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Summary

This research delves into the creation of an algorithm designed to identify driver
distraction without the reliance on traditional biometric sensors. Instead, the
software harnesses driving data directly obtained from the vehicle and its onboard
sensors. The research is organized into two major domains, each addressing key
aspects of distraction detection.

Identification of the Driver: The initial focus of the study revolves around the
development of techniques for accurately identifying the driver. Utilizing vehicle
data, the algorithm aims to distinguish between different individuals behind the
wheel, laying the foundation for personalized distraction detection.

Distraction Detection Based on Correlation: The second part centers on the
correlation between the actual and expected behavior of the driver. By analyzing
real-time driving patterns and comparing them to a nominal behavior model,
the algorithm can identify deviations indicative of distraction. This approach is
designed to enhance the algorithm’s adaptability and effectiveness across diverse
driving scenarios. Methodology: The research employs a data-driven methodology,
extracting and analyzing relevant information from the vehicle’s sensors, including
but not limited to speed, acceleration, and steering patterns. Machine learning
and statistical modeling techniques are integrated to develop a robust algorithm
capable of discerning distraction events with high accuracy.

Results and Contribution: Preliminary results showcase promising outcomes
in both driver identification and distraction detection. The proposed algorithm
not only contributes to the realm of driver safety but also introduces a novel
approach that minimizes reliance on intrusive biometric sensors or gives support to
the existing algorithm limited in detection of other types of distraction (cognitive
distraction).

Future Implications: As the algorithm continues to evolve, its potential applica-
tions extend beyond distraction detection to include adaptive safety systems and
personalized driving experiences. Future developments may also explore integration
with emerging technologies in the automotive industry.

This thesis provides a comprehensive exploration of an algorithmic approach to
distraction detection, offering a promising avenue for improving road safety without
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the need for additional biometric hardware.
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Chapter 1

Introduction

1.1 Thesis genesis
This thesis is the result of a collaboration between Politecnico di Torino and Sensor
Reply, a company within the Reply Group that focuses on IoT applications powered
by Artificial Intelligence. Sensor Reply aims to provide software solutions using
knowledge of model based and data driven approaches for decision support. A key
achievement of this partnership is the creation of an Advanced Driver Distraction
Warning (ADDW) system, which improves the efficiency and performance of the
existing systems outlined in the baseline work [1]. The project introduces additional
methods for this type of application, expanding the scope of investigation beyond
the data-driven approaches previously discussed in further studies such as those
documented by Nicolò Chiapello [2] and Enzo Yacacometti [3], focused on analyzing
driving behaviors to develop impaired driving detection algorithms.

1.2 Objectives
The objectives established for achievement are as follows:

• Develop and refine a model-based approach for the extraction of supplementary
features concerning driver behavior under scenario evolution. The principal
aim is to enrich Machine Learning algorithms with data that extend beyond
vehicle dynamics, including insights into the driver’s intentions with respect
to the surrounding environment, thus boosting both the system’s performance
and its learning capacity.

• Acquire authentic driving data, including both nominal and distracted driving
instances, to facilitate the effective operation of the AI algorithms developed.

1



Introduction

• Elevate the Driving Style Estimation (DSE process using data acquisition via
a driving simulator.

• Realize an operational Advanced Driver Distraction Warning (ADDW) system
that adheres to the current drafts of the 2019/2144 EU regulations, with a
focus on maintaining a low False Positive (FP) rate, for future integration
with dashboard camera-based biometric data.

• Assess the full spectrum of potential solutions to determine the optimal
configuration that meets the standards set forth by regulatory requirements.

1.3 Document structure
The present work is structured as follows:

1. Introduction: An overview of the problem context and a detailed explanation
of the methodologies employed to address it.

2. State of the Art: A review of pertinent regulations, a definition of the
project’s objectives, and an exploration of alternative approaches.

3. Background: A comprehensive explanation of the techniques, algorithms,
and physical models utilized in this study.

4. Material and Methods: A detailed account of the experimental setup and
the methodologies used in system development.

5. Experimental Results: A presentation and analysis of the training and
testing outcomes at each stage of the implementation.

6. Discussion: An examination of the adopted approaches and methodologies
in relation to the results obtained.

7. Conclusions: Final thoughts and a recapitulation of the aims of this study,
with a perspective on potential future developments and applications.

Sustainable Development Goals
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Chapter 2

State of Art

2.1 Driver Behavior
Add something here

2.1.1 Driver State Monitoring
In the field of intelligent transport, ensuring driver alertness is critical to road safety.
The advent of Driver State Monitoring (DSM) systems marks a significant leap
forward in reducing accidents caused by driver fatigue and distraction. Advances
in computing and artificial intelligence have played a crucial role in improving the
effectiveness of DSM systems, making them an integral part of both conventional
and automated vehicles. This chapter examines the evolution, methods, challenges
and regulatory landscape of DSM, highlighting its critical role in modern vehicle
safety.

The Evolution of Driver State Monitoring Systems

DMS systems have evolved significantly, transitioning from rudimentary alertness
checks to sophisticated AI-driven solutions. Initially, these systems were focused
on simple metrics such as steering wheel movement and eyelid tracking. An early
example includes Volvo’s introduction of the Driver Alert Control in 2007 [4], which
monitored the car’s movements to detect signs of driver inattention or fatigue.
Over time, DMS systems have incorporated more complex algorithms capable
of analyzing a myriad of physiological and behavioral cues to assess driver state
accurately. Furthermore, the integration of wearable devices is opening up new
avenues for monitoring physiological signals such as heart rate variability and
brain activity, providing deeper insights into driver status. A notable example
is the collaboration between Ford and the Massachusetts Institute of Technology
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[5] to investigate the use of wearable ECG monitors to detect stress levels and
adjust vehicle systems accordingly to improve driver safety. These developments
highlight the interdisciplinary nature of DMS’s research, combining insights from
psychology, computer science and automotive engineering to create systems that
are increasingly sensitive, accurate and able to operate in real time.

Methodologies in Driver State Monitoring

The methodologies employed in DSM are several, each with its unique approach to

• Image-Based Measures: These measures utilize cameras to monitor the
driver’s facial expressions, eye movements, and head posture. By employing
computer vision techniques, they can detect signs of drowsiness or distraction
effectively. For instance, the Driver Attention Monitoring System by Toyota
[6], uses a camera-based approach to monitor the driver’s gaze direction to
ensure attention is maintained on the road.

• Biological-Based Measures: This approach involves sensors that track
physiological signals, such as heart rate variability, brainwave patterns, and
galvanic skin response. These measures offer insights into the driver’s physical
state, potentially indicating levels of stress, fatigue, or drowsiness.

• Vehicle-Based Measures: These measures analyze data from the vehicle’s
control systems, such as steering patterns, braking behavior, and acceleration.
Variations in these parameters can infer the driver’s level of engagement and
alertness. For example, research by Dong et al. (2011) explored the use of
steering wheel movements and lane-keeping behavior as indicators of driver
fatigue [7].

• Hybrid Measures: Combining data from multiple sources, hybrid systems
offer a more comprehensive assessment of the driver’s state. These systems
might correlate physiological signals with behavioral patterns to provide a
holistic view of the driver’s condition.

This thesis investigates the specific aspect of driver distraction in more detail in
the following chapter, where it becomes clear that understanding and mitigating
distraction requires a complex approach that considers both the external and
internal factors that influence driver attention.

2.1.2 Driver Distraction
Distracted driving remains a major public health concern, contributing to a signif-
icant proportion of road deaths. In 2021, in America, distracted driving will be
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responsible for 3,522 deaths, highlighting the urgent need for effective interventions
and policies.[8] Distracted driving limits the driver’s attention to essential tasks
such as controlling the vehicle’s position and maintaining speed. Distracted driving
can be broadly defined as the diversion of attention from driving tasks caused
by focusing on non-driving objects, tasks or events, thereby reducing the driver’s
awareness, decision making and performance. This distraction significantly in-
creases the risk of corrective action required, near misses or actual crashes. In 2021,
the European Commission reported an estimated 19,800 road fatalities within the
EU, marking a 5% increase from 2020 but still showing a 13% decrease compared
to the pre-pandemic levels in 2019. This indicates a fluctuating trend in road safety,
partly influenced by traffic patterns during the pandemic.

Further evidence-based reviews have highlighted the relationship between distracted
driving, particularly due to cell phone use, and an increased risk of automobile
accidents. These reviews recommend minimizing in-vehicle distractions and specifi-
cally advise against texting or using touch messaging systems while driving. The
risks associated with distracted driving are particularly heightened among younger,
inexperienced drivers, who are advised to refrain from using cell phones or engaging
in texting while driving [9].

In Figure 2.1 are reported statistics on activities commonly associated with dis-
tracted driving behaviors reported from the EU commission [10].

In response to the dangers posed by distracted driving, various campaigns
and guidelines have been introduced to raise awareness and promote road safety.
For instance, the Federal Motor Carrier Safety Administration, along with other
agencies, has banned all hand-held cell phone use by commercial drivers and those
carrying hazardous materials. The National Highway Traffic Safety Administration
(NHTSA) has also been proactive, launching campaigns like "U Drive. U Text. U
Pay." to emphasize the consequences of distracted driving.

These initiatives reflect a growing recognition of the need to address distracted driv-
ing through both policy measures and public awareness campaigns. The ultimate
goal is to reduce the incidence of distracted driving and enhance road safety.

Types of Driving Distractions The U.S. National Highway Traffic Safety
Administration (NHTSA) characterizes driving distractions as any endeavors that
shift a driver’s focus away from the road [11]. They highlight that such distractions
are not limited to merely sending text messages or having phone conversations.
Distractions can also involve eating, interacting with passengers, or controlling the
car’s audio or navigational systems Driving distractions can be categorized into
several types, each with unique implications for driver focus and road safety:
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Figure 2.1: Distraction Activities and Crash Risk associated with them

• Visual Distractions: This involves taking one’s eyes off the road. Examples
include looking at a GPS device, reading billboards, or observing an event
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outside the vehicle.

• Manual Distractions: These occur when the driver takes one or both hands
off the steering wheel. Examples include eating, drinking, adjusting the radio
or climate controls, and smoking.

• Cognitive Distractions: This type of distraction happens when the driver’s
mind is not focused on driving. Cognitive distractions can be due to daydream-
ing, deep conversations with passengers, or being preoccupied with personal,
family, or work-related issues.

• Auditory Distractions: These are caused by sounds that are not related to
driving, such as conversations among passengers, phone calls, or loud music,
which might lead the driver to lose focus on the road.

Given the complexity of distracted driving and its profound impact on road
safety, section 2.2.4 will focus into the mechanisms of distraction, exploring the
effectiveness of current interventions, and examine emerging technologies and
policies aimed at mitigating this issue. Before of entering in deep details it is
important to

2.2 Technical Legislation
The development and implementation of driver state monitoring technologies re-
quires a solid regulatory foundation. This foundation not only provides a consistent
framework for manufacturers, but also ensures compliance with a standardised
set of rules, thereby enhancing the quality, safety and efficiency of automotive
technologies. The international scope of the automotive industry requires a clear
understanding of the various legislative documents governing the field of automated
driving systems (ADS) and advanced driver assistance systems (ADAS).

It is important to distinguish between:

• International Standards such as ISO 26262, play a central role in setting
global benchmarks for the functional safety of electrical and electronic systems
in road vehicles. These standards guide the entire lifecycle of vehicle devel-
opment, from design to production, and ensure that driver state monitoring
technologies meet universally recognised safety and quality standards.

• International Regulations, particularly those from the United Nations
Economic Commission for Europe (UNECE), provide detailed mandates on
the legal requirements vehicles, systems, or components must satisfy to be
considered roadworthy. These regulations are mandatory and detail the
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compliance criteria for ADAS and ADS technologies, unlike the advisory
nature of International Standards.

2.2.1 SAE
In the domain of vehicular safety and performance analysis, precisely defined met-
rics are indispensable. These metrics facilitate an objective assessment of driver
behavior and vehicle operation, contributing to the development and evaluation of
Advanced Driver Assistance Systems (ADAS). The SAE Driver Metrics, Perfor-
mance, Behaviors and States Committee provides a set of operational definitions
for such measures, which are crucial for standardizing research and development
practices within the automotive industry. Table 2.1 delineates a selection of these
driver performance measures as standardized in SAE J2944 [12].

2.2.2 ISO 26262

Figure 2.2: ISO 26262 - Functional Safety procedure

ISO 26262 is an international standard that ensures the functional safety of
electrical/electronic (E/E) systems in road vehicles. It was jointly developed by
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Table 2.1: Driver Performance Measures as per SAE J2944

Measure Unit Description

Steering Wheel Angle [rad] The angle of the vehicle’s steering
wheel relative to its neutral position.

Yaw Rate [rad/s] The rate of change in the vehicle’s
heading angle, expressed in radians
per second.

Steering Movement Time [s] The duration from the onset of a
steering response to the event until
the steering action is completed for
vehicle trajectory correction.

Steering Reversal Rate [1/min] The frequency of directional changes
in the steering wheel per minute.

Steering Entropy [J/K] A measure of the unpredictability in
steering behavior, calculated by com-
paring the frequency distribution of
steering angle errors against a base-
line under increased task load.

Lateral Position [cm] The horizontal distance from a point
on the vehicle to the lane boundary,
measured at a right angle to the path
of travel.

SD of Lateral Position [cm] A statistical metric representing the
variability of the vehicle’s lateral po-
sition in relation to the center of the
lane.

Lane Departure [s] The period during which any portion
of the vehicle exits its travel lane un-
til it either returns entirely to the
lane or stops, not including intended
lane shifts or turns.

Jerk [m/s3] The temporal rate of change in accel-
eration, denoting the third derivative
of position with respect to time.
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the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The V-model is a software development model
that illustrates the relationship between the phases of the development process.
In the context of developing software for automotive applications, the ISO 26262
V-model offers guidance on how to integrate functional safety techniques into
the software development process. The V-model phases can be used to identify
the functional safety activities that need to be carried out in each phase of the
development process. The development of driving distraction recognition software

Figure 2.3: V-model development process

is an important initiative in road safety and the automotive industry. This software
aims to identify signs of driver distraction, such as cell phone use, lack of attention
to the road or unsafe behavior while driving, in order to prevent accidents and
improve overall road safety. This research of thesis fits into the V-model during
the early phase of "system design" and "software development", trying to meet the
requirements imposed by the latest European regulations described in section 2.2.3.

2.2.3 ADAS

Regulatory oversight of Advanced Driver Assistance Systems (ADAS) is vital for
ensuring these technologies enhance road safety without introducing new hazards.
Key international standards include the UNECE framework and SAE’s J3016 levels
of driving automation. In the US, the NHTSA sets safety standards, while in the
EU, directives are harmonized with input from entities like the ACEA. Crucial
to this regulatory landscape are ISO norms such as ISO 26262 for functional
safety and ISO/PAS 21448 (SOTIF) for non-malfunctioning behavior of ADAS.
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Continuous updates in regulations keep pace with technological progress, requiring
manufacturers to stay compliant and prioritize safety.

ADDW

The European Union has set forth regulations to ensure the integration of advanced
safety systems in vehicles, including systems designed to mitigate driver distraction.
One such system is the ’advanced driver distraction warning’ (ADDW), which is
mandated to aid drivers in maintaining focus on driving tasks and alert them in
instances of detected distraction [13].

In accordance with Commission Delegated Regulation (EU) 2023/2590 [14], the
project’s distraction recognition system was designed to meet specific technical and
operational requirements. These requirements are essential to ensure the system’s
effectiveness in enhancing driver safety by mitigating distraction-related risks. The
key requirements addressed in the system design include:

• Operational Efficiency The system is engineered to detect instances when
the driver’s visual attention deviates from the driving task. Specifically, the
system activates automatically when the vehicle’s speed exceeds 20 km/h.
This automatic activation is critical to ensuring that the system is operational
in most driving conditions, thereby enhancing its utility and effectiveness in
promoting driving safety.

• Minimization of False Positives A critical aspect of the system’s design is
its capability to distinguish between genuine instances of driver distraction
and benign activities that do not compromise driving safety. This requirement
is vital to minimize false positives, thereby reducing unnecessary distractions
and potential desensitization to system alerts.

• Privacy and Data Protection The system adheres to stringent privacy and
data protection standards by operating without relying on personal biometric
data from vehicle occupants other than the driver. It is designed to function
effectively using non-personal data, ensuring compliance with the EU’s data
protection regulations.

• System Availability and Manual Override The system is configured to
activate automatically at speeds above 20 km/h, with provisions for manual
deactivation by the driver to accommodate specific driving scenarios or pref-
erences. This feature allows for flexibility while ensuring that the system is
active during most driving conditions.

• Environmental Adaptability Recognizing the diverse conditions under
which vehicles operate, the system is designed to function reliably both during
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the day and at night. This adaptability ensures consistent performance in
various lighting conditions, enhancing its utility across different times of the
day.

• Comprehensive Monitoring The system’s monitoring capability extends
to various areas of interest within the vehicle’s cabin and the driver’s line of
sight. It is capable of detecting prolonged gaze fixation on non-driving related
areas (such as the vehicle’s infotainment system or mobile devices) and issuing
timely alerts to redirect the driver’s attention to the road.

• Interface Design The human-machine interface of the system employs a
combination of visual, auditory, and tactile alerts to ensure that warnings are
effectively communicated to the driver. The design of these alerts is in line
with the regulation’s specifications to maximize perceptibility and prompt an
appropriate response. In this project only visual and auditory alerts has been
considered.

By incorporating these requirements into the design and development of the
distraction recognition system, the project not only aligns with the regulatory
framework established by the EU but also sets a benchmark for safety in automotive
technology.

Acceptance Criteria The acceptance criteria for the distraction detection
system are not explicitly defined in the referenced regulations. In order to establish
a comprehensive and effective evaluation framework, the following criteria, inspired
by the DDAW acceptance standards, have been considered:

• Sensitivity and specificity thresholds: The system is considered effective
if it achieves sensitivity and specificity values equal to or greater than the pre-
defined thresholds for Advanced Driver Distraction Warning ADDW systems
in at least 95% of the sample size tested [13]. This criterion ensures that the
majority of instances of potential driver distraction are accurately identified
and appropriately addressed by the system.
The average sensitivity S is over 40% defined as:

S̄ =
qn

i=1 Sn

n
≥ 40% (2.1)

Where n is the number of participants, the sensitivity S for each participant
is calculated as follows:

S = n(TP )
n(TP ) + n(FN) · 100% (2.2)

where:
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– n(TP ) true positive: both the system and the driver correctly identify
that the driver is distracted;

– n(FN) false negative: the system fails to identify that the driver is
distracted;

– n(FP ) false positive: the system incorrectly identifies the driver as dis-
tracted;

– n(TN) true negative: the system correctly identify that the driver is not
distracted.

• Average performance and control of variation: The system is also
considered effective if the average sensitivity and specificity across all subjects
meet or exceed the ADDW thresholds, with minimal variance in sensitivity be-
tween subjects. This criterion emphasises the importance of consistent system
performance across different drivers, reducing the likelihood of discrepancies
in system alerts and ensuring reliable driver support.

In simulated testing conditions, the regulation mandates a 5% reduction in the
acceptance threshold for average sensitivity and a 2.5% decrease for its 90%
confidence interval.[2] By following these criteria, the project aims to deliver a
distraction detection system that meets regulatory expectations and industry best
practices for driver support systems. This approach facilitates a balanced assessment
of the system’s ability to accurately detect distracting events (sensitivity) while
minimising false alerts (specificity), thus improving overall driving safety and user
confidence in the system’s capability.

Testing procedure

The designated areas for the validation of the software defined by regulations [13],
particularly for evaluating driver distraction, are defined as follows:

Figure 2.4: Distraction Areas defined by regulations [14]
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Area 1: This area encompasses two primary zones:

• The vehicle’s roof, acknowledging overhead distractions.

• Regions outside the driver’s direct forward line of sight (considered at 0◦ orien-
tation), delineated by two vertical planes rotated +55◦ to the right and −55◦

to the left, relative to the vehicle’s longitudinal axis. These planes intersect at
the driver’s ocular reference point, emphasizing peripheral distractions.

Figure 2.5: Distraction Areas defined by regulations [14]

Area 2: Comprises the following components:

• The windscreen and window areas, focusing on potential distractions through
direct and peripheral vision.

• An extension of 10◦ surrounding the windscreen and windows, as viewed from
the ocular reference point, to cover broader visual distractions.

Figure 2.6: Distraction Areas defined by regulations [14]

Area 3: Defined by the space below a 30◦ downward angle from the ocular reference
point, Area 3 is further refined through its relationship with Areas 1 and 2:
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• Excludes any section falling within Area 1 by default to maintain a clear
boundary for overhead distractions.

• Vehicle manufacturers have the discretion to incorporate parts of Area 1 into
Area 3, allowing customization based on specific vehicle design and ADDW
system considerations.

• Excludes all zones encompassed by Area 2, ensuring that forward-view dis-
tractions are distinct from those below the ocular line.

It is crucial to note that the demarcation and interaction between these areas are
established from the perspective of the driver’s ocular reference point. The initial
mapping of one area onto another utilizes angular coordinates to accurately reflect
the driver’s field of view. Following this projection, spatial coordinates may be
employed to concisely describe the defined areas, facilitating a more straightforward
understanding and analysis of potential distraction sources within the vehicle
environment.

Advancements in vehicular safety are increasingly propelled by the integration of
distraction detection systems (DDS). These systems, underpinned by sophisticated
algorithms, are designed to identify and mitigate risks associated with distracted
driving. This section introduces the various types of ADDW solutions and their
implementations, including camera-based systems, sensor-less technologies, and
biometric monitoring.

2.2.4 Types of ADDW Solutions
ADDW solutions can be broadly classified into the following categories:

Camera-Based Systems: These systems utilize in-cabin cameras to monitor
the driver’s eye movement, head position, and overall alertness. They are capable
of issuing real-time feedback to alert the driver if signs of inattention are detected.

Sensor-Less Technologies: Some solutions analyze the driver’s interaction
with the vehicle, such as steering patterns or braking behavior, without relying on
direct physiological measurements.

Biometric Monitoring: Employing wearable devices or in-cabin sensors, these
systems measure physiological indicators, such as heart rate or head pose, to infer
the driver’s attention level.

2.2.5 Commercial Solutions by OEMs
Commercially, several OEMs have integrated various forms of ADDW systems to
enhance the safety features of their vehicles. Examples include:
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• General Motors (GM): GM’s Driver Attention System leverages camera
technology to detect drowsiness and inattention in the driver’s behavior. «
The Driver Attention System uses the Driver Monitoring System Control
Module and Driver Monitoring System Camera to monitor the driver»[15].

• Nissan: Nissan’s Intelligent Driver Alertness (I-DA) system is designed to
monitor steering behavior to identify signs of inattention or fatigue. By
analyzing the patterns and ’roughness’ of steering inputs and comparing them
to a standard driving pattern, the system can detect when the driving behavior
deviates due to potential drowsiness. If erratic steering is observed at speeds
above 60 kph (37 mph) [16], I-DA issues an audible alert and a visual message,
suggesting the driver take a break, enhancing safety through proactive driver
engagement.

Figure 2.7: Nissan’s Driver Attention Alert

• Volvo: Volvo has integrated advanced driver monitoring technology developed
by SmartEye in their new Volvo EX90. This new system employs camera-
based monitoring to evaluate driver alertness and detect signs of distraction,
enhancing vehicle safety by ensuring driver engagement [17].

DMS in this example is managed using in cabin monitoring with camera,
extracting the following features:

• Face Recognition: To identify the driver and potentially customize vehicle
responses based on the driver’s profile.

• Occupancy: To detect the presence of passengers and their positions within
the vehicle.

• Driver and Passenger State: To assess the alertness and posture of both
the driver and the passengers, which can be indicators of distraction or fatigue.
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Figure 2.8: In cabin monitoring features used for detecting distraction (SmartEye
for Volvo)

• Gestures: To interpret hand signals or other gestures that might control
certain in-vehicle systems or indicate the driver’s intentions.

• Child Seat Detection or Child Left Behind: To ensure that child
occupants are safely seated and to alert if a child is left unattended in the
vehicle.

• Object Classification and Object Left Behind: To recognize objects
within the vehicle and remind occupants not to leave belongings behind.

• Facial Expression Analysis: To gauge the driver’s mood and level of
concentration through facial expressions.

• Activity Detection: To monitor and analyze the activities of the driver and
passengers, which can include interactions with in-vehicle systems or with
other occupants.

OEMs have taken significant steps in implementing ADDW technologies, with
each bringing a unique approach to driver safety. As these technologies continue to
evolve, they form a critical part of the broader effort to reduce accidents caused by
distracted driving. This growth in this fiel is driven by all new regulations that
impose on new production car the installation of this systems on the vehicle.

2.2.6 Experimental solutions
Within the exploration of experimental solutions for driver distraction detection, a
variety of innovative approaches are being investigated, employing deep learning
algorithms, model-based approaches, and hybrid systems. These methods leverage

17



State of Art

an array of data sources, including vehicular data and driver-specific information
gathered from biometrics or camera observations, to enhance the accuracy and
reliability of distraction detection systems.

Deep learning algorithms stand out for their ability to process and analyze
vast amounts of data, learning complex patterns and behaviors associated with
driver distraction. These algorithms can interpret camera feed to recognize facial
expressions, eye movements, and head positions indicative of distraction. The
strength of deep learning lies in its adaptability and continuous improvement
through exposure to new data, making it highly effective in environments with
diverse and unpredictable driving conditions.

Model-based approaches, on the other hand, rely on predefined models
of driver behavior to assess distraction levels. One such method involves driver
model identification, which analyzes the driver’s interaction with the vehicle’s
controls, such as steering patterns, to infer attention levels. This approach is
particularly adept at accommodating individual driver differences and can be finely
tuned to account for various driving scenarios, thereby minimizing false alarms and
enhancing system reliability.

Hybrid systems combine the strengths of machine learning and model-based
approaches to provide a comprehensive solution that addresses the limitations of
each method when used in isolation. By combining real-time data analysis with
robust behavioural models, hybrid systems can provide a nuanced understanding of
driver states, accounting for the complex nature of distraction and its manifestations.

As an example of possible implementations, "Driver Attention Level Estimation Us-
ing Driver Model Identification" exemplifies a model-based approach by employing
driver model identification to estimate attention levels. This method’s uniqueness
lies in its use of vehicular inertial sensors and steering behavior analysis, sidestep-
ping the need for lane information from cameras and emphasizing adaptability to
individual driver differences .

In contrast, "Towards a Context-Dependent Multi-Buffer Driver Distraction
Detection Algorithm" introduces the AttenD2.0 algorithm, a hybrid system that
expands upon the original AttenD algorithm by incorporating multiple buffers to
reflect context-dependent factors and visual time-sharing behavior. This innovative
solution adjusts its parameters based on both static and dynamic driving conditions,
showcasing its flexibility and applicability in real-world scenarios, particularly in
ensuring driver attentiveness in automated vehicle control situations.

These experimental solutions illustrate the diverse and evolving landscape
of driver distraction detection research, highlighting the potential of combining
different methodologies to create more effective and reliable systems. In my thesis
project, I aim to advance the exploration of driver distraction detection by adopting
a novel approach inspired by the concept of a nominal driver model, as seen in

18



State of Art

the study "Identification of a Linear Parameter Varying Driver Model for the
Detection of Distraction." This study successfully utilizes a Cybernetic Driver
Model (CDM) through the application of an Unscented Kalman Filter (UKF)
to recursively identify parameters indicative of driver distraction. The model
integrates a deep understanding of human sensorimotor functions into a structured
framework, dividing the driver’s interaction with the vehicle into components such
as visual anticipation, visual compensation, and neuromuscular response .

My project will maintain the foundational idea of using a nominal driver model
but will diverge in the method of detection. Instead of solely relying on recursive
identification through UKF, I plan to explore additional or alternative data-driven
techniques that might offer enhanced sensitivity or specificity in detecting dis-
tractions. This could involve leveraging advanced machine learning algorithms
or incorporating more granular biometric data to refine the detection of subtle
changes in driver behavior or state that signify distraction.

The key motivation behind this approach is to capitalize on the strengths of the
nominal driver model, particularly its basis in cybernetic theory which provides a
comprehensive representation of driver behavior, while exploring new avenues for
the detection phase that could offer improvements in real-time performance and
applicability in diverse driving contexts. The goal is to achieve a more adaptable
and robust system capable of accurately identifying distractions under various
driving conditions and for different driver profiles.

2.3 Cybernetic Driver Model
As discussed in the previous section, understanding driver behavior to enhance
road safety in preventing accidents detecting driving distraction represents a crucial
aspect of this project. This can be done through the study of Cybernetic Driver
Models. Cybernetic Driver Models, with their ability to replicate the complex
interplay between a driver’s cognitive processes and their interactions with the
vehicle and environment, offer a powerful framework for this purpose. By modeling
how drivers respond to various stimuli and manage driving tasks, these models help
in identifying patterns that signify distraction. This chapter delves into the intricate
world of Cybernetic Driver Models, unraveling how they serve as an essential tool
for understanding and detecting driver distraction, thereby contributing to the
development of safer driving environments.

The core idea behind cybernetic models is to represent the driver’s interaction
with the vehicle and the environment in a systematic way, often using control
theory principles. These models consider the driver as a controller that processes
inputs from the environment (e.g., road curvature, traffic density, vehicle dynamics)
and generates outputs in the form of steering, braking, or acceleration commands
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to achieve desired driving goals (e.g., staying in lane, avoiding obstacles, reaching
a destination).

Key components of cybernetic driver models typically include:

1. Perception: This aspect models how a driver gathers information from the
environment, such as visual cues, sounds, and vehicle feedback. It addresses
how this information is filtered, prioritized, and processed to inform decision-
making.

2. Decision-making: This part represents the cognitive processes involved in
choosing specific actions based on perceived information, driving goals, and
potentially the driver’s internal state (e.g., stress level, fatigue).

3. Action: This component models the physical actions taken by the driver, such
as steering adjustments, braking, and accelerating. It considers the limitations
and capabilities of human motor functions.

4. Feedback Loops: Cybernetic models often incorporate feedback mechanisms,
where the outcome of the driver’s actions influences their subsequent percep-
tions and decisions. This loop is crucial for modeling adaptive and dynamic
driving behavior.

2.3.1 Lateral driver model
In the domain of human-vehicle interaction, the studies conducted by Mars and
Chevrel [18] have established a comprehensive theoretical foundation that elucidates
the complex mechanisms by which drivers perceive, decide, and actuate control
over their vehicles. Mars and Chevrel reviews scientific studies on driver modeling
emphasizing the importance of representing human visual and motor processes in
steering control, incorporating current behavioral science knowledge. The model’s
structure and calibration using experimental data are key aspects, with applications
in estimating driver state. This approach aims to enhance the synergy between
human drivers and assistance systems, ensuring safety and efficiency.

They started studying each step for representing the evolution of an action-decision
process of a driver starting from visual and motor control, driver behavior, and
neuromuscular systems to improve the design and functionality of advanced driver
assistance systems (ADAS). By simulating human steering behavior and assessing
factors like distraction and visual degradation, these models contribute to the
development of more intuitive and effective vehicle control systems that enhance
safety and driver-vehicle interaction.
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The cybernetic driver model by Mars and Chevrel meticulously dissects the driver-
vehicle interaction into three pivotal stages: Vision, Decision-making, and Neuro-
muscular Action, each playing a distinct role in steering control.

Figure 2.9: Cybernetic Driver Model: breakdown into basic stages

• Vision: This stage encompasses the driver’s assimilation of environmental
cues through visual perception, distinguishing between far visual information
for forecasting road curvature alterations and near visual information for real-
time corrections of lateral position errors. This dual-level visual processing
is supported by numerous studies, underscoring the critical role of visual
perception in steering maneuvers. The outcome of this stage is the formation
of a steering intention, setting the stage for decision-making and action.

• Decision-making: Upon processing the visual information, the driver formu-
lates a steering intention that reflects the cognitive aspect of driving. This
intention is shaped by the need to align the vehicle’s trajectory with the
desired path, influenced by the anticipation of road curvature changes and the
immediate need for lateral position correction. The steering intention serves as
a vital link between perception and action, encapsulating the driver’s response
to visual stimuli and facilitating neuromuscular execution.

• Neuromuscular Action: The final stage translates the cognitive steering
intention into physical motor output through the neuromuscular system. This
system adjusts the force applied to the steering wheel based on the steering
intention. Inspired by the work of Hoult and Cole [19], the model includes
muscle co-activation, incorporating both feedforward and feedback control
of movement execution. The output of this stage is the torque applied to
the steering wheel, offering a realistic representation of the driver’s physical
interaction with the vehicle and directly affecting steering dynamics.

Each stage plays a distinct role in steering control, from the initial perception
of environmental cues to the cognitive formulation of steering intention and the
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final execution of steering adjustments. The research spans from modeling human
control of steering to assess driver distraction and the effects of visual degradation
on steering control. These studies utilize a combination of anticipatory and com-
pensatory control strategies, sensorimotor dynamics, and linear parameter varying
models to capture the complexity of human driving behavior. Key themes include
the integration of visual and kinesthetic feedback, the identification of driver model
parameters for distraction detection, and the exploration of how visual impairment
affects steering control. This analysis emphasizes the need for a multidisciplinary
approach in the development of sophisticated driver assistance systems. Such
systems aim not only to emulate or augment human driving capabilities but also to
discern features indicative of the driver’s responses to external road stimuli. This
aspect is particularly crucial for this thesis, which focuses on detecting driving
distractions, because it helps adding information about the intention of the driver
and recognising functional drift that not corresponds to the nominal behavior.

Detailed Analysis of the Cybernetic Driver Model

Figure 2.10: The cybernetic driver model (Mars et al., 2011; Saleh et al 2011)

In the cybernetic driver model conceptualized by Mars and Chevrel, the in-
teractions between a human driver and the vehicle are encapsulated through a
sophisticated framework. Figure 2.10 delineates the Cybernetic Driver Model,
elaborated with parameters specified in section 2.3.1. This paradigm divide driver
interaction into two sequential operations: the computation of a prospective steering-
wheel angle derived from a two-point visual model, and the attainment of this
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angle via the vehicle’s neuromuscular subsystem (NMS), which incorporates a slight
processing latency.

Central to this approach is the two-point visual model, as depicted in 2.11,
which integrates modules for both Visual Anticipation and Visual Compensation,
following the groundwork laid by Savlucci & Gray [20]. It leverages the dual-
point visual feedback obtained during driving from driver perspective: the ‘far
point‘ representing anticipatory vision towards road curvature changes, and the
‘near point‘ indicating lateral road awareness close to the vehicle. The far point
is elucidated through the road’s tangent point data, obtainable from on-board
cameras or direct visual assessment. The near point, situated a few meters ahead
of the vehicle, reflects the driver’s immediate visual field related to lateral lane
positioning. The angles formed by the vehicle’s trajectory with these points, θfar
and θnear, respectively, serve as inputs for the visual model.

The entire model is articulated through various inputs, outputs, and parameters
that work together to replicate the driver’s steering behavior. The following
subsections provide an in-depth examination of the model’s main components.

Model Inputs The inputs to the model are critical as they initiate the control
process:

Figure 2.11: Visual representation of angles θfar and θnear

• θfar - Visual Anticipation Angle: This angle is used by the driver for visual
anticipation, which involves observing the distant road to forecast upcoming
changes in road curvature. The angle between the car heading and the tangent
point, which is where the inside edge line appears to reverse from the driver’s
viewpoint, is particularly significant for visual anticipation. It is conceptualized
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that drivers use the angle θfar to "read" the road curvature at the sensorimotor
level, allowing for anticipatory adjustments in steering to navigate bends and
turns.

• θnear - Visual Compensation Angle: The θnear angle is utilized for the
short-term corrections of the vehicle’s lateral position. This is typically based
on seeing road edge lines through peripheral vision, just a few meters ahead.
It is associated with the immediate compensatory actions required to maintain
the vehicle within the lane boundaries. This compensatory module allows
the driver to regulate perceptual variables to minimize the difference between
the desired vehicle state and the one that would be achieved if the current
steering action was maintained.
Both angles are processed to generate a desired steering wheel angle, δsw,
which is then translated into actual steering commands by the neuromuscular
system. The driver model accounts for visual information processing delays,
represented by a time-delay term, τp, which approximates the time required for
a driver to process visual cues and formulate a motor response. The model’s
ability to predict and compensate using these visual angles facilitates the
design of advanced steering assistance systems that can operate harmonously
with human drivers, maintaining the natural sensorimotor control loop.

• Γs - Self-aligning torque: It represents the mechanical feedback from the
steering wheel, influenced by road and vehicle dynamics.

• δd - Driver steering wheel angle the actual angle at which the driver holds
the steering wheel.

Model Outputs The outputs of the model are the results of the control process
and represent the driver’s response:

• f̂d: Steering wheel torque (model output), which is the simulated force that
the driver applies to the steering wheel.

• δsw: Steering wheel angle intention (model output), which is the desired
steering wheel angle computed by the model.

Model Parameters The parameters of the model define its behavior and response
characteristics:

• Kp: Gain associated with visual anticipation, affecting how the visual infor-
mation of the far environment influences steering.
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• Kc: Gain associated with visual compensation, affecting the corrective steering
based on immediate lateral position errors.

• Ts: Time constant associated with the self-aligning torque, representing the
dynamics of the vehicle’s response to steering.

• Kr: Gain related to the steering wheel’s resistance, influenced by the vehicle’s
speed.

• Tn: Neuromuscular time constant, representing the delay and dynamics of the
driver’s neuromuscular system.

• τp: Processing delay, indicative of the time taken by the driver to process
visual information and react.

Each component plays an important role in the accurate representation of the
human driver’s control strategy, enabling the development of advanced driving
assistance systems that are attuned to the driver’s natural responses.

Model adaptation to speed variation The dependency on vehicle speed is
reflected in multiple components of the model:

• The compensatory action characterized by Kc is inversely proportional to
vehicle speed, suggesting a decreased reliance on near visual cues at higher
speeds.

• Steering system resistance, denoted by Kr, is directly influenced by speed,
which impacts the force feedback experienced by the driver through the steering
wheel.

• Neuromuscular response time, represented by TN , indicates the latency in the
driver’s response, which also varies with the speed of the vehicle.

These elements collectively indicate a model that is sensitive to changes in speed,
dynamically adjusting both the perception of visual cues and the execution of
motor commands for steering control.

System Identification of the model The model depicted in Fig. 2.10 can be
represented in the state-space framework as follows:

ẋ(t) = f(x(t), u(t), Π) = A(Π)x(t) + B(Π)u(t) (2.3)
y(t) = g(x(t), u(t), Π) = Cx(t) (2.4)
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where x =
è
x1 x2 x3

éT
is the state vector, u =

è
θfar θnear δd Γs

éT
is the input

vector, and y =
è
Γ̂d

ˆδsw

éT
is the output vector. Π is the vector containing the

parameters to be identified: Π =
è
Kp Ki Ti τp Kr Kt Tn

éT
. The function

f is a real analytic vector field on R3 and g is a real analytic vector field on R2.
Once the time delay e−Tps is replaced by a first-order Padé approximation, one gets
from Fig.1 the state variables:

x1 = Kc

v

1
Tis + 1θnear (2.5)

x2 = 1
1 + τps

(Kpθfar + x1) (2.6)

x3 = 1
Tns + 1 [(Krv + Kt)x2 − Ktδd − Γs] (2.7)

In the continuous time domain, we have:

ẋ1 = − 1
Ti

x1 + Kc

vTi

θnear (2.8)

ẋ2 = 1
τp

(x1 − x2 + Kpθfar) (2.9)

ẋ3 = (Krv + Kt)
1
Tn

x2 − 1
Tn

x3 − Kt

Tn

δd − 1
Tn

Γs (2.10)

In the continuous time space it will be represented by: The matrices A(Π),
B(Π), and C are defined as follows:

A(Π) =


− 1

Ti
0 0

1
Tp

− 1
Tp

0
0 (Krv + Kt) 1

Tn
− 1

Tn

 ,

B(Π) =


0 Kc

vTi
0 0

Kp

Tp
0 0 0

0 0 −Kt

Tn
− 1

Tn

 ,

C =
C
0 0 1
0 1 0

D
.

(2.11)

Assuming that the inputs are approximately constant during two consecutive
sample times, the discretized model corresponding to e continuous time state-space
model is given by: xk+1 = fd[xk, uk, Π]

yk = g[xk, uk, Π]
(10)
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where fd[xk, uk, Π] = xk + T f [xk, uk, Π], xk = x(kT ), uk = u(kT ), yk = y(kT ) and
T is the sample time.

2.4 Driving Simulators

Driving simulators are invaluable tools in the realm of automotive research and
development, offering varying levels of complexity and immersivity. They enable
researchers and engineers to simulate and analyze a wide array of driving scenarios,
vehicle dynamics, and driver behaviors in a virtual yet realistic setting.

2.4.1 Complexity Levels in Driving Simulators

Driving simulators range from simple desktop-based applications focused on basic
vehicle handling and maneuvering, to sophisticated full-scale systems that replicate
the driving experience with high fidelity. For instance, low-complexity simulators
like the basic versions of TORCS (The Open Racing Car Simulator) provide
fundamental insights into vehicle handling. In contrast, high-complexity systems
like VIRES Virtual Test Drive offer a comprehensive suite for simulating advanced
driver-assistance systems (ADAS) and autonomous driving technologies in detailed
virtual environments.

2.4.2 Immersivity in Driving Simulators

The level of immersivity in driving simulators is another crucial aspect, impacting
the realism of the simulated driving experience and the validity of research outcomes.
Immersivity ranges from 2D graphical interfaces to full 3D setups with motion
platforms, surround sound, and panoramic visual systems. High-immersivity
examples include Daimler’s Driving Simulator in Fig. 2.12, which is one of the
most advanced simulators, providing a 360-degree visual field and a motion platform
capable of simulating various driving conditions realistically [21].

The selection of a driving simulator is heavily influenced by its intended appli-
cation, balancing the need for complexity and immersivity against economic and
practical considerations. While high-complexity, high-immersion simulators offer
the most realistic and detailed research environment, their cost and operational
requirements may not be justifiable for all applications. Conversely, simpler simu-
lators may provide a cost-effective solution for basic research, or initial stages of
development as in this project.
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Figure 2.12: Daimler-Benz Driving Simulator

2.5 Simulation Environments
Simulation environments are the backbone of driving simulator systems, provid-
ing the necessary tools and frameworks for creating, executing, and analyzing
simulations.

2.5.1 Matlab/Simulink
Matlab/Simulink stands out as a versatile and powerful environment for simulating
and modeling dynamic systems for automotive applications. It is particularly
valued for its comprehensive set of tools and libraries that cater to various aspects
of vehicle dynamics and control system design.

Vehicle Dynamics Blockset

The Vehicle Dynamics Blockset in Matlab/Simulink includes fully assembled refer-
ence application models that simulate vehicle dynamics in a 3D environment. This
blockset is instrumental in developing, testing, and fine-tuning algorithms related
to vehicle dynamics, such as traction control, braking, and stability systems, in a
virtual environment before real-world implementation.

The conventional vehicle model encapsulates a complex and technical representa-
tion, which includes a detailed account of the vehicle’s physical characteristics, its
control systems, and the assortment of sensors, as depicted in Figure 2.13 . Each
component of the model is composed of variable subsystems that can be adjusted
to meet specific requirements:
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Figure 2.13: Conventional Vehicle Model - Matlab R2023B [22]

Driver Commands: Incorporates various driver models including open-loop, lin-
ear predictive, and longitudinal models for driver behavior. Controllers: Simulates
essential vehicle controls such as the Electronic Control Unit (ECU), braking, differ-
ential, and transmission systems. Environment: Enables the simulation of external
conditions like wind effects and surface friction. Passenger Vehicle Dynamics: Mod-
els the intricate dynamics of the drivetrain, engine, and vehicle body. Sensor Suite:
Equips the model with a triaxial Inertial Measurement Unit (IMU). Visualization
Tools: Provides integration with default maps from the Unreal Engine environment
(refer to Section 4.16). Regarding the vehicle model’s degrees of freedom (DOF),
the toolbox presents two options: a 7 DOF model and an advanced 14 DOF model.
The simpler version accounts for the body’s three degrees of freedom and one for
each wheel. The more complex model expands upon this by offering six degrees of
freedom for the vehicle body and two for each wheel.

Widely recognized in both industry applications and academic research, the 14
DOF model in Fig.2.14 effectively balances the intricacies of real-world physical
behavior and the mathematical constructs needed for more idealized scenarios
(see [23]). The practical implementation of this model within Simulink has been
validated as an accurate and reliable tool for vehicular research studies, as referenced
in [24].

Automated Driving Toolbox

The Automated Driving Toolbox provides algorithms and tools for designing, simu-
lating, and testing ADAS and autonomous driving systems. It includes features for
sensor fusion, object detection, and path planning, facilitating the development
of complex driving algorithms and the integration of sensor systems in a virtual
simulation environment.
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Figure 2.14: Matlab 14DoF Vehicle Model

2.5.2 Integration with Unreal Engine 4.0
The integration of Matlab/Simulink with Unreal Engine 4.0 enhances the simulation
environment by adding high-quality graphical rendering capabilities and expansive
scenario customization options. This integration allows for the simulation of
complex and realistic driving scenarios, including variable weather conditions,
diverse traffic situations, and intricate urban and rural environments. By utilizing
Unreal Engine’s powerful rendering engine, researchers can create immersive and
visually compelling simulations that improve the predictive accuracy and reliability
of automotive research outcomes. The combination of Matlab/Simulink with its
specialized toolboxes and the graphical prowess of Unreal Engine 4.0 enables highly
realistic and complex simulations essential for advancing automotive safety and
autonomous driving technologies.
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Chapter 3

Background

This section explores the background knowledge, tools, and techniques utilized in
the execution of this project.

3.1 Driving Simulator Hardware
The company’s driving simulator, designed for previous projects, is equipped
with specialized hardware to support software simulations. It includes a high-
performance workstation, realistic control interfaces like a steering wheel and
pedals for natural driver interaction, and a high-definition, curved main monitor
for immersive simulation. Additional elements like a secondary screen for detailed
simulation data, along with essential accessories like a seat designed for comfort and
realism, contribute to a comprehensive setup. Future enhancements may include
tools for assessing driver attention and generating distractions for data collection
on driver behavior.

3.1.1 Main components
• Control Device: Logitech G920 Driving Force - High-precision steering

wheel and pedals for a realistic driving simulation 3.1.

• Cockpit: RSeat RS1 Red/Black - Ergonomic racing simulator cockpit
designed for comfort and realism.3.2

• Display: Nilox Curved Monitor ELED 49" DFHD - Immersive 49-inch
curved monitor for an expansive field of view.3.3

• Graphics Card: NVIDIA RTX 3070 GPU - High-performance graphics
card for rendering complex simulations.
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Figure 3.1: Steering wheel and pedals

Figure 3.2: Cockpit

• CPU: AMD Ryzen 7 5800x - Powerful CPU to handle demanding simula-
tion tasks.

• Memory: Corsair Vengeance LPX 32GB DDR4 3200MHz - High-speed
memory for efficient data processing.

• Storage: Samsung SSD 980 M.2 PCIe NVMe 1TB - Fast storage
solution for quick load times and large simulation data.

3.2 Vehicle Setup & Environment
The vehicle setup encompasses the various parameters to optimize the car’s perfor-
mance for specific applications, such as racing or comfort. This process involves
fine-tuning mechanical resistances, sensitivities, and electronic control unit (ECU)
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Figure 3.3: Curved monitor 49"

parameters to achieve the desired dynamic behavior. Environmental factors like air
temperature and pressure also play a significant role in vehicle performance and
must be considered during the setup process. In virtual models, these environmental
conditions can be defined to simulate specific scenarios.

3.2.1 Driveline
The driveline constitutes an essential mechanism within a vehicle, tasked with
the transmission of power from the engine to the wheels, thereby facilitating
motion. This system encompasses key components including the steering geometry,
transmission, and driveshaft, each playing a pivotal role in the vehicle’s performance
and efficiency.

This knowledge is utilized when making assumptions for the inputs of cybernetic
models explained in section 4.2.3, in order to keep high fidelity with literature
models. This approach is used to enhance the credibility of the simulations.

3.2.2 Sensors
In the era of advanced driver-assistance systems (ADAS) and the move towards
autonomous vehicles, sensors have become indispensable in modern cars. These
sensors enable vehicles to be more aware of their surroundings and include tech-
nologies such as radar, lidar, cameras, and ultrasonic sensors. Each type of sensor
contributes to the vehicle’s ability to navigate, detect obstacles, and enhance overall
safety and performance.

The integration and calibration of these sensors are crucial in the vehicle setup
process, ensuring the ego vehicle can accurately perceive its surroundings and
respond appropriately.

The vehicle setup, therefore, involves a holistic approach, integrating mechanical
adjustments with sensor calibration to tailor the vehicle’s performance to specific
needs and environmental conditions.
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3.3 Kalman Filters
Kalman Filters constitute a series of mathematical equations that provide an
efficient computational (recursive) means to estimate the state of a process in a
way that minimizes the mean of the squared error. The standard Kalman Filter is
designed for linear models, but real-world systems are often nonlinear, which led to
the development of the Extended and Unscented Kalman Filters. Kalman filters,
including their Extended (EKF) and Unscented (UKF) variants, are invaluable
tools in state estimation and parameter identification for dynamic systems. These
filters are particularly beneficial for estimating parameters of cybernetic models,
such as the one proposed by Mars and Chevrel for driver steering behavior.

3.3.1 Extended Kalman Filters
The Extended Kalman Filter (EKF) serves as a robust tool for estimating the
states of nonlinear dynamic systems, such as those encountered in cybernetic
driver models. The cybernetic model encapsulates complex, nonlinear relationships
between a driver’s sensory processing and motor actions. The EKF addresses the
challenge of linearization in these nonlinear environments by approximating the
system’s state at a point and expanding the nonlinearities around this estimate.

In the context of a cybernetic driver model, the EKF can estimate not only the
immediate state of the driver-vehicle interaction but also infer hidden parameters
that govern these interactions. This is achieved by augmenting the state vector
with these parameters, thereby enabling the EKF to update its estimates as new
data arrives.

Mathematical Description of the Extended Kalman Filter The EKF uses
a two-step process: a prediction step, where the system’s state is advanced from
time k − 1 to k, and an update step, where the prediction is corrected by the new
measurement at time k. The equations governing these steps are as follows:
Prediction Step:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (3.1)
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 + Qk−1 (3.2)

where:

• x̂k|k−1 is the predicted state estimate.

• f(·) is the nonlinear state transition function.

• uk−1 is the control input at time k − 1.
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• Pk|k−1 is the predicted error covariance.

• Fk−1 is the Jacobian matrix of f(·) with respect to the state.

• Qk−1 is the process noise covariance matrix.

Update Step:

Sk = HkPk|k−1H
T
k + Rk (3.3)

Kk = Pk|k−1H
T
k S−1

k (3.4)
x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1)) (3.5)
Pk|k = (I − KkHk)Pk|k−1 (3.6)

Where:

• Sk is the innovation covariance.

• Hk is the Jacobian matrix of h(·) with respect to the state.

• Rk is the measurement noise covariance matrix.

• Kk is the Kalman gain.

• yk is the measurement at time k.

• h(·) is the nonlinear measurement function.

• I is the identity matrix.

EKF Advantages:

1. Computationally less intensive.

2. Extensively studied and understood in practice.

3. Requires less memory for operation.

EKF Disadvantages:

1. Can introduce significant errors in highly nonlinear systems due to lineariza-
tion.

2. Requires the computation of Jacobian matrices, which adds to the complexity
for certain models.

By using the EKF within the cybernetic driver model’s framework a more
responsive and accurate representation of the driving behavior can be obtained
considering all non linear behaviours of the model.
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3.3.2 Unscented Kalman Filters
For complex cybernetic models describing driver behavior, accurately estimating
the state is paramount. The Unscented Kalman Filter (UKF) provides a powerful
alternative to the EKF for such non-linear systems. The UKF applies the unscented
transformation to predict and correct the state estimates, which is often more
accurate than the linearization approach used in the EKF, particularly when dealing
with highly non-linear systems.

Mathematical Description of the Unscented Kalman Filter The UKF
predicts the state and the variance of a non-linear system by taking a deterministic
sampling approach. A set of points, called sigma points, are chosen so that their
mean and covariance match that of the system’s current state estimate. These
points are then propagated through the non-linear system, and their new mean
and covariance are computed to form the prediction. The steps can be described
mathematically as follows:
Sigma Points Selection:

Xk−1 = GenerateSigmaPoints(x̂k−1|k−1, Pk−1|k−1) (3.7)

Prediction Step:

Xk|k−1 = f(Xk−1) (3.8)
x̂k|k−1 = Mean(Xk|k−1) (3.9)
Pk|k−1 = Covariance(Xk|k−1) + Qk−1 (3.10)

Update Step:

Yk = h(Xk|k−1) (3.11)
ŷk|k−1 = Mean(Yk) (3.12)

Pyy = Covariance(Yk) + Rk (3.13)
Pxy = CrossCovariance(Xk|k−1, Yk) (3.14)
Kk = PxyP −1

yy (3.15)
x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (3.16)
Pk|k = Pk|k−1 − KkPyyKT

k (3.17)

Where:

• Xk−1 represents the sigma points at time k − 1.

• f(·) is the non-linear state transition function.
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• h(·) is the non-linear measurement function.

• Qk−1 and Rk are the process and measurement noise covariance matrices,
respectively.

• x̂k|k−1 and x̂k|k are the a priori and a posteriori state estimates, respectively.

• Pk|k−1 and Pk|k are the a priori and a posteriori estimate covariances, respec-
tively.

• Pyy and Pxy are the measurement and cross-covariance matrices, respectively.

• Kk is the Kalman gain.

• yk is the actual measurement at time k.

The UKF’s ability to accurately capture the posterior mean and covariance
without linearizing the process and measurement models makes it particularly
suitable for systems with complex interactions and non-linearities, such as cybernetic
driver models.
UKF Advantages:

1. Better at handling nonlinearities by using sigma points instead of linear
approximations.

2. Potentially more accurate in systems with strong nonlinear characteristics.

UKF Disadvantages:

1. More computationally demanding, potentially unsuitable for real-time or
resource-constrained environments.

2. Implementation complexity due to the management of sigma points.

3. Higher memory requirements due to storing multiple sigma points.

Given these considerations, the choice between EKF and UKF is done condidering
that the systems that we want to obtain require simplicity and have limited
computational resources because it should be implemented on the edge and EKF
may be the appropriate choice.
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3.4 Machine Learning Algorithms
Machine learning algorithms have revolutionized the way we approach problem-
solving in various domains, including driver safety and vehicle automation. These
algorithms allow computers to learn from data, identify patterns, and make decisions
with minimal human intervention. One crucial application of machine learning
is in the detection of driver distraction, a leading cause of accidents on the road.
By analyzing a combination of vehicular data, environmental conditions, and
driver behavior, machine learning models can alert systems to distracted driving,
facilitating timely interventions to prevent accidents.

3.4.1 Supervised Machine Learning
Supervised machine learning is a subset of machine learning where the model is
trained on a labeled dataset. This means that each training sample is paired
with an output label. In the domain of driver distraction detection, supervised
machine learning plays a pivotal role. The task of identifying whether a driver is
distracted is essentially a classification problem, which is a quintessential application
of supervised learning. Classifiers are algorithms that, once trained on a dataset
where the ’distraction’ states are labeled, can accurately predict the distraction
state for new, unseen data.

The process involves feeding the classifier a set of features extracted from the
data, which may include variables such as steering angle, braking patterns, eye
movement, and even physiological signals like heart rate. The classifier then learns
from this data, understanding the complex, multi-dimensional relationships that
correlate with distraction.

Once the model is trained, it can then be applied to real-world scenarios. As it
encounters new data, it uses the learned patterns to predict the driver’s attention
state. This prediction can trigger alerts or interventions to refocus the driver,
thereby mitigating risks and enhancing road safety.

The effectiveness of these classifiers is critical since they are expected to function
accurately in real-time, ensuring immediate and appropriate responses to prevent
potential accidents caused by distraction.

Random Forest Classifier

One powerful supervised learning algorithm is the Random Forest Classifier, which
is an ensemble learning method. It operates by constructing a multitude of decision
trees during the training phase and outputting the class that is the mode of the
classes of the individual trees. Random forests correct for decision trees’ habit of
overfitting to their training set, providing a more generalized and robust prediction.
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Figure 3.4: Logic of Random Forest Classifier

The Random Forest Classifier works particularly well for distraction detection
tasks due to its ability to handle large datasets with numerous features, some
of which might be irrelevant. It also provides a measure of feature importance,
which can be insightful for understanding which factors contribute most to driver
distraction. The key steps in the Random Forest methodology are:

1. Bootstrap Aggregating (Bagging): For each decision tree, a random
sample of the data is selected with replacement, known as a bootstrap sample.
Each tree is trained on its respective bootstrap sample.

2. Random Feature Selection: When splitting a node during the construction
of a tree, a random subset of the features is considered for the split, rather
than all features. This ensures diversity among the trees and is a key difference
from a single decision tree.

3. Building Multiple Trees: Many trees are built independently using the
above two methods of bagging and random feature selection. The number of
trees built (n_estimators) is a hyperparameter of the algorithm.

4. Majority Voting or Averaging: For classification tasks, each tree in the
forest votes for a class, and the class with the most votes becomes the model’s
prediction. In regression tasks, the average prediction across all trees is used.

5. Model Output: The final prediction output of the Random Forest Classifier
is thus the aggregated result of many decision trees, which typically improves
predictive accuracy and controls overfitting compared to using a single decision
tree.
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This classifier’s ability to produce accurate and interpretable results, without
the need for extensive data preprocessing, makes it an ideal choice for real-world
applications like distraction detection systems in vehicles, where real-time processing
and decision-making are crucial.

Support Vector Classifier (SVC)

Support Vector Classifier (SVC) is a powerful supervised learning algorithm used
for classification and regression tasks. In the context of distraction detection,
SVC excels by finding the hyperplane that best separates the feature space into
distracted and non-distracted drivers. It handles both linear and non-linear data
by using different kernel functions, thus providing flexibility in modeling complex
relationships.This versatility is achieved through the utilization of various kernel
functions, such as:

• Linear Kernel: Best suited for linearly separable data, where a straight line
(or hyperplane in higher dimensions) can separate the classes.

• Polynomial Kernel: Allows the model to fit non-linear datasets by mapping
the original features into a higher-dimensional space, where a hyperplane can
then be used for separation.

• Radial Basis Function (RBF) Kernel: Also known as the Gaussian kernel,
this is a popular choice for non-linear data, capable of handling complex
relationships by mapping the features into an infinite-dimensional space.

• Sigmoid Kernel: Mimics the behavior of a neural network’s activation
function and can be used for non-linear problems.

Figure 3.5: Support Vector Machine principle
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In the context of distraction detection, the choice of kernel and its parameters
(such as the degree for polynomial kernel, or gamma in RBF kernel) are crucial
for the model’s performance. The flexibility to tune these parameters makes SVC
a powerful tool in modeling the intricate dynamics between various features that
indicate driver distraction.

Furthermore, SVC introduces the concept of a ’margin’ around the separating
hyperplane, aiming to not only separate the classes but to do so in a manner that
maximizes the distance between the closest points of the classes to the hyperplane.
This concept, known as the maximum margin classifier, enhances the model’s
generalization capabilities.

The penalty parameter C plays a pivotal role in SVC by regulating the trade-off
between achieving a low error on the training data and maintaining a wide margin.
A higher value of C puts more emphasis on minimizing the training error, which can
lead to a more complex model at the risk of overfitting. Conversely, a lower value
of C prioritizes a wider margin and a simpler model, potentially at the expense of
higher training error.

Given its robustness and adaptability, SVC stands out as an efficacious algorithm
for discerning driver distraction, thereby contributing to the advancement of safety
measures in automotive technology.

XGBoost

XGBoost stands for Extreme Gradient Boosting and is an efficient implementation
of gradient boosting framework. This algorithm is known for its speed and perfor-
mance and is widely used in machine learning competitions. XGBoost provides a
robust way to handle a variety of data types, distributions, and the relationships
between features, making it an excellent choice for identifying patterns that indicate
distraction.

AdaBoostClassifier

The AdaBoostClassifier, short for Adaptive Boosting, is another ensemble technique
that works by combining multiple weak learners into a strong one. Each learner
in the sequence is adjusted to correct the mistakes of the previous one. In driver
distraction detection, AdaBoost can incrementally improve the identification of
nuanced behaviors associated with distraction.

GradientBoostingClassifier

Gradient Boosting Classifier is a predictive algorithm that builds an ensemble of
decision trees in a sequential manner. Each tree attempts to correct the errors of
the previous one based on the gradient of the loss function. Its strength lies in its
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ability to model complex relationships within data, which is crucial when different
forms of distraction may manifest through diverse driving behaviors.

3.5 Time Series and Signal Processing
A time series is a sequence of data points collected or recorded at successive
time intervals. The data points in a time series can represent a wide variety of
phenomena, tracking changes over time in fields such as economics, meteorology,
social sciences, and more. Time series analysis involves understanding these trends,
seasonal variations, cyclical patterns, and other characteristics inherent in the data.

3.5.1 Discrete vs. Continuous Time Series
Time series can be categorized into discrete and continuous, based on the nature of
their time intervals:

• Discrete Time Series: In a discrete time series, the data points are recorded
at specific and often equally spaced time intervals. This type of series is
common in scenarios where measurements can only be taken or are only
meaningful at certain times, such as daily stock market closes or monthly
unemployment rates.

• Continuous Time Series: A continuous time series, on the other hand,
involves data that is recorded continuously over a period of time. This type
of series could represent data like temperature measurements taken every
millisecond or the fluctuating speed of a vehicle.

The choice between discrete and continuous time series depends on the nature of
the data and the objectives of the analysis. In practice, even data from continuous
processes are often discretized for analysis due to the limitations of data recording
and storage technologies.

3.5.2 Signal Processing in Time Series Analysis
Before feeding time-windowed data into ML algorithms for classification tasks,
applying signal processing techniques can be highly beneficial in terms of perfor-
mances. Signal processing involves the analysis, manipulation, and interpretation
of signals. It helps in enhancing the signal quality, extracting relevant features, and
reducing noise, thereby making the data more amenable to analysis. The reasons
for applying signal processing before classification include:
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• Noise Reduction: Real-world data is often contaminated with noise. Signal
processing can help filter out irrelevant or spurious noise, highlighting the
underlying signal patterns.

• Feature Extraction: Certain characteristics of the signal, such as peaks,
trends, and periodicity, might be crucial for the classification task. Signal
processing techniques can extract these features, making them more explicit
to the classifier.

• Normalization and Standardization: Signal processing can ensure that
the data fed into the classifier is normalized or standardized, improving the
classifier’s performance by providing data in a consistent format.

• Dimensionality Reduction: High-dimensional data can be problematic
for classifiers. Signal processing can reduce the dimensionality of the data,
retaining only the most informative features.

In essence, preprocessing time series data through signal processing enhances the
data’s quality and structure, facilitating more accurate and efficient classification.
This preparatory step is crucial for effective time series analysis, particularly when
dealing with complex or noisy data sets.

3.5.3 Sliding Window
The sliding window technique is a crucial method employed in this project, particu-
larly for processing sequential data or time-series information. In order to apply the
inference model for distraction detection it is necessary to define two parameters:
the window size and the window stride (or overlap).

Window Size

Figure 3.6: Time Window data segmentation

The window size determines the length of the data segment being considered at
any given time. It is a critical parameter that impacts the granularity of analysis.
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A larger window size encompasses more data points, providing a broader context
but potentially diluting short-term variations. Conversely, a smaller window size
offers a more detailed view of fluctuations within the data but might miss broader
trends.

Window Stride

Figure 3.7: Window selection with overlapping

The window stride, or overlap, defines the step size between consecutive windows.
A smaller stride increases the overlap between successive windows, leading to finer
resolution in the analysis but at the cost of increased computational load. A
larger stride reduces the overlap, enhancing computational efficiency but possibly
overlooking subtle changes between windows.

The choice of these parameters is pivotal, as it balances the need for detailed
data analysis against computational efficiency. In this project, the sliding window
technique, with carefully selected window size and stride, facilitates the examination
of temporal data, ensuring that the models capture both short-term dynamics and
long-term patterns of distracted driving effectively.

3.5.4 Spectral Decomposition
To gain a deeper understanding of a signal, it’s beneficial to examine it not just
in its original time domain but also in terms of its frequency components. This
is where the concept of frequency analysis comes into play, particularly through
the application of the Fourier transform. This mathematical transformation allows
us to convert a signal from its time domain representation, s(t), into its frequency
domain counterpart, Fs(f), according to the following equation:

Fs(f) =
Ú +∞

−∞
s(t)e−2πift dt, f ∈ R

By doing so, the analysis shifts from observing changes over time (t) to understand-
ing how the signal behaves across different frequencies (f).
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Fast Fourier Transform The computational efficiency in conducting frequency
domain analysis is significantly enhanced by the Fast Fourier Transform (FFT).
This algorithm is an optimized version of the discrete Fourier transform (DFT) that
quickly identifies the predominant frequencies within a given time window of data.
Through FFT, it’s possible to detect and analyze periodic patterns and anomalies
within the signal, which are crucial for understanding its behavior. The insights
gained from observing the frequency characteristics of a signal can reveal underlying
structures and events, offering a more comprehensive view of its dynamics.

3.5.5 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a statistical procedure that utilizes an
orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal
components. This transformation is defined in such a way that the first principal
component has the largest possible variance, and each succeeding component, in
turn, has the highest variance possible under the constraint that it is orthogonal to
the preceding components. The resulting vectors are an uncorrelated orthogonal
basis set. PCA results

• Dimensionality Reduction: PCA reduces the dimensionality of the data
set, simplifying the dataset while retaining the variation present in the dataset
to the maximum extent.

• Visualization: It is easier to visualize high-dimensional data sets when
reduced to two or three principal components.

• Noise Reduction: By keeping only the most significant principal components,
minor fluctuations or noise can be eliminated, leading to a more accurate
analysis.

• Feature Extraction: PCA can be used to discover or reduce the number of
variables in a high-dimensional data set.

Mathematical Formulation

The mathematical foundation of PCA involves a few key steps:

1. Standardize the data.

2. Compute the covariance matrix of the data.

3. Calculate the eigenvalues and eigenvectors of this covariance matrix.
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4. Sort the eigenvalues and their corresponding eigenvectors.

5. Select k eigenvalues and form a matrix of eigenvectors.

6. Transform the original matrix.

Mathematically, if X is the original data matrix, and V is the matrix with k
eigenvectors, then the transformed data Y is obtained as:

Y = X × V (3.18)

Applications in Distraction Detection

In the context of distraction detection in drivers, PCA can be utilized to reduce the
dimensionality of the dataset derived from vehicle sensors and cameras monitoring
the driver or as in this particular case from driver model parameters extracted.
This dimensionality reduction can help in isolating the features that are most
indicative of distracted behavior, thereby enhancing the performance of machine
learning models designed to detect and predict such behaviors.

By focusing on the principal components that capture the most variance in
the driver’s behavior, the complexity of the predictive models can be reduced
without a significant loss of information. This streamlined dataset can lead to more
efficient and effective detection of distracted driving, contributing to safer driving
environments and reducing the computational efforts in inference for real-time
applications.

3.6 AWS Cloud

Figure 3.8: AWS cloud services

The development and deployment of machine learning models for tasks such as
distraction detection require robust and scalable computational resources. Amazon
Web Services (AWS) Cloud has been employed to store vast amounts of data and
to train machine learning models efficiently.
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Data Storage with Amazon S3
Amazon Simple Storage Service (S3) is an object storage service that offers industry-
leading scalability, data availability, security, and performance. For our distraction
detection project, Amazon S3 serves as the backbone for storing and retrieving any
amount of data at any time. This includes raw data collected from simulations
or real-world driving scenarios, pre-processed datasets ready for training, and the
trained models themselves. The reliability and security of S3 ensure that our
data is stored safely and is accessible whenever needed, facilitating seamless data
management throughout the project lifecycle.

Model Training with Amazon SageMaker
Amazon SageMaker is a fully managed service that provides every developer
and data scientist with the ability to build, train, and deploy machine learning
models quickly. SageMaker offers various built-in algorithms and support for
custom algorithms, making it a versatile tool for our distraction detection model
development. Our models are trained on SageMaker using the stored data in
S3, leveraging its scalable compute resources to expedite the training process.
SageMaker’s integration with Jupyter notebooks also allows for an interactive
development environment, enabling our team to experiment with different models,
evaluate their performance, and iterate quickly.

Deployment in Simulation Environment
Once trained, the machine learning models are deployed in a simulated environment
for inference. This simulation environment replicates real-world driving scenarios,
allowing us to test the effectiveness of our distraction detection models under various
conditions. The models deployed in this environment use the trained weights and
biases to make predictions on streaming data, simulating real-time inference. AWS
provides the necessary tools and services to deploy these models efficiently, ensuring
low latency and high throughput for real-time applications.

The integration of AWS services, from data storage with S3 to model training
with SageMaker, and finally to deployment in a simulated environment, creates a
cohesive and efficient workflow for developing and testing machine learning models
aimed at enhancing driver safety through distraction detection.
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Chapter 4

Material and methods

4.1 Driving Simulator

4.1.1 Requirements

The proposed solution necessitates the utilization of specific MathWorks toolboxes
and versions, outlined in the table below:

Toolbox / Application Version / Package
Matlab 2023b
Simulink -
Automated Driving Toolbox Automated Driving Toolbox for Unreal 4.0
Computer Vision Toolbox -
Image Processing Toolbox -
Requirements Toolbox -
Simulink 3D Animation -
Simulink Test -
Vehicle Dynamics Blockset Including the Unreal Interface package
Unreal Engine 4.27
Python 3.10

Table 4.1: Toolboxes and Versions Required for the Proposed Solution

Furthermore, the above-mentioned licenses were implemented via Matlab’s Add-
On Manager, ensuring seamless integration and compatibility, particularly with
the specified version of the Unreal Engine desktop application for effective scenario
generation and the specified version of Python compatible with Matlab R2023B
(3.9, 3.10, 3.11) [25].
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4.1.2 Driving Simulation Environment

The primary objective of developing a highly immersive simulation environment is
to reproduce authentic driving responses and behaviors from the driver, facilitating
the accurate recording of real distraction events. This immersive setting integrates
a wide array of components, both within the simulation framework and external to
the vehicle, such as other entities, potential impediments, roadway features, and
diverse conditions of weather and illumination.

Matlab default scenario

The MATLAB default Curved Road scenario, as outlined in the MathWorks
documentation [26], is particularly suited for collecting data on normal driving
patterns. Illustrated in Fig.4.1 , this scenario’s unique configuration offers a realistic
setting that prompts drivers to exhibit a wide range of natural driving behaviors.

Figure 4.1: Illustration of the MATLAB default Curved Road scenario.

Characterized by its looped road with varying bends, the Curved Road scenario
is essential for simulating real-world driving conditions that include both rapid
and gradual cornering. This variety is crucial for reproduce a wide range of driver
responses, from straightforward steering adjustments to more intricate navigational
strategies. The scenario’s capacity to provoke such a broad array of driving
behaviors is a key factor in its effectiveness for data acquisition purposes, especially
in research focusing on driver distraction. The resultant data sets are rich in typical
driving dynamics, thereby providing a solid foundation for analytical studies aimed
at enhancing road safety and driver assistance technologies.
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Enhanced Scenario using Unreal Engine

Building upon the default Curved Road scenario provided by MATLAB, significant
enhancements are introduced to create a more comprehensive and realistic driving
environment. Utilizing the capabilities of the Unreal Engine editor, the base
scenario is augmented to include additional vehicles, thereby introducing dynamic
elements that mimic real-life traffic conditions. This modification aims to test and
observe driver behavior in scenarios that closely resemble actual driving situations,
enhancing the reliability of data acquired for distraction analysis.

The scenario is enriched with environmental details such as buildings, trees, and
traffic signals to provide a fully immersive driving experience. These elements not
only contribute to the visual realism of the simulation but also play a crucial role
in simulating real-world distractions and obstacles a driver may encounter.

Figure 4.2: Unreal Scenario - Curved Road

To further augment the realism of the simulation and enhance the driver’s
sensory experience, audio mapping of engine noises was integrated, providing
audible cues related to vehicle speed and performance. Additionally, a speedometer
was displayed within the driver’s dashboard view, offering visual feedback on the
vehicle’s speed. This setup is particularly effective in conveying the sensation of
velocity, an essential factor in driving behavior and decision-making.

A critical feature implemented in this enriched scenario is the alert system on
the dashboard. This system is activated when driver distraction is detected, serving
as an immediate feedback mechanism to alert the driver and potentially mitigate
risky situations. The integration of such alerts within the simulation environment is
instrumental in providing in real-time feedback for distracted driving as requested
by EU regulations reported in section 2.2.3.

Through these enhancements, the simulation scenario transcends its original
design, offering a multifaceted platform for in-depth studies on driver behavior,
particularly focusing on the detection and mitigation of distracted driving episodes.

50



Material and methods

4.2 Driver Model
A key aspect of the project lies in the employment and realization of a cybernetic
model that is able to reproduce the driver’s behavioral dynamics. The process of
feature extraction is done through the application of a Kalman filter in the context
of system identification. It is done introducing innovative solutions that stand
in parallel to traditional literature. This approach not only challenges existing
paradigms but also promotes the exploration of new ideas. In addition, we delineate
specific assumptions pertaining to the simulated data employed in our analysis.

Following this foundation, the next section will explore the general structure of
the cybernetic model and define the intended outcomes from its application. The
focus will be on how this model encapsulates complex driving behaviors and the
mechanisms through which it can advance the understanding of driver distractions.
This is aimed at contributing to the creation of more intuitive and safer driver
assistance systems.

4.2.1 Objectives
The primary objectives of this section include:

1. Replication of Driver Model from Literature: To replicate an established
driver model for controlling the lateral dynamics found in literature, providing
a benchmark for further exploration.

2. Exploration of Integrative Solutions: To explore additional solutions
that can be integrated with the replicated models to enhance their descriptive
and predictive capabilities.

3. Identification and Selection of Distraction-Related Parameters: To
identify and select parameters within the model significantly influenced by
driver distraction for in-depth analysis.

4. Estimation of Distraction-Related Parameters: To accurately estimate
the values of identified distraction-related parameters using system identifica-
tion with a Kalman filter.

5. Convergence Analysis of Parameters: To examine the convergence be-
havior of model parameters to ensure the model’s stability and reliability.

6. Development of a Final Solution: To develop a refined model incorpo-
rating insights gained from the objectives above, offering a novel approach to
understanding and mitigating driver distraction.
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4.2.2 Cybernetic Models: Structural Insights

Figure 4.3: Simulink structure for cybernetic models

The Simulink diagram in Fig.4.3 illustrates the general scheme for cybernetic
driver models created. The InfoBus serves as dispatcher for incoming signals, which
are categorized into <Driver Input>, representing the driver’s inputs or actions on
steering wheel and accelerator and brake pedals; <Vehicle Feedback>, containing
feedback from the vehicle’s dynamics; and <Sensor Data>, which includes data
from environmental sensors mounted on the vehicle in simulation. These signals
are routed through the Input-Output Routing block, which processes and directs
them to the Driver Models block.
Two bus signals emerge from this routing block: kalman_input (u), serving as the
control input for the Kalman filter, and kalman_ymeasured (y_measured), the
observed system measurements.

The DriverModel block incorporates two cybernetic driver models:
• Lateral Driver Model

• Longitudinal Driver Model
Inputs and measurements for kalman filter to estimate the driver’s states are
collected in the same bus and then, as shown in Fig.4.4, for each model are selected
the right signals. Each model produces a bus signal containing state and augmented
state signals.

4.2.3 Lateral driver model
In this segment, the implementation of the cybernetic driver model, previously
discussed in section 2.3.1, is addressed. The system model is identified using an
Extended Kalman Filter (EKF) block, essential for the dynamic estimation of
parameters within the augmented state. The EKF is employed as a key mechanism,
enabling the continuous adaptation and refinement of model parameters in response
to observed driver behavior and vehicle dynamics.
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Figure 4.4: Simulink block - Driver models input management

Table 4.2: Inputs for the Cybernetic Driver Model

Input Source Input
Variable

Description

Driver Input Steering Angle The angle at which the driver is holding
the steering wheel, indicating the driver’s
intended direction.

Vehicle Dynamic
Feedback

Self Aligning
Torque

The torque that aligns the steering with
the vehicle’s motion path due to tire-road
interactions.

Vehicle Dynamic
Feedback

Vehicle CoG
Velocity

The velocity of the vehicle’s center of
gravity, essential for understanding the
vehicle’s motion state.

Vehicle Dynamic
Feedback and
Sensor Data

Theta_near Near visual feedback angle from the road,
aiding in immediate steering adjustments
by the driver.

Vehicle Dynamic
Feedback and
Sensor Data

Theta_far Far visual feedback angle from the road,
assisting in anticipatory steering
adjustments for upcoming road curvature.

Assumption on inputs & output meausured selection

Considering the model descripted in 2.3.1 in order to replicate the same model
applying the recursive identification through the extended kalman filter shown in
3.3.1 due to available signals in simulation it is needed to make some assumption. In
particular for the measure output "driver’s steering intention" δsw is not measurable
in physical terms; however, the use of the actual steering wheel angle δsw as output
during the experiment phase is a common choice in literature (e.g., [27], [28]), and
thus this method is adopted.
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In the simulated environment, the self-aligning torque Γs and the steering wheel
torque Γd are not directly available. Lacking the full array of parameters to
reconstruct these signals, suitable substitutes must be identified. The self aligning
torque Γs, as measured at the steering column corresponds to the measured torque
at the wheels, modulated by a transmission factor and other variations due to the
elastic and damping constants of the steering transmission system. This signal can
be computed in our simulation environment as the sum of torques acting on the
vertical axis of wheels and it is considered equivalent to Γs.

Figure 4.5: Self Aligning Torque acting on each wheel using Matlab Wheel Model
and Wheel to Steering Wheel Torque transmission [29]

Γs = Mz1 + Mz2 + Mz3 + Mz4 (4.1)

It is noted that Γd poses a greater challenge for substitution with an appropriate
signal, as seen for the desired steering angle that represents the intention of the
driver. In the initial stage of modeling, Γd is assumed to be equal to Γs. This choice
is validated as no significant differences were observed between the two phases of
the driver distraction detection process and it should be the torque that the driver
is applying to counterbalance the torque that he is receiving on the steering wheel
plus the additional part that allows him to steer at the desired angle.

Identification and Selection of Distraction-Related Parameters

Within the range of parameters governing the model, some of them has been
considered as state variables in the augmented state vector, due to their significant
role in distraction detection. To facilitate a clearer understanding and enhance
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the model’s interpretability, these parameters have been assigned human-readable
names that describe their function within the driving context:

• Driver Sensitivity to Lane Margins (Kc): This parameter quantifies the
driver’s responsiveness to the lateral distance from the vehicle to the lane
margins, reflecting their ability to maintain lane position.

• Driver Sensitivity to Vehicle/Road Curvature Misalignment (Kp):
It captures the driver’s sensitivity to the misalignment between the vehicle’s
trajectory and the road’s curvature, indicating how quickly and accurately a
driver adjusts steering to follow the road.

• Driver Steering Effort (Kt): This reflects the effort a driver applies to
the steering mechanism, which can correlate to their level of engagement or
fatigue and potentially their susceptibility to distraction.

These parameters, embedded within the augmented state vector xa, are pivotal
in the process of system identification aimed at detecting driver distraction. By
differentiating between parameters that are less and more susceptible to variations
due to distraction, the model gains the ability to provide a nuanced understanding
of driver behavior under different cognitive loads.

These state variables, fundamental to the augmented state vector xa, are
instrumental in system identification for distraction detection. The augmented
state vector is formulated as:

xa =
C
x
Π

D
=



x1
x2
x3
Kp

Kc

Kt



T

(4.2)

where x represents the original state variables and Π embodies the parameters less
susceptible to distraction-related variation, which have been previously identified
and fixed based on literature to stabilize the identification process and cater to
the detection mechanism’s precision. The human-readable names assigned to the
parameters within Π—namely Kc, Kp, and Kt—reflect the driver’s sensitivity to
lane margins, vehicle/road curvature misalignment, and steering effort, respectively.
These parameters are directly associated with the driver’s interaction with the
vehicle and are thus essential to the analysis of driver behavior under varying
conditions of attention and distraction.

In the domain of driver behavior modeling, it is a common practice to hold
certain parameters constant to streamline the identification process and ensure
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the stability of the model. This practice is substantiated by extensive literature
indicating that while some parameters exhibit significant variability across different
drivers and driving conditions, others remain relatively invariant.

Following this convention, and based on precedents established by seminal
studies such as the work of Ameyoe et al. [28], the parameter vector is partitioned
into two subsets. Parameters less susceptible to variation due to distraction, such
as Tr, τp, Kr, and Tn, which are fixed at commonly reported values in the literature
(as shown in Table 4.3).

Table 4.3: Parameters less susceptible to distraction

Tr τp Kr Tn

0.5 0.4 -0.35 0.04

These assumptions have been made for two reasons:

1. Numerical Stability: Fixing these parameters helps prevent numerical
instabilities during the system identification phase, which could otherwise
compromise the model’s robustness and accuracy.

2. Empirical Evidence: Studies, including those cited in reference [28], have
consistently found no significant variation in parameters like Tn among different
drivers, thereby validating the assumption of their constancy.

Consequently, the model focuses on identifying the parameters θ = [Kp, Kc, Kt]
which are more reflective of an individual driver’s behavior and susceptibility to
distraction. This focused approach enables a more precise analysis of the elements
that directly influence driving performance and distraction levels, yielding insights
that are crucial for the development of targeted interventions and advanced driver
assistance systems.
Observability is a critical attribute for the success of any state estimation tech-
nique, particularly within the context of Kalman filtering. It pertains to the
system’s ability to deduce its internal states from output measurements. The
model’s nonlinear observability has been substantiated through rigorous validation
as noted in previous studies, specifically in reference [27]. This property is crucial
when applying a Kalman filter since it relies on the premise that all necessary state
information can be captured through external observations. Despite the presence
of process noise vk and measurement noise wk, which are both assumed to follow a
zero-mean Gaussian white noise distribution with respective covariance matrices
Qa and Ra, the system’s design assures that the state estimations are robust and
reliable.
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Convergence Analysis of Parameters & EKF Initialization

For the successful application of the Extended Kalman Filter (EKF), precise
initialization of the state covariance matrices and the noise covariance matrices is
imperative. Initialization begins with the state vector x̂0 corresponding to

è
x0 θ0

éT
,

where θ0 reflects common values retrieved from literature and then after several
iterations.

Attention is then directed toward the state covariance matrix Pθ,0 and the noise
covariance matrices Qθ and Rθ. In initializing the state covariance matrix Pθ,0, it is
posited that the system’s actual state x̂k changes more dynamically in comparison
to the parameter vector θ̂k. This reflects an understanding that the real-time state
variables, representing the immediate physical states of the system, are subject to
more rapid fluctuations than the parameters, which are typically more steady and
evolve slower. Consequently, this leads to an initial state covariance matrix where
the entries corresponding to the state variables are larger than those associated with
the parameter estimates. This configuration of Pθ,0 mirrors the expected behavior
of the system’s state dynamics, allowing the EKF to place more uncertainty in the
estimation of the state variables initially, thereby accommodating their potential
for quick changes. On the other hand, the parameters θ̂k are presumed to vary
less and, hence, have smaller initial covariances. The precise values chosen for
the initial covariance matrix are thus a direct consequence of these considerations,
tailored to the system’s characteristics as determined by empirical evidence and
established practice.
It is posited that the real state dynamics x̂k evolve more rapidly than those of
θk, hence the first three elements of the main diagonal of Pθ,x are set significantly
higher than those corresponding to θk, as was previously established in related
work [28].

With these considerations in mind, the matrices are initialized as follows:

x̂θ,0 =
è
0 0 0 2 4 6

éT
,

Pθ,0 =
C
αI3x3 0

0 βI3x3

D
,

Qθ = 10−5
C
I3x3 0
0 I3x3

D
,

Rθ = 10−3
C
40 0
0 1

D
,

where I3x3 denotes the identity matrix. The scalar multipliers α and β are chosen
to yield desired performance, with optimal values found empirically; α = 30 and
β = 1.

The EKF proceeds to estimate the augmented state vector x̂a,k at each sample
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time, refining the state and covariance estimates through its iterative process, which
accounts for both the linear and nonlinear aspects of the system dynamics. The
covariance matrices Q0 and R0 are indicative of the process and measurement noise
characteristics and are crucial in achieving reliable parameter convergence. All
technicalities regarding the EKF implementation and the reasoning behind the
choice of α and β values are further expounded in Appendix A considering all state
equations described in subsection 2.3.1.

4.2.4 Longitudinal Driver Model
In this section, we discuss the development of a longitudinal driver model that
builds upon the cybernetic model framework commonly referenced in literature
for lateral vehicle control. The aim is to extend this established model to predict
brake pedal control. We maintain the assumption that the cognitive processing
and neuromuscular execution aspects of the driving task remain consistent as in
the lateral control model in the previous section 4.2.3.

As in the lateral control model, where anticipation and compensation are crucial
elements captured by variables such as θfar and θnear, similar concepts are integrated
into the longitudinal domain. The visual processing component, essential for pre-
dicting vehicle trajectory and modulating control inputs, is adjusted to incorporate
distinct inputs significant to braking. While lateral control predominantly involves
visual cues associated with road curvature and lane positioning, longitudinal control
considers variables related to the distance and relative velocity of leading vehicles,
yet keeping a focus on curvature and lane positioning.

In practice, θfar and θnear, which have been instrumental within the lateral
control paradigm, continue to be employed as detailed in 2.3.1 for longitudinal
modeling. This consistency is driven by two principal reasons. Firstly, it is an
attempt to minimize the introduction of entropy into the overall system. By
maintaining a simulation environment devoid of vehicles in the driving lane, the
occurrence of distraction during data acquisition remains repeatable, avoiding the
generation of random, non-systematic information. This approach is founded on
the intent to keep the system as simple as possible, given the project’s broad scope.
The preference has been to start with a solid base, which then can be iteratively
enhanced in various areas. This foundational approach allows for a focused initial
analysis, setting the stage for subsequent, more complex developments.

This adaptation necessitates a careful consideration of the inputs to the model
to ensure they appropriately capture the predictive and compensatory mechanisms
drivers employ when modulating brake pressure. Through this approach, we strive
to create a comprehensive model that not only reflects the driver’s control strategy
but also aligns with the underlying cybernetic principles that govern driver behavior
in the context of vehicle dynamics and environmental interaction.
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Identification and Selection of Distraction-Related Parameters

Within the range of parameters governing the model, some of them has been
considered as state variables in the augmented state vector, due to their significant
role in distraction detection. To facilitate a clearer understanding and enhance
the model’s interpretability, these parameters have been assigned human-readable
names that describe their function within the driving context:

• Driver Sensitivity to distance from leading car(Kc): This parameter
quantifies the driver’s responsiveness to the lateral distance from the vehicle
to the lane margins, reflecting their ability to maintain lane position.

• Driver Sensitivity to the leading car’s speed (Kp): It captures the
driver’s sensitivity to the misalignment between the vehicle’s trajectory and
the road’s curvature, indicating how quickly and accurately a driver adjusts
steering to follow the road.

• Driver Brake Effort (Kt): This reflects the effort a driver applies to the
steering mechanism, which can correlate to their level of engagement or fatigue
and potentially their susceptibility to distraction.

Identification and Selection of Distraction-Related Parameters

It is important to note that the first two elements, Driver Sensitivity to Vehicle
Distance (Kc) and Driver Sensitivity to Road Curvature (Kp), are not
utilized in the distraction detection algorithm. The reason for their exclusion is the
fact that these parameters will gain importance in scenarios where updates to the
assumptions about θfar and θnear are made. Since these updates would incorporate
a broader range of environmental interactions and anticipatory driving behaviors,
Kc and Kp would then assume more significance in the detection process.

Consequently, while Kc and Kp are foundational to the overall driver model
and provide valuable insights into a driver’s interaction with the vehicle and
road environment, they are presently not integrated into the distraction detection
algorithm. Future revisions that expand the algorithm’s capability to account for
more complex driving scenarios will adopt the inclusion of these parameters.
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Table 4.4: Inputs for the Cybernetic Driver Model

Input Source Input
Variable

Description

Driver Input Brake pedal
Angle

The angle at which the driver is acting on
the brake pedal, indicating the driver’s
intended direction.

Vehicle Dynamic
Feedback

Longitudinal
Force on
Wheels

The force acting on wheels due to
acceleration/deceleration of body along
the longitudinal axis of the wheels .

Vehicle Dynamic
Feedback

Vehicle CoG
Velocity

The velocity of the vehicle’s center of
gravity, essential for understanding the
vehicle’s motion state.

Vehicle Dynamic
Feedback and
Sensor Data

Theta_near Near visual feedback angle from the road,
aiding in immediate steering adjustments
by the driver.

Vehicle Dynamic
Feedback and
Sensor Data

Theta_far Far visual feedback angle from the road,
assisting in anticipatory steering
adjustments for upcoming road curvature.

Add tables for the description of parameters

4.3 Overall System Workflow

This part represents the main body of the thesis work, focusing on the comprehen-
sive system developed to detect driver distraction and initiate alerts in real time
on vehicle’s dashboard in simulation. It outlines the sequential stages and integral
components that collectively facilitate the monitoring of driver behavior, identifi-
cation of distraction instances, and the subsequent triggering of alerts. Delving
into the operational intricacies of each element, this section serves as the thesis’s
cornerstone, showcasing the research’s depth and the novel approach to mitigating
the risks associated with distracted driving.
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4.3.1 Overview

Figure 4.6: System workflow

The comprehensive workflow represented in Fig.4.6 of the algorithm designed for
distracted driving detection encompasses several interlinked stages, each critical to
the accurate detection and classification of driver behavior and state. The stages
are as follows:

1. Driver Model: The driver’s control strategy is identified through a Kalman
filter as explained in section 4.2.3. This model effectively interprets the driver’s
operational patterns by estimating the latent state variables that determine
driving behavior, such as control inputs for the steering wheel and pedals,
which reflect the driver’s decisions and actions.

2. Feature Selection: The next stage involves the extraction of relevant features
for analysis. These features include parameters from the augmented state
space of the Kalman filter, comprehensive vehicle data, and sensory input
data, all of which contribute to creating a multidimensional understanding of
the driver’s state.

3. Classification: The process begins with a preprocessing phase where dimen-
sionality reduction techniques and statistics extraction on time window of
data, notably Principal Component Analysis (PCA), streamline the feature
set to enhance the efficacy of subsequent classification. In the critical step of
detecting driver distraction, the refined data is subjected to a classifier. The
optimal classifier is selected from a suite of implemented algorithms, such as
the Support Vector Classifier (SVC) and AdaBoost, to accurately distinguish
between periods of driver distraction and normal attentive driving within time
window considered.
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Figure 4.7: Data collected from vehicle telemetry, sensors and driver model

Each of these stages is critical in the overall functioning of the system and is
explained in detail in the subsequent subsections.

4.3.2 Timing and Synchronization of System Stages
The effectiveness of the distraction detection algorithm is highly dependent on the
precise timing and synchronisation of its individual stages. The stages operate as
follows:

1. Driver Model Data Extraction: Operating at a constant frequency of 25
Hz, the driver model continuously processes driving behaviour data. This high
frequency analysis ensures that even the smallest drifts in driving patterns
are captured for a detailed characterisation of the state of the driver.

2. Data acquisition and buffering: In parallel with the driver model, vehicle
dynamics and sensor data are collected at a general sampling rate of 25 Hz.
These data, together with the parameters extracted from the driver model, are
stored in a buffer of a size corresponding to the predefined window size (equal
to 25 in the acquisition procedure done, sending data to cloud each second) .

3. Window-Based Inference: Upon filling the buffer, the algorithm initiates
the preprocessing and classification stages. The preprocessed data from each
window, encapsulating a specific segment of time, is then analyzed by the
inference model. The ML classification model operates with a periodicity
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equal to the window size, delivering outputs that classify the driver’s state as
either distracted or nominal for each evaluated window.

This structured temporal approach ensures that data is not only collected in
real-time but is also evaluated methodically, allowing for consistent and timely
predictions of the driver’s attention state. Each step is meticulously aligned to
facilitate a seamless workflow, critical for the dynamic environment of real-time
driver monitoring.

4.3.3 Experimental Data Collection

The primary objective of the data collection during the simulation is to gather the
necessary information for the training of the Machine Learning (ML) classification
algorithm. The data essential for successful training include vehicle data, signals
from simulated sensors on the vehicle, and the parameters of the cybernetic
models estimated by Kalman filters. For the classifier’s training, a ground truth of
distraction is also required, which necessitates recording the temporal window of
the driver’s distraction. To facilitate manual acquisition, a button in the Simulink
interface is used, which is pressed when the driver becomes distracted. To ensure the
repeatability of the experiment and adhere to regulatory standards for distraction
episodes, drivers contributing to the data collection campaign were instructed to
look at an object placed in Area 1 defined by the normative guidelines represented
in Fig. 2.4. For our data acquisition process, we have chosen to include only Area
1, spanning from −55◦ to +55◦ as viewed by the driver with 0◦ directed towards
the center of the screen as in the figure below.

Figure 4.8: Definition of area for distracted episodes
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Given α = 55◦ and b = 135 cm, calculate a ≈ 190 cm as the distance to the
center of the steering wheel. This calculation allows us to project the center of
the screen and measure the orthogonal distance a = 190 cm, in order to define the
Area to place the object to see, used for distraction episodes acquisition.

The object is placed within Area 1 as a reference point, dubbed the “Distraction
Area” during driving. This setup is crucial for capturing driver behavior in relation
to the simulated distractions, providing valuable data for refining the ML algorithm’s
accuracy in real-world scenarios.

Data Acquisition Procedure

During the data acquisition phase of the simulation, the following steps has been
followed:

Explaining Objectives to the Driver

• For inexperienced drivers, conduct preliminary trial runs to familiarize with
the simulator.

• Identify the visual distraction object placed within the simulation environment.

• Ensure that the driver performs the expected actions of the simulation nat-
urally, attempting to get distracted as they would on an actual road while
maintaining the lane for as long as possible.

Starting the Simulation

• Enter the driver ID (First and Last Name) for driver identification.

• Ensure the button for acquiring ground truth data of distraction is accessible
and functional.

• To log a distraction, click once on the button on the control panel on the
dashboard (Dashboard shown in figure 4.9).

Verifying Data Transmission to AWS

• Check that the acquired data has been correctly sent to AWS.

• If the data acquisition is deemed invalid, remove it from the system.
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Figure 4.9: Distraction ground truth acquisition button in dashboard

Saving Simulation Information Record the following Notes:

• HASH Identifier Associated with the Driver: To ensure the privacy and security
of the drivers’ personal data, each driver is assigned a unique HASH identifier.
This approach anonymizes the driver’s identity when transmitting data to the
cloud for processing and analysis. The use of HASH identifiers is a crucial
privacy-preserving measure, preventing any direct or indirect identification of
individuals from the dataset. This methodology aligns with best practices for
data protection and privacy, especially in scenarios where sensitive information
is collected and stored remotely.

• Duration of the driving session.

• Notes on the driving session (e.g., any technical issues encountered or infor-
mation on episodes of driver distraction).

Data Collection and Storage Protocol

The protocol for data collection and storage is designed to efficiently handle and
analyze data from various sources including Cybernetic Driver Model estimation,
sensor data, driver actions, and vehicle signals as shown in Fig.4.11 in the orange
box.

The process is as follows:
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Figure 4.10: AWS Data Collection process

Figure 4.11: Recorder Block in General Architecture in Simulink

1. Signal Acquisition: Continuous monitoring of signals from different sources,
including applications, vehicle-mounted sensors, driver inputs, and other
vehicle-generated data. These signals represent a wide array of parameters
like vehicle speed, engine conditions, driver behaviors, and app interactions.

2. Buffering: The collected signals are initially stored in a buffer within the
Simulink environment. This buffering stage is crucial for managing the data
flow, given the high frequency of data collection. The data is buffered at a
frequency of 25 Hz, which implies that the data is captured and stored in the
buffer 25 times per second.

3. Cloud Transmission: The buffered data is then transmitted to a cloud
storage solution at a lower frequency of 1 Hz, meaning the data is sent to the
cloud once every second. This ensures secure and accessible storage for further
processing and analysis.
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Dataset Characteristics:

• High-Resolution Data: The buffering frequency of 25 Hz results in a dataset
with high-resolution, capturing detailed information of the monitored parame-
ters. This high level of detail is essential for in-depth analysis applications
such as predictive maintenance and real-time monitoring.

• Cloud-based Storage: Utilizing cloud storage provides benefits like scalabil-
ity, reliability, and ease of access. The cloud-stored data is readily available
for analysis, enabling applications such as remote diagnostics and advanced
analytics.

• Structured for Analysis: The data is structured to facilitate efficient
processing and analysis, allowing for the extraction of valuable insights that can
inform decision-making processes, improve vehicle performance, and enhance
user experiences. Data are stored according to the HASH code associated to
the Driver ID and the journey that is generated every time a new acquisition
is done and each time the driver during simulation go off the road.

This data collection and storage protocol is done through the AWS Cloud
services reported in section 3.6

4.3.4 Distracted Driving Detection Algorithm
In this subsection, we introduce the development and implementation of a distracted
driving detection algorithm, a critical advancement in driving safety technology.
The process encompasses several key phases:

1. Data Cleaning: The initial step involves ensuring the data’s integrity by
removing inconsistencies, handling missing values, and filtering out irrelevant
information. This refinement process is crucial for maintaining the quality
and reliability of the dataset used for training the algorithm.

2. Data Preprocessing: Following data cleaning, the data undergoes prepro-
cessing to transform it into a more suitable format for modeling. This includes
normalization, feature extraction, and feature selection to enhance the learning
capability of the algorithm and improve overall model efficiency.

3. Training Phase: Various machine learning models seen in section 3.4 are
applied and trained on the preprocessed data. This stage involves parameter
tuning, algorithm selection, and the application of cross-validation techniques
to identify the model that best captures the nuances of distracted driving
behavior.
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4. Model Evaluation: After training, the models are evaluated to select the
best performer based on metrics such as accuracy, precision, recall, and the
F1 score. A set of models that exhibits superior performances in detecting
distracted driving are chosen for inference.

5. Inference in Simulation: The selected model is then deployed in a simulation
environment to assess its applicability in real-world driving scenarios. This
crucial phase tests the algorithm’s effectiveness in dynamic driving situations,
ensuring its readiness for integration into safety systems and identifying any
areas that may require optimization.

The entire pipeline from data preparation to simulation testing is essential for
the distracted driving detection algorithm’s reliability, accuracy, and effectiveness
in enhancing driving safety.

Preprocessing

Figure 4.12: Signal preprocessing

In the context of distraction signal analysis, particularly within the data acqui-
sition procedure for ground-truth signals, some preprocessing operation has been
done. This limitation primarily arises from the method employed to collect distrac-
tion data, wherein participant involved in labelling phase cannot avoid generation of
delay of distraction by pressing the mouse button used for acquisition of distraction
groundtruth. This process introduces a notable latency in the recorded distraction
ground-truth signals, attributable to human cognitive and motor response times.

To address this challenge and ensure the fidelity of the ground-truth data, a
compensatory adjustment is implemented. This adjustment is necessitated by two
key factors inherent in the human response to stimuli:

68



Material and methods

1. Cognitive Processing Time: The average human reaction time to visual
stimuli is approximately 0.3 seconds. This interval encompasses the duration
from the onset of the stimulus to the cognitive recognition of the distraction
by the brain. [30]

2. Motor Response Time: Following cognitive recognition, an additional
average duration of 0.2 seconds is required for the participant to convert this
cognitive response into a physical action, such as pressing a button to indicate
the perception of distraction.

Given the cumulative delay of 0.5 seconds introduced by these factors, the
ground-truth signal for distraction is correspondingly shifted to accurately align
with the actual moment the distraction was perceived, rather than the delayed
instance of participant response. This temporal adjustment shown in Fig.4.13 is
crucial for overcoming the limitations posed by the data acquisition procedure,
thereby enhancing the reliability and accuracy of the distraction ground-truth data
within the thesis research framework.

Figure 4.13: Shifting distraction ground-truth to compensate error in acquisition
procedure

Feature selection

In the advancement of predictive modeling and machine learning, the critical task
of selecting an optimal subset of features from a dataset has garnered significant
attention. This step is instrumental in enhancing model performance, ensuring
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computational efficiency, and facilitating a deeper understanding of the underlying
data patterns. To accomplish this objective, various techniques have been em-
ployed to process the selected signals. This procedure can be divided into two
primary phases: the extraction of statistical metrics from chosen features, and the
implementation of Principal Component Analysis (PCA), technique explained in
section 3.5.5, to minimize the data volume required by the detection algorithm.
This approach aims to maintain the same degree of phenomenon explainability with
fewer signals, thereby reducing the computational effort required for the inference
model that ideally tends working in real time during the simulation.

Table 4.5: Feature selected for distraction detection algorithm

Category Variable Size Units
Control Inputs

Steering Input [1x1] [rad]
Pedal Input [1x1] [-]

Vehicle Dynamics
Absolute Velocity [1x1] [m/s]
Yaw Rate [1x1] [rad/s]

Environmental Variables
Left Lane Offset [1x1] [m]
Right Lane Offset [1x1] [m]
Heading Angle [1x1] [rad]

Cybernetic Driver Model
Sensitivity Lane Margin [1x1] [-]
Sensitivity Road Curvature [1x1] [-]
Steering Effort [1x1] [-]
Braking Effort [1x1] [-]

Extraction of statistical metrics For each signal analyzed within the distrac-
tion detection algorithm (see Table 5.2, various metrics were extracted in both the
time and frequency domains, utilizing the Fast Fourier Transform (FFT) for the
frequency-based measurements. Metrics extracted in time domain are:

1. Mean: Represents the average value of the signal’s features, offering a basic
measure of the central tendency within the signal’s data. The mean value is
critical for understanding the signal’s baseline level around which the features
fluctuate.

2. Variance: Indicates the variability of the signal’s features from the mean.
A higher variance denotes a greater spread of the feature values, providing
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insights into the signal’s stability and consistency.

3. Skewness: Measures the asymmetry of the signal’s feature distribution around
the mean. Positive skew indicates a distribution with an elongated tail on
the right side, while negative skew has the tail on the left. Skewness is useful
for understanding the direction of the signal’s deviation from the normal
distribution.

4. Kurtosis: Quantifies the "tailedness" of the signal’s feature distribution. A
higher kurtosis implies more of the variance is due to infrequent extreme
deviations, as opposed to frequent modestly sized deviations, indicating the
presence of outliers or sharp peaks in the signal.

5. Maximum Value: The highest feature value in the signal, which is crucial
for identifying the signal’s peak amplitude and understanding the extremes
within the signal’s data.

6. Minimum Value: The lowest feature value in the signal, providing insights
into the signal’s deepest troughs and understanding the lower extremes within
the signal’s data.

In addition to the analysis of signals, the FFT is used as mathematical tool,
particularly for decomposing a signal into its frequency components. For this type
of application can result very efficient Working with FFT. In particular, various
metrics can be employed to examine the spectral properties of a signal. Below are
listed the metrics used as input to the detection algorithm:

1. Amplitude Spectrum: Provides the amplitudes of frequency components
present in the signal. This metric is valuable for visualizing the intensity of
various frequencies within the signal, offering insights into the signal’s strength
at different frequencies.

2. Phase Spectrum: Indicates the phase of each frequency component in the
signal. This information is crucial for the original signal’s reconstruction and
for analyzing the temporal relationships among different frequency components,
thus understanding how various parts of the signal are synchronized.

3. Bandwidth: Denotes the range of frequencies within which the signal contains
most of its energy. This metric is significant for understanding the range
of frequencies that characterize the signal, helping to determine the signal’s
overall spectral extent.

After evaluating statistical metrics for each feature in both, time and frequency
domains of the considered time window, PCA is applied as explained in section
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3.5.5 selecting a number of features corresponding to an explained variance ratio,
defined in Equation 4.3 greater than 98%.

Explained Variance Ratio =
qk

i=1 λiqn
j=1 λj

(4.3)

Where:

• λi is the eigenvalue associated with the ith principal component,

• k is the number of principal components considered,

• n is the total number of principal components.

Balancing Data: nominal and distracted

Balancing the data is not only crucial for preventing bias in machine learning models
but also for reflecting the real-world scenario where nominal driving instances
naturally occur more frequently than distracted ones. In practice, drivers are
typically focused and attentive, with distractions being comparatively rare events.
An unbalanced dataset would skew a model towards predicting nominal driving
behavior, failing to alert on the critical yet infrequent distracted instances.

By employing balancing techniques, we can train our machine learning algorithms
to recognize and classify distracted driving events with greater accuracy.

The Impact of an Imbalanced Data Imbalanced datasets are particularly
problematic in distracted driving detection, where non-distracted driving instances
significantly outnumber distracted instances. This imbalance can lead to detec-
tion models that are biased towards predicting the majority class, reducing their
sensitivity to actual distractions.

Model Bias and Performance A model trained on imbalanced data might
excel at recognizing safe driving but falter at detecting subtle or rare forms of
distraction. This could lead to a high number of false negatives, where instances of
distracted driving go undetected, compromising road safety.

Mitigation Techniques To combat imbalance, techniques such as oversampling
distracted driving instances or generating synthetic examples of distracted driv-
ing can help balance the dataset. Employing specialized evaluation metrics like
Precision-Recall Balanced Accuracy provide a more accurate measure of a model’s
ability to detect distracted driving, ensuring both high precision and recall.
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Training Model & evaluation

The preprocessing of features sets the stage for the training phase, where shallow
machine learning algorithms, as discussed in Section 3.4), are utilized. The training
phase involves the application of a grid search to fine-tune the model parameters.
This technique performs an exhaustive search over specified parameter values,
cross-validating to find the combination that yields the best performance against
our chosen metrics.

The performance of the model is evaluated by metrics such as precision, recall,
and the F1-score, defined as follows:

Precision = TP

TP + FP
(4.4)

Recall = TP

TP + FN
(4.5)

F1-score = 2 × Precision × Recall
Precision + Recall (4.6)

where TP denotes true positives, FP denotes false positives, and FN denotes
false negatives.

Inference

The model with the highest precision, recall, and F1-score is chosen for deployment
in the simulation environment as shown in Figure 4.14, enabling us to infer with
high confidence during real-world applications. As detailed in Section 2.2.3, in
accordance with the activation logic outlined in the ADDW (Advanced Driver Dis-
traction Warning) regulations, the algorithm designed to predict driver distraction
is configured to activate at speeds exceeding 20 km/h (see Fig. 4.15).

The prediction signal for driver distraction is integrated with additional alert
signals emanating from various algorithms dedicated to the identification of im-
proper driving behaviors, as well as other Advanced Driver-Assistance Systems
(ADAS) implemented in the simulation.

This integration is governed by a well-defined logic that assigns priority levels
based on the nature of the alert signal. Following this priority logic, visual and
auditory alerts are activated on the simulated vehicle’s dashboard (see Fig 4.17,
sending this data to Unreal ensuring that the driver is adequately warned about
potential distractions or hazardous driving behaviors, thereby enhancing overall
driving safety.
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Figure 4.14: Inference Model in Simulink Architecture

Figure 4.15: Inference Model Block

Figure 4.16: Alert manager
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Figure 4.17: Distracted Alert on Dashboard
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Chapter 5

Experimental results

5.1 Statistics on Experimental Data Acquisition
The experimental data acquisition process involved a group of participants, each
contributing to the dataset with varying driving times as visualized in Figure 5.1.
A total of ten drivers participated in the study, and the data collected ranged from
short journeys to longer excursions, with a cumulative driving time amounting to
5.47 hours.

This considerable amount of data provides a basic foundation for the analysis
of driving behaviors and distraction patterns. The variance in driving times, as
demonstrated in the histogram, indicates the durations captured, enhancing the
generalizability of the study findings.

Table 5.1: Average and Variance of Distraction Episode Durations per Driver

Driver Average Duration (seconds) Variance (seconds)
Driver 1 2.29 0.83
Driver 2 1.22 0.61
Driver 3 2.50 1.58
Driver 4 0.84 0.09
Driver 5 2.17 1.38
Driver 6 1.27 0.41
Driver 7 3.15 7.92
Driver 8 1.63 0.56
Driver 9 2.21 0.81
Driver 10 2.76 1.33

During the data collection phase, we evaluated the average time of distraction
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Figure 5.1: Statistics on Data Acquisition per Driver

Figure 5.2: Distribution of Distraction Episode Durations per Driver

episodes for each driver, as depicted in Figure 5.2. The boxplot illustrates diverse
statistics reflecting the individual variability in driving behavior and attention
patterns, considered as studies suggest [31] that drivers often exhibit ’lizard glances,’
a behavior characterized by rapid and frequent shifts in gaze that can indicate
divided attention or cognitive load. It is important to consider that realism of the
simulation about the surrounding environment while distracted and the challenging
final section of the track have impact on driver focus diminishing distraction.
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Figure 5.3: Boxplot: Nominal vs Distracted driving

The box-plots in Fig. 5.3 present a comparative analysis between distracted
and nominal data acquisition, offering insights into the impact of driver distraction
on vehicle control parameters. Notably, significant differences are observed in the
steering angle, yaw rate, and slip angles, which are critical indicators of vehicle
stability and orientation. The steering angle, for example, highlights the driver’s
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input in response to distractions, while the yaw rate and slip angles give a sense of
how vehicle trajectory and adherence to the road’s curvature are affected during
such episodes.

The heading angle is particularly telling, as it represents the direction of the
car relative to the road. Deviations here suggest that distraction can significantly
influence the driver’s ability to maintain a consistent heading, leading to potential
safety risks.

In contrast to these point-in-time measurements, the last four parameters related
to the cybernetic model of driver behavior — including sensitivity to lane margin
and road curvature, steering effort, and brake effort — require an analysis that
extends beyond mere static values. For these parameters, their evolution over time
is of greater interest. It’s crucial to observe how these variables fluctuate during
episodes of distraction, as they embody the driver’s adaptive responses and overall
control strategy. Understanding the dynamic changes in these parameters can
provide deeper insights into the mechanisms of driver behavior under the influence
of distraction.

Signal Unit Description
steer_cmd Degrees Steering command indicating the steering angle.
acc_cmd - Acceleration command to the vehicle’s throttle.
brake_cmd - Brake command indicating the braking force applied.
vel_abs m/s Absolute velocity of the vehicle.
yaw_rate rad/s The rate of change of the vehicle’s yaw angle.
yaw Degrees The vehicle’s yaw angle, indicating its orientation.
beta rad Slip angle of the vehicle.
fx_body N Longitudinal force acting on the vehicle’s body.
eng_spd RPM Engine speed in rotations per minute.
right_lane offset m Indicator of whether the vehicle is in the right lane.
heading_angle_L Degrees Heading angle relative to the left lane marker.
sensitivity_lane_margin - Sensitivity to the lane margin.
sensitivity_road_curv - Sensitivity to the road’s curvature.
steering_effort - The effort on steering action.
brake_effort - The effort on braking action.

Table 5.2: List of signals with their respective units and brief descriptions.

5.2 Distraction detection algorithm results
The development of the distraction detection algorithm aimed to balance high
recall rates for distraction instances against the need to minimize false negatives.
The optimal model emerged as a compromise solution that effectively recognizes
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instances of driver distraction without becoming excessively intrusive during normal
driving conditions.

This trade-off is particularly important due to the significantly higher proportion
of time drivers spend in a nominal state compared to being distracted. A model
with a high rate of false alerts could lead to driver irritation, reducing the system’s
usability and potentially compromising its adoption in real-world scenarios.

5.2.1 Impact of Model Parameters on Performance Metrics
In this section model parameters are analyzed according to their influence on the
performance metrics. Parametrs considered are the following:

• Window Size: The temporal window of driving data that the algorithm
analyze for potential distractions. Larger windows may encapsulate more
comprehensive behavioral patterns, yet they risk omitting transient yet critical
distractions.

• Threshold for Majority Voting: The decisive boundary that governs
the classification of driving data as distracted or nominal. The threshold’s
magnitude is instrumental in calibrating the sensitivity and specificity of the
detection.

• Balance Ratio: The proportional parameter used to balance dataset in
the training dataset facing the problem discussed in Sec.4.3.4. This ratio is
crucial for training the model to discern distractions effectively without being
over-inclined towards the majority class.

These parameters serve as the fulcrum for training the distraction detection
algorithm, each with significant influence over precision, recall, and F1 score,
collective metrics that epitomize the model’s accuracy and robustness. A granular
analysis follows, presenting the effects these parameters have on the model’s
performance and the consequent trade-offs encountered during the optimization
process.
As a result of different model trained of the distraction detection algorithm, the
F1 score increases with an increase in window size and the threshold for majority
voting. However, it decreases when the distraction windows are balanced with
nominal driving windows.
Precision increases with the window size but is not significantly influenced by the
threshold for majority voting used to classify a window as distracted or nominal.
Higher precision is observed for balance ratio values equal to 5.
Recall improves with lower balance ratios as the model becomes better at recog-
nizing distractions. It also increases with larger window sizes.
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Figure 5.4: Recall performances according to parameter values

The challenge lies in selecting an optimal window size. While larger windows
capture broader patterns of driver behavior, they risk missing shorter-duration
distractions that could still pose a significant safety threat. According to regulatory
standards, the system should recognize distractions within 6 seconds at speeds
below 50 km/h and within 3 seconds above this threshold. Thus, while tuning
the model parameters to optimize performance metrics, it is crucial to ensure the
algorithm does not overlook brief yet potentially hazardous distractions.
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5.2.2 Best Models: Model 1

Figure 5.5: Model 1: Confusion Matrix

Figure 5.6: Model 1: Metrics

Parameters: Window size = 1s, window stride = 1s , balance ratio = 1 , majority
voting treshold = 0.8
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5.2.3 Best Models: Model 2

Figure 5.7: Model 2: Confusion Matrix

Figure 5.8: Model 2: Metrics

Parameters: Window size = 3s, window stride = 1s , balance ratio = 1 , majority
voting treshold = 0.9
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5.2.4 Best Models: Model 3

Figure 5.9: Model 3: Confusion Matrix

Figure 5.10: Model 3: Metrics

This matrix reveals a high number of true positives and a small number of
true negatives, with no false positives and a moderate number of false negatives.
This ca be caused by small amount of data as in model 2 due to small amount of
distraction window after selecting a larger value for the window size.

Parameters: Window size = 2s, window stride = 1s , balance ratio = 5 , majority
voting treshold = 0.9

Among the three models considered for inference, model 3 performed the best.
Despite the first model appearing superior due to potentially higher aggregate
metrics, it has a too high number of false positives. This is a significant issue
because false positves represent instances where the model fails to correctly identify
nominal driving raising the alert too many times without presence of distraction.

Model 3, although it may have slightly lower overall metrics compared to the
first model, shows a better balance between false positives and false positives,
making it less "annoying" or problematic in practical use. The reduced annoyance
of model 3 could refer to its higher reliability in not overlooking positive cases,
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which is often more critical than avoiding false alarms (false positives) depending
on the application.

The chosen model demonstrates an acceptable level of recall for distracted
driving, ensuring that most distractions are detected, while maintaining a low
enough false negative rate to avoid frequent false alerts.
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Chapter 6

Discussion

6.1 Sensor-Based and Sensorless Algorithm

Driver distraction is a multifaceted issue, deeply intertwined with the unpredictable
nature of human behavior. It encompasses a range of activities that divert the
driver’s attention from the primary task of driving, potentially leading to hazardous
situations. The imminent regulatory mandate underscores the need for effective
technological solutions to address this challenge. In this context, the debate often
revolves around two primary approaches: sensor-based and sensorless algorithms.

Sensor-based systems, such as those employing cameras to monitor eye move-
ments, offer direct, real-time insights into the driver’s focus and alertness. These
systems are capable of detecting instances where the driver’s gaze deviates from
the road for prolonged periods, signaling potential distractions. The advantages
of sensor-based solutions include their precision and responsiveness in capturing
specific indicators of distraction, such as eye movement patterns, blink rates, and
head positioning.

However, sensor-based systems are not without their drawbacks. Issues such
as privacy concerns, the need for continuous line-of-sight, and the potential for
false positives in varying lighting conditions or with different eyewear can pose
challenges. Moreover, the reliance on physical sensors may increase the complexity
and cost of the vehicle systems.

On the other hand, sensorless algorithms offer an alternative approach by
analyzing indirect indicators of driver behavior, such as steering patterns, braking
behavior, and vehicle speed variations. These systems infer the driver’s state by
monitoring the vehicle’s operational parameters and driving dynamics, which can
provide a broader context of the driving situation. Sensorless solutions can be
less intrusive and may circumvent some of the privacy and technical challenges
associated with sensor-based systems.
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Nevertheless, sensorless algorithms might lack the immediacy and specificity in
detecting distraction episodes compared to their sensor-based counterparts. The
indirect nature of the data they analyze could result in a delayed or less accurate
assessment of the driver’s attention level.

6.2 The Importance of Data Preprocessing
Data preprocessing is an essential step in developing models for distracted driving
detection. This process ensures the data collected from various sensors, such as
cameras and accelerometers, is clean, consistent, and ready for analysis. The
quality of preprocessing directly influences the model’s ability to accurately identify
instances of distracted driving.

Data Cleaning
In the context of distracted driving, data cleansing involves filtering out noise from
sensor data, correcting errors, and handling missing values. For instance, camera
footage may require correction for varying light conditions, while accelerometer
data might need filtering to remove non-driving related movements.

Normalization and Standardization
Given the diverse range of sensors and the different scales of data they produce,
normalization and standardization are crucial. This ensures that each input feature
contributes equally to the analysis, preventing any one sensor from disproportion-
ately influencing the detection model.

Feature Extraction and Selection
Feature extraction in distracted driving detection involves identifying key indicators
of distraction from raw sensor data. This could include analyzing patterns in steering
wheel movement, facial expressions, or eye gaze direction. Effective feature selection
helps isolate the most predictive indicators of distracted driving, improving model
accuracy and efficiency.

6.3 Distraction groundtruth
The acquisition procedure of ground truth data is crucial for developing distracted
driving detection algorithms, as it benchmarks their accuracy. This data can be
gathered through in-lab simulations, which offer controlled conditions but may
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not fully represents the complexities of real-world driving. It can be important
to introduce variability in distraction behavior recorded that can challenge data
analysis.

6.4 Sim vs. Real-World Driving Perspectives
One of the pivotal aspects of evaluating driver behavior and distraction mechanisms
involves understanding the disparities between simulated environments and real-
world driving conditions. These differences have profound implications not only
for the manifestation of distraction episodes but also for the overall comfort of the
driver and the utilization of external reference points during driving.

Distraction Episodes
In simulated environments, distraction episodes can be precisely controlled and
replicated, which is essential for systematic data collection and analysis. However,
real-world distractions are often more dynamic and unpredictable. Factors such
as sudden noises, movements outside the vehicle, or unanticipated actions by
other road users can lead to distraction episodes that are difficult to replicate in
a simulated setting. Consequently, while simulations are invaluable for studying
specific distraction triggers and responses, they may not fully encapsulate the
complexity and spontaneity of real-world distractions.

Driver Comfort
The comfort level of a driver in a simulated environment can significantly differ
from that in a real vehicle. Simulators, depending on their design and realism,
might not accurately replicate the tactile feedback, seating ergonomics, and overall
spatial awareness experienced in a real vehicle. These discrepancies can influence a
driver’s stress levels, fatigue, and consequently, their susceptibility to distraction.
The physical and psychological comfort of the driver plays a crucial role in how
distractions are perceived and managed, potentially skewing the data acquired
from simulated environments.

External Reference Points
Real-world driving relies heavily on external reference points, such as landmarks,
road signs, and the behavior of other vehicles, to navigate and make driving
decisions. These reference points provide contextual cues that are integral to
anticipatory driving skills and situational awareness. In a simulation, despite
advances in visual and environmental realism, certain subtleties and depth cues
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from the real environment might be absent or less pronounced. The lack of these
real-world reference points can alter the driver’s interaction with the environment
in the simulation, potentially affecting the naturalness of their driving behavior
and their response to distractions.

Implications for Research and Training
Understanding the differences between simulated and real-world driving condi-
tions is crucial for interpreting data related to driver distraction and behavior. It
underscores the importance of complementing simulated studies with real-world
observations and experiments where feasible. Moreover, these insights are invalu-
able for refining simulation technologies and methodologies, aiming to bridge the
gap between simulated environments and real-world driving experiences for more
accurate research outcomes and effective driver training programs.
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Conclusions

7.1 Forthcoming Regulations
With the advent of the General Vehicle Safety Regulation, a significant stride has
been made towards augmenting road safety within the European Union. Starting
from mid-2024 [32], it becomes mandatory for all new vehicle types to be equipped
with an advanced driver distraction warning system. This regulatory requirement,
as detailed in an EU initiative, aims at enhancing the detection and prevention of
driver distractions through real-time monitoring of driver eye movements, thereby
contributing to a reduction in road accidents .

7.2 Future Perspectives
Given the complexity of human behavior and the diverse scenarios encountered
on the road, neither approach is unfailing. Therefore, a fusion becomes essential.
Integrating sensor-based and sensorless technologies can leverage the strengths
of both to create a more comprehensive and effective driver distraction warning
system. Such a hybrid approach can combine the direct, real-time monitoring
capabilities of sensor-based systems with the broader contextual analysis offered
by sensorless algorithms. This integrated solution can enhance the accuracy and
reliability of distraction detection, thereby maximizing the potential for preventing
accidents and ensuring safety on the roads.

In conclusion, as we navigate the intricate landscape of automotive safety reg-
ulations and technological advancements, the synergy between sensor-based and
sensorless algorithms presents a promising pathway. By harnessing the complemen-
tary benefits of both approaches, we can develop sophisticated systems capable
of safeguarding drivers against the perils of distraction, thereby contributing to a
safer and more secure driving environment.
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7.2.1 Driver Models Improvements

Force feedback

Incorporating force feedback that reflects vehicle dynamics and interaction with
the road surface, rather than just steering angle, would significantly enhance
simulation realism and it will help relaxing the assumption done on inputs and
output measured in the estimation with the kalman filter. This upgrade would
improve the sensitivity and accuracy of cybernetic model parameters, which are
crucial for replicating driver reactions based on vehicle responses. This nuanced
approach to force feedback would provide a more authentic driving experience,
essential for accurately modeling and understanding driver behavior in various
scenarios.

7.2.2 Cloud Retraining with AWS

A potential avenue for enhancing the driver distraction detection algorithm, is
the implementation of a cloud retraining mechanism, specifically utilizing Ama-
zon Web Services (AWS) as the cloud platform. This approach would involve
periodically retraining the machine learning (ML) algorithms that underpin our dis-
traction detection capabilities, using the vast computational resources and scalable
infrastructure provided by AWS.

Process Overview

The retraining process would be initiated by collecting a diverse set of driving data
from vehicles over time, capturing various driver behaviors, responses to stimuli,
and potential distraction indicators. This data, once accumulated to a certain
threshold, would be securely transmitted to AWS, where it would undergo analysis
and be used to update the ML models.

Personalization and Adaptation

The key advantage of cloud retraining lies in its ability to personalize the distraction
detection system to individual drivers. By continuously incorporating new driving
data, the ML algorithms can adapt to each driver’s unique driving style, enhancing
the system’s accuracy and reducing false positives. This personalized approach
acknowledges the subjective nature of driver distractions and tailors the system to
better meet individual needs.
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Deployment of Updates

Once retraining is complete, the updated ML models would be deployed back to
the vehicles as a system update. This deployment process would ensure that each
vehicle’s distraction detection system remains state-of-the-art, benefiting from the
latest data and insights. The integration with AWS facilitates a seamless and
efficient update process, leveraging its robust cloud infrastructure.

Conclusion

Incorporating cloud retraining into our system represents a forward-looking strategy
to maintain the efficacy and relevance of our driver distraction detection technology.
By leveraging AWS for cloud retraining, we can ensure that our system evolves with
our drivers, providing personalized, adaptive, and increasingly accurate detection
capabilities that promise to enhance road safety significantly.
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Appendix A

Cybernetic Driver Model

State Transition Functions
The state transition functions used in the system’s model are provided below. These
functions are implemented in MATLAB and used to compute the state transitions
for the cybernetic driver model.

Listing A.1: State Transition Function
1 f unc t i on x = sta t e_t rans i t i on_fcn (x , u)
2 % Euler i n t e g r a t i o n o f continuous−time dynamics x’= f ( x ) with sample

time dt
3

4 dt = 0 . 0 4 ; % [ s ] Sample time
5 x = x + state_trans i t ion_fcn_cont (x , u) ∗dt ;
6 end
7

8 f unc t i on xk1 = state_trans i t ion_fcn_cont (x , u)
9 % value o f the f i x e d parameters

10 tau_p = 0 . 4 ;
11 T_i = 0 . 5 ;
12 K_r = −0.35;
13 T_n = 0 . 0 4 ;
14

15 i f u (3 ) < 10e−04 % to avoid numerica l e r r o r s
16 xk1 = [−1/T_i ∗ ( x (1 )−x (5) ∗u (4 ) /(u (3 )+10e −04) ) ;
17 1/tau_p ∗ ( x (1 )−x (2)+x (4) ∗u (5 ) ) ;
18 1/T_n ∗ ( (K_r∗u (3 )+x (6) ) ∗x (2 )−x (6) ∗u (1 ) ) ;
19 0 ;
20 0 ;
21 0 ] ;
22 e l s e
23 xk1 = [−1/T_i ∗ ( x (1 )−x (5) ∗u (4 ) /u (3 ) ) ;
24 1/tau_p ∗ ( x (1 )−x (2)+x (4) ∗u (5 ) ) ;
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25 1/T_n ∗ ( (K_r∗u (3 )+x (6) ) ∗x (2 )−x (6) ∗u (1 ) ) ;
26 0 ;
27 0 ;
28 0 ] ;
29 end
30 end

Listing A.2: EKF Initialization Script
1 %% EKF support s c r i p t
2

3 % i n i t i a l i z a t i o n and covar iance matrix d e f i n i t i o n
4 kalman = [ ] ;
5 kalman . x0 = [ 0 0 0 2 4 6 ] ’ ;
6 kalman . P0 = diag ( [ 3 0 , 30 , 30 , 1 , 1 , 1 ] ) ;
7 kalman .Q = 10^5 ∗ diag ([10^ −5 , 10^−5, 10^−5, 10^−5, 10^−5, 10^ −5]) ;
8 kalman .R = 10^−3;
9

10 a s s i g n i n ( ’ base ’ , ’ kalman ’ , kalman ) ;
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