
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Development of Complex Scenarios and
Control Algorithms for Autonomous

Driving Functions (ADFs) in a Driving
Simulator

Supervisor

Prof. CARLO NOVARA

Co-Supervisor

Eng. MATTIA BOGGIO

Co-Supervisor - Centro Ricerche Fiat

Dr. FABIO TANGO

Candidate

MERT BATMAZ

April 2024

Abstract

Autonomous vehicles and Advanced Driver Assistance Systems (ADAS) appli-
cations are emerging fields of research and development that require specialized
controllers to ensure safe and efficient functionality. However, testing these con-
trollers in real-world scenarios can be costly and risky, making the use of simulators
necessary for their design and validation. This thesis presents a framework for the
control and simulation of fundamental ADAS applications for autonomous vehicles,
using Simulink as the controller design environment and Carla as the simulation
environment. The integration of these tools is first described, followed by the devel-
opment and testing of two control methods: PID and Nonlinear Model Predictive
Control (NMPC). These two methods are applied to both lateral and longitudinal
control of the vehicle, using the single-track model for PID tuning and as internal
model of the NMPC. To address the limitations of the single-track model, which
lacked direct throttle and brake control capabilities, a new dispatching function
is derived from the vehicle data collected in the Carla simulation environment.
Finally, a comprehensive testing scenario is designed within the Carla simulator,
consisting of a curve that requires deceleration and steering and a straight road for
acceleration. Simulation results verified the effectiveness of the proposed control
strategies.

Keywords: Autonomous Vehicles, ADAS (Advanced Driver Assistance Systems),
Control Systems, Simulation, Simulink, Carla Simulator, Vehicle Modeling, Single-
Track Model, PID (Proportional, Integral, Derivative) Control, NMPC (Nonlinear
Model Predictive Control), Longitudinal Control, Lateral Control, Non-linear
System Identification, Mathematical Modeling.

i

Acknowledgements

“This thesis acknowledgment is a tribute to all the individuals who have made my
academic journey worthwhile. First and foremost, I extend my deepest gratitude to
Professor Carlo Novara for granting me the opportunity to work on this thesis and
generously sharing his vast knowledge and expertise throughout the process. I also
wish to express my thanks to the professionals involved in the project, particularly
Dr. Fabio Tango from Centro Ricerche Fiat. His participation and valuable input

were pivotal to the success of this project. Heartfelt appreciation goes to Eng.
Mattia Boggio, whose office door was always open whenever I encountered a

challenge or had a question during the project. He consistently steered me in the
right direction whenever he believed I needed it.

I cannot overlook the support system that made this journey less daunting;
Thanks to my friends who have always been my pillars of strength. My deepest

appreciation is for my wife, whose unwavering support and dedication were
indispensable. This thesis would not have been possible without her. Finally, I owe

a debt of gratitude to my parents for their continuous encouragement throughout
my years of study. Their belief in me has been a constant source of strength.”

Mert Batmaz

ii

Table of Contents

List of Tables v

List of Figures vi

Outline and Contributions 1

1 Introduction 4
1.1 What is Autonomous Driving? . 4
1.2 The Importance of Simulation in Autonomous Driving 5
1.3 State of the Art in Autonomous Driving Simulators 8

1.3.1 Waymo Simulator . 9
1.3.2 SVL Simulator . 10
1.3.3 Sim4CV . 11
1.3.4 Carla Simulator . 12

1.4 ADAS Applications . 13
1.5 Related Works . 18

2 Interface Co-Simulation Design 19
2.1 Selecting the Suitable Simulator . 19
2.2 Carla and Anaconda Interfacing . 20
2.3 Carla and Matlab Interfacing . 21
2.4 Modeling the Car in Simulink Environment 22

2.4.1 Dispatching To Obtain Throttle-Brake Value From Accelera-
tion Value . 26

2.5 Data Gathering with Autonomous Driving Mode 27
2.6 Data Gathering with Manual Driving Mode 29

3 Different Control Strategies in Simulation for Path Tracking 32
3.1 PID Path Tracking Lateral Control 32

3.1.1 PID Control . 33
3.1.2 Finding The Closest Point In The Road 37

iii

3.1.3 Finding The Instantaneous Error 39
3.1.4 Creating Carla Environment 41
3.1.5 PID Values . 43

3.2 NMPC Path Tracking . 44
3.2.1 NMPC Control . 45
3.2.2 Finding The Closest Point In The Road 51
3.2.3 Creating Carla Environment 53
3.2.4 NMPC Values . 56

4 Simulation and Results 57
4.1 NMPC Path Tracking Results . 57

4.1.1 Scenario 1: Single Curve Long Straight Road 57
4.1.2 Scenario 2: Double Curve Long Straight Road 64

4.2 PID Path Tracking Results . 68
4.2.1 Scenario 1: Single Curve Long Straight Road 68
4.2.2 Scenario 2: Double Curve Long Straight Road 71

4.3 Manual Path Tracking Results . 73
4.4 Comparison in Different Controls 76

5 Conclusion 78
5.1 Future Works . 78

Bibliography 80

iv

List of Tables

1.1 Comparative Feature Scoring of Simulators 13

3.1 PID Values for Steering and Throttle in First Scenario 44
3.2 PID Values for Steering and Throttle in Second Scenario 44
3.3 NMPC Values . 56

4.1 RMS Values of Ect and Eh in NMPC Control First Scenario. 63
4.2 MAX Values of Ect and Eh in NMPC Control First Scenario. 64
4.3 RMS Values of Ect and Eh in NMPC Control Second Scenario. . . . 67
4.4 MAX Values of Ect and Eh in NMPC Control Second Scenario. . . 67
4.5 RMS Values of Ect and Eh in PID Control First Scenario. 70
4.6 MAX Values of Ect and Eh in PID Control First Scenario. 70
4.7 RMS Values of Ect and Eh in PID Control Second Scenario. 72
4.8 MAX Values of Ect and Eh in PID Control Second Scenario. 72
4.9 RMS Values of Ect and Eh in Manual Control. 75
4.10 MAX Values of Ect and Eh in Manual Control. 75
4.11 Comparison in Different Controls 76

v

List of Figures

1 SAE J3016 levels of driving automation 2

1.1 The historical development of autonomous driving. 5
1.2 MIL, SIL , PIL, HIL and VIL tests in V-cycle development process. 7
1.3 Driving Test Simulator . 8
1.4 Waymo Simulator Logo . 9
1.5 Comparing Waymo Simulator graphics and the real world. 9
1.6 SVL Simulator Logo . 10
1.7 SVL Simulator Screen . 10
1.8 SIM4CV Simulator Logo . 12
1.9 Carla Simulator Logo . 12
1.10 Carla Simulator Screen . 12
1.11 Automatic Emergency Braking system. 14
1.12 Traffic Sign Recognition System . 14
1.13 Blind Spot Warning System . 15
1.14 Night Vison. 15
1.15 Parking Asistant . 16
1.16 Automatic Headlight Control . 16
1.17 Lane Keeping Asistant . 17
1.18 Adaptive Cruise Control . 17

2.1 Carla Python Interfacing using Anaconda 20
2.2 Carla Matlab Interfacing Using Pyton Bridge 21
2.3 Single Track Model . 23
2.4 Vehicle Reference System . 24
2.5 Friction Coefficents in different conditions 25

3.1 PID Control Simulink Model . 33
3.2 Symbolic Representation of PID Paramters 34
3.3 Time Domain Operator Form of PID Parameters 34
3.4 Laplace Transform of PID Parameters 34
3.5 Cross-Track and Heading Error representation in Reference Trajectory 39

vi

3.6 NMPC Control Simulink Model . 45
3.7 NMPC Control Parameters . 47
3.8 NMPC Control Scheme . 50

4.1 First Scenario Curve in Carla Simulator. 58
4.2 First Scenario Straight in Carla Simulator. 58
4.3 NMPC Trajectory Comparison . 59
4.4 NMPC Trajectory Comparison in Curve 60
4.5 NMPC Trajectory Comparison in Straight Road 61
4.6 Cross Track Error . 62
4.7 Heading Error . 63
4.8 Second Scenario First Curve in Carla Simulator 64
4.9 Second Scenario Second Curve in Carla Simulator 65
4.10 NMPC Trajectory Comparison . 65
4.11 Cross Track Error . 66
4.12 Heading Error . 67
4.13 PID Control Trajectory Comparison 68
4.14 Cross Track Error . 69
4.15 Heading Error . 70
4.16 Cross Track Error . 71
4.17 Heading Error . 72
4.18 Manual Drive Trajectory Comparison 73
4.19 Cross Track Error . 74
4.20 Heading Error . 75

vii

Outline and Contributions

With the advancement of technology today, there have been innovations and
developments in many sectors. The automotive sector is one of the most affected
by these advancements. The most significant development in this sector has been
adapting advanced safety systems to vehicles and making them fully autonomous
in the long run. Autonomous vehicles are vehicles that drive themselves without
the need for a driver. The Society of Automotive Engineers (SAE) has published
a standard (J3016) for autonomous vehicles, ranging from level 0 to 5. Level "0"
refers to simple model vehicles without automation, while level "5" indicates a true
driverless vehicle [1]. Currently, level three vehicles, which have environmental
sensing capabilities, have been commercialized, and it is anticipated that level five
autonomous vehicles will be commercialized in the coming years.

However, there are some barriers to the realization of fully autonomous vehicles.
The first of these barriers is people’s lack of trust in fully autonomous vehicles.
According to a recent study [2] in the United States, half of the adults believe
that autonomous vehicles are less reliable than traditional vehicles. In this case,
the sensors and microprocessors used in fully autonomous vehicles are of great
importance for safety. The difficulty of the autonomous vehicle’s driving scenario
may increase due to variable weather conditions and changing geographies. With
advancing technology, the sophistication of sensors increases each year, and their
costs decrease. This situation provides an advantage for the transition to fully
autonomous vehicles. Another important issue for safety is test simulators. Al-
though the costs of sensors will decrease, the loss of many sensors during tests
can lead to significant costs. Therefore, simulators that can simulate real vehicles
one-to-one and can simulate different maps along with different weather conditions
are of great importance in terms of cost and safety. In these simulators, we can test
our controller in variable weather conditions and test the behavior of the vehicle
without any additional cost.

Autonomous vehicles will undoubtedly bring many advantages. The most im-
portant advantage is their ability to prevent accidents caused by loss of attention
in heavy traffic. Moreover, reducing errors to zero by an autonomous vehicle will
minimize fuel consumption, thus achieving significant savings. Additionally, the

1

Outline and Contributions

elimination of driver costs, which are the biggest expense in the transportation
sector, will positively affect prices in other sectors.

Figure 1: SAE J3016 levels of driving automation

Driving simulators are of great importance for projects in the field of Advanced
Driver Assistance Systems (ADAS). They allow us to see the errors in the early
stages of the project and to make developments accordingly. Today, there are
many simulator options available. Undoubtedly, the most important feature of a
simulator is the ability to test under real conditions.
In this regard, this thesis uses the Carla simulator to create environments closest to
real conditions and perform simulations. By doing so, it circumvents one of the most
substantial expenses associated with autonomous driving development: the cost
of sensors. With Carla’s multiple maps, it is possible to create different scenarios.
Moreover, the ability to simulate diverse weather conditions and driving scenarios
not only enhances the precision of these tests but also significantly reduces the
financial burden associated with conducting such evaluations in the initial stages.
Additionally, with the Carla-Matlab connection, a model created in Simulink can
be simulated for a vehicle created in the Carla environment. This also allows us
to develop controllers compared to the current real commercial vehicles. Finally,
creating a trajectory through manual driving and comparing these manual driving
data with other control methods is beneficial in terms of seeing how successful our

2

Outline and Contributions

control is. This thesis, therefore, makes a valuable contribution to the advancement
of autonomous driving technology.

This thesis focuses on the development of autonomous vehicles and driving
simulations within the framework of ADAS applications. Chapter 2 addresses what
autonomous driving is and the importance of simulation in this field, then it explains
the most important simulators and makes a comparison among existing simulators,
and introduces fundamental ADAS applications. Chapter 3 thoroughly explains the
processes of selecting the most suitable simulation application and integrating Carla
with Anaconda and Matlab interfaces. Chapter 4 describes the development and
simulation of different control strategies for path tracking, and vehicle modeling in
the Simulink environment, and PID and NMPC control methods are examined in
depth. The lateral and longitudinal path-tracking performance of PID and NMPC
is evaluated under two different scenarios, Chapter 5 gives the results of simulations
and compares them with manual driving data, and the effectiveness of various
control methods is questioned. Lastly, Chapter 6 summarizes the results obtained
and offers suggestions for future work. This study overall, aims to contribute to the
understanding and improvement of methodologies and control strategies developed
for autonomous driving simulations.

3

Chapter 1

Introduction

1.1 What is Autonomous Driving?

The term autonomous vehicle has been used many times throughout history. When
cars were first designed, the definition of "automobile," derived from the combination
of the Greek word "autòs," meaning "self, individual, independent," and the Latin
word "mobilis," meaning "movable," focused on the concept of "moving by itself"
[3]. The main idea here was to achieve movement without the effort of the driver,
similar to how horses could move on their own. However, this term failed to
acknowledge that the absence of horses also meant the loss of a certain type of
freedom. Through training and dressage, carriage horses had learned to stay within
the limits of simple rules on their own (Greek autos, as mentioned above, means
"by itself," nómos: "human order, laws made by humans").
In this sense, the horse and carriage thus achieved a certain autonomy. But this
feature of independent movement, which was very important in the transition from
horse-drawn carriages to cars, was lost. Initially, even if horses were not suitable for
driver control, they could drive the vehicle and safely bring the driver home or wait
while grazing somewhere, ensuring the driver’s safety. The term autonomous vehicle
today aims to regain this lost feature of independent movement and advance it much
further. Towards the end of the 20th century, advancements in computer science and
artificial intelligence began to make the concept of vehicles sensing their environment
and making decisions a possibility. Initial tests in the 1980s and 1990s demonstrated
that vehicles could move autonomously under certain conditions. During this
time, developments in GPS navigation and sensor technology allowed vehicles
to more accurately locate and perceive objects around them. Driverless vehicle
technology gained momentum at the beginning of the 21st century. Initiatives
like Google’s driverless car project [4] captured public attention and created a
general awareness that autonomous driving was a real possibility. The use of

4

Introduction

cameras, radars, lidars, and artificial intelligence algorithms in vehicles endowed
them with the capability to navigate complex traffic situations independently. Many
car manufacturers and technology companies are now accelerating their efforts to
develop fully autonomous vehicles. The goal of these vehicles is to reduce traffic
accidents, increase transportation efficiency, and provide greater independence for
people with mobility limitations. However, technical challenges, as well as ethical,
legal, and safety issues, continue to shape the advancement in this field. The future
of autonomous driving depends on overcoming these challenges and gaining societal
acceptance for this new technology.

Figure 1.1: The historical development of autonomous driving.

1.2 The Importance of Simulation in Autonomous
Driving

In today’s world, developing and using software has become very important across
many industries. While these software solutions provide us with numerous conve-
niences and advantages, they also introduce certain requirements. One of the most
critical requirements for any software is testing. The testing phase can be used
to determine whether an application fulfills its intended function or to assess its
efficiency. Of course, in some sectors, this functionality takes on an even greater
importance. One such area is safety. In industries like aviation and automotive,
where a user’s safety can be directly affected by an error in the application, testing
and simulation are more important than ever. In model-based software applications,
after a model is created, it moves to the verification stage. Before being loaded

5

Introduction

onto the hardware, the model undergoes several verification steps. Some of these
verifications are named Model In the Loop (MIL) [5], Software In the Loop (SIL)
[6], and Hardware In the Loop (HIL) [7].

• Model in the Loop (MIL)

In the initial stages of system design, before real hardware or software com-
ponents are implemented, the simulation and testing of system models are
carried out by the Model in the Loop (MIL) testing method. This method
uses mathematical models and simulations for system or component design.
These models are utilized to understand how the designed system will function
and behave. MIL testing is a critical tool for verifying the design and identify-
ing potential problems at an early stage. With this method, engineers and
designers can gain valuable insights into how the system will operate before
actually manufacturing the hardware or fully developing the software.

• Software in the Loop (SIL)

The Software in the Loop (SIL) testing method is the process of testing a
system or component’s software without using real hardware. This method
simulates environmental factors or other parts interacting with the system
while the software runs directly on a computer. This simulation evaluates the
software’s behavior and performance under real-world conditions. The main
goal of SIL testing is to verify the software’s functionality, detect errors at an
early stage, and analyze interactions between the system and the software.
This approach accelerates the software development and refinement processes
and prevents costly errors.

• Hardware in the Loop (HIL)

The Hardware in the Loop (HIL) testing method creates an environment to
control and test real hardware. In this method, the hardware being tested,
such as a vehicle control unit, operates in real-time, but the software simulates
the physical systems (e.g., engines, sensors, actuators, etc.) interacting with
the hardware in real-time. This simulation allows for the evaluation of how
the hardware performs under real-world conditions.

6

Introduction

Figure 1.2: MIL, SIL , PIL, HIL and VIL tests in V-cycle development process.

Test simulators typically fall under the SIL category. The Software in the
Loop (SIL) testing method has numerous advantages. These benefits explain
why SIL tests are an important part of the software development process and
demonstrate their value to engineers and developers across various industries. The
main advantages can be listed as follows:

• Cost Efficiency: SIL tests are conducted in a simulated environment that
does not require real hardware, thus reducing the costs associated with pur-
chasing, maintaining, and repairing hardware. Additionally, early diagnosis of
potential errors helps prevent more costly problems later on.

• Rapid Feedback Loop: Testing software in a model allows for quick itera-
tions in the development process. This enables developers to instantly see the
effects of their code and make fast modifications if necessary.

• Risk Reduction: Tests conducted without real hardware use a simulated
environment to safely examine situations that could be potentially dangerous
or harmful to the hardware. This is especially important when expensive
hardware is involved.

• Broad Test Scenarios: SIL tests are capable of quickly and easily testing
a wide range of scenarios that mimic real-world conditions. Developers can
experiment with system parameters, error states, and various operational
conditions.

• Acceleration of the Development Process: SIL tests can speed up the
development process instead of waiting for the hardware to be ready. Testing
the software alongside hardware development shortens the time to market for
the product.

• Preparation for Integration and System Tests: When software is suc-
cessfully tested in a SIL environment, the transition to more complex testing

7

Introduction

stages where hardware and software are run together becomes easier. This
helps reduce problems that may arise during system tests and integration.

• Flexibility in the Development Process: Software can be tested and
developed with various hardware platforms and configurations. This flexibility
allows for the evaluation of how the software will perform on different systems.

Figure 1.3: Driving Test Simulator

1.3 State of the Art in Autonomous Driving Sim-
ulators

Advancements in the field of autonomous driving have led to the development
of autonomous driving simulators as well. Nowadays, a wide range of simulators
produced by various companies are in use. These include open-source projects
(e.g., CARLA [8], AirSim [9]), commercial software, and customized simulation
solutions used in academic research. At this point, it is crucial to clearly define
our expectations from a test simulator and make a choice accordingly. Therefore,
we can start by examining the popular autonomous driving simulation tools and
platforms available in the market. The features I will focus on while reviewing these
platforms include graphic quality, accuracy of the physics engine, sensor simulation,
simulation of traffic and pedestrians, weather conditions, and the ability to simulate
at different times of the day.

8

Introduction

1.3.1 Waymo Simulator

Figure 1.4: Waymo Simula-
tor Logo Figure 1.5: Comparing Waymo Simulator

graphics and the real world.

Waymo possesses an advanced simulation platform[10] and is a leader in autonomous
vehicle technology. The development and testing of autonomous vehicles are a
crucial component of this platform. Considering the following features, the Waymo
simulator holds a significant position among autonomous driving simulators:

• Graphic Quality: The Waymo simulator is highly successful in mimicking
real-world environments and scenarios. The quality of graphics is particularly
important for simulating the environmental perceptions of vehicle sensors
because the realism of the simulation is crucial for accurately training algo-
rithms.

• Accuracy of the Physics Engine: The physics engine is designed to
realistically model the vehicle’s movement dynamics, collisions, and surface
interactions. Thanks to this accuracy, vehicles can simulate physical conditions
in the real world accurately.

• Sensor Simulation: Waymo can model the data collection capabilities of
various sensors, such as LIDAR, radar, and cameras. These simulations
use advanced algorithms to accurately reflect the sensors’ environmental
perceptions.

• Traffic and Pedestrian Simulation: The simulator can be used to dy-
namically model traffic flow and pedestrian behavior. This feature is very
important for understanding how autonomous vehicles will operate in complex
urban environments and variable traffic conditions.

• Weather Conditions: The Waymo simulator can simulate various weather
conditions to test vehicle performance under different weather conditions. This

9

Introduction

is necessary to assess the reliability of autonomous vehicles in various weather
conditions like rain, snow, and fog.

• Ability to Simulate at Different Times of the Day: This simulator has
the capability to test the effectiveness of sensors and algorithms throughout
the day, especially in night vision and twilight conditions.

1.3.2 SVL Simulator

Figure 1.6: SVL
Simulator Logo

Figure 1.7: SVL Simulator Screen

The autonomous vehicle research and development community frequently uses the
LGSVL Simulator[11], an open-source simulation platform. Especially academic
and industrial researchers prefer this simulator because it offers realistic, flexible,
and a wide variety of integration options. The LGSVL Simulator has been evaluated
within the following features framework:

• Graphic Quality: The LGSVL Simulator provides highly realistic visual
quality by using the Unity 3D game engine. This is very important for
realistically modeling the environmental perceptions of vehicle sensors and
realistically modeling various urban and rural environments. The quality of
graphics enhances the accuracy of real-world conditions and the depth of the
simulation.

• Physics Engine Accuracy: The LGSVL Simulator benefits from advanced
physics engines to realistically model vehicle dynamics, tire-road interactions,
and collision scenarios. This allows for an accurate representation of how
vehicles move in the real world and interact within the simulation.

• Sensor Simulation: The platform supports a wide range of sensors, including
LIDAR, radar, cameras, and ultrasound. Processing sensor data in the

10

Introduction

simulation and testing detection algorithms are very important because it can
realistically model the detection capabilities and data streams of sensors.

• Traffic and Pedestrian Simulation: The LGSVL Simulator provides
a comprehensive traffic and pedestrian simulation that includes intelligent
traffic control systems and dynamic pedestrians. This enables the testing of
autonomous vehicle algorithms with realistic traffic and social behaviors.

• Weather Conditions and Simulation at Different Times of the Day:
The simulator can simulate different weather conditions and lighting conditions
at various times throughout the day. This feature is important for assessing
the performance of autonomous vehicle systems under various environmental
conditions.

1.3.3 Sim4CV
Sim4CV is a simulation platform designed for researchers interested in computer
vision and autonomous systems. This tool focuses on autonomous driving and
autonomous flight simulations to test computer vision algorithms and model real-
world scenarios [12]. Considering the following features, Sim4CV offers unique
opportunities for autonomous driving research:

• Graphic Quality: Utilizing powerful game engines like Unreal Engine 4,
Sim4CV provides high-quality graphics. This allows researchers to work with
realistic images to evaluate how well algorithms adapt to real-world conditions.

• Accuracy of the Physics Engine: Sim4CV leverages the advanced features
of Unreal Engine’s physics engine to simulate vehicle dynamics, object interac-
tions, and environmental factors. This ensures accurate modeling of vehicles
and environmental objects, enhancing the realism of the simulation.

• Sensor Simulation: The platform can simulate cameras, LIDAR, and other
sensors, which is crucial for computer vision research. The accuracy of sensor
data is very important in the development and testing process of autonomous
driving algorithms.

• Traffic and Pedestrian Simulation: Sim4CV is capable of simulating
pedestrians and traffic flow, although the sophistication and details of these
features depend on the version of the platform and the conditions used.
Understanding how autonomous vehicles operate in complex social conditions
is very important.

• Weather Conditions and Simulation at Different Times of the Day:
Sim4CV can model variable weather conditions and simulate different times of

11

Introduction

the day, which is important for testing how algorithms perform under various
environmental conditions.

Figure 1.8: SIM4CV Simulator Logo

1.3.4 Carla Simulator

Figure 1.9: Carla
Simulator Logo

Figure 1.10: Carla Simulator Screen

The CARLA Simulator is an open-source autonomous driving simulation platform
[13] that is frequently used by researchers. It has an extensive documentation
page. It provides a wide range of features and tools for the development, testing,
and validation of autonomous vehicles and driving algorithms. CARLA can be
evaluated within the framework of the following features:

• Graphic Quality: With Unreal Engine 4, CARLA provides realistic and
high-quality visual environments. This enhances the realism of the simulation
and offers researchers an experience that closely mimics real-world conditions.

• Accuracy of the Physics Engine: CARLA utilizes Unreal Engine’s ad-
vanced physics engine to accurately model physical processes such as collisions,
vehicle dynamics, and surface interactions. This allows for accurate testing of
how autonomous vehicle algorithms behave in a physical environment.

12

Introduction

• Sensor Simulation: CARLA can simulate a wide range of sensors, including
LIDAR, radar, cameras, and GNSS. The data from these sensors can be tested
by mimicking real-world conditions.

• Traffic and Pedestrian Simulation: CARLA includes intelligent traffic
control systems and realistic pedestrians. The dynamic traffic flow and behav-
iors of pedestrians are very important for autonomous vehicles to understand
complex social interactions and respond appropriately.

• Weather Conditions and Simulation at Different Times of the Day:
CARLA can simulate different weather conditions and lighting conditions at
various times of the day. These features are used to assess the performance of
autonomous vehicle systems under various environmental conditions.

Based on the general capabilities and user feedback, we can compare the simula-
tors with a table. This comparison will provide an overview of how each simulator
performs across various criteria:

Table 1.1: Comparative Feature Scoring of Simulators

Features / Simulators Waymo Simulator LGSVL Simulator Sim4CV CARLA Simulator
Graphics Quality 8/10 9/10 8/10 9/10
Physics Engine Accuracy 8/10 9/10 7/10 9/10
Sensor Simulation 8/10 9/10 7/10 9/10
Traffic and Pedestrian Simulation 8/10 9/10 6/10 9/10
Weather Conditions 7/10 8/10 6/10 9/10
Simulation at Different Times of Day 7/10 8/10 6/10 9/10

1.4 ADAS Applications
Advanced Driver Assistance Systems (ADAS) are becoming increasingly common
in today’s vehicles. Developed to enhance vehicle safety and the driving experience,
these systems utilize various technologies such as cameras, sensors, and radars to
identify potential hazards and are designed to alert the driver or automatically
control the vehicle under certain conditions. ADAS technologies not only assist
drivers in traveling more safely and comfortably but also have the potential to
reduce traffic accidents. There are various applications of ADAS, which are crucial
for the safety of the driver and also provide significant conveniences. Some of these
applications can be briefly discussed as follows:

• Automatic Emergency Braking (AEB): The vehicle automatically brakes
to avoid colliding with a vehicle or obstacles ahead [14]. A laser radar sensor

13

Introduction

detects the distance to the vehicle ahead and the relative speed. If there is
an object in the area seen by the laser radar sensor at this speed, the brakes
are activated to prevent a collision. Additionally, in some vehicles, it works in
conjunction with seat belts activated by braking before a collision to help reduce
injuries in cases where a collision is unavoidable.

Figure 1.11: Automatic Emergency Braking system.

• Traffic Sign Recognition System: This system detects traffic signs and
informs the driver about traffic rules such as speed limits and prohibition signs.
Generally, an image is captured by a camera sensor placed on the vehicle’s
windshield, and the detected image is projected onto the user’s screen. This
technology aims to prevent accidents by ensuring that drivers do not overlook
important warning signs on the road [15].

Figure 1.12: Traffic Sign Recognition System

• Blind Spot Warning System: This system identifies the presence of other
vehicles in the vehicle’s blind spots and informs the driver about them. Vehicles
in the blind spot are detected using radar sensors located on the sides of the
rear bumper. Typically, a warning is displayed to the driver in the side mirror,

14

Introduction

and if the driver signals to change lanes while there is a vehicle in the blind
spot, an audible alert is issued. Additionally, in some models, changing lanes by
braking is prevented to enhance safety [16].

Figure 1.13: Blind Spot Warning System

• Night Vision: This system expands the driver’s field of vision in low light
conditions or at night through cameras or other sensors [17]. Utilizing thermal
cameras and infrared lights, it detects living beings on the road ahead and
provides audible or visual warnings to the driver.

Figure 1.14: Night Vison.

• Parking Assistant: This feature assists the driver in better positioning the
vehicle while parking and, in some cases, can automatically park the vehicle.
It utilizes parking sensors located around the vehicle to do this [18]. Parking
sensors are generally electromagnetic sensors. Commonly, the system is used
in a manner where the driver is still responsible for commands such as gas and
gear changes.

15

Introduction

Figure 1.15: Parking Asistant

• Fatigue Detection Systems: Various studies have suggested that approxi-
mately 20% of all road accidents, and up to 50% on certain roads, are fatigue-
related [19]. Although the implementation of this system varies among manufac-
turers, some brands warn the driver by detecting steering movements and how
often the vehicle drifts out of its lane.

• Automatic Headlight Control: The effectiveness of vehicle headlights be-
comes even more crucial on roads with insufficient external lighting at night,
such as forest roads. Oncoming drivers on these types of roads can be affected by
the headlight beams. Systems like this reduce the light intensity when detecting
an oncoming vehicle to minimize the adverse effects on the opposite driver. In
more advanced models, the direction of the headlight beam is adjusted to achieve
this effect.

Figure 1.16: Automatic Headlight Control

16

Introduction

• Lane Keeping Assistant: This system uses a camera sensor to detect the
distance of the vehicle from the lane markings and activates when the determined
distance falls below a certain threshold. It steers the steering wheel to direct
the vehicle back into the lane, ensuring it remains within its lane boundaries.

Figure 1.17: Lane Keeping Asistant

• Adaptive Cruise Control (ACC): This system is a more advanced version
of the traditional cruise control system [20]. While a traditional cruise control
maintains the vehicle at a set speed, this system adapts the speed based on the
speed of the vehicle ahead. It utilizes two separate sensors to accomplish this.
The first sensor is a radar sensor that measures the distance to the vehicle in
front. The second sensor is a speed sensor that detects any decrease or increase
in the vehicle’s speed. Based on the information from these sensors, decisions
are made and implemented to accelerate or decelerate. Generally, the desired
distance and following speed can be adjusted by the user via controls on the
steering wheel.

Figure 1.18: Adaptive Cruise Control

17

Introduction

1.5 Related Works
The literature in the field of autonomous vehicle simulations focuses on a wide
range of topics including various simulation techniques, sensor fusion methods, and
the simulation of traffic and pedestrians. Undoubtedly, studies in these areas tend
to focus more on sensor fusion methods. Sensor fusion, which combines data from
multiple types of sensors to allow vehicles to clearly perceive their surroundings, is
of vital importance in autonomous vehicle simulations. However, simulating the
real world under varying traffic conditions is a topic of equal importance. There are
two key issues to consider here. Firstly, the impact of shared smart transportation
vehicles, which are becoming increasingly prevalent in our lives, on real-world traffic
[21]. Secondly, the creation of real-life maps. Today, many commercial video games
offer realistic environments. Researchers have created synthetic data sets using one
of the most well-known video games, ’Grand Theft Auto V’ [22],[23], [24]. However,
this method is not practical due to some licensing requirements. As a solution to
this problem, there is a method that uses OpenStreetMap data [25]. Undoubtedly,
this approach will be a foundation for future studies.

18

Chapter 2

Interface Co-Simulation
Design

2.1 Selecting the Suitable Simulator
The development and testing of autonomous driving technologies require a robust
simulation environment. This environment must accurately model the real world,
including vehicles, pedestrians, and various environmental conditions, while also
providing comprehensive support for sensor simulation and enabling integration
with analytical tools such as Matlab. After a detailed evaluation of existing
simulators, including the Waymo Simulator, LGSVL Simulator, Sim4CV, and
CARLA Simulator, based on critical features such as graphic quality, the accuracy
of the physics engine, sensor simulation capabilities, the simulation of traffic and
pedestrians, weather conditions, the ability to simulate different times of day,
and compatibility with Matlab, CARLA Simulator has been identified as the
most suitable choice for our research objectives. CARLA provides high-quality
graphics with Unreal Engine 4 [26] and its physics engine accurately models
vehicle dynamics and environmental interactions, offering a solid foundation for
testing autonomous driving algorithms under various conditions. Moreover, its
ability to simulate a wide range of sensors used in autonomous vehicles, such as
cameras, LIDAR, radar, and GNSS, with high fidelity is crucial for the development
and testing of perception algorithms. CARLA also excels in simulating dynamic
traffic scenarios and pedestrian behaviors, facilitating comprehensive testing of
autonomous driving systems in complex urban environments. The capability to
simulate different weather conditions and times of day is important for assessing
the performance of autonomous vehicle systems under various environmental
conditions. For our research, the ability to integrate simulation data with Matlab
for further analysis and algorithm development was a significant consideration,

19

Interface Co-Simulation Design

and CARLA’s Python API facilitates easy integration with Matlab, providing a
seamless workflow for data analysis and algorithm testing. Consequently, CARLA
Simulator’s advanced graphics, accurate physics engine, extensive sensor simulation
capabilities, and effective traffic and pedestrian simulation set it as the ideal choice
for our autonomous driving research. Its compatibility with Matlab further supports
our analytical and development needs, making it the most suitable simulator for
our project.

2.2 Carla and Anaconda Interfacing

Figure 2.1: Carla Python Interfacing using Anaconda

To control and communicate with Carla, the Python API is used. Therefore, it
is necessary to have a Python version compatible with the Carla version we plan
to use. However, updates to Carla often require updating the Python version at
regular intervals. This makes it mandatory to reconcile Carla and Python with
each new update. However, by taking advantage of Anaconda’s ability to use
different Python versions through different digital environments, we can solve this
problem. Thus, we can have multiple environments and Carla models on the same
computer, which also reduces the burden of this process. The steps for setting up
Carla-Anaconda communication are as follows:

• Downloaded Carla 0.9.14

• Downloaded Anaconda Navigator

• A virtual environment was created as follows:
create –name ‘name_of_environment’ python=3.7

• Activate this environment:
activate ‘name_of_environment’

• The necessary Python modules were downloaded as follows:
pip install Carla, pygame, numpy, jupyter, opencv-python

20

Interface Co-Simulation Design

After these steps, the connection between Anaconda and Carla is established.
When we load the Carla simulator, it comes with many example applications.
Within the environment we created, we can run these examples to create traffic,
manually drive a car with the keyboard, or drive a car with a steering wheel, among
many other simulations.

2.3 Carla and Matlab Interfacing

Figure 2.2: Carla Matlab Interfacing Using Pyton Bridge

There is no direct method for establishing communication between Carla and
Matlab. At this point, we have two options to facilitate this communication. The
first option is to use ROS bridge to connect Matlab and Carla. While this option
is more advantageous for processing large amounts of data, this advantage is not
necessary for our project. Additionally, its setup requires numerous compatibilities
and it operates more optimally on the Linux operating system. Therefore, for ease
of installation and ease of use, a Python bridge has been used in this project. The
most important point to note here is the necessity for compatibility between the
Matlab and Python versions. The steps required to establish the Carla-Matlab
connection are as follows:

• First, we downloaded Matlab 2021B, which is compatible with Python version
3.7.

• Then, to make the easy_install feature operational via Python, the following
steps are taken:

– pip install setuptools==33.1.1

21

Interface Co-Simulation Design

– Add C:\Python27\Scripts to your ‘path’ (Environment variable) -
C:\Python34\Scripts. easy_install pip

– easy_install carla-0.9.14-py3.7-win-amd64.egg

• Finally, to establish the connection, the following steps are followed in Matlab:

– pyversion(’D:\Program Files\Anaconda\envs\carla-simv2\python.exe’)
(place your own path here)

– insert(py.sys.path, int32(0),
’D:\Program Files\Anaconda\envs\carla-simv2\
Lib\site-packages\carla-0.9.14-py3.7-win-amd64.egg’) (place your
own path here)

– py.importlib.import_module(’carla’)

The last two steps must be typed into the command line at the start of every
Matlab application. In this way, the necessary connection is established. Only in
our application, by creating a virtual port, the Matlab-Carla connection is made
ready.

2.4 Modeling the Car in Simulink Environment
In order to control a vehicle in the simulation, the controller must recognize the
vehicle model. For this, a model of the vehicle is needed. Various models can be used
when modeling the vehicle. Among these, the most commonly used ones usually
offer a good balance between simplicity and accuracy, capable of representing the
vehicle’s motion dynamics and control systems. In line with the needs of this
project, the Dynamic Single-Track (DST) model has been chosen. The DST model
(bicycle model) can be modeled with single-track wheels (one front and one rear
wheel). This is equivalent to a model where the right and left sides of a four-wheeled
vehicle are considered equal.

22

Interface Co-Simulation Design

Figure 2.3: Single Track Model

Vehicle variables:

• δf : steering angle

• β: vehicle slip angle = angle between the vehicle longitudinal axis and velocity

• βf , βr: tire slip angles = angles between the tire longitudinal axis and velocity.

Vehicle parameters:

• CoG: center of gravity

• m, J : mass and moment of inertia

• lf : distance CoG - front wheel center

• lr: distance CoG - rear wheel center

• cf , cr: front/rear cornering stiffnesses.

23

Interface Co-Simulation Design

Figure 2.4: Vehicle Reference System

Vehicle Dynamic parameters:

• X, Y : coordinates of the vehicle CoG in an inertial reference frame

• ψ: yaw angle

• ωψ = ψ̇: yaw rate

• v⃗ ≡ V : velocity vector in the inertial frame

• vx: longitudinal speed = v⃗ component along the longitudinal axis

• vy: lateral speed = v⃗ component along the lateral (transverse) axis

• ax: longitudinal acceleration in the inertial frame.

The state equations of the DST model are:

Ẋ = Vx cosψ − Vy sinψ
Ẏ = Vx sinψ + Vy cosψ
ψ̇ = ωψ

V̇x = Vyωψ + ax

V̇y = −Vxωψ + 2
m

(Fyf + Fyr)

ω̇ψ = 2
J

(lfFyf − lrFyr)

where Fyf and Fyr are the lateral forces exchanged between tire and road.

24

Interface Co-Simulation Design

For the tire model, there are several tire model options:

Linear (for Vx = const) tire model:

Fyf = −Cfβf , Fyr = −Crβr

βf = (Vy + lfωψ)
Vx

− δf , βr = (Vy − lrωψ)
Vx

Nonlinear simplified tire model:

Fyf = −Cfβf cos δf , Fyr = −Crβr

βf = arctan
A

(Vy + lfωψ)
Vx

B
− δf ,

βr = arctan
A

(Vy − lrωψ)
Vx

B
Nonlinear Pacejka’s tire model:

Fyf = −fp(βf) cos δf , Fyr = −fp(βr)
where βf and βr and fp(β) is given by the Pacejka’s magic formula.

Pacejka’s magic formula:

fp(β) = p1 sin (p2 arctan (p3β − p4 (p3β − arctan(p3β))))

p1: peak value, p2: shape factor, p3: stiffness factor, p4: curvature factor. Lineariz-
ing this formula, we find p1p2p3 = Cf (or Cr).

In the real world conditions, these parameters are really hard to measure or
estimate because they change based on the road conditions.

25

Interface Co-Simulation Design

Figure 2.5: Friction Coefficents in different conditions

The real parameters of the vehicle in the simulation environment have been found
with the help of Carla’s Vehicle.physics command.

Vehicle Parameters Values:

• m: 1318 kg

• J : 2500 kg/m2

• lf : 1.54 m

• lr: 1.51 m

• cf : 15000 N/rad

• cr: 15000 N/rad

2.4.1 Dispatching To Obtain Throttle-Brake Value From
Acceleration Value

To control a vehicle in the Carla simulator, we need three pieces of information:
steering angle, throttle, and brake commands. However, our model generates
ax data. It is not possible to directly provide this data to Carla because this
information only tells us about the acceleration or deceleration of the vehicle and
the magnitude of these changes. Therefore, we need to scale this data to use it for
throttle-brake information. To do this, we perform dispatching. In the context of
control, “dispatching” usually refers to the process of distributing tasks or resources
according to certain criteria or algorithms.

To accomplish this, we first need specific reference values. These reference values
should be collected according to many different scenarios to ensure they are suitable
for every scenario, not just one. In our case, data were collected for three different
scenarios: when the vehicle completes a straight path in a sine wave pattern, when
continuous braking and accelerating are performed on a straight road, and finally,
when only accelerating is done and the vehicle slows down without braking due to its
own weight. The data include the vehicle’s ax acceleration value, and throttle and
brake values. By examining these accelerations, the priorities of throttle and brake
values are determined for acceleration and deceleration situations. For instance,
it is not always necessary to brake for negative acceleration values; reducing the
throttle can also achieve the necessary speed reduction. Therefore, each value has
its weight. Also, there is a range within which each command should be applied.
These ranges can be determined using an if/else structure based on the acceleration

26

Interface Co-Simulation Design

value. The commands to be applied within these ranges are found by dividing the
ax value by certain weight values. Consequently, the throttle and brake values
are instantaneously derived from the ax value and provided to the vehicle in the
Carla environment for application. As explained above, these values were found
by analyzing reference data and through trial and error. The code for the if/else
structure that creates the intervals for applying these values and commands is
provided below.

1 % Parameters o f t h r o t t l e −brake d i spa t ch ing
2 g1= 2 . 4 ; %2 .4
3 g2= 8 ;
4 ab= −2;
5 tbp=[g1 g2 ab] ;
6

7 f unc t i on [th , br]= dispa (p , ax)
8 i f ax>0
9 th=ax/p (1) ;

10 br =0;
11 e l s e i f ax>p (3) && ax<=0
12 th =0;
13 br =0;
14 e l s e
15 th =0;
16 br=−ax/p (2) ;
17 end

2.5 Data Gathering with Autonomous Driving
Mode

A reference point was selected from the Carla Map to collect reference data. The
vehicle was spawned at this reference point. A simulation duration was determined
based on a finish point we had predetermined. The vehicle was moved using Carla’s
autonomous driving mode. During this time, the necessary reference position,
yaw angle, and speed data were recorded into a .txt file at intervals of Ts = 0.05
seconds. Once the required simulation duration was completed, the vehicle was
removed from the map.

1 %% C o l l e c t and Store the Simulat ion Data
2

3 c l e a r a l l
4 c l o s e a l l

27

Interface Co-Simulation Design

5 c l c
6

7 i n s e r t (py . sys . path , in t32 (0) , ’D: \ Program F i l e s \anaconda\ envs \ car la −
sim\Lib\ s i t e −packages \ car la −0.9.14−py3.7−win−amd64 . egg ’) ;

8 py . impor t l i b . import_module (’ c a r l a ’)
9

10 port = int16 (2000) ;
11 c l i e n t = py . c a r l a . C l i en t (’ l o c a l h o s t ’ , port) ;
12 c l i e n t . set_timeout (1 0 . 0) ;
13 world = c l i e n t . get_world () ;
14

15 % Spawn Veh ic l e
16 b l u ep r i n t _ l i b r a r y = world . ge t_b luepr in t_l ib ra ry () ;
17 c a r _ l i s t = py . l i s t (b l u ep r i n t _ l i b r a ry . f i l t e r (" l eon ")) ;
18 car_bp = c a r _ l i s t {1} ;
19 spawn_point = world . get_map () . get_spawn_points () ;
20 spawn_location = spawn_point {9} ;
21 % spawn_point = py . random . cho i c e (world . get_map () .

get_spawn_points ()) ;
22

23

24 % spawn_point . l o c a t i o n . x = 0 ;
25 % spawn_point . l o c a t i o n . y = 133 . 9472 ;
26 % spawn_point . l o c a t i o n . z = 0 . 6 ;
27 % spawn_point . r o t a t i o n . yaw = 0 ;
28

29 obj . car = world . spawn_actor (car_bp , spawn_location) ; %%
spawn the car

30

31 obj . car . s e t_autop i l o t (t rue) ;
32 % c o n t r o l = obj . car . get_contro l () ;
33 % c o n t r o l . t h r o t t l e = 0 . 5 ;
34 % c o n t r o l . s t e e r = 0 ;
35 % obj . car . apply_contro l (c o n t r o l) ;
36

37 f i l e I D = fopen (’ v e h i c l e _ p o s i t i o n _ r e f e r e n c e . txt ’ , ’w ’) ;
38

39 f o r i = 1:420
40 % Vehic l e Locat ion
41 veh ic l e_trans form = obj . car . get_transform () ;
42 o r i e n t a t i o n = veh ic l e_trans form . r o t a t i o n ;
43

44 v e h i c l e _ l o c a t i o n = obj . car . ge t_locat i on () ;
45 x_pos i t ion = obj . car . ge t_locat ion () . x ; % X
46 y_pos i t ion = obj . car . ge t_locat ion () . y ; % Y
47 yaw_angle = double (deg2rad (o r i e n t a t i o n . yaw)) ; %yaw angle as

radian
48 x_ve loc i ty = obj . car . g e t_ve loc i ty () . x ; % X
49 % t h r o t t l e = obj . car . get_contro l . t h r o t t l e ;

28

Interface Co-Simulation Design

50 % yaw_angle=[atan2 (d i f f (y_pos i t ion) , d i f f (x_pos i t ion)) ; 0] ;
51 % Locat ion Data
52 f p r i n t f (f i l e I D , ’%f , %f ,%f ,% f \n ’ , x_posit ion , y_posit ion ,

yaw_angle , x_ve loc i ty) ;
53

54

55 % Sample time
56 pause (0 . 0 5) ;
57 end
58

59

60 f c l o s e (f i l e I D) ;
61 pause (1)
62 re f e rence_pos_error=importdata (’

v e h i c l e _ p o s i t i o n _ r e f e r e n c e . txt ’) ;
63 pause (1)
64 save (’ p id_re f e r ence ’ , ’ r e f e rence_pos_error ’) ;
65 pause (1)
66 obj . car . des t roy () ;

2.6 Data Gathering with Manual Driving Mode
The first capability that we demonstrate with CARLA is localization, which allows
our ego-vehicle to determine its pose in the world. Two coordinate frames: the
map frame, which is a coordinate frame that is fixed at the initial position of the
map, and the vehicle frame, which is a coordinate frame attached to the middle of
the rear axle of the vehicle. For our particular experiment, we record the vehicle’s
accurate pose while traversing a curved-straight route in the Town10. In the Python
API, there is a class that comprises all the localization information for an actor at a
certain moment in time; its methods comprise Getters such as get_acceleration,
get_velocity, get_transform, and get_angular_velocity- which in our case
we utilize the get_transform method which includes both location of the object
(X, Y , Z from the origin of the map) in meters, and its rotation characteristics
from which we utilize the yaw values. More concisely, X and Y coordinates were
our focus, as in the map chosen, the road is entirely flat. Hence only these two
coordinates remain crucial for tracking the vehicle’s trajectory. Also, the Yaw
angle, describing the orientation of the map’s coordinate system, is essential for
indication of the direction the vehicle is facing. Therefore for curved paths, which
our scenarios contain, it is important.

Some additional considerations also are to be noted, such as the sampling rate,
which determines the time step of the data collection. We have chosen 0.1, indicat-
ing not too sparse to miss some critical dynamics, especially for sharp turns, and

29

Interface Co-Simulation Design

also not too frequent leading to redundant information.

After initializing the scenario and ego vehicle (based on the preferences), based
on the duration of the scenario depending on the controls of the car (throttle, brake,
and steering commands), we record the data of the vehicle at each time step; for
better understanding the following Script used in the development is provided;

1 start_time = time . time ()
2 durat ion = 60
3

4 de f f ind_weather_presets () :
5 rgx = re . compi le (’ .+?(?:(? <=_[a−z]) |(? <=^[A−Z])) (? <!=[A−Z] [a−z]) $

’)
6 name = lambda x : ’_ ’ . j o i n (m. group (0) f o r m in rgx . f i n d i t e r (x))
7 p r e s e t s = [x f o r x in d i r (c a r l a . WeatherParameters) i f r e . match (’ [

A−Z] .+ ’ , x)]
8 re turn [(g e t a t t r (c a r l a . WeatherParameters , x) , name(x)) f o r x in

p r e s e t s]

1 de f get_state (s e l f ,) :
2 a c c e l e r a t i o n = s e l f . p l aye r . g e t_acc e l e r a t i on ()
3 s tee r_va lue = s e l f . p l aye r . get_contro l () . s t e e r
4 th ro t t l e_va lue = s e l f . p l aye r . get_contro l () . t h r o t t l e
5 brake_value = s e l f . p l aye r . get_contro l () . brake
6 l o c a t i o n = s e l f . p l aye r . ge t_ locat ion ()
7 v e l o c i t y = s e l f . p l aye r . g e t_ve loc i ty ()
8 trans form = s e l f . p l aye r . get_transform ()
9 yaw = transform . r o t a t i o n . yaw

10 yaw_rate = s e l f . p l aye r . get_angular_ve loc i ty () . z
11 yaw_rate = yaw_rate ∗ math . p i /180
12 yaw = yaw ∗ math . p i /180

1 whi le True :
2 c l o ck . tick_busy_loop (60)
3 i f c o n t r o l l e r . parse_events (world , c l o ck) :
4 re turn
5 world . t i c k (c l o ck)
6 world . render (d i sp l ay)
7 pygame . d i sp l ay . f l i p ()
8

9 g l o b a l start_time
10 g l o b a l durat ion
11 current_time = time . time ()

30

Interface Co-Simulation Design

12

13 i f current_time − start_time > durat ion :
14 break
15 world . get_state ()
16

17 time . s l e e p (0 . 1)

31

Chapter 3

Different Control Strategies
in Simulation for Path
Tracking

3.1 PID Path Tracking Lateral Control
Using PID control for vehicle management is a much more straightforward method
compared to other types of control methods. As explained above, the objective in
PID applications is to minimize the instantaneous error. To be able to perform any
maneuver we want with the vehicle, we need to ensure both lateral and longitudinal
control. Therefore, to provide lateral control, we must supply the correct δf data
to the vehicle, and to provide longitudinal control, we must provide the correct
ax data to the vehicle. Since ax data cannot be directly given to the vehicle,
we use the throttle-brake acquisition method utilizing acceleration described in
the system-identification section. To find these data, we need a reference. We
obtained our references through the autonomous driving mode provided by the
Carla simulator. This process will be explained in detail below. Additionally, to
obtain the δf data, we use a reference matrix of size N × 3 consisting of x position,
y position, and yaw angle, while for obtaining ax data, a matrix of size N × 1
consisting of Vx reference speeds is created. These references are compared with
the data we receive from the vehicle instantaneously to create instant error values.
These instant error values are ect or eh for δf , and for ax, it is the difference between
speeds. To reduce these two different error data, we need two different controllers.
These two different PID controllers have different parameters. These parameters
were obtained through trial and error. Normally, there are many methods to find
the PID parameters as explained above, but since our system is not a linear system,

32

Different Control Strategies in Simulation for Path Tracking

the most straightforward way is trial and error. After the PID controller, the
necessary data is given to the vehicle we created in the Carla environment, and
the simulation is ready. All the blocks used in this application will be explained in
detail.

Figure 3.1: PID Control Simulink Model

3.1.1 PID Control
PID control is a commonly used term to describe a control system consisting of
three components, which are the proportional (P), integral (I), and derivative (D)
terms [27]. These terms form the basis of the standard three-term controller, with
each letter in "PID" representing one of these components. PID controllers are
widely employed in industrial settings and are often the central control element
in complex control systems. Despite advancements in technology, the three-term
PID controller has remained relevant, transitioning from analog to digital control
systems seamlessly. It was one of the first controllers to be mass-produced for use
in the process industries. The introduction of the Laplace transform facilitated
the study of feedback control system performance, contributing to the widespread
adoption of PID control in engineering. Theoretical analysis of PID control perfor-
mance is greatly facilitated by the straightforward representation of an integrator
using [1/s] and a differentiator using [s] in the Laplace transform. Conceptually,
the PID controller is quite sophisticated and can be represented in three different
ways.

Firstly, there is a symbolic representation (Figure 3.2), where each of the three
terms can be adjusted to achieve different control actions. Secondly, there is a time-
domain operator form (Figure 3.3), and finally, there is a Laplace transform version
of the PID controller (Figure 3.4). This provides the controller with an s-domain

33

Different Control Strategies in Simulation for Path Tracking

operator interpretation and enables the discussion of PID controller performance
to include the link between the time domain and the frequency domain.

Figure 3.2: Symbolic
Representation of PID
Paramters

Figure 3.3: Time Do-
main Operator Form of
PID Parameters

Figure 3.4: Laplace
Transform of PID Parame-
ters

• Symbolic forms: e, uc

• Time domain forms: e(t), uc(t)

• Laplace domain forms: E(s), Uc(s)

• Kp: Proportional Gain

• Ki: Integral Gain

• Kd: Derivative Gain

The proportional term generates a control signal directly proportional to the
magnitude of the current error. The integral term accounts for the accumulated
error over time, contributing this cumulative error to the control signal. The
derivative term calculates the rate of change of the error, incorporating this rate
into the control signal to respond more quickly to rapidly changing errors. By
integrating these three terms, PID control achieves the fastest and most precise
adjustment to the desired target.

The mathematical expression of PID control in the time domain can be expressed
as follows:

u(t) = Kpe(t) +Ki

Ú
e(t) dt+Kd

de

dt
(3.1)

34

Different Control Strategies in Simulation for Path Tracking

It is crucial to accurately adjust PID parameters. At this juncture, there are
several distinct methods for tuning PID parameters. These include trial and error,
the Ziegler-Nichols method, the Cohen-Coon method, and automatic tuning algo-
rithms. Choosing among these methods entirely depends on the application at hand.

Ziegler-Nichols method: The Ziegler–Nichols technique is a widely used
approach for adjusting the gains of P, PI, and PID controllers [28]. Initially, this
method involves setting both integral and derivative gains to zero and incrementally
increasing the proportional gain until the system reaches instability. The propor-
tional gain at the brink of instability is referred to as KMAX, with f0 denoting
the oscillation frequency at this point. Subsequently, the method reduces the
proportional gain by a specific amount and determines the integral and differential
gains based on f0. The gains for P, I, and D are then established in accordance
with a designated table.

Kp Ki Kd

P controller 0.5KMAX 0 0
PI controller 0.45KMAX 1.2f0 0

PID controller 0.6KMAX 2f0 0.125/f0

Tuning rules are highly effective for systems equipped with an analog controller,
characterized by linearity, monotonic behavior, and a slow response. These rules
excel in scenarios where the system’s response is primarily governed by a single-pole
exponential "lag" or exhibits behavior closely resembling one [29].

Cohen-Coon method: The Cohen-Coon tuning method addresses the sluggish
steady-state response observed with the Ziegler-Nichols technique, especially in
systems where there’s a significant dead time or process delay compared to the
open-loop time constant. It’s particularly practical for cases with a substantial
process delay, as smaller delays might lead to the prediction of excessively high
controller gains. This method is specifically tailored for first-order models that
include time delay, recognizing that the controller’s response to disturbances is
not immediate but progressive, as opposed to an instantaneous step disturbance
[30]. The Cohen-Coon tuning approach is considered an ’offline’ tuning method,
which allows for the introduction of a step change to the system’s input once it has
reached a steady state. Following this step change, the system’s output is observed
and measured in terms of the time constant and the time delay. This measured
response is then utilized to calculate the initial control parameters.

In the Cohen-Coon method, specific predefined settings aim to achieve minimal
offset and a standard Quarter Decay Ratio (QDR) of 1/4. The Quarter Decay

35

Different Control Strategies in Simulation for Path Tracking

Ratio signifies a damping characteristic where the amplitude of each successive
oscillation decreases to a quarter of the amplitude of the preceding oscillation.
These predetermined settings, which help attain the desired decay ratio and minimal
offset, are detailed in a specific table.

Kc Ti Td

P P
NL

1
1 + R

3

2
0 0

PI P
NL

1
0.9 + R

12

2
L(30+3R)

9+20R 0
PID P

NL

1
1.33 + R

4

2
L(30+3R)

9+20R
4L

11+2R

Where:

• P : percent change of input

• N : Percent change of output / τ

• L: τdead

• R: τdead/τ

PID controllers are extensively utilized across diverse engineering disciplines,
playing a crucial role in addressing real-time engineering challenges by ensuring
rapid and uniform system responses [31]. Within power systems, they are essential
for controlling system behaviors, thereby contributing significantly to technological
progress and societal development [32]. In industrial settings, PID controllers
are valued for their ability to maintain stability, demonstrate favorable transient
characteristics, and possess a straightforward and understandable configuration
[33]. Their widespread adoption in engineering practices can be attributed to their
simplicity, tolerance to modeling inaccuracies, and ease of use [34]. Specifically,
in the context of electro-hydraulic servo systems, PID controllers are enhanced
through various techniques, including parameter optimization, real-time adjust-
ment methods, and integrated control approaches, to achieve exceptional accuracy,
robustness, and swift reaction times [35].

The main sectors where PID controller is used are:

• Manufacturing Industry: PID controllers are used to conveniently control
parameters such as temperature, pressure, speed in manufacturing processes.
For example, plastic injection and metal casting processes require precise
temperature control to achieve the desired quality.

36

Different Control Strategies in Simulation for Path Tracking

• Automation Systems: PID controllers are used to control precise position
and speed in automated assembly lines, robotic systems and other automation
applications.

• Process Control: PID controllers are used to control important process
variables such as liquid levels, pH levels, and chemical reaction rates in
industries such as food processing, oil refining, and chemicals.

• Energy Production and Distribution: PID controllers are very important
to ensure the balance of production and consumption in power plants and
electricity distribution networks and to maintain the stability of the network.

• HVAC (Heating, Ventilation and Air Conditioning) Systems: Indoor
temperature, humidity and air quality are controlled by PID controllers. These
systems provide precise control to maximize energy consumption and at the
same time maintain comfort levels.

• Space and Aviation: PID controllers are extremely precise and reliable for
applications such as satellite positioning systems, orbital control of spacecraft
and autopilot systems of aircraft.

• Vehicle Control Systems: Safety systems such as ABS (Anti-Lock Braking
System) and ESP (Electronic Stability Program) direct the behavior of the
vehicle as desired using PID controllers.

3.1.2 Finding The Closest Point In The Road
In path tracking applications, especially when utilizing PID controllers, it is crucial
to accurately follow a predetermined path. The effectiveness of the tracking can
be significantly influenced by how well the vehicle or object adheres to a reference
trajectory. The MATLAB function ref_gen plays a pivotal role in this process
by generating a reference pose from the reference trajectory based on the current
position of the vehicle or object.

1 f unc t i on re f_pose = ref_gen (re f_tr , pose_f)

The ref_gen function is designed to select the most relevant reference pose
from a set of trajectory points. This selection is crucial for the PID controller to
compute the necessary adjustments to minimize the deviation from the path.

• ref_tr: This input argument represents the reference trajectory, a matrix
where each row corresponds to a point along the trajectory, with columns
typically representing the x and y coordinates of these points.

37

Different Control Strategies in Simulation for Path Tracking

• pose_f: This input denotes the current pose of the vehicle or object, usually
a vector containing at least the current x and y positions.

1. Determine the Number of Points in the Trajectory
(N = size(ref_tr,1);)
This step calculates the number of points (N) in the reference trajectory by
assessing the first dimension (rows) of ref_tr.

2. Calculate Distances Between Each Trajectory Point and the Current Pose

1 (d i s = vecnorm (re f_t r (: , 1 : 2) ’ − pose_f (1 : 2) ∗ ones (1 ,N)) ;)

Here, the Euclidean distance between each point on the reference trajectory and
the vehicle’s current position is calculated. This is achieved by subtracting
the vehicle’s position replicated N times (to match the trajectory points’
dimensions) from each trajectory point and computing the norm of the resulting
vectors, resulting in a distance vector dis.

3. Identify the Closest Trajectory Point
([,c] = min(dis);)
This step locates the index (c) of the smallest value in dis, indicating the
trajectory point closest to the vehicle’s current pose.

4. Select the Reference Pose
(ref_pose = ref_tr(c,:)’;)
The function then selects the closest trajectory point using the index c,
assigning it as ref_pose. This output is a vector representing the x and y
coordinates (and potentially additional information if included in ref_tr) of
the closest point on the reference trajectory to the vehicle’s current location.

In conclusion, The ref_gen function is integral to path tracking in control
applications, providing a dynamic reference pose that guides the PID controller’s
adjustments. Determining the closest point on the reference trajectory to the
current position ensures that the control strategy remains focused on minimizing
path deviations, thereby enhancing tracking accuracy and efficiency.

1 f unc t i on re f_pose=ref_gen (re f_tr , pose_f)
2 N=s i z e (re f_tr , 1) ;
3 % r e f e r e n c e t r a j e c t o r y c l o s e s t po int to the v e h i c l e
4 d i s=vecnorm (re f_t r (: , 1 : 2) ’−pose_f (1 : 2) ∗ ones (1 ,N)) ;
5 [~ , c]=min (d i s) ;

38

Different Control Strategies in Simulation for Path Tracking

6 re f_pose=re f_t r (c , :) ’ ;
7

8 end

3.1.3 Finding The Instantaneous Error
Heading and cross tracking errors can be suitably used for lane keeping control.

Figure 3.5: Cross-Track and Heading Error representation in Reference Trajectory

• Heading error eh: angle between the vehicle longitudinal axis and the
reference direction.

• Cross-track error ect: displacement from the center of the vehicle front axle
to the closest point on the trajectory.

To calculate the two errors, we establish the following metrics:

• pa=̇(Xa, Ya, ψ): vehicle front axle pose

• pr=̇{p1r, . . . , pNr}: reference trajectory

• pir=̇(Xir, Yir, ψir) ∈ pr: reference pose

• (XC
r , Y

C
r): trajectory point closest to the vehicle:

c = arg min
i

ñ
(Xr

i −Xa)2 + (Y r
i − Ya)2

• ψcr: corresponding reference yaw angle

39

Different Control Strategies in Simulation for Path Tracking

• Heading error: eh=̇ψcr − ψ.

• Cross-track error: ect=̇(Y c
r −Ya) cosψcr−(Xc

r −Xa) sinψcr is the signed distance
between the vehicle and the reference trajectory

Define the 3D vectors:

• ρ=̇

X
c
r −Xa

Y c
r − Ya

0

 vector from (Xa, Ya) to (Xc
r , Y

C
r)

• ξ=̇

cosψcr
sinψcr

0

 reference direction of motion.

Their cross-product is ξ × ρ =

 0
0
ect

.

Since ξ and ρ are orthogonal, ∥ξ × ρ∥ = ∥ξ∥∥ρ∥ = ∥ρ∥. Hence;

|ect| = ∥ρ∥ =
ñ

(Xc
r −Xa)2 + (Y c

r − Ya)2

The sign of ect is as follows:

• vehicle on the left of the reference trajectory → ect < 0

• vehicle on the right of the reference trajectory → ect > 0.

The MATLAB function errors is designed to calculate two types of errors in
path-tracking applications, particularly for systems utilizing PID control: the cross-
track error (ect) and the heading error (eh). These errors are essential for adjusting
the control inputs to minimize deviations from a desired path and orientation.

In conclusion, the errors function is a pivotal component in path-tracking
control systems, providing essential metrics for error correction. Calculating both
cross-track and heading errors, enables a PID controller or any other control
strategy to correct positional and orientational deviations effectively. This dual-
error approach ensures that the vehicle not only remains on the desired path but
also maintains the correct orientation throughout its trajectory, which is critical for
navigation precision and operational efficiency in autonomous or semi-autonomous
vehicles.

40

Different Control Strategies in Simulation for Path Tracking

3.1.4 Creating Carla Environment
To create a Carla environment, the Matlab s-function block is utilized. This block
has three inputs and two outputs. The inputs are throttle-brake and steering angle,
while the outputs are instant position and speed data. The vehicle is spawned at
our starting point in the reference location. The steering angle is matched to the δf
data we receive instantaneously using the control.steering command, while the
throttle/brake data are obtained using the control.throttle and control.brake
commands. After these values are found, they are applied to the vehicle with the
apply.control command. The output values mentioned above are the same as
the commands in the reference acquisition section, obtaining instant position in a
1 × 3 matrix and instant speed in a 1 × 1 matrix format. These matrices are then
given as outputs. At the end of the application, the vehicle is removed from the
map.

1 c l a s s d e f Carla_enviroment_both < matlab . System
2 % Carla Enviroment f o r Late ra l Control
3

4 % Public , tunable p r o p e r t i e s
5 p r o p e r t i e s
6 s t e e r ingang l e_ input =0;
7 th ro t t l e_ input = 0 ;
8 brake_input =0;
9

10 end
11

12 p r o p e r t i e s (D i s c r e t e S t a t e)
13

14 end
15

16 % Pre−computed cons tant s
17 p r o p e r t i e s (Access = pr i va t e)
18 car ;
19 end
20

21 methods (Access = protec ted)
22 f unc t i on setupImpl (obj)
23 % Perform one−time c a l c u l a t i o n s , such as computing

cons tant s
24 port = int16 (2000) ;
25 c l i e n t = py . c a r l a . C l i en t (’ l o c a l h o s t ’ , port) ;
26 c l i e n t . set_timeout (1 0 . 0) ;
27 world = c l i e n t . get_world () ;
28

29 % Spawn Veh ic l e
30 b l u ep r i n t _ l i b r a r y = world . ge t_b luepr in t_l ib ra ry () ;

41

Different Control Strategies in Simulation for Path Tracking

31 c a r _ l i s t = py . l i s t (b l u ep r i n t _ l i b r a ry . f i l t e r (" l eon ")) ;
32 car_bp = c a r _ l i s t {1} ;
33 spawn_point = py . random . cho i c e (world . get_map () .

get_spawn_points ()) ;
34 spawn_point . l o c a t i o n . x = −111.1204;
35 spawn_point . l o c a t i o n . y = 72 . 8989 ;
36 spawn_point . l o c a t i o n . z = 0 . 6 ;
37 spawn_point . r o t a t i o n . yaw = 85 . 6422 ;
38

39 obj . car = world . spawn_actor (car_bp , spawn_point) ; %%
spawn the car

40 obj . car . s e t_autop i l o t (f a l s e)
41

42 end
43

44 f unc t i on [curr_pos i t ion , v e l] = stepImpl (obj ,
s t ee r ingang l e_input , throt t l e_input , brake_input)

45 %
46 pause (0 . 0 0 1) ;
47

48 veh ic l e_trans form = obj . car . get_transform () ;
49 o r i e n t a t i o n = veh ic l e_trans form . r o t a t i o n ;
50

51 x_pos i t ion = obj . car . ge t_locat ion () . x ;
52 y_pos i t ion = obj . car . ge t_locat ion () . y ;
53 % cur r_ve l o c i ty = obj . car . g e t_ve loc i ty . x () ; %% x

rep r e s en t l o n g i t u d i n a l y , l a t e r a l
54 c o n t r o l = obj . car . get_contro l () ;
55 c o n t r o l . s t e e r = rad2deg (s t e e r ingang l e_ input) /70 ;
56 c o n t r o l . t h r o t t l e = thro t t l e_ input ;
57 c o n t r o l . brake = brake_input ;
58 obj . car . apply_contro l (c o n t r o l) ;
59

60

61 % yaw_angle = double (o r i e n t a t i o n . yaw) ;
62 yaw_angle = double (deg2rad (o r i e n t a t i o n . yaw)) ;
63

64 cur r_pos i t i on = [x_posit ion , y_posit ion , yaw_angle] ’ ;
65 ve l = obj . car . g e t_ve loc i ty () . x ;
66

67 end
68

69 f unc t i on [d i s tance , v] = isOutputComplexImpl (~)
70 d i s t anc e = f a l s e ;
71 v = f a l s e ;
72

73 end
74

75 f unc t i on [d i s tance , v] = getOutputSizeImpl (~)

42

Different Control Strategies in Simulation for Path Tracking

76 d i s t anc e = [3 , 1] ;
77 v = [1 , 1] ;
78

79

80 end
81

82 f unc t i on [d i s tance , v] = getOutputDataTypeImpl (~)
83 d i s t anc e = ’ double ’ ;
84 v = ’ double ’ ;
85

86

87 end
88

89 f unc t i on [d i s tance , v] = isOutputFixedSizeImpl (~)
90 d i s t anc e = true ;
91 v=true ;
92

93 end
94

95 f unc t i on re s e t Imp l (~)
96 % I n i t i a l i z e / r e s e t d i s c r e t e −s t a t e p r o p e r t i e s
97 end
98 end
99

100 methods (Access= pub l i c)
101 f unc t i on d e l e t e (obj)
102 % Delete the car from the Carla world
103 i f ~ isempty (obj . car)
104 obj . car . des t roy () ;
105 end
106 end
107 end
108 end

3.1.5 PID Values
While applying the PID control method, the most important aspect is finding the
appropriate parameters. These parameters can be determined for a linear model
using different calculation methods, which have been described in detail. However,
our model is nonlinear, making it impossible to use these methods. Therefore,
through the method of trial and error that I last described, different parameters
have been calculated for each scenario. This is because a single set of parameters
does not fit all scenarios, leading to the necessity of computing scenario-specific
parameters. The parameters found are shown separately for each scenario;

43

Different Control Strategies in Simulation for Path Tracking

Table 3.1: PID Values for Steering and Throttle in First Scenario

Scenario I
Steering Throttle

P 1 1
I 0.1 0.05
D 0.5 2

Table 3.2: PID Values for Steering and Throttle in Second Scenario

Scenario II
Steering Throttle

P 1 0.5
I 0.1 0.5
D 0.5 0.05

3.2 NMPC Path Tracking
In this application, the primary goal is to move the vehicle along a predetermined
trajectory and optimize this process. For this purpose, we first need a reference.
Unlike the PID application, this reference is obtained by manually driving the
vehicle in the Carla simulator environment. To create two different scenarios, data
has been collected by requiring the vehicle to perform different maneuvers from
two different starting points. The gathered references are made suitable through
a reference generator before being fed to the NMPC controller. This process
essentially involves segmenting the reference trajectory according to the reference
speed. After this process, the generated reference and the vehicle’s real-time data
are provided to the controller for use in NMPC. The NMPC controller uses the
single-track model as the vehicle model. Hence, our NMPC controller produces two
outputs. The first is the steering angle, δf . The other output, ax, is transformed
into throttle and brake inputs and given to the Carla environment. All the blocks
used in this application will be explained in detail.

44

Different Control Strategies in Simulation for Path Tracking

Figure 3.6: NMPC Control Simulink Model

3.2.1 NMPC Control
Model Predictive Control (MPC) is highly regarded for its versatility and effec-
tiveness in a broad spectrum of industrial and technological settings. This is
largely due to its proficiency in crafting control strategies for systems with multiple
variables, accommodating constraints related to states, inputs, and outputs. To
address the challenges posed by nonlinear dynamics, constraints, and non-convex
performance indices, Nonlinear Model Predictive Control (NMPC) strategies have
been developed [36], [37]. The NMPC method represents a significant challenge
in its industrial application due to the difficulties in ensuring an adequately op-
timal solution to the optimization problem within the constraints of real-time
requirements. Research into nonlinear optimal control began in the 1950s and
1960s, quickly leading to pivotal developments such as the maximum principle
and dynamic programming. The practical implementation of Nonlinear Model
Predictive Control (NMPC), particularly in optimal control, greatly simplifies the
control design process for large and complex systems, positioning it as a compelling
choice among various alternatives. However, this nonlinear control approach faces
numerous obstacles, including implementation challenges in real-time embedded
controllers, the application of nonlinear dynamic systems, and the estimation of
states. The nonlinear nature of the problem may necessitate a substantial number
of computations at each sampling moment due to the potential for multiple local
minimum solutions, without ensuring the attainment of the best possible optimal
solution. Consequently, NMPC requires the iterative resolution of an optimal con-
trol problem at each sampling instant in a receding horizon manner. Regrettably,
there’s no assurance that this receding horizon strategy of implementing a series of

45

Different Control Strategies in Simulation for Path Tracking

open-loop optimal control solutions will perform effectively or remain stable when
applied to the closed-loop system. Nevertheless, in recent years, advancements in
nonlinear optimization algorithms have led to the development of efficient NMPC
implementations suitable for real-time applications (see, e.g., [38, 39, 40, 41]).

Delving further into the details, Nonlinear model predictive control (NMPC)
represents a versatile and comprehensive method for controlling nonlinear systems.
The methodology is for every time interval:

• A prediction is made for a specified period which is called prediction horizon
using the system’s model.

• The control input is selected based on the outcome that most closely aligns
with the target performance which is called ‘best prediction’, achieved through
an online optimization process.

NMPC enables the handling of constraints on inputs, states, and outputs, while
systematically managing the balance between performance and control effort.

When we compare NMPC with Linear Quadratic Regulator (LQR) control,
NMPC represents a nonlinear, finite-horizon variant of the LQR control.

NMPC can be used in automotive and aerospace systems, chemical operations,
robotics, medical devices, and more.

When we consider the MIMO nonlinear system:

ẋ = f(x, u) (3.2)

y = h(x, u) (3.3)

where x ∈ Rn is the state, u ∈ Rnu is the command input and y ∈ Rny is the
output.

Extending this concept to time-varying systems is direct and uncomplicated.
Assume the state is monitored in real time, using a sampling interval Ts. The

measurements are:
x(tk), tk = Tsk, k = 0, 1, 2, . . .

If the state isn’t directly measured, the use of an observer or a model in the
input-output format is required.

NMPC relies fundamentally on two principal actions: prediction and optimiza-
tion.

At each time step t = tk, predictions for the system’s state and output are made
for the interval [t, t+ Tp]

46

Different Control Strategies in Simulation for Path Tracking

• The prediction is derived through the process of integration for the (For-
mula 3.2).

• Tp ≥ Ts is called the prediction horizon.

At any given moment τ within the interval [t, t+ Tp], the predicted output ŷ(τ)
is determined by the ’initial’ state x(t) and the input signal:

ŷ(τ) ≡ ŷ(x(t), u(t : τ))

where u(t : τ) denotes a generic input signal in the interval [t, τ].
Within the time frame [t, t+ Tp], u(τ) acts as an open-loop input, meaning it

does not rely on x(τ).

Figure 3.7: NMPC Control Parameters

At every moment t = tk, we search for an input signal u(t : τ) = u∗(t : τ),
aiming for a prediction that

ŷ(x(t), u∗(t : τ)) ≡ ŷ(u∗(t : τ)) (3.4)

matches the desired behavior within the interval τ ∈ [t, t+ Tp].
The notion of desired behavior is formalized through the definition of the

objective function:

J(u(t : t+ Tp)) =
Ú t+Tp

t

1
∥ŷp(τ)∥2

Q + ∥u(τ)∥2
R

2
dτ + ∥ŷp(t+ Tp)∥2

P (3.5)

where ŷp(τ) = r(τ) − ŷ(τ) represents the predicted tracking error, with r(τ) ∈ Rny

being a reference signal to follow. The notation ∥·∥X denotes weighted vector

47

Different Control Strategies in Simulation for Path Tracking

norms, and their integrations represent (square) signal norms.

The input signal u∗(t : t+Tp) is chosen as one minimizing the objective function
J(u(t : t+ Tp)).

The objective is to minimize, at each time tk, the square norm of the tracking
error ∥ŷp(τ)∥2

Q = ∥r(τ) − ŷ(τ)∥2
Q over a finite time period.

The term ∥ŷp(t+ Tp)∥2
P emphasizes the significance of the final tracking error.

The term ∥u(τ)∥2
R enables the management of the trade-off between performance

and command activity. The square weighted norm of a vector v ∈ Rn defined as;

∥v∥2
Q = vTQv =

nØ
i=1

qiv
2
i , Q = diag(q1, . . . , qn) ∈ Rn×n, qi ≥ 0. (3.6)

The tracking error ŷp(τ) = r(τ) − ŷ(τ) is dependent on ŷ(τ), which is derived
through integration of first formula.

Therefore, the minimization of J is subject to constraints:

ẋ(τ) = f(x̂(τ), u(τ)), x̂(τ) = x(t), τ ∈ [t, t+ Tp] (3.7)
ŷ(τ) = h(x̂(τ), u(τ)) (3.8)

Additional constraints may also apply such as obstacles and collision avoidance;

• the predicted state/output: ẋ(τ) ∈ Xc, ŷ(t) ∈ Yc, τ ∈ [t, t+ Tp]

• The input such as saturation input: u(τ) ∈ Uc, τ ∈ [t, t+ Tp]

At every time t = tk, for τ ∈ [t, t + Tp] the following optimization problem is
addressed:

u∗(t : t+ Tp) = arg min
u(.)

J(u(t : t+ Tp)) (3.9)

subject to:

˙̂x(τ) = f(x̂(τ), u(τ)), (3.10)
x̂(τ) = x(t) (3.11)
ŷ(τ) = h(x̂(τ), u(τ)) (3.12)
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc (3.13)

where Ts is the sampling time, Tp is the prediction horizon, with 0 ≤ Ts ≤ Tp.

Second optimization problem (Formula 3.11):

48

Different Control Strategies in Simulation for Path Tracking

• is in general non-convex;

• must be solved on-line, at each time tk.

J is dependent on the signal u(·). Given that a signal is a function of time, J
represents a function of a function. This type of mathematical object is frequently
referred to as a functional.

Efficient numerical algorithms can be employed to solve the (Formula 3.11).
There are no assurances of finding a global minimum; generally, they yield a local
minimum. From the perspective of control performance, a local minimum can be
deemed satisfactory.

When examining the receding horizon strategy:
Assume that, at time t = tk, the optimal input signal u∗(t : t + Tp) has been

determined by solving the aforementioned optimization problem.

• u∗(t : t+ Tp) is an open-loop input: it is contingent on x(t) but not on x(τ),
for τ > t.

• If u∗(t : t+ Tp) is applied throughout the entire interval [t, t+ Tp], it does not
enact a feedback mechanism, thereby lacking the ability to enhance precision,
mitigate errors and disturbances, or adjust to changing scenarios.

The NMPC feedback control algorithm is realized through the implementation
of what is known as a receding horizon strategy:

1. At time t = tk:

(a) compute u∗(t : t+ Tp) by solving the (Formula 3.11);
(b) apply only the first input value: u(τ) = u∗(t = tk) and keep it constant

for ∀τ ∈ [tk, tk+1].

2. Repeat steps 1a-1b for t = tk+1, tk+2, . . .

When examining the closed-loop scheme:
Plant: ẋ = f(x, u), y = h(x, u)

NMPC: on-line solution of the (Formula 3.11) and receding horizon strategy.

• The NMPC algorithm incorporates a plant model, which is utilized for making
predictions.

49

Different Control Strategies in Simulation for Path Tracking

• The prediction model takes the form ˙̂x(τ) = f(x̂(τ), u), ŷ = h(x̂(τ), u),
where f ≈ f , and h ≈ h.

• Simplified models (f, h) are frequently employed.

• In the nominal case, f = f , h = h.

Figure 3.8: NMPC Control Scheme

When examining the choosing of the parameters:

• Ts: In numerous scenarios, the sampling time is predetermined and not
selectable. If it is possible to choose, a trial and error method in simulation
may be utilized, bearing in mind that Ts ought to be:

• sufficiently small to effectively manage the plant dynamics, as per the
Nyquist-Shannon sampling theorem;

• not excessively small, to prevent numerical issues and slow down compu-
tation.

• Tp: It can be selected via a trial and error process in simulation, taking into
account that

• a ’large’ Tp enhances the stability properties of the closed-loop system;
• a ’too large’ Tp might diminish the accuracy of short-term tracking.

• Choosing Q, R, P values can be similar to the parameters in LQR/LQRY.

Initial selection: Assuming that all variables exhibit similar ranges of variation,
Q, R, and P can be selected as diagonal, non-negative matrices, with:

Qii =

> 0 when there are specific requirements on yi

= 0 otherwise

Pii =

> 0 when there are specific requirements on yi

= 0 otherwise

Rii =

> 0 when there are specific requirements on ui

≈ 0 otherwise

50

Different Control Strategies in Simulation for Path Tracking

Trial and error (in simulation): Adjust the values of Qii, Rii, and Pii until the
requirements are met.

Action Effect Purpose

increasing Qii,
Pii

→ decreasing the energy of
xi, yi

→
to minimize oscillations
and shorten convergence

time.

increasing Rii → decreasing the energy of
ui

→
to decrease command

effort and ’energy
consumption

When examining the advantages and disadvantages of NMPC controller;

Advantages:

• General and flexible, suitable for complex MIMO (Multiple Input Multiple
Output) systems.

• The formulation is intuitive, grounded in concepts of optimality.

• Incorporates constraints and input saturation, with the capacity for these
elements to vary over time.

• Effectively handles the trade-off between performance and input activity.

• Determines optimal trajectories over a finite time period.

• Provides a unified approach for computing both the optimal trajectory and
the control law.

Disadvantages:

• Involves a high computational cost for online processing.

• The optimization problem may encounter local minima.

• Faces issues with unstable zero-dynamics, similar to all methods.

3.2.2 Finding The Closest Point In The Road
This code is designed to generate reference positions and orientations for a vehicle
to follow a pre-collected reference path (x and y position information), using the
vehicle’s current position and speed. The function is intended to be used within a

51

Different Control Strategies in Simulation for Path Tracking

MATLAB Function block in Simulink. Let’s explain its functionality step by step:

Inputs:

• Np: A parameter determining the number of reference points the vehicle is
expected to follow over a future time interval, calculated based on the reference
speed.

• ref_tr: The pre-collected reference path, a matrix where each row contains
the x and y positions of a reference point.

• ze: A vector containing the current pose of the vehicle (x, y positions, and
orientation).

Finding the Closest Point on the Reference Trajectory:

• The function first calculates the distance between the vehicle’s current position
and each point on the reference path. This is done by taking the vector norm
of the difference between the vehicle’s current x and y coordinates and the x
and y coordinates of the points on the reference path.

• It then finds the smallest of these distances (i.e., the closest reference path
point to the vehicle) and obtains the index (c) and coordinates (ref_pose) of
this point on the reference trajectory.

Selecting the Relevant Section of the Reference Trajectory:

• The vehicle is expected to follow the next Np points on the reference path,
according to its reference speed. This represents a path forward from the
vehicle’s current position, covering Np points on the reference trajectory.

• For this, the linspace function is used to select a total of NS + 1 evenly
spaced points between the current closest point (c) and c+Np − 1 (ir). Here,
NS is a fixed number (for example, 50), which allows for a smoother sampling
of the reference path.

Creating the Reference Vector:

• The x and y position information of these selected points (ref_XY0) is then
taken, and this information is reshaped and transferred into the output vector
ref. The reshape function is used to turn the ref_XY0 matrix into a single
column vector, which is provided as a reference to the Simulink model.

52

Different Control Strategies in Simulation for Path Tracking

This function is used to determine the reference path and orientation for a
vehicle to follow at a given speed over a specified time interval.

1 f unc t i on [r e f , re f_pose] = ref_gen (Np, re f_tr , ze)
2

3 N = s i z e (re f_tr , 1) ;
4 pose = ze (1 : 3) ;
5

6 % Point o f the r e f e r e n c e t r a j e c t o r y c l o s e s t to the v e h i c l e .
7 d i s = vecnorm (re f_t r (: , 1 : 2) ’ − pose (1 : 2) ∗ ones (1 , N)) ;
8 [~ , c] = min (d i s) ;
9 re f_pose = re f_t r (c , :) ’ ;

10

11 % Port ion o f the r e f e r e n c e t r a j e c t o r y corre spond ing to
12 % the time i n t e r v a l [t , t+Tp] at the speed vx_ref .
13 NS = 50 ;
14 i r = round (l i n s p a c e (c , c + Np − 1 , NS + 1)) ;
15 ref_XY0 = re f_t r (i r (1 :NS) , 1 : 2) ’ ;
16 r e f = reshape (ref_XY0 , 2 ∗ NS, 1) ;
17

18 end

3.2.3 Creating Carla Environment
The Matlab S-function block was used to create the Carla environment. As inputs,
it receives the throttle, brake, and δf commands from the NMPC controller. The
outputs include x position, y position, yaw angle, x velocity, y velocity, and yaw
rate. Initially, the vehicle is spawned at the same starting point as the reference.
Then, control commands for throttle, brake, and δf are provided. The vehicle will
move according to these commands. After the vehicle has moved, the data to be
collected for ze is obtained, and a ze matrix of size Nx6 is created and outputted.
At the end of the simulation, the vehicle is removed from the map.

1 c l a s s d e f Carla_enviroment_nmpc < matlab . System
2 % Carla Enviroment f o r Late ra l Control
3

4 % Public , tunable p r o p e r t i e s
5 p r o p e r t i e s
6 s t e e r ingang l e_ input =0;
7 th ro t t l e_ input = 0 ;
8 brake_input = 0 ;
9 end

10

53

Different Control Strategies in Simulation for Path Tracking

11 p r o p e r t i e s (D i s c r e t e S t a t e)
12

13 end
14

15 % Pre−computed cons tant s
16 p r o p e r t i e s (Access = pr i va t e)
17 car ;
18 end
19

20 methods (Access = protec ted)
21 f unc t i on setupImpl (obj)
22 % Perform one−time c a l c u l a t i o n s , such as computing

cons tant s
23 port = int16 (2000) ;
24 c l i e n t = py . c a r l a . C l i en t (’ l o c a l h o s t ’ , port) ;
25 c l i e n t . set_timeout (1 0 . 0) ;
26 world = c l i e n t . get_world () ;
27

28 % Spawn Veh ic l e
29 b l u ep r i n t _ l i b r a r y = world . ge t_b luepr in t_l ib ra ry () ;
30 c a r _ l i s t = py . l i s t (b l u ep r i n t _ l i b r a ry . f i l t e r (" l eon ")) ;
31 car_bp = c a r _ l i s t {1} ;
32 spawn_point = py . random . cho i c e (world . get_map () .

get_spawn_points ()) ;
33

34

35 spawn_point . l o c a t i o n . x = −113.648;
36 spawn_point . l o c a t i o n . y = −14.281;
37 spawn_point . l o c a t i o n . z = 0 . 6 ;
38 spawn_point . r o t a t i o n . yaw = 90 ;
39

40 obj . car = world . spawn_actor (car_bp , spawn_point) ; %%
spawn the car

41 obj . car . s e t_autop i l o t (f a l s e)
42

43

44 end
45

46 f unc t i on [ze] = stepImpl (obj , s t ee r ingang l e_input ,
throt t l e_input , brake_input)

47

48 veh ic l e_trans form = obj . car . get_transform () ;
49 o r i e n t a t i o n = veh ic l e_trans form . r o t a t i o n ;
50

51 x_pos i t ion = obj . car . ge t_locat ion () . x ;
52 y_pos i t ion = obj . car . ge t_locat ion () . y ;
53 x_ve loc i ty = obj . car . g e t_ve loc i ty () . x ;
54 y_ve loc i ty = obj . car . g e t_ve loc i ty () . y ;
55 w = obj . car . get_angular_ve loc i ty () . z∗ p i /180 ;

54

Different Control Strategies in Simulation for Path Tracking

56

57

58

59 c o n t r o l = obj . car . get_contro l () ;
60 c o n t r o l . s t e e r = rad2deg (s t e e r ingang l e_ input) /70 ;
61 c o n t r o l . t h r o t t l e = thro t t l e_ input ;
62 c o n t r o l . brake = brake_input ;
63 yaw_angle = double (deg2rad (o r i e n t a t i o n . yaw)) ;
64

65 ze = [x_posit ion , y_posit ion , yaw_angle , x_veloc ity ,
y_veloc ity ,w] ’ ;

66

67 obj . car . apply_contro l (c o n t r o l) ;
68

69 end
70

71 f unc t i on [d i s t ance] = isOutputComplexImpl (~)
72 d i s t anc e = f a l s e ;
73

74 end
75

76 f unc t i on [d i s t ance] = getOutputSizeImpl (~)
77 d i s t anc e = [6 , 1] ;
78

79

80 end
81

82 f unc t i on [d i s t ance] = getOutputDataTypeImpl (~)
83 d i s t anc e = ’ double ’ ;
84

85

86 end
87

88 f unc t i on [d i s t ance] = isOutputFixedSizeImpl (~)
89 d i s t anc e = true ;
90

91

92 end
93

94 f unc t i on re s e t Imp l (~)
95 % I n i t i a l i z e / r e s e t d i s c r e t e −s t a t e p r o p e r t i e s
96 end
97 end
98

99 methods (Access= pub l i c)
100 f unc t i on d e l e t e (obj)
101 % Delete the car from the Carla world
102 i f ~ isempty (obj . car)
103 obj . car . des t roy () ;

55

Different Control Strategies in Simulation for Path Tracking

104 end
105 end
106 end
107 end

3.2.4 NMPC Values
The most critical part of the control section is finding the correct values according
to the model after it has been created. With the right parameters, the desired
control can be achieved in the best way possible. For the NMPC method, control
parameters were determined using only the vehicle model created in Simulink.
Different reference δf and ax values were collected using a manual control method,
and based on this reference, the initial NMPC parameters were identified through
the Simulink model. Our vehicle model is similar to our model in Carla, but they
do not match perfectly; therefore, it has been understood that better parameters
can be obtained when used together with Carla. When readjusting the parameters,
our expectation was to find parameters that work for every simulation and result
in a faster vehicle. Thus, the best parameters obtained through trial and error are
shown below;

Table 3.3: NMPC Values

NMPC VALUES

R
C
0.1 0
0 1

D

Q 1000 ×
C
1 0
0 1

D

P 100 ×
C
1 0
0 1

D

56

Chapter 4

Simulation and Results

4.1 NMPC Path Tracking Results
Seeing the results of the simulation visually provides us with a general idea about
the success of the application, but sometimes this can be misleading. In addition,
the performance of the application can be interpreted differently by different
people. Whether the outcome of the application is valid for us should depend
on certain criteria. These criteria are called ‘key performance indicators’. If the
data we obtained on the simulation server meet these performance criteria, then
our application is considered successful. In our application, the key performance
criteria will be the cross-track error and heading error. Additionally, a comparison
between the reference position and the vehicle’s position will be made. However,
making comparisons based solely on these two criteria can be misleading. This is
because some controller values may show perfect performance in a specific scenario
while showing undesirable performance in another scenario. Therefore, the most
important key performance element is accuracy. Two different applications have
been made using the NMPC (Nonlinear Model Predictive Control) controller. The
reason for this is to demonstrate that NMPC parameters work effectively in every
scenario. Based on these performance criteria, results for two different scenarios
will be provided and interpreted in detail.

4.1.1 Scenario 1: Single Curve Long Straight Road
First, we must describe the scenario we will be conducting. It is crucial for
the vehicle to perform both turning and maintaining a steady course on a lane
smoothly, as these are the two most common maneuvers vehicles make. Moreover,
to observe the controller’s ability to perform these two movements consecutively
and simultaneously, a scenario has been created where we first make a turn and
then proceed along a lane. Carla Town10 has been used for this scenario. The

57

Simulation and Results

reason for choosing this map is its inclusion of both main streets and side streets,
requiring us to drive at different speeds. Additionally, since this map featuring
a flat environment keeps the z-axis in the reference system constant, it ensures
that the single-track model we used to create the vehicle model is more consistent.
The most critical aspect of this scenario was ensuring the vehicle did not skid or
depart from the lane while turning the curve and that it could adjust itself to the
ideal speed and continue at a steady pace after completing the turn. To better
understand the motion, some photos taken during the scenario have been shown in
Figures 4.1-4.2.

Figure 4.1: First Scenario Curve in Carla Simulator.

Figure 4.2: First Scenario Straight in Carla Simulator.

Secondly, we must examine our performance criteria. The most important of

58

Simulation and Results

our performance criteria is the Cross-track error (ect). This error can briefly be
described as the displacement from the center of the vehicle’s front axle to the
closest point on the trajectory. Another significant performance criterion is the
heading error (eh), which can be explained as the angle between the vehicle’s
longitudinal axis and the reference direction.

Seeing the vehicle’s movement within a reference system is crucial. This provides
us with information on how much the vehicle deviates from the reference system.
Therefore, data collected using the vehicle’s autonomous mode have been used as
a reference. This reference represents an ideal driving scenario. By placing this
reference drive into our coordinate system and overlaying the vehicle’s position data
obtained as a result of NMPC (Nonlinear Model Predictive Control) control, the
vehicle’s movement relative to the reference trajectory can be observed in Figure
4.3.

-120 -100 -80 -60 -40 -20 0 20 40

Location in x axis (m)

70

80

90

100

110

120

130

140

L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

NMPC Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.3: NMPC Trajectory Comparison

When examining the overall situation, the vehicle appears to follow the reference
trajectory well. Given the simulation duration is long and the trajectory is extensive,

59

Simulation and Results

such an overview can be misleading. To analyze the movement in detail, we can
divide the motion into two parts. First, we can separate the turning motion interval
[(-111,77)-(-60,136)] and the interval where the vehicle travels in a straight lane
[(-60,136)-(-20,136)]. We can examine our first interval in Figure 4.4.

-113 -112 -111 -110 -109 -108 -107 -106 -105

Location in x axis (m)

76

78

80

82

84

86

88

90

92

94

96

L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

NMPC Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.4: NMPC Trajectory Comparison in Curve

The issue of the vehicle missing the reference trajectory, especially at the
beginning of its turning movement, is observed when it curves. Naturally, this
reflects on the other error rates. The reason for this error is that in autonomous
mode, the vehicle follows a sharper reference trajectory, while our controller delivers
a smoother performance. Additionally, in autonomous mode, the vehicle responds
more aggressively to significant changes in the y-axis in Carla. This explains the
sharp reference value on the curve. The second interval is shown in Figure 4.5.

60

Simulation and Results

-71 -70 -69 -68 -67 -66 -65 -64 -63

Location in x axis (m)

126

128

130

132

134

136

138

140

142

144

146
L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

NMPC Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.5: NMPC Trajectory Comparison in Straight Road

It is observed that the vehicle misses the reference trajectory especially at the
beginning of the turning motion while taking the curve. Of course, this reflects
on the other error rates. The reason for this error is that while the vehicle in
autonomous mode draws a sharper reference trajectory, we receive a smoother
performance from our controller. Additionally, the vehicle in Carla’s autonomous
mode responds more sharply to large changes in the y-axis. This explains the sharp
reference value on the curve. If we examine the second interval;

61

Simulation and Results

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of samples()

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
e
rr

o
r(

m
)

Cross Track Error

Figure 4.6: Cross Track Error

The vehicle’s cross-track error (CTE), displayed in Figure 4.6, is observed to
reach its highest value at the beginning. This is attributed to the vehicle creating a
transient state initially, resulting in a deviation from the reference during the initial
inertia. This value at the start of the curve has been compensated throughout the
curve. At the end of the curve, the movement has changed, leading to a relatively
high value at the start of the other condition, but this value has been compensated
along the lane as well. When looking at the overall situation, the deviation values
are very small relative to the reference, and the vehicle’s performance can be
considered very good.

The illustration of the heading error is provided in Figure 4.7. Similar to the
cross-track error, it’s observed that the vehicle initially deviates due to a transient
state and then commits an error as its direction quickly changes at the start of the
curve. Of course, these values are in very small amounts. Likewise, there has been
a deviation during the transition to the second condition, which was subsequently
compensated for, resulting in a satisfactory outcome.

62

Simulation and Results

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of samples()

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
e
rr

o
r(

m
)

Heading Error

Figure 4.7: Heading Error

When we want to examine these errors numerically, we need to calculate the
RMS (Root Mean Square) value. The RMS value helps us understand the average
performance or effect of variable magnitudes, which is a fundamental tool for a
wide range of applications and analyses. Our calculated RMS values and Max
values for this scenario are presented in Tables 4.1 and 4.2.

Parameter RMS Value
RMS(Ect) 0.1292
RMS(Eh) 0.0174

Table 4.1: RMS Values of Ect and Eh in NMPC Control First Scenario.

63

Simulation and Results

Parameter MAX Value
MAX(Ect) 0.3491
MAX(Eh) 0.045

Table 4.2: MAX Values of Ect and Eh in NMPC Control First Scenario.

4.1.2 Scenario 2: Double Curve Long Straight Road
In the previous scenario, we examined how the vehicle would proceed in a straight
lane following a turning motion. This scenario will investigate the vehicle’s per-
formance in a scenario involving two consecutive turns. Therefore, Carla Town10
was used, and this time, a simulation environment was prepared for the vehicle
to navigate through a neighborhood. The vehicle’s performance in executing two
consecutive turning motions requires sharper outputs compared to a single smooth
turn. The most crucial point in this scenario is for the vehicle to complete the
second turn without skidding and while maintaining its speed after the first turn,
and then to steadily increase its speed along the road after the turn is completed.
Photos have been added to better understand the motion in Figures 4.8-4.9.

Figure 4.8: Second Scenario First Curve in Carla Simulator

64

Simulation and Results

Figure 4.9: Second Scenario Second Curve in Carla Simulator

When examining the vehicle’s deviation from the reference trajectory in Figure
4.10, it is observed that a satisfactory result has been achieved. The reason for this
is that working with a more regular reference is due to the reference vehicle moving
at a lower speed due to urban conditions. As seen, our controller has produced
good results, almost achieving a complete match.

-80 -60 -40 -20 0 20 40 60 80 100

Location in x axis (m)

25

30

35

40

45

50

55

60

65

70

L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

NMPC Drive Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.10: NMPC Trajectory Comparison

When we examine the cross-track error, depicted in Figure 4.11, generated based
on these values, we encounter similarly good performance. Although our error
amount increased due to the sudden changes we made during the turns, the error
was compensated along the straight road afterwards.

65

Simulation and Results

0 1000 2000 3000 4000 5000 6000 7000

Number of samples()

-0.4

-0.2

0

0.2

0.4

0.6

0.8

e
rr

o
r(

m
)

Cross Track Error

Figure 4.11: Cross Track Error

Figure 4.12 illustrates the heading error, which is a relatively more critical
criterion in this scenario because the direction of the vehicle changes much more
frequently. Consequently, the deviation amount is greater. When we examine
the graph, we observe that the vehicle’s deviation increases due to the directional
changes in the curve, and then the error is compensated along the straight road.

66

Simulation and Results

0 1000 2000 3000 4000 5000 6000 7000

Number of samples()

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

e
rr

o
r(

m
)

Heading Error

Figure 4.12: Heading Error

The data calculated on root-mean-square (RMS) and maximum errors are
presented in Tables 4.3 to 4.4.

Parameter RMS Value
RMS(Ect) 0.0851
RMS(Eh) 0.0488

Table 4.3: RMS Values of Ect and Eh in NMPC Control Second Scenario.

Parameter MAX Value
MAX(Ect) 0.7204
MAX(Eh) 0.091

Table 4.4: MAX Values of Ect and Eh in NMPC Control Second Scenario.

67

Simulation and Results

4.2 PID Path Tracking Results

4.2.1 Scenario 1: Single Curve Long Straight Road
For the simulation conducted using PID control, similar to the NMPC Control,
two scenarios will be considered. It is important to note that achieving comparable
performance in both scenarios with fixed parameters in PID control is not feasible.
As a result, we have fine-tuned the parameters to suit each scenario. Figure
4.13 shows the PID-controlled trajectory alongside the reference path for the first
scenario. Upon examining the graph, the vehicle perfectly tracks the reference
position. This is primarily because the PID controller directly minimizes the
tracking error ect, resulting in minimal deviation.

-120 -100 -80 -60 -40 -20 0 20 40

Location in x axis (m)

70

80

90

100

110

120

130

140

L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

PID Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.13: PID Control Trajectory Comparison

In Figure 4.14, the resulting cross-track error is presented. Although the value
reaches high levels along the curve, it has been compensated afterward.

68

Simulation and Results

0 200 400 600 800 1000 1200 1400 1600

Number of samples()

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
e
rr

o
r(

m
)

Cross Track Error

Figure 4.14: Cross Track Error

The heading error is shown in Figure 4.15. Initially, the vehicle exhibits some
oscillation, but this quickly settles into stable behavior. Consequently, the heading
error remains sufficiently low.

69

Simulation and Results

0 200 400 600 800 1000 1200 1400 1600

Number of samples()

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
e
rr

o
r(

m
)

Heading Error

Figure 4.15: Heading Error

In Tables 4.5-4.6, the root-mean-square (RMS) and maximum errors are depicted.

Parameter RMS Value
RMS(Ect) 0.0851
RMS(Eh) 0.0488

Table 4.5: RMS Values of Ect and Eh in PID Control First Scenario.

Parameter MAX Value
MAX(Ect) 0.3977
MAX(Eh) 0.2068

Table 4.6: MAX Values of Ect and Eh in PID Control First Scenario.

70

Simulation and Results

4.2.2 Scenario 2: Double Curve Long Straight Road
In this case, similar to the first scenario, the reference used in the second scenario
of NMPC control has been employed. With PID parameters specifically adjusted
for this scenario, the results are as follows.

Figure 4.16 represents the resulting cross-track error. The cross-track error
initially shows a low result at the first curve due to the vehicle’s slow speed, then
reaches high values for the second curve along with the acceleration on the straight
section. Although a good result has been achieved overall, a significant value is
observed on the second curve compared to our other control methods.

0 200 400 600 800 1000 1200

Number of samples()

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r(

m
)

Cross Track Error

Figure 4.16: Cross Track Error

The heading error is shown in 4.17. The heading error presents a low deviation
value up until the second curve, where the value slightly increases.

71

Simulation and Results

0 200 400 600 800 1000 1200

Number of samples()

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
e
rr

o
r(

m
)

Heading Error

Figure 4.17: Heading Error

The root-mean-square (RMS) and maximum errors are illustrated in Tables
4.7-4.8.

Parameter RMS Value
RMS(Ect) 0.1103
RMS(Eh) 0.0550

Table 4.7: RMS Values of Ect and Eh in PID Control Second Scenario.

Parameter MAX Value
MAX(Ect) 0.4513
MAX(Eh) 0.2670

Table 4.8: MAX Values of Ect and Eh in PID Control Second Scenario.

72

Simulation and Results

4.3 Manual Path Tracking Results
The method of manually controlling a vehicle by a driver is currently the most
common method. Undoubtedly, a vehicle operated by a human can create deviation
and errors relative to an ideal reference. Therefore, one of the primary objectives
of autonomous vehicles is to ensure safety; other control methods must perform at
least as well as this method. We can briefly examine our performance criteria for
manual control.

Figure 4.18 shows the comparison between the reference and the vehicle trajec-
tories. It is observed that deviation from the reference occurs along the curve, and
the reference is followed along the straight road after the curve. Our reference for
this comparison, like the others, is Carla’s autonomous driving mode.

-120 -100 -80 -60 -40 -20 0 20 40 60

Location in x axis (m)

70

80

90

100

110

120

130

140

L
o
c
a
ti
o
n
 i
n
 y

 a
x
is

 (
m

)

Manual Drive Trajectory Comparison

reference trajectory

vehicle trajectory

Figure 4.18: Manual Drive Trajectory Comparison

A visualization of the cross-track error is provided in Figure 4.19.

73

Simulation and Results

0 50 100 150 200 250 300 350 400 450

Number of samples()

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
e
rr

o
r(

m
)

Cross Track Error

Figure 4.19: Cross Track Error

Due to the deviation made along the curve, the error amount reaches high values,
then, with the straight road that follows, the deviation evolves from a negative to
a positive value and is gradually compensated towards the end of the simulation.
Lastly, Figure 4.20 illustrates the heading error.

74

Simulation and Results

0 50 100 150 200 250 300 350 400 450

Number of samples()

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
e
rr

o
r(

m
)

Heading Error

Figure 4.20: Heading Error

Similarly, although the heading error increases due to the turn in the initial part
of the curve, it is minimized afterward and reaches zero values along the straight
road. Tables 4.9-4.10 display the root-mean-square (RMS) and maximum errors.

Parameter RMS Value
RMS(Ect) 0.2117
RMS(Eh) 0.0147

Table 4.9: RMS Values of Ect and Eh in Manual Control.

Parameter MAX Value
MAX(Ect) 0.1064
MAX(Eh) 0.0555

Table 4.10: MAX Values of Ect and Eh in Manual Control.

75

Simulation and Results

4.4 Comparison in Different Controls
The results based on the performance criteria of NMPC and PID control methods
have been provided and evaluated in detail above. Following these evaluations,
there is a need for comparison. While the comparison is between the two different
control methods that have been thoroughly examined above, comparing these
methods with a vehicle driven by a driver provides the best insight. Manual driving
sets the acceptable value, and a vehicle controlled autonomously should perform at
least as well as manual driving in terms of safety.

Table 4.11: Comparison in Different Controls

Control method RMS ect RMS eh MAX ect MAX eh

NMPC Control Scenario 1 0.1292 0.0174 0.3491 0.045
PID Control Scenario 1 0.1191 0.0488 0.3977 0.2068
Manual Drive Control 0.2117 0.0187 0.1064 0.0555
NMPC Control Scenario 2 0.0851 0.0488 0.7204 0.091
PID Control Scenario 2 0.1103 0.0550 0.4513 0.2670

Table 4.11 provides a comparative analysis of different control methods, show-
casing the root-mean-square (RMS) and maximum error values for cross-tracking
error and heading error across different control scenarios. When examining the
table, it’s seen that the PID control method provides the best value in terms of
cross-track error. However, it should not be forgotten that the PID control method
is fundamentally designed to directly suppress this value. Therefore, our PID
parameters are specific to the application and the values changed based on two
different scenario. On the other hand, NMPC control has shown performance very
close to PID control, displaying good performance with very little deviation from
the reference axis. When manual driving is considered according to this perfor-
mance criterion, it is observed to perform much worse than the other reference
methods. From this perspective, the effectiveness of the NMPC and PID controllers
becomes more evident. On the other hand, when examining heading error, it is
easily seen that the best control method is the NMPC control. The vehicle has
not oscillated at all during simulations and has always maintained the correct
orientation. Meanwhile, the manual control method has produced a very close
result, setting the acceptable limit. Finally, looking at the PID control, it has
performed worse than these two values, and some oscillations in the vehicle were
observed during the simulation. Consequently, when these methods are examined,
NMPC control stands out as the unquestionably best control method due to its

76

Simulation and Results

consistency in providing the same values under different simulation conditions and
its significantly better performance even compared to manual driving under the
same simulation conditions.

77

Chapter 5

Conclusion

The aim of this thesis work is to compare which control method performs better in
the implementation of Path tracking, a fundamental application of ADAS, in an
open-source simulator environment, Carla simulator. Throughout the process, two
different scenarios requiring various maneuvers and speeds have been emphasized.
The necessary references for creating the scenarios have been collected either by
using Carla’s autonomous driving feature or by manually driving the vehicle and
recording the data. Initially, dispatching was performed to provide the necessary
commands for controlling our vehicle in the Carla Simulator. Subsequently, simula-
tions were conducted for these two scenarios with the PID control method, using
different PID values. Secondly, focus was placed on the NMPC control method.
The essential requirement of this control method, the vehicle model parameters,
was approximately determined, and simulations for the mentioned two scenarios
were conducted. All scenarios were compared with the reference collected using
Carla’s autonomous driving feature, which represents perfect driving. Moreover,
the comparison focused on Cross-track error and Heading error criteria. Finally,
manual driving, which provides us with the most reliable reference for comparisons,
was compared with autonomous driving. The comparisons showed that the NMPC
control method produced less error compared to other control methods. Addition-
ally, the consistent good performance of the NMPC control method with the same
values across different simulations demonstrates its suitability for the mentioned
ADAS application, highlighting a solution to a problem in the automation process
of vehicles and advancing solutions in this field.

5.1 Future Works
This thesis work has demonstrated that NMPC control emerges as the optimal
solution for Path tracking which is one of the foundational ADAS applications.

78

Conclusion

However, achieving better results with NMPC control will be possible by utilizing
a more accurate vehicle model. Furthermore, the data regarding road conditions
in the Carla environment should be obtained more precisely. With a more precise
vehicle model and road model, the errors we have focused on will decrease, and
better outcomes can be achieved at higher speeds. Finally, with the necessary
improvements, simulations for different ADAS applications in the Carla environment
can be conducted using an improved NMPC controller.

79

Bibliography

[1] Jennifer Shuttleworth. SAE Standards News: J3016 automated-driving graphic
update. July 2019. url: https : / / www . sae . org / news / 2019 / 01 / sae -
updates-j3016-automated-driving-graphic (cit. on p. 1).

[2] Paul Lienert and Maria Caspani. Americans still don’t trust self-driving cars,
Reuters/Ipsos poll finds. Apr. 2019. url: https : / / www . reuters . com /
article/idUSKCN1RD2QV/ (cit. on p. 1).

[3] Barbara Lenz, Markus Maurer, and J Gerdes Christian. Autonomous Driving
Technical, Legal and Social Aspects. Saint Philip Street Press, May 2016. doi:
10.1007/978-3-662-48847-8 (cit. on p. 4).

[4] Waymo. Home. https://waymo.com/. Accessed: 2024-02-19 (cit. on p. 4).
[5] A. R. Plummer. «Model-in-the-Loop Testing». In: Proceedings of the In-

stitution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering 220.3 (2006), pp. 183–199. doi: 10.1243/09596518JSCE207.
eprint: https://doi.org/10.1243/09596518JSCE207. url: https://doi.
org/10.1243/09596518JSCE207 (cit. on p. 6).

[6] Stephanie Demers, Praveen Gopalakrishnan, and Latha Kant. «A Generic
Solution to Software-in-the-Loop». In: MILCOM 2007 - IEEE Military Com-
munications Conference. 2007, pp. 1–6. doi: 10.1109/MILCOM.2007.4455268
(cit. on p. 6).

[7] Hosam K. Fathy, Zoran S. Filipi, Jonathan Hagena, and Jeffrey L. Stein. «Re-
view of hardware-in-the-loop simulation and its prospects in the automotive
area». In: ed. by Kevin Schum and Alex F. Sisti. Orlando (Kissimmee), FL,
May 2006, 62280E. doi: 10.1117/12.667794. url: http://proceedings.
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.667794
(visited on 02/20/2024) (cit. on p. 6).

[8] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and
Vladlen Koltun. «CARLA: An Open Urban Driving Simulator». In: CoRR
abs/1711.03938 (2017). arXiv: 1711.03938. url: http://arxiv.org/abs/
1711.03938 (cit. on p. 8).

80

https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.reuters.com/article/idUSKCN1RD2QV/
https://www.reuters.com/article/idUSKCN1RD2QV/
https://doi.org/10.1007/978-3-662-48847-8
https://waymo.com/
https://doi.org/10.1243/09596518JSCE207
https://doi.org/10.1243/09596518JSCE207
https://doi.org/10.1243/09596518JSCE207
https://doi.org/10.1243/09596518JSCE207
https://doi.org/10.1109/MILCOM.2007.4455268
https://doi.org/10.1117/12.667794
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.667794
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.667794
https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938

BIBLIOGRAPHY

[9] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. «AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles». In:
CoRR abs/1705.05065 (2017). arXiv: 1705.05065. url: http://arxiv.org/
abs/1705.05065 (cit. on p. 8).

[10] Cole Gulino et al. «Waymax: An Accelerated, Data-Driven Simulator for
Large-Scale Autonomous Driving Research». In: Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks. 2023
(cit. on p. 9).

[11] Guodong Rong et al. «LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving». In: arXiv preprint arXiv:2005.03778 (2020) (cit. on
p. 10).

[12] Sim4CV. Home. https://sim4cv.org/. Accessed: 2024-02-11 (cit. on p. 11).
[13] CARLA. Open-source simulator for autonomous driving research. https:

//carla.org//. Accessed: 2024-02-10 (cit. on p. 12).
[14] Erik Coelingh, Andreas Eidehall, and Mattias Bengtsson. «Collision Warning

with Full Auto Brake and Pedestrian Detection - a practical example of
Automatic Emergency Braking». In: 13th International IEEE Conference on
Intelligent Transportation Systems. 2010, pp. 155–160. doi: 10.1109/ITSC.
2010.5625077 (cit. on p. 13).

[15] Meng-Yin Fu and Yuan-Shui Huang. «A survey of traffic sign recognition». In:
2010 International Conference on Wavelet Analysis and Pattern Recognition.
2010, pp. 119–124. doi: 10.1109/ICWAPR.2010.5576425 (cit. on p. 14).

[16] Guiru Liu, Mingzheng Zhou, Lulin Wang, Hai Wang, and Xiansheng Guo.
«A blind spot detection and warning system based on millimeter wave radar
for driver assistance». In: Optik 135 (2017), pp. 353–365. issn: 0030-4026.
doi: https://doi.org/10.1016/j.ijleo.2017.01.058. url: https:
//www.sciencedirect.com/science/article/pii/S0030402617300797
(cit. on p. 15).

[17] Lukas Küpper and Josef Schug. «Active Night Vision Systems». In: (2002).
SAE Technical Paper 2002-01-0013. doi: 10.4271/2002- 01- 0013. url:
https://doi.org/10.4271/2002-01-0013 (cit. on p. 15).

[18] Yuyu Song and Chenglin Liao. «Analysis and review of state-of-the-art au-
tomatic parking assist system». In: 2016 IEEE International Conference on
Vehicular Electronics and Safety (ICVES). 2016, pp. 1–6. doi: 10.1109/
ICVES.2016.7548171 (cit. on p. 15).

[19] Wikipedia contributors. Fatigue detection software — Wikipedia, The Free
Encyclopedia. Accessed: 2024-01-25. 2024. url: https://en.wikipedia.org/
wiki/Fatigue_detection_software (cit. on p. 16).

81

https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://sim4cv.org/
https://carla.org//
https://carla.org//
https://doi.org/10.1109/ITSC.2010.5625077
https://doi.org/10.1109/ITSC.2010.5625077
https://doi.org/10.1109/ICWAPR.2010.5576425
https://doi.org/https://doi.org/10.1016/j.ijleo.2017.01.058
https://www.sciencedirect.com/science/article/pii/S0030402617300797
https://www.sciencedirect.com/science/article/pii/S0030402617300797
https://doi.org/10.4271/2002-01-0013
https://doi.org/10.4271/2002-01-0013
https://doi.org/10.1109/ICVES.2016.7548171
https://doi.org/10.1109/ICVES.2016.7548171
https://en.wikipedia.org/wiki/Fatigue_detection_software
https://en.wikipedia.org/wiki/Fatigue_detection_software

BIBLIOGRAPHY

[20] Adaptive Cruise Control — Deeper Learning. Web page. Accessed: 2024-02-24.
Paragraph: "Speed and distance sensors. ACC uses information from two
sensors: a distance sensor that monitors the gap to the car ahead and a speed
sensor that automatically accelerates and decelerates your car. ACC uses
information from these sensors to adjust your speed and maintain the set
distance from the car in front of you." 2024. url: https://mycardoeswhat.
org/deeper-learning/adaptive-cruise-control/ (cit. on p. 17).

[21] José L. F. Pereira and Rosaldo J. F. Rossetti. «An integrated architecture
for autonomous vehicles simulation». In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing. SAC ’12. Trento, Italy: Association
for Computing Machinery, 2012, pp. 286–292. isbn: 9781450308571. doi:
10.1145/2245276.2245333. url: https://doi.org/10.1145/2245276.
2245333 (cit. on p. 18).

[22] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun. «Playing for
Benchmarks». In: 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2232–2241. doi: 10.1109/ICCV.2017.243 (cit. on p. 18).

[23] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. «Play-
ing for Data: Ground Truth from Computer Games». In: CoRR abs/1608.02192
(2016). arXiv: 1608.02192. url: http://arxiv.org/abs/1608.02192 (cit.
on p. 18).

[24] Guodong Rong et al. «LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving». In: 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC). 2020, pp. 1–6. doi: 10.1109/
ITSC45102.2020.9294422 (cit. on p. 18).

[25] Gran Christoffer Wilhelm. «HD Maps for Autonomous Vehicles». Accessed:
2024-03-01. MA thesis. Norwegian University of Science and Technology
(NTNU), 2019. url: https://www.ntnu.edu/documents/1284037699/
1285579906/Gran-ChristofferWilhelm_2019_Master_NAP_HDMaps.pdf/
79ef2eec-c9e2-454b-bf14-08d585cf8826 (cit. on p. 18).

[26] Tim Sweeney. Welcome to Unreal Engine 4. Mar. 2014. url: https://www.
unrealengine.com/en-US/blog/welcome-to-unreal-engine-4 (cit. on
p. 19).

[27] M.A. Johnson. «PID Control Technology». In: PID Control: New Identification
and Design Methods. Ed. by Michael A. Johnson and Mohammad H. Moradi.
London: Springer London, 2005, pp. 1–46. isbn: 978-1-84628-148-8. doi:
10.1007/1-84628-148-2_1. url: https://doi.org/10.1007/1-84628-
148-2_1 (cit. on p. 33).

82

https://mycardoeswhat.org/deeper-learning/adaptive-cruise-control/
https://mycardoeswhat.org/deeper-learning/adaptive-cruise-control/
https://doi.org/10.1145/2245276.2245333
https://doi.org/10.1145/2245276.2245333
https://doi.org/10.1145/2245276.2245333
https://doi.org/10.1109/ICCV.2017.243
https://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1608.02192
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1109/ITSC45102.2020.9294422
https://www.ntnu.edu/documents/1284037699/1285579906/Gran-ChristofferWilhelm_2019_Master_NAP_HDMaps.pdf/79ef2eec-c9e2-454b-bf14-08d585cf8826
https://www.ntnu.edu/documents/1284037699/1285579906/Gran-ChristofferWilhelm_2019_Master_NAP_HDMaps.pdf/79ef2eec-c9e2-454b-bf14-08d585cf8826
https://www.ntnu.edu/documents/1284037699/1285579906/Gran-ChristofferWilhelm_2019_Master_NAP_HDMaps.pdf/79ef2eec-c9e2-454b-bf14-08d585cf8826
https://www.unrealengine.com/en-US/blog/welcome-to-unreal-engine-4
https://www.unrealengine.com/en-US/blog/welcome-to-unreal-engine-4
https://doi.org/10.1007/1-84628-148-2_1
https://doi.org/10.1007/1-84628-148-2_1
https://doi.org/10.1007/1-84628-148-2_1

BIBLIOGRAPHY

[28] Tibor Nagy, Florian Enyedi, Eniko Haaz, Daniel Fozer, Andras Jozsef Toth,
and Peter Mizsey. «Flexible and efficient solution for control problems of
chemical laboratories». In: 29th European Symposium on Computer Aided
Process Engineering. Ed. by Anton A. Kiss, Edwin Zondervan, Richard
Lakerveld, and Leyla Özkan. Vol. 46. Computer Aided Chemical Engineering.
Elsevier, 2019, pp. 1819–1824. doi: https://doi.org/10.1016/B978-0-
12-818634-3.50304-0. url: https://www.sciencedirect.com/science/
article/pii/B9780128186343503040 (cit. on p. 35).

[29] Microstar Laboratories collaboratives. Ziegler-Nichols Method. ScienceDirect
Topics in Computer Science. Accessed: 2024-02-20. url: https://www.scien
cedirect.com/topics/computer-science/ziegler-nichols-method#:~:
text=The%20Ziegler%2DNichols%20Method%20is,transfer%20function%
20with%20dead%20time (cit. on p. 35).

[30] James Bennett, Ajay Bhasin, Jamila Grant, and Wen Chung Lim. PID Tuning
via Classical Methods - Cohen-Coon Method. Chemical Process Dynamics
and Controls (Woolf) on LibreTexts. Chapter 9.3.5 Cohen-Coon Method,
Accessed: 2024-02-21. url: https://eng.libretexts.org/Bookshelves/
Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_
and_Controls_(Woolf)/09%3A_Proportional- Integral- Derivative_
(PID) _Control / 9 . 03 % 3A _ PID _ Tuning _ via _ Classical _ Methods# : ~ :
text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%
20control%20parameters (cit. on p. 35).

[31] Design of Bio-Inspired Optimized Integer And Fractional Pid Controller. 2022.
doi: 10.18090/samriddhi.v14i03.02 (cit. on p. 36).

[32] PID controller with computational optimization. 2023. doi: 10.1016/b978-
0-12-821204-2.00007-6 (cit. on p. 36).

[33] Design of Robust PID Controllers for SOFC Stacks. 2022. doi: 10.1109/
ccta49430.2022.9966041 (cit. on p. 36).

[34] A Summary of PID Control Algorithms Based on AI-Enabled Embedded
Systems. 2022. doi: 10.1155/2022/7156713 (cit. on p. 36).

[35] Review of Research on Improved PID Control in Electro-hydraulic Servo
System. 2023. doi: 10.2174/1872212117666230210090351 (cit. on p. 36).

[36] Frank Allgöwer and Alex Zheng, eds. Nonlinear Model Predictive Control.
1st ed. Progress in Systems and Control Theory. Basel: Birkhäuser Basel,
2000. isbn: 978-3-7643-6297-3. doi: 10.1007/978-3-0348-8407-5. url:
https://doi.org/10.1007/978-3-0348-8407-5 (cit. on p. 45).

[37] S. Joe Qin and Thomas A. Badgwell. «An Overview of Nonlinear Model
Predictive Control Applications». In: Nonlinear Model Predictive Control.
Basel: Birkhäuser Basel, 2000, pp. 369–392 (cit. on p. 45).

83

https://doi.org/https://doi.org/10.1016/B978-0-12-818634-3.50304-0
https://doi.org/https://doi.org/10.1016/B978-0-12-818634-3.50304-0
https://www.sciencedirect.com/science/article/pii/B9780128186343503040
https://www.sciencedirect.com/science/article/pii/B9780128186343503040
https://www.sciencedirect.com/topics/computer-science/ziegler-nichols-method#:~:text=The%20Ziegler%2DNichols%20Method%20is,transfer%20function%20with%20dead%20time
https://www.sciencedirect.com/topics/computer-science/ziegler-nichols-method#:~:text=The%20Ziegler%2DNichols%20Method%20is,transfer%20function%20with%20dead%20time
https://www.sciencedirect.com/topics/computer-science/ziegler-nichols-method#:~:text=The%20Ziegler%2DNichols%20Method%20is,transfer%20function%20with%20dead%20time
https://www.sciencedirect.com/topics/computer-science/ziegler-nichols-method#:~:text=The%20Ziegler%2DNichols%20Method%20is,transfer%20function%20with%20dead%20time
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.03%3A_PID_Tuning_via_Classical_Methods#:~:text=The%20Cohen%2DCoon%20method%20is,evaluate%20the%20initial%20control%20parameters
https://doi.org/10.18090/samriddhi.v14i03.02
https://doi.org/10.1016/b978-0-12-821204-2.00007-6
https://doi.org/10.1016/b978-0-12-821204-2.00007-6
https://doi.org/10.1109/ccta49430.2022.9966041
https://doi.org/10.1109/ccta49430.2022.9966041
https://doi.org/10.1155/2022/7156713
https://doi.org/10.2174/1872212117666230210090351
https://doi.org/10.1007/978-3-0348-8407-5
https://doi.org/10.1007/978-3-0348-8407-5

BIBLIOGRAPHY

[38] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. «An auto-generated
real-time iteration algorithm for nonlinear MPC in the microsecond range».
In: Automatica 47.10 (2011), pp. 2279–2285 (cit. on p. 46).

[39] Efstathios Siampis, Efstathios Velenis, Salvatore Gariuolo, and Stefano Longo.
«A Real-Time Nonlinear Model Predictive Control Strategy for Stabilization
of an Electric Vehicle at the Limits of Handling». In: IEEE Transactions on
Control Systems Technology 26.6 (2018), pp. 1982–1994. doi: 10.1109/TCST.
2017.2753169 (cit. on p. 46).

[40] Mattia Boggio, Carlo Novara, and Michele Taragna. «Trajectory planning
and control for autonomous vehicles: a “fast” data-aided NMPC approach».
In: European Journal of Control (2023), p. 100857. issn: 0947-3580 (cit. on
p. 46).

[41] Mattia Boggio, Carlo Novara, and Michele Taragna. «Nonlinear Model Predic-
tive Control: an Optimal Search Domain Reduction». In: IFAC-PapersOnLine
56.2 (2023), pp. 6253–6258 (cit. on p. 46).

84

https://doi.org/10.1109/TCST.2017.2753169
https://doi.org/10.1109/TCST.2017.2753169

	List of Tables
	List of Figures
	Outline and Contributions
	Introduction
	What is Autonomous Driving?
	The Importance of Simulation in Autonomous Driving
	State of the Art in Autonomous Driving Simulators
	Waymo Simulator
	SVL Simulator
	Sim4CV
	Carla Simulator

	ADAS Applications
	Related Works

	Interface Co-Simulation Design
	Selecting the Suitable Simulator
	Carla and Anaconda Interfacing
	Carla and Matlab Interfacing
	Modeling the Car in Simulink Environment
	Dispatching To Obtain Throttle-Brake Value From Acceleration Value

	Data Gathering with Autonomous Driving Mode
	Data Gathering with Manual Driving Mode

	Different Control Strategies in Simulation for Path Tracking
	PID Path Tracking Lateral Control
	PID Control
	Finding The Closest Point In The Road
	Finding The Instantaneous Error
	Creating Carla Environment
	PID Values

	NMPC Path Tracking
	NMPC Control
	Finding The Closest Point In The Road
	Creating Carla Environment
	NMPC Values

	Simulation and Results
	NMPC Path Tracking Results
	Scenario 1: Single Curve Long Straight Road
	Scenario 2: Double Curve Long Straight Road

	PID Path Tracking Results
	Scenario 1: Single Curve Long Straight Road
	Scenario 2: Double Curve Long Straight Road

	Manual Path Tracking Results
	Comparison in Different Controls

	Conclusion
	Future Works

	Bibliography

