POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Development of a hardware module for
online learning on spiking neural networks
with partial reconfiguration on FPGA.

Supervisors Candidate

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO Liqi ZEN G’

Ph.D. Alessio CARPEGNA

March 2024

Summary

This thesis presents the design and implementation of a new hardware module
designed to support online learning in Spiking Neural Networks (SNN) and its
partial hardware reconfiguration on the Xilinx Artix-7 FPGA platform. The
Spiking Neural Network can simulate the unique way of exchanging information in
the form of electrical pulses between neurons in the biological brain. It is widely
considered to be an ideal choice for embedded hardware implementation due to
its low energy consumption and small size. SNNs are particularly well-suited
to resource-efficient local learning algorithms such as Spike Timing-Dependent
Plasticity (STDP). The goal of this study is to develop a small hardare module
to enable online learning in SNNs. It starts by modeling the algorithm in python,
applying it to a simple image classification task. It then transitions to developing
a dedicated hardware component while ensuring consistency between the two
approaches. Subsequently, this thesis deeply explores the impact of quantization
level on learning accuracy and compares different approximate implementations
of STDP, aiming to evaluate the specific impact of various calculation methods
on the final performance. Such evaluation is crucial for optimizing the area and
power consumption of SNN hardware modules. It aims to improve the overall
performance and applicability of the SNN models through fine adjustments and
provide a resource-efficient solution to the application of Artificial Intelligence in
real-world problems. As part of this research, this hardware module combines
key components such as the temporary buffer queue and calculation conversion
unit. This integration enables dynamic interaction and updating of the SNN weight
data, which is stored in SRAM memory cells distributed across the FPGA (Block
Ram). This not only significantly improves the flexibility and efficiency of the
online learning process, but also ensures the scalability and adaptability of the
system by optimizing resource allocation.

The ultimate goal of this project is to deploy a comprehensive, SNN hardware
accelerator on the Xilinx Artix-7 FPGA platform that can adapt to changing
application requirements and support uninterrupted online learning. Through the
results of this research, we expect to promote the development of intelligent systems
to a higher level in terms of adaptability and energy efficiency ratio, especially

11

in application scenarios that have strict requirements on performance and energy
consumption.

II1

Acknowledgements

I have been helped and guided by a number of key people in the process of
completing this thesis. First of all, I would like to thank Prof. DI CARLO, who
not only gave me the opportunity to do this research, but also provided valuable
advice and support throughout the process. His help was very important to me.

I am also very grateful to Dr. Alessio for his guidance on the content of my
thesis. His advice helped me to overcome many challenges.

In addition, I would like to thank my family, who have always supported me
and given me strength.

Thank you to all those who have helped me.

v

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction

1.1 Spiking Neural Networks

1.1.1 Leaky Integrate-and-Fire (LIF) Model
1.2 Online Learning oo

1.2.1 STDP
1.3 FPGA . . . e
1.4 Xilinx Vitis Unified Software Platform
1.5 Xilinx Artix-7
1.6 MNIST

2 Stdp Python Model
2.1 Python Structureo
2.2 MNIST Spikes Transformation
2.2.1 Random Rate Coding,
2.2.2 Sparsity
2.3 Stdp Implementationo
2.4 Quantization

3 Stdp Vhdl Establish
3.1 Stdp Structure
3.2 Encoder
3.3 Queue
3.3.1 Queue Module.
3.3.2 Queue Structure
3.3.3 Queue Storage

VIII

IX

XII

18
18
21
21
22
24
28

3.3.4 Time Synchronization, 44

3.4 Weight-Trans L 44
3.5 Weight-Bram 46
3.6 Synthesis. 53
Bibliography 56

VII

List of Tables

2.1
2.2

3.1
3.2

STDP Parameters 27
Quantized weight accuracyo 29
Encoding Table for N=3 48
Resource Utilization Summary 53

VIII

List of Figures

1.1 SNN network architecture 2
1.2 LIF Structure Schematic[8] 4
1.3 Online Learning Hierarchy Chart 6
1.4 STDP Principle Schematic 9
1.5 LTP/LTD Schematic 10
1.6 FPGA internal structure[14] L. 11
1.7 Artix-7 Development Board[14] 15
1.8 MNIST Sample Plot[16] 16
2.1 SPIKER Hierarchical Structure[8] 19
2.2 Rate-coding Correspondence 22
2.3 Full-precition accuracy scatterplot 27
2.4 Line graph of quantitative results 30
3.1 STDP overall module structure 33
3.2 LTD address reverse connection 34
3.3 Time-triggered on both sides 36
3.4 Queue Module Port Diagram 37
3.5 Queue module flowchart 39
3.6 BRAM utilization 40
3.7 Data storage arrangements 42
3.8 Schematic diagram of queue use 43
3.9 Read data timing correspondence 44
3.10 Weight-Trans Module Diagram 45
3.11 Matlab LUT data generation 46
3.12 Enter Caption 47
3.13 Methods for storing weights in BRAM 47
3.14 Weight-BRAM Flowchart 50
3.15 Weight-BRAM process structure 52
3.16 Enter Caption 53
3.17 Time report summary Lo 54

3.18 Power report summary

Acronyms

Al

artificial intelligence

SNN
Spiking Neural Networks

LIF
Leaky Integrate-and-Fire Model

STDP
Spike-Timing-Dependent Plasticity

FPGA
Field-Programmable Gate Array

MNIST
Modified National Institute of Standards and Technology dataset

LUT
Look-Up Table

BRAM
Block Random-Access Memory

XII

Chapter 1

Introduction

1.1 Spiking Neural Networks

As society progresses and technology evolves, the need for a deeper understanding
and simulation of the human brain’s mechanisms has increasingly become a focal
point. Neural networks play an increasingly important role in this endeavor, with
Spiking Neural Networks (SNNs) serving as a more brain-like neural model. The
application domains of SNNs span from basic scientific research to social life
applications and industrial fields[1]. In the realms of machine learning and artificial
intelligence, where efficiency and low power consumption are crucial, the information
processing capability of SNNs stands out[2]. Compared to traditional deep learning
models, SNNs have advantages in information representation, temporal dynamics,
and energy efficiency, making them more suitable for devices with limited power
resources, such as mobile and embedded systems, and more effective in processing
dynamic information. In the development of neuroscience research and learning
algorithms, SNNs offer a closer approximation to biological neurons. However,
training this kind of networks can be challeging due to the non-differentiability
of their activation function. In general training algorithms for SNNs result more
complex and less efficient. Additionally, the technological advancement of SNNs
lags behind that of traditional neural networks, with a lack of mature tools and
frameworks.

Spiking neural networks (SNNs) are a distinct branch of Artificial Neural Net-
works (ANNs), designed to process and transmit information by simulating the
bioelectrical activities and communication modes of neurons in biological neural
systems. The goal of SNNs is to capture and utilize the efficient computational
mechanisms of biological neural systems, particularly their ability to encode complex
information through spike signals. The fundamental unit of information in SNNs is
the "spike," a discrete event that mimics the electrical activity of neurons. Spike

1

Introduction
Spikes-1 w
Spikes-2 | | | w-2 > G —
J_I_I_ y

Spikes-3

tl time

@ ‘ Spike generate

\ Transfer function
)
D —————

Figure 1.1: SNN network architecture

communication in SNNs emulates the way biological neurons exchange information
through rapid voltage changes (spikes).

Neural models in SNNs are designed to simulate the electrophysiological prop-
erties of biological neurons. These models range from simple ones that include
basic integrate-and-fire mechanisms to complex ones that encompass multiple ion
channels, neuronal dynamics, and other biologically realistic details[3]. SNNs
represent a highly advanced attempt to simulate the computational mechanisms of
the human brain, processing information through the activity of spiking neurons.
These networks employ unique and biologically realistic mechanisms such as the
integrate-and-fire mechanism, spike transmission and synaptic weight adjustment,
and spike encoding to accomplish complex information processing tasks. The
integrate-and-fire mechanism simulates the process by which biological neurons
accumulate input signals until the membrane potential reaches a threshold, trig-
gering a spike, and then resetting to prepare for the next signal reception. This
not only reflects the temporary accumulation of information but also mimics the
action potential firing characteristic of biological neurons.

In SNNs, information transmission relies on the transfer of spikes between
neurons through synapses, where the weight of each synapse determines the impact
of a neuron’s spike on another neuron’s membrane potential. The adjustment
of these synaptic weights is achieved through learning rules, with spike-timing-
dependent plasticity (STDP)[4] being a key learning mechanism. STDP adjusts
synaptic strengths based on the timing differences between pre- and postsynaptic
spikes, enabling experience-based learning and memory through time-dependent

2

Introduction

synaptic weight adjustments. This mechanism provides SNNs with the ability
to dynamically adjust network structures to adapt to environmental changes,
making them particularly suited for tasks involving time-series data, such as speech
recognition and video processing.

Spike encoding is another crucial concept, involving how information is repre-
sented and processed in SNNs. Information can be encoded in the network through
differnt mechanisms, like the pattern, frequency, and sequence of spikes, with the
choice of encoding method directly affecting network performance. Spike encoding
not only allows the network to process information with high efficiency but also
enables SNNs to simulate complex temporal dynamics and behavioral patterns[5].

In implementing SNNs, the Leaky Integrate-and-Fire (LIF) model is one of the
most commonly used neuron models, providing a relatively simple yet effective
way to simulate neuronal electrical activity. The LIF model accounts for the
leakage effect of membrane potential, enabling neurons to mimic the capacitive
properties and resistive nature of biological neurons. In addition to the LIF model,
more complex neuron models such as the Izhikevich model[6] and the Hodgkin-
Huxley[7] model are also employed in SNNs, producing a richer variety of neuronal
firing patterns and offering deeper insights into the behavior of biological neurons.
However these models are generally too complex to be implemented on dedicated
hardware circuits, and are out of the scope of this work.

Despite the significant potential of SNNs to simulate the computational ca-
pabilities of the brain, their implementation and application still face numerous
challenges, including the efficient implementation of learning rules like STDP and
the optimization of spike encoding strategies to enhance the efficiency and accuracy
of information processing. As understanding of these networks deepens and tech-
nology advances, SNNs are expected to play an increasingly important role in the
field of artificial intelligence, especially in applications requiring efficient processing
of time-series data and the simulation of complex neural dynamics[2].

1.1.1 Leaky Integrate-and-Fire (LIF) Model

The Leaky Integrate-and-Fire (LIF) model, as a fundamental neuronal model in
spiking neural networks, offers a refined and effective abstraction of biological
neuron behavior. This model simulates the accumulation of neuronal potential, the
phenomenon of potential leakage, and the discharge of an output spike when the
potential reaches a specific threshold, reflecting how biological neurons respond to
external input signals. This simplified mathematical framework not only captures
the basic functions of biological neurons, such as receiving, processing, and trans-
mitting information, but also provides an efficient computational tool for studying
and simulating complex neural networks.

In the LIF model, changes in the neuron’s membrane potential are represented

3

Introduction

SYNAPSE
ACTION

F’OTFNTIAL DENDRITES AXON
.‘H TERMINALS

L
Tege™T H

Tout

Tinh—
LI

: : | iy
V! ' ' v H
] | ! reset V

----- . rest

AXONS DENDRITES, V. v v v !
TERMINALS SOMA (BODY)

Figure 1.2: LIF Structure Schematic[8]

by a simple differential equation that accounts for the cumulative effect of input
signals and the natural decay of the membrane potential. When the membrane
potential accumulates enough spikes to exceed a pre-defined threshold, the model
stipulates that the neuron fires a spike and immediately resets the membrane
potential to a baseline level, followed by a brief refractory period during which it
no longer responds to new inputs[9]. This behavior not only mimics the action
potential firing mechanism of biological neurons but also reflects how neurons
maintain their functionality under continuous stimulation.

Membrane potential equation: In the LIF model, the change of the neuron’s
membrane potential V' (¢) with time is described by the following differential equa-
tion:

av(t)

TmT - _[V(t) - V;est] + ijin(t) (11)

where 7, is the membrane time constant, representing the time it takes for the
potential to decay to its resting value. It is the product of the membrane resistance
R,, and the membrane capacitance C,,, i.e., 7, = Ry, - Cp,. V() is the membrane
potential at time ¢, Ve is the resting potential, the stable potential of the neuron

4

Introduction

when there is no input, R,, is the membrane resistance, indicating the resistance of
the neuron to the flow of current, and [;,(¢) is the input current to the neuron at
time ¢.

The implementation of the LIF model typically involves the solution of this
differential equation, which can be accomplished through various numerical methods,
such as the Euler method or the Runge-Kutta[10] method. By adjusting model
parameters such as the membrane time constant 7, resting potential Ve, threshold
value Vipreshola, and reset potential Vieer, the LIF model can simulate the behaviors
of different types of neurons, providing a flexible and powerful tool for exploring
neural network dynamics.

Although the LIF model is relatively simple in form, it plays a significant role in
understanding neural dynamics, the information processing mechanisms of neural
networks, and the field of neuromorphic computing. Through parameter adjust-
ments, the LIF model can simulate various neuronal behaviors, including excitatory
and inhibitory neurons, as well as their reactions under different physiological
conditions. This flexibility makes the LIF model a powerful tool for studying how
neural networks process, encode, and transmit information, especially in handling
time-series data and simulating complex temporal relationships.

Moreover, the computational efficiency of the LIF model makes it particularly
favored in large-scale neural network simulations and neuromorphic hardware
design. By implementing the LIF model at the hardware level, researchers and
engineers can develop efficient neural network processors capable of performing
complex computational tasks with extremely low energy consumption, paving the
way for the next generation of low-power artificial intelligence systems.

While the LIF model provides an important tool for computational neuroscience,
it also has its limitations. The model’s simplification overlooks some of the complex
mechanisms within neurons, such as ion channel dynamics, neurotransmitter effects,
and complex post-synaptic effects, which may be crucial for accurately simulating
biological neural systems. Therefore, future research might explore how to integrate
the LIF model with more complex neuronal and synaptic models to enhance the
model’s biological realism and computational capabilities.

Furthermore, with the rapid development of artificial intelligence and machine
learning, how to better utilize the LIF model and its variants to design novel
learning algorithms and neural network architectures is also an important research
direction[9]. By delving into the potential of the LIF model in simulating biological
learning processes, researchers can develop more efficient and adaptive artificial
intelligence systems, pushing the boundaries of computational neuroscience and
neuromorphic engineering further.

Introduction

1.2 Online Learning
Online learning within SNNs exploits the unique way these networks handle data.
This learning strategy allows SNNs to dynamically adjust their internal synaptic

weights based on each new input signal (spike) they receive in real-time, enabling
the network to adapt to new information patterns and changes in data.

NeuronModel

NeuralCoding

LearningParadigm

Figure 1.3: Online Learning Hierarchy Chart

In SNNs, neurons respond to input signals by firing spikes, which are trans-
mitted to other neurons via synaptic connections. Each synapse has a weight
that determines the impact of a neuron’s spike on the membrane potential of the
receiving neuron. Online learning involves dynamically adjusting these synaptic
weights while the network is executing its task, based on the pattern of spikes
received by each neuron. This weight adjustment relies on specific learning rules,
such as spike-timing-dependent plasticity (STDP), which strengthen or weakens
synaptic connections based on the timing differences between the spikes fired by
pre- and post-synaptic neurons.

Through mechanisms like STDP, SNNs can update their internal structure to
reflect the information learned from continuously received inputs. This means the
network can adapt and respond to environmental changes in real-time without the
need to retrain the entire model[11]. For instance, when SNNs are used for pattern
recognition tasks, the network can continuously optimize its ability to recognize
patterns, maintaining efficient performance even as the data stream gradually
changes.

The key to online learning lies in its ability to handle and adapt to dynamically
changing data streams, invaluable in many real-time applications. Particularly
in SNNs, this learning method is well-suited for processing time-dependent data,

6

Introduction

such as audio signals or video frame sequences, because the network can utilize the
temporal information of spikes for effective learning and decision-making.

Moreover, online learning in SNNs also reflects a simulation of the learning
process in biological neural systems, where neurons learn and remember information
by adjusting synaptic strengths. This mechanism not only provides insights into
how the brain processes and stores information but also inspires the design of
efficient, adaptive computational models.

The possible fields of application are many. Some examples are:

1.

Real-time Data Processing: Online learning is ideal for applications requiring
real-time data processing, such as monitoring systems, real-time transaction
analysis, or decision support systems in dynamic environments. In these
scenarios, the model needs to immediately react to new data inputs, adjusting
its behavior to provide real-time feedback.

Adaptive Control Systems: In fields like robotics, autonomous vehicles, and
intelligent manufacturing, systems must be able to self-adjust based on environ-
mental changes and new sensor inputs. Online learning enables neural networks
to continually learn and adapt to changes in their operating environment,
enhancing system adaptability.

Personalized Recommendation Systems: Applied in personalized recommen-
dation systems, online learning can update recommendations in real-time
based on the latest behaviors and preferences of users, thereby improving user
satisfaction and engagement.

Natural Language Processing: In tasks such as dialogue systems and machine
translation within natural language processing, online learning allows models to
adapt to new vocabulary, grammatical structures, and user-specific expressions,
increasing accuracy and flexibility.

Financial Market Analysis: The dynamic nature of financial markets requires
analysis models to quickly adapt to market changes. Online learning enables
models to update forecasts and risk assessments in real-time based on the
latest market data, helping investors make more timely and informed decisions.

Online learning enhances adaptability and reduces latency in systems by:

o Enabling dynamic updates with new data for real-time trend tracking and

anomaly detection.

o Continuously processing data for immediate responses, unlike batch learning’s

delay.

Introduction

It’s key for adaptive systems, supporting:

o Adjustment to environmental, user behavior, or system state changes, crucial
for autonomous vehicles and smart systems.

o Continuous performance optimization during operations, improving efficiency
and satisfaction.

Spike-timing-dependent plasticity (STDP) is a widely studied synaptic plasticity
mechanism in neuroscience, which adjusts the strength of synaptic connections
based on the relative timing of spikes fired by pre- and post-synaptic neurons.
This mechanism plays a key role in the learning and memory processes of the
nervous system, and its biological basis and computational models have become an
important research topic in the field of computational neuroscience.

1.2.1 STDP

The discovery of the STDP mechanism stems from observations of how information
is processed in biological neural systems. Biological experiments have shown that
the adjustment of synaptic strength depends on the relative timing of spikes from
the pre- and post-synaptic neurons. This timing-dependent adjustment is supposed
to be one of the basic mechanisms through which the nervous system implements
learning and memory functions.

The STDP rule can be simplified as follows: if a spike from a pre-synaptic neuron
closely leads to a spike from a post-synaptic neuron (i.e., leading to following), then
the synaptic connection is strengthened (long-term potentiation, LTP); conversely, if
a spike from the post-synaptic neuron occurs before the spike from the pre-synaptic
neuron (i.e., following leads to leading), the synaptic connection is weakened (long-
term depression, LTD). The method basically consists in checking the temporal
correlation between input and output, and changing the synaptic connection
consequently. Through this spike-timing-based adjustment mechanism, STDP
enables neural networks to encode stimuli that are repeated or have a specific
temporal structure, thereby learning and memorizing these stimuli.

Mathematically, the adjustment rule of STDP is often described by a function
that depends on the spike timing difference. If we define At = ¢,05y — tpre, Where
tpost and e are the spike times of the post-synaptic and pre-synaptic neurons
respectively, then the change in synaptic weight Aw can be expressed as:

Aw = Ay exp(—=At/1y), if At>0 (12)
Aw = —A_exp(At/T_), if At <0 '

Here, A, and A_ are positive learning rate parameters, 7, and 7_ are time con-
stants, which determine the speed and magnitude of synaptic weight adjustments[12].

8

Introduction

Pre-spikes Pre-spikes
Post-spikes Post-spikes
I
: A |
| Aw :
i I
! i
I :
i |
. LTP |
i
i At
| >
LTD |

Figure 1.4: STDP Principle Schematic

This mathematical model reveals the time-dependency of STDP adjustments to
synaptic weights and how this mechanism can be utilized to encode and learn
temporal information.

In computational models, STDP offers an experience-based learning rule that
allows neural networks to self-optimize through direct interaction with the en-
vironment. This mechanism is particularly well-suited for processing temporal
data, such as audio and video, and for performing tasks that require sensitivity
to temporal dynamics. By leveraging STDP, spiking neural networks (SNNs) can
achieve complex pattern recognition, decision-making, and forecasting tasks without
relying on external supervisory signals.

In summary, STDP as a spike-timing-based synaptic plasticity adjustment mech-
anism, holds profound significance in its biological foundation, working principles,
and computational models. It provides an essential theoretical basis for under-
standing the brain’s learning and memory mechanisms and for designing efficient
computational neural network models[12].

9

Introduction

Pre-Synaptic

spike 4 4

y

Tt
Post-Synaptic pre

spike

'tpost
_pie MI\

o tpre
apost V tpost
Aw

l npreapre

Y

=Npost@POst

Figure 1.5: LTP/LTD Schematic

1.3 FPGA

Field-Programmable Gate Arrays (FPGAs) are highly flexible digital integrated
circuits that allow developers to configure logic blocks and interconnect networks
at the hardware level to perform specific logical functions. Unlike traditional
integrated circuits with fixed hardware functions before leaving the factory, the
programmability of FPGAs makes them an ideal choice for rapidly implementing
and prototyping designs, such as custom hardware accelerators, and reconfigurable
computing systems. FPGAs consist of core components such as Configurable
Logic Blocks (CLBs), programmable Input/Output Blocks (IOBs), interconnect
networks, built-in storage elements, and Digital Signal Processing blocks (DSPs)[13].
These components can be configured to realize various logic functions and data
transmissions, supporting efficient mathematical operations and complex logic
processing.

The programming process of FPGAs usually involves designing logic functions
using hardware description languages (such as VHDL or Verilog), converting the
design into a logic netlist through synthesis tools, followed by layout and routing
(Place and Route), and finally generating a configuration file to be downloaded onto
the FPGA, called the bitstream. This process endows FPGAs with programmability
and flexibility, suitable for rapid development cycles and applications with high
performance requirements.

FPGAs are widely applied in numerous fields such as communications, image and

10

Introduction

D D ST BT R CT BT
= GRODD .
ﬂi:ttkiili}g{
|:| D DGO
puFatututuls Futull:
Programmable Switch Matrix (PSM) E g g ﬁ ﬁ g g gg E 1/O Block (10B)
SHOOOON00 8
T %ﬁ##ﬁ#ﬁk#}ﬂ
ﬁDDE:[G & 82 B b Al B
[[P
ED L
H E)) E:I

Configurable Logic Block (CLB)

Figure 1.6: FPGA internal structure|[14]

video processing, data centers, embedded systems, and scientific research. Their
unique flexibility and high performance provide powerful solutions to meet the
rapidly changing technological needs and market requirements. With technological
progress and the improvement of development tools, the application fields and
importance of FPGAs are expected to continue expanding.

Field-Programmable Gate Array (FPGA) technology plays a crucial role in
the acceleration and implementation of neural networks, especially Spiking Neural
Networks (SNNs). FPGAs are highly flexible digital integrated circuits that allow
developers to configure their logic blocks and connections at the hardware level to
perform specific computational tasks. This flexibility not only makes FPGAs an
ideal platform for experimentation and prototype development but also allows them
to be highly optimized for specific applications, thereby providing outstanding
performance and efficiency.

In neural network applications, this means that FPGAs can be customized to
efficiently execute specific neural computing operations, such as weight multiplica-
tion and addition, while allowing for rapid iterations and updates to accommodate
changes or optimizations in algorithms.

For Spiking Neural Networks, FPGAs provide a unique implementation platform
that can utilize their parallel processing capabilities to simulate the dynamic
behaviors of a large number of neurons and synapses. The operational characteristics
of SNNs, such as event-based processing and sparse data communication, highly
match the architecture of FPGAs. The parallel resources on FPGAs can be used

11

Introduction

to simulate the parallel activation of neurons and spike transmission, while their
reconfigurability allows for the implementation of complex neural dynamics and
learning rules, such as Spike-Timing-Dependent Plasticity (STDP).

Moreover, FPGAs also demonstrate significant energy efficiency advantages in
implementing SNNs. Compared to running SNN simulations on CPUs or GPUs,
FPGAs can reduce unnecessary computations and energy consumption through
hardware optimization, making the deployment of SNNs more suitable for energy-
constrained environments, such as mobile devices and edge computing nodes. This
is particularly important for applications requiring real-time processing and decision-
making, such as sensor data processing in autonomous vehicles or real-time video
analysis[13].

However, despite the great potential of FPGAs in accelerating neural networks,
especially SNNs, their application in practice also faces a series of challenges. These
include the complexity of developing and debugging FPGA applications and the
high demands on developers’ expertise in hardware description languages and digital
logic design. Nonetheless, with the emergence of development tools and higher
levels of abstraction, FPGAs are becoming increasingly accessible, opening the
door to their broad application in neural network acceleration and implementation.

In summary, FPGA technology provides a unique platform for acceleration
and implementation in neural network research and applications, especially SNNs.
Through its flexibility, efficiency, and energy advantages, FPGAs not only can drive
the research progress of SNNs but also are expected to promote their widespread
deployment in areas such as real-time processing and intelligent decision-making. As
technology evolves and applications deepen, the role of FPGAs in future intelligent
systems will become increasingly significant.

1.4 Xilinx Vitis Unified Software Platform

With the increasing demand for computing, traditional central processing units
(CPUs) are struggling to meet the needs of high-performance computing (HPC) and
artificial intelligence (AI) applications. As one of the solutions, hardware gas pedals
such as field-programmable gate arrays (FPGAs) and adaptive computational
acceleration platforms (ACAPs) have demonstrated their significant advantages
in handling parallel computing tasks. However, the complexity of utilizing these
advanced hardware, especially the need for a deep understanding of the hardware
description language and underlying architecture, has long been a major barrier
limiting their widespread adoption[15].The introduction of the Xilinx Vitis Unified
Software Platform aims to address this challenge by providing a comprehensive
software development environment that greatly simplifies the process of developing
applications based on Xilinx hardware.

12

Introduction

1. Unity and Comprehensiveness of the Vitis Platform

The Vitis Unified Software Platform provides developers with a unified and
comprehensive suite of tools, which not only reduces the difficulty of devel-
opment, but also shortens the development cycle from concept to product.
Compared to traditional FPGA development flows, the Vitis platform enables
developers to use high-level programming languages, such as C/C++ and
Python, to develop applications, thus avoiding the need to use hardware
description languages (HDL) directly. In addition, the platform provides
a range of libraries optimized for specific application domains such as data
centers, video processing and machine learning, further improving development
efficiency and application performance.

2. The Role of Vitis High-Level Synthesis (HLS)

The Vitis platform is designed with an emphasis on openness and scalability,
supporting a wide range of Xilinx hardware products including the Versal
ACAP family, Zynq UltraScale+ MPSoCs and Alveo accelerator cards. The
platform’s openness is reflected in its support for third-party libraries and
frameworks, enabling developers to easily integrate custom software compo-
nents. In addition, the Vitis platform offers integration with modern software
development tools and environments such as Docker and Jupyter notebooks,
further enhancing development flexibility and efficiency.

In summary, the Xilinx Vitis Unified Software Platform greatly simplifies pro-
gramming and application development for FPGAs and other Xilinx hardware by
providing a comprehensive, unified set of development environments. It provides
unprecedented opportunities for software developers and algorithm engineers to eas-
ily transform their ideas and algorithms into highly efficient hardware-accelerated
solutions, driving widespread adoption and innovative use of FPGA technology
across a wide range of industries and applications.

1.5 Xilinx Artix-7

The Xilinx Artix-7 series is a family of high-performance, low-power field-programmable
gate arrays (FPGAs) from Xilinx, designed to meet the needs of cost-sensitive
applications such as portable devices, low-cost wireless communications equip-
ment, and industrial, medical and consumer electronics. The Artix-7 family offers
excellent performance-to-power ratio through advanced process technology and
Xilinx’s proprietary architectural optimizations, which support multiple high-speed
serial interface technologies, and flexible configuration and integration capabilities,
making it a competitive product in the low to medium density FPGA market[14].
Key features and benefits are:

13

Introduction

. Performance and Power:

The Artix-7 family utilizes a 28nm Low Power process technology, which
enables a significant reduction in power consumption while maintaining the
same performance as the previous generation. This makes the Artix-7 ideal
for battery-powered and energy-efficient applications.

. Rich Logic Resources:

The Artix-7 family offers a rich set of logic units, storage resources, and digital
signal processing (DSP) units, enabling designers to implement complex
digital logic functions, data processing algorithms, and high-performance
signal processing applications.

. High-Speed Serial Connectivity:

The Artix-7 family supports a wide range of high-speed serial technologies,
including PCI Express® Gen2, Gigabit Ethernet, SATA, and other protocols,
which can be used to enable high-speed data transfer and efficient system-level
integration.

. Flexible Configuration and Integration:

The Artix-7 series supports configuration via SPI, JTAG, and other methods,
and supports a partial reconfiguration function that allows specific logic func-
tions in the FPGA to be dynamically modified without downtime, increasing
system flexibility and scalability.

. Comprehensive development tool support:

Xilinx provides comprehensive development and design tool support, including
the Vivado Design Suite. These tools provide full-flow support from design and
simulation to debugging and deployment, greatly simplifying the development
process and shortening time-to-market.

The Artix-7 FPGA family targets a variety of application areas, including

but not limited to: (i) wireless communications: for digital front-end processing
in wireless base stations, signal processing in mobile communications, etc.; (ii)
industrial automation: for industrial networks, machine vision systems, intelligent
sensors and control systems, etc.; (iii) consumer electronics: for video processing,
multimedia interfaces, home networking devices, etc.; (iv) Medical devices: for
medical imaging, portable diagnostic equipment and patient monitoring systems,

The Xilinx Artix-7 FPGA family offers cost-effective and flexible solutions in a

wide range of areas with its high performance, low power consumption, rich logic
resources and flexible integration capabilities. By supporting high-speed serial

14

Introduction

Figure 1.7: Artix-7 Development Board[14]

technology and providing comprehensive development tools, the Artix-7 offers
designers the ability to realize innovative designs and shorten product development
cycles, making it ideal for low to medium density FPGA applications.

1.6 MNIST

The MNIST dataset, known as Modified National Institute of Standards and
Technology database, is a widely recognized and used benchmark dataset, especially
in the fields of machine learning and computer vision. It contains gray-scale images
of handwritten digit and is intended to provide a standard test-bed for automatic
handwritten digit recognition.The MNIST dataset consists of the original NIST
dataset simplified and formatted to fit the needs of modern machine learning
algorithms[16].

« The MNIST dataset consists of 60,000 samples for training and 10,000
samples for testing. Each sample is a 28x28 pixel gray-scale image representing
handwritten numbers from 0 to 9. These images are written by different people
through different handwriting styles and are intended to cover a wide range
of challenges that handwritten digit recognition may face. Each image is
matched with a corresponding label, which is a number between 0 and 9 that
represents the true value of the handwritten digit in the image.

o Data Pre-processing: althoughthe MNIST dataset has already undergone
15

Introduction

label = 9

label =

M

label = 4

label =

Figure 1.8: MNIST Sample Plot[16]

some degree of preprocessing, such as centrality and size normalization, in
real-world machine learning projects it is common to further pre-process and
enhance the data according to specific needs. This may include normalization
to allow all pixel values to fall within a fixed range, or applying techniques
such as rotating, panning, and scaling the image to increase the diversity of
the data and improve the generalization of the model.

TRAINING PROCESS AND MODEL SELECTION The goal of the
training process is to develop a model that is capable to accurately recognize
and predict eamples of handwritten digits that it never saw. The process
begins with selecting a model architecture that is appropriate for the task.
For a basic image classification task such as MNIST, everything from simple
logistic regression to more complex deep learning models such as convolutional
neural networks (CNNs) are viable options. With the rapid development of
deep learning, convolutional neural networks are preferred for their excellent
performance in image recognition tasks.

Model training involves tuning the parameters of the model using a training
dataset to minimize the prediction error. This is usually achieved through
optimization algorithms such as backpropagation and gradient descent. The

16

Introduction

training process gradually improves the performance of the model on the
training set, but care must also be taken to prevent overfitting, where the
model performs well on the training data but poorly on unseen data.

Performance Evaluation The performance of the model is ev