
POLITECNICO DI TORINO
Master’s Degree in Computer engineering

Master’s Degree Thesis

Evaluation of a Quantum Kernel for
Graph Classification on Neutral Atoms

Quantum Computer

Supervisors

Prof. Bartolomeo MONTRUCCHIO

Dr. Edoardo GIUSTO

Giacomo VITALI

Chiara VERCELLINO

Candidate

Gabriele IURLARO

11 April 2024

Summary

This thesis merges two cutting-edge fields of study, Machine Learning, and Quan-
tum Computing, combined for solving the graph classification problem.

Machine learning is the study of models and algorithms that “learn” through
experience to solve problems, mimicking human intelligence. In the first chapter,
a distilled version of the acquired knowledge is presented, starting from the Artifi-
cial Intelligence definition, and proceeding towards arriving at machine learning.
Meanwhile, the different components of the method are presented, such as the
dataset representation, the models, and metrics, arriving to define the scheme and
the pipeline commonly employed for validating ML algorithms.

In Chapter 2 the Quantum Computing field is introduced and discussed. The
topic is introduced starting from a historical introduction, that shows the need for
quantum computation for simulating quantum mechanics, and continuing with the
quantum mechanics principles that inspired the quantum information theory. After
a discussion about the possibilities and peculiarities of Quantum Computation, such
as the superposition, entanglement and the most common operation, the focus is
turned on the physical implementation of quantum computers, describing the actual
most prominent platforms. At the end of the chapter, the main topic of the thesis
is revealed, and the 4 different paradigms of Quantum Machine Learning are shown.

Between the presented technologies for realizing quantum computers, Neutral
Atoms seem a prominent platform. In Chapter 3, Aquila, the quantum computer
used in this work, is presented, highlighting the peculiarities of the analog approach,
and pointing out the differences with digital mode, discussed in the previous chapter.
The analog approach, and in particular the possibilities of Aquila’s qubits’ arbitrary
position in the register and the control of the parameters of the waveform allows
embedding a variety of graph problems. Finally, the thesis reaches its core, with the
presentation of the Quantum Evolution Kernel, a graph kernel function for making
graph classification using a Support Vector Machine. The full process is described,
starting from the definition of the quantum dynamics through a topology-based

ii

Hamiltonian, and arriving at the sampling technique for defining a probability
distribution for the graph, used later for computing the kernel based on a commonly
employed probability distribution distance metric.

The experimental setup is fully described in Chapter 4. First, an analysis of the
dataset is conducted, and the preprocessing step is described. It consists of a unit
disk embedding, necessary for executing the quantum routine on a real machine.
Once the preprocessing is described, the full evaluation approach is described,
comprising the optimization of the waveform parameter and the hyperparameter
tuning of the Support Vector Machine. The performance is evaluated first on a
reduced dataset, emulated on a classical machine, and then on the full dataset,
simulated on a real quantum computer. Both the result of the emulation and the
simulation are compared with a classical graph kernel, the Shortest Path graph
kernel.

At the end, Chapter 5 summarizes the whole work and presents some possible
future works.

iii

Ringraziamenti

Prima di iniziare, vorrei ringraziare il prof. Bartolomeo Montrucchio per la possi-
bilità di svolgere la tesi su un tema così interessante e pionieristico. Inoltre, vorrei
ringraziare in poche parole i corelatori, partendo da Edoardo, per avermi fatto
appassionare al tema e per avermi insegnato le gioie e i dolori della ricerca. Inoltre,
ringrazio Giacomo e Chiara, per la loro infinita disponibilità nel darmi spiegazioni
e per il loro tempo, e specialmente per la grossa possibilità offertami da LINKS.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Background 1
1.1 Machine Learning . 3

1.1.1 The mathematical framework 4
1.1.2 Support Vector Machines . 6
1.1.3 Metrics . 9
1.1.4 Machine learning pipeline 11

2 Quantum computing 16
2.1 An Historical introduction . 16
2.2 Quantum information theory . 17

2.2.1 Quantum bits . 18
2.2.2 Multiple qubits . 21
2.2.3 Operators . 23
2.2.4 Measurements . 26
2.2.5 Quantum circuits . 28

2.3 Quantum computer technologies . 29
2.3.1 DiVincenzo Criteria for quantum computing 29
2.3.2 Noisy Intermediate-Scale Quantum Computer Era 30
2.3.3 Software Tools . 32

2.4 Quantum Machine Learning . 33
2.5 Emulation against Simulation . 35

3 Quantum computing on Neutral atoms machine 36
3.1 Aquila: A 256’s qubit quantum computer 36

3.1.1 Noise . 42

vi

3.2 Application of neutral atoms . 43
3.2.1 Maximum Independent Set 44

3.3 Quantum evolution kernel . 45
3.3.1 Implementation on neutral atoms hardware 48

4 Experimental results 51
4.1 Dataset . 51

4.1.1 Graph preprocessing . 53
4.1.2 Unit Disk Graph . 53
4.1.3 Constrained Unit Disk Graph Problem 56
4.1.4 Embedded dataset discussion 57

4.2 Emulation on classical Hardware . 58
4.2.1 Details on Energy distribution computation 59
4.2.2 Kernel estimation and training protocol 61
4.2.3 Bayesian optimization of Waveform parameter 63
4.2.4 Results on PROTEINS12 65

4.3 Simulation on Aquila . 68
4.3.1 Comparison of energy distributions 69
4.3.2 Results on PROTEINS12 70
4.3.3 Results on PROTEINS256 71

5 Conclusions and Future Works 73
5.1 Future works . 73

A Bayesian Optimization 74
A.1 Introduction . 74
A.2 Surrogate function and Gaussian Processes 75
A.3 Acquisition function . 76

Bibliography 77

vii

List of Tables

4.1 Overall statistics of the PROTEINS dataset 52
4.2 Final dataset composition . 57
4.3 Grid search hyperparameter . 62
4.4 Quantum evolution kernel with Pasqal parameter, with Bayesian

Optimization parameter compared to a classical kernel, the Shortest
Path Graph Kernel . 66

4.5 Total emulation time, comparison between full emulation and sub-
space emulation . 66

4.6 Rydberg subspace emulation performances on PROTEINS12 68
4.7 Quantum evolution kernel with Pasqal parameter, with Bayesian

Optimization parameter compared to a classical kernel, the Shortest
Path Graph Kernel . 70

4.8 PROTEINS256 Quantum Evolution Kernel performances 71
4.9 PROTEINS256 performances against the number of shots 72

viii

List of Figures

1.1 Difference between Artificial Intelligence, Machine Learning and
Deep Learning . 2

1.2 Differences between classical algorithmic problem solving and Ma-
chine Learning paradigm . 3

1.3 Support Vector Machine interpretation of the separation rule. The
hyperplane is selected among the one that correctly separates the
two classes with the maximum margin. 7

1.4 Non-linear separable data point and the corresponding transformed
features, that are linearly separable. 8

1.5 Confusion matrix definition. The values on the row correspond to
the predictions, while values on the columns correspond to the actual
class labels. 10

1.6 A full Machine Learning pipeline 11
1.7 Complex data needs complex models 13
1.8 Differences between train-val split and K-fold cross validation . . . 14
1.9 Overfitting due to model complexity 15

2.1 Bloch sphere [15] representing a generic state |ψ⟩. The highlighted 2
antipodal state represent the computational basis vector |0⟩ (northen
pole) and |1⟩ (south pole). 20

2.2 Plus state on the Bloch sphere, lying on the equator. 20
2.3 X, Y, Z, H gates and their effect representing on the bloch sphere. . 24
2.4 Quantum circuit for generating the Bell state 25
2.5 Single qubit quantum gates. In order (top-down from left to right)

the X, Y, and Z Pauli operators, the Hadamard gate, and the S and
T gate. 28

2.6 SWAP and CNOT gates . 28
2.7 Measurement operators . 28
2.8 Taxonomy of Quantum Machine Learning. The objective of this

work is highlighted in blue. It consists of a quantum algorithm that
analyzes classical data. 34

ix

3.1 Aquila architecture, highlighting the different components used.
Image taken from Aquila whitepaper from QuEra [25]. 37

3.2 Electronic states diagram and qubits states. Image taken from [25]. 38
3.3 An example of an analog program that can be executed on Aquila,

corresponding to the Quantum Evolution kernel detailed in the next
section . 39

3.4 A single shot from Aquila, from building the register, to measure-
ment [25] . 42

3.5 Difference between an independent set and a maximum independent
set . 44

3.6 Layered time evolution, highlighting the order of application of
the Hamiltonian, and how the parameter Λ are reflected into the
Hamiltonian definition. 47

3.7 Ω(t) waveform that simulate the Quantum Evolution Kernel layered
evolution . 50

4.1 Nodes and edges distribution in PROTEINS dataset 52
4.2 Circles in the register area and corresponding unit disk graph. In

this case, the unit disk radius RUD = 9µm 54
4.3 DEN model. Image taken from [36] 55
4.4 Graph and associated Unit Disk embedding. In the right picture, the

additional discrete row constraint of Aquila is more easily noticeable. 57
4.5 The full Hybrid quantum-classical emulation approach. 59
4.6 Obtained energy distributions . 61
4.7 Kernel matrix of PROTEISN12 dataset, with µ = 1 62
4.8 Waveform parameters comparison 64
4.9 Comparison of the energy distributions obtained using two different

sets of waveform parameters on the same graph 65
4.10 Emulation time in the full space against the subspace defined by the

Rydberg Blockade, in the function of the number of atoms 67
4.11 Comparison between the energy distribution in the full subspace

and in the Rydberg Blockade subspace 67
4.12 Comparison between the emulated energy distribution and the sim-

ulated energy distribution on a single random graph 69

x

Acronyms

AI
artificial intelligence

ML
Machine Learning

NLP
Natural Language Processing

EDA
Exploratory Data Analysis

ERM
Empirical Risk Minimization

SVM
Support Vector Machine

RBF
Radial Basis Function

TP
True Positives

FP
False Positives

TN
True Negatives

xii

FN
False Negatives

QC
Quantum Computing

QML
Quantum Machine Learning

VEQ
Variational Quantum Eigensolver

QAOA
Quantum Approximated Optimization Algorithm

NISQ
Noisy Intermediate-Scale Quantum Computers

NMR
Nuclear Magnetic Resonance

LOQC
linear optics quantum computation

PQC
Photonics Quantum Computing

QDK
Quantum Development Kit

FTQC
Fault-Tolerant Quantum Computing

CNOT
Controlled NOT

QVM
Quantum Virtual Machine

xiii

DAG
Directed Acyclic Graph

QVSM
Quantum SUpport Vector Machine

FPQA
Field Programmable Qubit Array

AOM
acousto-optical modulators

MIS
Maximum Independent Set

MWIS
Maximum Weighted Independent Set

QPU
Quantum Process Unit

NP-H
Non Determinist Polynomial Time Hard

UD
Unit Disk

CUDG
Constrained Unit Disk Graph

DEN
Distance Encoder Network

ELF
Embedding Loss Function

ReLU
Rectified Linear Unit

xiv

AWS
Amazon Web Service

SPK
Shortest Path Kernel

GP
Gaussian Process

xv

Chapter 1

Background

Artificial Intelligence (AI) has emerged as one of the most promising fields of
study in the vast world of computer science. Thanks to the recent advancements in
fields like computer vision and natural language processing, it has turned trend a
trend topic. It is difficult to understand in these huge amounts of information what
really AI is. Andrew Ng (cofounder at GoogleBrain, head of the most followed
Deep Learning course, Stanford professor), one of the most influential people in the
field, has expressed in simple words the essence of what artificial intelligence is:

"[...] the ability of machines to perform tasks that would normally require
human intelligence."

This definition is intentionally general because AI is not so simple to define.
While this work has been written, Artificial Intelligence applications are various and
dynamic, showing the generality of the methods. The most impactful applications
today include:

• Image Processing: From classification to object detection, there are various
and interesting tasks involving images, used in self-driving cars, but also in
the medical field.

• Natural Language Processing: used to process text, with various applica-
tions, from text classification to sentiment analysis including SPAM filters.

• Generative AI: it is a common name for a set of methods and algorithms
that tries to generate data starting from a prompt. This includes Image and
video generation, and both text generation.

Although being one of the most discussed topics today, the history of artificial
Intelligence is much longer, and started in 1950, when the first computer where
theorized and built. In 1950, Alan Turing [1] asked in his paper "Can machines

1

Background

think?". Later from 1957 on, the first algorithm and the word "Artificial Intelligence"
were written for the first time. However at that time, computers could only execute
instructions without memory, and the cost was too high. From 1980, computers
were able to execute tasks, and machine learning algorithms were developed and
used, to successfully obtain results in speech recognition and natural language
processing (in tasks like sentiment analysis). The third boom of AI comes in the
first decade of the millennium, when the computational power of the computers
allows the training of deeper models, capable of extracting knowledge from the most
variety of data (non-structured, text, images). It begins the era of big data: the
availability of a huge amount of training data allows deeper models to successfully
solve a high variety of data. A taxonomy of Artificial intelligence, as highlighted in
this paragraph, can be found in figure 1.1.

Figure 1.1: Difference between Artificial Intelligence, Machine Learning and Deep
Learning

Under the artificial intelligence word, a lot of tasks and algorithms can be
comprised. Algorithms that play games, like DeepBlue for the chess game, but
also machine learning algorithms, that extract the knowledge directly from the
data, without being programmed to do so (no explicit rules are required). Machine
learning algorithms have another subfield: deep learning algorithms directly extract
a representation of the data, without relying on the complex human-written
preprocessing approaches, thanks to their deep structure, and thanks to the advent
of Convolutional Neural Networks.

2

Background

1.1 Machine Learning
Machine learning (ML) is a subset of the wide field of Artificial Intelligence, as
described before. As AI, the Machine Learning objective is to build a machine, or
algorithm, that intelligently solves problems. However, ML automatically learns
how to solve the task, extracting a solution (or a strategy) directly from data, or
from a representation of it. Tom Michael Mitchell, the father of Machine Learning,
has given a definition of this described learning approach, in his book, considered
the Bible of ML [2]:

"A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E."

This definition gives a first intuition of which are the main differences between
ML and the classical problem-solving approach. The classical way of solving a
problem or solving a task T , is to find an algorithm (as a sequence of instructions)
that solves the problem for every input instance D. Once the algorithm is found,
one can apply the sequence of instructions on the specific instance of T in order
to find the solution to the problem. Instead, the goal of Machine Learning is to
automatically find a solution to a task extracting it directly from the data.

Figure 1.2: Differences between classical algorithmic problem solving and Machine
Learning paradigm

Machine learning can be divided roughly into 3 main sub-fields, based on the
learning algorithm and the type of data where they operate:

• Supervised Learning: the algorithm learns to solve a task T by learning
from a set of pairs of data and solutions. Examples of Supervised Learning
tasks are image classification and regression.

3

Background

• Unsupervised Learning: instead of learning a mapping between data
and labels, tries to infer information directly from data itself. Examples of
Unsupervised Learning tasks are clustering and dimensionality reduction.

• Reinforcement Learning: Learn to accomplish a task by getting rewards or
penalties while trying to solve it. It is usually used when the solution of the
task corresponds to a series of choices, like in policy optimization (examples
can be a Tic-Tac-Toe player or a control for a robotic arm).

Despite the differences between the paradigm, it is possible to define a set of
components that are always present in a Machine Learning Task:

• A set of data (or dataset)D. Examples of datasets are natural images paired
with a content label, handwritten digits, proteins in the form of graphs, etc.

• A Model Mθ of some parameter θ (called in some context weights) that
describes the data in relation to the solutions.

• A Risk function (or loss function) R, that specify of much the model Mθ

predictions differ from the real data D. It can be interpreted in terms of model
errors (i.e. predictions of the wrong label).

• An Optimization Algorithm A that starting from the dataset D minimizes
the risk function R by tuning the model parameter θ. The process of learning
(i.e. optimizing the parameter in order to minimize the risk function) is called
training. In this context, the dataset takes the name of training set, or
training data, and the parameters are called learnable parameter.

All the tasks and learning paradigms can be seen as minimizing the Risk function
under the selected dataset by selecting a model and an Optimization algorithm that
tunes the model parameter. In the following, the Supervised learning framework
will be analyzed and detailed.

1.1.1 The mathematical framework
Consider a Supervised Learning task. In this case, the dataset D is defined as

D = {(xi, yi)}N
i=1

of N paired instances, where every instances (xi, yi) ∈ X × Y is drawn from a
distribution over X × Y . X represent the datapoint space, while Y is the space of
the label. Usually, the task T is expressed as a hidden mapping function f : X → Y ,
such that

f(x) = y ∀ (x, y) ∈ D

4

Background

If the label space Y is categorical (i.e. the handwritten digits, the class of an
image), the task takes the name of classification. Usually, it is common to have
problems where the class is only 2. In this case, the task takes the name of binary
classification, and one class is taken as reference and called positive Hypothesis,
while the other one takes the name of negative hypothesis. If the label space is
continuous, takes the name of regression.

In both cases, the model Mθ can be seen as a parametric function of some
parameter θ, h(x; θ) : X → Y, drawn from a class of function H. The domain-
specific knowledge, with an Exploratory Data Analysis (EDA) of the starting data,
can give a hint on how to choose the class of function. The classifiers, or the class
of functions, can be distinguished based on two main characteristics [3], generative
or discriminative, probabilistic or not. The combination of these properties defines
the different classes of classifiers:

• Disciminant model, in the original formulation of Bishop [3], is a model
that directly constructs a mapping function h(x that maps the input feature
vector directly to a label.

• Discriminative non-probabilistic model: Construct a function h(x that
maps the input feature vector directly to a set of scores, one for each label.

• Discriminative probabilistic model Construct a function h(x that maps
the input feature vector directly to a set of scores, one for each label, repre-
senting the class posterior probabilities:

IP(y = yk|x)

representing the probabilities of the model belonging to a certain class label,
conditional of the observation of the value x.

• Generative probabilistic model: construct a function h(x) by model the
joint distribution of the feature vector x and the labels y IP(x, y). The posterior
probabilities IP(y = yk|x) are computed according to the Bayes theorem:

IP(C = c|X) = IP(X = x|C = c)IP(c)
IP(x)

Since IP(c) and IP(x) are assumed to be constant, and modeled as prior
probabilities, the approach should learn only a statistical model that represents
the probability of a sample given a certain label. This is the main reason
because they are called generative models because one can sample a data point
belonging to a certain class.

5

Background

Classifiers, based on the form of the separation rule they create, can be divided into
linear classifiers and non-linear classifiers. In general, since the data are highly
non-linear, non-linear classifier performances are better, but the model complexity
increases, raising the problem of overfitting.

The risk R can be expressed in several ways. In the following, we express it as
a loss function L : Y × Y → R, that numerically quantifies how much the model
output h(x, θ) is different from the expected output y:

R = EX ×Y [L(h(x; θ), y]

Particularly relevant is the Bayes risk R∗, defined as the infimum of all risk, all
over the possible models and class models:

R = inf
h

R(h)

However, the risk defined as the expected value all over the data distribution cannot
usually be analytically computed, it is often approximated with the empirical risk,
defined as the loss function averaged all over the dataset. By minimizing the
empirical risk with and optimization algorithm A one can obtain θ∗:

θ∗ = argmin
θ

1
N

NØ
i=1

L(h(xi; θ), yi)

The previously described framework takes the name of Empirical Risk Minimization
(ERM) framework.

1.1.2 Support Vector Machines

Among the possible class of classifiers, Support Vector Machines (SVM) [4] are
linear, discriminative, and non-probabilistic classifiers, that provide a geometric
interpretation of the separation rule. In the simplest linear case, given an m −
dimensional input, the SVM algorithm finds (m − 1) − dimesional hyperplane
that both separates the classes and provides the maximum separation margin.

6

Background

Figure 1.3: Support Vector Machine interpretation of the separation rule. The
hyperplane is selected among the one that correctly separates the two classes with
the maximum margin.

In the case of linearly-separable classes, SVM can provide the hyperplane that
correctly classifies the samples with the max margin. However, it is not always
possible to have a linear separation rule that correctly classifies all the samples.
This problem can be overcome by including in the SVM objective function a penalty
term, that counts the number of misclassified samples. This term can be interpreted
as a regularization term (i.e. a term that controls how the model solution became
big) and is usually weighted by a hyperparameter denoted with the letter C. The
dual formulation of the Support Vector Machine problem is the following:

argmax
α

αT 1 − 1
2α

T Hα (1.1)

s.t. 0 < αi < C ∀i
nØ

i=1
αizi = 0

Since the prediction rule is based only on scalar product, it is possible to
transform the feature space, increasing the dimensionality of the data and moving
into spaces where the data characteristics are different. For example, consider a
problem where data points are distributed as in figure 1.4.

7

Background

Figure 1.4: Non-linear separable data point and the corresponding transformed
features, that are linearly separable.

In this case, there does not exist a liner hyperplane that correctly classifies
the sample to each class. However, it is possible to imagine a separation rule, by
looking at the distribution. By applying a non-linear transformation (in this case a
transformation from R2 → R3 where the z values depend on the distance of the
point from the center), it is possible to find a linear separating rule. This approach
can be applied to several methods, and consists of:

1. Starting from a dataset D = {(xi, yi)}N
i=1, a transformed dataset is built

according to a transformation ϕ : X → X ′, D′ = {(ϕ(xi), yi)}N
i=1.

2. The selected algorithm is applied in the transformed feature space X ′, inducing
a non-linear separation rule.

In the case of Support Vector Machines, this procedure takes the name kernel-trick.
Recalling the dual formulation of the SVM problem in 1.1, it is easy to notice that
the prediction rule and the objective can be expressed in terms of scalar products
of the datapoints features:

Hij = zizjxT
i · xj

In the case of the protocol for making non-linear classification presented before,
the matrix H (called Kernel matrix), has the following structure:

Hij = zizjϕ(xi)T · ϕ(xj)

it is possible to define a function k(·, ·) that efficiently computes the scalar product
into the transformed space, called kernel function:

k(xi,xj) = ϕ(xi)T · ϕ(xj)

8

Background

it is possible to redefine the Kernel matrix H in terms of the kernel function between
the datapoints features, obtaining a non-linear separation rule without explicitly
computing the transformation.

Hij = zizjk(xi,xj)

Common kernel functions are:

• Polinomial kernel of degree d: k(xi,xj) = (xT
i xj + 1)d

• Gaussian RBF Kernel k(xi,xj) = e−γ∥xi−xj∥2 , associated to an infinite
dimensional transformed space.

The possibility of having a set of kernel functions for different transformations is
one of the reasons why SVM is one of the most used shallow algorithms. Kernel
functions allow faster computation since made in a single shot at the transformation
step and the scalar product, which has a linear complexity in the transformed
feature space. In addition, kernel function can be defined1 for different objects
rather than datapoints (a notable example is graph kernels). Another useful
characteristic of SVM that comes directly from the problem definition is the
possibility to incorporate different scores for the misclassification cost of each class.
This is very useful in the case of class imbalance, and usually, the cost reflects the
probability of obtaining the sample from the training distribution.

1.1.3 Metrics
The empirical risk, or specifically loss function cannot always directly quantify
model performances in a human-readable fashion. For these reasons, different
metrics have been developed in order to compare and choose models. In order to
define a set of metrics, we consider a binary classification problem, with labels HT

corresponding to the true class (or class 0) and HF corresponding to the false class
(or class 1).

A commonly employed metric for classification is accuracy (or its complemented
at 1, the error rate), defined as the number of correctly classified samples against
the total number of samples. However, the accuracy, while being understandable,
can be misleading in the case of class imbalance. Consider an example where we
have 100 samples, 15 belonging to class 0 and 85 belonging to class 1. Let’s consider
a model that predicts according to this table, called confusion matrix:

1Notice that not every function can be a kernel. Mercer’s condition provides a sufficient
condition for k(·, ·) to be a kernel function.

9

Background

HT HF

Predicted T 10 16
Predicted F 5 69

In this case, the accuracy of the model is given by the sum of the elements of the
main diagonal divided by the total number of elements (acc = 79%), which can be
considered good. However, a dummy model that predicts always class 1, achieves
an accuracy of 85%. This simple example shows how accuracy metrics do not well
suit the case of imbalanced datasets. The confusion matrix shown in the example is
a powerful tool for evaluating model performances since is a complete "dashboard"
of the predicted values. The confusion matrix definition is the following:

Figure 1.5: Confusion matrix definition. The values on the row correspond to
the predictions, while values on the columns correspond to the actual class labels.

• True Positive (TP): correctly predicted class 0

• False Positive (FP): predicted class 0 but belonging to class 1

• True Negative (TN): correctly predicted class 1

• False Negative (FN): predicted class 1 but belonging to class 0

Starting from the confusion matrix, a series of metrics can be defined:

• Accuracy:
acc = TP + TN

TP + TN + FN + FP

• Precision:
precision = TP

TP + FP

• Recall:
recall = TP

TP + FN

10

Background

• F-β score

Fβ = (1 + β2)TP
(1 + β2)TP + FP + β2FN

The most commonly employed is with β = 1, and corresponds to the harmonic
mean between the precision and the recall.

Each of these metrics reflects a different objective. For example, in the medical
field (i.e. tumor classification) is important to minimize the false negative instead of
the false positive. For this reason, having a high recall value is more important and
valuable rather than having a high precision. Instead, if we imagine a hypothetical
system that decides if a person goes to jail or not, minimizing the people that go
to jail even if they didn’t commit crimes has the priority. This problem highlights
that having a higher precision is preferred to having a high recall.

1.1.4 Machine learning pipeline
The cores of the machine learning algorithm are the model M and the optimization
algorithm A used for computing the optimal parameters θ. Despite being so
important, the performances and the applicability of machine learning algorithms
require a set of other components (some of them are already explained in previous
sections) carefully connected in order to produce the machine learning pipeline.
Details on a possible pipeline are presented in figure 1.6.

Feature

extraction

validation scheme

split

scheme

search

algorithm

model

train

model

val

Figure 1.6: A full Machine Learning pipeline

In the supervised learning setting, the dataset consists of pairs of objects
and an associated label. Data can be the most varied, representing images, or
objects. The first step consists of the so-called feature extraction: a human-written

11

Background

preprocessing routine that computes a fixed-size representation of the object, called
features. Usually, the features are represented by continuous values (i.e. a feature
x is a datapoint in an m-dimensional Euclidean space Rm), while the labels are
mapped to an integer belonging to [0, l], where l is the number of different labels.
Features are a middle and compressed representation of the data, and the feature
extraction algorithms are designed to provide good separability and catch most
of the characteristics of the object. Once the dataset is prepared as a list of data
points, it enters into the validation scheme. The validation scheme is required
for both validating the model performances, training the model, and choosing the
parameters. Most models have 2 sets of parameters:

• Model parameters θ: optimized starting from the data based on an optimization
algorithm.

• Model Hyperparameters: these are parameters that characterize the model but
cannot be directly optimized using the optimization algorithm and need to be
tuned.

The process of choosing the hyperparameter is called hyperparameter tuning or
model selection. Often, this process is a trial and error, and several methods have
been developed. The most used in the context where the hyperparameter is not
many (maximum 3 or 4) is grid search. Consider a set of K hyperparameters
Λ = {λ1, · · · , λK}, with each hyperparameter λi has a set of Mi possible values
λi ∈ [vλi

1 , · · · , vλi
Mi

]. The grid search consists of training one model for every set of
hyperparameters belonging to the cartesian product {λ1 × · · · ×λK}, and obtaining
a score based on some of the previously defined metrics. The best model is the one
associated with the hyperparameters that provide the best score.

This process can be very costly since requires training rK
i=1 Mi models. Other

methods consist of random sampling or heuristics search from the full grid search
until a stopping criterion happens. Stopping criteria could be different, based on
performance metrics or on execution time.

As seen before, each class of models is characterized by its interpretation of the
data (that in general are called model assumptions) and by the interpretation of
the output (i.e. probabilistic vs. non-probabilistic score). In addition, models are
characterized by the separation rule, which directly reflects the model’s complexity.
More complex models (i.e. with several non-linearities) are capable of modeling
more complex data.

12

Background

Figure 1.7: Complex data needs complex models

However, different problems can arise when the data assumptions are not met
on the training data. In addition, the model performances cannot suffer from
the incompatibility of the data assumptions, especially when the model is very
complex, making it difficult to fully understand the origin of the problem. In order
to overcome this problem, and fairly evaluate the model, is common to split the
dataset D into 2 parts:

• Training dataset DT : used to train the model Mθ and compute the param-
eters θ

• Validation dataset DV : used to evaluate model performances, and to tune
the hyperparameters.

The validation data is not used to train the model, this allows complete independence
of the model parameter on the performances. There are different strategies to split
the dataset. As a practical consideration, valid for every method, is common to
first shuffle the dataset, in order to avoid biases in the data collection process. The
most used strategies are:

• Train-val split: starting from the original dataset D, it is split into 2
partitions (based on a split ratio), one will be the training dataset, the other
one the validation dataset. This method is well-suited when the data is not
scarce, or when the model training process is long.

• K-fold cross validation: When the amount of data is scarce, splitting is
not the best choice. Instead, It could be convenient to split the dataset into
K splits (or folds). The procedure consists of K iteration. At each iteration,
a model is trained on K − 1 folds and evaluated on the remaining fold. In
every iteration, the training set, and the validation set change. In the end,

13

Background

the produced score can be aggregated or averaged to produce a score for the
model. This method, although widely used, has the drawback of training the
models K times.

• Leave-one-out: it is a variant of the K-fold cross-validation approach where
K is set to the total number of samples. In this case, at each iteration, the
validation set includes only a sample.

Figure 1.8: Differences between train-val split and K-fold cross validation

However, different problems can arise when model complexity does not fit data
complexity. In particular, when the model complexity is too high, the model tends
to overfit the training data. The term overfitting indicates a phenomenon that can
arise for different reasons but is characterized by high performances on the training
dataset, but poor performances on the validation dataset. The main cause can be
the model complexity: if the data are simple to model (let’s say, a linear model
can approximate it), using a more complex model makes the model overspecialized
on the training data. An example of what overfitting means can be found in figure
1.9.

14

Background

Figure 1.9: Overfitting due to model complexity

Overfitting is also described as a lack of generalization. The model, in fact, is
not able to correctly perform the task when the data are slightly different (and
unseen). On the other hand, when the model complexity is lower than the data
complexity, there is a problem of underfitting. In this case, the classifiers are not
able to capture the data relations, generating poor performances both on training
and validation data.

In general, when performing hyperparameter tuning and model selection, it is
important to take care of overfitting and underfitting, and consequently observe
the model performances on both datasets. Sometimes, is better to choose the best
model on the training set, since this model can lack generality, but considering the
validation accuracy. As a general rule, it is better to choose the simplest model
that correctly fits the data distributions, as measured by the performance metrics.

15

Chapter 2

Quantum computing

Two scientists were discussing a new quantum computer that could solve any
problem instantly. One said, “Can I see it?” The other replied, “Sure, but only

when you’re not looking.”
-Anectode circulating in the 80s [5]

2.1 An Historical introduction
While being a trending topic today, the origin of quantum computation is not so
recent. Quantum mechanics started at the beginning of the last century, thanks
to Max Plank, and since then, several theoretical physicists have investigated the
law of nature at the tiniest scale, understanding that Newton’s classical mechanics
does not work anymore. It was 1984, when Richard Feynman, at the Physics of
Computation Conference, uttered:

“Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

Feynman, for the first time, highlighted the need for quantum computers as
simulators of quantum systems. It was clear to him that simulating on classical
machines could not be feasible, requiring an exponential number of resources. Only
one year later, Paul Benioff describes the model of a Quantum Turing Machine [6],
opening the possibility of creating a model of computation that uses quantum
mechanics as driving principles.

In 1985, David Deutsch opened the era of quantum algorithms, publishing
his model for a universal quantum computer [7], describing for the first time a
problem that could be solved using a quantum computer. From now on, plenty of
problems were defined as being solvable with quantum computers (like Deutsch,
Deutsch-Jozsa [8], and Simon’s algorithm [9]).

16

Quantum computing

But the revolution came when Peter Shor, in 1994, published his algorithm,
capable of solving a classically hard problem, integer prime number factorization.
For the first time, someone demonstrated that Quantum Computing could be used
to solve real-life problems, enabling an exponential speedup. In the same year,
Grover publish his famous algorithm for searching, providing a polynomial speed-up.
From then on, the interest in this technology grew, with companies starting to
develop quantum computers. In 1996, David DiVincenzo [10] describes the criteria
for building a usable quantum computer. Starting from the late 90s, and continuing
in the first decade of 2000, different companies propose different technologies for
building quantum computers. Among these, the biggest ones are IBM, Google,
Rigetti, Intel, and many others, each one providing quantum computers with more
and more qubits, and promoting the quantum supremacy. However, current devices
belong to the Noisy Intermediate-Scale Quantum Computer (NISQ) era, with a
modest number of qubits and short coherence time, that does not allow to apply
quantum algorithms (like Shor algorithms). For this reason, hybrid quantum-
classical algorithms have been developed, that take some advantages of quantum
computing, but with the reliability of classical computing. Such algorithms include
QAOA, VQE, and Quantum Machine Learning (QML). Following this wave, other
companies started to build quantum computers, introducing the era of cloud
quantum computing: from 2019 with IBM, it is possible to execute on real quantum
hardware by submitting jobs. The race for quantum computers has just started:
in the next years, we could expect quantum computers with more qubits, and
error-correction codes will enable execution with high-fidelity quantum algorithms.

2.2 Quantum information theory
In the classical information theory of Claude Shannon, the littlest unit of information
is the bit, a logical unit that can deterministically assume value 0 or 1. The
base of Quantum Information Theory is the qubit, a Quantum Information unit
representing a two-level (the two classical states, common to the bit, 0 and 1)
quantum system, that by definition follows the principles of quantum mechanics.
In order to understand the main differences between bits and qubits, can be useful
to list and comment on the axioms of quantum mechanics, 5 experimentally proven
principles [11]:

1. The properties of a quantum system are completely defined by the specification
of its state vector ψ. The state vector is an element of a complex Hilbert
space H called the space of states.

2. With every physical property A (energy, position, momentum, angular mo-
mentum, ...) there exists an associated linear, Hermitian operator A (usually

17

Quantum computing

called observable), which acts in the space of states. The eigenvalues of the
operator are the possible values of the physical properties.

3. (a) Born rule: If |ψ⟩ is the vector representing the state of a system and if
|ϕ⟩ represents another physical state, there exists a probability p(|ψ⟩ , |ϕ⟩)
of finding |ϕ⟩ in |ψ⟩, which is given by the squared modulus of the scalar
product on H: p(|ψ⟩ , |ϕ⟩) = | ⟨ψ|ϕ⟩ |2

(b) Wave function collapse If A is an observable with eigenvalues ak and
eigenvectors |k⟩ (A |k⟩ = ak |k⟩), given a system in the state |ψ⟩, the
probability of obtaining ak as the outcome of the measurement of a is
p(ak) = | ⟨K|ψ⟩ |2. After the measurement, the system is left in the state
projected on the subspace of the eigenvalue ak.

4. Time evolution The evolution of a closed system is unitary. The state
vector |ψ(t)⟩ at the time t is derived from the state vector |ψ(t0)⟩ at the
time t0 by applying a unitary operator U(t, t0), called the evolution operator :
|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩

As anticipated before, the qubits, short name for Quantum bits (the name was
chosen by Schumacher in [12]) are mathematical objects that describe a 2-state
quantum system. With respect to classical bits, qubits have some peculiarities
typical of quantum mechanics.

• Superposition: the state of the qubit is a combination (i.e. a superposition of
the basis state |0⟩ and |1⟩, called computational basis.

• Entanglement: the state of a single qubit cannot be represented without
considering the whole system state.

• Interference: similar to optical interference, probability distributions deter-
mined by wavefunctions of quantum states are impacted by the constructive
or destructive interference phenomenon.

2.2.1 Quantum bits
Quantum bits can be described by a state vector belonging to the complex Hilbert
space C2, as stated by the first axiom of quantum mechanics. Each element (also
called amplitude) of the state vector is a complex number, that represents the
probability of the qubit of being measured in the corresponding state. A generic
qubit state |ψ⟩ is a linear combination (i.e., superposition of basis states |0⟩ and
|1⟩):

|ψ⟩ = α |0⟩ + β |1⟩ (2.1)

18

Quantum computing

where α and β are complex numbers such that ||α||2 + ||β||2 = 1. The notation
used is the Dirac notation [13], usually called "bra-ket". The Dirac notation is a
shortcut for naming column and row vectors. Let’s consider the binary alphabetq = {0, 1}, where the order of the elements is important. Then, the column vector
named "ket-0" indicated with:

|0⟩ =
A

1
0

B

is the column vector with a 1 in the position of the element. "bra-one" indicates
the row vector with a 1 in the position of 1 in the alphabet:

⟨1| =
1
0 1

2

The Dirac notation can be used to indicate every possible state and star vector, by
a linear combination of the basis vector, as in 2.1. These means that the associated
statevector with |ψ⟩ is:

|ψ⟩ = α |0⟩ + β |1⟩ = α

A
1
0

B
+ β

A
0
1

B
=
A
α
β

B

Since the components of the statevector are complex numbers, each state is described
by 4 real numbers. By exploiting ||α||2 + ||β||2 = 1, we can rewrite the state |ψ⟩ as:

|ψ⟩ = eiγ

A
cos

A
θ

2

B
|0⟩ + eiϕ sin

A
θ

2

B
|1⟩
B

Where γ, θ, ϕ are real numbers. We can discard the term eiγ since the global phase
has no observable effect (evidence of this can be found in the measurement section).
By interpreting θ as the polar angle and ϕ as the azimuthal angle, a quantum state
can be mapped to a point on the surface of a unit sphere in R3. This representation
takes the name of Bloch sphere, by his ideator Felix Bloch [14], who creates it to
represent the transformation of a 2-level quantum system in a much clearer way.
Every quantum state belongs to the surface of the state and is called pure state. A
state that does not belong to the Bloch sphere surface is called mixed state.

19

Quantum computing

Figure 2.1: Bloch sphere [15] representing a generic state |ψ⟩. The highlighted 2
antipodal state represent the computational basis vector |0⟩ (northen pole) and |1⟩
(south pole).

The Bloch sphere has at its pole the two states of the computational basis |0⟩
and |1⟩. Every state of a single qubit can be represented on the sphere. Bloch
sphere can give a hint of what superposition and the wave function collapse principle
means. Two important states that exhibit the superposition characteristics are:

|+⟩ = 1√
2

(|0⟩ + |1⟩) (2.2)

|−⟩ = 1√
2

(|0⟩ − |1⟩) (2.3)

Called respectively the plus state, and its antipodal respect to the X axis, the minus
state.

Figure 2.2: Plus state on the Bloch sphere, lying on the equator.

20

Quantum computing

Both these states represent a state that is not 0 or 1, but a mixture of the 2
bases. Intuitively, it is possible to notice that the state on the sphere (represented
in figure 2.2) is equidistant to both poles. These can give a hint on what the
measuring outcome could be: since it is equidistant, the plus and minus state
outcome of the measure can be equiprobable 0 or 1. In fact, considering the plus
state:

|ψ⟩ = α |0⟩ + β |1⟩ = 1√
2

|0⟩ + 1√
2

|1⟩)

α = 1√
2
, ∥α∥2 = 1

2

β = 1√
2
, ∥β∥2 = 1

2
Bloch sphere can be a good tool for visualizing one qubit, although generalizing it
for two or more is not so trivial.

2.2.2 Multiple qubits
Until now, single qubit systems have been described. As for classical computation,
different qubits can be packed together, forming a quantum register. In this
context, qubits exhibit an interesting behavior, not fully understood by physicists,
called entanglement. Let’s start by considering a 2-qubit system. Each qubit is
in a superposition of 2 states. A general 2 qubit system can be described by its
statevector:

|ψ⟩ = α0 |00⟩ + α1 |01⟩ + α2 |10⟩ + α3 |11⟩ (2.4)

Where each of the αi is a complex number, and their square modulo represents the
probability of the associated outcome. Since |ψ⟩ is a quantum system, it belongs to
the Hilbert space H, so it must have the same properties of the single system (i.e.,
the statevector component squared modulo should sum up to 1). it is easy to notice
that the statevector dimension grows exponentially with the number of qubits in
the register. In particular, if there are N qubits in the register, the statevector will
have 2N component. Multiple qubit states can be divided into two categories:

• Product states: Consider a set of N qubits, each in the state described the
statevector |ψi⟩ = αi |0⟩ + βi |1⟩. If the overall state can be described by the
tensor product of the single qubit state:

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψN⟩

This means that the amplitudes of the statevector can be rewritten in terms
of products of the single qubits amplitudes. For this reason, product states
are called also simply separable states.

21

Quantum computing

• Entangled states: are the states characterized by a set of amplitudes that
cannot be factorized based on their single qubits amplitude. The qubits of
this system are linked together in a mathematical (and physical way), and
behave as a single system.

Entanglement is a key phenomenon in quantum computing. Entangled states
cannot be separated, and performing an operation on one qubit will cause an
instantaneous consequence on the other qubit. However, entanglement is not only
a mathematical consequence of the selected framework. In 1935, Einstein, Podolski,
and Rosen published an article about the completeness of Quantum Mechanics,
where they present the EPR paradox [16], a mental experiment that shows the non-
completeness of QM. The experiment consists of the preparation of two particles in
an entangled state, that are separated in space. Later a person measures the state
of one of the particles, and due to the entanglement, the other particle collapses to
the other state. This can be seen as a violation of the locality principle, because
of the information of the state propagating at a speed higher than light. The
paradox was solved in 1964 by Bell [17], together with the formulation of the
non-communication-theorem. The entangled states described by the EPR paradox
(in the Bohm version) are called the EPR states or the Bell States:

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩) |Φ−⟩ = 1√
2

(|00⟩ − |11⟩) (2.5)

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩) |Ψ−⟩ = 1√
2

(|01⟩ − |10⟩) (2.6)

Takes as reference the |Φ+⟩ state. it is possible to expand the product, remembering
the general form of a 2-qubit product state:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ = (α1 |0⟩ + β1 |1⟩) ⊗ (α2 |0⟩ + β2 |1⟩) =
= α1α2 |00⟩ + α1β2 |01⟩ + α2β1 |10⟩ + β1β2 |11⟩

The system of equations to solve is:

α1α2 = 1√
2
, α1β2 = 0, α2β1 = 0, β1β2 = 1√

2

it is easy to notice that this system of equations cannot have a solution. These
prove that |Φ+⟩ is an entangled state. The same consideration can be done for the
other Bell states. Bell states and in particular entanglement is the key for some
important quantum algorithms such as quantum teleportation and dense coding,
that take advantage of the strong correlation (i.e., the entanglement) among the
qubits.

22

Quantum computing

2.2.3 Operators
As for classical information theory, also quantum computer has its set of operations
in the form of gates, called quantum gates, the quantum analogy of the logic gates.
Quantum gates are formally called operators, which act on the quantum state.
Quantum operators, once a basis is chosen, are represented by square matrices
of dimension n. For single qubit gates, n is equal to 2. A matrix, to represent a
quantum gate should be a Unitary operator U , and should satisfy the following
constraint:

• Linearity: U |ψ⟩ distributes among the components of the superposition state,
i.e. U |ψ⟩ = U(α |0⟩ + β |1⟩) = αU |0⟩ + βU |1⟩.

• Bounded: applying an operator on a quantum state returns a quantum state.
This means that ∥U |ψ⟩ ∥2 = 1.

• Inverse operator : if exist a quantum operator U , there must exist the inverse
operator U † (Hermitian Conjucate) such that UU † = I, where I is the identity
operator I |ψ⟩ = ψ.

Again for single qubit gates, the Bloch sphere can help visualize the effect of the
operator, since every single qubit operation can be seen as a rotation around one
of the axes. Particularly important for quantum computing, and in general for
quantum mechanics, are the four Pauli operators (or Pauli matrices).

X =
A

0 1
1 0

B
, Y =

A
0 −i
i 0

B
Z =

A
1 0
0 −1

B
I =

A
1 0
0 1

B
(2.7)

Where I is the identity, and X gate is commonly known as the NOT operator.
Applying an operator to a qubit is done by means of matrix-vector multiplication
(in this example, the application of a NOT gate to the |0⟩ state):

X |0⟩ =
A

0 1
1 0

B
|0⟩ =

A
0 1
1 0

BA
1
0

B
=
A

0
1

B
= |1⟩

Obtaining the |1⟩ (this is the reason why X is called NOT gate). Another important
operator, the first responsible for superposition, is the Hadamard gate:

H = 1√
2

A
1 1
1 −1

B
(2.8)

Hadarmard gate application on the basis state is:

H |0⟩ = 1√
2

A
1 1
1 −1

BA
1
0

B
= 1√

2

A
1
1

B
= |+⟩

H |1⟩ = 1√
2

A
1 1
1 −1

BA
0
1

B
= 1√

2

A
1

−1

B
= |−⟩

23

Quantum computing

So, the Hadamard gate transforms the classical state |0⟩, in the superposition state
|+⟩. All the previously defined operators are Hermitian, which means that applying
twice the X, Y, Z, or H gates takes again to the starting point. Other commonly

Figure 2.3: X, Y, Z, H gates and their effect representing on the bloch sphere.

employed single qubits operators are the S and T gate, respectively corresponding
to a rotation of π/2 and π/4 around the Z-axis:

S =
A

1 0
0 ei π

2

B
, T =

A
1 0
0 ei π

4

B
(2.9)

Intuitively, these operators are not Hermitian, since 4 S gates are required to make
a full rotation around the Z-axis. There exists also a certain number of n-qubit
operators (common number are 2 or 3). One of the simplest is the SWAP gate.
SWAP gates simply perform a swap operation between qubits:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.10)

Another important gate, responsible for the construction of entangled gate is the
C-NOT (Controlled-NOT), defined by the following 4 × 4 matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.11)

CNOT gate is called also the "quantum XOR", because if applied to a pair of qubits
returns the XOR function between them, following:

CNOT |ψ⟩ |ϕ⟩ = |ψ⟩ |ψ ⊕ ϕ⟩

24

Quantum computing

CNOT belongs to a family of gates called "controlled unitary operator", OR CU
gates, that have the form:

CU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 (2.12)

The CNOT gate can be derived from 2.12, by set U = X. In the context of
controlled gates, order counts: the first qubit is the control qubit, while the second
in the target qubit. Another interesting property of the CNOT gate is the possibility
of generating entangled states. For example, let’s consider the following quantum
circuit (a sequence of quantum gates) in figure 2.4:

|0⟩ H
|Φ+⟩

|0⟩

Figure 2.4: Quantum circuit for generating the Bell state

The first Hadamard gate transform the state |00⟩ into the superposition

(|0⟩ |0⟩ + |1⟩ |0⟩)√
2

. Then, the CNOT gate flips the logical value of the second bit when the first bit
is |1⟩ (in this case, the second part of the superposition state, |1⟩ |0⟩ → |1⟩ |1⟩),
obtaining:

(|0⟩ |0⟩ + |1⟩ |1⟩)√
2

= |Φ+⟩

This is one of the Bell states. From this example, it is clear that the CNOT gate
plays a crucial role in quantum computing and quantum algorithms, thanks to its
ability to create entangled states.
The last multiple qubit gate presented in this section is the Toffoli gate, or CCNOT
(Controlled-Controlled NOT), which is a 3 qubit gate, corresponding to a controlled

25

Quantum computing

CNOT. His matrix form consists of a 8 × 8 matrix defined like this:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.13)

2.2.4 Measurements
Qubits exhibit the peculiarity of existing in a superposition of 2 states, each with a
probability associated. Considering a state

|ψ⟩ = α |0⟩ + β |1⟩

, the Born’s rule state that the probability of outcome 0 is ||α||2 and the probability
for the outcome 1 is ||β||2. The coefficient of the statevector (i.e. α and β)
expresses the probability of the outcome of the measurement in the Z basis, or
the computational basis. By expressing the basis in terms of other states, it is
possible to measure on a other basis than the computational. According to the wave
function collapse axiom, after the measurement process (if it is not destructive)
the state collapses to the measured state (i.e. loses its quantum information and
becomes a classical state). The outcome of further measurement will be always the
same. These behaviors are well characterized in the mathematical framework of
quantum computing. Let’s consider a quantum state |ψ⟩. Assuming an observable
A with eigenvalues ak associated with eigenvector k, the probability of observing
ak is:

IP(ak) = | ⟨k|ψ⟩ |2

according to the Born rule. Let’s consider k being one of the vectors of the
computational basis, either |0⟩ or |1⟩. For example, considering the superposition
state |ψ⟩ = α |0⟩ + β |1⟩, the probability of measuring respectively the classical
state |0⟩ or |1⟩ is:

IP(|0⟩) = | ⟨0|ψ⟩ |2 =
-----11 0

2Aα
β

B-----
2

= |α|2

IP(|1⟩) = | ⟨1|ψ⟩ |2 =
-----10 1

2Aα
β

B-----
2

= |β|2

26

Quantum computing

These measurements are projective measurement (also called Von Neumann mea-
surement) in the computational basis or Z basis. it is possible to measure in other
bases rather than the computational basis.

Let’s consider Mk = |k⟩ ⟨k| is a projective operator (or measurement operator).
The probability of the state ψ to be observed in the state k is:

IP(k) = ⟨ψ|M †
kMk|ψ⟩

where M †
k is the complex Hermitian Conjugate. According to the Born rule, the

state collapses into:
|ψ⟩ → Mk |ψ⟩ñ

⟨ψ|M †
kMk|ψ⟩

(2.14)

For example, the measurement in the Z basis, is defined by the set of the 2
measurement operators:

M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| (2.15)

As an example, the probability distribution for the usual |ψ⟩ in the case of |0⟩:

⟨ψ|M †
0M0|ψ⟩ = ⟨ψ|0⟩ ⟨0|0⟩ ⟨0|ψ⟩ = ⟨ψ|0⟩ ⟨0|ψ⟩ =

=
1
α∗ β∗

2A1
0

B1
1 0

2Aα
β

B
= α∗α = ∥α∥2

According to the axiom of quantum mechanics previously stated. The state collapses
to

|ψ⟩ → Mk |ψ⟩ñ
⟨ψ|M †

kMk|ψ⟩
= |0⟩ ⟨0|ψ⟩

∥α∥
= α

∥α∥
|0⟩ ≃ |0⟩

showing the wave function collapsing to the |0⟩ state. Other possible and used
bases are the X basis, consisting of the plus |+⟩ and minus |−⟩, and the Y basis,
consisting of |i⟩ and |−i⟩ states. Once the measurement mathematical framework
has been detailed, let’s introduce a concept that has been used before, when deriving
the Bloch sphere. Consider two quantum state |ψ⟩ and |ϕ⟩, such that:

|ψ⟩ = α |ϕ⟩

Since α is a complex number such that ∥α∥2 = 1, so it can be expressed in polar
coordinates α = eiθ, for some real number θ ∈ [0, 2π]. For this reason, the two
states differ by a global phase [18]. State that differs only from a global phase are
indistinguishable (from a measurement point of view):

∥Mk |ψ⟩ ∥2 = ∥Mkα |ϕ⟩ ∥2 = ∥α∥∥Mk |ϕ⟩ ∥2 = ∥Mk |ϕ⟩ ∥

27

Quantum computing

2.2.5 Quantum circuits

One way of representing quantum algorithms is by means of quantum circuits.
Quantum circuits are simply a sequence of operations (represented by box, or
gates) and wire, each for each qubit in the quantum register. Every circuit can be
modeled as a Directed Acyclic Graph (DAG). Operations are executed from left to
right, and each row (or wire) represents a qubit. Some examples of gates can be
found in figure 2.5.

X Y

Z H

S T

Figure 2.5: Single qubit quantum gates. In order (top-down from left to right)
the X, Y, and Z Pauli operators, the Hadamard gate, and the S and T gate.

Other commonly employed gates are the SWAP and CNOT:

Figure 2.6: SWAP and CNOT gates

Finally, the measurement operator can be applied to a single qubit or to the
whole system.

M

Figure 2.7: Measurement operators

it is important to notice that the measurements are always assumed in the
logical Z bases. In order to make measurements on another base, an operator
corresponding to the bases can be applied.

28

Quantum computing

2.3 Quantum computer technologies
At the end of 1990, the first experiment showing the possibility of creating a
Quantum Computer emerged. Since then, several platforms have been proposed
and realized, each one using different technologies and providing tools and software
for developing and researching on quantum computing.

2.3.1 DiVincenzo Criteria for quantum computing
At the beginning of the new millennium, the theoretical physicist David P. DiVin-
cenzo formulated 5 requirements (plus 2 related to quantum communication) for
the physical implementation of a Quantum Computer [10], that became famous as
DiVincenzo Criteria. These criteria represent the starting point when discussing
the physical realization of quantum computers since they are basic requirements to
be met in order to achieve quantum advantage over classical computation. Before
delving into some examples of current quantum computer technologies, an insight
into the principles, and a short analysis of the meaning and the effects of every
principle are conducted. In the following, the name is reported as in the original
paper.

1. A scalable physical system with well-characterized qubits
Qubits are the key component of a quantum computer, and of course, the
analysis should start from the physical realization of the qubits. Scalable
means that it is preferred that the possibility of adding more qubits to the
system should be feasible, and does not have any sort of limitation. Qubits
should also be well-characterized, this means that their internal Hamiltonian
(in which the eigenstates corresponding to the states |0⟩ and |1⟩ are encoded)
should be known, and the presence of coupling and interaction with other
states should be known.

2. The ability to initialize the state of the qubits to a simple fiducial state
This requirement is straightforward when thinking of most algorithms that
need the state to be initialized to the state |000 · · · 0⟩. In addition, error-
correction protocol requires a certain number of qubits in a low entropy state
(|0⟩).

3. Long relevant decoherence times, much longer than the gate operation time
Decoherence is the phenomenon in which qubits interact with the environment,
causing a quantum state |ψ⟩ to "decay" into a mixture state. More importantly,
since the classical behavior of nature arises from decoherence, decoherence
times define the time in which quantum computer remains "quantum", and
have inside advantages with respect to classical computation. How much this

29

Quantum computing

time should be can be defined with respect to the gate time and the depth
of the protocol, in order to finish the computation much before decoherence
arises.

4. A "universal" set of quantum gates
This requirement can be seen as the counterpart of the need for a set of logical
gates in classical computation. it is obviously true, but there is some other
consideration to do on this requirement. Generally, quantum algorithms come
in the form of a sequence of unitary transformations, each one defined by an
evolution of a quantum state following a Hamiltonian. One should define a
Hamiltonian for every transformation. This is not feasible. However, has been
demonstrated that any n-gates known can be implemented using a set of gates
and a 2-qubit gate. This cannot stop the discussion, since in some physical
systems (for example Neutral Atoms Quantum Computer) the interaction
Hamiltonian cannot be turned off, so other ways of implementing gates should
be found, case by case.

5. A qubit-specific measurement capability
Since the output of a quantum computation should be read, a quantum
computer should have measurement capability at the qubit level, and the
measurement of a qubit should not interfere with other components of the
machine or qubits.

2.3.2 Noisy Intermediate-Scale Quantum Computer Era
Today, the current quantum computers belong to the Noisy Intermediate-Scale
Quantum Computer (NISQ) era. This term was introduced by John Preskill in
2018 [19], highlighting in his paper the current situation of quantum computing in
different fields. The term intermediate-scale refers to the size of quantum computers,
with a qubits number in the order of hundreds of qubits. With 100 qubits, we
are theoretically capable of reaching quantum advantage over classical machines.
However, machines have sources of noise in the quantum gates, that limit the size
of the circuit or protocol that could be executed reliably.

Current quantum computers can be divided into mainly 5 categories, based on
the underlying technology for building qubits [20]:

• Superconducting Josephson junctions
Superconducting quantum computers are one of the most promising technolo-
gies for building quantum computers. it is based on the physical properties of
the Josephson junctions (based on the properties of semiconductors), and his
capability of emulating a 2-level quantum system. Superconducting quantum
computers have around 100 qubits. Although being universal, the current

30

Quantum computing

limitation consists of the amount of controlling hardware required for con-
trolling and measuring the qubits. Among these categories belong the 2048
qubit Quantum annealer of D-Wave. This quantum computer is not universal
but works as an optimizer for combinatorial problems. Current companies
that build and conduct research on this technology are IBM, Google, D-Wave
Systems, and Rigetti.

• Ion trap
Consist of ions, trapped using electromagnetic fields using an electromagnetic
field. Quantum information is encoded in the electronic state. Lasers can
be used to control the qubits (through single qubit rotation) and induce
entanglement. They are the first proposal for realizing large-scale quantum
computers, with a proposal for implementing CNOT gate in 1995, and met
all the requirements of DiVincenzo criteria. Although this, they are very
difficult to implement, with a maximum number of qubits of 20, reached in
2018. Current companies that build and conduct research on this technology
are IONQ and Quantinuum.

• Photons
The paradigm of Linear Optical Quantum Computer (LOQC) consists of
using the property of light to encode quantum state (polarization of light,
angular momentum of photons, etc.). It has been demonstrated that Photonics
Quantum Computing is universal and has the possibility of merging in a single
framework quantum computation and quantum communication. However,
the number of resources required to control light does not scale well with
qubits number. Current companies that build and conduct research on this
technology are PsiQuantum and Xanadu.

• Neutral atoms
Neutral atoms are a prominent technology discussed in the last 20 years, but
realized recently thanks to the recent advantages in the laser fields. It consists
of neutral atoms encoding quantum information in the electronic state of the
valence electron, whose energy state can be controlled by lasers. Currently, the
quantum computer realized with this technology (that has 256 qubits) can be
used only in analog mode, as a Hamiltonian simulator. Current companies that
build and conduct research on this technology are QuEra, Pasqal, ColdQuanta,
and Atom Computing.

• Quantum dots
Also called artificial atoms, they are nanoscale miniaturized devices that
exhibit quantum mechanics properties, used for realizing qubits. The quan-
tum information is encoded by the spin of the electron, as proposed by
Loss–DiVincenzo. Among the others (like IBM), Silicon Quantum Computer

31

Quantum computing

has a goal of building a fault-tolerant quantum dots quantum computer by
the end of 2028.

These machines, as said by Preskill, do not have the power to change society, but
can be seen as a step towards reliable and fault-tolerant quantum computers.

2.3.3 Software Tools
Developing of software development kit (SDK) for experimenting and interacting
with Quantum Computer has followed the hardware implementation effort. In
the last year, libraries, tools, and programming languages have been proposed by
companies for interacting with their hardware. Among these Braket with IBM has
introduced the paradigm of Cloud Quantum computing, with the possibility of
running quantum protocol on real machines by submitting a job.

• Qiskit
it is a Python ecosystem of libraries developed and maintained with IBM,
that allows circuit prototyping, emulating quantum hardware with the local
simulator, introducing noise with different models, and interacting with their
quantum device through their backend. it is a reference point for quantum
developers.

• Bloqade
Developed by Quera Computing Inc. in Julia, based on Yao, a library for
simulating quantum mechanics. It allows emulating Aquila, their analog
quantum computer, providing different utilities for building Hamiltonians and
Observables. In addition, provides a library for interacting with real hardware.
Moreover, it has recently released a Python version of the SDK.

• Pulser
Is the analog of Bloqade, but with the Pasqal ecosystem. it is an open-source
Python library and provides utilities for pulse definition and emulation that
act on an array of neutral atoms.

• Q#
Is a programming language part of the Quantum Development kit (QDK) of
Azure Quantum.

• Pennylane
Platform developed by Xanadu, but allowing access to a variety of quantum
computing platforms, including IBM. it is written in Python and allows
quantum simulation and in particular quantum machine learning.

32

Quantum computing

• Cirq
it is the Google SDK built in combination with qsim, written in C++, allowing
quantum simulation of up to 40 qubits on a classical processor.

• Rigetti Forest
Is the Python ecosystem of Rigetti, consisting of PyQuill (their library for
quantum emulation), a compiler for their machine, and a quantum virtual
machine (qvm) for simulation.

• D-Wave Ocean
Is a suite of open-source Python ecosystems that allows access to the D-wave
quantum annealer. It provides primitives for mapping problems in the format
of the quantum solver.

2.4 Quantum Machine Learning

Quantum Machine Learning (QML) has emerged in the last few years as a field of
study that combines Machine Learning and Quantum computing. it is a relatively
new framework, being introduced in 2013 [21], thanks to the rapid advantages in
both Quantum computing and machine learning. The possibility of a Quantum
Computer processing a high quantity of data in high dimensional space fits well
with the kind of data that usually ML analyzes In addition, quantum systems
are able to produce different patterns than classical computers, exploring many
more possibilities. In the last decade, there were several works working on QML,
demonstrating the wideness of the area, which allows different interpretations. it is
usual to divide QML into 4 main tasks, as the 4 quadrants of a space with 2 axes:
one is the algorithm type (or in some work the device used for processing) axes,
and the second one is the data source axes:

33

Quantum computing

algorithm type

d
at

a
ty

p
e

CQ

QC

CC

QQ
Figure 2.8: Taxonomy of Quantum Machine Learning. The objective of this work
is highlighted in blue. It consists of a quantum algorithm that analyzes classical
data.

1. Classical - Classical (CC) that refers to classical data processed with classical
computers. In the context of QML is commonly referred to quantum-inspired
algorithm, which are algorithms inspired by the linear algebra used in QC
(like tensor networks) or attempting to emulate quantum systems on classical
machines.

2. Classical - Quantum (CQ): Classical data processed using Quantum devices.
it is the most mature branch of QML, since most sources of data are classical,
and could provide the best advantages over classical algorithms. Examples of
these methods are Quantum Support Vector Machines and Quantum Neural
Networks.

3. Quantum - Classical (QC) tries to extract information from quantum data,
using a classical algorithm. An example can be the computation of the gradient
of quantum states, a necessary step in Variational Quantum Eigensolvers
(VQE).

4. Quantum - Quantum (QQ), that is the quantum processing of quantum data,
which can be defined as the purest approach. An example can be the quantum
post-processing of the output of a quantum simulation. These can have several
applications in molecule study.

In this thesis’s work, a Classical - Quantum architecture will be analyzed. By

34

Quantum computing

now, considering the situation of quantum devices and the data availability is one
of the most prominent areas of QML.

2.5 Emulation against Simulation
At this point, should be clear that the main advantage of quantum computing is
the possibility of executing operations with high parallelism thanks to the principle
of superposition, and the possibility of creating entangled states, that create states
that behave in a peculiar way, and the operation on a component modify also the
other components. In this context is important to highlight the difference between
quantum emulation and quantum simulation.

As the term suggests, emulation is a general term for grouping the software and
hardware tools for executing code that is not built for the specific platform, usually
older. In this context, quantum emulation is the execution of a quantum algorithm
on a classical machine, emulating the operation. As described in the previous
section, each qubit can be described with 2 complex numbers, and consequently,
the space necessary for describing N qubit is 2N complex numbers. This means
that emulating space complexity grows exponentially, making it not feasible for
real-world problems. In terms of operation, qubit operations can be of two types:

• Digital: the most common gates are single o 2-qubits, this means that applying
an operator means making matrix multiplication with 2 × 2 or 4 × 4 matrices,
that are not so computationally expensive.

• Analog: in this case, simulation is more computationally expensive, since it
requires the solution of a system of differential equations, and computing the
time evolution.

Emulation can be done both on a common laptop (with 10-20 qubits) or supercom-
puters (full emulation is possible with at most 55 qubits, while with compression
techniques or tensor networks, this limit rises to 100 qubits).

Quantum simulators are a different thing. They are more similar to the first idea
of quantum computers presented by Richard Feynman, as simulators of quantum
systems, currently called analog quantum computers. They are real quantum system
that realizes the evolution or operation directly, without solving any system. it
is clear that simulators do not have the disadvantage of the exponential space
required to store the state, and so can behave like real quantum computers.

35

Chapter 3

Quantum computing on
Neutral atoms machine

In chapter 2, how the quantum computing paradigm emerges from the quantum
mechanics principles is explained, discussing the peculiarities and opportunities of
realizing a quantum computer. In the end, some examples of technologies that could
enable quantum computer production have been shown, looking at the DiVincenzo
criteria, the prerequisites for realizing the quantum advantage. In this chapter,
Neutral atoms quantum computers, in particular, Aquila from QuEra computing
are discussed, presenting applications where they can be employed, and finally
showing the quantum evolution kernel and a possible implementation on a quantum
computer.

3.1 Aquila: A 256’s qubit quantum computer
Neutral atoms have been proposed as candidates for qubits implementation since
the early 2000 [22]. In the following decades, some experiments have demonstrated
the possibility of using arrays of Rydberg atoms as qubits. However, the enabling
researchers were the ones who demonstrated how to load arrays of atoms in position
using optical tweezers [23], showing the non-equilibrium dynamics of a chain of 51
atoms [24]. As a result, around this promising technology, several companies have
been born, with the aim of building, maintaining, and developing algorithms for
Neutral Atoms Quantum Computer. The most promising are Pasqal, ColdQuanta,
Atom Computing, Planqc, M Squared, and QuEra Computing. Aquila [25], is a
Neutral Atoms Quantum Computer built by QuEra Computing Inc., available
through the Braket cloud service on Amazon Web Services. Aquila is a room-
temperature Field Programmable Qubit Array (FPQA), currently operating as a
user-defined Hamiltonian simulator on up to 256 qubits. Aquila is composed of

36

Quantum computing on Neutral atoms machine

several components, that allow the simulation of such Hamiltonian: neutral atoms
as physical qubits, that allow entanglement through Rydberg interaction, driven
and positioned in space by lasers. In the following, the different characteristics and
components will be detailed. An overview of the machine, taken from the Aquila
whitepaper [25], is present in figure 3.1.

Figure 3.1: Aquila architecture, highlighting the different components used. Image
taken from Aquila whitepaper from QuEra [25].

The qubits are physically implemented using neutral Rubidium-87 atoms, cooled,
moved, and controlled using laser beams. The quantum information is encoded
into the electron orbital of the valence atom. Different set of states are possible
using Rb-87, with different characteristics:

• Hyperfine qubit: it is a long-lived qubit, with long coherence time (≃ 1 s)
and no interactions between qubits and the environment. It will be the key
component of the digital mode (or gate-based) and a hybrid analog-digital
mode. It is characterized by two ground states, |0⟩ = |g⟩ = |5S1/2, F = 1⟩
and |1⟩ = |g′⟩ = |5S1/2, F = 2⟩, separated by an energy gap of ≃ 6.8 GHz.
Entangling operations will be implemented by passing to the Rydberg state
(|r⟩ = |70S1/2⟩).

• Ground-Rydberg qubit: relatively short-lived qubit, but with a strong
interaction between atoms in the Rydberg states, responsible for the entangle-
ment implementation. it is the key component of the current main operating

37

Quantum computing on Neutral atoms machine

mode of Aquila, the analog mode. it is characterized by a ground state,
logically representing |0⟩ = |g⟩ = |5S1/2⟩, and the Rydberg state, represented
by a highly excited S orbital, |1⟩ = |r⟩ = |70S1/2⟩. The Rydberg state, as
explained later, generates a huge electric dipole, making it a key ingredient
for entanglement.

Both qubits can be hosted on the same physical atom, making the platform versatile
(for example, in the possibility of having a hybrid dual digital-analog mode). A
schematic and simplified overview of the electronic states and their correspondence
with the qubits state can be found in figure 3.2. Transitions between electronic
orbitals are made by absorbing or emitting photons, according to Plank’s theory.
In order to trigger the transitions, the atom should be exposed to light with
frequency proportional to the amount of energy between the two energy states,
according to the Plank equation E = hν. This is one of the most technologically
difficult challenges, realizing laser beams that are simultaneously ultra-stable and
deliver high powers. Recent advantages have allowed the realization of these lasers,
consisting of ultra-stable lasers locked to a cavity. In figure 3.2, together with the
electronic states, the laser wavelength used for the transitions is shown.

Figure 3.2: Electronic states diagram and qubits states. Image taken from [25].

Quantum computation is possible thanks to the precise control of the laser
parameters. The Rabi frequency Ω, is directly related to the laser amplitude,
which controls the rate of the transition between ground and Rydberg states. The
parameter that represents how the laser is off-resonant with the atomic energy
transition is called detuning ∆, while the value ϕ, called the phase, represent
time offset of the laser. These 3 parameters can be controlled in time (i.e. the
functional form Ω(t),∆(t) and ϕ(t)) using optical components called acousto-optical

38

Quantum computing on Neutral atoms machine

modulators (AOM), which generate sound waves, propagating into crystals that
are crossed by light, modulating the laser intensity, detuning, and phase.

The possibility to define a waveform in time for each of the Rabi frequency Ω(t),
the detuning ∆(t), the phase ϕ(t), and a set of atom positions {x⃗} for each of the
qubits, is one of the peculiarities of Aquila operating in analog mode. An example
of an Aquila algorithm can be found in figure 3.3.

0

0

Figure 3.3: An example of an analog program that can be executed on Aquila,
corresponding to the Quantum Evolution kernel detailed in the next section

Common quantum algorithms and programs allow users to specify a sequence
of quantum gates applied in a certain order, called digital mode. Digital mode is
universal but does not scale well, because of the noise connected to the depth of
the circuits, while Analog mode is not universal, but is well-suited for machine
learning or optimization tasks.

In the Aquila processor, atoms are moved and kept in position (or trapped)
using traps created by focused laser beams generated by optical tweezers. These
optical components use a laser to create optical dipole forces, that interact with
the dipole induced in the atom by using a laser in resonance with one of the unused
intermediate states (in this case 6P3/2), creating an area of high radiation pressure
that traps the neutral atom. A second set of lasers optically cools the atoms by
converting kinetic energy into photonic energy and initializing every atom into the
ground state. Optical trapping is used in 2 modes in Aquila:

• Spatial Light Modulator (SLM), that uses the principle of the holography
to create a phase mask that creates the tiny spot that serves as locations of
trap for individual atoms.

39

Quantum computing on Neutral atoms machine

• Acousto-Optical Deflectors (AOD), to dynamically move atoms, allowing
position reconfigurability. This feature is a key component for future error-
corrected qubits, and for a protocol that uses dynamical positioning of atoms.
To accelerate this sorting process, atoms are required to be located in discrete
rows, adding an extra constraint on atoms positioning. The rows should be
4µm. In addition, due to the resolution of the SLM, atoms in the same row
should be 4µm apart.

Both techniques and components are used by Aquila for preparing the neutral
atoms array. Atoms are captured from a diluted vapor at room temperature and
moved using AOD towards the traps. This process is not deterministic, and a
trap can be filled with a probability of ≃ 60%. For this reason, is important to
post-process the result after each shot. Aquila helps with this task by providing
pre-measurement and post-measurement, which allows filtering the shots with
incorrectly filled traps.

Positioning the atoms is crucial for realizing entanglement, through the mech-
anism of the Rydberg blockade. Atoms in the Rydberg state, i.e. highly excited
electronic orbitals state, enable a strong Van Der Walls interaction between
atoms, conditional on the state. This interaction is typical of atoms in the Rydberg
state and is both position-dependent and state-dependent and follows the following
relation:

Vi,j = C6

|x⃗i − x⃗j|6
(3.1)

With C6 = 5,420,503µm6rad
µs

. This interaction prevents two atoms from being
both in the Rydberg state, enabling entangling dynamics. These phenomena take
the names of Rydberg Blockade. Rydberg blockade phenomena allows also a
very useful approximation, very used in emulation on a classical machine. Since the
energy of the doubly excited state is much larger than the energy associated with
the laser drive, it can be eliminated from dynamics, allowing a speed-up. A more
precise analysis of the emulation time and associated performances is conducted in
the next chapter.

The positions of the atoms play a crucial role in defining interaction (i.e. entan-
glement) between qubits. In the Aquila processor, atoms are moved and kept in
position using traps created by focused laser beams generated by optical tweezers.
The laser uses optical dipole forces, dipole induced in the atom by using a laser in
resonance with one of the unused intermediate states (in this case 6P3/2), creating
an area of high radiation pressure that traps the neutral atom. A second set of
lasers optically cools the atoms by converting kinetic energy into photonic energy
and initializing every atom into the ground state. Optical trapping is used in 2
modes in Aquila:

• Spatial Light Modulator (SLM), that uses the principle of the holography

40

Quantum computing on Neutral atoms machine

to create a phase mask that creates the tiny spot that serves as locations of
trap for individual atoms.

• Acousto-Optical Deflectors (AOD), to dynamically move atoms, allowing
position reconfigurability. This feature is a key component for future error-
corrected qubits.

Both trapping is used for loading the atoms at the selected positions. Atoms
are captured from a diluted vapor at room temperature and moved using AOD
towards the traps. This process is not deterministic, and a trap can be filled with
a probability of ≃ 60%. For this reason, is important to post-process the result
after each shot. Aquila helps with this task by providing pre-measurement and
post-measurement, which allows filtering the shots with incorrectly filled traps.

Measurements are restricted to the logical Z basis only. Rydberg measurements
are implemented by re-trapping the atoms. During the quantum evolution, the
optical tweezers are turned off to not interfere with the dynamics. After the
evolution, traps are turned on, and the wavefunction collapses: the atoms in the
ground states are re-trapped while the atoms in the Rydberg state are repelled.
The state can be measured using fluorescence, through the absence (0, so atom in
the Rydberg state) or presence of an atom (1, atom in ground state).

it is important to notice that measures are destructive, because every time
an atom is measured in the Rydberg state, this is pushed out of the array, and a
hypothetical next experiment needs to rebuild the atom configuration.

Finally, the full dynamics of the machine in the analog mode can be summarized
by the Rydberg Hamiltonian, incorporating laser beams term, Rydberg atoms
Hamiltonian, and the Rydberg interaction:

H(t)
ℏ

=
Ø

i

A
Ω(t)

2
1
eiϕ(t) |0⟩ ⟨1| + e−iϕ(t) |1⟩ ⟨0|

2B
− ∆(t)

Ø
i

n̂i +
Ø
j<k

Vjkn̂jn̂k (3.2)

Where:

• Vij is the interaction strength where both atoms are in the Rydberg state, as
defined in 3.1,

• ∆(t) Detuning. This sets how off-resonant the global Rabi drive is.

• Ω(t) The Rabi drive amplitude. This sets the frequency at which each qubit
oscillates between ground and Rydberg state in the absence of interactions.

• ϕ(t) The phase of the Rabi drive. This sets the direction on the Bloch sphere
around which the qubit is driven.

• n̂i is the Rydberg occupancy operator, defined by n̂i = |ri⟩ ⟨ri|, count the
number of Rydberg occupation.

41

Quantum computing on Neutral atoms machine

The quantum state evolves following the time-dependent unitary that follows
directly from the Rydberg Hamiltonian:

|ψ⟩ = T exp
Ú T

0
H(t)dt |0⟩ (3.3)

Finally, a full cycle, consisting of one shot, can be shown in figure 3.4.

Figure 3.4: A single shot from Aquila, from building the register, to measure-
ment [25]

All the previously discussed components are put together in a precise way in
order to execute the quantum computation.

1. The optical trap is loaded, and the occupancy of the randomly filled trap is
imaged and processed, producing a list of occupied traps, called pre-sequence
array. These steps are necessary to prevent the spurious presence of atoms
from previous computations.

2. The tweezers load the atoms (in the ground state) and another image is taken
to assess the successful execution of the sorting process.

3. Finally the quantum computation is executed through the loaded protocol.

4. The traps are turned back on as described before, and another image is taken,
producing the post-sequence array, used to make the bitstring measured in the
Rydberg basis.

5. At the end, atoms are released and the cycle can be repeated.

Despite the short time for the quantum computation is relatively short (maximum
≃ 10µs, the full process takes much time. This makes the average Aquila shot rate
of about 10 computations per second.

3.1.1 Noise
Analog protocols are quantum programs executed by means of a simulation of a
Hamiltonian on a quantum system. When the execution time increase, various

42

Quantum computing on Neutral atoms machine

sources of noise shows up, reducing the fidelity of the state and consequently of
the measurements. In the Aquila whitepaper [25], the various sources of noise are
discussed, and the associated limitations of the Aquila processor are shown:

Laser noise Lasers, while being ultra-stable, still have some noise in their phase
and amplitude. This causes a difference from shot-to-shot in the Rabi frequency Ω
(0.008rad/µs) and detuning ∆).

Atom motion Atoms are positioned by optical tweezers and then cooled by
lasers, to temperature in the order of µK. This implies always a certain amount of
thermal motion in the traps during the evolution (σx = σy = 0.2µm). The 2 major
effects of these sources of noise are:

• 0.18rad/µs variance in the detuning, due to the Doppler effect.

• Differences from shot to shot of the interaction strength constant Vjk

State decoherence and scattering A common source of noise consists of the
incoherent decay of the atoms in the Rydberg states |r⟩ towards the ground state
|g⟩. The coherence time is measured in the case of a single qubit driven by the
maximum Rabi frequency of 7.5µs, and of 8.9µs in the case of interacting qubits.

Inhomogeneity The little variations in the components responsible for the
holographic process cause differences in the rabi drive and the detuning across the
2D array, causing different operations across the qubits.

Measurement The measurement process is implemented through retrapping the
atoms by turning on the optical tweezers. This process can cause the incorrect
retrapping of atoms, causing a readout error, that can be of both types (reading a
|0⟩ as |1⟩ with probability 1% and reading |1⟩ as |0⟩ with probability 8%).

As suggested in the whitepaper, in order to reduce the majority of noise sources,
it can be useful to minimize the total protocol time, corresponding to the length of
the pulse. This can be done by choosing the maximum Rabi drive Ω, in order to
minimize the time to implement the same rotation.

3.2 Application of neutral atoms
In this section, near-term applications of neutral atoms quantum computers are
presented, before delving into the details of the quantum kernel. The particular
nearest-neighbor interaction of atoms in the Rydberg state allows embedding

43

Quantum computing on Neutral atoms machine

different graph problems into the structure of the Hilbert space. In particular, some
classes of graphs (Unit Disk graph) can be directly embedded into the register with
nodes represented by atoms and edges represented by the Rydberg interaction.

3.2.1 Maximum Independent Set
Indipendet Set Consider an undirect graph G = (V,E), where V is the vertices
set and E is the edge set. A subset of the vertices set I ⊆ V is an independent set
if for every pair of vertices vi, vj ∈ I, i /= j there does not exist an edge (i.e. they
are not adjacent) (i, j) /∈ E.

The size of an independent set is n = |I| (i.e. the number of nodes in I). An
independent set is said to be maximal if there does not exist another independent
set I ′ such that |I ′| > |I| and I ′ including I. The problem of finding I, the largest
of the maximal independent sets, is called Maximum Independent Set (MIS) and
is NP-Hard. Another variant of the problem, where each vertex has a weight wi,
consists of finding the independent set with the maximum sum of weights is called
the Maximum Weighted Independent Set (MWIS) problem. Examples of graphs,
and independent sets are shown in figure 3.5.

(a) a generic Graph G (b) An independent set (c) A maximum IS

Figure 3.5: Difference between an independent set and a maximum independent
set

Independent sets have a great interest since they belong to NP-C, so every
problem in NP can be polynomially reduced to an instance of MIS. In addition,
several real-world problems can be mapped to MIS, like Antenna placement that
guarantees a certain coverage [26]. This problem in particular consists of finding a
MWIS of a Unit Disk Graph.

MIS problem can be efficiently solved on a Neutral Atom QPU, with a superlinear
quantum speedup [26] [27]. The most natural approach consists of mapping the
solution of the MIS to the ground state of the Rydberg Hamiltonian. In particular,
the Rydberg constraint is particularly well-suited to implement the independence

44

Quantum computing on Neutral atoms machine

constraint. When setting the Rabi frequency to 0 (Ω = 0), and the detuning to
∆ > 0 (where the detuning is set according to the unit disk radius), the low energy
state prefers to have the maximum number of atoms in the Rydberg state. However,
there is an energy penalty in Hamiltonian, based on distance. In particular, if two
atoms are within a certain radius (called the Blockade Radius Rb), the energy of the
double excited state is larger than a single atom in Rydberg states, incorporating
the independence constraint on adjacent atoms. In particular:

E =
I

−2∆ + C6/R
6
b 2 near atom

−∆ single atom (3.4)

The ground state of the Hamiltonian defined above is closely related to the solution
of the MIS.

3.3 Quantum evolution kernel
In the previous section, a possible application of analog quantum computing for
solving graph problems has been introduced. The neutral atoms platform suits well
with graph data, thanks to its ability to embed the graph topology into the system
Hamiltonian. The quantum evolution of a state, based on a proper Hamiltonian
that reflects the graph topology can be used as a feature extractor for graph data,
without relying on complex data preprocessing. The key to the method is defining
a proper probability distribution that reflects the graph characteristics. Later, the
kernel function can be naturally defined as a function of the distance between
these two graphs’ probability distributions and used for downstream tasks such
as graph classification (using a support vector machine) and regression (using
ridge regression). The time evolution of a quantum state is associated with the
graph G, since the topology of the graph can be directly integrated into the system
Hamiltonian (in particular, by the atom’s position in the register).

Let’s consider an undirected graph G = (V , E), where V is the set of nodes of G,
while E is the set of edges. We refer with N = |V| (i.e. the number of nodes of
G) and E = |E| (i.e. the number of nodes of G). We can define a quantum state
|ψ0⟩ of N qubits, representing G, governed by a Hamiltonian ĤG that has the same
topology of the interaction of G (i.e. of its edges set). Different choices of ĤG could
be possible:

• Ising Hamiltonian: represent a model of spin, with nearest neighbor inter-
action.

ĤI =
Ø

(i,j)∈E
σ̂z

i σ̂
z
j

Where σ̂z
i are the Pauli Z operators.

45

Quantum computing on Neutral atoms machine

• XY Hamiltonian: represent a model of spin, with anisotropic interactions.

ĤXY =
Ø

(i,j)∈E
σ̂+

i σ̂
−
j + h.c.

Where σ̂+
i and σ̂−

j are the rising and lowering operators.

Both Hamiltonians are chosen for mainly 2 reasons: they reflect the topology
of the graph through the interaction terms, and they are implementable into
current Neutral Atoms platforms [28]. Other Hamiltonians that reflect other graph
characteristics could be considered, and employed in quantum-inspired classical
algorithms, as mentioned in [29]. From now on, when referring to ĤG it is always
the Ising Hamiltonian since it is easier to implement in hardware and faster to
emulate on a classical machine. Another Hamiltonian Ĥθ (parameterized by a set
of parameters θ, referred to as mixing Hamiltonian) is introduced to apply pulses
to the system, letting the system evolve with a duration τ 1.

Ĥθ =
NØ
i

θiσ
i
x (3.5)

An outline of the whole time evolution can be represented by a set of parameters:

Λ = {θ0, t1, θ1, . . . , tp, θp}

where θi represents the driving Hamiltonian, and ti represents the free evolutions
under the graph Hamiltonian. it is important to notice that since the graph
Hamiltonian ĤG is intrinsic in the register topology, cannot be turned off during
the mixing Hamiltonian pulse, but his effect is negligible compared to Ĥθ. The
number p represents the number of layers or the number of alternating pulses. A
schematic description of the layered approach can be found in image 3.6

1As explained in [29], we can consider that τ = 1 and including in the definition of θ.Ĥθ is
applied in the same way to the whole qubits, representing a rotation around the x Axis of an
angle θ in the Bloch sphere.

46

Quantum computing on Neutral atoms machine

Figure 3.6: Layered time evolution, highlighting the order of application of the
Hamiltonian, and how the parameter Λ are reflected into the Hamiltonian definition.

Following the protocol, the system reaches the final state

|ψf⟩ =
pÙ

i=1

1
e−iĤθie−iĤG

2
e−iĤθ0 |ψ0⟩

Measuring a proper observable Ô on the final state can be used to construct a
probability distribution depending on the graph G. Several approaches can be
used and were analyzed in the literature [29], but one is particularly suited for
its ability to well estimate a probability distribution reducing the number of the
required measurements. The approach consists in sampling the final state |ψf⟩,
obtaining a series of M measurements {m1,m2, . . .mM} of the observable Ô. The
measurements correspond to one of the k eigenvalues of the observable. We can
construct a probability distribution out of them:

PÔ
G (Λ) = (p1, . . . , pk), pi = ⟨oi|ψf⟩

In practice, in particular when k is too large, estimating the probability distribution
will require an exponential number of measurements. For this reason, the proposed
approach will be based on binning the computed energies. The energy distribution
computation is one of the most crucial operations, and further consideration of the
method will be conducted in the next chapter. The probability distribution allows
to define a graph kernel by means of distances between distributions. Following the
approach presented in [29], we select the Jensen-Shannon [30] divergence. Given
two probability distribution P and P ′, the Jensen-Shannon divergence is defined
as:

JS(P ,P ′) = H

A
P + P ′

2

B
− H(P) +H(P ′)

2
47

Quantum computing on Neutral atoms machine

where H(·) is the Shannon entropy of a probability distribution, defined as

H(P) = −
Ø

k

pk log pk

The image of JS(·, ·) is the closed set [0, log 2], and reach the maximum value (log 2)
when the distribution have disjoint support. Finally, the graph kernel function of
two graphs, G, G ′ and their associated probability distributions P and G ′ is defined
as:

Kµ (G,G ′) = e−µ JS(P,P ′) (3.6)

with image in [2−µ, 1]. This hyperparameter can be optimized with the pulse
parameter Λ, allowing the kernel to take value in a wider range. Following [29], µ
is set equal to 1.

3.3.1 Implementation on neutral atoms hardware
In the first section, Aquila [25] a Neutral Atoms Quantum Computer, working
principally in the analog mode, is presented. An application showing his potential to
characterize and solve a common NP-H was presented (the maximum independent
set), exhibiting the possibility of the platform embedding in the system Hamiltonian
(and in particular in the ground state) the graph problem solution. In the third
section, a quantum evolution kernel for graph data is presented and derived. In this
section, a possible implementation of the kernel (in particular how to implement
to 2 Hamiltonian) will be showcased. First, let’s recall the graph Hamiltonian,
corresponding to an Ising model ĤG:

ĤG = ĤI =
Ø

(i,j)∈E
σ̂z

i σ̂
z
j (3.7)

As demonstrated in [28], arrays of Rydberg atoms can be used to simulate the
Ising Hamiltonian. In particular, the interaction term derived from the strong Van-
Der-Walls interaction of two atoms in the excited Rydberg states (corresponding
to the state |r⟩ = |1⟩) is equivalent to the Ising interaction, up to a constant term
Vi,j that depends on the position of the atoms. This term is negligible when the
atoms are way apart, with respect to the other term in the Hamiltonian. The Ising
model, and the corresponding graph Hamiltonian can be equivalently expressed as:

HG =
Ø
i<j

Vi,jni, nj (3.8)

Where Vi,j is the Rydberg Blockade interaction strength, and ni is the occupancy
operator. The other fundamental component is the mixing Hamiltonian Ĥθ, rep-
resenting a rotation around the X axis of an angle θ applied to all qubits. The

48

Quantum computing on Neutral atoms machine

rotations can be implemented using the rotation induced by the laser beam, using
a single constant Rabi drive:

Ĥθ = ĤG + Ω0

2
Ø
i∈V

σ̂x
i

it is important to notice that the graph Hamiltonian cannot be turned off, since
it is intrinsic to the system and related to the atom positions. However, his effect
is much lower than the mixing Hamiltonian, making it negligible. Starting from
the full Hamiltonian defined in 3.2 it is possible to obtain the mixing Hamiltonian
using a driving laser with Rabi frequency Ω(t) = Ω0, phase ϕ(t) = 0 and detuning
∆(t) = 0 (here considered for a single atom):

H
ℏ

= Ω0

2
1
eiϕ(t) |0⟩ ⟨1| + e−iϕ(t) |1⟩ ⟨0|

2
=

Ω0

2

AA
0 1
0 0

B
+
A

0 0
1 0

BB
=

= Ω0

2

A
0 1
1 0

B
= Ω0

2 σx

Obtained by expanding the "ket" "bra" product and remembering the matrix
form of the Pauli X operator (as in eq. 2.7). The expression found is in the case
of a single qubit. Aquila allows each atom can be driven by a different laser field
(through the holography principle), In this setting, however, every atom is driven
by the same laser waveform.

Finally, the whole layered time evolution can be packed up in a unique time-
dependent Hamiltonian H(t) that depends both on the graph G (atoms positions
and interaction term) and by the selected waveform parameter Λ. The power of
the Aquila analog mode is the high customizability of the laser parameter, allowing
time-dependent protocols also for the parameter Ω,∆ and ϕ, that reflect into the
Hamiltonian dynamics. An example of the waveform that realizes the layered
evolution can be found in figure 3.7.

49

Quantum computing on Neutral atoms machine

Figure 3.7: Ω(t) waveform that simulate the Quantum Evolution Kernel layered
evolution

The amplitude of the Rabi frequency is set to the maximum value reachable
by the QPU (Ω0 = 15.8rad/µs, in order to have a shorter protocol, that is less
sensitive to noise). In this specific figure, a 2 layer approach is implemented. The
shorter pulse corresponds to the Rabi frequency set to 0, i.e free evolution, while in
the other 3 pulses correspond to the mixing Hamiltonian. A more extensive analysis
on the waveform parameters, that are optimized through Bayesian optimization, is
done in Chapter 4

50

Chapter 4

Experimental results

While in the previous chapter, the proposed quantum evolution kernel is proposed
and discussed, in this chapter its effectiveness is proven through experiments
involving both emulation on a classical machine and simulation on a real quantum
computer. The intrinsic difficulties of working with graph data are shown, in
particular the preprocessing procedure involved in mapping to a quantum register.
Later, the main discussion topic becomes hyperparameter tuning, in a double
fashion: support vector machine parameter and quantum parameter, in the form
of the waveform parameter and the necessary number of measurements. Several
operative choices were taken during the work and are discussed in the following. In
the end, the results are discussed, comparing the method with a classical kernel.

4.1 Dataset

PROTEINS [31, 32] is one of the most used datasets for benchmarking graph
machine learning algorithms. Protein data are the perfect candidate to be modeled
as graphs since they are macromolecules consisting of amino acids chain, disposed
in a 3-dimensional space. Starting from a protein, a graph G = (V , E) is obtained
by modeling each amino acid as a node v ∈ V , and an edge between amino acids if
they are less than 6 angstroms apart in space. Each protein comes with a binary
label that describes whether it is an enzyme or not. Working with graph data can
be difficult, not only because of the intrinsic difficulty of the data but also because
of the absence of homogeneous data representation. Some researchers [33] tried
to overcome this problem by collecting and uniforming graph data representation.
It comes in the form of different .txt files, each describing graphs, nodes, edges,
and labels. The dataset consists of 1113 graphs, divided into 663 enzymes and 450
non-enzymes. Some overall statistics on the dataset are shown below in table 4.1:

51

Experimental results

Overall graph statistics
min number of nodes 4
avg number of nodes 39.5
max number of nodes 620
min number of edges 5
avg number of edges 72.81
max number of edges 1049

Table 4.1: Overall statistics of the PROTEINS dataset

In order to fit the graph on a quantum register, it should be limited to a
maximum of 256 nodes (i.e. the maximum number of physical qubits available on
Aquila). By plotting node number distribution, one can notice that most of the
graphs contain less than 100 nodes. Details on the distribution of the nodes and
edges are shown in figure 4.1.

Figure 4.1: Nodes and edges distribution in PROTEINS dataset

Since emulation time on classical machine grows exponentially with the number
of qubits (i.e. the graph nodes) the dataset has been reduced, producing 2 different
but overlapping datasets:

• PROTEINS256: limited to graphs with a maximum of 256 nodes (Aquila current
limit, corresponding to the number of physical qubits). It consists of 276
graphs1.

1For both datasets, it is important to notice that are limited also by the constraint of being
embeddable as unit Disk graphs, as detailed later.

52

Experimental results

• PROTEINS12: limited to graphs with a maximum of 12 nodes. The number of
nodes is selected based on a qualitative benchmarking of emulation time. It
consists of 143 graphs.

4.1.1 Graph preprocessing
As described in the previous chapter, computing the probability distribution
associated with each graph requires measurements from a quantum state that
evolves following a time-dependent Hamiltonian (i.e. the alternation of mixing
Hamiltonian Hθ and Ising Hamiltonian HG) that depends on the graph topology.
Starting from a graph, different methods can be implemented:

1. Simulating the Hamiltonian without explicitly mapping to a register composed
of atoms, in this way positions don’t require to be approximated or computed.
The Hamiltonian is built directly from the definition and emulated using
classical machines. In the current settings, this method is not applicable for
execution on real hardware.

2. Pasqal researchers used a dataset with node position such that the graphs were
local [29]. A simple rescaling method such that the minimum edge distance is
equal to 5µm is applied.

3. Find the unit disk representation of the graph. In this way, the topology of
the interaction of neutral atoms machine directly corresponds to the Ising
Hamiltonian. This method is the only one that is applicable to real quantum
hardware and does not provide an approximation of the Hamiltonian.

Since the final objective of this work is to assess the quality of the methods on
real hardware, the third method is the only one that guarantees the possibility of
execution on a quantum computer. In the following, details about the preprocessing
step, involving the transformation of a graph into his UD representation, are
discussed.

4.1.2 Unit Disk Graph
Consider a set of n equal-sized circles in the plane. The intersection graph of these
circles is an n-vertex graph; each vertex corresponds to a circle and an edge appears
between two vertices when the corresponding circles intersect (the tangent circles
are assumed to intersect). Such intersection graphs are called unit disk graphs, and
the set of n circles is an intersection model [34]. An example of circles in planes
associated with a unit disk graph is shown in figure 4.2.

53

Experimental results

Figure 4.2: Circles in the register area and corresponding unit disk graph. In this
case, the unit disk radius RUD = 9µm

The problem that starts from a graph G = (V , E) and finds x ∈ Rn,m (where
n = |V| and m is the dimension of the selected euclidean space, usually 2 or 3),
such that the Unit Disk graph U = (V ′, E ′) defined by unit circle has the same
topology (i.e the same edge set E of G), is non-convex and NP-Hard [35]. Several
works explored solutions to this problem since some classical graph problems have
a simpler solution when UD graphs are considered. In addition, UD graphs have
grown in interest thanks to some applications in solving QUBO problems, and for
their application in antenna placement. In addition, we would like to find a feasible
solution that respects also the domain-specific constraint of neutral atoms quantum
computers (in the particular case of Aquila, the additional constraints are related
to atoms placement and maximum register area, both related to optical tweezers
limitations). To solve the problem of Constrained Unit Disk Graph (CUDG), the
neural-enhanced framework developed by LINKS has been used [36]. The two
main components of the framework are:

• Distance Encoder Network (DEN): the network that maps a set of initial
coordinates into a new set of coordinates of the unit disk graph

• Embedding Loss Function (ELF): a custom loss function that starting from
the pairwise distances computes a loss function that incorporates different
constraints.

54

Experimental results

Distance Encoder Network

The DEN model is instantiated and trained independently for each graph, as its
architecture depends on the number of nodes of the graph. it is composed of 2
blocks:

• A trainable autoencoder, wich takes as an input a set of coordinate xi ∈ Rn,m

and compute the set of unit disk graph coordinates xf . This part of the
network, as all autoencoders, is composed of two parts: an encoder that
starting from an input of size n×m maps to a latent vector of size 9, and the
decoder networks, that reconstructs the coordinates starting from the latent
vector. Both the encoder and the decoder are constituted by several fully
connected networks, with reLU activation functions, and with dropouts. The
last layer of the decoder consists of tanh activations.

• A fixed-weight distance calculator, that starting from the output of the trainable
autoencoder computes the pairwise distances between each pair of nodes. It
is composed of the first fully connected layer that calculates the differences,
followed by a square activation function, and a fully connected layer that

computes the sum. The output of the last layer is the
A
n
2

B
pairwise square

distances ∥xi − xj∥2
2, between every vertex i and vertex j. The distance layer

is then the output of the loss function.
An example of the detailed architecture is presented in figure 4.3:

Figure 4.3: DEN model. Image taken from [36]
. The employed version of the model does not have the last square root layer, since

the experiment has proven that this improves convergence.

55

Experimental results

Embedding Loss function

The embedding loss function is made of two components:

ELF (d) = ELFmin(d) + ELFmax(d)

Each component handles differently two sets of constraints:

• The ELFmin(·) define a lower bound on feasible distances, handling the ≥-
based constraint

• The ELFmax(·) define an upper bound on feasible distances, handling the
≤-based constraint

Both components use the Margin Ranking loss function. The structure of the loss
function allows one to easily define and incorporate additional constraints (both in
the ELF-min or ELF-max loss components) proving the extreme flexibility of this
framework.

4.1.3 Constrained Unit Disk Graph Problem

The neural-enhanced framework mentioned above allows further generalization,
thanks to its flexibility. Before showing the architecture and the contribution, it
can be useful to list the additional constraints for the CUDG problem, specific to
the selected platform:

• Register area constraint: The atoms’ position should belong to a rectangle of
size 75µm× 76µm.

• Row spacing constraint: the atoms should be positioned in discrete rows, with
4µm spacing in between.

The last constraint is specific to Aquila, it has no correspondence with other Neutral
Atom platforms and is related to how the Aquila scheduler decides how optical
tweezers move the atoms. This implies that atoms’ positions should be in discrete
rows. The first constraint can be easily inserted in the ELF loss (implementing
by modifying the multiplier of the tanh activation function), while the second
constraint is implemented through an approximation layer that adjusts the position
in discrete rows and by adding a new component to the loss function, that penalizes
pairs that are closer than 4 µm by row without belonging to the same row. The
UD constraints are later re-verified, in order to produce a feasible embedding.

56

Experimental results

4.1.4 Embedded dataset discussion

Once the methods and the reason are presented, the final datasets of the embedded
graphs are presented. As described above, the datasets are produced by first
filtering on the number of nodes and a second operation employing DEN, which
reduces the number of graphs by filtering out the graphs that cannot have a feasible
UD embedding. The characteristics of the generated dataset are presented in 4.2.
In addition, an example of a starting graph and the generated feasible embedding
are presented in figure 4.4.

Number of graphs #Class 1 #class 2
PROTEINS12 143 33 110
PROTEINS256 276 108 168

Table 4.2: Final dataset composition

Figure 4.4: Graph and associated Unit Disk embedding. In the right picture, the
additional discrete row constraint of Aquila is more easily noticeable.

Unfortunately, the DEN model does not guarantee convergence, since it is an
approximation method employing neural networks. Not all graphs admit a Unit
Disk representation, and this problem is more evident when the position space is
limited to R2. However, the number of embedded graphs is sufficient to make a
preliminary analysis of the quantum evolution kernel benchmark. It is important
to note that the reduced dataset (i.e. PROTEINS12) presents a high-class imbalance.
In the following sections, some methods to overcome this problem are analyzed.
Even if PROTEINS256 does not present the same problem (class 1, representing the
39% of the total dataset, while in PROTEINS12 only the 23%), the methods are
used anyway.

57

Experimental results

4.2 Emulation on classical Hardware
The emulation is performed using Bloqade [37], a framework written in Julia [38]
developed by QuEra computing for experimenting and interacting with their
Neutral Atoms quantum computer. Through its ecosystem, it supports emulating
quantum systems, measuring different observables (even user-defined), and inter-
acting with Neutral Atoms hardware by validating and creating a representation
for the Hamiltonian that can be sent to Aquila Quantum Computer and run. In
particular, the used libraries are:

• BloqadeODE : contains all the code for defining and emulating the time evolu-
tion of a quantum system by solving the Schrodinger equation.

• BloqadeSchema: contains all the functions for validating the Hamiltonian,
in particular for checking the feasibility of the atoms’ position, and contains
the function for smoothing the waveform in the case of piecewise protocol,
according to the bandwidth of the lasers.

All the code of this work is built on these two components. As described before,
the emulation step is very expensive, but still necessary, for mainly two reasons:

1. Confirm the validity of the method before wasting precious quantum resources.

2. Each iteration of the Bayesian Optimization algorithm requires the N · M
(where N is the number of graphs and M is the number of measurements) to
run on the quantum computer, which is too expensive at the current time.
This step is required to find the waveform parameters, i.e. the duration of the
Omega pulse.

Before delving into the details of each part of the experiment, the full hybrid
quantum-classical training procedure is detailed, summarized in the following figure
4.5:

1. Quantum algorithm: For every graph sample Gi and its position, a quantum
register is instantiated and let to evolve following the Hamiltonian HΛ defined
by the parameters Λ. A set of measurements MGi

is then obtained.

2. Classical post-processing: From each measurement Mi corresponding to a
graph, a probability distribution is obtained by computing the corresponding
interaction energy. The output of this step is a set of probability distribution
PGi

for each graph.

3. Machine Learning algorithm: The probability distribution of each graph
is used to compute a kernel function (as described in 3.6) between each

58

Experimental results

graph, used to train the support vector machine and validates using K-fold
cross-validation (to find the optimal SVM hyperparameter). This final step
produces a score, representing the performance of the method given the set of
parameters Λ.

4. Bayesian Optimization: receives the new pair (Λ, f(Λ) and updates the
posterior distributions. The acquisition function produces a new set of param-
eters Λ for the next iteration. The set of parameters is used to compute the
Rabi frequency waveform.

Figure 4.5: The full Hybrid quantum-classical emulation approach.

In the following, each part of the approach is detailed and discussed, in terms of
the experimental settings and results.

4.2.1 Details on Energy distribution computation
As detailed in Chapter 3, the core of the method is the computation of a graph
kernel as the distance between two probability distributions representing the graphs.
In the following, the operative approach to computing the energy distribution is
discussed. Aquila allows measurements only in the Rydberg basis, defined by
the two states (|r⟩, the Rydberg state that we use as |1⟩, and the ground state
|g⟩ = |0⟩). The energy observable is then computed by post-processing the set of
measurements.

Consider a graph G, and suppose that the quantum procedure has produced a
set of measurements M :

M = {m1, . . . ,mk}, mi = [a1, · · · , an], ai =
I

1 if atom i is measured in |g⟩
0 if atom i is measured in |r⟩

59

Experimental results

Here, the number of single measurements is k ≤ number of shots because the
measurement process can fail (due to an erroneous atom initialization). This means
that the energy distribution computation should take into account this possibility.
Each measurement mi is composed by a bitstring of length |V| (i.e. the number of
nodes/atoms). It is important to notice that the single bit is flipped with respect
to how is expected. The value 1 is measured when the atom is presented into the
ground state. Since is common to find in quantum algorithms the measured value
is equal to the logical state, a bit-flipping operation is applied to each measurement.
For each measurement mi we can associate an energy: ei:

ei =
Ø
j<k

Vj,knjnk

where Vj,k is the interaction strength, typical of Rydberg atoms, and nj is the
occupation operator, equal to one only if the atom is in the excited state. By
repeating the process for every measurement, a set of energies related to every single
graph is computed, indicated as EGi

. In order to have comparable distributions,
they should have the same support. For this reason, a binning procedure is used.
Once every energy set is calculated for each graph, these 2 values are calculated:

e1 = min
i

{min
ej

EGi
} , e2 = max

i
{max

ej
EGi

}

Where e1 is the minimum of all measured energies, and e2 is the maximum measured
energy. Selecting 100 equal-sized bins in the interval [e1, e2] allows for finding a
probability distribution P(G). Bins are normalized to sum up to 1 by dividing by
the number of measurements k. Examples of the probability distributions and the
associated graph can be found in figure 4.6.

60

Experimental results

(a) Energy distribution and the associated
graph

(b) Energy distribution and the associated
graph

(c) Energy distribution and the associated
graph

(d) Comparison of 2 energy distributions
of 2 graphs belonging to different classes

Figure 4.6: Obtained energy distributions

4.2.2 Kernel estimation and training protocol

Once the probability distribution is estimated, the kernel is computed as described
in eq. 3.6. The only hyperparameter involved in this part is µ. Following what
is done in [29], µ is set equal to 1. Further hyperparameter tuning is possible,
knowing that µ influences the image of the kernel. With µ = 1 K(·) ∈

è
1
2 , 1

é
, while

for bigger values the image increases, and in the limit of µ → ∞ reaches [0, 1].
Once the quantum kernel is estimated, is organized in a kernel matrix K. The
entries are organized as:

Ki,j = K(Gi,Gj)

The kernel matrix expresses the similarity between pairs of graphs and can be
visualized graphically using a heatmap, as in figure 4.7.

61

Experimental results

Figure 4.7: Kernel matrix of PROTEISN12 dataset, with µ = 1

As we can notice, there is a zone in the bottom-left corner associated with
a brighter color, which means higher kernel values. This group is composed of
graphs associated with the labels enzymes, demonstrating qualitatively that the
quantum kernel is able to find structures in data. The kernel matrix can be used to
train the Support Vector Machine (more information in Appendix B). To evaluate
the approaches and tune the SVM hyperparameter, validation data are generated
using a K-fold cross-validation scheme (with K = 10), in combination with a grid
search to find the best parameter. The hyperparameters tuned in this phase are
summarized in table 4.3. For every possible combination of the parameter, 10
models are trained on 9 fold of the data, and validated on the remaining. Each
model score is then collected and averaged, producing single metrics used for
evaluation.

C 100 point in [10−4, 104], logarithm scale
w 30 pairs [1, xi] with xi in [1, 1000]

Table 4.3: Grid search hyperparameter

The C hyperparameter expresses the possibility of the classifiers of making
misclassification errors during the training procedure. These improve the generality
of the solution and prevent overfitting. The additional pair of class weights w is

62

Experimental results

used to prevent the model from predicting always the majority class. They act as
a penalty for misclassifying the minority class.

4.2.3 Bayesian optimization of Waveform parameter

The architecture follows the one proposed in [29] and detailed in Chapter 3. The
selected approach consists of 2 layers, composed of 2 free evolution and 3 pulses
consisting of a single qubit drive (i.e. the mixing Hamiltonian). The amplitude
of the Rabi drive is kept constant and equal to the maximum amount reachable
by the QPU (Ω0 = 15.8 rad/µs, in order to reduce the overall evolution time, and
consequently to reduce the noise sources). As discussed at the end of Chapter 3,
the full dynamics can be realized using a time-dependent Hamiltonian with a Ω(t)
governed by a pulse that alternates values where the laser is on (corresponding to
the mixing Hamiltonian) with a period where the laser is off, corresponding to free
evolution of the quantum state. Given this consideration, the parameters Λ can be
rewritten as 5 numbers:

Λ = {τ0, t0, τ1, t1, τ2}

Where τi represents the drive duration in time (and consequently the angle of
rotation), while ti represents the free evolutions. Given a set of parameters Λ.
the training protocol described before returns the best SVM hyperparameter that
reaches the best average score among the 10 folds. However, the pulse parameter
has to be tuned, in order to find the pulse that extracts a good amount of knowledge
(i.e. has the maximum F1 score). Formally can be seen as a maximization problem,
find the best Λ that maximizes f : X → R, where X is the space of the parameters
Λ, and f is the average selected score (F-1 in this case) among the 10 folds of the
PROTEINS12 dataset. However, the evaluation of f is costly, since it consists of
training a model and computing for every graph the state several times, and common
heuristic methods are not feasible. Bayesian optimization [39] is particularly well
suited for optimizing black-box functions, in which evaluating different sets of
parameters can be costly. The framework is made of two components:

• Surrogate function f̃ , that approximates the costly objective function starting
from a set of evaluations of f . In Bayesian optimization, it is usually called
prior and reflects the knowledge we have on the function f .

• Acquisition function α(x): indicates where to sample the next point to evaluate
f .

It is common to select the surrogate function as a Gaussian Process GP, charac-
terized by a mean value µ and a covariance matrix Σ: The Gaussian process so

63

Experimental results

defined has a probability density function of the form:

P (X) = 1ñ
(2π)k|Σ|

· exp
3

−1
2(X − µ)T Σ−1(X − µ)

4

The selected mean µ is Normal distributed as N (0, 10), while the covariance
function is selected as the Isotropic 5/2 Matèrn Kernel, with length scale ℓ = 10
and signal standard deviation σ = 10:

K(x, x′) = σ2(1 +
ñ

5|x− x′|/ℓ+ 5|x− x′|2/(3ℓ2)) exp
3

−
ñ

5|x− x′|/ℓ
4

The acquisition function is the commonly employed Upper Confidence Bound,
α(x) = µ(x) + kσ(x), where K is a hyperparameter that expresses the trade-off
between exploration (µ parameter) and exploitation (σ parameter). The kernel
hyperparameters (length scale and signal standard deviation) are optimized every 10
iterations, using maximum a posteriori (MAP). The maximum number of iterations
is set to 50. In addition, some constraints are applied to the optimized variables:

τ0 + t0 + τ1 + t1 + τ2 < 500ns
ti > 5ns ∀i ∈ [0, 1]
τi > 5ns ∀i ∈ [0, 1, 2]

The first constraint limits the total emulation time, preventing the decoherence
phenomena and reducing consequently the emulation time, while the second and
third constraints are related to the finite bandwidth of the optical components. The
waveform obtained by the entire process on the PROTEINS12 is then compared
with the one obtained by Pasqal in their paper [29], in Figure 4.8:

(a) Pasqal parameter (b) Bayesian Optimization parameter

Figure 4.8: Waveform parameters comparison

64

Experimental results

In general, the two pulses seem equivalent. Both are characterized by shorter
free-evolution and longer periods of the mixing Hamiltonians Hθ. The first great
difference is in the total duration of the pulse: the one found by Pasqal has a
duration of 317ns, in contrast to the 201ns of the one found in this work. These
differences of ≃ 100ns have two major benefits: first, the emulation and simulation
time is shorter, allowing more executions in the same time. In addition, the
shorter protocol shows less noise since most sources of noise come from longer time
evolution. This allows the simulation to be more precise and should provide the
same results as the emulation on the classical machine. It is possible to retrieve
the angle of rotation of the mixing Hamiltonian by remembering that:

θ = Ω0 t (4.1)

The second substantial difference consists in the mixing Hamiltonian duration:
for the Pasqal parameter, the three mixing Hamiltonian have similar duration
(87ns, 84ns and 72ns), while the optimized parameter found in this setting
are characterized by a central and long pulse (comparable to the one in Pasqal
waveform, 85ns corresponding to a rotation ≃ 80◦) and two shorter pulses of 50ns
and 20ns, corresponding respectively to a rotation of 45◦ and 18◦. Qualitatively, it
is possible to compare the energy distribution obtained with the two different sets
of parameters, as shown in figure 4.9.

Figure 4.9: Comparison of the energy distributions obtained using two different
sets of waveform parameters on the same graph

4.2.4 Results on PROTEINS12
Finally, the results obtained in the emulation experiment can be presented, in the
form of 4 overall metrics, presented in Chapter 1. As a benchmark, the method

65

Experimental results

is compared with itself, but with the parameter found by Pasqal [29], and with a
classical algorithm, the Shortest Path Graph kernel [40]. The emulation platform
is based on a Dell-XPS 15 7590. The results are presented in table 4.4.

F-1 (%) Accuracy (%) Precision (%) Recall (%)
Pasqal 41.9 44.8 29.3 89.1

Bayesian Optimization 46.3 52.4 37.1 85
Shortest Path kernel 44.1 61.4 35 68

Table 4.4: Quantum evolution kernel with Pasqal parameter, with Bayesian
Optimization parameter compared to a classical kernel, the Shortest Path Graph
Kernel

The best results of the three models are comparable. The kernel computed with
the optimized parameter outperforms the one obtained by Pasqal (By ≃ 5% on
the F1 score). The improvements on F1 score reflects also in an higher accuracy
(44 % against 52.4%) and in an higher precision (29.3% against 37%). Compared
to the classical kernel, the method presented in this thesis still performs better in
terms of F1 score, but with a minor margin (44.1% of the Shortest Path Kernel vs.
the 46.1% of quantum evolution kernel). However, the accuracy of the classical
model is higher, because of the high-class imbalance. This shows how in this case
the accuracy score can be misleading. In fact, both the precision and the recall
metrics are lower.

It can be useful to analyze also the time taken by the presented method, in
particular by the quantum emulation. Considering that once the kernel matrix
is estimated the Support Vector Machine training time is constant, the benefits
in time execution should be considered for the kernel computation time only. As
described in the previous section, the quantum evolution is done for all the graphs,
and the energy distribution is computed once for all. As described in Chapter
3, the Rydberg blockade mechanism, besides providing a way of implementing
entanglement, allows to run emulation in a reduced subspace, allowing to save time.
Details are reported in Figure 4.10 and in Table 4.5.

Full space 27 s
Rydberg subspace 25 s

Table 4.5: Total emulation time, comparison between full emulation and subspace
emulation

66

Experimental results

Figure 4.10: Emulation time in the full space against the subspace defined by
the Rydberg Blockade, in the function of the number of atoms

The Figure shows that the emulation time follows an exponential behavior with
the number of nodes, while in the case of the Rydberg subspace emulation, the
time is much shorter. This could be expected since the subspace emulation allows
deleting the high energy states corresponding to the doubly excited Rydberg state.
Since the emulated dynamics consist of graphs and the edges corresponding to
atoms in the range of the Rydberg radius, a lot of states are eliminated. However,
it could be useful to analyze the results in the case of the subspace emulation, both
qualitatively and quantitatively. For example, in figure 4.11

Figure 4.11: Comparison between the energy distribution in the full subspace
and in the Rydberg Blockade subspace

67

Experimental results

As can be expected, the Rydberg subspace energy distribution is more squeezed
towards the lower energies, as an effect of the truncating of the high energy states.
This obviously reflects the performances, as shown in Table 4.6.

F1(%) Accuracy(%) Precision(%) Recall(%)
Rydberg subspace 41.8 44.8 29.3 89.1

Full space 46.3 52.4 37.1 85

Table 4.6: Rydberg subspace emulation performances on PROTEINS12

As expected the Rydberg subspace emulation performances are worse than the
full space emulation. Since the training protocol consists of several iterations when
the kernel matrix is kept constant, the time performances of emulation don’t play
a so crucial role, because the total training time is dominated by the grid search.

4.3 Simulation on Aquila
Thanks to the collaboration with LINKS foundation and QuEra Computing, it
was possible to execute the proposed algorithm on a real noisy Quantum Computer,
Aquila, presented in Chapter 3. Aquila Quantum computer is accessible through
Amazon Web Service (in particular Amazon Braket, AWS cloud quantum computing
service). Braket provides access to different devices and a simulator:

• Superconducting QPUs: provided by Rigetti and Oxford Quantum Circuits.

• Ion trap QPUs: provided by ionQ.

• Neutral atom QPU : provided by QuEra.

QuEra provides all the software tools to interact with his hardware through
BloqadeHardware libraries, in particular providing support for transforming the
Hamiltonian in a format that Aquila can understand and for validation of the
various constraints. Before delving into the results obtained through quantum
simulation, it is important to highlight the costs involved with running on quantum
hardware:

• Activity cost: 0,30 USD, it is a fixed cost, can be associated with a single
task. A single task consists of a single Hamiltonian (that embeds in his
structure both atoms positions and waveform parameters). In the end, the
final state can be measured.

• Shot cost: 0.01 USD for a single measurement, if belongs to the same activity.

68

Experimental results

For example, let’s consider a task. Since a single task can be associated with only
a single Hamiltonian, every task is associated with a single graph. The choosen
number of shots is 1000. In this case, the total cost for estimating the graph
probability distribution is:

C = Activity cost + #shots × Shot cost = 0.30 + 1000 × 0.01 = 10,30 USD
Considering the number of graphs, and the 2 sets of parameters tested, the total
cost of the whole experiment is 4315.7 USD.

4.3.1 Comparison of energy distributions
Before executing the full experiment, consisting of running the time evolution
for every graph, a random subset is extracted, and the results of the quantum
simulation are compared to the one obtained with the emulation on classical
hardware. The comparison is done in term of the obtained energy distribution since
computing the statevector would require an exponential number of measurements.
The obtained energy distribution are compared in figure 4.12.

(a) (b)

(c) (d)

Figure 4.12: Comparison between the emulated energy distribution and the
simulated energy distribution on a single random graph

The simulated energy distribution is very similar to the emulated one. An
important feature to notice is that higher energies are more probable in the

69

Experimental results

simulated than the emulated one. These can be partially explained by the detection
errors that affect atoms in the ground state |g⟩ to be detected as in the Rydberg
state |r⟩, increasing the probability of detecting a double-excited Rydberg state.
This phenomenon is particularly noticeable in figure 4.12 (c).

4.3.2 Results on PROTEINS12
Once a first round of simulation is done in order to check for possible errors in
the Hamiltonian definition (runtime error in simulation, due to violation of Aquila
constraints), the experiment is repeated for the full PROTEINS12, in order to
compare the emulated and simulated results. The experimental setup is the same
as presented before, with the same classical post-processing in order to compute
the energy distribution and the K-fold cross-validation approach in order to find
the SVM hyperparameter. The experiment is presented with the Pasqal parameter
and with the parameter found by the Bayesian optimization method. The choice of
simulating both parameters comes from the consideration that the authors of the
original Pasqal paper [29] did not simulate on a real machine, and they highlighted
that an interesting way to continue their work would be to simulate on an actual
Neutral Atoms machine. The second consideration is to highlight the differences in
terms of the result for 2 protocols with different durations. As explained in the
previous section, the optimized protocol has a duration of 100ns less, the 33% less.
These can help to characterize the noise that characterizes longer protocols. The
results are presented in table 4.7.

F-1 (%) Accuracy (%) Precision (%) Recall (%)
Pasqal 41.9 44.8 29.3 89.1

Bayesian Optimization 46.3 52.4 37.1 85
Shortest Path kernel 44.1 61.4 35 68

Aquila simulation (Pasqal) 48 62.2 35.9 80.8
Aquila simulation 49 63.7 39.5 78

Table 4.7: Quantum evolution kernel with Pasqal parameter, with Bayesian
Optimization parameter compared to a classical kernel, the Shortest Path Graph
Kernel

The result confirms that the method is effective, even in the case of the real noisy
simulation. The simulation on the Aquila quantum computer, with the optimized
waveform parameter, has the best result, outperforming both the chosen classical
method and the emulated one (of about 3 percentage points in the F1 metric). The
better result in terms of the F1 metric also reflects the accuracy metric, with an
accuracy of 63.7%, the best among all the methods (even the classical kernel that

70

Experimental results

performs better in terms of the accuracy metric than the emulated QEK). Also,
for the Pasqal parameters, the simulation scores are better than the emulated ones.
In terms of noise, the longer protocol does not seem to interfere with the model
performance, registering one of the best results among all the methods.

4.3.3 Results on PROTEINS256
Once the results are compared among the methods, comparing the emulated and
simulated results, an experiment can be conducted using the full dataset. The
results can be found in table 4.8.

F-1 (%) Accuracy (%) Precision (%) Recall (%)
Aquila simulation 65,6 65,4 55,1 86,6

SPK 65,3 64,9 53,5 87,1

Table 4.8: PROTEINS256 Quantum Evolution Kernel performances

As expected, the performance on the reduced dataset was not so good since
the number of training sample, even if using a K-fold-cross validation approach
with an high K (K = 10). When the model has some additional datapoints, the
performances rises. Regarding the performances of the simulation, is clear that
the performances are much higher (about 20 percentage points on the F1 metric)
than the reduced dataset. This can be partially explained due to the high-class
imbalance. Even if a weighting training objective is used and a cross-validation
approach with a high value of K is used, the number of training samples is not
enough to provide reliable classification results.

The full dataset does not present an evident imbalance between classes. Even
in this experimental setting, the simulation of the Quantum Evolution kernel on
Aquila with the optimized parameter has performances that are comparable to the
one of the classical SPK kernel.

An additional analysis can be done. The number of shots required to compute
the energy distribution should be carefully chosen. The number of shots is directly
related to the cost of the experiment, both in monetary cost and in time. As seen in
chapter 3, Aquila is able to do a full cycle at a rate of 10 Hz. This means that while
an experiment with a single graph could last 10 seconds with 100 shots, with 1000
shots it would last 10 times more. To assess how many shots are necessary for the
model to reach an overall good performance, a sampling approach has been used.
From the whole set of measurements, a number k of shots is drawn randomly and
without replacement, simulating an experiment with k number of shots. Then, the
same post-processing and cross-validation approach was used. Results are shown
in Table 4.9.

71

Experimental results

number of shots F-1 (%) Accuracy (%) Precision (%) Recall (%)
10 59,3 63,1 52,9 71
100 65,1 64,4 53,8 87
1000 65,6 65,4 55,1 86,6

Table 4.9: PROTEINS256 performances against the number of shots

As reported in the table, the overall performance does not degrade much when
the number of shots is reduced to 100 (The average degradation in performance is
about 1 point percent), while it rapidly decreases when the number of samples is
reduced to 10, as it could be expected.

72

Chapter 5

Conclusions and Future
Works

5.1 Future works
The main objective of this work was to follow the one proposed by Pasqal [29].
Different paths can be followed to improve this thesis work. In the following, I’ll
list the improvements that I would make:

• Using different datasets: the first work can be integrating the most used
datasets(like Fingerprint, IMDB, etc.), in combination with trying to improve
the DEN model performances. An interesting subsequent work can be creating
the UD embedding for all these datasets.

• Different layered structures: in this thesis, a 2-layer approach with an Ising
Hamiltonian as graph Hamiltonian is used. In follow-up work, analyzing
the effect of the number of layers on the performances can be interesting.
In addition, different Hamiltonians can be used. In Chapter 3, the XY
Hamiltonian is presented as an alternative.

• Different observables: the energy observable is taken as a candidate for
describing the characteristics of the graph. One can explore the possibility
of using another observable, like the Rydberg occupancy. In addition, the
method for building the distribution is based on binning the measured values.
Other methods, employing the Fourier transform of the measurement operator
can be employed.

73

Appendix A

Bayesian Optimization

A.1 Introduction
Bayesian optimization is a mathematical framework for global optimization for
expensive to-evaluate functions. Global optimization because the objective is
typically to find the global optima, rather than local optima. The typical function
characteristics are[39]:

• f is a black-box function, this means that f has no special structure such
concavity or linearity that allows using other methods.

• f is expensive to evaluate, both in terms of time required to compute a value
in a specific point f(x) or in terms of resources. It’s usually required that f is
continuous.

• it’s not possible(because it’s not known or it’s not possible to do) to compute
first and second-order derivatives of the function f , so it’s not possible to use
gradient-based methods.

• f takes in input an array x with a limited dimension(typical 20). In addition,
x belongs to a set A, where it’s easy to assess the membership. A is an
hyper-rectangle in Rd, where d is the dimensionality of the search space.

Bayesian Optimization is well suited for solving tasks of the type

argmax
x∈A

f(x)

where f can be summarized as to be black-box derivative-free global optimization[39].
The approach consists of two components:

• A surrogate function f̃ , for modeling the function f , constructing a Bayesian
posterior probability based on the already evaluated point.

74

Bayesian Optimization

• An acquisition function α(x) that decides where to sample the next point to
evaluate, based on the posterior defined by the surrogate function.

The Bayesian optimization framework belongs to a wider part of methods resumed
with the name of "surrogate methods". The main difference between the other is
the use of Bayesian statistics to model the surrogate function and consequently
the acquisition function. Given these two components, the generic Bayesian
optimization algorithm is detailed in algorithm 1:

Algorithm 1 Bayesian Optimization algorithm[39]
Place a Gaussian process prior on f
Observe f at n0 points uniformly drawed in A
Set n = n0
while n ≤ N do

Update the posterior probability distribution on f using all available data
Compute the acquisition function using the current posterior distribution.
Let xn be a maximizer of the acquisition function over x.
Observe yn = f(xn).
Increment n

end while
Return a solution: either the point evaluated with the largest f(x), or the point
with the largest posterior mean.

A.2 Surrogate function and Gaussian Processes
Surrogate functions are a key component of the Bayesian Optimization framework,
since it models the function f to be optimized. Bayesian methods relies on a prior
knowledge on the surrogate function, usually a Gaussian process(GP), that approx-
imates the values of f(x). The process of approximating f is called GP regression.
The method consist of observing f in a collection of point x1, · · · , xk xi ∈ Rd, where
d is the dimension of the input space. The observed values f(x1), · · · , f(xk) are
assumed to be drawn from some unknown prior probability distribution. In the
Gaussian process hypothesis, the prior is assumed to be multivariate normal, with
a particular mean vector µ and covariance matrix Σ0.

f(x1:k) = [f(x1), · · · , f(xk)] ∼ N (µ0(f(x1:k)),Σ0(f(x1:k))) (A.1)

Where µ0 is the mean vector, computed with the mean function µ(x) and Σ0 is
the covariance matrix, computed using the kernel Σ between each pair xi and
xj. Once that the kernel matrix and mean vector are computed, a Bayesian
posterior probability is obtained as in eq. A.1. As described in section 3 of [39],

75

Bayesian Optimization

it’s possible to model the posterior probability distribution f(x)|f(x1:n)(that is
Normally distributed according to a mean and covariance matrix that depend on
the ones computed on the point f(x1:n)), that represent the probability of obtaining
a certain value of f(x) given the knowledge we have on the previously assumed
value of f .

Since, the prior is assumed a Gaussian in the majority of the case of application
of Bayesian optimization, the unique choice to made in this context are mean
function and kernel function. Starting from the easiest, the mean function is used
to a constant, µ0(x) = µ. On the other hand, for the kernel function, different
choices can be done. The choce of the kernel function is particularly relevant, since
it should reflect the properties of the function to be approximated. In particular,
the kernel function should behave in a way that the closer point in the input space
should have higher kernel function, i.e. it should be strongly correlated. The most
common employed kernel is the Màtern Kernel:

Σ0(x, x′) = α
21−ν

Γ(ν)
1√

2ν∥x− x′∥
2ν
Kν(

√
2ν∥x− x′∥) (A.2)

Where Kν is the modified Bessel function, and Γ() is the gamma function. The
kernel function comes with different parameter, α that can be optimized trough
MAP or MLE, while ν is an hyperparameter that characterize the kernel.

A.3 Acquisition function
The acquisition functions are another key component of the methods, that starting
from the posterior probability distribution defined by the surrogate function select
the next point where to evaluate. Different choice are possible, such expected
improvement, knowledge gradient, and lower(or upper) confidence bound. In the
following, the upper confidence bound is discussed[41][42], consisting of sampling
point maximizing the expected reward(i.e., an upper bound) on the function to be
optimized. The fuction takes the form of

α(x) = µ(x) + kσ(x) (A.3)

Where k is a hyperparameter that decide how the exploration(high K) should be
preferred against exploitation(lower K).

76

Bibliography

[1] Alan Mathison Turing. «Computing machinery and intelligence (1950)». In:
(2021) (cit. on p. 1).

[2] Tom M Mitchell. Machine learning. 1997 (cit. on p. 3).
[3] C Bishop. «Pattern recognition and machine learning». In: Springer google

schola 2 (2006), pp. 531–537 (cit. on p. 5).
[4] Corinna Cortes and Vladimir Vapnik. «Support-vector networks». In: Machine

learning 20 (1995), pp. 273–297 (cit. on p. 6).
[5] QUANTUMPEDIA - The Quantum Encyclopedia. A Brief History of Quan-

tum Computing. 2023. url: https://quantumpedia.uk/a-brief-history-
of-quantum-computing-e0bbd05893d0 (visited on 2024) (cit. on p. 16).

[6] Paul Benioff. «Quantum mechanical Hamiltonian models of Turing machines».
In: Journal of Statistical Physics 29 (1982), pp. 515–546 (cit. on p. 16).

[7] David Deutsch. «Quantum theory, the Church–Turing principle and the
universal quantum computer». In: Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400.1818 (1985), pp. 97–117 (cit. on
p. 16).

[8] David Deutsch and Richard Jozsa. «Rapid solution of problems by quantum
computation». In: Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences 439.1907 (1992), pp. 553–558 (cit. on
p. 16).

[9] Daniel R Simon. «On the power of quantum computation». In: SIAM journal
on computing 26.5 (1997), pp. 1474–1483 (cit. on p. 16).

[10] David P DiVincenzo. «The physical implementation of quantum computation».
In: Fortschritte der Physik: Progress of Physics 48.9-11 (2000), pp. 771–783
(cit. on pp. 17, 29).

[11] url: https : / / ocw . mit . edu / courses / 22 - 51 - quantum - theory - of -
radiation-interactions-fall-2012/9cdcc3c1e36da2ae3e2f925d5b435
ab6_MIT22_51F12_Ch3.pdf (visited on 03/01/2024) (cit. on p. 17).

77

https://quantumpedia.uk/a-brief-history-of-quantum-computing-e0bbd05893d0
https://quantumpedia.uk/a-brief-history-of-quantum-computing-e0bbd05893d0
https://ocw.mit.edu/courses/22-51-quantum-theory-of-radiation-interactions-fall-2012/9cdcc3c1e36da2ae3e2f925d5b435ab6_MIT22_51F12_Ch3.pdf
https://ocw.mit.edu/courses/22-51-quantum-theory-of-radiation-interactions-fall-2012/9cdcc3c1e36da2ae3e2f925d5b435ab6_MIT22_51F12_Ch3.pdf
https://ocw.mit.edu/courses/22-51-quantum-theory-of-radiation-interactions-fall-2012/9cdcc3c1e36da2ae3e2f925d5b435ab6_MIT22_51F12_Ch3.pdf

BIBLIOGRAPHY

[12] Benjamin Schumacher. «Quantum coding». In: Phys. Rev. A 51 (4 Apr.
1995), pp. 2738–2747. doi: 10 . 1103 / PhysRevA . 51 . 2738. url: https :
//link.aps.org/doi/10.1103/PhysRevA.51.2738 (cit. on p. 18).

[13] Paul Adrien Maurice Dirac. «A new notation for quantum mechanics». In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 35. 3.
Cambridge University Press. 1939, pp. 416–418 (cit. on p. 19).

[14] Felix Bloch. «Nuclear induction». In: Physical review 70.7-8 (1946), p. 460
(cit. on p. 19).

[15] url: https://it.wikipedia.org/wiki/Sfera_di_Bloch (visited on
03/01/2024) (cit. on p. 20).

[16] Albert Einstein, Boris Podolsky, and Nathan Rosen. «Can quantum-mechanical
description of physical reality be considered complete?» In: Physical review
47.10 (1935), p. 777 (cit. on p. 22).

[17] John S Bell. «On the einstein podolsky rosen paradox». In: Physics Physique
Fizika 1.3 (1964), p. 195 (cit. on p. 22).

[18] url: https://github.com/qiskit- community/qgss- 2023 (visited on
03/01/2024) (cit. on p. 27).

[19] John Preskill. «Quantum computing in the NISQ era and beyond». In: Quan-
tum 2 (2018), p. 79 (cit. on p. 30).

[20] Salonik Resch and Ulya R Karpuzcu. «Quantum computing: an overview
across the system stack». In: arXiv preprint arXiv:1905.07240 (2019) (cit. on
p. 30).

[21] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. «Quantum algo-
rithms for supervised and unsupervised machine learning». In: arXiv preprint
arXiv:1307.0411 (2013) (cit. on p. 33).

[22] Dieter Jaksch, Juan Ignacio Cirac, Peter Zoller, Steve L Rolston, Robin Côté,
and Mikhail D Lukin. «Fast quantum gates for neutral atoms». In: Physical
Review Letters 85.10 (2000), p. 2208 (cit. on p. 36).

[23] Manuel Endres et al. «Atom-by-atom assembly of defect-free one-dimensional
cold atom arrays». In: Science 354.6315 (2016), pp. 1024–1027 (cit. on p. 36).

[24] Hannes Bernien et al. «Probing many-body dynamics on a 51-atom quantum
simulator». In: Nature 551.7682 (2017), pp. 579–584 (cit. on p. 36).

[25] Jonathan Wurtz et al. «Aquila: QuEra’s 256-qubit neutral-atom quantum
computer». In: arXiv preprint arXiv:2306.11727 (2023) (cit. on pp. 36–38,
42, 43, 48).

78

https://doi.org/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://it.wikipedia.org/wiki/Sfera_di_Bloch
https://github.com/qiskit-community/qgss-2023

BIBLIOGRAPHY

[26] Jonathan Wurtz, Pedro LS Lopes, Nathan Gemelke, Alexander Keesling, and
Shengtao Wang. «Industry applications of neutral-atom quantum computing
solving independent set problems». In: arXiv preprint arXiv:2205.08500
(2022) (cit. on p. 44).

[27] Sepehr Ebadi et al. «Quantum optimization of maximum independent set
using Rydberg atom arrays». In: Science 376.6598 (2022), pp. 1209–1215
(cit. on p. 44).

[28] Peter Schauss. «Finite-range interacting Ising quantum magnets with Rydberg
atoms in optical lattices-From Rydberg superatoms to crystallization». In:
arXiv preprint arXiv:1706.09014 (2017) (cit. on pp. 46, 48).

[29] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet.
«Quantum evolution kernel: Machine learning on graphs with programmable
arrays of qubits». In: Physical Review A 104.3 (2021), p. 032416 (cit. on
pp. 46–48, 53, 61, 63, 64, 66, 70, 73).

[30] Jianhua Lin. «Divergence measures based on the Shannon entropy». In: IEEE
Transactions on Information theory 37.1 (1991), pp. 145–151 (cit. on p. 47).

[31] Paul D Dobson and Andrew J Doig. «Distinguishing enzyme structures from
non-enzymes without alignments». In: Journal of molecular biology 330.4
(2003), pp. 771–783 (cit. on p. 51).

[32] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. «Protein function prediction
via graph kernels». In: Bioinformatics 21.suppl_1 (2005), pp. i47–i56 (cit. on
p. 51).

[33] Ryan A. Rossi and Nesreen K. Ahmed. «The Network Data Repository
with Interactive Graph Analytics and Visualization». In: AAAI. 2015. url:
https://networkrepository.com (cit. on p. 51).

[34] Brent N Clark, Charles J Colbourn, and David S Johnson. «Unit disk graphs».
In: Discrete mathematics 86.1-3 (1990), pp. 165–177 (cit. on p. 53).

[35] Heinz Breu and David G Kirkpatrick. «Unit disk graph recognition is NP-
hard». In: Computational Geometry 9.1-2 (1998), pp. 3–24 (cit. on p. 54).

[36] Chiara Vercellino, Paolo Viviani, Giacomo Vitali, Alberto Scionti, Andrea
Scarabosio, Olivier Terzo, Edoardo Giusto, and Bartolomeo Montrucchio.
«Neural-powered unit disk graph embedding: qubits connectivity for some
QUBO problems». In: 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE. 2022, pp. 186–196 (cit. on pp. 54,
55).

[37] Bloqade.jl. url: https://queracomputing.github.io/Bloqade.jl/stabl
e/ (visited on 02/13/2024) (cit. on p. 58).

79

https://networkrepository.com
https://queracomputing.github.io/Bloqade.jl/stable/
https://queracomputing.github.io/Bloqade.jl/stable/

BIBLIOGRAPHY

[38] The Julia Programming Language. url: https://julialang.org/ (visited
on 02/13/2024) (cit. on p. 58).

[39] Peter I Frazier. «A tutorial on Bayesian optimization». In: arXiv preprint
arXiv:1807.02811 (2018) (cit. on pp. 63, 74, 75).

[40] Karsten M Borgwardt and Hans-Peter Kriegel. «Shortest-path kernels on
graphs». In: Fifth IEEE international conference on data mining (ICDM’05).
IEEE. 2005, 8–pp (cit. on p. 66).

[41] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. «Practical bayesian opti-
mization of machine learning algorithms». In: Advances in neural information
processing systems 25 (2012) (cit. on p. 76).

[42] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.
«Gaussian process optimization in the bandit setting: No regret and experi-
mental design». In: arXiv preprint arXiv:0912.3995 (2009) (cit. on p. 76).

80

https://julialang.org/

	List of Tables
	List of Figures
	Acronyms
	Background
	Machine Learning
	The mathematical framework
	Support Vector Machines
	Metrics
	Machine learning pipeline

	Quantum computing
	An Historical introduction
	Quantum information theory
	Quantum bits
	Multiple qubits
	Operators
	Measurements
	Quantum circuits

	Quantum computer technologies
	DiVincenzo Criteria for quantum computing
	Noisy Intermediate-Scale Quantum Computer Era
	Software Tools

	Quantum Machine Learning
	Emulation against Simulation

	Quantum computing on Neutral atoms machine
	Aquila: A 256's qubit quantum computer
	Noise

	Application of neutral atoms
	Maximum Independent Set

	Quantum evolution kernel
	Implementation on neutral atoms hardware

	Experimental results
	Dataset
	Graph preprocessing
	Unit Disk Graph
	Constrained Unit Disk Graph Problem
	Embedded dataset discussion

	Emulation on classical Hardware
	Details on Energy distribution computation
	Kernel estimation and training protocol
	Bayesian optimization of Waveform parameter
	Results on PROTEINS12

	Simulation on Aquila
	Comparison of energy distributions
	Results on PROTEINS12
	Results on PROTEINS256

	Conclusions and Future Works
	Future works

	Bayesian Optimization
	Introduction
	Surrogate function and Gaussian Processes
	Acquisition function

	Bibliography

