
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Development of a hardware module for
online learning on spiking neural networks

with partial reconfiguration on FPGA.

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Ph.D. Alessio CARPEGNA

Candidate

Liqi ZENG

March 2024





Summary

This thesis presents the design and implementation of a new hardware module
designed to support online learning in Spiking Neural Networks (SNN) and its
partial hardware reconfiguration on the Xilinx Artix-7 FPGA platform. The
Spiking Neural Network can simulate the unique way of exchanging information in
the form of electrical pulses between neurons in the biological brain. It is widely
considered to be an ideal choice for embedded hardware implementation due to
its low energy consumption and small size. SNNs are particularly well-suited
to resource-efficient local learning algorithms such as Spike Timing-Dependent
Plasticity (STDP). The goal of this study is to develop a small hardare module
to enable online learning in SNNs. It starts by modeling the algorithm in python,
applying it to a simple image classification task. It then transitions to developing
a dedicated hardware component while ensuring consistency between the two
approaches. Subsequently, this thesis deeply explores the impact of quantization
level on learning accuracy and compares different approximate implementations
of STDP, aiming to evaluate the specific impact of various calculation methods
on the final performance. Such evaluation is crucial for optimizing the area and
power consumption of SNN hardware modules. It aims to improve the overall
performance and applicability of the SNN models through fine adjustments and
provide a resource-efficient solution to the application of Artificial Intelligence in
real-world problems. As part of this research, this hardware module combines
key components such as the temporary buffer queue and calculation conversion
unit. This integration enables dynamic interaction and updating of the SNN weight
data, which is stored in SRAM memory cells distributed across the FPGA (Block
Ram). This not only significantly improves the flexibility and efficiency of the
online learning process, but also ensures the scalability and adaptability of the
system by optimizing resource allocation.

The ultimate goal of this project is to deploy a comprehensive, SNN hardware
accelerator on the Xilinx Artix-7 FPGA platform that can adapt to changing
application requirements and support uninterrupted online learning. Through the
results of this research, we expect to promote the development of intelligent systems
to a higher level in terms of adaptability and energy efficiency ratio, especially
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in application scenarios that have strict requirements on performance and energy
consumption.
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Chapter 1

Introduction

1.1 Spiking Neural Networks

As society progresses and technology evolves, the need for a deeper understanding
and simulation of the human brain’s mechanisms has increasingly become a focal
point. Neural networks play an increasingly important role in this endeavor, with
Spiking Neural Networks (SNNs) serving as a more brain-like neural model. The
application domains of SNNs span from basic scientific research to social life
applications and industrial fields[1]. In the realms of machine learning and artificial
intelligence, where efficiency and low power consumption are crucial, the information
processing capability of SNNs stands out[2]. Compared to traditional deep learning
models, SNNs have advantages in information representation, temporal dynamics,
and energy efficiency, making them more suitable for devices with limited power
resources, such as mobile and embedded systems, and more effective in processing
dynamic information. In the development of neuroscience research and learning
algorithms, SNNs offer a closer approximation to biological neurons. However,
training this kind of networks can be challeging due to the non-differentiability
of their activation function. In general training algorithms for SNNs result more
complex and less efficient. Additionally, the technological advancement of SNNs
lags behind that of traditional neural networks, with a lack of mature tools and
frameworks.

Spiking neural networks (SNNs) are a distinct branch of Artificial Neural Net-
works (ANNs), designed to process and transmit information by simulating the
bioelectrical activities and communication modes of neurons in biological neural
systems. The goal of SNNs is to capture and utilize the efficient computational
mechanisms of biological neural systems, particularly their ability to encode complex
information through spike signals. The fundamental unit of information in SNNs is
the "spike," a discrete event that mimics the electrical activity of neurons. Spike
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Introduction

Figure 1.1: SNN network architecture

communication in SNNs emulates the way biological neurons exchange information
through rapid voltage changes (spikes).

Neural models in SNNs are designed to simulate the electrophysiological prop-
erties of biological neurons. These models range from simple ones that include
basic integrate-and-fire mechanisms to complex ones that encompass multiple ion
channels, neuronal dynamics, and other biologically realistic details[3]. SNNs
represent a highly advanced attempt to simulate the computational mechanisms of
the human brain, processing information through the activity of spiking neurons.
These networks employ unique and biologically realistic mechanisms such as the
integrate-and-fire mechanism, spike transmission and synaptic weight adjustment,
and spike encoding to accomplish complex information processing tasks. The
integrate-and-fire mechanism simulates the process by which biological neurons
accumulate input signals until the membrane potential reaches a threshold, trig-
gering a spike, and then resetting to prepare for the next signal reception. This
not only reflects the temporary accumulation of information but also mimics the
action potential firing characteristic of biological neurons.

In SNNs, information transmission relies on the transfer of spikes between
neurons through synapses, where the weight of each synapse determines the impact
of a neuron’s spike on another neuron’s membrane potential. The adjustment
of these synaptic weights is achieved through learning rules, with spike-timing-
dependent plasticity (STDP)[4] being a key learning mechanism. STDP adjusts
synaptic strengths based on the timing differences between pre- and postsynaptic
spikes, enabling experience-based learning and memory through time-dependent
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Introduction

synaptic weight adjustments. This mechanism provides SNNs with the ability
to dynamically adjust network structures to adapt to environmental changes,
making them particularly suited for tasks involving time-series data, such as speech
recognition and video processing.

Spike encoding is another crucial concept, involving how information is repre-
sented and processed in SNNs. Information can be encoded in the network through
differnt mechanisms, like the pattern, frequency, and sequence of spikes, with the
choice of encoding method directly affecting network performance. Spike encoding
not only allows the network to process information with high efficiency but also
enables SNNs to simulate complex temporal dynamics and behavioral patterns[5].

In implementing SNNs, the Leaky Integrate-and-Fire (LIF) model is one of the
most commonly used neuron models, providing a relatively simple yet effective
way to simulate neuronal electrical activity. The LIF model accounts for the
leakage effect of membrane potential, enabling neurons to mimic the capacitive
properties and resistive nature of biological neurons. In addition to the LIF model,
more complex neuron models such as the Izhikevich model[6] and the Hodgkin-
Huxley[7] model are also employed in SNNs, producing a richer variety of neuronal
firing patterns and offering deeper insights into the behavior of biological neurons.
However these models are generally too complex to be implemented on dedicated
hardware circuits, and are out of the scope of this work.

Despite the significant potential of SNNs to simulate the computational ca-
pabilities of the brain, their implementation and application still face numerous
challenges, including the efficient implementation of learning rules like STDP and
the optimization of spike encoding strategies to enhance the efficiency and accuracy
of information processing. As understanding of these networks deepens and tech-
nology advances, SNNs are expected to play an increasingly important role in the
field of artificial intelligence, especially in applications requiring efficient processing
of time-series data and the simulation of complex neural dynamics[2].

1.1.1 Leaky Integrate-and-Fire (LIF) Model
The Leaky Integrate-and-Fire (LIF) model, as a fundamental neuronal model in
spiking neural networks, offers a refined and effective abstraction of biological
neuron behavior. This model simulates the accumulation of neuronal potential, the
phenomenon of potential leakage, and the discharge of an output spike when the
potential reaches a specific threshold, reflecting how biological neurons respond to
external input signals. This simplified mathematical framework not only captures
the basic functions of biological neurons, such as receiving, processing, and trans-
mitting information, but also provides an efficient computational tool for studying
and simulating complex neural networks.

In the LIF model, changes in the neuron’s membrane potential are represented

3



Introduction

Figure 1.2: LIF Structure Schematic[8]

by a simple differential equation that accounts for the cumulative effect of input
signals and the natural decay of the membrane potential. When the membrane
potential accumulates enough spikes to exceed a pre-defined threshold, the model
stipulates that the neuron fires a spike and immediately resets the membrane
potential to a baseline level, followed by a brief refractory period during which it
no longer responds to new inputs[9]. This behavior not only mimics the action
potential firing mechanism of biological neurons but also reflects how neurons
maintain their functionality under continuous stimulation.

Membrane potential equation: In the LIF model, the change of the neuron’s
membrane potential V (t) with time is described by the following differential equa-
tion:

τm
dV (t)

dt
= −[V (t) − Vrest] + RmIin(t) (1.1)

where τm is the membrane time constant, representing the time it takes for the
potential to decay to its resting value. It is the product of the membrane resistance
Rm and the membrane capacitance Cm, i.e., τm = Rm · Cm. V (t) is the membrane
potential at time t, Vrest is the resting potential, the stable potential of the neuron
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when there is no input, Rm is the membrane resistance, indicating the resistance of
the neuron to the flow of current, and Iin(t) is the input current to the neuron at
time t.

The implementation of the LIF model typically involves the solution of this
differential equation, which can be accomplished through various numerical methods,
such as the Euler method or the Runge-Kutta[10] method. By adjusting model
parameters such as the membrane time constant τm, resting potential Vrest, threshold
value Vthreshold, and reset potential Vreset, the LIF model can simulate the behaviors
of different types of neurons, providing a flexible and powerful tool for exploring
neural network dynamics.

Although the LIF model is relatively simple in form, it plays a significant role in
understanding neural dynamics, the information processing mechanisms of neural
networks, and the field of neuromorphic computing. Through parameter adjust-
ments, the LIF model can simulate various neuronal behaviors, including excitatory
and inhibitory neurons, as well as their reactions under different physiological
conditions. This flexibility makes the LIF model a powerful tool for studying how
neural networks process, encode, and transmit information, especially in handling
time-series data and simulating complex temporal relationships.

Moreover, the computational efficiency of the LIF model makes it particularly
favored in large-scale neural network simulations and neuromorphic hardware
design. By implementing the LIF model at the hardware level, researchers and
engineers can develop efficient neural network processors capable of performing
complex computational tasks with extremely low energy consumption, paving the
way for the next generation of low-power artificial intelligence systems.

While the LIF model provides an important tool for computational neuroscience,
it also has its limitations. The model’s simplification overlooks some of the complex
mechanisms within neurons, such as ion channel dynamics, neurotransmitter effects,
and complex post-synaptic effects, which may be crucial for accurately simulating
biological neural systems. Therefore, future research might explore how to integrate
the LIF model with more complex neuronal and synaptic models to enhance the
model’s biological realism and computational capabilities.

Furthermore, with the rapid development of artificial intelligence and machine
learning, how to better utilize the LIF model and its variants to design novel
learning algorithms and neural network architectures is also an important research
direction[9]. By delving into the potential of the LIF model in simulating biological
learning processes, researchers can develop more efficient and adaptive artificial
intelligence systems, pushing the boundaries of computational neuroscience and
neuromorphic engineering further.
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1.2 Online Learning
Online learning within SNNs exploits the unique way these networks handle data.
This learning strategy allows SNNs to dynamically adjust their internal synaptic
weights based on each new input signal (spike) they receive in real-time, enabling
the network to adapt to new information patterns and changes in data.

Figure 1.3: Online Learning Hierarchy Chart

In SNNs, neurons respond to input signals by firing spikes, which are trans-
mitted to other neurons via synaptic connections. Each synapse has a weight
that determines the impact of a neuron’s spike on the membrane potential of the
receiving neuron. Online learning involves dynamically adjusting these synaptic
weights while the network is executing its task, based on the pattern of spikes
received by each neuron. This weight adjustment relies on specific learning rules,
such as spike-timing-dependent plasticity (STDP), which strengthen or weakens
synaptic connections based on the timing differences between the spikes fired by
pre- and post-synaptic neurons.

Through mechanisms like STDP, SNNs can update their internal structure to
reflect the information learned from continuously received inputs. This means the
network can adapt and respond to environmental changes in real-time without the
need to retrain the entire model[11]. For instance, when SNNs are used for pattern
recognition tasks, the network can continuously optimize its ability to recognize
patterns, maintaining efficient performance even as the data stream gradually
changes.

The key to online learning lies in its ability to handle and adapt to dynamically
changing data streams, invaluable in many real-time applications. Particularly
in SNNs, this learning method is well-suited for processing time-dependent data,
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such as audio signals or video frame sequences, because the network can utilize the
temporal information of spikes for effective learning and decision-making.

Moreover, online learning in SNNs also reflects a simulation of the learning
process in biological neural systems, where neurons learn and remember information
by adjusting synaptic strengths. This mechanism not only provides insights into
how the brain processes and stores information but also inspires the design of
efficient, adaptive computational models.

The possible fields of application are many. Some examples are:

1. Real-time Data Processing: Online learning is ideal for applications requiring
real-time data processing, such as monitoring systems, real-time transaction
analysis, or decision support systems in dynamic environments. In these
scenarios, the model needs to immediately react to new data inputs, adjusting
its behavior to provide real-time feedback.

2. Adaptive Control Systems: In fields like robotics, autonomous vehicles, and
intelligent manufacturing, systems must be able to self-adjust based on environ-
mental changes and new sensor inputs. Online learning enables neural networks
to continually learn and adapt to changes in their operating environment,
enhancing system adaptability.

3. Personalized Recommendation Systems: Applied in personalized recommen-
dation systems, online learning can update recommendations in real-time
based on the latest behaviors and preferences of users, thereby improving user
satisfaction and engagement.

4. Natural Language Processing: In tasks such as dialogue systems and machine
translation within natural language processing, online learning allows models to
adapt to new vocabulary, grammatical structures, and user-specific expressions,
increasing accuracy and flexibility.

5. Financial Market Analysis: The dynamic nature of financial markets requires
analysis models to quickly adapt to market changes. Online learning enables
models to update forecasts and risk assessments in real-time based on the
latest market data, helping investors make more timely and informed decisions.

Online learning enhances adaptability and reduces latency in systems by:

• Enabling dynamic updates with new data for real-time trend tracking and
anomaly detection.

• Continuously processing data for immediate responses, unlike batch learning’s
delay.
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It’s key for adaptive systems, supporting:

• Adjustment to environmental, user behavior, or system state changes, crucial
for autonomous vehicles and smart systems.

• Continuous performance optimization during operations, improving efficiency
and satisfaction.

Spike-timing-dependent plasticity (STDP) is a widely studied synaptic plasticity
mechanism in neuroscience, which adjusts the strength of synaptic connections
based on the relative timing of spikes fired by pre- and post-synaptic neurons.
This mechanism plays a key role in the learning and memory processes of the
nervous system, and its biological basis and computational models have become an
important research topic in the field of computational neuroscience.

1.2.1 STDP
The discovery of the STDP mechanism stems from observations of how information
is processed in biological neural systems. Biological experiments have shown that
the adjustment of synaptic strength depends on the relative timing of spikes from
the pre- and post-synaptic neurons. This timing-dependent adjustment is supposed
to be one of the basic mechanisms through which the nervous system implements
learning and memory functions.

The STDP rule can be simplified as follows: if a spike from a pre-synaptic neuron
closely leads to a spike from a post-synaptic neuron (i.e., leading to following), then
the synaptic connection is strengthened (long-term potentiation, LTP); conversely, if
a spike from the post-synaptic neuron occurs before the spike from the pre-synaptic
neuron (i.e., following leads to leading), the synaptic connection is weakened (long-
term depression, LTD). The method basically consists in checking the temporal
correlation between input and output, and changing the synaptic connection
consequently. Through this spike-timing-based adjustment mechanism, STDP
enables neural networks to encode stimuli that are repeated or have a specific
temporal structure, thereby learning and memorizing these stimuli.

Mathematically, the adjustment rule of STDP is often described by a function
that depends on the spike timing difference. If we define ∆t = tpost − tpre, where
tpost and tpre are the spike times of the post-synaptic and pre-synaptic neurons
respectively, then the change in synaptic weight ∆w can be expressed as:∆w = A+ exp(−∆t/τ+), if ∆t ≥ 0

∆w = −A− exp(∆t/τ−), if ∆t < 0
(1.2)

Here, A+ and A− are positive learning rate parameters, τ+ and τ− are time con-
stants, which determine the speed and magnitude of synaptic weight adjustments[12].
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Figure 1.4: STDP Principle Schematic

This mathematical model reveals the time-dependency of STDP adjustments to
synaptic weights and how this mechanism can be utilized to encode and learn
temporal information.

In computational models, STDP offers an experience-based learning rule that
allows neural networks to self-optimize through direct interaction with the en-
vironment. This mechanism is particularly well-suited for processing temporal
data, such as audio and video, and for performing tasks that require sensitivity
to temporal dynamics. By leveraging STDP, spiking neural networks (SNNs) can
achieve complex pattern recognition, decision-making, and forecasting tasks without
relying on external supervisory signals.

In summary, STDP as a spike-timing-based synaptic plasticity adjustment mech-
anism, holds profound significance in its biological foundation, working principles,
and computational models. It provides an essential theoretical basis for under-
standing the brain’s learning and memory mechanisms and for designing efficient
computational neural network models[12].
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Figure 1.5: LTP/LTD Schematic

1.3 FPGA
Field-Programmable Gate Arrays (FPGAs) are highly flexible digital integrated
circuits that allow developers to configure logic blocks and interconnect networks
at the hardware level to perform specific logical functions. Unlike traditional
integrated circuits with fixed hardware functions before leaving the factory, the
programmability of FPGAs makes them an ideal choice for rapidly implementing
and prototyping designs, such as custom hardware accelerators, and reconfigurable
computing systems. FPGAs consist of core components such as Configurable
Logic Blocks (CLBs), programmable Input/Output Blocks (IOBs), interconnect
networks, built-in storage elements, and Digital Signal Processing blocks (DSPs)[13].
These components can be configured to realize various logic functions and data
transmissions, supporting efficient mathematical operations and complex logic
processing.

The programming process of FPGAs usually involves designing logic functions
using hardware description languages (such as VHDL or Verilog), converting the
design into a logic netlist through synthesis tools, followed by layout and routing
(Place and Route), and finally generating a configuration file to be downloaded onto
the FPGA, called the bitstream. This process endows FPGAs with programmability
and flexibility, suitable for rapid development cycles and applications with high
performance requirements.

FPGAs are widely applied in numerous fields such as communications, image and
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Figure 1.6: FPGA internal structure[14]

video processing, data centers, embedded systems, and scientific research. Their
unique flexibility and high performance provide powerful solutions to meet the
rapidly changing technological needs and market requirements. With technological
progress and the improvement of development tools, the application fields and
importance of FPGAs are expected to continue expanding.

Field-Programmable Gate Array (FPGA) technology plays a crucial role in
the acceleration and implementation of neural networks, especially Spiking Neural
Networks (SNNs). FPGAs are highly flexible digital integrated circuits that allow
developers to configure their logic blocks and connections at the hardware level to
perform specific computational tasks. This flexibility not only makes FPGAs an
ideal platform for experimentation and prototype development but also allows them
to be highly optimized for specific applications, thereby providing outstanding
performance and efficiency.

In neural network applications, this means that FPGAs can be customized to
efficiently execute specific neural computing operations, such as weight multiplica-
tion and addition, while allowing for rapid iterations and updates to accommodate
changes or optimizations in algorithms.

For Spiking Neural Networks, FPGAs provide a unique implementation platform
that can utilize their parallel processing capabilities to simulate the dynamic
behaviors of a large number of neurons and synapses. The operational characteristics
of SNNs, such as event-based processing and sparse data communication, highly
match the architecture of FPGAs. The parallel resources on FPGAs can be used
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to simulate the parallel activation of neurons and spike transmission, while their
reconfigurability allows for the implementation of complex neural dynamics and
learning rules, such as Spike-Timing-Dependent Plasticity (STDP).

Moreover, FPGAs also demonstrate significant energy efficiency advantages in
implementing SNNs. Compared to running SNN simulations on CPUs or GPUs,
FPGAs can reduce unnecessary computations and energy consumption through
hardware optimization, making the deployment of SNNs more suitable for energy-
constrained environments, such as mobile devices and edge computing nodes. This
is particularly important for applications requiring real-time processing and decision-
making, such as sensor data processing in autonomous vehicles or real-time video
analysis[13].

However, despite the great potential of FPGAs in accelerating neural networks,
especially SNNs, their application in practice also faces a series of challenges. These
include the complexity of developing and debugging FPGA applications and the
high demands on developers’ expertise in hardware description languages and digital
logic design. Nonetheless, with the emergence of development tools and higher
levels of abstraction, FPGAs are becoming increasingly accessible, opening the
door to their broad application in neural network acceleration and implementation.

In summary, FPGA technology provides a unique platform for acceleration
and implementation in neural network research and applications, especially SNNs.
Through its flexibility, efficiency, and energy advantages, FPGAs not only can drive
the research progress of SNNs but also are expected to promote their widespread
deployment in areas such as real-time processing and intelligent decision-making. As
technology evolves and applications deepen, the role of FPGAs in future intelligent
systems will become increasingly significant.

1.4 Xilinx Vitis Unified Software Platform
With the increasing demand for computing, traditional central processing units
(CPUs) are struggling to meet the needs of high-performance computing (HPC) and
artificial intelligence (AI) applications. As one of the solutions, hardware gas pedals
such as field-programmable gate arrays (FPGAs) and adaptive computational
acceleration platforms (ACAPs) have demonstrated their significant advantages
in handling parallel computing tasks. However, the complexity of utilizing these
advanced hardware, especially the need for a deep understanding of the hardware
description language and underlying architecture, has long been a major barrier
limiting their widespread adoption[15].The introduction of the Xilinx Vitis Unified
Software Platform aims to address this challenge by providing a comprehensive
software development environment that greatly simplifies the process of developing
applications based on Xilinx hardware.
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1. Unity and Comprehensiveness of the Vitis Platform
The Vitis Unified Software Platform provides developers with a unified and
comprehensive suite of tools, which not only reduces the difficulty of devel-
opment, but also shortens the development cycle from concept to product.
Compared to traditional FPGA development flows, the Vitis platform enables
developers to use high-level programming languages, such as C/C++ and
Python, to develop applications, thus avoiding the need to use hardware
description languages (HDL) directly. In addition, the platform provides
a range of libraries optimized for specific application domains such as data
centers, video processing and machine learning, further improving development
efficiency and application performance.

2. The Role of Vitis High-Level Synthesis (HLS)
The Vitis platform is designed with an emphasis on openness and scalability,
supporting a wide range of Xilinx hardware products including the Versal
ACAP family, Zynq UltraScale+ MPSoCs and Alveo accelerator cards. The
platform’s openness is reflected in its support for third-party libraries and
frameworks, enabling developers to easily integrate custom software compo-
nents. In addition, the Vitis platform offers integration with modern software
development tools and environments such as Docker and Jupyter notebooks,
further enhancing development flexibility and efficiency.

In summary, the Xilinx Vitis Unified Software Platform greatly simplifies pro-
gramming and application development for FPGAs and other Xilinx hardware by
providing a comprehensive, unified set of development environments. It provides
unprecedented opportunities for software developers and algorithm engineers to eas-
ily transform their ideas and algorithms into highly efficient hardware-accelerated
solutions, driving widespread adoption and innovative use of FPGA technology
across a wide range of industries and applications.

1.5 Xilinx Artix-7
The Xilinx Artix-7 series is a family of high-performance, low-power field-programmable
gate arrays (FPGAs) from Xilinx, designed to meet the needs of cost-sensitive
applications such as portable devices, low-cost wireless communications equip-
ment, and industrial, medical and consumer electronics. The Artix-7 family offers
excellent performance-to-power ratio through advanced process technology and
Xilinx’s proprietary architectural optimizations, which support multiple high-speed
serial interface technologies, and flexible configuration and integration capabilities,
making it a competitive product in the low to medium density FPGA market[14].
Key features and benefits are:
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1. Performance and Power:
The Artix-7 family utilizes a 28nm Low Power process technology, which
enables a significant reduction in power consumption while maintaining the
same performance as the previous generation. This makes the Artix-7 ideal
for battery-powered and energy-efficient applications.

2. Rich Logic Resources:
The Artix-7 family offers a rich set of logic units, storage resources, and digital
signal processing (DSP) units, enabling designers to implement complex
digital logic functions, data processing algorithms, and high-performance
signal processing applications.

3. High-Speed Serial Connectivity:
The Artix-7 family supports a wide range of high-speed serial technologies,
including PCI Express® Gen2, Gigabit Ethernet, SATA, and other protocols,
which can be used to enable high-speed data transfer and efficient system-level
integration.

4. Flexible Configuration and Integration:
The Artix-7 series supports configuration via SPI, JTAG, and other methods,
and supports a partial reconfiguration function that allows specific logic func-
tions in the FPGA to be dynamically modified without downtime, increasing
system flexibility and scalability.

5. Comprehensive development tool support:
Xilinx provides comprehensive development and design tool support, including
the Vivado Design Suite. These tools provide full-flow support from design and
simulation to debugging and deployment, greatly simplifying the development
process and shortening time-to-market.

The Artix-7 FPGA family targets a variety of application areas, including
but not limited to: (i) wireless communications: for digital front-end processing
in wireless base stations, signal processing in mobile communications, etc.; (ii)
industrial automation: for industrial networks, machine vision systems, intelligent
sensors and control systems, etc.; (iii) consumer electronics: for video processing,
multimedia interfaces, home networking devices, etc.; (iv) Medical devices: for
medical imaging, portable diagnostic equipment and patient monitoring systems,
etc.

The Xilinx Artix-7 FPGA family offers cost-effective and flexible solutions in a
wide range of areas with its high performance, low power consumption, rich logic
resources and flexible integration capabilities. By supporting high-speed serial
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Figure 1.7: Artix-7 Development Board[14]

technology and providing comprehensive development tools, the Artix-7 offers
designers the ability to realize innovative designs and shorten product development
cycles, making it ideal for low to medium density FPGA applications.

1.6 MNIST
The MNIST dataset, known as Modified National Institute of Standards and
Technology database, is a widely recognized and used benchmark dataset, especially
in the fields of machine learning and computer vision. It contains gray-scale images
of handwritten digit and is intended to provide a standard test-bed for automatic
handwritten digit recognition.The MNIST dataset consists of the original NIST
dataset simplified and formatted to fit the needs of modern machine learning
algorithms[16].

• The MNIST dataset consists of 60,000 samples for training and 10,000
samples for testing. Each sample is a 28x28 pixel gray-scale image representing
handwritten numbers from 0 to 9. These images are written by different people
through different handwriting styles and are intended to cover a wide range
of challenges that handwritten digit recognition may face. Each image is
matched with a corresponding label, which is a number between 0 and 9 that
represents the true value of the handwritten digit in the image.

• Data Pre-processing: althoughthe MNIST dataset has already undergone
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Figure 1.8: MNIST Sample Plot[16]

some degree of preprocessing, such as centrality and size normalization, in
real-world machine learning projects it is common to further pre-process and
enhance the data according to specific needs. This may include normalization
to allow all pixel values to fall within a fixed range, or applying techniques
such as rotating, panning, and scaling the image to increase the diversity of
the data and improve the generalization of the model.

• TRAINING PROCESS AND MODEL SELECTION The goal of the
training process is to develop a model that is capable to accurately recognize
and predict eamples of handwritten digits that it never saw. The process
begins with selecting a model architecture that is appropriate for the task.
For a basic image classification task such as MNIST, everything from simple
logistic regression to more complex deep learning models such as convolutional
neural networks (CNNs) are viable options. With the rapid development of
deep learning, convolutional neural networks are preferred for their excellent
performance in image recognition tasks.
Model training involves tuning the parameters of the model using a training
dataset to minimize the prediction error. This is usually achieved through
optimization algorithms such as backpropagation and gradient descent. The
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training process gradually improves the performance of the model on the
training set, but care must also be taken to prevent overfitting, where the
model performs well on the training data but poorly on unseen data.

• Performance Evaluation The performance of the model is evaluated by
running the model on an independent test dataset. This test set contains
unseen images from the training process, providing an opportunity to evaluate
the model’s ability to generalize. Accuracy, one of the main metrics used to
evaluate the performance of the MNIST handwritten digit recognition model,
calculates the percentage of images in the test set that are correctly recognized
by the model. The MNIST dataset, due to its moderate complexity and ease
of processing, has become not only an entry-level challenge in the field of
machine learning and computer vision, but also an important benchmark for
evaluating and comparing the performance of different algorithms. Despite
the availability of more complex and challenging datasets in modern times,
MNIST still maintains a wide range of applications and research value in
academia and industry, and plays an active role in advancing the development
of machine learning algorithms.
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Chapter 2

Stdp Python Model

Before designing the VHDL structure for STDP, a Python model of the SNN is
built in order to create a baseline with wich the VHDL block will be compared.
This also allows for the validation and experimentation of the structures involved,
including the implementation of the basic formulas as well as subsequent operations
such as weight quantization, in a more flexible and fast environment. This approach
allows to rapidly iterate and optimize the algorithms before committing to the
detailed design of the hardware description language.

2.1 Python Structure
The design is based on an existing SNN acelerator designed at Politecnico, called
Spiker[8]. The core design concept of Spiker is to reduce hardware complexity
and improve overall performance through strategic optimization. The Spiker
architecture consists of an input layer that acts as a bridge between the pulse-
processing core of the network and the outside world, internal spiking layers, and
an output layer to translate spikes back in real-world interpretable data. The
network implements a clock-driven neuron model in which the membrane potential
of a neuron is updated every clock cycle, even if no impulse occurs. At every
clock cycle the accelerator checks the presence of spikes in input. If at least one
spike is received it loops over all the inputs to understand which ones were active
and to integrate the spikes coming from them. This means inputs are processed
sequentially. To speed-up the computation, skipping useless operation a logical OR
checks the input spikes in parallel: if no spike is present the scan is skipped.

As shown in Figure 2.1, three hierarchical levels can be identified, namely
network, layer, and neuron, respectively. In the design of SNNs, numerical data
vectors need to be converted into a sequence of spikes in order to mimic the way
a biological neural system works. This conversion is crucial because it enables

18



Stdp Python Model

Figure 2.1: SPIKER Hierarchical Structure[8]

the network to interpret and process real-world data by translating them into
spikes, which are internally utilized by spiking neurons. To minimize the use of
hardware resources, these spikes are represented as single bits in the digital domain.
Depending on the type of input data, there are three main types of conversion
methods: (i) firing rate coding, (ii) population ranking coding, and (iii) temporal
coding. Firing rate coding encodes information by averaging firing rates and is
suitable for static data processing, such as images; population rank coding encodes
information by the relative firing times of a group of neurons; and temporal coding
relies on the precise firing time of each spike and is suitable for dynamic data.
Spiker system uses firing rate coding due to its ability to efficiently process static
data such as images.
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• Within the Spiker system, the input data (e.g., the intensity of a pixel of an
image) is processed as an instantaneous magnitude, which is then translated
into a correspondent average firing rate. Each sequence of spikes is generated
as a Poisson distribution of events, driven by the intensity of the corresponding
pixel, which is interpreted as the average probability of a spike occurring within
a given time interval. The system starts the transformation process by selecting
the duration of the spike sequence and splitting the sequence into multiple
computational steps capable of accommodating individual spikes. The length
of each step defines the temporal resolution of the network.Interpreting the
input value as the average probability of spike occurrence per unit time, the
average number of spikes expected in each step is determined by multiplying
the input value by the step length. To determine whether a spike should
be generated in a particular time step, a random number is generated and
compared to the previously obtained average spike count. A spike is generated
only if the generated value exceeds the reference, thus producing a statistically
independent sequence of random spikes with a temporal distribution that
follows a Poisson distribution.

• The output interface converts the spike sequences generated by the network
back into numerical information that can be further processed. This is achieved
by equipping each output neuron with a simple counter and normalizing the
counter value by the duration of the spike sequence to obtain the firing rate
of the output neuron. However, since all neurons have the same duration, this
operation can be omitted, thus saving resources.

• The network architecture consists of any number of layers connected in a
feed-forward structure and managed by a central control unit that organizes
the computation in time steps. The central control unit generates a new set
of spikes when all layers are ready and initiates parallel computation for all
layers. After each layer completes its computation, the central control unit is
notified and waits until all layers are complete, then the next computation
cycle begins.

• Each layer can contain any number of parallel update neurons, which are
managed by the layer control unit. Spiker allows the implementation of inter-
layer inhibitory connections, which reduce the neuron membrane potential and
prevent it from firing spikes through negative weighted connections. Exploiting
the sparsity of the spiking sequence, Spiker skips computations in steps without
active spikes to improve performance[8].
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2.2 MNIST Spikes Transformation
This section deals with the process of extracting the training images and their
corresponding labels from the MNIST dataset, the specific files include:

• train-images-idx3-ubyte: this file contains the pixel point intensity data of the
images.

• train-labels-idx1-ubyte: this file contains the corresponding label information
of the images.

There are several specific steps performed:

1. data file extraction:

2. Image pixel intensity processing:

3. Labeling information processing:

4. Rate coding conversion:

5. Generation of input spikes file

2.2.1 Random Rate Coding
As mentioned before, Random Rate Coding is used for converting MNIST images to
spikes. Unlike regular firing rate coding, random rate coding introduces randomness
into the generation process of spikes, so that the specific moments of the spike
sequence not only reflect the magnitude of the input data, but also contain certain
random variations. This coding method is particularly suitable for those applications
that require modeling the random spike firing properties in biological neural systems.
The implementation of random rate coding involves the following key steps:

1. Mapping of data to firing probabilities: The input data is first converted into a
value representing the firing probability. This probability value determines the
likelihood that a neuron will fire spikes in a given time interval. For example,
higher data values map to higher firing probabilities, while lower data values
correspond to lower probabilities.

2. random number generation: At each computation step, the decision to generate
spikes is made by generating a random number (usually between 0 and 1) and
comparing it to the emission probability. If the random number is less than
or equal to the firing probability, a spike is fired at that step.

21



Stdp Python Model

3. Spike Sequence Generation: The above process is repeated until the encoding
of the entire input data is completed or a set length of time window is reached,
resulting in the generation of a sequence of random spikes representing the
original input data.

Figure 2.2: Rate-coding Correspondence

2.2.2 Sparsity
• By properly tuning the conversion parameters, the encoding can be driven to

generate spike sequences with high sparsity. A sparse spike sequence means
that only a few neurons are active during any given time window, while most
neurons remain silent.

• Improvement in network processing efficiency: sparse spiking activity reduces
the computational burden on the network in processing information. In
sparse coding, a large number of background neurons do not generate spikes
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and therefore do not trigger subsequent post-synaptic processing and weight
updating, thus saving computational resources and energy consumption.

Impact of sparsity on SNN performance

• Sparse coding helps to highlight important information features, making it
easier for the network to recognize and extract key patterns in the input data.
This is because in sparse coding, only the neurons that are most relevant to
the task at hand are activated, which reduces redundancy of information. This
approach is particularly effective when dealing with specific types of data, as
it allows the network to focus on those information features that are most
critical to solving the problem, although sparse coding may not be optimal
for some data types.

• Enhancement of network robustness: sparsity improves robustness by limiting
the network’s sensitivity to input noise. In sparse coding, chance or irrelevant
input changes are less likely to lead to widespread neuron activation, thus
protecting the network from noise.

The combination of random rate coding and sparsity is particularly important in
designing efficient and biologically sound SNNs. By adapting random rate coding
strategies to optimize sparsity, efficient coding and processing of information can
be achieved while improving the accuracy and energy efficiency of the network. In
addition, this combination helps to achieve more compact network structures as it
reduces the number of neurons and synapses that need to be actively involved in
the computation, thereby reducing the complexity and resource requirements of
the hardware implementation. In summary, the association between random rate
coding and sparsity provides a strategy to improve the performance of SNNs while
maintaining biological plausibility, making this network structure more suitable for
hardware implementations, especially in resource-constrained environments.
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2.3 Stdp Implementation
In realizing the learning mechanism based on spike-time dependent plasticity
(STDP), the following steps were taken in this study to ensure the accuracy and
biological soundness of the synaptic weight update process:

Listing 2.1: stdp function
1 de f stdp ( network , layer , stdpDict , inputSp ikes ) :
2

3 synapseName = " exc2exc " + s t r ( l a y e r )
4 layerName = " excLayer " + s t r ( l a y e r )
5

6 # Time step i n c r e a s e
7 network [ synapseName ] [ " time " ] += 0 .1
8

9 # In c r ea s e the weights f o r l t p
10 l t p ( network , synapseName , layerName , stdpDict [ synapseName ] [ "

eta_post " ] ,
11 stdpDict [ synapseName ] [ " ltp_tau " ] )
12

13 # In c r ea s e the weights f o r l t d
14 l t d ( network , synapseName , layerName , stdpDict [ synapseName ] [ "

eta_pre " ] ,
15 stdpDict [ synapseName ] [ " ltd_tau " ] , inputSp ikes )
16

17 network [ synapseName ] [ " weights " ] [ network [ synapseName ] [ " weights " ] <
0 ] = 0

1. Layer naming and definition. First, each network layer was assigned a unique
name, such as "excLayer" plus the number of the layer, in order to accurately
refer to the synapses and neurons of a specific layer during the STDP update
process. This step is critical for subsequent synaptic updates and other
operations on specific layers.

2. For time step tracking, a variable named "time" is introduced in the dictionary
definition of synapses as a counter to track the global time progress. Here a
time step of 100ms (0.1s) is considered. This is increased at each time the
STDP weight update is performed, thus facilitating the calculation of the time
difference required for the weight update.

3. Weight update calculation, next, performs Long Term Potentiation (LTP) and
Long Term Depression (LTD) calculations, which are responsible for increas-
ing and decreasing synaptic weights, respectively, following the mechanism
explained in 1.2.1. The dynamic adjustment of the weights is achieved by pass-
ing the learning rates (eta-post and eta-pre) and time constants (ltp-tau and
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ltd-tau) to the corresponding functions. In particular, the LTD computation
requires the identification of active synapses based on input spikes.

4. weight regularization, finally, performs a regularization operation of the weights,
i.e., all negative weight values are set to 0. This operation avoids the case
where the weight values become negative, preventing potential inversion of
the network behavior.

Listing 2.2: LTP function
18 FUNCTION LTP( network , synapseName , layerName , eta_post , dt_tau )
19

20 FOR EACH output sp ike in layerName
21 SET post sp ike time at the output sp ike index = current time
22

23 INITIALIZE condit ion_matr ix based on the f o l l o w i n g c o n d i t i o n s :
24 − The d i f f e r e n c e between cur rent time and l a s t pre−sp ike time

< Time−Window
25 − The l a s t pre−sp ike time /= 0
26

27 FOR EACH output sp ike in layerName
28 INCREMENT weights in synapseName at the output sp ike index by

:
29 IF condit ion_matr ix = TRUE at the output sp ike index
30 THEN
31 eta_post ∗ EXPONENTIAL o f negat ive ( cur rent time −

l a s t pre−sp ike time ) d iv ided by dt_tau
32 ELSE
33 0
34 END FUNCTION

In the framework of Spike Timing Dependent Plasticity (STDP), LTP (Long
Time Program Enhancement) stands for the increase in the strength of a synaptic
connection when the pre-synaptic neuronissues spikes before the subsequent neuron
in turn issues spikes. This code implements the synaptic weight updating process
based on the LTP mechanism in the following steps:

1. Post-synaptic trace update: First, the function updates the post-synaptic
traces under a specific synapse name (synapseName) in the network. For
all neurons that produce output spikes in the specified layer (layerName),
the function assigns the current time (network[synapseName]["time"]) to the
corresponding postsynaptic trace to indicate that these neurons are activated
at the current moment, and labels them with a timestamp.

2. Conditional matrix computation: Subsequently, the function constructs a
conditional matrix by comparing the time difference between the pre- and
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post-synaptic events for each synapse. This step aims at determining which
pre- and post-synaptic events occur within a predefined time window. The
additional condition "not equal to 0" is used to exclude those synapses with
zero time difference in case an invalid computation is triggered.

3. Weight update: For those synapses that satisfy the condition (i.e., condition-
matrix is true) and produce output spikes in the specified layer, their weights
are updated according to the LTP rule. The weights are incremented by the
learning rate eta-post multiplied by an exponential decay factor computed
based on the time difference between the pre and postsynaptic events and
the time constant dt-tau. If the condition is not satisfied, the weights are
increased by 0.

Listing 2.3: LTD function
36 FUNCTION LTD( network , synapseName , layerName , eta_pre , dt_tau ,

inputSp ikes )
37

38 SET pre−sp ike t imes in synapseName f o r inputSp ikes = current time
39

40 CREATE a condit ion_matr ix where :
41 − The d i f f e r e n c e between cur rent time and l a s t post−sp ike

time < Time−Window
42 − The l a s t post−sp ike time /= 0
43

44 FOR EACH input sp ike index in inputSp ikes
45 DECREASE the weights in synapseName by :
46 IF the condit ion_matr ix = TRUE f o r a post−sp ike index
47 THEN
48 eta_pre ∗ EXP(− ( cur rent time − l a s t post−sp ike time )

/ dt_tau )
49 ELSE
50 0
51

52 END FUNCTION

This process exemplifies the basic principle of LTD in the STDP rule: if a neuron
receives spikes after the subsequent one gives out spikes (i.e., the pre-synaptic
activity occurs after the post-synaptic activity), the strength of the connection
between these two neurons decreases. This time-based synaptic weight adjustment
mechanism is crucial for modeling the forgetting process and refining the learning
pattern in neural networks. The process is the same as the LTP function, but in
the opposite direction, and the input spikes are transformed into spikes from the
input images of MNIST for the first layer.

After the training of each image is completed, the time reference is reset to
zero, to start the processing of a new image. The time values in "time" and "pre"
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and "post" of all synaptic Dicts are zeroed out for the next image. This is because
synaptic triggers between different images do not directly affect each other’s STDP
weight adjustment calculation. Each input (e.g., image) is processed independently,
and STDP adjusts the synaptic weights based on the timing of pre- and post-
synaptic neuron spikes in this input. Doing so allows the neural network to learn
and adapt based on the temporal dynamics of each independent event, which in
turn enables the accumulation of knowledge and experience in long-term memory.

MNIST training using learning rates and time constants as shown in Table 2.1.

Parameter Description Value
eta_pre Pre-synaptic learning rate 1e-4 mV
eta_post Post-synaptic learning rate 1e-3 mV
ltp_tau Long-Term Potentiation time constant 20 ms
ltd_tau Long-Term Depression time constant 20 ms

Table 2.1: STDP Parameters

Figure 2.3: Full-precition accuracy scatterplot

The evolution of the network throughout the STDP-based training process is
shown in figure 2.3.

• the accuracy is about 70% in the first 50 epochs at the beginning of the
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training period.

• fluctuating growth in the middle period

• fluctuates between 75%-85% in later stages

Being an unsupervised method it can be seen that the output accuracy is quite
noisy. However the network is able to learn quite well

2.4 Quantization
Weight quantization becomes a critical step when the STDP (Spike Timing De-
pendent Plasticity) model is transferred from a Python simulation environment to
a VHDL (Hardware Description Language) implementation. This is because, in
contrast to high-level programming languages such as Python, hardware implemen-
tations need to take into account storage and processing power limitations.

Purpose of weight quantization

• Reduce storage requirements: quantization reduces the demand on storage
resources by reducing the number of bits required for weight values. This is
especially important for resource-constrained hardware platforms.

• Simplify computation: Quantization of weights simplifies multiplication opera-
tions because using fewer bits allows for simpler hardware logic, which reduces
computational complexity and energy consumption.

• Adapting to hardware limitations: In some hardware (e.g., analog cross-arrays
or specific storage computing devices), there are limited levels of conductivity
available. Quantization ensures that weights can be mapped to these available
conductivity levels.

Challenges of weight quantization

• Loss of accuracy: Rounding or truncation during quantization may result
in a loss of model accuracy. Designing a quantization strategy requires a
careful weighing of the relationship between quantization levels and model
performance.

• Quantization noise: The error introduced by quantization can be regarded
as a kind of noise, which may affect the learning and generalization ability
of the network. How to minimize the impact of quantization noise is a key
consideration in the design.
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Bit Width Accuracy (%)
10 73.96
7 73.76
5 73.68
4 71.90
3 70.01
2 27.75
1 12.17

Table 2.2: Quantized weight accuracy

If quantify only the weights, which are then used for inference, as shown in the
table 2.2.

As can be seen from the data in the table, when the weight quantization reaches
5 bits or more, the change in the accuracy rate obtained by inference is small, with
the change limited to the two-digit decimal range. In contrast, when the weight
quantization is less than 5 bits, the decrease in the accuracy is significant. In
particular, when the weight quantization is reduced to less than 3 bits, the accuracy
rate drops drastically, falling within the 30% to 10% range.

But in this design, the delta weights are used as the smallest weight unit because
the transmission of the delta weights needs to be considered. Since the learning
rates eta_pre and eta_post used previously are 1e-4 and 1e-3 respectively, here
we only perform strong quantization for the delta weights so that they act in the
training stdp, The quantization of the weights is then determined as the strength
of the delta weight quantization is relative to the learning rate.The quantized value
of the corresponding weight is the quantized value of the delta weight plus 10. And
the accuracy obtained is recorded and the final graph is obtained in figure 2.4.

• Quantization strategy: we implemented different degrees of quantization for
delta weights, specifically including 5-bit, 3-bit and 1-bit quantization levels.
The model was trained using the MNIST training set, and the model underwent
a training process of 35,000 images at each quantization level.The reason for
not using full training is that by the time 40,000 training volumes are reached,
the inputIntensity decreases so drastically that the amount of spikes on the
output is not reached. In order to monitor the performance changes during
the training process, we recorded the accuracy of the model every 250 images.

• Observations in the early stages of training: In the early stages of training,
we observed a certain degree of deviation in the accuracy of the model when
the quantization intensity was high. This suggests that strong quantization
may adversely affect the learning effectiveness of the model in the early stages
of training.
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Figure 2.4: Line graph of quantitative results

• Long-term training effect: Despite the bias in the early stages of training, the
final accuracy obtained by the models at all quantization levels tends to be
close as training continues. This finding suggests that although quantization
intensity has an effect on performance in the early stages of training, long-term
training can mitigate this effect and the models are able to achieve similar
levels of accuracy
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Chapter 3

Stdp Vhdl Establish

In the previous section, we verified that the STDP model written in the Python
language is feasible for application in SNN networks and achieves high accuracy
for a specific learning rate and time constant. The model is equally effective under
certain quantization constraints.

In this section, a module implementing the STDP functionality will be built
using the VHDL language, aiming to replicate the functionality of the Python
version of the STDP module. We separate out the STDP portion of Python and
compare the results of the VHDL implementation with it to ensure that both have
the same effect.

This section details a module designed for embedding spiking neural networks
(SNNs). The main function of this module is to receive the spiking signals generated
at both ends of the neuron layer of the SNN, and after a series of internal processing
calculations, it finally realizes the exchange of information with the synaptic layer
of the SNN and thus adjusts the synaptic weights. This process aims to achieve
the learning effect based on the spatio-temporal dynamic remodeling (STDP)
mechanism.

This document will introduce the overall structure of the module, including
the whole process from receiving input signals to generating output signals. Sub-
sequently, the functions and operation mechanisms of each sub-module will be
described in detail one by one. Finally, the comprehensive results of the module
are shown to demonstrate its effectiveness and practicality.

3.1 Stdp Structure
In this design, the STDP (Spike-Timing-Dependent Plasticity) architecture is
subdivided into four key components to ensure efficient and accurate function
realization:
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• Encoder

• Queue

• Weight-Trans

• Weight-Bram

The overall structure adopts a left-right symmetric design concept, with the
exception of the Weight-Bram, where other parts such as Encoder, Queue and
Weight-trans are connected with double devices.

1. The entire STDP architecture is constructed between two layers of the neural
network, through which impulses (spikes) from the Input and Output layers are
used as entrances to the data stream. When the data stream enters a specific
port, it is first processed by the encoder, which outputs the corresponding time
value and the address value of the neuron that triggered the spike. Given that
this design employs a two-layer neural network structure, where the first layer
size is 784 (corresponding to the spike input to MNIST), and the second layer is
400, the inputs and outputs are processed separately for the address-indicating
locations corresponding to their respective numbers of neurons.

2. Subsequently, the addresses and timestamps of the neurons are fed in parallel
to the Queue at the home end and the opposite end, as shown in Figure Figure
3.1 At the home end they are input as Event-addr and time-attach and at
the other end as Event-addr-oppo and time-attach-oppo.At the same time,
the event validity indication signal (valid signal) from each encoder is also
connected to the Queue at both ends, which serves as an indication signal for
entering the queue (Inqueue) at this end and as a start signal for reading the
queue information at the other end.

3. Next, the address and time values corresponding to each spike are extracted
from the Queue, and these values are fed into the Weight-trans module
for processing, where they are computed as addr1 (row-selected address),
addr2 (column-selected address), the updated difference in the weights (Delta-
Weight), and the resulting valid indication signal ( indicate). In addition, since
the signal inputs to the front-end and the back-end are in opposite directions,
i.e., the corresponding processing methods in the STDP are LTP and LTD,
respectively, and the Weight-Trans module is used as a general-purpose type,
as shown in Figure 3.2, the row-address signals and column-address signals
that are output from the Queue module to the Weight-Trans module are
reversed when the ports are connected, ensuring that they both correspond
to the same row-address signals and column-address signals. connections to
ensure that they both correspond to address values in the same direction layer.
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Figure 3.1: STDP overall module structure

4. Finally, the computed address values and weight update values are input into
the Weight-Bram module for processing, thus updating the weights stored in
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Figure 3.2: LTD address reverse connection

the original synapsis. Through this series of operations, the STDP architecture
realizes the weight adjustment based on temporal dynamics, which enables
the neural network to adaptively learn and update according to the activity
patterns of the input and output layers, thus enhancing the flexibility and
efficiency of the neural network’s processing and learning capabilities.

3.2 Encoder
In the encoder section, we mainly deal with the spike signals from both input and
output ends. The core of the task is to extract the information critical for STDP
conversion from these spikes and encode this information to the next level of the
system. Since we use spiking neural networks (SNN), a distinctive feature of this
type of network is the sparsity of spikes.

In the address processing part of this design, a Time Division Multiplexing (TDM)
strategy is adopted to efficiently process and transmit sparse spike signals from
the SNN network. Time multiplexing enables efficient encoding and transmission
of spikes by dividing time into discrete time slots, assigning each input signal a
dedicated time slot. During each given time slot, a specific input channel is activated
and its data has exclusive access to the communication line for transmission. For
example, in the first time slot, the data of ‘input1‘ is transmitted; then in the
second time slot, it switches to ‘input2‘, and so on. This approach ensures that no
signal collisions or interference can occur on the communication lines, since each
time slot is occupied by only a single input signal.

The implementation of time multiplexing relies on a clock signal (clk) to control
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the switching of time slots, ensuring that each input signal is accurately transmitted
within its designated time slot. This strategy reduces the number of physical
connections required. This is particularly important when simulating large-scale
connections between units in SNN networks, since a distinctive feature of SNNs is
the sparsity of spikes.

However, although the time multiplexing strategy is efficient in terms of physical
connections, it also brings additional requirements for time resources. Since each
input signal needs to be processed sequentially in a different time slot, this can
lead to increased overall latency when processing a large number of input signals.
Therefore, the design needs to carefully balance time efficiency and connection
resource utilization to optimize system performance. In practical applications,
the relationship between transmission efficiency and system response time can be
balanced by adjusting the length and allocation strategy of the time slot, as well
as optimizing the clock frequency, to ensure an SNN network implementation that
is both efficient and can meet real-time processing requirements.

3.3 Queue
The implementation of the queue module consists of the following:

• The building of the module

• Use of memory such as BRAM

• Implementation of in-queue and out-queue functions

• Synchronization of timing

• Storage format of the data

In terms of composing the queue module, the design targets the subsequent sym-
metrical usage

3.3.1 Queue Module
In the Queue module of this design, we employ signal management and control
strategy to ensure that the module can flexibly cope with the dynamic spiking
activities in the SNN. The main workflow of the module is shown in Figure 3.3:

1. Spike reception and storage: when a valid spike is detected (Event-Valid signal
activation), the module utilizes the address (Event-Address) and timestamp
(time-attach) information of the spike to add the spike data into the queue to
prepare for subsequent processing.
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Figure 3.3: Time-triggered on both sides

2. Spike data reading: In the face of a spike data reading request from the
opposite end (marked by the Event-Valid-Oppo signal), the module retrieves
and provides the required spike data precisely from the queue by using the spike
address (Event-Address-Oppo) and timestamp (time-attach-oppo) information
provided by the opposite end. This operation corresponds to the Rd-Queue in
figure.

The design not only optimizes the processing efficiency of spike information, but
also enhances the system’s responsiveness to spike activities and guarantees the
accuracy and real-time nature of information exchange.

In addition, the queue design also takes into account data management and
access strategies to ensure that data processing is both fast and accurate in an
environment where spikes information is exchanged frequently. By optimizing the
data structure and access method, this queue module can support high-concurrency
spike processing, providing powerful underlying support for the implementation
of STDP learning rules in SNN. In addition, this design also provides flexibility
for possible future expansion, such as adding more ports to support more complex
network topologies, or optimizing timestamp processing to improve the accuracy
and efficiency of timing analysis.

Depending on the function to be performed, the core objective of the queue
module is to efficiently manage the dynamic flow of spiking information in a
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Figure 3.4: Queue Module Port Diagram

pulsed neural network (SNN) environment. The module is specifically designed
to handle and coordinate spiking data from both ends of the network, ensuring
that information is exchanged and processed accurately and without error in the
dynamic SNN environment. This module not only responds to the underlying
clock (clk) and reset (rst) signals, but also introduces a series of specialized ports
designed to finely tune the reception and management of spike data, as well as
interaction with other components in the network.

To introduce how this module handles spike data, it can be divided into two
main categories:

For the spike information received by the local end, we have the following ports:

• Event-Valid: As a control signal, indicating whether there are currently valid
spike events that need to be processed. When Event-Valid is high, it indicates
that the queue needs to enqueue the current spike.

• Event-Address: carries the neuron address information corresponding to
the currently processed spike event. This is key data for locating the source
of the spike.

• Time-Attach: records the timestamp of the peak event, providing necessary
timing information for STDP learning rules.

For a spike message received from the opposite port, the corresponding port
includes:
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• Event-Valid-Oppo:Indicates the valid status of a spike event received from
the opposite port. When this signal is high, it indicates that the opposite end
has spiked data requesting to read the information stored in the queue on this
end.

• Event-Address-Oppo: carries neuron address information of the peer spike
event.

• Time-Attach-oppo: records the timestamp of the peer peak event, providing
data support for cross-module timing analysis.

3.3.2 Queue Structure
The queue management system of this design employs a streamlined state control
logic to handle and synchronize spiking events in the SNN. , this process is shown
in Figure 3.5 and is realized through the following key operations:

1. Data reception and queue entry operations:

• When the system is in IDLE state, it waits for new spiking events.
• Once the Event-Valid signal is active, indicating that a spike event has

arrived, the system adds it to the queue.
• If the queue is full, the system takes steps (e.g., looping the queue pointer)

to continue storing new events to ensure data continuity.

2. Data reading and evaluation:

• When the system enters the OUTPUT-DATA state, it is responsible for
retrieving spike events from the queue in response to the Event-oppo
signal.

• Each spike event is evaluated based on its timestamp to determine if it
falls within the time window defined by the STDP learning rules.

• Spike events are considered valid inputs to the learning process only
if the difference between their timestamps and the current Event-oppo
timestamp (time-attach-oppo) is within a predefined threshold.

3. Dynamic management of time window:

• The time window mechanism is crucial in the OUTPUT-DATA state,
which determines which events will be further processed by the system.

• If the timestamp of a spiking event exceeds the time window threshold,
this indicates that the event is no longer influential for the current learning
cycle, and the system therefore queues the event out.
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Figure 3.5: Queue module flowchart

4. system reset and preparation:
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• After processing all spike events in the queue, the system empties the
input-buffer and resets the state machine for receiving the next batch of
spike events.

• This ensures that the queue management system is always in an optimal
state, ready to respond quickly to new spike events.

Through these steps, the queue management system of this design precisely controls
every aspect of the data flow, ensuring that the time window requirements of the
STDP mechanism are met. Such treatment not only ensures that only relevant
neural events affect the learning process, but also improves the overall network
model’s responsiveness and learning efficiency.

3.3.3 Queue Storage

Figure 3.6: BRAM utilization

In modern FPGA (Field Programmable Gate Array) designs, BRAM (Block
Random Access Memory) is used as a core component to provide a high-speed
and flexible internal storage solution. It features large capacity and low access
latency, and is ideally suited for implementing intermediate data storage, buffers,
lookup tables, state machines, etc. BRAM’s design flexibility and efficiency is
reflected in the fact that it can be configured according to the application’s needs
in terms of its size, bit-width, and mode, and supports multiple configurations,
such as single-port RAM, dual-port RAM, or FIFO queuing, and can be configured
in cascade or in parallel with multiple BRAM blocks to expand storage capacity
or data path width. Utilizing BRAM in FPGA design can significantly improve
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data processing speed and overall system performance, while reducing dependence
on external storage, lowering system power consumption and cost, and enhancing
design flexibility and scalability.

In this design, we use the Block RAM (BRAM) of Xilinx FPGA as the key data
storage and buffering mechanism to support the implementation of Spike-Timing-
Dependent Plasticity (STDP) in the SNN. Through carefully designed configuration,
the BRAM unit is integrated into two specialized modules: BRAM-Input-buffer
and BRAM-QUEUE. They respectively play different roles in the STDP processing
flow, optimizing the data access efficiency and the overall system performance.

• BRAM-Input-buffer module Added before the Queue’s processing. Re-
sponsible for storing the spike signals received by the SNN, in order to solve
the problem of mismatched data transmission and processing times and data
loss.

• BRAM-QUEUE module Manages queues of spiking information to adapt
to the randomness of spiking events in SNN. Relying on the capacity and
flexibility of BRAM.

Configuration of these two BRAM modules includes selecting the appropriate
BRAM size ("36Kb"), optimizing for a specific FPGA device series (such as "7SE-
RIES"), and accurately setting the read and write width to match the structure of
spike data. In addition, by adjusting the output register configuration, collision
detection mechanism and initial value settings, the accuracy of data processing
and the stable operation of the system are further ensured.

When designing these two modules, special attention was paid to the optimiza-
tion of BRAM configuration to ensure that it can not only meet the SNN processing
needs, but also maximize the use of FPGA resources. This BRAM-based data
management strategy not only significantly improves the computing and storage
efficiency of the SNN model, but also provides powerful hardware support for imple-
menting complex neural network algorithms. Through this design, we successfully
combined the theoretical principles of the STDP algorithm with the hardware
characteristics of FPGA, demonstrating the possibility of efficiently implementing
the SNN model.

As shown in the figure the method involves storing a combination of address and
corresponding timestamp as a data element. In our design, the timestamp occupies
the lower 5 bits of the combined value, while the upper 10 bits are assigned to the
address value. This design decision is based on the consideration of the maximum
number of neurons in the neural network layer: the given two-layer SNN is 784
and 400 size respectively. because 210 = 1024, the upper 10 bits of the address
space are enough to cover all necessary address values, ensuring the adequacy and
efficiency of address encoding.
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Figure 3.7: Data storage arrangements

When data is written to BRAM, this address-timestamp combination value
is input through the data input port (DI). When managing the write address
(WRADDR), we adopt a simple and effective method: use the BRAM pointer as
the address. Specifically, when writing address data to the BRAM of the input-
buffer, we use Input-Buffer-Tail and Input-Buffer-Head as control pointers. These
two pointers support input event data (event-oppo value ) simple queue operations
- that is, enqueuing and dequeuing. Whenever the system returns to the IDLE
state and completes a single operation, the input-buffer is initialized to prepare
for the next round of data processing. Due to the efficiency of this method, the
capacity of the input-buffer far exceeds actual usage requirements, so we do not
need to deal with queue overflow.
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Figure 3.8: Schematic diagram of queue use

The diagram represents the queue management strategy in the SNN model,
focusing on three main pointers: Queue-Tail, Queue-Head, and Queue-Point. These
pointers facilitate dynamic data storage and retrieval to ensure stable data flow
and system functionality. Here’s an analysis along with the functionality of the
time-window:

• Queue-Tail marks the end of the queue and moves backward as new data
elements are enqueued. It ensures that incoming data are continuously added,
maintaining the flow’s real-time nature. If Queue-Tail reaches the end, the
loop store mechanism kicks in, and Queue-Tail wraps around to the queue’s
start, enabling circular data storage.

• Queue-Head is the pointer that leads the queue, indicating where data will be
dequeued next. It moves sequentially through the queue, ensuring that data
are processed in their arrival order, which is critical for maintaining temporal
coherence.
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• Queue-Point is in read mode and is used during the data output phase. It can
traverse the queue independently of Queue-Head, allowing for efficient data
access without disrupting the enqueuing process.

• The time-window feature ensures that only data within a certain temporal
threshold are considered for processing, which prevents outdated data from
affecting current computations. This feature is represented by the shaded
areas marked "value out of time-window," indicating that data outside this
time frame are ignored during dequeue operations.

The loop read and loop store notations signify that the queue is circular, and
both reading from and writing to the queue can continue indefinitely without the
risk of overflow or underflow, as long as data management is properly synchronized.

This system provides a robust method for managing data within an SNN,
enabling the network to handle spikes efficiently and in an ordered fashion. The
time-window mechanism further enhances the model by filtering out irrelevant data,
thereby optimizing the processing and increasing the reliability of the network’s
response to stimuli.

3.3.4 Time Synchronization
In the queue management system, by introducing the Queue-Valid signal as an
indicator of output validity, the system can accurately control and manage the
data flow. As shown in the figure, for each received Event-oppo signal (values 1,
7, 6 in the example), the system will accordingly extract the current remaining
address value (e.g. 3, 7, 6, 2) from the queue and its The corresponding timestamp
(eg 1, 2, 3, 3). These extracted values are then passed to the next processing level
via the queue’s output port for further manipulation.

Figure 3.9: Read data timing correspondence

3.4 Weight-Trans
The design converts the input temporal information into weight update values
(∆W ) by means of pulse time difference dependent plasticity (STDP) computation,
and its core features and functions include:
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• STDP-based weight update: the design utilizes the STDP principle to calculate
the weight update value (∆W ) based on the time difference between the input
pulses

• Use of Event-Valid-oppo port: is the key signal that controls the start of the
weight update calculation.

• Synchronized output of address information and weight update values: Ensures
that the processed address information and one of the corresponding weight
update values can be output synchronously. This is critical to ensure that the
data flow is at least carried out in subsequent processing steps.

• Guarantee of real-time and accuracy: This design guarantees the real-time and
accuracy of the weight adjustment process by ensuring the synchronization of
data and the detection of event effects during the weight adjustment process,
which meets the demand for fast and accurate processing.

Figure 3.10: Weight-Trans Module Diagram

In the STDP conversion section, the time computation involves the time-attach
from the front-end for this port input and the time value read from the queue.
First, a subtractor is used to calculate the difference between these two input time
values to get the time difference ∆t. For this VHDL design, we temporarily use a
lookup table (LUT) to map the corresponding ∆weights values.

We have already discussed the specific effects of different delta weight values in
the previous section on python modeling, so we can accordingly use MATLAB to
generate the corresponding lookup tables based on the underlying STDP formulae
and taking into account the width of the time window. From this we can get

45



Stdp Vhdl Establish

the corresponding LUT values directly on MATLAB. For positive and negative
windows, we generate two corresponding LUTs and embed them in the weight-trans
model, using ∆t as an index to select the output ∆weights .

Figure 3.11: Matlab LUT data generation

In order to ensure the synchronous output of address and time information, in
the weight conversion module (weight-trans), we simply add a flip-flop (flip-flop) to
delay the signal by one clock cycle. In addition, a Weight-Delta-Indicator signal is
introduced to represent the weight change value and the validity of its corresponding
address. This design aims to ensure the consistency and synchronization of data
processing, ensuring that the relevant address and time information can be output
accurately together with each weight update.

3.5 Weight-Bram
After completing the STDP conversion and obtaining a series of weight modifica-
tion values corresponding to each input, the next key step is to integrate these
modification values into the corresponding weights of the synapses in the original
SNN network. This process requires a mechanism to efficiently retrieve and update

46



Stdp Vhdl Establish

synaptic weights from storage. To this end, a specialized weight management
system is implemented that accesses and modifies synaptic weights based on weight
update values calculated by the STDP algorithm. This system ensures that weight
adjustments are accurately reflected on the network’s synaptic connections, enabling
dynamic learning and adaptation based on temporal spike patterns.

Figure 3.12: Enter Caption

In the VHDL implementation of SNN, the storage strategy of weights is crucial
for network performance and resource utilization. In this design, for example, the
input size of the first layer is 784 and the second layer is 400, and the total number
of weights to be stored reaches 313600. For this reason, we chose to use a Series 7
36KB BRAM for weight storage, and special consideration was given to the BRAM
configuration to adapt to the storage requirements of the SNN.

Figure 3.13: Methods for storing weights in BRAM
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The BRAM configuration includes both single-line write and read lengths (word-
length) set to 36 bits and all initial weight values set to 0. In this design, the
quantization width (weight-bit-width) of individual weights is set to 5 bits, which
is an adjustable parameter so that it can be adjusted in subsequent experiments
to observe the effect of different quantization levels on the experimental results.
effect of different quantization levels. Based on the 36-bit word-length, each line
can store up to 7 weight values (36/5=7).

This design adopts a unique transpose matrix storage strategy, i.e., the number
of rows of the weight matrix to be stored is set to 784, and the number of columns
is set to 400. according to this storage strategy, the overall number of BRAMs
needed is 400/7 + 1 = 58. As shown in the figure, the BRAM is divided into 58
cells (numbered from 0 to 57), and in each BRAM cell, each row has a width of 36
bits and is capable of storing 7 weight values, resulting in a total of 784 columns.

In addition, the transposed matrix storage method not only optimizes the
storage efficiency, but also simplifies the access and update process of the weights,
especially when performing the STDP learning rule. This approach allows parallel
processing of weight updates for multiple neurons, which significantly improves
the computational efficiency. Meanwhile, the tunability of the quantization width
facilitates the study of the impact of different accuracies on the learning performance,
further enhancing the flexibility of SNN design and the breadth of experiments.

Table 3.1: Encoding Table for N=3

Decimal Binary Unary One-hot
0 000 0 00000001
1 001 1 00000010
2 010 10 00000100
3 011 11 00001000
4 100 100 00010000
5 101 101 00100000
6 110 110 01000000
7 111 111 10000000

This system uses 58 BRAM cells to store weights and manages these BRAM
cells through precise read and write control. The write enable port (wren) is
configured as BRAM-sel to specify the target BRAM cell for the current operation.
The system uses a One-Hot Encoding decoder to optimize the address selection
process by converting the N-bit input signals into uniquely corresponding high level
outputs, precisely selecting individual BRAM cells for operation, thus simplifying
the address resolution process and improving the operational efficiency of the
system.
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The use of Block Random Access Memory (BRAM) for weight storage is a key
strategy for data management in Spiking Neural Networks (SNNs). Initially, the
network weights are set, and as the network operates, these weights are modified by
Spike-Timing-Dependent Plasticity (STDP). A state machine controls the BRAM
during these processes, which includes:

• IDLE (idle state): The system initializes and prepares for operation, ensuring
readiness for weight adjustments.

• Weight-fetch (weight extraction state): This state is used in the early stage of
network construction, where the initial weight values of synapses are assigned
through external data sources (e.g., file reading), which is a key step in network
construction and weight initialization.

• Weight-stdp-rd (STDP read state): During STDP operations, it reads specific
weight values from BRAM, providing data for time-difference-based weight
adjustments.

• Weight-stdp-wr (STDP write state): Writes the updated weights back to
BRAM, completing the dynamic weight adjustment process.

Through this state machine control mechanism, not only can the initialization
and dynamic learning process of the network be clearly separated, but also the
efficiency and accuracy of weight access can be improved. In addition, the introduc-
tion of the state machine provides better scalability and flexibility for the system,
which makes modification and optimization for the future possible and further
enhances the capability of the SNN in handling complex tasks.
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Figure 3.14: Weight-BRAM Flowchart

In the state machine’s design, one trigger initializes the SNN, and another starts
the learning phase, allowing smooth transitions within the system’s operations.

In this flowchart, the wake-up of the system from the IDLE state is triggered by
two conditions:

• Weight read: when rden is activated, the system enters the Weight-fetch state,
in which the system reads the initial weight values from the outside and stores
them in BRAM for weight initialization in the network establishment phase.

• Weight update: When WeightStdp-en is activated, the system enters the
Weight-stdp-wr state, which indicates that the STDP mechanism triggers the
weight update, at which time the system writes the updated weight values
into BRAM.

These two triggering conditions correspond to different phases of neural network
initialization and weight adjustment in the learning process, respectively. Since
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rden is only activated in the initialization phase, it does not conflict with the weight
learning process of WeightStdp-en. In the weight update phase, the system first
extracts the weight values to be changed and their addresses, and then updates
them in real time based on STDP rules, which ensures the dynamic learning
capability of the network. Through this mechanism, the integrity of data and the
efficiency of access are ensured throughout the life cycle of the neural network.

Listing 3.1: address select
54 bram_num := to_integer ( unsigned ( WeightStdp_addr2_stor ( addr_counter ) ) )

/ 7 ;
55 bram_inner_num := to_integer ( unsigned ( WeightStdp_addr2_stor (

addr_counter ) ) ) mod 7 ;
56

57 weight_l ine := data_out_buffer (bram_num) ;
58

59 weight := weight_l ine ( ( bram_inner_num+1)∗weights_bit_width −1
60 downto bram_inner_num∗ weights_bit_width ) ;
61

62 weight := weight + Weight_Delta_stor ( weight_stor_count ) ;
63 weight_stor_count <= weight_stor_count + 1 ;
64 weight_l ine ( ( bram_inner_num+1)∗weights_bit_width −1
65 downto bram_inner_num∗ weights_bit_width )
66 := weight ;

1. The storage and updating of weights is one of the key aspects in the implemen-
tation of SNN. This design utilizes multiple BRAM cells to store the weight
values, where the bram-num represents the BRAM number where the desired
weights are located, as determined by addr2 output from the STDP module.
addr1 represents the row number of the weights in the BRAM, while addr2
points to the address of the second-layer neuron - in 400 neurons is equivalent
to selecting a specific column in the BRAM.
Since each BRAM is capable of storing weight values for up to 7 neurons,
a limit determined by both word-length and weight-bit-width, the specific
BRAM number (BRAM-num) of the desired weight can be determined by
dividing addr2 by 7. Next, calculating the remainder of addr2 divided by
7 allows determining the exact position of the target weight in its BRAM
(denoted as bram-inner-num).

2. After obtaining the exact location of the weights, the next step is to extract
the weight values at that location and perform the necessary calculations.
This involves updating the weight value by adding the original weight value
to the change in weight (Delta-Weight) calculated by the STDP algorithm.
Eventually, the updated weight value is written back to its original position
in the original extracted row to replace the previously stored weight value.
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Figure 3.15: Weight-BRAM process structure

This design effectively supports the dynamic learning process of SNN by
accurately locating and updating the weight values in BRAM. By using addr2
for locating the BRAM number where the weight is located and its position
within the BRAM, and addr1 for determining the row position of the weight
in the BRAM, this design not only realizes the efficient management of weight
storage, but also ensures the accuracy and fast response of the weight update
process.

3. The process then moves to the next critical state, which is to write the com-
puted and modified rows of weight values back to the BRAM. The operations
involved in this phase are typical of the BRAM write process. It is impor-
tant to note that the write address wraddr port receives the value of addr1
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determined during the STDP calculation, which represents the row address of
the weight data (ranging from 1 to 784), while the write enable signal wren
(i.e., the bram-sel port) corresponds to the value of the bram-num previously
calculated by dividing addr2 by 7.

Figure 3.16: Enter Caption

4. As shown in the figure, the timing control strategy for reads and writes to the
same memory address in Block Random Access Memory (BRAM) is illustrated.
In order to avoid data conflicts due to the read and write cycle delays inherent
in BRAM (operations take effect on the next clock cycle), a delay of two clock
cycles is introduced between read and write operations.

3.6 Synthesis
The synthesis part of this design is analyzed for resource utilization, timing analysis
and power consumption analysis.

Site-Type Stdp (Util%) Weight-BRAM
&Stdp (Util%) Total-Available

Slice LUTs* 5.51 10.54 41000
LUT as Logic 5.51 9.52 41000
LUT as Memory 0.00 3.13 13400
Slice Registers 2.48 5.45 82000
Register as Flip Flop 2.48 5.45 82000
Register as Latch 0.00 0.00 82000
F7 Muxes 0.77 2.23 20500
F8 Muxes 0.74 1.50 10250
Block RAM Tile 2.96 46.30 135
RAMB36/FIFO* 2.96 45.93 135
RAMB18 0.00 0.37 270

Table 3.2: Resource Utilization Summary
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Figure 3.17: Time report summary

Figure 3.18: Power report summary

In our comprehensive analysis, we evaluated the overall performance only for
the STDP mechanism and its use in combination with Weight-BRAM.

• As shown in Table 3.2, we analyzed the resource utilization of the Stdp module
versus the Weight-BRAM & Stdp module. In the Weight-BRAM & Stdp
module, the Block RAM Tile is utilized at 46.30%, which is significantly higher
than the 2.96% of the Stdp module, mainly because it is used as a device for
storing weights.

• Timing analysis: Worst Negative Slack (WNS) is 1.168 ns, Worst Hold Slack
(WHS) is 0.056 ns, and Worst Pulse Width Slack (WPWS) is 4.650 ns, and
all user-defined timing constraints are satisfied.

• Power Consumption Analysis: The dynamic power consumption is 0.099 Watts,
which is 55% of the total power consumption, with clock, signal, logic, BRAM
and I/O accounting for 21%, 27%, 20%, 14% and 18% of the dynamic power
consumption, respectively.
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