal (LVLH). East, North, Up (ENU) variant.

Further details on other reference frames used can be found in Appendix A.
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Chapter 1

Introduction

1.1 Precise Pinpoint Landing

In the context of planetary exploration, precise pinpoint landing refers to the capability
of a spacecraft to touch down at a very specific and predefined location on the surface of
a celestial body, such as the Moon or Mars, with an extremely high accuracy.

To break this down further, Precise pinpoint landing means that the spacecraft is not
merely aiming for a general area or region on the celestial body’s surface. Instead, it has a
precise, predetermined target or landing site, which could be a scientific point of interest,
a previously identified safe zone, or any location of strategic importance for the mission’s
objectives.

The term ”precise” underscores the need for a high level of accuracy in reaching the
target. The spacecraft must land as close as possible to the desired spot, minimizing the
distance between its actual touchdown point and the intended target. This accuracy is
often measured in meters.

Achieving precise pinpoint landing involves minimizing errors in the spacecraft’s navi-
gation and guidance systems. Errors can arise due to various factors, such as uncertainties
in sensor measurements, variations in atmospheric conditions, or imprecise knowledge of
the celestial body’s terrain.

The primary motivation behind precise pinpoint landing is safety and mission success.
Landing too far from the intended target can lead to a variety of challenges, including
difficulties in reaching scientific objectives, increased risks to the spacecraft, and compro-
mised mission goals. Landing with precision enhances the mission’s chances of achieving
its objectives and reduces the potential hazards associated with unknown or hazardous
terrain.

Precise pinpoint landing is particularly valuable for scientific missions. It enables
researchers to explore specific geological features, investigate areas of scientific interest,
and collect data with precision. It also lays the foundation for human exploration by
providing accurate landing sites for cargo and human mission for future lunar or martian
bases.

2
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1.2 Entry, Descent, Landing (EDL) phases of a lu-

nar/martian mission

Entry, Descent, and Landing (EDL) phase of a mission [6] constitutes a complex and
critical sequence of events that a spacecraft undergoes when arriving near the target planet.
This can be broken down into several distinct stages, each serving a crucial purpose.

1.2.1 Entry Phase (if an atmosphere is present, as on Mars)

Atmospheric entry

The EDL phase begins when the spacecraft enters the target planet’s atmosphere at a
high velocity. At this point, the spacecraft is still in space and typically traveling at a
speed of several kilometers per second.

Aerodynamic Deceleration

To slow down, the spacecraft uses the target planet’s atmosphere for aerodynamic braking.
The friction between the spacecraft and the atmosphere generates intense heat, causing the
spacecraft’s heat shield to heat up to thousands of degrees Celsius. This heat is absorbed
and dissipated by ablative materials on the heat shield, preventing the spacecraft from
burning up.

Controlled Entry

During the entry phase, the spacecraft is controlled to follow a specific trajectory, adjusting
its orientation and attitude to remain on course. This phase ensures that the spacecraft
descends at the correct angle and avoids skipping off the atmosphere.

Controlled Entry determines a modulation of the lift to drag effect, forcing the space-
craft to fly shorter than the natural behavior in case of shallow trajectories or longer than
the natural behavior in case of steep trajectories.

To pursue the aim of pipoint landing the spacecraft must be controlled during the
Entry phase. Indeed a ballistic entry would accrue an horizontal error w.r.t. the target in
the order of decades of km, making it no more recoverable. This large error range is due
to the extreme variability of the atmospheric conditions.

1.2.2 Descent Phase

Parachute Deployment and heat shield jettison (if an atmosphere is present,
as on Mars)

After the entry phase, the spacecraft continues to slow down. At a lower altitude and ve-
locity, a supersonic parachute is deployed. This parachute further reduces the spacecraft’s
speed, allowing for a controlled descent.
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Once the spacecraft is safely under the parachute, the (front) heat shield is jettisoned,
exposing the lander or rover beneath (this event is also referred to as Front Shield Release).

Terrain Relative Navigation (TRN) and Landing Vision System LVS activation

A radar altimeter is activated to measure the spacecraft’s altitude above the planet surface.
This data is crucial for timing subsequent landing events. TRN systems are used to
autonomously compare surface features with pre-loaded maps to adjust the landing site
and avoid hazards.

At the first stage, this matching allows to deliver a rough estimate of the initial local-
ization of the spacecraft with respect to the target [2].

This is performed through a coarse matching, delivering a rough estimate of the initial
conditions used later by the LVS, that is activated to work together with IMU and the
RDA in the navigation.

This localization is fundamental to feed the Guidance module, in charge of the kine-
matic profile computation for reaching the target and the associated thrust reference com-
mand sequence. In detail, a specific task of the guidance module, that runs in ”one shot”
at this time, is the so-called ”Divert Maneuver Planning” in order to find a suitable path
to recover the horizontal distance without violating the predefined dynamic, kinematic
and propellant consumption constraints.

Once the profile is defined, the fusion of data from the LVS, Radar Doppler Altimeter
(RDA), and Inertial Measurement Unit (IMU) within a navigation filter facilitates the real-
time determination of the state vector. This integrated approach allows for the continuous
tracking of the predefined profile by the guidance module. Subsequently, the control
module computes commands based on this updated state vector, ensuring precise and
adaptive control throughout the navigation process.

1.2.3 Landing Phase

In this phase, the spacecraft performs a powered descent using rocket engines to further
slow down and control its descent. This phase allows for fine adjustments to the landing
site based on real-time data from sensors. The spacecraft then gently touches down on
the planet surface. This is a critical moment, and the landing systems must ensure that
the spacecraft lands safely without tipping over or damaging its payload.

1.3 The role of LVS in the EDL phase

The activation of the LVS is strategically timed within the EDL sequence at a specific
altitude or time. It comes into play once a preliminary Terrain Relative Navigation (TRN
[1]) algorithm has achieved an initial rough estimate of the spacecraft’s position and orien-
tation, at a relatively coarse level of precision. This initial estimate forms the foundation
upon which the LVS can start its operations.

The LVS operates as a refinement mechanism, providing real-time data to complement
and correct the TRN system’s initial assessment. As the spacecraft descends at lower
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Figure 1.1: Mars EDL phase. Reference to MSL mission of JPL.

altitudes, the LVS leverages advanced computer vision techniques (machine learning al-
gorithms, image processing, ...) to scrutinize and precisely analyze the terrain features
below. It identifies key landmarks, evaluates the spacecraft’s relative position (and pos-
sibly attitude) error, and cross-references this data with pre-loaded maps of the landing
site.

1.3.1 Enhanced position estimation accuracy

The LVS fine-tunes the spacecraft’s horizontal position estimate, focusing on the x and
y coordinates. It identifies and corrects any discrepancies or drift that may have arisen
during the descent, bringing the spacecraft closer to the intended landing target. This
precision is vital for achieving the mission’s scientific and operational objectives, especially
in scenarios where the terrain is riddled with hazards or specific geological features of
interest.

1.3.2 Terrain Avoidance and Hazard Mitigation

Beyond position correction, the LVS could play a role in identifying potential landing haz-
ards or obstacles, such as boulders, cliffs, or slopes. By promptly detecting these threats,
the LVS aids in the decision-making process, allowing the spacecraft to autonomously
adjust its descent trajectory, ensuring a safe and secure landing.

This aspect was not analyzed during the development work for this thesis.



CHAPTER 1. INTRODUCTION 6

1.3.3 Key take away

The Landing Vision System represents a critical layer of intelligence in the EDL phase,
acting as the spacecraft’s ”eyes” during its descent onto the Martian surface. By refining
position estimates, facilitating precise pinpoint landings, and enhancing hazard avoidance,
the LVS significantly contributes to the overall success and safety of Martian missions.

1.4 Objectives and contributions

The primary objective of this thesis is to address the critical challenges associated with
precise pinpoint landing on Mars/Moon by developing a comprehensive Landing Vision
System (LVS) that seamlessly integrates within the navigation architecture of the GNC
during the Entry, Descent and Landing (EDL) phase. This endeavor comprises several
key components:

1.4.1 Landmark Generation

Firstly, the development of a landmark generation tool capable of producing catalogs that
emulate real data. These catalogs enable more precise simulations, and in a real mission
are going to be developed starting from real target planet terrain data of the landing site,
and loaded in the spacecraft’s mainboard computer to run the LVS algorithm during the
EDL phase.

1.4.2 Camera Model

A camera model based on the pinhole model is constructed within the simulation frame-
work. This model provides landmarks in the Mars ground reference frame visible to the
camera. This model was already implemented and was the starting point for understanding
the LVS approach. It’s adapted to be integrated better in the overall LVS architecture.

1.4.3 LVS Preprocessing

Next, a preprocessing algorithm is devised to match onboard memory landmarks with real-
time sensor data captured by the camera. This algorithm will not only perform landmark
matching but also enable precise position determination and correction, adding a new
source of data for the navigation data fusion algorithm.

1.4.4 Navigation Data Fusion

Data coming from the LVS, IMU, and RDA (or simple altimeter) are fused together in
the filtering stage of the navigation. A key focus is on the implementation of a Kalman
filter to filter and perform data fusion from these diverse sensors. A particular emphasis is
placed on addressing the challenges arising from different data rates among these sensors,
ensuring a robust and reliable spacecraft position estimation.
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Indeed time-switch criterion can determine the involvement of a second catalog at quite
different altitudes in various mission realizations, as a consequence of the guidance profile
variability during the divert maneuver phase.

Prior to this thesis work, a filter was already present, and integrated well the IMU,
altimeter and RDA sensors for the rotational and translational dynamics estimation.

The kalman filter designed for this thesis replaces the translational filter, integrating
the data coming from the LVS and the other sensors (IMU, altimeter, RDA).

The rotational filter, on the other hand, was not subject to any changes.

1.4.5 Results Analysis

Lastly, this thesis aims to conduct a comprehensive analysis of the results obtained. It
will investigate whether the combination of the Radar Doppler Altimeter and the Landing
Vision System is sufficient for achieving precise pinpoint landings on a target planet or
whether the presence of a conventional radar system is necessary for additional support.
This critical question will be addressed through experimentation, providing insights into
the efficacy of the integrated system.
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Landing Vision System (LVS) model
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Chapter 2

Introduction to the LVS in the
landing scenario

2.1 Introduction

The LVS uses on-board catalogs to match against real-time data coming from one or
multiple cameras. Landmarks are identified and an algorithm is responsible to match
input landmarks information and the landmarks data stored in the on-board computer
memory.

From the matching procedure, a corrected estimate of position (x, y) is extrapolated.
It’s also possible to calculate a correction for the altitude (z) and the attitude estimate,
particularly the ”yaw” angle around the vertical z axis (in ground LVLH reference frame
coordinates).

This information is then used in the following steps of the navigation architecture to
gain more information about the overall system state, such as the horizontal velocity (in
ground LVLH reference frame).

It is worth highlighting which are the implications required for the estimation of the
various states. A camera placed above the site, and with a limited off-vertical displacement,
is intuitively effective to estimate the horizontal coordinates such as the rotation around
the local vertical direction but less effective in recovering the rotations around axes parallel
to terrain. Analogously it is quite immediate to recognize the difficulty in using landmark
information from a singular camera to estimate the altitude. For this scope, in particular,
a stereoscopic system of at least 2 cameras would be more suitable to guarantee the needed
signal-to-noise ratio.

9
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2.2 General considerations

The following are a series of practical and technical considerations, working as requirements
and premises for the proper operation of the LVS stack.

Catalogs

A catalog (or a series of catalogs) of the general landing area (5km) is needed for the LVS
to work, since the operation of the LVS is based on the difference between the expected
and the actual landmark pose.

Resolution range at varying altitudes

The LVS needs to be active from altitudes ranging from 3000m to 500m or less, during the
landing phase. With such a wide range of altitudes, multiple catalogs at different resolu-
tions are required for the on-board landmark matching algorithm (change of resolution),
in order to achieve proper performance.

Real catalogs generation

Catalogs are taken for a particular range of hours during the day and visibility conditions,
taking into account the estimated arrival time (shadows on craters, light glares, etc..
can affect LVS performances significantly) [7]. A significant drop in matching quality is
expected if these assumptions are not met.

In the next few sections, I’m going to briefly describe the three main components of
the LVS architecture. An in depth detailed dive into each one of these components and
the work behind them will be dedicated in the next chapters.

2.3 Catalog generation

To setup the simulation infrastructure, a catalog generation step is necessary. In the real
setting, catalogs are going to be created using real target planet data, mapping craters,
significantly big rocks and other landmarks.

Camera Model is going to be fed with a full catalog (representing the real terrain)
where landmarks at different resolutions (ranging from 200m radius to 10m radius) are
mixed in the same big map.

This is just for emulation purposes, and in the real mission no catalog is going to be
provided, as the camera is going to see and process the real target planet features, in order
to extract landmark information.

On-board catalogs

The LVS Processing algorithm is going to be implemented in the on-board software, to-
gether with a set of catalogs (two was found to be the optimal sweet spot) with landmarks
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at different resolutions. A catalog switch is performed during descent in the landing phase,
to increase performance of the matching algorithm.

1. Close landmarks can affect the matching algorithm performances, so catalogs should
not be too dense (less landmarks but well positioned is better than lots of landmarks
really close or overlapping). In the simulation environment, the two catalogs going
in the LVS main algorithm are taken from the full catalog in the following steps:

(a) Extraction of the landmarks corresponding to the required resolution (150-70m
radius landmarks for the first, and 40-10m radius landmarks for the second).

(b) Filtering process, by not considering landmarks that are overlapping or too
close to each other.

2. Catalogs are loaded in the on-board computer memory, max 500-600 landmarks per
catalog, and maximum 2 catalogs.

Figure 2.1: Example Catalog
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2.4 Camera model

The camera model is the first component of the LVS architecture, leveraging the generated
catalogs (look at the previous section) to emulate the real behaviour of a camera.

The model block is fed directly with the real full catalog (unfiltered) and the real
position and attitude of the spacecraft during the simulations.

Camera settings, including positioning, orientation, focal aperture, sensor screen di-
mensions, and other parameters, are configurable within the model.

Furthermore, the camera model employs the pinhole model to emulate the input-output
behavior of the actual camera.

Figure 2.2: Camera Model block diagram (SIMULINK)

2.5 Processing LVS algorithm (embedded)

The landmark locations delivered by the upstream camera model are used to improve the
state estimate (specifically x and y position coordinates, but more state variables can be
estimated, with varying degrees of reliability and accuracy).

The inputs to the processing block are the on-board filtered catalogs (CAT1 and
CAT2), the current state estimate coming from the navigation filter and the landmark
data coming from the camera model.

The output of the LVS processing steps is the corrected state estimate x̃.

• Landmark matching is the first step, and is a procedure aiming at associating each
landmark seen by the camera with a landmark present in the catalog.

• Position determination phase builds on top of the landmark matching step, in order
to produce a corrected state estimate.
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Figure 2.3: LVS preprocessing block diagram (SIMULINK)

Figure 2.4: LVS preparation for navigation filter (SIMULINK)



Chapter 3

Landmark Catalog Processing

3.1 Introduction

In this section, the focus is on the Landmark Catalog generation and processing. This
step is fundamental, since various components in the architecture need landmark data.

For instance, the Camera Model is a mathematical representation of the real Camera
Sensor for the LVS, hence a full catalog is required, representing a realistic martian or
lunar terrain.

To generate this catalog landmarks are taken at widely different dimensions (resolu-
tion), mixing landmarks with radii in the range 10-40m and landmarks with 70-150m.

The Camera Model is fed with this catalog and, depending on the altitude of the
landing spacecraft, is going to be able to identify a subset of these landmarks.

The LVS embedded preprocessing module needs the landmark locations data to per-
form the Matching Algorithm (MA), therefore catalogs need to be stored on-board. It
uses two other catalogs (CAT1 and CAT2) obtained from the full catalog by extracting
landmarks with specific size. This was done to increase performance at specific altitude
ranges (3000-1200m for CAT1, 1200-300m for CAT2).

After the extraction, these landmarks go through a filtering process to improve the
performance of the matching algorithm. The performance of the landmark matching is
hugely decreased if there are close or overlapping landmarks, so this filtering procedure
is crucial. This is accomplished by ignoring overlapping or too close landmarks, thus
collecting a sparse set of landmarks to be stored in the two on-board catalogs.

The filtering objective is to obtain catalogs:

1. with landmarks at reciprocal distances larger than the inherent error expected at
the working altitude where they are applied

2. with a complete coverage of the area potentially interested by the landing such that,
for whichever pose of the camera, a sufficient number of objects to be matched could
be found.

14
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3.2 Landmark Modeling

A landmark is a feature on the planet surface that can be a crater, a rock or other marker,
depending on the camera image resolution.

3.2.1 Landmark on the Planet

Center and radius

Each landmark has a center (x, y, z) and a radius (r) forming a circle in the planet surface.

Normal inclination

Each landmark has a normal inclination (θx, θy) resulting in a tilt of the circle in the
planet surface. This information is not used in this thesis but can be exploited to get a
better position estimate.

3.2.2 Landmark in Camera view

Center and semi-axes major and minor

The tilted circle in the planet surface, through the pinhole model, in general, results in
an ellipse in the camera sensor reference frame, given by its center, semi-axes minor and
major (cc, cy, ψ1, ψ2, ψ3)

Figure 3.1: Generated real catalog (full version for camera model)

3.3 Catalog Characteristics

During descent, in the landing phase, the altitude changes rapidly and the range of alti-
tudes is wide.
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For this reason, multiple catalogs at different resolutions are needed. During the mis-
sion, when a certain altitude or time is reached, a switch of catalogs is performed in order
to improve the LVS performance in the matching algorithm.

3.3.1 Time or Altitude for catalog switch trigger

The trigger for catalog switch can be a specific time (ex. 25 seconds after the beginning
of the EDL phase), or a specific altitude (ex. catalog switch is triggered when the 1000m
from ground altitude is reached).

A specific altitude is more precise, since the rationale behind catalog change is to adapt
better to the change of landscape during the descent, and landmarks have a huge range
of sizes.

3.3.2 Correct number of catalogs

By performing simulations, having two catalogs was found to be the optimal case, a trade-
off between memory space and performance.

3.3.3 Camera Model Catalog

The camera model, for simulation purposes, is using a more complex catalog, obtained
by the union of the two catalogs taken at different resolutions. This allows for a more
realistic setting, in which the camera has a smooth transition instead of a perfect switch
of catalogs in sync with the LVS main algorithm.

Note. The maximum number of landmarks found by the camera, in a real scenario, is
set to 100 for computational complexity reasons. 100 landmarks are more than enough to
perform the matching algorithm, adding more enters in a plateau of diminishing returns.
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3.4 Catalog Generation

Catalogs generation is performed on two different maps, one for each catalog to be gener-
ated.

3.4.1 First Catalog (CAT1)

Number of landmarks : 600

Radius range : 70− 150m

width = 5000m, height = 5000m

3.4.2 Second Catalog (CAT2)

Number of landmarks : 1200

Radius range : 10− 40m

width = 5000m, height = 5000m

Figure 3.2: Generated real catalog (full version for camera model)
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3.5 Catalog filtering

While the raw real catalog will be fed to the camera model, a filtering procedure is needed
for the on-board catalogs. Filtering is performed on the raw catalogs, to be able to give a
clean stable constellation of landmarks to the matching algorithm in the LVS embedded
model.

These catalogs will be loaded in the on-board computer memory.

(a) CAT1 unfiltered (b) CAT1 filtered

Figure 3.3: Catalog 1

(a) CAT2 unfiltered (b) CAT2 filtered

Figure 3.4: Catalog 2
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3.5.1 Minimum distance between landmark centers

Particular focus is on the minimum distance between landmarks, in order to avoid too
close landmarks. If not properly tuned, can significantly affect algorithm performance.

A gridding analysis was performed on this distance value. It’s important to note that
this value is not crucial, but the relationship with the matching algorithm used in the
LVS processing steps. Since different matching techniques are going to have different
requirements for this value, the analysis is done in the chapter about LVS preprocessing.

3.5.2 Overlapping avoidance

Landmark radii are used in the filtering process to remove overlapping landmarks. The
need for overlapping landmarks filtering is dependent on the requirements of the matching
algorithm, as in the minimum distance between landmarks seen in the previous section.

Figure 3.5: Landing terrain view. Camera visibility region is marked with a blue color
area
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Figure 3.6: Landmarks found during a landing simulation (x axis: time, y axis: landmarks
found count)



Chapter 4

LVS Camera Sensor Model

4.1 Objective

The objective of this component is to simulate the output that a real camera is able to
provide during the landing phase.

A collection of landmark is extrapolated from the raw image and processed using image
processing techniques of feature extraction and landmark identification.

To simulate this behavior in the context of the design of an effective GNC loop, it’s
sufficient to emulate the input-output response desired from the camera.

In order to achieve this, a suitable realistic map of an hypothetical target planet terrain
is provided to the camera (see previous chapter for more details on catalog generation),
together with the real position and attitude coming from the simulated system.

Using a pinhole model, it’s possible to then retrieve the location of the landmarks in the
image space during the landing phase, and feed this data to the downstream component
of the LVS architecture for further processing.

21
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4.2 Pinhole Model

The pinhole camera model describes the mathematical relationship between the coordi-
nates of a point in three-dimensional space and its projection onto the image plane (camera
sensor) of an ideal pinhole camera, where the camera aperture is described as a point and
no lenses are used to focus light.

(a) Lander view of the target planet terrain

(b) Camera View. Projected visible landmarks are displayed as the
camera sees them
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4.3 Practical Considerations

4.3.1 Non-idealities: Distortions, blurring

The pinhole model does not include, for example, geometric distortions or blurring of
unfocused objects caused by lenses and finite sized apertures. It also does not take into
account that most practical cameras have only discrete image coordinates. This means
that the pinhole camera model can only be used as a first order approximation of the
mapping from a 3D scene to a 2D image. Its validity depends on the quality of the camera
and, in general, decreases from the center of the image to the edges as lens distortion
effects increase.

Some of the effects that the pinhole camera model does not take into account can be
compensated, for example by applying suitable coordinate transformations on the image
coordinates; other effects are sufficiently small to be neglected if a high quality camera
is used. This means that the pinhole camera model often can be used as a reasonable
description of how a camera depicts a 3D scene.

(a) Pinhole model visualization (fake
camera specifications are used for vi-
sualization purposes)

(b) Camera View. Projected visible
landmarks are displayed as the cam-
era sees them
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4.4 Camera Characteristics

The useful camera characteristics for the pinhole model are the following
w: width of the camera display sensor (11mm)
h: height of the camera display sensor (11mm)
f : focal length (Pinhole center point to camera sensor) (8mm)

(i) Real camera specifications are going to vary, with a tolerance margin, w.r.t. the
data presented here.

(a) Landmark Projection on the camera sensor
plane

(b) Landmark Projections on the camera sensor
plane, in image space ref.Frame

Figure 4.3: Landmark projection

4.5 Pinhole Model

The objective of the camera model is to associate, for each visible landmark (on the Mars
ground), the corresponding projection (in the image reference frame) of the beam starting
from the landmark on the ground and passing through the pinhole center.

If a landmark center, projected onto the image plane, is not inside the area determined
by the sensor display’s width and height, then it’s not visible.

4.5.1 Geometric approach

The geometric approach uses a combination of Linear Algebra and geometric intuitions to
approach the pinhole problem formulation. It’s more intuitive and gives more flexibility
in showing intermediate steps for simulation visualization.
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Figure 4.4: Landmark projection in camera lens visualization

Main pinhole parameters calculation

Starting by defining some components of the pinhole system:

W: Pinhole center point
CC: Camera (sensor) center point
Cpinhole: 4 corner points of the CCD, in the Mars Ref. Frame

It’s possible to retrieve this points thanks to the following transformations:

Given the vector rBBC going from the center of the body frame (origin of RB) to the
camera pinhole center (W = origin of RC), expressed in RB, and the rotation matrix
AM

B from the planet fixed ref.Frame (RM) to RB, it’s possible to retrieve the vector
body-camera expressed in RM as

rMBC = AM
B rBBC

From this relation it’s easy to get the camera pinhole center W as

W = rMBC + rMMB

Given W, the rotation matrix AB
C from RB to the camera ref.Frame RC , and the

vector f =
[
0 0 f

]t
going from W to the camera sensor center CC along the z axis of

RC , it’s possible to get the coordinates of the camera sensor center CC w.r.t the origin
of RM , expressed in the RM ref.Frame

CC = AM
C

00
f

+W
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where AM
C = AM

B AB
C is the orientation of RC w.r.t. RM .

The 4 vertexes of the camera sensor are calculated in the following way

C(1, :) = AM
C

[
−w/2 −h/2 0

]t
C(2, :) = AM

C

[
w/2 −h/2 0

]t
C(3, :) = AM

C

[
w/2 h/2 0

]t
C(4, :) = AM

C

[
−w/2 h/2 0

]t
1 % Camera configuration

2 w = 0.011;

3 h = 0.011;

4 f = 0.008;

5 cam_cfg = [w, h, f];

6

7 % PINHOLE function

8 [W, CC , C_ph] = pinhole(cam_cfg , r_MB_M , q_MB , r_BC_B , q_BC);

Listing 4.1: Pinhole camera model

Camera projections

Then, for each landmark in RM coordinates, project it from the ground to RC ref.Frame
relative to Camera Center Point CC, in the image ref.Frame RI .

Given a landmark of coordinates A in RM

1 % CAMERA_INTERSECT function

2 p1 = camera_intersect(A, W, C_pinhole)

Listing 4.2: Camera screen sensor intersection of landmark A, through pinhole point W

where p1 is the landmark A projected onto the camera sensor, through the pinhole point
W.

pM
2 = pM

1 −CC

where p2 is the projection of the landmark A w.r.t. the camera sensor center CC, in RM

coordinates.
To get the coordinates in the RI reference frame the following transformation is allied

pI
3 = AC

MpM
2

where AC
M is

AC
M = (AM

C )−1 = (AM
C )t
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1 % CAMERA_PROJECTION function

2 [p1 , p3] = camera_projection(A’, W, C_pinhole , CC, r_BM ,

q_BM , q_CB);

Listing 4.3: Camera screen sensor intersection of landmark A, through pinhole point W,
in target planet ref.Frame (p1) and in image plane ref.Frame (p3)

Strategy to evaluate if a landmark is observable by the camera

The landmark projection in the camera in inside the camera sensor’s display when consid-
ering the geometric intuition that if a point is internal, the sum of angles formed between
pairs of corner points of the camera equals 2 · pi.

1 % IS_INSIDE_CAMERA_SENSOR function

2 function [res] = is_inside_camera_sensor(P, V)

3 res = false;

4 theta_tot = 0.0;

5

6 X = V(1,:) - P;

7 X = X / norm(X, 2);

8 Y = V(2,:) - P;

9 Y = Y / norm(Y, 2);

10 theta_tot = theta_tot + acos(dot(X, Y));

11

12 X = V(2,:) - P;

13 X = X / norm(X, 2);

14 Y = V(3,:) - P;

15 Y = Y / norm(Y, 2);

16 theta_tot = theta_tot + acos(dot(X, Y));

17

18 X = V(3,:) - P;

19 X = X / norm(X, 2);

20 Y = V(4,:) - P;

21 Y = Y / norm(Y, 2);

22 theta_tot = theta_tot + acos(dot(X, Y));

23

24 X = V(4,:) - P;

25 X = X / norm(X, 2);

26 Y = V(1,:) - P;

27 Y = Y / norm(Y, 2);

28 theta_tot = theta_tot + acos(dot(X, Y));

29

30 if abs(theta_tot - 2*pi) < 0.1

31 res = true;

32 end

Listing 4.4: Procedure to check if a landmark is inside the camera sensor (hence, visible)
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4.5.2 Implementation of the camera model

1 %%-------CAMERA MODEL -----------

2 %LVS (pinhole model)

3 [W, CC , C_pinhole , ~] = pinhole(w, h, actualf , a, r_MB_M ,

q_MB , r_BC_B , q_BC);

4 %Data

5 camera_center_landmarks = zeros(3, Cat.num_landmarks);

6

7 % Threshold for camera model landmark identification

8 cat_threshold = 50;

9

10 %For all landmarks

11 for j=1:Cat.num_landmarks

12 A = [Cat.clandmarkX(j); Cat.clandmarkY(j);

Cat.clandmarkZ(j)];

13

14 %Landmark big enough to be seen at the current altitude

15 if r_MB_M (3) > 1000

16 if Cat.rlandmark(j) < cat_threshold

17 continue;

18 end

19 else

20 if Cat.rlandmark(j) > cat_threshold

21 continue;

22 end

23 end

24

25 %Landmark center projection in camera

26 [k1 , k] = camera_projection(A’, W, C_pinhole , CC, r_MB_M ,

q_MB , q_BC);

27

28 %Criterion of angles to decide if a landmark is seen of

not. If landmark is internal the sum of angles is 2*pi

29 if is_inside_camera_lens(k1 ’, C_pinhole)

30 found_landmark = found_landmark + 1;

31

32 camera_center_landmarks (:, found_landmark) = k’;

33

34 if found_landmark == max_landmark

35 break;

36 end

37

38 end

39

40 end % closes the for on all landmarks

Listing 4.5: Camera Model implementation
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Landmark resolution threshold

The camera model is fed directly with the full real catalog, and the following LVS stages
use two separate catalogs for different altitude ranges (in order to improve reliability). The
two catalogs are taken from the full catalog that is provided in input to the camera model,
and the whole idea behind the multiple catalog configuration is that in a real setting the
camera would be able to see only landmarks of a specific size range, depending on the
current altitude.

Hence, to emulate this behavior, a threshold of 50m has been chosen, in order to
separate what the camera is able to see at different stages during the EDL phase. When
the altitude is above 1000m, the camera will be able to see landmarks with radii bigger
than 50m (all landmarks from the unfiltered CAT1) and when the altitude is below 1000m,
the camera will be able to see smaller landmarks (all landmarks from the unfiltered CAT2).

(i) A more refined, and accurate, solution would have been to have an altitude varying
threshold for the camera landmark visibility

Figure 4.5: Camera Model block diagram (SIMULINK)
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4.5.3 Formal approach

The formal approach to the pinhole model is the following [9].
Starting from a point pM in target planet reference frame

pM → p̃M =


xM
yM
zM
1


Extracting the point in camera reference frame by using an homogeneous transformation
matrix

TM
C =

[
AM

C rMMC

01x3 1

]
pC → p̃C = TM

C p̃M

pI =

f 0 cx 0
0 f cy 0
0 0 1 0

TM
C p̃M =

K |
0
0
0

 p̃C (4.1)

where K is the matrix of the intrinsic parameters.



Chapter 5

LVS Preprocessing

5.1 Introduction

Preprocessing, in the context of LVS, refers to the union of a matching algorithm (MA)
and a pose (position/attitude) determination phase.

MA is responsible for finding landmark matches using data coming from the camera
sensor and catalogs of the landing area stored in the on-board computer. The visible real
landmarks data coming from the camera sensor is translated in its corresponding set of
landmarks on the ground, via the inverse pinhole model. The MA is able to match this
data against catalog landmarks, using various possible techniques.

A series of matched landmarks are then compared to the real landmarks data, and a
correction is applied in order to correct the previously known pose estimate.

The problem of full attitude correction is significantly more complex. In this study
only the horizontal position (x and y) is considered, as well as the angle error around the
local vertical axis (z in LVLH, U in ENU).

Figure 5.1: LVS preprocessing block diagram (SIMULINK)

31
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Figure 5.2: LVS preparation for navigation filter (SIMULINK)

5.2 Technical Considerations

5.2.1 Catalog Switching Time/Altitude

The catalog switch during the landing phase is crucial to LVS performance. It enables to
optimize the matching procedure at varying altitudes, working in a sense as a change of
resolution.

Three main approaches can be used.
The first is a catalog switch based on a specific timing (i.e. at 25s after the beginning

of the EDL phase).
Indeed time-switch criterion can determine the involvement of a second catalog at quite

different altitudes in various mission realizations, as a consequence of the guidance profile
variability during the divert maneuver phase.

The second is a catalog switch that is activated when the number of matches is con-
sistently below a specific threshold (i.e. 10 landmarks).

The third approach, and the one used in this implementation, is to activate the catalog
switch at a specific altitude. An altitude of 1000m was found to be a sweet spot for
LVS performance, but this value is highly dependent on the descent profile, the mission
requirements and the target planet specific characteristics.

5.2.2 LVS deactivation

There must be a threshold for LVS deactivation, to notify the navigation filter that the
current LVS output is not reliable and must not be considered (or used with an high
associated variance/uncertainty).



CHAPTER 5. LVS PREPROCESSING 33

One such condition can be that the number of matched landmarks is less than a
minimum quantity (in our case is set to 5 matches). As the number of matches descreases,
the quality of the corrected pose estimate significantly degrades.

Another condition for LVS deactivation is the altitude going lower than a certain critical
altitude (in our case is set to 400m from the ground level).

Other possibles cases in which the LVS needs to be deactivated are hardware and
software faults.

These last kinds of issues were not taken into account in this thesis.

5.3 Landmark data from image space to ground

The data coming from the camera is in the camera sensor image reference frame. By
translating every landmark detected in the image space back to the planet using the
reverse of the pinhole model, it’s possible to then compare the landmark data from the
on-board catalogs with the landmark data coming from the camera.

1 %% Landmark Data from Image space to Ground

2

3 %LVS (pinhole model)

4 [W, CC , ~, ~] = pinhole(w, h, actualf , a, r_MB_M_est , q_MB_est ,

r_BC_B , q_BC);

5

6 A_MB = quat2dcm(q_MB_est);

7 A_BC = quat2dcm(q_BC);

8 A_MC = A_MB*A_BC;

9

10 for i=1: num_landmarks

11 cam_point = [landmarks_cam ((i-1) *2+1);

landmarks_cam ((i-1) *2+2); 0];

12

13 tmp = A_MC*cam_point + CC ’;

14 k = ground_intersect(tmp ’, W);

15

16 landmarks_ground (1, i) = k(1);

17 landmarks_ground (2, i) = k(2);

18 end

Listing 5.1: Procedure to translate each landmark from the image space to the ground,
using the inverse pinhole model

Where the ground intersect function is responsible for finding the ground intersect
point, passing through its two given input parameters (in this case the pinhole center W
and the visible landmark expressed in the ground reference frame RM).
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1 function [p] = ground_intersect(A, B)

2 p = zeros(length(A(:,1)), 3);

3

4 for i=1: length(A(:,1))

5 % Line passing through two points

6 x1 = A(i, 1);

7 y1 = A(i, 2);

8 z1 = A(i, 3);

9

10 x2 = B(i, 1);

11 y2 = B(i, 2);

12 z2 = B(i, 3);

13

14 % t calculation

15 t = -z1/(z2 -z1);

16

17 x = x1 + t*(x2 -x1);

18 y = y1 + t*(y2 -y1);

19 z = 0;

20

21 p(i,:) = [x y z];

22 end

23 end

Listing 5.2: Implementation of the ground intersect function

5.4 Algorithm for Landmark Matching

5.4.1 Initial Conditions

An initial pose estimate must be available, with a certain degree of accuracy. This can
be done following a variety of algorithms known in literature [4]. techniques looking
for constellations, triangles and clusters of landmarks in order to provide an initial pose
estimate.

5.4.2 Threshold selection

A threshold value is needed to perform the matching. If the center point of the landmark
observed by the camera and its nearest neighbor is less than the threshold value, than the
matching is confirmed.

Therefore this value, tuned depending on the specific catalog granularity, is crucial for
the MA performance. Its value depends also on the quality of the other sensors and the
overall navigation filter characteristics.

A good performance can be obtained with the selection of a specific threshold value for
each catalog. Additionally, if there is a need to increase performance, an altitude-varying
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variable threshold can be chosen in order to avoid strong discontinuities in the matching
errors.

In general, the matching errors need to be monitored during development and be
relatively rare compared to the correct matches.

In our specific implementation, the following thresholds were chosen

threshold 1 = 200m

threshold 2 = 125m

5.4.3 MA implementation

1 matched_landmarks = 0;

2 landmarks_lvs = zeros(2, max_landmark);

3 landmarks_catalog = zeros(2, max_landmark);

4

5 %LVS (pinhole model)

6 [W, CC , C_pinhole , ~] = pinhole(w, h, actualf , a, r_MB_M_est ,

q_MB_est , r_BC_B , q_BC);

7

8 % for each CAM landmark

9 for j=1: Cam_found_landmarks

10 match = false;

11

12 % for all catalog landmarks

13 for i=1:Cat.num_landmarks

14 A = [Cat.clandmarkX(i); Cat.clandmarkY(i)];

15

16 d = sqrt( (Cam_landmarks ((j-1) *2+1) -A(1))^2 +

(Cam_landmarks ((j-1) *2+2) -A(2))^2 );

17

18 % Threshold for matching

19 if (d < matchingThreshold)

20 match = true;

21 matched_landmarks = matched_landmarks + 1;

22

23 landmarks_catalog (1, matched_landmarks) = A(1);

24 landmarks_catalog (2, matched_landmarks) = A(2);

25

26 landmarks_lvs (1, matched_landmarks) =

Cam_landmarks ((j-1) *2+1);

27 landmarks_lvs (2, matched_landmarks) =

Cam_landmarks ((j-1) *2+2);

28

29 break;

30 end
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31 end

32

33 if matched_landmarks == max_landmark

34 break;

35 end

36 end

Listing 5.3: Procedure implementing the Matching Algorithm (MA)

5.4.4 Advanced techniques for MA

Other more refined techniques can be used if there is a need to improve the matching
quality.

One of these possible ideas is to filter the matching results performing an outliers de-
tection. This technique is given naturally if you use a least squares optimization technique
in the Pose Determination phase, after the matching phase.

Additional data coming from the camera can be used, such as the radius or the pa-
rameters of the ellipse generated by the landamrk projection onto the camera sensor (semi
axis major and minor, as well as inclination), can improve the matching quality.

Considering the closest neighbor might also be useful in reducing the possibility of a
matching error, but this increases the computational complexity of the overall matching
procedure, and provided that it utilizes a sufficiently filtered catalog it’s not able to deliver
additional tracking performance.

5.5 Optimization Algorithms for Pose Determination

An optimization algorithm for landmark matching can be employed, such as a least squares
optimization [10], which is fundamentally taking into account the overall displacement
error for x and y coordinates in LVLH reference frame, as well as any error in the z axis
orientation (”yaw” angle).

In the following section a set of prerequisites are analyzed, as necessary conditions to
apply the 2D least squares pose estimation algorithm, and the algorithm itself.

5.5.1 Prerequisites

Altitude (z) accuracy

The Altimeter for measuring the z position in LVLH reference frame is a crucial prerequisite
for the position determination performance.

Known attitude quaternion (qM
B ) accuracy

The attitude of the spacecraft w.r.t. the target planet reference frame must be known
with an high confidence.
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The LVS uses projections via the pinhole model, if the orientation estimate error is
too big, this can lead to poor matching quality and therefore impact the overall system
performance.

5.5.2 Least Squares 2D pose estimation

In order to get a 2D pose estimate, we start from a set of N two-dimensional landmarks
observed by the camera sensor and matched by the MA.

Let’s call x the observations vector

x, x = ( x1, x2, ..., xN )

And let’s call y the landmark centers taken from the on-board catalogs that were a
match for the N landmarks observations of the x vector

y, y = ( y1, y2, ..., yN )

In the ideal case, the observations relate to the real landmark positions such that

y = Rx+ t, n = 1, ..., N

with R and t being the rotational and translational errors between reality and obser-
vations, giving a pose estimation error w.r.t the currently known state.

The real problem, with uncertainty and measurement errors, is the following minimiza-
tion problem

min ϵ2 (5.1)

where ϵ2 =
N∑

n=1

wn||yn − (Rxn + t)||2, wn =
1

N
(5.2)

which is a least square formulation. The solution, given by the translational error t
and the rotation error R can be obtained by observing that

ȳ = Rx̄+ t (5.3)

where x̄ =
N∑

n=1

wnxn, ȳ =
N∑

n=1

wnyn (5.4)

The translational error t is used to feed the Kalman filter, together with data coming
from the RDA and the IMU. The same can be obtained for the orientation error estimation
by observing the following relationships{

A =
∑N

n=1wn [(yn1 − ȳ1)(xn1 − x̄1) + (yn2 − ȳ2)(xn2 − x̄2)]

B =
∑N

n=1wn [(yn1 − ȳ1)(xn2 − x̄2) + (yn2 − ȳ2)(xn1 − x̄1)]
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{
cosθ = −A√

A2+B2

sinθ = B√
A2+B2

R =

[
cosθ −sinθ
sinθ cosθ

]
(5.5)

Where pedix 1 and 2 correspond to the horizontal components of each element xn, yn and
the mean values x̄ and ȳ.
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5.5.3 Pose determination implementation

1 function [t, R, delta] = least_squares_2d(x, y, N)

2 % Variables and parameters

3 wn = 1/N;

4 x_bar = zeros(2, 1);

5 y_bar = zeros(2, 1);

6 for i=1:N

7 x_bar = x_bar + wn*x(:,i);

8 y_bar = y_bar + wn*y(:,i);

9 end

10

11 % A, B calculation

12 A = 0;

13 B = 0;

14 for i=1:N

15 A = A + wn*((y(1,i) - y_bar (1))*(x(1,i) - x_bar (1)) +

(y(2,i) - y_bar (2))+(x(2,i) - x_bar (2)));

16 B = B + wn*((y(1,i) - y_bar (1))*(x(2,i) - x_bar (2)) -

(y(2,i) - y_bar (2))+(x(1,i) - x_bar (1)));

17 end

18

19 % theta

20 cos_theta = A/(sqrt(A^2+B^2));

21 sin_theta = -B/(sqrt(A^2+B^2));

22

23 % Results

24 R = [

25 cos_theta -sin_theta

26 sin_theta cos_theta

27 ];

28

29 t = y_bar - x_bar;

30 delta = y_bar -R*x_bar;

Listing 5.4: Procedure implementing a 2D least-squares optimization algorithm for pose
determination
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Figure 5.3: LVS architecture



Part III

Navigation
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Chapter 6

Navigation Architecture

6.1 Introduction

The navigation architecture forms the backbone of any autonomous or semi-autonomous
system, enabling precise state estimation.

This chapter aims to provide an overview of the navigation architecture and the GNC
loop as a whole for the specific challenge that is the precise autonomous pinpoint landing.

Furthermore, the role of on-board sensors is examined, including the Inertial Measure-
ment Unit (IMU), Altimeter (ALT), Radar Doppler Altimeter (RDA), and Landing Vision
System (LVS). These sensors serve as the eyes and ears of the navigation system, capturing
critical data about the spacecraft’s state. Each sensor provides different capabilities while
also having its specific set of limitations.

Finally, the role of the filtering process is examined, which plays a pivotal role in
integrating heterogeneous sensor data, mitigating noise and uncertainty, and generating
accurate estimates of the lander state.
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6.2 Guidance, Navigation and Control (GNC)

The Guidance, Navigation, and Control (GNC) framework is a closed loop system designed
to obtain a specific behavior from a system. It’s composed by four main components:

• Plant/System (in our case the lander spacecraft)

• Navigation (NAV)

• Guidance (GUI)

• Control (CON)

System
u y

GUI Controller System

Disturbances

u

NAV

p y

x̂

Guidance

The guidance component of the GNC system is responsible for formulating high-level plans
and trajectories to navigate the vehicle from its current state to a desired state. It in-
volves decision-making algorithms that consider various factors such as mission objectives,
environmental constraints, and vehicle dynamics.

Navigation

Navigation encompasses the process of determining the spacecraft’s state. This involves
the integration of sensor measurements, such as IMU, RDA and LVS, and taking into
account the system dynamics, to estimate the lander state accurately. Through techniques
like sensor fusion and probabilistic filtering, the navigation module tries to deliver the best
description of the system state at any time. Navigation is the focus of this thesis.
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Control

The control component of the GNC system is responsible for executing commands going to
the RCS thrusters in order to follow the desired trajectory while maintaining stability and
responsiveness. It involves feedback control algorithms that continuously adjust actuator
inputs, such as throttle and steering, to regulate the vehicle’s motion. The control module
ensures precise tracking of the planned trajectory while compensating for disturbances
and uncertainties in the environment.

6.3 On-board Sensors

The on-board sensors integrated into autonomous navigation systems play an important
role in capturing critical data about the vehicle’s surroundings, motion, and orientation.
This section provides a description of the various on-board sensors, including their func-
tionalities, advantages and limitations.

6.3.1 Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) is a fundamental sensor in autonomous naviga-
tion systems, providing information about the vehicle’s acceleration and angular velocity.
Comprising accelerometers and gyroscopes, the IMU offers high-frequency measurements
that are essential for precise localization and motion estimation.

In our context, the IMU works at a frequency of 100Hz, and is used in both the
translational filter (x, y and z accelerometers) and orientation filter (gyroscopes).

Therefore, from the IMU, an estimate of the acceleration in x, y and z axis is expected,
delivered at a frequency of 100 times per second.

accx, accy, accz, f = 100Hz

Figure 6.1: IMU sensor (SIMULINK)
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6.3.2 Radar Altimeter or Radar Doppler Altimeter (RDA)

Radar Doppler Altimeter (RDA) sensor is able to measure velocity and altitude, while
a simple Radar Altimeter only provides an altitude measurement. These sensors emit
electromagnetic waves and analyze the reflected signals to determine the range, velocity
relative to the LVLH ref.Frame. While traditional radar sensors provide range and bear-
ing information, Doppler radar sensors offer additional capabilities for measuring relative
velocities. Basic range functionality provides altimetric data (altitude).

posz, f = 20Hz

Doppler capability provides also

velx, vely, velz, f = 20Hz

Figure 6.2: RDA sensor (SIMULINK)

Radar Doppler Altimeter sensor for precise pinpoint landing

In the results section, various simulations using Monte Carlo analysis are conducted to
assess the criticality of RDA in achieving precise pinpoint landing.

6.3.3 Landing Vision System (LVS)

The LVS architecture was deeply analyzed in the previous part, and is a landmark-based
pose estimation/correction sensor that uses a camera (or a collection of cameras). In
this study the LVS is going to provide only the horizontal position components (in LVL-
H/ENU). A partial attitude correction is performed in the pose determination phase, but
it’s not used, since only the translational navigation filter was redesigned for this thesis,
while the rotational/orientation dynamics observer was not modified.

posx, posy, qcorrected f = 10Hz
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Figure 6.3: LVS sensor (SIMULINK)

6.4 Filter

The filter is in charge of merging together all data coming from the sensors (data fusion)
at different data rates and with varying reliability and variance characteristics, as well as
trying to estimate all state variables, even if not measured directly.

6.4.1 Orientation dynamics observer

The Orientation Dynamics Observer is tasked with estimating the orientation of the system
based on sensor measurements and dynamics models. By integrating data from sensors
such as gyroscopes and accelerometers, this observer provides a continuous estimate of the
system’s orientation.

Figure 6.4: Orientation Observer (SIMULINK)

6.4.2 Translational dynamics observer

The Translational Dynamics Observer focuses on estimating the translational motion of
the system, including position, velocity and acceleration, using sensor data. By incor-
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porating measurements from sensors like accelerometers (in the IMU), RDA and LVS,
this observer provides accurate estimates of the system’s translational state, allowing for
precise navigation and control.

Figure 6.5: Translational Observer (SIMULINK)

6.5 Contributions

This thesis contributions to the filtering phase was the design of a Kalman Filter for the
translational dynamics estimation.

In particular, all sensors characteristics were analyzed, such as the variance profile
characterizations at different altitudes and during various stages during descent.

The filter takes all these sensor data as input and performs an estimation of the state
vector.

Additional technical considerations were taken into account, such as different data
rates among sensors, and delays in data processing, producing an output delayed in time.

Different sensor configurations were analyzed, and tracking performance is studied
across all these different configurations of available sensors.

In particular, the configurations that doesn’t use the RDA sensor but a simple altimeter
is compared to the configuration with the RDA sensor available.



Chapter 7

Simulator Description

The simulator used during the development of this thesis includes a representation of the
“Real World” in combination with the algorithmic suite of the GNC. The Real World,
hereafter represented, includes the following elements:

7.0.1 RCS

Reaction Control System block is a simulacrum of the propulsion subsystem. It takes the
commands generated by GNC and determines both the thrust level and the consumed
propellant linked to the control activation. The model accounts the electrical and fluido-
dynamic behavior of the propulsion system including the pressure decay from the tanks
to the thruster inlet, the ambient pressure the rise and decay expected profiles of the
thrusters such as the additive and multiplicative errors on the provided impulse.

7.0.2 Dynamic and Kinematics

Dynamics and Kinematics is fed by the forces and torques generated by the RCS. The
model generates the rotational and dynamic nominal or “true” kinematics of the spacecraft

7.0.3 Gyroscopes and Accelerometers Packages

These models are the two portions of the Inertial Measurement Model. They determine the
incremental angle (gyroscope segment) and incremental velocity (accelerometer segment)
consistent with the input kinematics, including in addition the specified errors: biases,
scale factors inaccuracy, random walk, quantization, misalignment. By accounting the
integration time, incremental angle and velocity allow the computation of the measured
angular rate and, respectively, acceleration.

7.0.4 RDA

The Radar Doppler Altimeter block determines the slant measurement and the Doppler
measurement expected by the instrument. The slant measurement is the distance between
the antenna and the terrain in the direction of a RDA beam. The doppler measurement is
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the projection of the velocity in the direction of the beam. Both the slant and the doppler
measurements are affected by errors depending on various error sources, in general, growing
with the augmentation of the altitude. A peculiar error is represented by the avionic delay
that has to take into account the age of each beam measurement when RDA data are
combined. Given the RDA attitude, the slant of each beam permits the identification
of the altitude, the Doppler measurements of at least three different beams allow the
determination of the spacecraft velocity. For the specific study case “altimeter only”, the
Doppler segment is neglected in such manner to exercise the GNC and assess its capability
in reconstructing, autonomously, the spacecraft velocity.

7.0.5 LVS

The Landing Vision System is a model fed by the attitude and position of the camera that
provides in output the list of observed objects with the linked parameters. In the current
application the list reports the position (2-D) of the detected landmark centers (in the
target planet ground reference frame). An enhanced application of the model provides the
amplitude of major and minor semiaxes (in the camera dimensions) and the orientation
of the observed ellipse. The LVS includes a multiplicative error growing with the altitude
from terrain. In addition provided LVS data are delayed by one working cycle to account
the time needed for image elaboration.

7.1 Simulation Parameters

This section includes the most important parameters applied for both the model and the
SW tuning.

7.1.1 Lander Configuration

M&I (Augmented EXM Lander)

Mass = 1500 [kg] EXM + 300 kg
Ixx = 680 [kg ·m2]
Iyy = 1150 [kg ·m2]
Izz = 1540 [kg ·m2]
Note: ZBL symmetry axis

7.1.2 Post-Divert Guidance

MinitPrev = 1873 Mass before the separation of the backshell
Mnominal = 1500 Mass of the lander after the separation of the backshell

IMorig =

678.169 2.244 1.122
2.244 1144.990 3.366
1.122 3.366 1535.019


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7.2 IMU

MIMU =

1 0 0
0 1 0
0 0 1


Nominal Mounting matrix of the IMU in the spacecraft.

σmisgxy = 1.e−4 Standard Deviation of the misalignment

Gyroscope Errors

σgyrR = 2.99e−9 ° Rate Random Walk standard deviation
σgyrA = 1.2e−4 ° Angular Random Walk standard deviation
σgyrN = 1.e−3 ° Angular White Walk standard deviation
σbiasGyr = 2.78e−4 °/s Constant Bias standard deviation
σScaleFactorGyr = 300ppm Scale factor standard deviation
Quantgyr = 4.354479e−4 °/s Quantization level

Accelerometer Errors

σaccN = 1.1e−4m/s Accelerometer White Noise
σbiasAcc = 300e−5m/s2 Constant bias of the accelerometer
σScaleFactorAcc = 300ppm Constant bias standard deviation
Quantacc = 1.5e−4m/s2 Quantization level

7.3 RDA

RDA LowerLimitAltitude = 10m Minimum altitude for which RDA measurements are
present
Trd = 0.03s Delay of the RDA single measurement generation
BeamSep = 20/180 Angular Separation of the three lateral beams
Note: slant and doppler measurement from second, third and fourth beam in the data
combination are delayed by respectively 50, 100 and 150 ms in addition

Position of the antenna centers in the lander reference frame

RDA0Pos =
[
0.5 0 0

]
m

RDA1Pos =
[
0.5 · cos(BeamSep) 0.5 · sin(BeamSep) 0

]
m

RDA2Pos =
[
0.5 · cos(BeamSep) −0.25 · sin(BeamSep)

√
3/4 · sin(BeamSep)

]
m

RDA3Pos =
[
0.5 · cos(BeamSep) −0.25 · sin(BeamSep) −

√
3/4 · sin(BeamSep)

]
m

Direction of the beams in the lander reference frame

RDA0Dir =
[
1 0 0

]
RDA1Dir =

[
cos(BeamSep) sin(BeamSep) 0

]
RDA2Dir =

[
cos(BeamSep) −0.5 · sin(BeamSep) 0.5 ·

√
3 · sin(BeamSep)

]
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RDA3Dir =
[
cos(BeamSep) −0.5 · sin(BeamSep) −0.5 ·

√
3 · sin(BeamSep)

]
7.4 LVS

Optical Errors of the camera 0.1%

MLV S =

1 0 0
0 1 0
0 0 1

 Mounting matrix of the LVS in the spacecraft

T ld = 0.1s Delay of the LVS provided data

7.4.1 Initial Conditions

Initial vertical velocity from 80 to 100 m/s
Initial horizontal velocity ¡ 7 m/s
Initial offvertical angle ¡ 5°
Initial angular rate ¡ 4°/s
Initial Position knowledge 10 m per axis
Initial Velocity Knowledge 0.5 m/s per axis
Initial Attitude knowledge 1° per axis
Initial Lander Mass Knowledge 0.1%
Initial Diagonal Inertia knowledge 1%
Initial Knowledge of IMU biases and scale factors 50%
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Data Fusion: Kalman Filter

The translational dynamics estimation filter is the core of this thesis work, and is designed
to deliver high quality full state vector estimation, integrating sensor measurements coming
from IMU, RDA and also LVS.

Faults or deactivation of one or more of these sensors, although affecting performances,
don’t jeopardize the entire landing mission.

In the results section, different sensor configurations are tested in order to check landing
success rate, vertical and horizontal landing speed.

8.1 Data Fusion

Data fusion is a fundamental process in modern engineering systems where information
from multiple sources is combined to generate a more accurate and reliable estimate of the
system state. In the context of navigation and control, data fusion is crucial for integrating
measurements from various sensors to estimate the position, velocity, and orientation of a
vehicle accurately.

8.1.1 Kalman Filter

The Kalman Filter (KF) [3] [5] is a widely used algorithm for data fusion in dynamic
systems. It provides an optimal solution for estimating the state of a dynamic system
when measurements are affected by noise. The KF minimizes the error of the estimate
by recursively updating the state estimate based on incoming measurements and system
dynamics.

The main advantages of the Kalman Filter include its simplicity, efficiency, and robust-
ness in handling noisy measurements. It can effectively fuse data from multiple sensors
with different characteristics and provide accurate state estimates even in the presence of
uncertainties.

The KF has enhanced, at the maximum extent, features of agility and low computa-
tional burden, by identifying a linearized architecture not requiring periodic linearization
and discretization. In a problem like the one under study, the basic source of non-linearity
comes from the attitude. The basic guideline was therefore in the direction of decoupling
the attitude and the translational navigation processes.
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This is possible in consideration of the fact that the attitude estimated through the
STR and, later on, integrated for few dozens of minutes through the IMU, has a precision
hard to be improved through the outcome of the landmark navigation. On the other hand,
if the attitude problem can be considered already solved, the known quaternion can be
used to pre-process the slant and RDA velocity data such as the images of the LVS from
the instrument (or lander) reference frame to the local vertical local horizontal reference
frame. It’s therefore possible to handle a simplified translational navigation architecture
composed by three decoupled subsystems, each one of them fed by measurements of one
axis derived from the IMU, LVS and RDA or Altimeter.

The inherent reduction of the sensor error features with the distance from the terrain
is accounted through the dependence of the run-time computed gains of the variable
covariance matrix R.

In the following sections, a deeper dive into the actual implementation details of the
Kalman Filter for precise pinpoint landing will be undertaken.

8.2 Kalman Filter

8.2.1 State vector

The state vector for the control system is the following

x̂n =



x̂n
ˆ̇xn
ˆ̈xn
ŷn
ˆ̇yn
ˆ̈yn
ẑn
ˆ̇zn
ˆ̈zn


(8.1)

It includes the position, velocity and acceleration in LVLH reference frame for each
axis, for a total of n = 9 components.
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8.2.2 Initial Conditions

Initial State Vector

x̂00 =



x̂0
ˆ̇x0
ˆ̈x0
ŷ0
ˆ̇y0
ˆ̈y0
ẑ0
ˆ̇z0
ˆ̈z0


(8.2)

8.2.3 Process Prediction Equations

State Extrapolation Equation

State Predict process is modeled with the State Extrapolation equation

x̂n+1,n = Fx̂n,n +Gun + ωn (8.3)

Where x is the state vector, F and G are the state transition matrix and the control
matrix respectively, u is the input command and ωn is the process noise vector
In our case

un = 0 → Gun = 0

x̂n+1,n = Fx̂n,n + ωn (8.4)

The discrete time constant of the filter is set to

∆t = 0.05s

Leading to the following state transition matrix

F =



1 ∆t 0.5 ·∆t2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 0.5 ·∆t2 0 0 0
0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 0.5 ·∆t2
0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1


(8.5)
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

x̂n+1,n

ˆ̇xn+1,n

ˆ̈xn+1,n

ŷn+1,n

ˆ̇yn+1,n

ˆ̈yn+1,n

ẑn+1,n

ˆ̇zn+1,n

ˆ̈zn+1,n


=



1 ∆t 0.5 ·∆t2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 0.5 ·∆t2 0 0 0
0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 0.5 ·∆t2
0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1





x̂n,n
ˆ̇xn,n
ˆ̈xn,n
ŷn,n
ˆ̇yn,n
ˆ̈yn,n
ẑn,n
ˆ̇zn,n
ˆ̈zn,n


(8.6)

Covariance Extrapolation Equation

Pn+1,n = FPn,nF
t +Q (8.7)

Process Noise Matrix

Q̃ =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


(8.8)

Qa = Q̃ · σ2
acc =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 σ2

acc 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 σ2

acc 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 σ2

acc


(8.9)

Qa = Q̃ · σ2
acc Q = F ·Qa · Ft (8.10)

The σ2
acc value depends on the system characteristics and model completeness. After

simulations and fine-tuning, the value was set to

σ2
acc = 0.2
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Measurement Equation

zn = Hxn + vn (8.11)

Where zn is the measurement vector, xn is the hidden true state, vn is a random noise
vector and H is the observation matrix.

The observation matrix H serves the purpose of linearly transforming the system state
into corresponding outputs.

Initial Process Covariance Matrix

The initial process covariance matrix indicated the trustworthiness of the state vector at
t = 0, and assuming covariances between axis equal to zero, the initial matrix can be set
as follows:

P00 =



σ00 σ00 σ00 0 0 0 0 0 0
σ00 σ00 σ00 0 0 0 0 0 0
σ00 σ00 σ00 0 0 0 0 0 0
0 0 0 σ00 σ00 σ00 0 0 0
0 0 0 σ00 σ00 σ00 0 0 0
0 0 0 σ00 σ00 σ00 0 0 0
0 0 0 0 0 0 σ00 σ00 σ00
0 0 0 0 0 0 σ00 σ00 σ00
0 0 0 0 0 0 σ00 σ00 σ00


(8.12)

where σ00 is the initial state variance for each component of the state vector. It is
initialized as

σ00 = ϕ ϕ ∈ R, >> 0

in order to mark the initial state as highly unreliable.
Covariances across different axis are supposed null and are therefore set to zero.

Measurement state selection (H)

Observation matrices were developed to emulate different sensor configurations (depending
on which sensors are active)

The observation matrix selects the estimated state variables to be compared with the
sensor measurements.

ŷn,n = Hx̂n,n−1 (8.13)

Innovation = zn −Hx̂n,n−1 (8.14)

The sensor measurements are ordered in the following way
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zn =



LVS Posx
RDA Velx
IMU Accx
LVS Posy
RDA Vely
IMU Accy
ALT Posz
RDA Velz
IMU Accz


(8.15)

To compare these measurements with the previous state variables, the observation
matrix is required.

Depending on the active sensors configuration, H matrices can be designed in the
following ways.

H0: No sensors available

H0 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(8.16)

H1: Only IMU is active

H1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


(8.17)
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H2: IMU, Altimeter and RDA available

H2 =



0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(8.18)

H3: IMU, Altimeter, RDA and LVS available

H3 =



1 k1 k2 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 k1 k2 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(8.19)

Where the k1 and k2 parameters are used to perform a delay compensation (see section
8.5.2), since the LVS preprocessing block produces an output that lags behind of a certain
amount of time (in the order of 100ms).

H4: IMU, Altimeter and LVS available

H4 =



1 k1 k2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 k1 k2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


(8.20)
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Measurement Noise Covariance Matrix

R =



LVS Posx variance
RDA Velx variance
IMU Accx variance
LVS Posy variance
RDA Vely variance
IMU Accy variance
ALT Posz variance
RDA Velz variance
IMU Accz variance


(8.21)

The measurement variance can be modeled as constant, or can vary across the landing
phase. In section (7.3) variance is characterized for each sensor measurement.

8.2.4 State Update Equation

The overall formulation of the state update equation is the following

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) (8.22)

where the innovation (equation 7.14) is weigthed by the Kalman Gains Kn and the
result of this computation is used to update the previous state estimate. The equation to
derive the Kalman Gains is at section (7.2.6)

8.2.5 Covariance Update Equation

Pn,n = (I−KnH)Pn,n−1(I−KnH)t +KnRnK
t
n (8.23)

8.2.6 Kalman Gain

Kn = Pn,n−1H
t(HPn,n−1H

t +Rn)
t (8.24)
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8.3 Variance characterization

Experimentally found parameters for variance of each sensor on specific axis is the following

IMU Accx variance = 0.02;

IMU Accy variance = 0.02;

IMU Accz variance = 0.02;

ALT Posz variance = 100;

RDA Velx variance = 6.21− 4.24

(1+( altz
781.47

)4.54)
;

RDA Vely variance = 6.21− 4.24

(1+( altz
781.47

)4.54)
;

RDA Velz variance = 5.98− 4.24

(1+( altz
781.47

)4.54)
;

LVS Posx variance = 200;

LVS Posy variance = 200;

(8.25)

8.3.1 IMU variance characterization

Inertial Measurement Unit has a fixed variance value, independent of the spacecraft al-
titude. This value was fine-tuned and values in the order of 0.01 up to 0.03 provide
consistent tracking performance.

8.3.2 ALT variance characterization

Altimeter sensor, embedded in the RDA, provides the vertical position (altitude) mea-
surement. Its measure quality depends on the spacecraft altitude, but a fixed value was
still enough to guarantee vertical position and velocity tracking, so no further refinement
was done.

8.3.3 RDA variance characterization

The RDA sensor is able to compute the horizontal and vertical velocities, and the variance
of its measurements is highly dependent on the spacecract altitude. For this reason, an
altitude-varying variance curve is designed to optimally characterize the output measere-
ment quality.

To be able to do this, a mobile variance measure is computed during landing simula-
tions, and a curve able to envelope a good portion of variance profiles was chosen, using
a fitting polinomial equation.

For the three axis, two curves has been designed, corresponding to the XY horizontal
variances and the Z vertical velocity measurement variance.

RDA Velxy variance = 6.21− 4.24

(1 + ( altz
781.47

)4.54)
; (8.26)

RDA Velz variance = 5.98− 4.24

(1 + ( altz
781.47

)4.54)
; (8.27)
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Figure 8.1: RDA Variance Characterization for X and Y velocity measurements
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Figure 8.2: RDA Variance Characterization for Z velocity measurements

8.3.4 LVS variance characterization

The LVS, as the altimeter, have varying degrees of output measerement quality, in terms
of variance. However, using a fixed variance value, provides sufficiently high tracking
performance.

The LVS variance value is 200.

8.4 Implementation and integration

The overall translational dynamics filter block diagram is the following
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Figure 8.3: Translational dynamics navigation filter (SIMULINK)

8.4.1 Model recap

initial conditions → x̂00, P00

update model :

State Update Equation : x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1)

Covariance Update Equation : Pn,n = (I−KnH)Pn,n−1(I−KnH)t +KnRnK
t
n

Measurement Equation : zn = Hxn + vn

Kalman Gains : Kn = Pn,n−1H
t(HPn,n−1H

t +Rn)
t

Measurement State Selection : H0, H1, H2, H3, H4

Measurement Noise Covariance Matrix : Rn(x̂) = E(vnv
t
n)

predict model :

State Extrapolation Equation : x̂n+1,n = Fx̂n,n + ωn

Covariance Extrapolation Equation : Pn+1,n = FPn,nF
t +Q

Process Noise Matrix : Qn = E(ωnω
t
n)

(8.28)
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Figure 8.4: Overall filter architecture block diagram
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8.5 Technical challenges

8.5.1 Non-homogeneous sensor data rates

Sensors provide output data at different frequency rates
IMU Task Rate = 0.010 (100Hz, 1ms);

RDA Task Rate = 0.050 (20Hz, 50ms);

LVS Task Rate = 0.100 (10Hz, 100ms);

(8.29)

In order to account for this, different techniques can be employed [8], and a series of
design choices were made. Firstly, the overall filter step frequency was set equal to the
RDA sensor rate.

∆t = 0.05

This allows to seamlessly integrate the RDA measerements and the IMU measurements
(the IMU produced incremental data, therefore a frequency of 20Hz in the output can
be obtained by simply reading the sensor every 50ms instead of 10ms). However, this
generates issues in dealing with the slower rate of the LVS. To account for this, the LVS
output data is processed to create a pseudo-measure that is at the same frequency of the
RDA sensor. The LVS output measure has a frequency of 0.1s, providing one sample for
every two RDA measures.

LV S(k) = LV S(k ·∆t), ∆t = 0.05

LV S(0) = LV S(0), LV S(1) = LV S(1) = LV S(0), LV S(2) = LV S(2)

{
LV S(k) = 1.5 · LV S(k)− 0.5 · LV S(k − 1), k > 2 and k ≤ 4, k%2 == 1

LV S(k) = LV S(k), k > 2 and k ≤ 4, k%2 == 0
(8.30)

{
LV S(k) = LV S(k) + b · 0.5 ·∆t+ c · (0.5 ·∆t)2, k > 4, k%2 == 1

LV S(k) = LV S(k), k > 4, k%2 == 0
(8.31)

Where {
b = 3·LV S(k)−4·LV S(k−1)+LV S(k−2)

2·∆t

c = LV S(k)−2·LV S(k−1)+LV S(k−2)
2·∆t2
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Figure 8.5: Pseudo Measure block (SIMULINK)

Figure 8.6: Pseudo Measure implementation (SIMULINK)

8.5.2 Sensor data delay compensation

Besides the different data rates, there is also a delay issue with the LVS measure. The data
processing computations in the LVS architecture are particularly heavy, thus providing a
delayed output measure. In order to compensate for this, appopriate coefficients k1 and
k2 must be present in the state observation matrix H to be able to compensate the delay
by using the velocity and acceleration estimates. These coefficients can be tuned in a real
scenario and depend on the actual delay in the image processing and LVS preprocessing
task.

The RDA delays doesn’t appear in the matrix because the RDA measurements, sup-
plied to the Kalman filter, are already compensated for delay through an anticipation of
the data achieved in the RDA preprocessing block through the accelerometers.
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Figure 8.7: Translational dynamics navigation filter position tracking
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Figure 8.8: Translational dynamics navigation filter velocity tracking
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Chapter 9

Performance analysis

The following is a collection of the results of multiple simulations performed via Monte
Carlo analysis.

The performance of the navigation with the LVS system supported by IMU and RDA
sensors is tested, analyzing the success rate and other metrics such as horizontal and
vertical touchdown speeds, as well

A total of 100 cases were used in the Monte Carlo simulation, corresponding to a hun-
dred different initial conditions, leading to their corresponding guidance trajectory, which
is run as one-shot at the beginning of the final landing phase of the mission, immediately
before LVS activation.

After the initial condition assessment is performed by a TRN system, the guidance
profile is calculated and the LVS sensor is activated, in order to work together with RDA
and IMU and perform a precise landing.

In the following sections two main sensor configurations are tested, with and without
the Radar Doppler sensor, letting the LVS horizontal position measure and the altimeter
vertical position measure be indect information on speed, without the need of dedicated
doppler functionality (direct speed measurements).

The filter tuning is performed on the LVS variance in the R matrix, by multiplying it
for a coefficient ζ. Two different tuning coefficients are analyzed, with a value of 1 and 2

Base LV S V ariance = 200

ζ = 0.75 → RLV S = 200 · 0.75 = 150

ζ = 1.5 → RLV S = 200 · 1.50 = 300

Where RLV S is the value in the matrix R corresponding to the LVS measures of x and y
position coordinates.

These two configurations are going to be called NORDA150 and NORDA300.
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9.0.1 Requirements

Horizontal and Vertical Speed

The main requirement to be satisfied is the horizontal speed, since this is critical for
mission success. A reasonable value for maximum horizontal speed can be set to

Max Horizontal Speed = 3m/s

In the simulation results different thresholds are taken into considerations
Horizontal Speed < 3.0m/s

Horizontal Speed < 2.5m/s

Horizontal Speed < 2.0m/s

Horizontal speeds that exceed the 3m/s are always considered a landing failure.
For the vertical speed the requirement is to stay below the 4m/s threshold. Any vertical

speed that crosses the 4m/s leads to a mission failure

Max V ertical Speed = 4m/s

For both requirements the reasons are related to mechanical stress on the landing
spacecraft legs. For the horizontal touchdown speed constraint there is also the risk, if the
speed is too high, for the spacecraft to topple over.

Touchdown distance to target

Precise landing capabilities are the frontier of the new landing missions on other planets.
Cargo and human missions are going to need to land precisely in the order of 250m, to be
retrieved by a rover or land close to a base on the target planet.

Touchdown Distance to Target < 250m

This is an hard constraint for mission success. Ideally, reaching distances to target
lower than 100m is desirable.



CHAPTER 9. PERFORMANCE ANALYSIS 71

9.1 Performance analysis in the presence of RDA sen-

sor

In this section there are the results of the Monte Carlo simulation with all sensors active
(IMU, RDA and LVS). When the results are expressed as a success rate, they follow the
thresholds set in the requirements section at the beginning of this chapter.

Table 9.1: Simulation Sensor suite configuration and settings

Configuration in the presence of IMU, RDA and LVS

Sensor Status setting
IMU ACTIVE

Altimeter ACTIVE

Radar Doppler ACTIVE

LVS ACTIVE

Table 9.2: Simulation Results in the presence of RDA (success rate and mean distance to
target)

Metric Result (out of 100 simulations)
Success Rate 100%

mean distance to target at touchdown 40.08m

Table 9.3: Simulation Results in the presence of RDA (horizontal and vertical speeds)

Metric Result (out of 100 simulations)
horizontal speed < 3.0m/s 100%

horizontal speed < 2.5m/s 100%

horizontal speed < 2.0m/s 100%

vertical speed < 4.0m/s 100%

vertical speed < 3.5m/s 100%

vertical speed < 3.0m/s 98%
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Figure 9.1: Horizontal and Vertical Speed at Touchdown

Figure 9.2: Horizontal and Vertical speeds (2m/s and 2.5m/s thresholds represented as
circles) (left), Distance to target at Touchdown (right)
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Detailed Performance (in the presence of RDA sensor)

Figure 9.3: Velocities and Angular rates
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Figure 9.4: Estimated Velocities and Angular rates

Figure 9.5: Altitude and Breaking acceleration
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Figure 9.6: Estimated altitude and Estimated acceleration

Figure 9.7: Horizontal distance to target
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Figure 9.8: Guidance reference position and velocity

Figure 9.9: LVS number of features and altitude (top), Distance to target (bottom)
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Figure 9.10: Trajectories visualization (3D)

Figure 9.11: Vertical vs Horizontal velocity (top), Altitude vs Velocity (bottom)
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9.2 Performance analysis in the absence of RDA sen-

sor

The same as the previous section is done here, but analyzing the sensor configuration
without the doppler functionalities of the radar (only the altimetric data is provided by
the Radar).

Table 9.4: Simulation Sensor suite configuration and settings

Configuration in the presence of IMU, ALT and LVS

Sensor Status setting
IMU ACTIVE

Altimeter ACTIVE

Radar Doppler NO

LVS ACTIVE

Table 9.5: NORDA150: Simulation Results in the absence of RDA

Metric Result (out of 100 simulations)

horizontal speed < 3.0m/s 96%

horizontal speed < 2.5m/s 95%

horizontal speed < 2.0m/s 84%

vertical speed < 4.0m/s 100%

vertical speed < 3.5m/s 100%

vertical speed < 3.0m/s 100%

mean distance to target at touchdown 70.28m
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Table 9.6: NORDA300: Simulation Results in the absence of RDA

Metric Result (out of 100 simulations)

horizontal speed < 3.0m/s 94%

horizontal speed < 2.5m/s 87%

horizontal speed < 2.0m/s 74%

vertical speed < 4.0m/s 100%

vertical speed < 3.5m/s 100%

vertical speed < 3.0m/s 100%

mean distance to target at touchdown 75.36m

In both configurations, the Radar provides just basic altimetric data, and no doppler
capabilities are present. The NORDA150 is significantly more precise and performs with
an higher success rate, compared to the NORDA300 configuration.

Figure 9.12: Horizontal and Vertical Speed at Touchdown
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Figure 9.13: Horizontal and Vertical speeds (2m/s and 2.5m/s thresholds represented as
circles) (left), Distance to target at Touchdown (right)

Detailed Performance (in the absence of RDA sensor)

Figure 9.14: Velocities and Angular rates
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Figure 9.15: Estimated Velocities and Angular rates

Figure 9.16: Altitude and Breaking acceleration
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Figure 9.17: Estimated altitude and Estimated acceleration

Figure 9.18: Horizontal distance to target
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Figure 9.19: Guidance reference position and velocity

Figure 9.20: LVS number of features and altitude (top), Distance to target (bottom)
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Figure 9.21: Trajectories visualization (3D)

Figure 9.22: Vertical vs Horizontal velocity (top), Altitude vs Velocity (bottom)
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9.2.1 Lateral rate comparison in the presence or absence of RDA
sensor

Upon analyzing figures 9.14 and 9.15 (in the No-RDA configuration results), a noticeable
lateral velocity, transversal to the longitudinal axis, exhibits a somewhat erratic behavior,
particularly evident in the orange and yellow traces in the bottom-right subplot. This
behavior starkly contrasts with the smoother trajectories depicted in Figures 9.2 and 9.3,
corresponding to RDA-inclusive scenarios.

This observation underscores a significant aspect in the RDA versus no-RDA compar-
ison: The presence of RDA, even mild gains are enough to guarantee good performance,
ensuring a reduction in the likelihood of abrupt instabilities. Conversely, in the absence of
RDA, the system necessitates potentially more precarious gains, posing risks of incipient
instability.

Thus, this distinction highlights the important role of RDA in mitigating instability
risks and promoting higher success rates.
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Conclusion and Future work

10.1 Conclusion

In this study, the feasibility of achieving precise pinpoint landing on target celestial bodies
(particularly the Moon and Mars) is investigated, without the need of doppler function-
alities, with a radar capable only of providing altimetric data. The approach is based
on implementing a landmark-based Landing Vision System architecture for navigation
and integrating a Kalman filter for data fusion and translational dynamics state estima-
tion. Through development, experimentation and analysis, the following conclusions were
found:

(i) High Mission Success Rate: Our findings demonstrate a 96% success rate in mis-
sion landings, even in the absence of radar Doppler functionalities. This success
underscores the efficacy of the Kalman filter for precise landing.

(ii) Primary Failure Causes: Failures, although low in number, stemmed from horizontal
velocities exceeding 3m/s, indicating a need for further refinement in horizontal
position measurement quality from the LVS sensor or the introduction of a third
catalog ad hoc for proximity conditions to terrain. The NORDA150 performed
significantly better than NORDA300, while going lower than 150 for LVS tuned
variance decreases the success rate. This means that if higher success rates are
needed, the LVS output precision must be enhanced with advanced techniques such
as using projected ellipses characteristics or taking into account the known and
measured radius difference as additional metrics. However, it’s notable that vertical
velocity and landing precision requirements were consistently met.

(iii) Performance Reduction without RDA: Despite the overall success rate, the analysis
reveals a performance reduction. The mean distance to the landing target at touch-
down is approximately 70% higher in landing precision when excluding the radar
Doppler, going from a mean distance to target or around 40m with RDA enabled,
to around 70m. This emphasizes the importance of RDA functionalities in achieving
optimal landing precision, albeit our approach still demonstrates significant capabil-
ity even without it. Thus, the choice of using or not a Radar Doppler in the sensor
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configuration for a real mission will depend on the specific requirements, objectives
and needed margins of mission success.

It is also evident from the simulation results that utilizing Radar Doppler Altimetry
(RDA) offers significant advantages over simple altimeters.

(i) Improved touchdown speed performance allows for lighter mechanical structures and
legs, enhancing overall mission efficiency.

(ii) The ability to effectively integrate horizontal position data (even in temporary ab-
sence of LVS measurements) ensures navigation continuity and reliability, even under
challenging conditions.

RDA facilitates easier tracking restoration by utilizing true velocity integration, mit-
igating the risk of substantial position errors compared to reconstructed velocity
methods. This is crucial in scenarios where tracking is temporarily lost, as it mini-
mizes the likelihood of significant discrepancies between known positions and actual
target locations upon tracking reestablishment.

10.2 Future Work

Building upon the insights gained from this study, several avenues for future research and
development emerge:

(i) LVS horizontal position output quality enhancement: Further investigation into tech-
niques for more estimation of horizontal position, leading to better estimation of
horizontal speeds during descent. This could mitigate the primary cause of mis-
sion failures identified in this study and may involve exploring advanced matching
algorithms, pose-determination algorithms or refining the preprocessing phase as a
whole.

(ii) LVS orientation estimation capability: Expanding the LVS range of capabilities to
estimate the spacecraft orientation and merge this data with the orientation infor-
mation provided by the laser-gyro in the on-board IMU. Precision obtained by the
IMU should be higher and the LVS could not be able to increase the orientation
dynamics estimation.

(iii) Advanced filtering: Although the kalman filter seems not to be the bottleneck of
precise pinpoint landing performance, an upgrade to advanced non-linear filtering
techniques can be beneficial. Extended Kalman Filters, Unscented Kalman Filters
of Particle Filters are all good candidates for improvements in this part of the navi-
gation.

By addressing these areas of future work, we can continue to advance the field of precise
pinpoint landing on other planets and celestial bodies, leading to a new era of scientific
discovery and planetary exploration.
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Appendix A

Reference Frames Conventions

The following reference frames convenctions and specifications were taken from the MML
study on the Italian Space Agency.

A.1 Target Planet Reference Frame

Local Vertical Local Horizontal (LVLH)/ENU Reference Frame

The common reference frame is the LVLH (Local Vertical Local Horizontal), in the ENU
(East, North, Up) variant.

Figure A.1: Local Vertical Local Horizontal (LVLH). East, North, Up (ENU) variant.
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A.2 Spacecraft Composite Reference System (SCRF)

The Spacecraft Composite Geometrical Reference Frame is used for defining the geomet-
rical configuration of the composite; it is defined as follows:

1. OSC : origin located on the Spacecraft Composite/Launcher separation plane at the
centre of the Spacecraft interface ring

2. ZSC : orthogonal to the Spacecraft/Launcher separation plane, pointing positively
from the separation plane towards the Entry Vehicle nose

3. XSC : in horizontal plane, positive in the direction from the Radar Doppler origin to
the Robotic Egress Arm

4. YSC : completing the right handed coordinate system

Figure A.2: S/C Geometrical Reference Frame

A.2.1 Spacecraft Composite Body Reference System (SCBRF)

This frame is parallel to the SCGRF and located in the center of mass of the composite.

A.3 Entry Vehicle Mechanical Coordinate Frame (EV,

EVGRF)

The EV Geometrical Reference Frame (EVGRF) Frame is used for defining the geometrical
configuration of the DM; it is defined as follows:

1. OEV : the origin, is located on the EV/CS separation plane at the intersection with
the revolution axis of the EV conical shape (i.e. located on the EV mounting plane
coinciding with the geometrical center of circumference which goes through centers
of fastening elements for the separation system
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2. ZEV : orthogonal to the EV mounting plane of the Separation Assembly, pointing
positively toward the Heat Shield nose. Same orientation and direction of +ZSC

3. XEV : orthogonal to the +ZEV axis and parallel to the +XSC of the SCGRF

4. YEV : completing the right handed coordinate system

Figure A.3: Entry Vehicle Geometrical Reference Frame

A.3.1 Entry Vehicle Body Reference System (EVBRF)

This frame is parallel to the EVGRF and located in the center of mass of the composite.

A.4 Landing Platform Coordinate Frame (subscript

LP)

The Landing Platform Mechanical Reference Coordinate (LP) shall be a right-handed,
orthogonal coordinate system used for geometrical configuration, design drawings and
dimensions, and defined as follows:

1. OLP : the origin, is located on the Landing Platform/Backshell separation plane at
the center of the top deck circular cut out.

2. ZLP : axis is orthogonal to the upper plane of the Landing Platform, pointing posi-
tively toward the Front Shield nose. Same orientation and direction of +ZEV

3. XLP : orthogonal to the +ZLP axis with the same orientation and direction of +XEV

4. YLP : completing the right handed coordinate system
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Figure A.4: Landing Platform Reference Frame

A.5 Other GNC Related Reference Frames

Besides the LVLH/ENU used for landing seen at A.1, there are other reference frames
used by the GNC [11].

A.5.1 On orbit Local Vertical Local Horizontal Frame of the
GNC (GNC LOR)

This frame is devoted to the RDA-based navigation

1. OGNC LOR: the origin, is located at the center of mass of the DM. The axes are
defined as hereafter described.

2. ZGNC LOR: in the orbital plane from the Mars center to the spacecraft CoG

3. YGNC LOR: normal to the orbital plane with the direction of the orbital angular
momentum vector. Its direction is defined by the extern product of the inertial
position and velocity vectors

4. XGNC LOR: It is in the same half-plane of the inertial velocity vector of the spacecraft

A.5.2 Local Vertical Local Horizontal Frame on Ground at RIL
(GNC L)

The GNC L frame is a frame defined like the GNC LOR, but with origin translated down
along the ZGNC LOR so that it remains located on the Mars surface in the instant, triggered
by Radar In The Loop (RIL) event, in which the Radar is included in the navigation loop
(transition from the intermediate descent mode to the terminal descent mode). Axes are
parallel to the ones of GNC LOR frame, for the specified mentioned instant.

1. OGNC L: the origin, is located on the Mars surface. The axes are defined as hereafter
described
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2. ZGNC L: represent the Local Vertical unit vector at the location of the spacecraft
CoG

3. YGNC L: normal to the orbital plane with the direction of the orbital angular mo-
mentum vector. Its direction is defined by the extern product of the inertial position
and velocity vectors

4. XGNC L: Completes the triad. It is in the same half-plane of the inertial velocity
vector of the spacecraft and tangent to the surface under the hypothesis of spherical
planet

A.5.3 Local Terrain Frame, East-North-Up at the Target loca-
tion (GNC ENU , LTF )

The GNC ENU frame is a surface reference frame applicable for the Landing. It does
correspond to ENU frame at the Target landing location.

1. OGNC ENU : the origin, is located at the landing target location

2. XGNC ENU : East oriented

3. YGNC ENU : North oriented

4. ZGNC LRF : Up oriented (direction nadir-zenith)

Figure A.5: Local Vertical Local Horizontal (LVLH). East, North, Up (ENU) variant.
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A.5.4 Body Reference Frame of the GNC for Landing (subscript
B L)

The Body reference frame of the GNC landing is a reference frame with axes parallel to
the EV/LP reference frame axes with the following characteristics:

1. OB L: the origin, is located at the EV/LP center of mass, assuming the best knowl-
edge available. This location will be phase-depending based on the applicable con-
figuration.

2. XB L

3. YB L

4. ZB L

The transformation from the EV/LP to the Body landing reference frame is identified
by a rotation of 180° around the YEV (or YLP) axis and by a translation along the
symmetry axis. The amount of this translation is depending on the specific configuration
(CoG location) of the EV and LP in the identified instant.

Figure A.6: EDL Reference Frames



Appendix B

Navigation Translational Filter
blocks and models

B.1 Sensor data preparation

Figure B.1: IMU Data Preparation for KF
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Figure B.2: RDA Data Preparation for KF

Figure B.3: LVS Data Preparation for KF
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B.2 Axis Filters

Figure B.4: X Axis Kalman Filter

Figure B.5: X Axis Kalman Filter internals
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Figure B.6: Y Axis Kalman Filter

Figure B.7: Y Axis Kalman Filter internals

Figure B.8: Z Axis Kalman Filter
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Figure B.9: Z Axis Kalman Filter internals



Appendix C

Monte Carlo Simulations results
details

C.1 Sensor Configuration in the presence of RDA

Figure C.1: Total required thrust

100



APPENDIX C. MONTE CARLO SIMULATIONS RESULTS DETAILS 101

Figure C.2: Total thrust

Figure C.3: Reference Acceleration and propellant consumption



APPENDIX C. MONTE CARLO SIMULATIONS RESULTS DETAILS 102

Figure C.4: Off-vertical angle vs horizontal xy position
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C.2 Sensor Configuration in the absence of RDA

Figure C.5: Total required thrust
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Figure C.6: Total thrust

Figure C.7: Reference Acceleration and propellant consumption



APPENDIX C. MONTE CARLO SIMULATIONS RESULTS DETAILS 105

Figure C.8: Off-vertical angle vs horizontal xy position
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