
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Cybersecurity

Master’s Degree Thesis

Analysis and development of a monitoring system
for WAFs using AWS and ELK Stack

Supervisor Candidate
Prof. Cataldo Basile Davide Cosola

Academic Year 2023-2024
Turin

Abstract
In the last two decades, websites and web applications have played an essential
role in modern society since they allow information sharing, provide a service for
business purposes, and connect with multiple people globally.

Unfortunately, legitimate users are not the only source of traffic. Also, attackers
and malicious bots can contribute a relevant share. For this reason, a web appli-
cation needs to rely on a scalable, resilient, and fast infrastructure that provides
security from cyberattacks.

Companies could design their solution to resolve this security issue, but due to
the complexity, cost, and effort that these architectures’ implementation requires,
often it is not the best choice. Instead, it is possible to rely on services offered by
another company that takes the responsibility to provide the security needed by
their websites and web applications.

A web application firewall (WAF) is a cybersecurity solution that aims to analyze
HTTP traffic to detect and filter malicious requests received by web applications.
Since the WAF acts as a reverse proxy, users must pass through it to reach the
web applications behind it. In this case, a WAF’s malfunction can propagate to
the protected services and cause downtime.

The thesis aims to analyze and develop a monitoring system that could verify the
accessibility of the customers’ web applications, their configuration, and the overall
health status of a WAF infrastructure that relies on services offered by Amazon
Web Services (AWS) and Elastic Cloud.

The solution would include periodic reports and alerting functionalities that can
notify in case of malfunctions of varying severity. The goal is to improve the
WAF’s reliability through effective monitoring and timely response to issues to
provide a step forward in the quality of service and the protection provided to the
customer.

1

Acknowledgements

I would like to express my gratitude to the supervisors from aizoOn Technology
Consulting, Simone Janin, and Giuseppe Vavala’, and to all the other colleagues
for their guidance and support that created a stimulating work environment. Fur-
thermore, I am thankful to my academic supervisor, Prof. Cataldo Basile, for the
opportunity to start this journey and the constructive feedback.

To my mother and father for their sacrifices and the values they instilled in me. I
am thankful for their endless love and guidance.

To my brother, aunt, and grandparents for their continuous support and encour-
agement.

To my girlfriend for her help, patience, and constant belief in me during these
challenging years.

2

Contents

1 Introduction 5
1.1 Thesis Organization . 6

2 Thesis Background 7
2.1 Observability and Monitoring . 7
2.2 Monitoring System: Impact . 8
2.3 Downtime . 9
2.4 Web Application Firewalls . 11

3 AWS Fundamentals 13
3.1 Introduction to AWS . 13
3.2 VPCs and Subnets . 15
3.3 AWS Identity and Access Management 18
3.4 EC2 Instances . 20
3.5 ECS and Fargate . 21
3.6 AWS LBs and Global Accelerator 22

4 Containerization and Simulation 25
4.1 Docker . 25
4.2 Logging in Python . 27
4.3 Simulating Issues using Python . 28
4.4 ECS Cluster Configuration . 30

5 Simple AWS Metrics 32
5.1 CloudWatch . 32
5.2 Simple Metrics and Logs . 33
5.3 Alarms and SNS . 34
5.4 Metric Filter . 36
5.5 Event-based Metric . 37

3

6 Serverless and the ELK Stack 40
6.1 AWS Lambda . 40
6.2 Importing Libraries in AWS Lambdas 42
6.3 Elasticsearch Cluster . 44
6.4 Elasticsearch Client in Python . 45
6.5 Asynchronous Requests . 48

7 Visual Interface in AWS 49
7.1 AWS Dashboard Widgets . 49
7.2 AWS SDK Boto3 and Lambda Metrics 51
7.3 Elasticsearch Nodes Metrics . 59
7.4 Widget using Query Syntax . 61
7.5 Alarm Widget . 64
7.6 AWS Custom Widgets . 64

8 Debugging and Automation 67
8.1 Reachability Inside and Outside VPC 67
8.2 Links to Debugging Results . 72
8.3 Creating CSV Files and Pushing Them into S3 72
8.4 Daily and Monthly Reports in Python 74
8.5 Email Automation in Lambdas using SES 77
8.6 Costs Report using Excel . 79

9 Dashboard Limitations 81
9.1 Kibana . 81
9.2 Dashboard Visualizations . 82
9.3 Apdex in Kibana . 85

10 Conclusions and Future Works 87

4

Chapter 1

Introduction

Web applications have become core business components, offering solutions to pro-
vide new services to customers and maintain a high reputation of the company and
user satisfaction. However, they must face several security challenges to protect
from cyberattacks. Organizations deploy Web Application Firewalls as a protec-
tion layer to overcome this issue. But, even if it prevents unauthorized access and
protects sensitive data, it must have an effective monitoring system to maintain
high performance and quality of service.

The thesis, developed at aizoOn Technology Consulting, aims to analyze and de-
velop a monitoring system tailored for Web Application Firewalls that utilize the
cloud computing capabilities of Amazon Web Services (AWS) and, for storage and
analytics features, the ELK Stack. The combination of AWS and Elasticsearch
provides a scalable and secure infrastructure. So, it is also possible to enable near
real-time analysis and visualization of WAF logs and statistics of several metrics
to face daily issues.

Amazon Web Services is a leading cloud services provider that changed how or-
ganizations deploy and manage their infrastructure through constant innovation.
This thesis explores several crucial AWS services to develop monitoring systems,
such as AWS Lambda and CloudWatch. The ELK Stack, a collection of differ-
ent applications, played a fundamental role in real-time log analysis, searching,
retrieving, and data visualization.

The project leveraged a serverless approach in Python to maintain high efficiency
while cutting down data gathering costs. The monitoring system consists of two
dashboards. The first one provides a general view of the WAF and Elasticsearch
Cluster status through default and custom metrics. It also allows debugging cus-
tomers’ configurations directly from buttons added in the AWS dashboard.

5

Introduction

To timely respond to issues, AWS Alarms delivers notifications when metrics value
hits specific thresholds. However, to overcome flexibility limitations over metrics,
another dashboard, built using Kibana, provides more granular and customizable
filters, operating directly on documents. Eventually, AWS Lambdas generates
daily and monthly reports that aggregate data of a specific time interval for an-
alytics purposes. Then, these reports will be delivered via mail or pushed as
CSV/Excel files on an AWS S3 Bucket.

1.1 Thesis Organization
The document structure could be summarized in the following paragraphs:

• Chapter 2 contains an introduction about monitoring, the impact that it
could have on a service, and a brief description of web application firewalls
and how they work. This chapter would be useful to understand the reason
behind the thesis project.

• Chapter 3 provides an overview of a portion of AWS services utilized for the
thesis development. However, some of them will be described later.

• Chapter 4 points out the main functionalities that containerization offers.
Then, it provides an initial setup for a testing environment.

• Chapter 5 focuses on AWS Cloudwatch. Here are the first simple metrics
that would be present in the monitoring system. Then, it shows how to
create alarms and notifications using AWS.

• Chapter 6 introduces the AWS Lambda service and the Elasticsearch Cluster.
These elements represent the core components for the development of custom
metrics.

• Chapter 7 contains the paragraphs of the building process of the AWS Dash-
board. There is a description of the steps to include the generated metrics
and to obtain an overview of the alarm state.

• Chapter 8 contains the code that permits making the AWS Dashboard inter-
active, adding some debugging functionalities and reports generation.

• Chapter 9 describes the limitations of the previously developed dashboard,
and it contains the steps to create a more flexible dashboard using Kibana.

• Chapter 10 concludes the document and addresses some future works for
improvement.

6

Chapter 2

Thesis Background

This chapter defines the difference between observability and monitoring. Then,
the impact that could have on the lifetime of web services and how it affects
companies. This introduction could be meaningful to understand the motivation
behind the thesis research and the problems related to the subject. In the last
paragraphs of the chapter, there is a description of the target of the monitoring
system, a cloud-based web application firewall. The latter is a security solution
that protects web applications from multiple cyber attacks, and, in this specific
scenario, its infrastructure relies on services offered by AWS and ELK Stack.

2.1 Observability and Monitoring
Before diving into the subject of the thesis, it could be meaningful to understand
the difference between observability and monitoring:

• Observability represents the ability to understand the state of complex sys-
tems without directly testing them. It is possible to design data observability
tools utilizing Machine Learning solutions to detect anomalies and address is-
sues from output data and interactions between different components. Here,
data patterns could lead to a result even if not predicted before. Observability
allows a proactive approach to determine why and how something happened.

• Monitoring is a process based on collecting and analyzing aggregated data
of predefined metrics and logs to define the health status of an IT system
and assess its integrity. It is possible to define alerts that allow the team to
get notifications promptly to resolve issues and analyze data over long peri-
ods. It permits a reactive approach to determine when and what something
happened.

7

Thesis Background

This thesis aims to deliver a monitoring system since it is a crucial component
that can make a difference in understanding if a product behaves as expected.
To summarize, it consists of repeated tracking of different meaningful metrics that
allow analyzing the status of the service in terms of responsiveness, network traffic,
resource utilization (CPU, RAM, disk, etc.), and other relevant statistics and tools
that could be meaningful depending on the type of service provided.

2.2 Monitoring System: Impact
The impact of monitoring for IT services can be summed up in the following key
points:

• Service availability: View of the past and current health status of the
architecture.

• Detecting human errors: When a service has a lot of settings, it is possible
to have misconfigurations generated by a customer or the developers. An
automated debugging system could improve the research of flaws in terms of
time and efficiency.

• Service improvement: It is possible to collect and evaluate the statistics
received to point out non-optimal performances and where it’s possible to act
to provide a better service.

• Reaction to issues: In case of problems, it’s crucial to react promptly to
resolve them. Receiving a message or an email when a metric surpasses a
certain threshold can help spot strange or unexpected behaviors. But even
better, it’s possible to automate some mitigation measures for some attacks
(e.g. DDoS)

• Company reputation: Being able to detect and resolve problems faster will
limit damage to the company image and improve the trust of the customers
in the service.

8

Thesis Background

2.3 Downtime
Downtime is, by definition, the timespan of a service or machine that can not
provide its functionality. This effect is not limited to the single compromised
system but can spread unexpected consequences to other services that depend on
it.

These behaviors will escalate in sales losses for the company, in particular, caused
by the inability to generate new ones because the system was not available or, even
worse, due to a possible bad reputation that will compromise the future of the
business. In every aspect of life, gaining trust and credibility is more challenging
than losing it. Nonetheless, IT businesses are not an exception.

There is an interesting study that Uptime Institute posted in 2022. The research
area was on outages that occurred in the same year. In particular, they focused
their studies on the impact and cost of downtime of data centers.

According to Uptime’s Data Center Resiliency Survey[1], 80% of data center man-
agers and operators have experienced a minimum of an outage in the past three
years. However, not all the outages have generated a financial loss and downtime,
but less than half of them had a significant impact.

From the study, it is also possible to gain information about some real numbers of
losses. They found that in 2022, less than 40% of the total downtimes had a cost
under 100,000$, whereas the ones that surpassed 1 million $ were 15%. The same
article also showed that almost one out of three downtimes in 2021 lasted more
than 24 hours. In 2017, the percentage was just 8%.

The impact those losses have on a company depends on the revenue a specific
business could generate. And also on the margins of tolerance that they have
towards failures. Even following the best practices, it is impossible to bring the
chance of downtime to zero. However, countermeasures could significantly reduce
its impact.

Ponemon Institute[2] conducted a study analyzing the cost of data center outages
in January 2016. The research collected data from 63 data centers located in the
United States and compared the new data with the older research of 2010 and
2013. According to the results published: “The average cost of a data center
outage rose from $690,204 in 2013 to $740,357 in this report, a 7 percent increase.
The cost of downtime has increased 38 percent since the first study in 2010.”

9

Thesis Background

Considering the maximum downtime cost, its value was $2,409,991 for 2016. This
number increased by 32 percent since 2013 and 81 percent since 2010. Nonetheless,
the average cost of unplanned outages per minute was 8,851$ in 2016. Its value
was higher than the one found in the previous years, respectively 5,617$ in 2010
and 7,908$ in 2013.

From a more recent worldwide survey of 2020, Statista[3] reported that 88% of
1200 respondents had an average hourly downtime cost for their server greater
than 300,000$. And 17% faced costs higher than 5 million dollars per hour.

Furthermore, according to Unitrends[4], there are six major causes of downtime:

• Human Error: That can be unavoidable, but it is possible to reduce it
with proper checklists, training, automating some processes, and limiting the
manual settings as possible.

• Hardware/Software Failure: It could be caused by obsolete hardware or
software and by patching without exhaustive tests.

• Device misconfigurations:These could be caused by configuration errors
that allow attackers to exploit existing vulnerabilities. Here, automating and
testing could limit the probability that issues happen.

• Bugs: This can lead to security issues and could be resolved by applying
patches on time with proper testing.

• Cybersecurity Attacks: The number of threads is increasing every year
and can potentially cause relevant damage to a company, but the investment
a business is willing to finance in security often is not sufficient to deal with
this issue. Also, not having compromised and periodical backups can play a
huge difference in case a disaster recovery is needed.

• Natural Disasters: Unpredictable events that are not uncommon in specific
places but can cause huge losses. To limit damages, it is possible to rely on
a physical copy of data and take advantage of the possibility of spreading
resources to different locations.

In conclusion, it is possible to assert that the cost of downtime is a crucial aspect
that cannot be diminished. In particular, it could cause several losses financially
and reputationally that could lead to the end of a company. Even if it is impossible
to avoid, proper prevention and an effective monitoring system may reduce outage
frequency and duration.

10

Thesis Background

2.4 Web Application Firewalls
Due to the increasing sophistication and changes that affect cyber threats, security
represents a significant challenge to web applications. A WAF (Web Application
Firewall) is a security solution that protects web apps. It utilizes monitoring,
blocking, and filtering of the HTTP traffic to prevent malicious requests from
reaching the services behind it.

This solution uses security rules to protect web applications against multiple
threats, for example, zero-day attacks, OWASP top 10 vulnerabilities, malware,
distributed denial-of-service (DDoS), and bad bots. These policies require updates
as soon as possible to prevent new attacks and can be customizable to satisfy spe-
cific scenarios.

A WAF operates at Layer 7 of the OSI model (Application Layer). Therefore, it
could provide more exhaustive protection than Layer 3 and 4 Firewalls. The latter
could apply packet filtering (based on source/destination IP, port, and protocol)
and stateful packet inspection (additionally able to keep track of active connections
and allow or deny traffic based on sessions). A WAF can also apply a more granular
level of inspection than an IPS/IDS.

WAFs can utilize reputation databases and geo-blocking rules to block requests
with specific source IPs and locations. Additionally, it provides content, parame-
ters, and header inspections for the HTTP traffic. For example, it could prevent
malicious character sequences, signatures, or patterns indicative of an SQL injec-
tion attempt like the following:

SELECT * FROM Users WHERE username=” or ‘1’=’1’ AND

password=” or ‘1’=’1

In this case, the inserted query parameters for username and password are: ’ or
’1’ = ’1

To provide its functionalities, a WAF must act as a reverse proxy. The previous
statement implies that the Web Application Firewall position is between the users
and the server that needs protection. So, all the HTTP traffic has to pass through
the WAF, which can analyze all the inbound requests and the outgoing responses
of the web apps behind it. On the other hand, the server must block all the
requests generated from different sources, or the additional protection layer could
be bypassed.

11

Thesis Background

Figure 2.1: Web Application Firewall

In the case of this thesis, the Web Application Firewall that needs the monitor-
ing system is a WAF-as-a-Service. In particular, it relied on services offered by
AWS to provide protection to multiple customers. In this scenario, downtime will
propagate to all the web applications behind the WAF and make them unreach-
able.

12

Chapter 3

AWS Fundamentals

As anticipated before, Amazon Web Services (AWS) is the Infrastructure as a
Service (IaaS) that the Web Application Firewall is relying on. This chapter
contains an introduction to AWS and some of its services for understanding the
structure of the project. In particular, it focuses on networking, managing users’
access, VMs, and load balancing.

3.1 Introduction to AWS
Amazon Web Services (AWS), launched in 2006 by Amazon.com, is the most
widely-used Cloud Computing platform. The provider offers over 240 cloud ser-
vices in Q4 2023, and their number is still growing with its different functionalities.
It is possible to get some meaningful information from the webpage of the Global
Infrastructure of AWS[5]:

AWS has a worldwide infrastructure distributed through different geographic areas
called Regions. Every region has a minimum of 3 Availability Zones (AZs). Each
contains one or more data centers that are physically independent, isolated, and
secure. Between AZ of the same region, there are redundant and ultra-low-latency
networks with encrypted traffic.

After the account creation, AWS customers can use more regions isolated from the
others by default. It is possible to exploit this configuration for testing new features
and services with zero risks of compromising infrastructures hosted elsewhere.
On the other hand, it is also feasible to implement an application in multiple
Availability Zones. The latter makes it more resilient and provides higher fault
tolerance, availability, and scalability.

13

AWS Fundamentals

In November 2023, there were 102 AZs distributed within the 32 regions. The
picture below contains their location:

Figure 3.1: AWS Regions

From the image above, it is possible to notice that new regions are coming soon
(Canada, Malaysia, New Zealand, and Thailand) and that there is a will to keep
improving the quality of the service offered.

Some differences have to be taken into consideration when it comes to choosing
which region is better to rely on:

• Distance: Choosing a region as near as possible reduces the network latency.

• Services release: Some new services will be available first in a limited num-
ber of regions.

• Pricing: There is a difference in price between regions that cost more than
others, so using built-in AWS calculators is essential to provide an exhaustive
cost estimation.

• Regulatory and Compliance: Due to GDPR or law restrictions, the choice
of a specific AWS Region depends on the country.

Since the pool of services is quite large, there are a lot of possible implementations.
Those could resolve the same problem in many different ways.

14

AWS Fundamentals

3.2 VPCs and Subnets
A Virtual Private Cloud (VPC) is a network in the cloud. As previously
mentioned, AZs are data centers in large clusters that belong to a Region. It is
possible to launch, for example, EC2 or RDS instances in Availability Zones. AWS
allows to split VMs and services across different AZs, so if one goes down, another
would be up.

From the AWS Documentation [6], a VPC is an isolated network in a Region,
spanning all AZs of that Region. Isolation means that multiple networks in an
AWS account are independent (e.i. from a compliance perspective). Instead,
subnets are subnetworks inside a VPC and can be assigned to a single AZ. While
VPC can span multiple AZs.

In VPCs, there are private IP ranges, but it is possible to assign public IPs also.
Each subnet takes a subset of a VPC’s IP range. An instance can have a private
IP that provides access from inside the VPC and a public IP that allows external
reachability. Another essential component is the Internet Gateway, which is crucial
for all traffic leaving the VPC and manages connections between a private cloud
network and the outside world.

Figure 3.2: VPC and Subnets in a Region

15

AWS Fundamentals

Security Groups[7] applied on a per-instance level can be used to control the
inbound and outbound access to AWS resources using Security Groups, applied
on a per-instance level. A Security Group acts like a network firewall. AWS cus-
tomers can assign SGs to more instances or have a different one for each. Instead,
a Network Access Control List (NACL) works at the subnet level and de-
fines which traffic could access the subnet. A combination of SGs and NACL is
supported.

Another meaningful feature is the ability to route requests and, as a result, change
the traffic direction. So, even if a component has problems, administrators could
manage changes directly by modifying the Route Tables. Routing is set up specif-
ically on subnets, enabling one to choose if the data of specific subnets could go
out and where.

Figure 3.3: Security Groups

An EC2 instance has two ways of getting public IPs. The first is enabling the
auto-assign public IP. So, when the VM restarts, it receives a new public address.
Nonetheless, it is possible to associate an Elastic IP to the EC2 instance that
remains the same after reboots. If an EC2 instance doesn’t have a public IP, it
could still be reachable from the AWS services inside the VPC through the private
IP automatically assigned to the VM.

16

AWS Fundamentals

Blocking all outgoing traffic to the internet through the Route Table and not
assigning any public IP in a subnet is the configuration for a private subnet.
The latter can contain, for example, a database. While in a public subnet,
external traffic is allowed through an Internet Gateway, and internal services
have public IP assigned. Here, a server that provides a public service could be
hosted.

Since the public and private subnets are in the same VPC, they can still mutually
communicate with each other but with different access configurations. A Private
Subnet could utilize a NAT Gateway (located in a Public Subnet) and redirect
all the outgoing traffic to it through the Private Subnet’s route table. So, the
instances without a public IP can still access the internet while being unreachable
from outside the VPC[8].

Figure 3.4: Public and Private Subnets

17

AWS Fundamentals

3.3 AWS Identity and Access Management
Identity and Access Management (IAM) is an AWS Service that allows
customers to keep their accounts secure. This service is not supposed to provide
security to the applications, but it does give the proper permissions to different
people and services in the account[9].

There are four main functionality that can be managed in the IAM service:

• Users

• Groups

• Roles

• Policies

Every AWS Account can be used by different people, called Users, even if there
is one account owner or root user. It’s a good practice to create a user for each
physical person and limit the use of the Root User.

A new user has no permissions by default at its creation. But it’s possible to
configure which AWS services he can access by attaching Policies and being gran-
ular with their selection. IAM service allows customers to put multiple Users into
Groups and assign rights to those Groups (e.g. Admin Group, Read-Only Group
. . .).

Policies are a set of rules that contain different authorizations called actions. Some
policies already exist. However, it is possible to add new ones. Every policy is
customizable in JSON and holds a statement to define the rules. Here, it is feasible
to specify the Effect (Allow or Deny), the Action (What to do, e.g. “ec2:*” gives
full permissions to EC2 Instances), and the Resource(On what. e.g. a specific EC2
instance or all).

For example, if a new user needs to access just an EC2 instance, it is feasible to
give him full permission over that particular machine specifying its ARN (Ama-
zon Resource Names). The latter is an unambiguous identifier for all the AWS
resources.

18

AWS Fundamentals

In this case, a possible policy could be:

1 {
2 " Version ": "2012 -10 -17",
3 " Statement ": [
4 {
5 "Sid": " VisualEditor1 ",
6 " Effect ": "Allow",
7 " Action ": "ec2 :*",
8 " Resource ": "arn:aws:ec2:<REGION >:< ACCOUNT_ID >: instance /<

INSTANCE_ID >"
9 }

10]
11 }

Listing 3.1: Full access policy for EC2

Here, it is feasible to select a region (e.g. eu-west-3) and the 12-digit account
number (ID).

By default, every AWS Service could not access other AWS Services. If an EC2
Instance wants to access the cloud storage service of AWS (S3), it needs the rights
to do it. As a solution, a Role with specific Policies has to be attached to the AWS
Resource.

It is crucial to be as strict and granular as possible when applying those policies
and choose carefully to provide fewer rights that still permit one to achieve a
desired task. AWS suggests activating Multi-Factor Authentication (MFA) for
each user to increase security. Nonetheless, a Password Policy could be added to
set the minimum requirements for the user’s password and the expiration period
and prevent password reuse.

19

AWS Fundamentals

3.4 EC2 Instances
EC2 stands for Elastic Compute Cloud[10]. It is an AWS Service that allows
customers to “rent” a small fraction of machines, also known as virtual servers or
EC2 Instances. The latter are isolated from the others that share the same physical
machine for security reasons. It is an on-demand and scalable service.

EC2 instances could be launched by the console selecting an AMI (Amazon Ma-
chine Image). The latter permits the choice of the Operating System with some
pre-installed features and which resources need to be allocated to the instance
(vCPU, RAM, Disk. . .).

Every Instance type has a tier. Its price grows based on the AMI and the resources
utilized. AWS uses a pay-as-you-go approach that allows customers to pay just
for the utilized services.

It is fundamental to set the VPC, the Subnet, and the Security Group and possibly
assign a public IP to the instance if needed. AWS allows the generation of Key
Pairs to connect to the virtual server through SSH.

Figure 3.5: EC2 Instance running

After the instance gets created, it will reach a "running" state, and it is possible
to change the instance state using the drop-down menu:

• Start: It runs a stopped instance.

• Stop: It switches off a running instance.

• Reboot: It restarts a running instance.

• Hibernate: It freezes all the running processes, saves the RAM content in a
persistent volume (EBS), and then performs a shutdown.

• Terminate: It deletes the instance permanently.

Another gripping feature system is the Status Check. The Status Check metrics
are the System and the Instance status checks. They monitor software, network,
and hardware problems. The first check is applied on the physical machine, while
the second is on the virtual server.

20

AWS Fundamentals

3.5 ECS and Fargate
ECS is the Elastic Container Service of AWS[11], a managed service that runs
Containers (typically Docker). It is possible to choose a Serverless option with
FARGATE or a Managed option using EC2. With the EC2 option, the AWS
customer is responsible for patches, software upgrades, and security issues.

However, using FARGATE, there is less maintenance involved. From an availabil-
ity perspective, ECS supports autoscaling to handle huge workloads. It’s a good
solution for ad-hoc services and for ones that have to scale as needed. ECS is also
a cost-effective solution.

There are three main components in ECS:

• Task

• Service

• Cluster

The first one is the concept of Task. The latter is an abstraction on top of contain-
ers. But first, a Task Definition Family must be created. It is a template where it
is possible to set the Task size in terms of vCPU and Memory. Then, it is required
to assign an IAM role and select the Image URI for each container needed in the
Task. Below is the syntax and an example of an Image URI:

<ACCOUNT-ID>.dkr.ecr.<REGION>.amazonaws.com/ <ECR-REPOSITORY>:<TAG>

123412341234.dkr.ecr.eu-west-3.amazonaws.com/my-image:latest

The Image URI must be present in ECR Service, a Cloud Storage Service for
Docker Images. Then, it is possible to set the port mapping and other optional
configurations if necessary. On the other hand, an ECS Service contains a group
of tasks that has to run in the long term. It allows administrators to specify the
desired number that runs simultaneously in an ECS Cluster. An ECS Service uses
a scheduler for relaunching each component that failed or crashed and tries to
reach the desired number of healthy ECS Tasks.

AWS allows to configure the number of maximum tasks for a service. This feature
limits the autoscaling, for example, to reduce costs in case of unexpected behaviors.
Eventually, an ECS Cluster is a group of Services or Tasks that contains the Task
Definition and the Service configuration. The latter is not mandatory since it is
possible to run the tasks directly.

21

AWS Fundamentals

Figure 3.6: ECS Cluster

3.6 AWS LBs and Global Accelerator
The primary functionality of a Load Balancer is to equally distribute a share
of traffic between more instances, even in different Availability Zones considering
AWS. It can check the health status of the target instances and not forward traffic
to a compromised one. This configuration makes the LB fault-tolerant, flexible,
and scalable [12].

Figure 3.7: Load Balancer

22

AWS Fundamentals

There are three types of Load Balancer in AWS:

• Application Load Balancer (ALB)

• Network Load Balancer (NLB)

• Gateway Load Balancer (GLB)

According to the AWS Documentation[13], the first difference between these Load
Balancers is the OSI Layer on which they rely. The Application Load Balancer
operates at Layer 7. It can inspect Application-level content and route traffic based
on HTTP and HTTPS protocols, while the NLB works at Layer 4 and routes TCP,
UDP and TLS traffic.

The Gateway Load Balancer is an optimal solution on the network gateway level,
managing traffic across multiple regions or between cloud and on-premises envi-
ronments. Eventually, it supports IP-based routing for high scalability and avail-
ability.

Due to its features, the ALB is more suited to interact with a Web Application
Firewall. Since it provides functionalities like SSL termination, session persistence,
and content-based routing, it is an ideal solution for managing microservices, con-
tainerized environments, and web applications. Listeners are components that
allow connections to the LB.

Figure 3.8: Application Load Balancer Structure

23

AWS Fundamentals

In the listener configuration, it is possible to specify the protocol and port.Each
ALB Listener uses a set of rules for routing purposes. Every request looks for a
match in the rules’ condition and takes action. The latter could forward or redirect
to a Target Group or return a fixed response. It is mandatory to define a default
rule per listener. Target groups define the traffic destinations. They could also
determine if a specific target is healthy and stop the connection if the periodical
check fails.

Another AWS Service that can improve the performance of cloud infrastructure
is the AWS Global Accelerator. The latter is a service that utilizes multiple Edge
Locations, globally distributed, as on and off ramps to access the AWS Global Net-
work that can drastically reduce network latency. It is possible to add integration
of the Global Accelerator to the Load Balancer to enhance the speed offered to
customers worldwide since it provides them with an optimal path for the network
traffic.

24

Chapter 4

Containerization and
Simulation

Containerization technologies package, distribute, and run applications in isolated
environments called containers. Docker is the most widely utilized platform that
manages containers. This chapter contains a brief introduction to it. Then, it
provides an initial setup for simulating a testing environment that can replicate
problems of ECS Tasks, like warnings, errors, and crashes.

4.1 Docker
Docker is one of the most popular open-source platforms nowadays. It is used
for building, deploying, and running applications in lightweight and isolated con-
tainers. A container is similar to a Virtual Machine (VM). But it contains and
packages the needed application, its libraries, runtime, environment variables,
and dependencies. This configuration permits a faster, easier, and more efficient
deployment[14]. A Virtual Machine simulates virtual hardware components, while
a container shares the existing one of the machine. The OS Kernel is the core com-
ponent that acts as the primary interface between the physical parts of the machine
(Hardware) and the applications that run on the Operating System. Docker vir-
tualizes just the Application Layer and utilizes the host Kernel, while a Virtual
Machine virtualizes the entire Operating System. This last feature allows VMs
to run on any OS host, providing better compatibility than Docker. The latter
reduces the needed size for an image and is faster than a VM, but it is impossible
to run Linux Images if the host OS is Windows and macOS without using a virtual
machine that runs Linux.

25

Containerization and Simulation

Figure 4.1: Containers vs Virtual Machines

Three elements are fundamentals:

• Docker Image: It is a template file/artifact containing the application, the
dependencies, and the configurations. Every Image has a version, also known
as Tag. The newest version has the tag latest.

• Docker container: It is a running instance of a Docker Image.

• Docker registry: A storage location for Images that can be public (Docker
Hub) or private.

A container has all its needed components, so it would be unnecessary for every
developer who works on the same project to install all the services the application
depends on. It is time-saving, especially in complex projects where lots of services
have to interact with each other and provide a replicable environment. It allows
us to run different versions of the same applications without conflicts.

To download an Image (e.g. ubuntu:latest) from Docker Hub to the local
Registry, the following command was used in the Docker command line:

docker pull ubuntu:latest

Then, it is possible to utilize the docker images command in the console to
check the local repository:

Figure 4.2: Local Docker Repository

26

Containerization and Simulation

4.2 Logging in Python
One way to know if something is not working as it should is through logging. Here
is Wikipedia’s definition[15]:

“In computing, logging is the act of keeping a log of events that occur in a computer
system, such as problems, errors, or just information on current operations. These
events may occur in the operating system or other software.”

In other words, logging is the process of generating messages to understand what
happened in a specific scenario and time. It is possible to make statistics or
decisions based on them, fix bugs, and improve the system. It’s essential to start
logging events when an application is more complex than a basic project and then
pipe them in a visualization software to get an overview of what is happening.

For this example, Python Programming Language (Python 3.8) was utilized to
write a small script that generates random logging errors and warnings. Python
has the logging module built-in, so it was possible to import it directly.

According to the Python3 documentation[16], logs could belong to different cate-
gories or levels. There are six standard logging levels, and these are, in order of
value:

• NOTSET: In this case, it checks an ancestor logger for level determination.

• DEBUG: It gives detailed information in case of diagnosing problems.

• INFO: It confirms that something is working as expected.

• WARNING: It advertises to us that things are not working as expected.

• ERROR: Impossibility to execute a function/task.

• CRITICAL: Error that could lead to a crash or disservice in the application.

It is possible to set one of these levels to generate logs of equal or higher impact.
The default value is WARNING. So, if there are INFO or DEBUG logs, they would
be ignored and not shown in the console. Here there is a simple example of how
it works:

1 import logging
2

3 logging . basicConfig (level= logging .INFO)
4

5 logging .info("It’s all good")

Listing 4.1: Example of INFO log

27

Containerization and Simulation

The output is in the picture below:

Figure 4.3: Output of INFO log

Every LogRecord can have different attributes that will determine the format of
the customizable logs.

4.3 Simulating Issues using Python
The time and random Python libraries could be utilized to simulate a real-world
scenario where a process can crash with or without logging, for example, if there
is an unexpected behavior not managed:

1 import random
2 import time
3 import sys
4 import logging
5

6 def crash_func ():
7 logging . basicConfig (level= logging .INFO , format =’%(levelname)s

:%(name)s:%(message)s’)
8 time.sleep(random . randint (60, 420))
9 err= random . randint (0, 2)

10 if err == 2:
11 logging .error(’An error message ’)
12 sys.exit (2)
13 elif err == 1:
14 logging . warning (’A warning message ’)
15 sys.exit (1)
16 else:
17 sys.exit (0)
18

19 if __name__ == ’__main__ ’:
20 crash_func ()

Listing 4.2: Python script that simulate issues

The code above waits for a random time range (1 to 7 minutes) before an action
occurs.

28

Containerization and Simulation

It was necessary to create a DockerFile to build a custom Docker Image to package
and execute the script using a Docker Container. A DockerFile always starts with
a FROM x line, where x is another existing Docker Image used as a foundation.
Docker allows developers to specify the version of the initial image. The latest
Ubuntu image (Ubuntu 22.04) was used for this example.

The command RUN executes any command inside the container but not in the
host environment. python3 must be installed in the container to run the script
created. It is also possible to use a Python image directly from Docker Hub and
avoid the previous step, but it has a bigger size and unnecessary features for this
purpose. WORKDIR changes the actual directory in the container. The COPY
command copies a folder’s files in another directory inside the container. The
last DockerFile command is CMD, which executes an entry point command. In
this case, it uses python3 crash.py to start the Python script in the Docker
Container. The code below shows the DockerFile:

1 FROM ubuntu : latest
2

3 WORKDIR /home
4

5 COPY ./ script .
6

7 RUN apt -get update && apt -get install -y python 3
8

9 CMD [" python 3", "crash.py"]

Listing 4.3: Dockerfile commands

The script was not a complex application, and the container didn’t need a lot of
additional packages. However, a good practice is to do all the installations before
and then add the script. Since Docker caches the layers created at every step of the
Dockerfile build, creating a new Image will be faster due to Docker that can recycle
the upper layers in case of changes in the code. The working directory must hold
the DockerFile and create another folder that contains the Python script:

Figure 4.4: Folder Organization

29

Containerization and Simulation

Here, it is possible to use the following command to create the Docker Image and
be ready to put it on AWS:

docker build -t py-crash:latest .

4.4 ECS Cluster Configuration
Considering the Docker introduction, a Registry is the storage location of the
Docker images. AWS provides a service called ECR (Elastic Container Registry).
The latter manages all the Docker Images securely and reliably in the cloud. Here,
a different AWS Region from the one where the Web Application Firewall relied
has been chosen to isolate the testing region from the production one. This de-
cision also maintained a clean production environment and avoided unnecessary
risks.

A private repository was created in the ECR console to push a custom Docker
Image on AWS. It is requested to install and set up the AWS CLI. There are a lot of
possible ways to configure the AWS CLI. Since this example is used just for testing,
an Access Key for an IAM User could be generated in the IAM console and utilized
the following commands in the local environment to use the credentials:

$ aws configure
AWS Access Key ID [None]: **********EXAMPLEAK
AWS Secret Access Key [None]: ************EXAMPLESAK
Default region name [None]: example-region-2
Default output format [None]: json

Then, these commands will push a Docker Image in AWS ECR:

$aws ecr get-login-password –region eu-west-3 |
docker login –username AWS –password-stdin
111111111111.dkr.ecr.eu-west-3.amazonaws.com

$docker tag py-crash:latest 111111111111.dkr.ecr.eu-
west-3.amazonaws.com/py-crash:latest

$docker push 111111111111.dkr.ecr.eu-
west-3.amazonaws.com/py-crash:latest

30

Containerization and Simulation

After the upload, the Docker Image will be inside the private ECR repository. So,
it is now available to be utilized in the AWS Environment:

Figure 4.5: Docker Image inside the ECR Repository

In the last step, it was necessary to:

• Create a Task Definition Family in the ECS console and select the custom
Image URI as Docker Container from ECR. Then, choose as few resources
(vCPU/memory/disk) as possible since it reduces the costs.

• Create a Cluster and a Service with a limited number of desired tasks (1 in
this case), select FARGATE, and choose as Family the one previously created.
Then, check the “Monitoring” option to use Container Insight. The latter is
essential for collecting more metrics of the cluster.

A gripping feature that ECS offers is the quick deployment of new versions of
Docker containers. Since ECR allows AWS customers to push more versions of an
image in the same repository, new Revisions could be created. Furthermore, it is
possible to select the new Docker Image that was pushed with a different tag on
ECR using the Task Definition Family console. Then, the ECS service would be
updated after choosing a new Family Revision.

Figure 4.6: Service deployed in ECS

Now that a simple service hosted on AWS has been configured to crash and gen-
erate warnings or error logs, it is possible to start to develop the monitoring sys-
tem.

31

Chapter 5

Simple AWS Metrics

Firstly, it is required to comprehend which AWS service could provide data vi-
sualization functionalities to create the new metrics for the logs and crashes of
the compromised Docker container. This chapter will briefly describe the Amazon
CloudWatch service and then explain how to detect these simulated issues in ECS
Tasks.

5.1 CloudWatch
One of the services that have been crucial for the structure of the thesis is Amazon
CloudWatch[17]. It can use multiple metrics for different services and allows cus-
tomers to monitor all their AWS resources. However, it also supports integrations
with architectures outside the AWS cloud environment.

AWS provides features like batching, auto-scaling, and resource scheduling, but
data are essential for choosing when to scale or upgrade an architecture. Cloud-
watch collects that information, monitors the states over a certain period, and
permits it to analyze them and act accordingly.

Once the relevant parameters for infrastructure have been identified, it is possible
to build on Cloudwatch automated dashboards that provide a general view of all
the systems for each area of the cloud environment.

32

Simple AWS Metrics

5.2 Simple Metrics and Logs
A monitoring system relies on values that receive continuous updates over small
periods, also known as metrics. The smaller the timespan, the more those metrics
are in real-time. AWS automatically creates default metrics for its cloud resources.
It also supports generating other custom ones.

Every AWS metric [18] needs a timestamp, a value, a unit, and StatisticValues
(e.g. min, max, sum). It is possible to specify a custom retention time for each
metric. The latter belongs to one specific Region since it is isolated from the
others. Like the Registry for Docker images on ECR Service, metrics also have
their storage locations, called Namespaces. During the metric creation process
on Cloudwatch, it is possible to select one or more namespaces that contain the
metric. The namespace naming convention is “AWS/service”. So, it enables a
clear separation in macro areas.

Metrics allows AWS customers to specify their Dimensions. The latter identifies
the resources linked with a metric and describes other relevant characteristics
meaningful for the identification. It is supported by combining them to group
different metrics inside a Namespace. A practicable combination of dimensions for
a metric of an ECS cluster could be ClusterName and ServiceName in case more
than one service is present in the same cluster.

AWS generates two metrics by default for a service in an ECS Cluster:

• Cpu Utilization

• Memory Utilization

Figure 5.1: Default metrics in Cloudwatch

Selecting the Monitoring option in the cluster creation will deploy additional
metrics (Task/Service number, transferred and received Byte, storage, etc.)

Cloudwatch saves log records with the same source in different Log Streams. The
latter will compose a Log Group based on source, monitor, and retention policy.
Metrics and logs are sent to Cloudwatch through a CloudWatch Agent installed
in the source instance.

33

Simple AWS Metrics

Figure 5.2: Error logs from the Docker Container

The picture above shows a log generated from the compromised Docker Container
that is now inside a running ECS Task.

5.3 Alarms and SNS
An effective monitoring system must permit administrators to react fast when
something is not working as expected. Having an alarm system that sends no-
tifications is essential if the provided service needs to be always up for several
reasons.

CloudWatch supports the creation of alarms based on the value of existing metrics.
The latter could be aggregated to obtain specific statistics (AVG, MAX, MIN..)
over a precise period of a data point. For example, the maximum value of the
CPU percentage over 5 minutes becomes a data point. If the period is lower than
60 seconds, AWS charges customers more.

Figure 5.3: Cloudwatch metric graph

34

Simple AWS Metrics

For every metric, it was required to set the alarm threshold to define an acceptable
range of values and how many data points over the threshold would trigger the
alarm. This last feature could reduce the number of false positives. For example,
a CPU’s spike over the threshold for one data point out of five may not represent
the critical situation, but it could be necessary to investigate. Whereas, if there
are three positive data points out of five, it would be better to activate the alarm
that triggers an action.

Figure 5.4: Cloudwatch alarm

It is possible to use the SNS (Simple Notification Service) to send a notification
when an alarm is triggered. SNS requires a topic that specifies the name of the
message and the email endpoints that receive the notice. Furthermore, other
actions exist. For example, if an ECS service has a single task, the auto-scaling
can be used to deploy more of them to share the workload. Or if the resource is
an EC2 Instance, it is possible to change its state (e.g. from running to stopped)
and perform other actions utilizing custom serverless functions.

35

Simple AWS Metrics

5.4 Metric Filter
Logs could be utilized to deploy new Cloudwatch Metrics and Alarms. The moni-
toring system needed an alarm that could activate if the ECS Service made more
than a certain number of Warning/Error Logs in a period. Since this was not one
of the default metrics, it was possible to use a Metric Filter.

Figure 5.5: Log events

A metric filter[19] checks every log record in one or more Log Streams and creates
a new metric based on the ones that match a specific pattern. It requires selecting
the Log Group, then choosing Search All Log Streams, and providing a
filter pattern. Then, it also needs a Namespace for the metric, a value for every
match (in this case, the value is 1 since it is a count), and two names, one for the
filter and one for the CloudWatch metric. Eventually, it was possible to select the
metric filter from the Log Group console on CloudWatch and deploy a new Alarm
as done before but utilizing the new custom metric with a different statistic.

Figure 5.6: Metric filter

36

Simple AWS Metrics

5.5 Event-based Metric
It is almost impossible to consider every possible source of error in coding. Espe-
cially if the project is large and more people are working on it. ECS FARGATE
assures that there are several active tasks equal to the desired number. So, if one
goes down, FARGATE automatically launches another one to substitute it.

Every six hours, AWS generates an event if everything is fine in an ECS Clus-
ter (All the tasks are healthy. The autoscaling and new deployments have not
happened):

Figure 5.7: Events of ECS Task without issues

But in this case, a compromised Docker image that crashes quite often was de-
ployed for testing. So, AWS will generate additional events because the Task
changed its status. The picture below shows the events of the deployed ser-
vice:

Figure 5.8: Events of ECS Task with issues

The task was designed to act like this, but a container may crash in an unpre-
dictable interval in a real-world scenario. Then, FARGATE could launch a new
Task to substitute the missing one. So, if the events are not checked daily, it is
unlikely to discover that there is a problem immediately. To resolve this issue,
AWS Eventbridge could be used.

37

Simple AWS Metrics

According to the AWS Documentation[20]:

“EventBridge provides simple and consistent ways to ingest, filter, transform, and
deliver events so you can build applications quickly.”

It is possible to generate rules that send an Event to a CloudWatch Log Group
for every match that occurs using a specific pattern. But first, a new Log Group
must be created on CloudWatch to keep the delivered events.

During the rule creation, the Event source of the AWS service of interest was
chosen (ECS) and inserted in the event pattern form in JSON. Then, ECS Task
State Change was selected as detail-type, since it represents the primary
variable enabling crash detection. Afterwards, it was specified the Cluster Arn.
Since the objective was to retrieve only the events of the compromised AWS Service
in ECS. Below there is the final result of the Event Pattern created:

1 {
2 " source ": ["aws.ecs"],
3 "detail -type": ["ECS Task State Change "],
4 " detail ": {
5 " clusterArn ": ["arn:aws:ecs:eu -west -3:111111111111: cluster

/ study_cluster "]
6 }
7 }

Listing 5.1: Event pattern in AWS Eventbridge

In the last step, the destination of the filtered events must be selected. Here,
the Log Group previously created was chosen. This configuration allowed the
generation of an event in the Log Streams every time the state of the container
changed. Since the alarm must detect only when errors and failures occur or the
container exits a new Metric Filter has been deployed:

Figure 5.9: Metric Filter for crash events

38

Simple AWS Metrics

AWS Events contains lots of information, so it is possible to filter granularly and
get what is needed. The $.detail.stopCode variable has as its value the
reason why the task changed its state. A regex pattern and dimensions of
interest were specified. The $.detail.group value was used as a Service-
Name variable, and the $.detail.containers.name value was utilized as a
ContainerName variable in case different containers share the same task.

Lastly, the new alarm could be created utilizing as a threshold the count value of
1. As an activation trigger, it was considered a data point out of 1. So, in case
crashes occur, a notification will always be sent.

39

Chapter 6

Serverless and the ELK
Stack

By now, the monitoring system utilizes only Amazon Web Services to set up new
alarms and metrics to react in case of issues. However, the WAF’s Infrastructure
relies also on the ELK Stack. So, the following chapters will describe how to
integrate the functionalities of these two platforms to publish new custom metrics
and add them to a Cloudwatch Dashboard.

6.1 AWS Lambda
AWS Lambda[21] is an on-demand service that lets customers run functions
without worrying about creating an instance and managing its setup and main-
tenance. It is possible to create a serverless function, insert the code to run, and
eventually, the AWS Lambda executes on the cloud. To execute the code, man-
aged VMs could run several containers to start functions in different Programming
Languages. The latter supported are Java, Go, PowerShell, Node.js, C#, Python,
and Ruby. Thus, it is possible to use other languages through Runtime APIs.

As mentioned above, the setup is quick, but this is not the only reason to use it. In
AWS, almost all the services use a pay-as-you-go approach for pricing, with some
exceptions. For example, assigning an Elastic IP that is public to an EC2 instance
is charged even when the VM is not running. The reason behind this choice is the
reservation of that specific IP address, not allowing other customers to utilize it.
An elastic IP must be released to limit costs, making the address available again
for AWS customers.

40

Serverless and the ELK Stack

Since the monitoring system needs custom metrics sent periodically over a time
range, AWS Lambda would be a cost-effective solution. Furthermore, it can rely
on other AWS services for data visualization (AWS Cloudwatch), reducing to the
minimum the resources needed. Other implementations are possible using:

• A dedicated machine: A single customer reserves the physical server. It is
the worst solution since it would be underutilized and doesn’t allow vertical
scaling.

• A VM: Multiple customers share the physical server. In this case, the un-
derused resources are less.

• A container: A VM runs multiple containers. It is a better solution than
the previous two. However, it still requires being up more than needed.

Figure 6.1: Alternative solutions

41

Serverless and the ELK Stack

6.2 Importing Libraries in AWS Lambdas
During the creation of an AWS Lambda function, it is possible to select, as a start-
ing point, a completely new template called author from scratch. Then,
some additional features need to be configured:

• The architecture: for example x86_64.

• The programming language utilized to write the code (Python 3.8).

• The assignment of an IAM Role to the AWS Lambda.

AWS Lambdas has a lot of other possible configurations. For example, it is possible
to assign the function to a VPC in a region and the subnets of interest. It is
essential to set a proper timeout for the function. It should not be too low, or the
AWS Lambda risks being interrupted while running code. But either too high or,
in case of misbehaviors (e.g. endless loops), it will keep going with an increasing
cost.

The IAM Role assigned to the Lambda function determines which AWS resources it
could access. It is a good security practice to give the IAM Role as few permissions
as possible to perform only its task. Additionally, it is possible to add environment
variables, which are encrypted at rest, to avoid hard-coded credentials or other
confidential data being exposed.

AWS Lambda automatically provides the built-in libraries of the selected pro-
gramming language of the function. It is also possible to use different modules.
However, it is required to create a Lambda Layer that packages together libraries
to maintain the code deployment fast.

According to the AWS documentation definition[22]:

“A Lambda layer is a .zip file archive that contains supplementary code or data.
Layers usually contain library dependencies, a custom runtime, or configuration
files.”

Since AWS Lambda runs on Amazon Linux, a good practice is to generate the
layer from a cloud-based IDE that lets AWS customers use a Linux server to avoid
possible conflicts in different Operating Systems (e.g. Windows and macOS). The
service that offers this feature is Cloud9.

42

Serverless and the ELK Stack

To create an environment in Cloud9 service, a small EC2 instance with an Amazon
Linux Image could be launched, for example, a t2.micro. A lot of resources are not
necessary for this task. Then, a specific role, with permission to publish lambda
layers, must be assigned to the new instance:

1 {
2 " Version ": "2012 -10 -17",
3 " Statement ": [
4 {
5 "Sid": " VisualEditor0 ",
6 " Effect ": "Allow",
7 " Action ": " lambda : PublishLayerVersion ",
8 " Resource ": "*"
9 }

10]
11 }

Listing 6.1: Lambda layer policy

Then, the same version of Python selected for the Lambda must be installed:

$ sudo amazon-linux-extras install python3.8
$ curl -O https://bootstrap.pypa.io/get-pip.py
$ python3.8 get-pip.py --user

A folder that contains the library (e.g. elasticsearch[async] that will be used later)
must be created and installed inside the instance:

$ mkdir python
$ python3.8 -m pip install elasticsearch[async] -t
python/

The last step is to compress (.zip) the folder and publish it to AWS:

$ zip -r layer.zip python
$ aws lambda publish-layer-version --layer-name
elastic-async-layer --zip-file fileb://layer.zip
--compatible-runtimes python3.8 --region eu-west-3

Eventually, it is possible to select and add the new custom layer to the AWS
Lambda. More layers could be assigned to the same function, and a singular layer
could contain multiple libraries.

43

Serverless and the ELK Stack

6.3 Elasticsearch Cluster
Elasticsearch is a search engine and part of the Elastic Stack[23]. It allows users
to take data from any source, store it, search, and make an analysis. It’s used
mainly for:

• Logging: store and use log data.

• Metrics: gathering descriptive statistics.

• Security and Business Analytics: securing communications through chan-
nels and improving business capabilities by analyzing data and making pre-
dictions based on them.

It is possible to explore, interact with, and visualize data using Kibana in the
Elastic stack. Multiple integrations are supported to connect different data sources,
ingest them, and generate alarms.

A node is an instance of Elasticsearch with a unique name, ID, and Cluster.
An Elastic Cluster can contain more nodes distributed over different machines.
Elasticsearch stores JSON objects with unique IDs called documents. Indexes
group documents that are related to each other. So, it is possible to divide them
and make it easier to find specific information. Disks do not store documents
inside indexes but in shards across nodes. An index is a virtual concept that
keeps track of the location of the shards and manages them. It is possible to
create an index with multiple shards, and it would split them into different nodes
to improve performance. A shard is primary if it contains the original copy of the
documents. But to increase reliability and fault tolerance, replicas of shards could
be distributed on different nodes. So, if a node goes down or gets corrupted, the
documents inside it are not lost.

Figure 6.2: Disposition of the Elasticsearch nodes inside a cluster

44

Serverless and the ELK Stack

6.4 Elasticsearch Client in Python
The previous paragraphs briefly described what Elasticsearch is and how it works.
Considering a cluster already configured and with documents flowing to the shards,
it would be useful to retrieve data from the Elasticsearch documents and build a
CloudWatch dashboard that integrates statistics from the Elastic Cluster.

Elasticsearch provides an official low-level Python library that lets developers con-
nect and interact with their Elasticsearch Cluster[24]. But before using it, con-
nections from specific IP addresses must be allowed from the Elastic Cloud con-
figuration. For security reasons, a default traffic filter denies every request from a
source IP different from the specified ones (Whitelist).

It is possible to connect to the Elasticsearch Cluster through its endpoint, creating
a Client. However, users must provide authentication using an API Key ID and
its secret or a username and password.

1 from elasticsearch import Elasticsearch
2

3 client = Elasticsearch ([’https ://my - elasticsearch - endpoint :port ’],
4 basic_auth =(’username ’, ’password ’),

request_timeout =30)

Listing 6.2: Elasticsearch client

Once the authentication phase is successful, proper permission must also be con-
figured. For example, it supports different functionalities, such as creating new
indexes, adding, modifying, retrieving, deleting documents, and more. However,
the primary functionality needed is to search and get the documents from an in-
dex and perform data aggregations for the monitoring system. The documents’
variables are called fields in Elasticsearch (e.g. Timestamp).

It would not be efficient and cheap to retrieve all the documents in an index and
perform some transformations on the data in a local machine. If a cluster has N
nodes, it will be more effective to let its instances do all the transformations on
the documents and then retrieve only the final result.

Elastic Cloud charges customers more for the quantity of data that they get from
the cluster and for internode transfers surpassing 100GB a month. Distributing all
the workload between the nodes relieves a local machine from unnecessary stress
and time spent.

45

Serverless and the ELK Stack

Here is an example of how to retrieve data in Python from the nodes:

1 response = client . search (index="my -logs", query ={
2 "bool":{
3 " filter ": [{
4 "range": {
5 " @timestamp ": {
6 "gte": "now -5m",
7 "lte": "now",
8 }
9 }

10 }]
11 }}, size =0, aggs ={
12 " hostnames ":{
13 "terms": {
14 "field": " transaction . hostname . keyword ",
15 }
16 }
17 })

Listing 6.3: Example of Elasticsearch library usage

The index containing the required documents must be specified, but only after
a connection is established to the Elasticsearch endpoint. Then, a simple bool
query could filter out all the documents with a timestamp value older than 5
minutes. It is possible to use the range parameter to provide a boolean result to
the filter.

Elasticsearch queries provide Date Math parameters that simplify dealing with
dates. In particular, the actual time could be retrieved using now and then adding
or subtracting different time units. For example, if today is the first day of Novem-
ber at 8 am, writing now-1M becomes the 1st of October at the same hour. These
are the possible time units that are supported:

• y: Years

• M: Months

• w: Weeks

• d: Days

• h or H: Hours

• m: Minutes

• s: Seconds

46

Serverless and the ELK Stack

There are other types of bool queries. For example, it is possible to combine more
filters to extract the documents granularly. Considering the timestamp example,
more time ranges could be used to retrieve more documents with a single query.
Elasticsearch also supports these parameters:

• must: it considers a document valid if all the rules in the array are satisfied.

• must_not: it filters out every document that matches at least one condition
in the list.

• should: a bool query type that assigns a score based on the number of rules
matched.

After the documents of interest were retrieved through filtering, aggregations were
applied to the results to reduce the volume of data extracted from the Elasticsearch
nodes.

Two principal types of aggregation[25] were utilized to reach the thesis objective.
The first one is metric aggregation, which permits obtaining numeric results based
on the values that specific fields would have. Some examples are the average,
the min, and the max over different documents. The second type of aggregation
is the bucket aggregation. The latter is similar to a group by. It divides the
documents into small subgroups (buckets) that have some similarities in the field
values.

In the last part of the code above, there is the aggs parameter that performs the
aggregation after the query. Then, it requires inserting the name assigned to the
result and, eventually, the aggregation type. The terms aggregation creates a
bucket for each hostname field value and performs a count of all the documents.
The .keyword parameter added after the field name allows nodes to compare
text format values efficiently. Eventually, it is possible to set the size parameter
to 0 to specify the interest of retrieving only the aggregation result of all the
documents.

47

Serverless and the ELK Stack

6.5 Asynchronous Requests
As mentioned before, the cost of AWS Lambda functions depends on how much
time the code is running, but not only on that. It depends also on the architecture,
the number of requests, and the allocated memory and storage. It is necessary to
optimize the code to reduce the amount of money required for a repeated launch of
the AWS Lambda. Since the function needs to send web requests to Elasticsearch
to retrieve metrics, it is possible to take advantage of concurrency in Python.

Concurrency means that the code makes progress in more than one task. If an
application has more tasks to complete, the processing unit can switch between
them even before one has completed its execution. So, they are not running in
parallel. Applications may involve waiting (e.g. web request waiting for a response
). In this case, it would be more efficient to let the processing unit do something
else.

The asyncio Python Standard Library allows developers to manage concurrency
in the application. In particular, it is possible to utilize async before a method
or a function, allowing them to execute code concurrently. The await statement
specifies that, after a concurrent operation, the code has to wait for its result
before starting its execution.

48

Chapter 7

Visual Interface in AWS

Dashboards allow users to observe relevant information and metrics through graphs,
tables, and other visual tools. It is possible to utilize these visual interfaces to get
an insight into how a system works and if some unexpected behaviors require
further investigation.

7.1 AWS Dashboard Widgets
AWS CloudWatch supports the development of custom dashboards that could
contain multiple widgets. The latter lets customers insert in the dashboard not
only graphs but also text in Markdown, log tables, alarms, and even full custom
widgets integrated with Lambda functions.

AWS CloudWatch provides a small panel to set a custom period for all the dash-
board’s widgets. It is required to provide a source to create widgets. There are
two possibilities:

• Metrics

• Logs

With the deployment of the ECS Cluster, some standard metrics have already
been generated.

49

Visual Interface in AWS

In particular, it is possible to add to the dashboard the following default met-
rics:

• CPU usage percentage

• RAM usage percentage

Figure 7.1: CPU and RAM Utilization

The number of active tasks in an ECS service is a metric that could be obtained
by setting the monitoring option during the cluster’s creation:

Figure 7.2: Number of active ECS Tasks

The following paragraph will describe how to publish custom metrics into Cloud-
Watch using AWS Lambdas.

50

Visual Interface in AWS

7.2 AWS SDK Boto3 and Lambda Metrics
AWS provides tools and libraries that allow developers to interact with multiple
AWS services using different programming languages. These tools are AWS SDK,
which stands for Software Development Kit. They are built-in libraries into the
AWS Lambdas function. Boto3[26] is the AWS SDK for Python, but other pro-
gramming languages are supported (Java, Go, JS, Kotlin, etc.). It is possible to
directly import this library in an AWS Lambda function and start generating the
metrics that will be used in the dashboard widgets.

Some meaningful metrics that can be retrieved from Elasticsearch to monitor how
the WAF, in particular, is behaving are:

• The average latency in milliseconds that the WAF adds to the requests with
and without timeouts. This metric will be referred to as WAF Latency.

• The average WAF latency of the top 5% slowest requests with and without
timeouts (e.g. WAF Latency > 240 seconds).

• The percentage of requests that are allowed, blocked, or alerted.

• The variation of the WAF latency in different periods.

The deployed AWS Lambda function contains two Python files:

• lambda_function.py: it manages all the requests.

• query.py: it contains the queries that retrieve the data from the Elastic-
search cluster and push the results on CloudWatch. The previous file will
import all of its code.

It is possible to use the asyncio.run() function to start the top-level entry-
point function for the async requests:

1 import json , asyncio , os , query
2 from boto3 import client
3 from botocore . exceptions import ClientError
4 from elasticsearch import AsyncElasticsearch
5 from datetime import datetime , timedelta
6

7 def lambda_handler (event , context):
8 asyncio .run(dashboard ())
9 return {

10 ’statusCode ’: 200, ’body ’: json.dumps(’Success !’)
11 }

Listing 7.1: Lambda handler function

51

Visual Interface in AWS

The Elasticsearch client could be created using the environment variables saved
in AWS Lambda’s configuration. But this time, the AsyncElasticsearch
library was utilized to support asynchronous requests instead of its synchronous
version.

Both the AWS CloudWatch and Logs clients must be created using Boto3. Even-
tually, it is possible to launch all the asynchronous code contained in query.py
through the asyncio.gather() function:

1 async def dashboard () -> None:
2 # Elasticsearch client
3 esclient = AsyncElasticsearch ([os. environ [’HOST ’]], basic_auth

=(os. environ [’USERNAME ’], os. environ [’PASSWORD ’]),
request_timeout =30)

4

5 # Cloudwatch client
6 cw= client (’cloudwatch ’, region_name =os. environ [’REGION ’])
7

8 # Cloudwatch logs client
9 cw_logs = client ("logs", region_name =os. environ [’REGION ’])

10

11 data= datetime . utcnow ()
12 ed=data. strftime (’%Y-%m-%dT%H:%M :00.000 ’) + ’Z’
13 sd=(data - timedelta (minutes =5)). strftime (’%Y-%m-%dT%H:%M :00.000

’) + ’Z’
14

15 # Launch async queries to Elasticsearch and create new metrics
and logs in AWS Cloudwatch

16 await asyncio . gather (
17 query. avg_waf_latency (esclient , cw , sd , ed),
18 query. avg_waf_latency_no_to (esclient , cw , sd , ed),
19 query. elastic_stats (esclient , cw , sd),
20 query. avg_waf_latency_95th (esclient , cw , sd , ed),
21 query. avg_waf_latency_95th_no_to (esclient , cw , sd , ed),
22 query. wafstatus_count (esclient , cw , sd , ed),
23 query. waf_latency_diff (esclient , cw , sd , ed),
24 query. avg_waf_latency_host (esclient , cw_logs , sd , ed))
25 await esclient .close ()

Listing 7.2: Dashboard function

52

Visual Interface in AWS

In the query.py file, an asynchronous function was added for every metric
that appears in CloudWatch to retrieve the data from the documents in Elastic-
search. The following code will retrieve the Average WAF Latency metric:

1 async def avg_waf_latency (esclient , cw , sd , ed) -> None:
2 try:
3 response = await esclient . search (
4 index=os. environ [’LOG_INDEX ’],
5 query ={
6 "bool": {
7 " filter ": [{
8 "range": {
9 " @timestamp ": {

10 "gte": sd ,
11 "lt": ed ,
12 }
13 }
14 }]
15 }},
16 size =0,
17 aggs ={
18 "avg -waf - latency ":{
19 "avg": {
20 "field": " transaction . response .waf - latency

"
21 }
22 }
23 }
24)
25

26 avg_time =round(
27 response [" aggregations "][’avg -waf - latency ’][’value ’],
28 1)
29

30 startd = datetime . fromisoformat (sd [: -5])
31 except Exception as e:
32 return {
33 ’statusCode ’: 500,
34 ’body ’: json.dumps(f"Waf - Latency Exception : {e

}")
35 }

Listing 7.3: Average WAF Latency metric

53

Visual Interface in AWS

Then, the result of the aggregation was pushed to CloudWatch using Boto3. The
latter requires to specify the Namespace that collects the new metric and then all
the MetricData that contains:

• Name

• Dimensions

• Timestamp

• Value

• Unit

1 try:
2 response = cw. put_metric_data (
3 Namespace =’ECS/ ContainerInsights ’,
4 MetricData =[
5 {
6 ’MetricName ’: ’WafLatency ’,
7 ’Dimensions ’: [
8 {
9 ’Name ’: ’ClusterName ’,

10 ’Value ’: ’WafCluster ’
11 },
12 {
13 ’Name ’: ’ServiceName ’,
14 ’Value ’: ’WafService ’
15 },
16 {
17 ’Name ’: ’TaskDefinitionFamily ’,
18 ’Value ’: ’WafTaskDef ’
19 },
20],
21 ’Timestamp ’: startd ,
22 ’StatisticValues ’: {
23 ’SampleCount ’: 1.0,
24 ’Sum ’: avg_time ,
25 ’Minimum ’: avg_time ,
26 ’Maximum ’: avg_time
27 },
28 ’Unit ’:’Milliseconds ’
29 },
30])
31 # Display error
32 except ClientError as e:
33 print(e. response [’Error ’][’Message ’])

Listing 7.4: Pushing a custom metric into Cloudwatch

54

Visual Interface in AWS

Printing the output into the Lambda’s console can be used for finding errors since
it will automatically send the result to the Log Group of the Lambda function.
Also, it is possible to print a limited number of characters in the console. The same
steps could be repeated to create the custom metrics for the AWS dashboard. The
new metrics published on AWS Cloudwatch will take minutes to be available for
the first time.

Since Lambda functions are not instances always running, it is necessary to con-
figure triggers that start the code execution. There is an extensive list of possible
trigger implementations. The latter can include APIs, other Lambdas, batch data
processing, and even services outside of the AWS environment.

An EventBridge cron-based schedule would make the code of the AWS Lambda
function a periodic execution. There is no ideal rate, but there could be compro-
mises considering multiple factors that are correlated:

• How fresh the data must be

• The number of requests per day/month

• The workload on the Elasticsearch Cluster

• The Cost

A valid rate could be to trigger the Lambda function every 5 minutes, taking
as query intervals the same duration so it can reduce the workload on the Elastic
nodes and maintain relatively fresh data. Below there is the cron expression added
to EventBridge:

(0/5 * * * ? *)

On average, the AWS Lambda deployed takes 3 seconds to complete its execution
and repeats 288 times a day (24 hours / 5 minutes) and 8640 times a month. It is
possible to use the AWS Pricing Calculator and select the minimum resources for
memory (128 MB) and ephemeral storage (512 MB):

Figure 7.3: Estimated cost for the AWS Lambda of the Dashboard

55

Visual Interface in AWS

To the costs of the Lambdas, there is an additional 5$ a month for the dashboard
and 0.30$ for each custom metric created (Price of November 2023).

These are the metrics obtained considering a data point every 5 minutes:

1. The average Latency added to all the requests and just the slower top 5% by
the WAF with and without timeouts (Latency > 240 seconds). It is possible
to add the following condition to the filter’s list to remove timeouts:

1 {
2 "range": {
3 " transaction . response .waf - latency ": {
4 "lt": 240000
5 }
6 }}

Listing 7.5: Timeouts filtered out

Furthermore, two queries were utilized to retrieve only the top 5%. The
first one gets the 95th percentile value by applying an aggregation, while
the second filters out all the values below that number in milliseconds and
calculates the average value.

1 aggs ={
2 " top_5_perc ": {
3 " percentiles ": {
4 "field": " transaction . response .waf - latency ",
5 " percents ": [95]
6 }}
7 }

Listing 7.6: 95th percentile value

56

Visual Interface in AWS

Figure 7.4: Average WAF Latencies

The picture above contains two graphs that show the four metrics created.
On the left, the average WAF Latency excludes timeouts. On the right, there
is the graph that includes all the documents.

2. The percentage of requests that are allowed, blocked, or alerted. Here, it was
possible to utilize the terms aggregation. The latter counts the document’s
occurrences of a specific field value. Then, the three values retrieved were
pushed separately to create a custom metric for each value count.

1 aggs ={
2 " wafstatus ":{
3 "terms": {
4 "field": " status . keyword ",
5 " include ": [" allowed ", " blocked ", " alerted "

],
6 " min_doc_count ": 0,
7 "size":3
8 }
9 }}

Listing 7.7: Waf Status Aggregation

Figure 7.5: WAF requests’s status percentage

57

Visual Interface in AWS

3. Latency added by the WAF considering different time slots (Now, 1H ago, 6H
ago, 12H ago, 1D ago, and 3D ago). The date_range bucket aggregation
could be utilized to group documents sharing the same timestamp interval.
Eventually, it was possible to calculate the average WAF Latency value and
push the results separately into AWS Cloudwatch.

1 aggs ={
2 " time_per_date ": {
3 " date_range ": {
4 "field": " @timestamp ",
5 " format ": " strict_date_optional_time ",
6 " ranges ": [
7 {
8 "key": "Now",
9 "from": startdatenow ,

10 "to" : enddatenow
11 },
12 {
13 "key": "1H",
14 "from": startdate1h ,
15 "to" : enddate1h
16 }, {
17 "key": "6H",
18 "from": startdate6h ,
19 "to" : enddate6h
20 }, {
21 "key": "12H",
22 "from": startdate12h ,
23 "to" : enddate12h
24 },{
25 "key": "1D",
26 "from": startdate1d ,
27 "to" : enddate1d
28 },{
29 "key": "3D",
30 "from": startdate3d ,
31 "to" : enddate3d
32 }
33]
34 }, "aggs": {
35 " avg_time ": {
36 "avg": {
37 "field": " transaction .resp.waf - latency "
38 }}
39 }}}

Listing 7.8: Average Waf Latency in different intervals

58

Visual Interface in AWS

The following graphs show the precise value of the average WAF Latency for a
5-minute interval, and they also contain a preview of what happened before:

Figure 7.6: Average WAF Latencies of 5-minute intervals

7.3 Elasticsearch Nodes Metrics
The previous paragraph showed some examples of possible metrics that were ob-
tainable by analyzing the content of the documents in Elasticsearch. However,
there is no information about the Elasticsearch Cluster. The Elasticsearch Python
library also provides access to APIs that enable to get additional statistics about
the nodes.

In particular, an Elasticsearch client could be utilized to call the nodes.stats()
[27] method in Python and retrieve these metrics:

• fs: it contains information about the file system and disk storage.

• process: it has statistics about CPU usage.

• JVM: it keeps statistics about heap memory.

1 res = await esclient .nodes.stats(metric =[’fs’, ’process ’, ’jvm ’],
2 filter_path =["nodes .*. name",
3 "nodes .*. fs.total. total_in_bytes ",
4 "nodes .*. fs.total. free_in_bytes ",
5 "nodes .*. jvm.mem. heap_used_percent ",
6 "nodes .*. process .cpu. percent "])

Listing 7.9: Elasticsearch nodes statistics

The filter_path parameter enables retrieving only the specified values. The
nodes.stats() method provides numerous statistics, so applying a filter was
necessary. The code above will get the name, the free disk storage, the total disk
storage, and the percentage of JVM heap and CPU used for every node. Then, it is
possible to add these new metrics in a new CloudWatch namespace (Elastic/stats).
Eventually, the names of the cluster and the nodes as Dimensions were required.

59

Visual Interface in AWS

Three metrics would be obtained for each node of the Elasticsearch cluster and
added to the AWS dashboard:

Figure 7.7: CPU Utilization of Elasticsearch Nodes

Figure 7.8: Memory Utilization of Elasticsearch Nodes

A Gauge chart could be used for the free disk percentage since the nodes’ storage
percentage changes slower than the CPU and Memory values:

Figure 7.9: Free disk percentage of Elasticsearch Nodes

60

Visual Interface in AWS

7.4 Widget using Query Syntax
A WAF is supposed to offer its protection to more than one web application.
Kibana would provide a complete view of all the statistics for each of them. But to
integrate a preview of how much latency the WAF is adding for single applications
in the AWS Dashboard, the steps used before would generate a metric for each
website.

Since every custom metric has a fixed cost per month in CloudWatch, this ap-
proach is not scalable. Even when creating metrics only for the top 15 slower web
applications, they must have the same combination of dimensions. And one of
them must be the hostname to recognize the web apps.

Figure 7.10: Price estimation using the previous approach

For example, if there are 1000 web applications, each would have a different host-
name. Some services may be slower than others, but the ranking of latency value
might change every 5 minutes. Maybe not all of them, but it is highly possible
that in the long run, at least half of the web applications appear at least once in
the top 15, considering the small time interval.

All the documents were grouped by hostname in 5-minute intervals using an Elas-
ticsearch query to solve this issue. Then, it was possible to aggregate each bucket
by computing the average over the WAF latency value.

61

Visual Interface in AWS

Eventually, the results of each bucket were sorted using the descending order, and
just the top 15 were kept:

1 aggs ={
2 "host": {
3 "terms": {
4 "field": " transaction .host. keyword ",
5 "size": 500
6 }, "aggs": {
7 " avg_time ": {
8 "avg": {
9 "field": " transaction . response .waf - latency "

10 }},
11 " time_bucket_sort ": {
12 " bucket_sort ": {
13 "sort": [
14 {" avg_time ": {"order": "desc"}}
15],
16 "size": 15
17 }}
18 }}}

Listing 7.10: Top 15 web apps with high Average WAF Latency

Afterwards, it was possible to create a list of logs, change the timestamp in a com-
patible format for AWS, and push them into a Log Group in CloudWatch:

1 list_host =[]
2 timestamp = int(round(datetime . fromisoformat (ed [: -5]). timestamp ()

*1000))
3 for r in response_host [" aggregations "][’host ’][’buckets ’]:
4 list_host . append ({" timestamp ": timestamp ,
5 " message " : f"host: {r[’key ’]},
6 average : {round(r[’ avg_time ’][’ value ’], 2)},
7 doc_count : {r[’ doc_count ’]}"})

Listing 7.11: Logs format for Cloudwatch

62

Visual Interface in AWS

1 try:
2 res= cw_logs . put_log_events (
3 logGroupName =’dashboard /host -waf - latency ’,
4 logStreamName =’host -pl -avg ’,
5 logEvents = list_host
6)
7 # Display error
8 except ClientError as e:
9 print(e. response [’Error ’][’Message ’])

Listing 7.12: Sending Logs to CloudWatch

The AWS Lambda function adds 15 logs to CloudWatch every 5 minutes. A new
Widget[28] has been deployed in the dashboard that performs a query from the se-
lected Log Group and displays just the newest ones ordered by latency value:

Figure 7.11: Logs query for the AWS Widget

This will be the result in the AWS Dashboard:

Figure 7.12: Top 15 hostnames with the highest Average WAF Latency in a 5
minute interval

63

Visual Interface in AWS

7.5 Alarm Widget
The AWS dashboard has a built-in widget that allows customers to monitor all the
alarms they created in their Region, and it gives a quick preview in case something
is not working as it should.

The deployed alarms are:

• Health status of EC2 Instances.

• Warning and Error Logs count for ECS.

• CPU and RAM usage for multiple AWS services.

• Active tasks number in ECS.

• Status change for ECS, EC2, and other resources.

• Received Bytes of Network Traffic in ECS.

The following figure shows the alarm widget:

Figure 7.13: Alarm list

7.6 AWS Custom Widgets
The widgets of the dashboard are updated every 5 minutes, but they did not
support any user interaction outside of the observed time interval. However, AWS
provides an alternative to the standard widgets. It is possible to design custom
widgets using AWS Lambda functions[29].

When a custom widget is created, an AWS Lambda can be linked to it, and what-
ever the Lambda returns in HTML, it will show the result in the AWS Dashboard.
CSS and SVG are also supported, but Javascript is not allowed for security rea-
sons.

64

Visual Interface in AWS

It is possible to use the <cwdb-action> tag to interact with the elements of
the Lambda function from the dashboard and trigger another AWS Lambda call
that can execute some code. Then, the result will appear in a new popup or as a
substitute for the custom widget.

A list of HTML buttons could be added to the dashboard. So, when someone clicks
them, a function performs a specific action. An AWS Lambda could serve more
than one button, passing as payload a variable that determines what to do.

In the following code, the customer’s list is retrieved automatically from the
database. So, every time a new customer arrives, it gets added to the AWS Dash-
board.

1 # Create a list of html text that will be used to return the
buttons in the Study Dashboard that calls other lambdas

2 string_list =[]
3

4 string_list . append (’<h3 >Check Routes Reachability through WAF
inside VPC: ’)

5 for c in customers :
6 name=f"HWaf_{c}"
7 button =f ’’’{c}
8 <cwdb - action action =" call" endpoint =" arn:aws: lambda :eu

-central -1:{ os. environ [’ ACCOUNT_ID ’]}: function :Check - Services ">
’’’ + json.dumps ({ " CheckType " : name }) + " </cwdb -action >"

9

10 string_list . append (button)
11 string_list . append (’</h3 >
’)

Listing 7.13: Customer buttons generation

Eventually, the HTML strings contained in the list variable will be joined to return
the final HTML in the custom widget:

1 html2= ’’.join(string_list)
2 return html2

Listing 7.14: The code joins and returns the HTML text

65

Visual Interface in AWS

In the new Lambda function, it is possible to access the payload sent from the
event variable. The latter could be utilized to assign different portions of the code
to determine specific tasks for each button:

1 #event contains the check type and the customer selected by the
button

2 checkType = event.get(" CheckType ", ’’)
3

4 # Example : checktype_customer1
5 check= checkType .split("_" ,1)

Listing 7.15: Retrieving the check type

The buttons created with the custom widget are shown in the following im-
age:

Figure 7.14: Custom widget

66

Chapter 8

Debugging and
Automation

As mentioned before, when a WAF is in front of Web Applications, the latter must
block all the traffic not passing through the WAF. Since it is the responsibility of
the web app owner to restrict access, there could be misconfigurations that could
lead to possible attack vectors bypassing the WAF protection. In this case, an
attacker who discovers the public IP of the web application can freely act without
one layer of defense. This Chapter describes how to utilize the buttons created
before for debugging. Then, it shows how to create reports and send them via
mail or save them into a S3 Bucket.

8.1 Reachability Inside and Outside VPC
The buttons, created as a custom widget in the AWS Dashboard, call another
AWS Lambda, which performs a specific task. In particular, it sends asynchronous
HEAD requests and DNS lookups to all the web applications of a precise customer
to check if every configuration is as it should be.

Five checks are possible:

1. Check reachability passing through WAF where the AWS Lambda is inside
the same VPC and subnet.

2. Check reachability not passing through the WAF where the AWS Lambda is
inside the same VPC and subnet.

67

Debugging and Automation

3. Check reachability passing through WAF where the AWS Lambda is outside
its VPC.

4. Check reachability from outside not passing through the WAF.

5. Check if the DNS lookups return the correct IP addresses.

The code’s structure for the first four checks is quite similar but with some minor
differences. All of them start with the encapsulation of a connection pool in a
session utilizing the aiohttp Python library:

1 async def check_host (web_apps):
2 async with aiohttp . ClientSession (cookies =None) as session :
3 await fetch_all (session , web_apps)

Listing 8.1: Client session

Considering customers that could have multiple web applications, an array of tasks
was created in Python. So, AWS Lambda could send requests to every hostname
of each customer’s application. And then, it puts all the results in a Log Group
on CloudWatch.

1 async def fetch_all (s, web_apps):
2 #sends all the requests to the hostnames of a customer and

push the results in a AWS Log Group
3 tasks = []
4 events = []
5 timestamp = int(round(datetime . datetime . utcnow (). timestamp ()

*1000))
6 for service in list(web_apps):
7 for hostname in service [’hostnames ’]:
8 tasks. append (asyncio . create_task (fetch(s, hostname ,

events , timestamp)))
9 await asyncio . gather (* tasks)

10 try:
11 cw_logs = client ("logs", region_name =os. environ [’REGION ’])
12 res= cw_logs . put_log_events (
13 logGroupName =’dashboard / check_logs ’,
14 logStreamName =’hosts - reachability ’,
15 logEvents = events
16)
17 except Exception as e:
18 print(e)

Listing 8.2: Managing the tasks and logging the result

68

Debugging and Automation

Every task would be slightly different. This is the case 1 and 3, where the requests
are checked by the WAF:

1 async def fetch(s, hostname , events , timestamp):
2 #send an async request to a hostname and append the result to

the " events " list
3 url = ’https :// ’ + hostname
4 try :
5 async with s.head(url , timeout =15, ssl=False) as r:
6 events . append ({" timestamp ": timestamp , " message " : f"

Host: { hostname }, Reachable : Yes , Status_Code : {r. status }
"})

7 except Exception as e:
8 events . append ({" timestamp ": timestamp , " message " : f"Host:

{ hostname }, Reachable : No"})

Listing 8.3: Case 1 and 3: Task

In case 2, the requests are sent directly to the web application’s public IP address.
This check is meaningful to exclude the WAF guilt when it is needed to find the
solution to an issue.

1 async def fetch_no_waf (s, hostname , ip_address , port , events ,
timestamp):

2 #send an async request to an upstream and append the result to
the " events " list

3 url = ’https :// ’ + ip_address
4 header = hostname + ’:’ + str(port)
5 try :
6 async with s.head(url , timeout =15, headers ={"Host": header

}, ssl=False) as r:
7 events . append ({" timestamp ": timestamp , " message " : f"

Host: { hostname }, Upstream : { ip_address }, Reachable : Yes ,
Status_Code : {r. status }"})

8 except Exception as e:
9 events . append ({" timestamp ": timestamp , " message " : f"Host:

{ hostname }, Upstream : { ip_address }, Reachable : No"})

Listing 8.4: Case 2: Task

In the first two cases, the AWS Lambda was in the same Subnet of the WAF.
While in cases 3 and 4, the function was not assigned to any specific VPC. This
last configuration simulates a user who wants to send a request to the web appli-
cation.

69

Debugging and Automation

Case 4 simulates a user who tries to send the request directly through the public IP
of a web application. In this scenario, all the web apps must be unreachable:

1 async def fetch_no_waf (s, host , ip_address , events , timestamp):
2 #send an async request to an upstream and append the result to

the " events " list
3 url = ’https :// ’ + ip_address
4 try :
5 async with s.head(url , timeout =15, ssl=False) as r:
6 events . append ({" timestamp ": timestamp , " message " : f"

Host: {host}, Upstream : { ip_address }, Reachable : Yes ,
Status_Code : {r. status }"})

7 except Exception as e:
8 events . append ({" timestamp ": timestamp , " message " : f"Host:

{host}, Upstream : { ip_address }, Reachable : No"})

Listing 8.5: Case 4: Task

Eventually, the last check would be on the configuration of the web application’s
DNS. The DNS Lookup provides specific public IPs as a response. In particular,
the users must reach the WAF before the offered service.

In the code below, the socket Python library was utilized to resolve the DNS
lookup:

1 def check_dns (web_apps):
2

3 #Load balancers client
4 lbclient = client (’elbv2 ’, region_name =os. environ [’REGION ’])
5 response = lbclient . describe_load_balancers ()
6 list_ip =[]
7

8 #IPs of the LBs
9 for l in response [’LoadBalancers ’]:

10 addrinfo = socket . getaddrinfo (l[’DNSName ’], None)
11 for info in addrinfo :
12 _, _ ,_ ,_, address = info
13 list_ip . append (address [0])
14

15 #IPs of Global Accelerator
16 addrinfo = socket . getaddrinfo (os. environ [’GA_DNS_NAME ’], None)
17 for info in addrinfo :
18 _, _ ,_ ,_, address = info
19 list_ip . append (address [0])
20

21

70

Debugging and Automation

22 #Add elastic IPs of the NAT Gateways (FIXED)
23 list_ip . append (os. environ [’NAT_GATEWAY_IP1 ’])
24 list_ip . append (os. environ [’NAT_GATEWAY_IP2 ’])
25

26 #Check if the IPs returned from DNS lookups are in the list
27 events = []
28 timestamp = int(round(datetime . datetime . utcnow (). timestamp ()

*1000))
29 for u in web_apps :
30 for hostname in u[’hostnames ’]:
31 dns_lookup (hostname , u[’address ’], timestamp , events ,

list_ip)

Listing 8.6: Retrieving the list of IPs and launching the DNS Lookups

1 def dns_lookup (hostname , upstream_ip , timestamp , events , list_ip):
2 try :
3 addrinfo = socket . getaddrinfo (hostname ,None)
4 ip= []
5 for info in addrinfo :
6 _, _ ,_ ,_, address = info
7 ip. append (address [0])
8 check="YES"
9 for i in ip:

10 if i not in list_ip :
11 check="NO"
12 break
13 events . append ({" timestamp ": timestamp , " message " : f"Host:

{ hostname }, Upstream : { upstream_ip }, IPs found: {list(
set(ip))}, Internal IPs: {check}"})

14 except Exception as e:
15 events . append ({" timestamp ": timestamp , " message " : f"Host:

{ hostname }, Upstream : { upstream_ip }, Error resolving DNS
Lookup "})

Listing 8.7: Checking the responses and updating the event list

71

Debugging and Automation

8.2 Links to Debugging Results
In the previous paragraph, The AWS Lambda pushed all the requests’ results in
a CloudWatch Log Group. To make access to the generated logs faster, a small
textual widget in Markdown was added to the dashboard that would contain links
to the location of the logs:

Figure 8.1: Links to results’ location

It is possible to obtain the above picture’s output by creating a Markdown Widget
in the AWS Dashboard that contains the following lines multiple times:

Links to results for the debug calls

Log Groups

Routes Reachability through WAF inside VPC: [button:
primary:H_WAF Logs](link-to-log-group)

8.3 Creating CSV Files and Pushing Them into
S3

The deployed AWS Dashboard allows administrators to check metrics through
graphs and send requests to multiple web applications using one click. Eventually,
another feature was added to the dashboard. It collects data from an extensive
period using custom widgets. For example, it can count the requests that every
hostname received in the last 30 days.

72

Debugging and Automation

Since analyzing these records could be inconvenient in Log Groups, the results
retrieved have been saved into a CSV file from an AWS Lambda using Python.
The Python Standard Library already has a built-in module that manages the
CSV files. So, it was not necessary to create another Lambda Layer.

Elasticsearch queries retrieved the data of interest (Requests count and the sum
of the Content of requests and responses in MB) sent to singular hostnames and
divided by customers. In this case, all the documents older than the last 30 days
were excluded. Then, it was required to create a bucket of Elasticsearch documents
for each customer (group by) and apply the same aggregation again for each
hostname. Eventually, the sum metric aggregation was applied to the field of
interest.

It is possible to create files in AWS Lambda functions, but since they have just
ephemeral storage, all the data would be lost when the execution ends. It was
needed to temporarily generate a new CSV file in the /tmp/ folder with the
permission to write on that file. Afterwards, a writer object from the CSV library
converted the data in the correct format for the CSV file, and its writerow()
method added the values to the CSV file. The code creates a separate file for each
customer through a for loop and orders the lines based on the descending value of
the selected field before putting the data in the file.

1 for customer , v in result .items ():
2 d=dict(sorted (v[’host ’]. items (), key= lambda item: item [1],

reverse =True))
3 with open(f’/tmp /{ date.day }-{ date.month }-{ date.year}_{ customer

}_req.csv ’, ’w’, newline =’’) as f:
4 thewriter = csv. writer (f)
5 thewriter . writerow ([’Hostnames ’,’Request Traffic (MB)’])
6 for h, c in d.items ():
7 thewriter . writerow ([h,f’{int(round(c /(1024*1024) ,3))

:,}’])

Listing 8.8: CSV File creation

As mentioned before, AWS Lambda can’t maintain the files created. But, there is
an AWS service that can solve this issue. Amazon S3 (Simple Storage Service
)[30] is a service that offers storage capabilities and security to save data on the
cloud. S3 considers every file as an object. The latter has its unique key and
can even support versioning. S3 objects are stored in customizable Buckets with
different configurations and policies to control access and organization.

73

Debugging and Automation

After bucket creation, called my-s3bucket in this case, it was possible to utilize
the s3 client from the AWS Lambda using the boto3 AWS SDK:

s3_client = client(’s3’,
region_name=os.environ[’REGION’])

The parameters required for the upload_file() method were:

• The source file that is contained in the tmp folder.

• The destination bucket.

• The destination path and file name. It is possible to create a new folder if
not found.

1 resp = s3_client . upload_file (f’/tmp /{ date.day }-{ date.month }-{ date.
year}_{ customer }_req.csv ’,

2 os. environ [’S3_BUCKET ’],
3 f’request_traffic /{ date.day }-{ date.month }-{ date.year}_{

customer }_req.csv ’)

Listing 8.9: Pushing into the S3 Bucket

8.4 Daily and Monthly Reports in Python
The developed monitoring system provides a general visual preview and statistics
about simple and custom metrics on both the ECS and Elasticsearch Cluster,
an alarm system that sends email notifications in case of problems, and a debug
feature that allows checking the customers’ configurations and creating custom
CSV file saved on S3. Having a dashboard is useful when it is required to analyze
how an architecture is behaving, but not everyone has the will to learn, set, and
manage an AWS User account.

The AWS Dashboard provides the functionality to share the dashboard via mail
to existing users with credentials or to make it even public and accessible using
links. However, there are some security issues to consider since collecting sensitive
information from the dashboard is possible.

For example, all the users that access the AWS Dashboard can read not only
metrics and EC2 instances present in the monitoring system. But all the other
ones are present in the account. Even if there is no need to share the AWS
dashboard outside of the cloud environment, it is possible to exploit the AWS
Lambda function for generating daily and monthly reports that provide a summary
based on data from the previous day or month.

74

Debugging and Automation

A daily or monthly report executes the Lambda function’s code with a lower
frequency than the one used for the metrics (every 5 minutes). But also the
quantity of documents it has to work on is higher. In this scenario, it would
be better not to use asynchronous queries since the lambda would run once a
day/month. In particular, considering several simultaneous queries on documents
collected in approximately 30 days, there could be a heavy workload on the nodes
that could be avoided by simply executing the queries sequentially.

One way to send reports is using emails. It was possible to get the statistics from
Elasticsearch, applying minor changes to the utilized queries to create metrics for
the dashboard. The following code saves the result of the Elasticsearch in a list of
lists. It is one of the supported inputs to create the table’s rows:

1 custres =[]
2 for r in query_response [" aggregations "][’customers ’][’buckets ’]:
3 cust_count =r[’doc_count ’]
4 custres . append ([r[’key ’], f’{int(cust_count):,}’])

Listing 8.10: Tabulate input format

Python’s tabulate library allows developers to create tables and, in general, to
format tabular data. The tabulate() function, provided by the homonymous
library, was utilized to give a more ordered view of the results and add multiple
tables to the HTML body:

1 #Email body
2 BODY_HTML = f ’’’<html >
3 <head ></head >
4 <body >
5 <h1 >Daily Report </h1 >
6 <h2 >From: {sd}</h2 >
7 <h2 >To: {ed}</h2 >
8

9 <h3 > Customers Count :</h3 >

10 { tabulate (custres , headers =[" Customer --------------"," Number of
requests "], tablefmt =" html ")}

11

12

13 ...
14

15 </body >
16 </html > ’’’

Listing 8.11: Simplified HTML email body

75

Debugging and Automation

Then, it was required to specify the headers and the format, which would be
HTML in this case. A new Lambda Layer must be created and added to the AWS
Lambda function to utilize tabulate.

Several different tables and data could be inserted in the mail body. Considering a
daily report, information that could be useful is the average WAF latency divided
by the hour from Elasticsearch. In particular, it could help to investigate when
something was not working and research the reason behind it. It was possible to
obtain these data using the bucket aggregation date_histogram with a specific
time interval:

1 aggs ={
2 " req_per_hour ": {
3 " date_histogram ": {
4 "field": " @timestamp ",
5 " calendar_interval ": "hour"
6 },
7 "aggs": {
8 "avg -waf - latency ":{
9 "avg": {

10 "field": " transaction . response .waf - latency "
11 }
12 }
13 }}}

Listing 8.12: Calendar interval aggregation

The following code creates three columns in the table (Time interval, average WAF
Latency, Request Count) and a row for each hour of the day:

1 hour_table =[]
2 for r in res_hours [" aggregations "][’req_per_hour ’][’buckets ’]:
3 d= datetime . fromisoformat (r[’key_as_string ’][: -5])
4 request_count =r[’doc_count ’]
5 hour_table . append ([d, str(round(r[’avg -waf - latency ’][’value ’])

), "", f’{int(request_count):,}’])

Listing 8.13: Tabulate table format

76

Debugging and Automation

8.5 Email Automation in Lambdas using SES
The previous paragraph showed how to create a simple mail body in HTML with
the option to add all the relevant data and needed tables. The Boto3 AWS SDK
also supports email delivery. In particular, it can interact with AWS SES (Simple
Email Service).

Here is a description of how it works from the AWS Documentation[31]: “Amazon
Simple Email Service (SES) is an email platform that provides an easy, cost-
effective way for you to send and receive email using your own email addresses and
domains.”

A “Verified identity” must be configured in AWS SES to send emails. It represents
proof of ownership of the email address or the domain. However, only the sender
needs verification. Then, specific access policies must be added to the Lambda
function’s role and set a periodical trigger on AWS Eventbridge after the email
verification. Eventually, it was possible to create an AWS SES client using Boto3
and send the custom email previously created:

1 try:
2 ses_client = client (’ses ’, region_name =os. environ [’REGION ’])
3 #Send email
4 response = ses_client . send_email (
5 Destination ={
6 ’ToAddresses ’: [’mydestination@example .com ’],
7 },
8 Message ={
9 ’Body ’: {

10 ’Html ’: {
11 ’Charset ’: ’UTF -8’,
12 ’Data ’: BODY_HTML ,},
13 },
14 ’Subject ’: {
15 ’Charset ’: ’UTF -8’,
16 ’Data ’: f’Daily Report {date.day }-{ date.month }-{ date.

year}’,
17 },
18 },
19 Source =’verifiedmail@example .com ’)
20 # Display error
21 except ClientError as e:
22 print(e. response [’Error ’][’Message ’])
23 else:
24 print(f"Email sent! Message ID: { response [’ MessageId ’]}")

Listing 8.14: Sending emails using AWS SES

77

Debugging and Automation

The following picture contains a preview of two tables created for the daily re-
port:

Figure 8.2: Example of mail report

78

Debugging and Automation

8.6 Costs Report using Excel
The previous steps were utilized to automate the generation of Excel files that
provide a monthly cost analysis. In particular, an AWS Cost Explorer client was
created using Boto3 to retrieve the monthly cost of the AWS infrastructure.

Furthermore, Elastic Cloud provides an API that allows customers to obtain the
costs for the nodes of the Elastic Cluster. In this case, an API KEY and the
Organization ID were required to access:

1 ce_client = client (’ce’, region_name =os. environ [’REGION ’])
2

3 ce_resp = ce_client . get_cost_and_usage (
4 TimePeriod ={
5 ’Start ’: f’{ previous .year }-{ previous .month }-01’,
6 ’End ’: f’{ current .year }-{ current .month }-01’
7 },
8 Granularity =’MONTHLY ’,
9 Metrics =[

10 ’AmortizedCost ’,
11])
12

13 aws_price = round(float(ce_resp [’ResultsByTime ’][0][’Total ’][’
AmortizedCost ’][’Amount ’]) ,2)

14

15 es_resp = requests .get(f"https :// api.elastic -cloud.com/api/v1/
billing /costs /{os. environ [’ ELASTIC_ORG_ID ’]}? from ={ previous .
year }-{ previous .month }-01 T00 :00:00.000 Z&to={ current .year }-{
current .month }-01 T00 :00:00.000 Z", headers = {" Authorization ": f"
ApiKey {os. environ [’ API_KEY ’]}"})

16 es_price =json.loads(es_resp .text)[’costs ’][’total ’]
17

18 total_cost = aws_price + es_price

Listing 8.15: Retrieving costs from AWS and Elastic Cloud

Once all the metrics of interest from AWS and Elasticsearch were retrieved, the
openpyxl Python library was utilized to create and add several values and for-
mulas to different Excel Sheets.

Then, the monthly Excel file will be uploaded to an S3 Bucket. The latter also
contains an annual file called Total_{previous.year}.xlsx that will be
downloaded in the AWS Lambda /tmp/ folder.

79

Debugging and Automation

Afterwards, a Python function will insert the values of the monthly Excel in the
annual one, and eventually, the AWS Lambda pushes the updated version again
to the S3 Bucket:

1 # Upload excel to S3
2 try:
3 s3_client = client (’s3’, region_name =os. environ [’REGION ’])
4 resp = s3_client . upload_file (f’/tmp/ Costs_ { previous .month }-{

previous .year }. xlsx ’, os. environ [’S3 - Bucket ’], f’Cost_Reports /{
previous .year }/ Costs_ { previous .month }-{ previous .year }. xlsx ’)

5

6 first =0
7 if previous .month == 1:
8 first =1
9 else:

10 d_resp = s3_client . download_file (os. environ [’S3 - Bucket ’],
f’Cost_Reports /{ previous .year }/ Total_ { previous .year }. xlsx ’, f’/
tmp/ Total_ { previous .year }. xlsx ’)

11

12 merge_script . fill_excel (first , previous .year , previous .month)
13 resp = s3_client . upload_file (f’/tmp/ Total_ { previous .year }. xlsx

’, os. environ [’S3 - Bucket ’], f’Cost_Reports /{ previous .year }/
Total_ { previous .year }. xlsx ’)

14

15 except Exception as e:
16 print(f"Error in uploading the Excel to s3: {e}")

Listing 8.16: Pushing the monthly Excel and updating the annual one

80

Chapter 9

Dashboard Limitations

The dashboard previously created on AWS CloudWatch has some limitations. It
provides a general view of the statistics. However, it is not flexible about data.
It allows users to create a lot of custom metrics and aggregate them based on
the data points published on CloudWatch metrics. But, if a specific customer
web application must be analyzed considering multiple fields in an Elasticsearch
document, it would not be feasible.

It is possible to automate the creation of all metrics based on document variables,
but how scalable could that approach be? Likely, checking just one field is not
enough to make decisions. A combination of more fields could be required. In
particular, in case the reason behind the misbehavior of the architecture is un-
known.

9.1 Kibana
As mentioned before, the Elastic Stack is not composed only of Elasticsearch. The
latter is responsible mainly for document management and storage, whereas it is
possible to utilize Kibana for observability and monitoring of the Elasticsearch
data.

Kibana is a powerful application that allows users to visualize and create dash-
boards with high document flexibility and fast data analysis capabilities. It also
supports alerting, log interaction, and a lot more.

81

Dashboard Limitations

Figure 9.1: Kibana’s filter panel

Kibana supports two query languages to filter documents:

• KQL (Kibana Query Language)

• Lucene

KQL allows users to combine multiple text-based queries using AND or OR operators
and supports wildcards for fields or values. For example, it is possible to filter out
all the documents with a latency lower than 50 ms for a specific customer with
this command:

Figure 9.2: Example of KQL

It offers maximum flexibility over the documents required for analysis. It can also
be utilized to set a custom filter and time interval for documents that would be
applied automatically as the default configuration of Kibana.

9.2 Dashboard Visualizations
In the Kibana Dashboard, the term visualization refers to the widgets (called in
the AWS Dashboard) that could be utilized to create custom graphs and more.
Every visualization has a visualization layer that determines the structure of the
widget (e.g. vertical bar, line, pie charts, gauge, etc.)

Kibana dashboards support switching modality from view to edit to add new
visualizations. Then, for every widget, it is required to specify the index that
collects the documents and what it will contain as horizontal and vertical axis
values.

For example, to get the average latency added by the WAF, it is possible to choose
the timestamp value as the horizontal axis and a function as the vertical one. The
average metric aggregation is one of the simple functions available by default, and
it could be applied to fields present in the documents.

82

Dashboard Limitations

Figure 9.3: Left: Average WAF Latency. Right: Requests count

Similar steps were utilized to add the count of all the requests by choosing another
aggregation type. It is possible to generate all the basic graphs needed using
Kibana, and its high flexibility, allows users to change the targets of analyses in
seconds using filters.

The first graph below compares the impact the WAF applies on the latency of
the requests with the one that the customers’ application would have without
the active protection. The second one counts the number of requests considered
legit (allowed), blocked, and alerted. In this case, a standard function is not
enough:

Figure 9.4: Left: Average WAF Latency + Average latency of customer web apps
without the WAF. Right: WAF status count

A custom formula must be added on the vertical axis for each metric. In particular,
the KQL was utilized to apply a filter before the count aggregation:

1. count(kql=’status.keyword : allowed’)

2. count(kql=’status.keyword : blocked’)

3. count(kql=’status.keyword : alerted’)

83

Dashboard Limitations

As mentioned before, Kibana supports more types of visualization. Since line and
bar charts can become confusing when having more than 3-4 metrics in the ver-
tical axis, a heatmap has been used to achieve a more granular visualization.
It was possible to check the average latency added by the WAF grouped by cus-
tomer:

Figure 9.5: WAF Latency Heatmap

Then, every document in the customer bucket has been assigned to different in-
tervals based on custom limits. It is possible to configure different colors to get
a clear view of how everything is working. In the visualization’s configuration,
values could be added in cell value intervals from a panel once the aggregation
metric for a field has been done:

(a) Configuration of intervals (b) Description

Kibana’s dashboard provides the functionality to create tables that perform custom
aggregations and collect all the results in rows. The following two tables hold
information about the count of requests that fall in a specific interval of status
code value, divided by customer and hostname in descending order, considered
over the sum of the hostname requests.

84

Dashboard Limitations

Then, it could be meaningful to get an ordered list of IPs that send numerous
requests to perform investigations and analysis:

Figure 9.7: Left: Status Code count. Left: Request count by IPs.

The two tables below show the total number of requests per customer if a data
breach happened and how many have been detected, divided by hostname and
customer. In this last case, an AWS Lambda function periodically generates a
report with the information to inform the customers.

Figure 9.8: Left: Request count by customer. Right: havebeenpwned count

9.3 Apdex in Kibana
In the previous paragraph, some simple visualizations were created in Kibana.
However, it is possible to add a new metric to provide a different evaluation of
how the WAF is performing.

This metric is called Apdex and from Wikipedia’s definition[32]:

“Apdex (Application Performance Index) is an open standard developed by an
alliance of companies for measuring the performance of software applications in
computing. Its purpose is to convert measurements into insights about user satis-
faction by specifying a uniform way to analyze and report on the degree to which
measured performance meets user expectations.”

85

Dashboard Limitations

Apdex is a metric that provides a score to the overall performance based on the
value of a threshold T. In particular, it requires defining a target value (e.g. 30
ms) for the latency the WAF adds to the requests.

The following formula was utilized to calculate the Apdex score percentage:

Apdex = 100 ∗ Satisfied ∗ 1 + Tollerated ∗ 0.5 + Frustrated ∗ 0
TotalRequests

. (9.1)

In (9.1) the values have the following meaning:

1. Satisfied: The latency added by the WAF to a request is lower than the
target value of 30 ms (T). The request counts as 1.

2. Tolerated: The latency added by the WAF to a request has a value between
T(30 ms) and 4T(120 ms). The request weighs 0.5.

3. Frustrated: The latency added by the WAF to a request is higher than 120
ms (4T). The request is not considered.

4. TotalRequests: Sum of all the requests.

Figure 9.9: Apdex score graph

Eventually, it is possible to use the custom formula panel that Kibana offers in the
vertical axis to get the graph of the Apdex score. In this case, only the allowed
requests were considered in the following formula that utilizes KQL:

100*(count(kql=’transaction.waf-latency < 30 and
status.keyword : "allowed"’)*1 + count(kql=
’transaction.waf-latency >= 30 and
transaction.waf-latency <120 and status.keyword :
"allowed"’)*0.5)/count(kql=’status.keyword : "allowed"’)

The combination of all these visualizations provides an extensive view of the web
applications statistics that resolved the limitation of the previous Dashboard.

86

Chapter 10

Conclusions and Future
Works

In conclusion, the research results demonstrate how it is possible to develop a
monitoring system that can offer additional views for new metrics and statistics of
the overall health status of the WAF infrastructure. In particular, the serverless
approach was utilized to maintain high efficiency while cutting down data gather-
ing costs and to integrate the functionalities of Amazon Web Services and Elastic
Stack. Furthermore, the deployed alerting and debugging system allows the detec-
tion of issues in minutes. While the automation of reports on a daily and monthly
basis provides supplemental summaries that could be useful for performing anal-
ysis.

So, it is possible to assert that all the objectives set at the beginning of the thesis
have been achieved, allowing to improve the quality of service provided to the
customers.

Considering future works, it could be possible to integrate the debugging system
developed utilizing AWS Lambda functions into WAF’s dashboard provided to
the customers. It would enable them to be aware of misconfigurations that could
compromise the security of their web applications and possibly reduce the workload
for the service provider company. Additionally, it could be possible to analyze over
a prolonged period the alarms’ metrics to improve thresholds and reduce even
more false positives. Eventually, a machine-learning solution could be deployed to
prevent and discover new issues.

87

Bibliography

[1] Uptime Institute. Uptime institute’s 2022 outage analysis
finds downtime costs and consequences worsening as indus-
try efforts to curb outage frequency fall short, 2022. URL
https://uptimeinstitute.com/about-ui/press-releases/
2022-outage-analysis-finds-downtime-costs-and-consequences-worsening.

[2] Ponemon Institute. Cost of data center outages, 2016. URL
https://www.vertiv.com/globalassets/documents/reports/
2016-cost-of-data-center-outages-11-11_51190_1.pdf.

[3] Statista. Average cost per hour of enterprise server downtime world-
wide in 2019, 2020. URL https://www.statista.com/statistics/
753938/worldwide-enterprise-server-hourly-downtime-cost/
#statisticContainer.

[4] A. Marget. Unitrends. Downtime: Causes, costs and how to
minimize it, 2021. URL https://www.unitrends.com/blog/
downtime-causes-costs-and-how-to-minimize-it.

[5] Amazon Web Services Inc. Global infrastructure, n.d.. URL
https://aws.amazon.com/about-aws/global-infrastructure/?pg=
WIAWS-N&tile=learn_more.

[6] Amazon Web Services Inc. What is amazon vpc? - amazon virtual private
cloud, n.d.. URL https://docs.aws.amazon.com/vpc/latest/userguide/
what-is-amazon-vpc.html.

[7] Amazon Web Services Inc. Infrastructure security in amazon vpc - amazon vir-
tual private cloud, n.d.. URL https://docs.aws.amazon.com/vpc/latest/
userguide/infrastructure-security.html#VPC_Security_Comparison.

[8] Amazon Web Services Inc. Subnets for your vpc - amazon virtual private
cloud, n.d.. URL https://docs.aws.amazon.com/vpc/latest/userguide/
configure-subnets.html.

88

https://uptimeinstitute.com/about-ui/press-releases/2022-outage-analysis-finds-downtime-costs-and-consequences-worsening
https://uptimeinstitute.com/about-ui/press-releases/2022-outage-analysis-finds-downtime-costs-and-consequences-worsening
https://www.vertiv.com/globalassets/documents/reports/2016-cost-of-data-center-outages-11-11_51190_1.pdf
https://www.vertiv.com/globalassets/documents/reports/2016-cost-of-data-center-outages-11-11_51190_1.pdf
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/#statisticContainer
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/#statisticContainer
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/#statisticContainer
https://www.unitrends.com/blog/downtime-causes-costs-and-how-to-minimize-it
https://www.unitrends.com/blog/downtime-causes-costs-and-how-to-minimize-it
https://aws.amazon.com/about-aws/global-infrastructure/?pg=WIAWS-N&tile=learn_more
https://aws.amazon.com/about-aws/global-infrastructure/?pg=WIAWS-N&tile=learn_more
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/infrastructure-security.html#VPC_Security_Comparison
https://docs.aws.amazon.com/vpc/latest/userguide/infrastructure-security.html#VPC_Security_Comparison
https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html

BIBLIOGRAPHY

[9] Amazon Web Services Inc. Aws identity and access manage-
ment, n.d.. URL https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.html.

[10] Amazon Web Services Inc. What is amazon ec2? - amazon elastic com-
pute cloud, n.d.. URL https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/concepts.html.

[11] Amazon Web Services Inc. What is amazon elastic container service? - ama-
zon elastic container service, n.d.. URL https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/Welcome.html.

[12] Amazon Web Services Inc. What is elastic load balancing? - elas-
tic load balancing, n.d.. URL https://docs.aws.amazon.com/
elasticloadbalancing/latest/userguide/what-is-load-balancing.
html.

[13] Amazon Web Services Inc. Load balancer types - amazon elastic container
service, n.d.. URL https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/load-balancer-types.html#alb-considerations.

[14] Docker Inc. Docker overview, n.d.. URL https://docs.docker.com/
get-started/overview/.

[15] Wikipedia Foundation Inc. Logging (computing), 2023. URL https://en.
wikipedia.org/wiki/Logging_(computing).

[16] Python Software Foundation. logging — logging facility for python, n.d. URL
https://docs.python.org/3/library/logging.html.

[17] Amazon Web Services Inc. What is amazon cloudwatch? - amazon
cloudwatch, n.d.. URL https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/WhatIsCloudWatch.html.

[18] Amazon Web Services Inc. Amazon cloudwatch concepts - amazon cloud-
watch, n.d.. URL https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/cloudwatch_concepts.html.

[19] Amazon Web Services Inc. Filter pattern syntax for met-
ric filters - amazon cloudwatch logs, n.d.. URL https:
//docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
FilterAndPatternSyntaxForMetricFilters.html.

[20] Amazon Web Services Inc. What is amazon eventbridge? - amazon event-
bridge, n.d.. URL https://docs.aws.amazon.com/eventbridge/latest/
userguide/eb-what-is.html.

89

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html#alb-considerations
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html#alb-considerations
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://en.wikipedia.org/wiki/Logging_(computing)
https://en.wikipedia.org/wiki/Logging_(computing)
https://docs.python.org/3/library/logging.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntaxForMetricFilters.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntaxForMetricFilters.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntaxForMetricFilters.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

BIBLIOGRAPHY

[21] Amazon Web Services Inc. What is aws lambda? - aws lambda, n.d.. URL
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[22] Amazon Web Services Inc. Working with lambda layers - aws
lambda, n.d.. URL https://docs.aws.amazon.com/lambda/latest/dg/
chapter-layers.html.

[23] Elasticsearch B.V. Elastic stack, n.d.. URL https://www.elastic.co/
elastic-stack/.

[24] Elasticsearch B.V. Python elasticsearch client — python elasticsearch
client 8.11.0 documentation, n.d.. URL https://elasticsearch-py.
readthedocs.io/en/v8.11.0/.

[25] Elasticsearch B.V. Aggregations | elasticsearch guide [8.11] |, n.d..
URL https://www.elastic.co/guide/en/elasticsearch/reference/
current/search-aggregations.html.

[26] Amazon Web Services Inc. Quickstart - boto3 1.33.1 documenta-
tion, n.d.. URL https://boto3.amazonaws.com/v1/documentation/api/
latest/guide/quickstart.html.

[27] Elasticsearch B.V. Nodes stats api | elasticsearch guide [8.11]
|, n.d.. URL https://www.elastic.co/guide/en/elasticsearch/
reference/current/cluster-nodes-stats.html.

[28] Amazon Web Services Inc. Cloudwatch logs insights query syntax -
amazon cloudwatch logs, n.d.. URL https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html.

[29] Amazon Web Services Inc. Add a custom widget to a cloudwatch dashboard
- amazon cloudwatch, n.d.. URL https://docs.amazonaws.cn/en_us/
AmazonCloudWatch/latest/monitoring/add_custom_widget_dashboard.
html.

[30] Amazon Web Services Inc. What is amazon s3? - amazon simple stor-
age service, n.d.. URL https://docs.aws.amazon.com/AmazonS3/latest/
userguide/Welcome.html.

[31] Amazon Web Services Inc. What is amazon ses? - amazon simple email ser-
vice, n.d.. URL https://docs.aws.amazon.com/ses/latest/dg/Welcome.
html.

[32] Wikipedia Foundation Inc. Apdex, 2023. URL https://en.wikipedia.org/
wiki/Apdex.

90

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://www.elastic.co/elastic-stack/
https://www.elastic.co/elastic-stack/
https://elasticsearch-py.readthedocs.io/en/v8.11.0/
https://elasticsearch-py.readthedocs.io/en/v8.11.0/
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.amazonaws.cn/en_us/AmazonCloudWatch/latest/monitoring/add_custom_widget_dashboard.html
https://docs.amazonaws.cn/en_us/AmazonCloudWatch/latest/monitoring/add_custom_widget_dashboard.html
https://docs.amazonaws.cn/en_us/AmazonCloudWatch/latest/monitoring/add_custom_widget_dashboard.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://en.wikipedia.org/wiki/Apdex
https://en.wikipedia.org/wiki/Apdex

	Introduction
	Thesis Organization

	Thesis Background
	Observability and Monitoring
	Monitoring System: Impact
	Downtime
	Web Application Firewalls

	AWS Fundamentals
	Introduction to AWS
	VPCs and Subnets
	AWS Identity and Access Management
	EC2 Instances
	ECS and Fargate
	AWS LBs and Global Accelerator

	Containerization and Simulation
	Docker
	Logging in Python
	Simulating Issues using Python
	ECS Cluster Configuration

	Simple AWS Metrics
	CloudWatch
	Simple Metrics and Logs
	Alarms and SNS
	Metric Filter
	Event-based Metric

	Serverless and the ELK Stack
	AWS Lambda
	Importing Libraries in AWS Lambdas
	Elasticsearch Cluster
	Elasticsearch Client in Python
	Asynchronous Requests

	Visual Interface in AWS
	AWS Dashboard Widgets
	AWS SDK Boto3 and Lambda Metrics
	Elasticsearch Nodes Metrics
	Widget using Query Syntax
	Alarm Widget
	AWS Custom Widgets

	Debugging and Automation
	Reachability Inside and Outside VPC
	Links to Debugging Results
	Creating CSV Files and Pushing Them into S3
	Daily and Monthly Reports in Python
	Email Automation in Lambdas using SES
	Costs Report using Excel

	Dashboard Limitations
	Kibana
	Dashboard Visualizations
	Apdex in Kibana

	Conclusions and Future Works

