
POLITECNICO DI TORINO

Master of Science in Cinema and Multimedia

Engineering

Master Thesis

Ragdoll Matching: a non-learned

physics-based approach to Humanoid

Animation applied to VR Avatars

Advisors

Prof. Nuria PELECHANO

Prof. Andrea BOTTINO

Dr. Jose Luis PONTON

Prof. Francesco STRADA

Candidate

Mattia CACCIATORE

March 2024

Abstract

The proliferation of Virtual Reality technologies has intensified the quest for
enhanced immersion in virtual experiences. In this context, the simulation of the
user’s body in the form of a credibly animated Avatar, together with the care in
ensuring expected and plausible interactions with the virtual environment, are both
crucial factors that contribute to preserving a solid sense of presence in the user
experience.

This study presents a potential approach to achieve a real-time physics-driven
humanoid character animation, implemented in the Unity game engine. We designed
and developed a solution that permits to control a physics Ragdoll by providing as
reference a target rig animated with a kinematic-based technique. By doing so, the
animated character is able to perform desired movements while being subjected to
the physics engine, allowing collisions and interactions with the virtual environment.
Motion Matching was identified as a well suited animation technique, as it satisfies
the need for realistic humanoid movements even when applied to VR avatars. The
focus during the design process was to maximize versatility and interoperability of
the tools developed. The control policy that pilots the physics Ragdoll is based on
simple automatic control techniques: compared with other more recent solutions
that rely on machine or deep learning techniques, this approach eliminates the
need for a training phase for the physics simulation.

Our strategy prioritizes modularity and versatility over perfection of results in
a well-known and controlled context, while also maintaining the possibility for
independent future improvements to each of the simulation modules.

Ringraziamenti

Giunto alla fine di un percorso durato circa 5 anni e mezzo, sento in dovere di
spendere delle parole di gratitudine nei confronti di persone speciali, che hanno
permesso che questo periodo della mia vita prendesse forma nel migliore dei
modi.

Al Terzo Piano del Collegio Einaudi, sezione Crocetta. Un calderone di menti tanto
brillanti quanto vivaci. Tutti insieme abbiamo condiviso lo stesso percorso, ma
ognuno con le caratteristiche della propria persona ha contribuito a renderlo più
interessante, stimolante, e anche più leggero. Grazie per avermi permesso di vivere
giorni mai vuoti (sia nel bene, che nel male), di non avermi fatto sentire mai la
solitudine anche a 1000km da casa. Grazie a chi si è reso disponibile, a chi mi ha
permesso di imparare, di avere un punto di riferimento. E grazie a chiunque in
questi anni abbia dato anche a me la possibilità di essere un riferimento. Spero di
esser riuscito a contribuire alla vostra esperienza almeno come voi lo avete fatto
nella mia.

Ad Andrea, Valerio, Marco, Giuliana, Federica, Claudia, Le Vecchiette di Paese.
Ero una semplice matricolina, eppure dopo neanche qualche mese che ci siamo
conosciuti, mi avete dato la possibilità di prendere parte a questo stretto legame
che dura ancora oggi. Ricordo il giorno in cui decideste di aggiungermi al gruppo
telegram: il fatto che in tanti anni di persone in collegio, di cui alcuni vissuti anche
a distanza, io sia stato l’unico a prendere parte alla cerchia così stretta (Giuli
perdonami ma in questo caso ti definirei non classificabile :P), ha sempre significato
molto per me. E non per una questione di elitismo, sia chiaro, ma perché forse
avete visto qualcosa che vi ha spinto a voler stringere un legame con me. Grazie per
essere stati voi i miei punti di riferimento, grazie per aver condiviso gioie e dolori di
anni di studio, grazie per essere ancora qui anche dopo la fine del percorso, grazie
per accettarmi anche quando sparisco, faccio ritardo o sono poco partecipativo.
Anche in questo caso, spero in questi anni di avervi lasciato anche io almeno un
pezzettino di quello che mi avete lasciato voi.

ii

Ad Elia, l’ultima scoperta del Terzo Piano, l’erede della mia stanza. E’ stato
difficile non notare la tua personalità, ma soprattutto quanto in realtà avessi da
dire dentro. Grazie per avermi dato la possibilità di ascoltarti, di rivedere piccole
parti di me ad anni di distanza. Grazie per avermi dimostrato che quelli del nord
hanno in fondo anche qualcosa del sud. Permettimi di lasciarti qui due parole per
te: nessuno è speciale, c’è solo chi ha la fortuna di avere la strada più liscia di altri.
Inutile dire frasi fatte tipo “se ce l’ha fatta uno ***** come me possono farcela
tutti”. Piuttosto ti dico, cerca sempre di alimentare il tuo motore con ciò che ti fa
stare bene, e percorri una strada che ti renda felice.

Agli amici di Brindisi. Anche se sono stati anni in cui abbiamo visto cambiare
tante cose, le serate sull’Isola a 1000km da casa sono rimaste una costante sempre
presente. Grazie per esser stati un porto sicuro per compagnia, chiacchiera e
gioco.

A mia cugina Marta e Alessandro. Grazie per aver portato in questi ultimi anni un
pezzetto di casa qui su a Torino, e grazie per la disponibilità e l’aiuto che mi avete
concesso nei momenti di bisogno.

Ad Alessia, la persona che dopo oltre 8 anni è ancora qui al mio fianco. Gli
anni di liceo, uno spostamento a 1000km da casa, la nuova vita in una grande
città, gli scogli del percorso universitario, le camminate nella sera per rincasare,
la p andemia, i mesi a distanza, le evoluzioni più disparate dei rapporti tra i
nostri amici, i momenti bui, i traguardi, la nuova casa. Tutto insieme. Credo sia
impossibile per me immaginare chi sarei in questo momento senza averti avuto
vicino. Probabilmente una persona peggiore. Penso che tu sia una delle poche
persone che può avere idea dell’impegno che sto provando a metterci nello scrivere
queste parole. Grazie per continuare a insegnarmi a gioire delle cose semplici, a
provare entusiasmo per le cose belle, a capire cosa significa tenere alle persone,
a guardare le proprie debolezze. Credo di avere ancora tanto da imparare, non
so nemmeno se e come ci riuscirò, ma spero che continuare a osservarti mi potrà
aiutare. Per quello che sei e per quello che hai vissuto e vivi, io ti auguro tutto
l’amore e la felicità di questo mondo, e di volare in alto con i tuoi sogni genuini. E
soprattutto spero di continuare a contribuire come posso alla felicità della tua vita
standoti accanto. In questo pezzo di carta oggi ci sei anche tu, quindi ancora una
volta, grazie.

A Mamma e Papà. Io non riesco ancora oggi ad abituarmi all’idea di quanto
io sia fortunato ad avere due genitori come voi. Se oggi sono qui, con questo
percorso alle spalle, con questo lavoro, con delle ambizioni, è soltanto merito di
tutto quello che avete fatto per me, da sempre. Grazie per aver creduto in qualsiasi
mio interesse, nonostante potesse essere anche distante dai vostri o difficile da
comprendere. Grazie per avermi dato la possibilità di esplorare questi interessi, così

iii

che le mie passioni potessero prendere forma. Grazie per avermi lasciato libero di
percorrere la mia strada. Grazie per essermi sempre stati vicino a spianare quella
strada, in qualsiasi modo vi fosse possibile, a qualsiasi costo e sacrificio. E grazie
perchè continuate tutt’ora a fare tutto ciò che ho citato. Vi posso assicurare che in
questi anni ho avuto modo di constatare quanto tutto ciò sia ben lungi dall’esser
considerabile scontato o ovvio. Agli occhi delle persone che mi circondano siete
un esempio di cui vado così fiero da arrivare talvolta a sentirmi quasi in difetto al
pensiero che altri potrebbero non avere avuto la mia stessa fortuna. Mi auguro
solo di riuscire a far germogliare sempre tutto ciò che seminate per me. Che questo
pezzo di carta possa regalarvi uno di quei germogli.

A tutta la mia famiglia. Grazie per avermi fatto sempre percepire un clima
di supporto e fiducia, nonostante le distanze e la mia disattenzione nel farmi
sentire.

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1

1.1 Problem overview . 1

1.2 Objective . 2

1.3 Document structure . 2

2 Background 4

2.1 Related work . 4

2.1.1 Real-time Animation . 4

2.1.2 Data-driven techniques: Motion Matching 5

2.1.3 Embodying Physics-aware Avatars in VR 6

2.1.4 AI-based approach to motion simulation 7

2.2 Preliminary definitions . 9

2.2.1 Unity Engine framework . 9

2.2.2 Ragdoll physics . 10

2.2.3 PID control . 10

vi

3 Active Ragdoll Module: System Design 13

3.1 Ragdoll Maker . 14

3.1.1 Skeleton structure . 14

3.2 Ragdoll Controller . 17

3.2.1 Position control: PID controllers 18

4 Implementation 19

4.1 Code architecture . 19

4.2 Data and options providers . 20

4.2.1 Skeleton references . 20

4.2.2 Ragdoll joints data . 21

4.2.3 Body mass distribution . 22

4.3 HumanoidRagdollMaker component 23

4.3.1 Ragdoll building algorithm 24

4.3.2 Mass distribution policy . 26

4.4 ActiveRagdollController component 27

4.4.1 Joint rotation control . 28

4.4.2 Bones position control . 28

5 Combining Active Ragdoll with VR Motion Matching 32

5.1 Coherence between Ragdoll and target rig 32

5.2 XR Hand Tracking . 33

6 Discussion and Results 35

6.1 Active Ragdoll Module . 35

6.2 Application to VR Motion Matching 39

6.2.1 Fingers Ragdoll for XR Hand Tracking 42

vii

7 Conclusions 44

7.1 Future work . 45

Bibliography 46

viii

List of Tables

4.1 Table of joint rotation limits. 21

4.2 Table of body mass distribution . 22

4.3 PID parameters proportion setup for PositionController. 31

6.1 Ragdoll building procedure execution time 36

6.2 Runtime performances . 37

ix

List of Figures

2.1 Example concept of an animation FSM graph 5

2.2 Traditional feedback control system block diagram 11

2.3 PID controller system block diagram 12

3.1 Real-time avatar animation pipeline concept 13

3.2 Active Ragdoll Module: core structure 14

3.3 Active Ragdoll Module: Skeleton structure 15

3.4 Visual representation of joint connections 16

3.5 Visual representation of BodySegments 17

4.1 Active Ragdoll Module: code architecture diagram. 19

4.2 SkeletonReferences custom Inspector 20

4.3 RagdollJointsData and BodyMassDistribution Inspectors. 22

4.4 HumanoidRagdollMaker custom Inspector. 23

4.5 ActiveRagdollController custom Inspector. 27

5.1 Ragdoll arms extension . 33

5.2 Avatar hands animation with XRHandAnimatorTranslator 34

6.1 Active Ragdoll Module: salute animation. 37

6.2 Active Ragdoll Module: drunk walk animation. 38

6.3 Active Ragdoll Module: cube falling on the Ragdoll. 38

x

6.4 VR Ragdoll: arms movement. 39

6.5 VR Ragdoll: walking. 40

6.6 VR Ragdoll: throwing a cube. 41

6.7 VR Ragdoll: spinning a coin. 41

6.8 VR Ragdoll: reacting to a hitting body. 41

6.9 VR Ragdoll: physics hands. 42

6.10 VR Ragdoll: physics hand interacting with another rigid body. . . . 42

xi

Acronyms

UPC Universitat Politècnica de Catalunya

VR Virtual Reality

HMD Head-mounted display

CGI Computer-generated imagery

FSM Finite state machine

AI Artificial intelligence

Deep RL Deep Reinforcement Learning

XR Mixed Reality

PID Proportional-Integral-Derivative

xiii

Chapter 1

Introduction

1.1 Problem overview

With the proliferation of VR (Virtual Reality) technologies in the consumer market,
the quest for enhanced immersion has become paramount.

One of the key challenges is the effective simulation of the user’s entire body as
a VR avatar. The evolution of the technology behind VR headsets is following a
path that keeps the user’s comfort at the center of the experience design. In the
past, solutions proposed by pioneering devices in this field, such as the first HTC
Vive, aimed to provide a potentially uncompromised experience but required the
establishment of a complex and dedicated ecosystem (a powerful PC to run the
software, an HMD (Head-mounted display), two controllers, a wired connection,
external cameras, optional sensors for full-body tracking, etc.). Today, while
elite headset models continue to cover a market segment, the ability to develop
stand-alone devices has reinstated the importance of thinking about accessible,
ready-to-use, and easily transportable products.

Nowadays, a VR headset aims to consist of only three elements: an HMD and two
controllers for both hands. This setup allows tracking the position and orientation
of three parts of the user’s body: the head and both hands. With this information,
it is possible to effectively map the movement of the upper body in the user’s
virtual avatar. When the goal is to simulate the movement of the entire user’s
body, the main challenge arises in faithfully reconstructing the movement of the
lower body, which lacks of dedicated tracking devices.

When it comes to maintain a credible VR experience without undermining the
suspension of disbelief, another crucial factor lies in the user’s ability to interact

1

Introduction

realistically with the virtual environment. In this regard, the challenge consists
in ensuring that each user action corresponds to a reaction within the simulated
system, preventing undesirable occurrences such as interpenetrations between
the mesh of user’s avatar and those of the virtual environment. This seamless
interaction not only enhances the sense of immersion but also contributes to the
overall authenticity of the VR experience.

1.2 Objective

This project aims to propose a possible approach to achieve realistic human body
movement simulation, while ensuring that the user will be able to physically interact
with the virtual environment. This solution is specifically designed to promote
versatility and interoperability, in order to be adopted by developers and integrated
in different possible scenarios.

The basic concept guiding our approach involves selecting a real-time animation
technique that doesn’t rely on physics, to accurately replicate human body move-
ments on a rigged avatar. This kinematic-based animation serves as target for
controlling a "virtual puppet", which runs on the physics engine. Unlike other
recent related works, we aim to avoid adopting machine/deep learning techniques
for the physics control policy. Instead, we tested the use of simple automatic
control techniques: this approach eliminates the need for a training phase for the
physics simulation, making the tool more versatile and ready-to-use as it remains
independent from any specific training dataset.

In this specific case, the designated animation technique chosen for achieving accu-
rate body movement is Motion Matching. We aim to test this implementation on
a VR application, in order to observe the resulting plausibility of body movements,
as well as and the effectiveness of contact interactions with the environment.

1.3 Document structure

This thesis is organized into several chapters, with the main topic of describing the
solution proposed. The central content of the document is contained in Chapter 3
and Chapter 4, which respectively discuss the design and the implementation of
the tools developed.

The following list summarizes the contents of each different chapter:

• 1 Introduction outlines the problem statement and research objectives.

• 2 Background reviews related work in real-time animation, data-driven

2

Introduction

techniques, physics-aware avatars in VR, and AI approaches to motion simula-
tion. Preliminary definitions related to the Unity Engine framework, Ragdoll
physics, and PID control are also discussed.

• 3 Active Ragdoll Module: System Design delves into the design of the
proposed solution called Active Ragdoll Module, detailing elements such as
the Ragdoll Maker and Ragdoll Controller.

• 4 Implementation covers the technical details of implementing the Ac-
tive Ragdoll Module, including code architecture and the developed Unity
components.

• 5 Combining Active Ragdoll with VR Motion Matching explores the
integration of the Active Ragdoll Module with VR Motion Matching, with a
brief experiment on XR Hand Tracking.

• 6 Discussion and Results analyzes the performance and outcomes of the
Active Ragdoll Module, along with its application to VR Motion Matching.

• 7 Conclusions summarizes the results of the research and suggests potential
avenues for future work.

3

Chapter 2

Background

2.1 Related work

This section will provide the reader some paragraphs regarding background themes
and information derived from the literature, establishing a context for the work
presented in this thesis.

2.1.1 Real-time Animation

When developing real-time graphics applications (e.g., video games, VR applica-
tions, simulators), it is important to underline the distinction between traditional
Computer Animation and Real-time Animation techniques.

Creating a product of CGI (Computer-generated imagery) such as an animation
film or video, involves a process aimed at faithfully reproducing the designed
concept and aesthetics, whether it should look like an inspired cartoon or like a
photorealistic simulation. When the animation preview matches the desired result,
the whole sequence needs to be rendered in order to obtain the final asset: each
frame of the sequence takes an amount of time to be rendered, depending on the
complexity of what the frame contains (e.g., number of polygons, complex materials,
physical accurate simulations).

In contrast, the development of a real-time graphics application introduces a critical
constraint. As the system output should be updated at runtime to dynamically
react to the user input, a single frame needs to be rendered within a fraction of
second. To meet a target frame rate of 60fps, one frame must be rendered in at
most 16,7 milliseconds. This requirement underscores that it is crucial to analyze
the performance impact of the techniques employed in the simulation.

4

Background

Consequently, while traditional CGI allows to pre-render an extremely fine-tuned
motion capture animation for a specific sequence, or to bake an accurate physics-
based simulation of a deformable body (assuming the availability of computational
power), a real-time scenario necessitates to find the best compromise between result
effectiveness and performance impact of chosen techniques, including animation
methods.

2.1.2 Data-driven techniques: Motion Matching

One of the most common approaches when dealing with real-time animation is to
think the animation process as a FSM (Finite state machine). Consider a character
in a third-person video game: based on user inputs and game logic parameters, it
must perform certain movements and actions (e.g., standing still, walking, running,
jumping). An animation approach based on a FSM involves modeling a graph where
nodes represent the character’s logical states (Figure 2.1). Each node is associated
with a properly configured animation, played only when the character is in that
state. The edges of the FSM graph indicate transitions from the current state to
subsequent states. Often, each edge is associated with a condition controlled by
the game logic: if met, the transition to the connected state is triggered.

Figure 2.1: Example concept of an animation FSM graph

While this approach is straightforward and effective for various types of gameplay
and different ranges of stylized aesthetics, the complexity of such a graph quickly
escalates when the goal is to achieve realistic and natural rendering of complex
movements.

5

Background

One possible alternative solution was discussed in 2016 by Clavet [1]. In response
to this issue, he proposed a totally different, data-driven approach that is not
dependent on the character’s logical state: Motion Matching. This technique
utilizes a set of pose data, such as those obtained from motion capture sessions, to
identify the most suitable pose for the next frame. To accomplish this, a selected
set of bones and/or skeleton properties (e.g., feet positions, velocities, local and
future orientation) are combined to create a feature vector, which is assessed as
a measure for pose matching. On each frame, an algorithm searches through the
pose data to find the pose that minimizes the error between its feature vector and
the one predicted to be optimal for the next frame.

Motion Matching is a powerful animation technique because it decouples the
animation process from the game/application logic. The quality of the result
depends solely on the features chosen to be considered and the quality and quantity
of the dataset provided.

In 2022, Ponton, Pelechano et al. [2] from UPC (Universitat Politècnica de
Catalunya) experimented with the application of Motion Matching for animating
full-body VR avatars. Their goal was to reconstruct a convincing human motion
simulation using only the three trackers available on most consumer VR headsets
(two controllers and the HMD).

Under the supervision of Ponton and Pelechano, as will be detailed later, the work
proposed in this thesis will precisely employ VR Motion Matching as a reference
animation technique for the physics simulation of our VR avatar.

2.1.3 Embodying Physics-aware Avatars in VR

Following the definitions elaborated by Caroux [3] in the context of video games,
one of the key aspects in creating satisfying and pleasing VR experiences is the
need to ensure users a strong and lasting sense of engagement. Two fundamental
aspects contribute to this result:

• User immersion, defined as "a psychological state characterized by perceiving
that one is involved, included, and interacting with an environment that
provides a continuous stream of stimuli and experiences" (Stanney and Salvendy
[4]).

• User presence, defined as "the subjective experience of being in one place or
environment even when one is physically located in another" (Stanney and
Salvendy [4]). This latter aspect, according to K.M. Lee [5], can be further
subdivided into:

– Spatial presence, linked to virtual objects and environments.

6

Background

– Social presence, linked to virtual "social actors."

– Self-presence, linked to the virtual self representation.

Our work aims to act on the user’s VR avatar representation and on its relationship
with the virtual environment, exploring new development tools and solutions with
the goal of empowering both user self-presence and spatial presence.

A recent paper [6] investigated the effect on users of using physics-based VR avatars.
The study’s focus was on determining which user movement remapping approach
yields a greater sense of embodiment.

On one hand, ensuring a one-to-one mapping of user real movements onto their
avatar leads to possible unnatural inconsistencies when interacting with the virtual
environment. When a virtual object intersects with an avatar’s movement, if that
movement is still possible for the user because there are no real obstacles in the
space that prevents it, then a one-to-one mapping approach would still aim to
preserve the user’s real movement. This creates an unnatural condition in the
virtual environment, such as object penetration with the avatar’s body.

On the other hand, subjecting the avatar 3D model to the action of the physics
engine allows for collision detection with other virtual objects, increasing the
possibilities for interaction with the virtual environment. However, this results
in breaking the one-to-one mapping of user movements: the avatar is indeed
constrained by potential obstacles or interactions with virtual objects that do not
necessarily have a counterpart in the real space where the user is located. This
leads to a possible discrepancy between the user’s real pose and the VR avatar’s
pose.

The test results from the study demonstrate that users perceive a greater sense
of presence in embodying physics-aware avatars, provided that the discrepancy
between the user’s real pose and their avatar’s pose is contained within certain limits,
in accordance with the phenomenon of the "self-avatar follower effect" [7].

In line with the context described, our objective supports the research and develop-
ment in the direction of refining more advanced techniques for the simulation of
physics-based VR avatars.

2.1.4 AI-based approach to motion simulation

Ensuring immersive VR experiences comes with the need to reproduce the user’s
movements with the data provided by the limited number of sensors available on
the HMD. Furthermore, consistently with the conclusions of Section 2.1.3, we want
this reproduced motion to be compliant with physics laws.

7

Background

With the advancement of modern AI (Artificial intelligence) techniques, one of
the most common approaches to tackling such a problem involves the use of a
motion control policy driven by Deep RL (Deep Reinforcement Learning), which is
trained to minimize the position discrepancy between the user and the simulated
avatar.

Peng et al. [8] presented DeepMimic, showing that various sets of motion data
can be used to train a control policy capable of imitating those movements in
a physics-driven context. Following a similar base approach, Ye et al. [9] with
Neural3Points presented a learned data-driven physics based method for predicting
user’s full-body movement starting from the sparse sensors of a VR headset, and
simulating an avatar that mimics the predicted pose in real-time. Later on, Lee et
al. [10, 11] proceeded this research developing QuestEnvSim, which implements a
Deep RL control policy that combines VR sparse sensors, physics simulation and
environment observation to achieve an environment-aware full-body avatar capable
of interacting with the surrounding objects.

All of these works and related ones bring up very convincing results, but they
all share a common aspect that, from certain perspectives, could be seen as a
limitation: they require a training phase for the physics simulation. This implies
that the result significantly depends on the data consumed by the control policy to
learn its behavior. Depending on the model architecture, a Deep RL control policy
may perform extremely well in a vast variety of cases that share some similarities
with the training data. However, an important question arises: how well will the
model continue to perform when attempting to expand the training dataset to
include a greater variety of situations? Furthermore, increasing the size of the
dataset leads to presumably longer training phases, together with the need for
more memory to store it.

Let’s examine an approach similar to QuestEnvSim[11]: to enable interaction with
the surrounding virtual environment (e.g., walls, obstacles), the training phase
must be aware of data related to that environment. Moving the character to a
completely different scene necessitates at least partially repeating the training
phase with data collected from the new environment.

While most industries driving innovation in artificial intelligence are well-suited
and familiar with this workflow, the creative nature of the game and VR industry
demands approaches that prioritize flexibility, optimization, customization and
ease of use to promote rapid and reliable prototyping and development.

In line with what has been said, for the purposes of this research, we have chosen
to proceed with a non-learned approach. As will be seen in Chapter 3, the design
of our proposal is very similar to that presented by Llobera and Charbonnier [12],

8

Background

with the difference that the control policy employed does not use Deep RL but is
built as a control system based on simple techniques derived from the theory of
automatic control (2.2.3).

2.2 Preliminary definitions

2.2.1 Unity Engine framework

Unity Engine is a powerful and versatile game development platform renowned for
its ease of use, flexibility, and robust capabilities. Developed by Unity Technologies,
it provides developers with a comprehensive suite of tools and features for creating
real-time interactive 2D, 3D, and XR (Mixed Reality) experiences across various
platforms. Unity offers developer a well structured game development process by
offering an intuitive interface, a vast asset store, and a wealth of documentation
and tutorials. With its cross-platform compatibility, developers can deploy their
creations seamlessly to multiple platforms, including PC, consoles, mobile devices,
XR systems and web browsers. The Unity Engine’s rich ecosystem and extensive
community support make it a preferred choice for both indie developers and large
game studios worldwide.

The core architecture of the engine is centered around the concept of GameObject.
A GameObject is the fundamental building block of a virtual scene: it acts as a
"container" of different components. A component is a functional piece that can be
attached to a GameObject, and defines a specific behaviour or functionality. Every
GameObject comes with a default component called Transform, which controls
and stores information about the spatial properties of the object, determining its
location, orientation and size relative to its parent GameObject and to the world
origin.

Developers are able to define completely personalized behaviours by creating custom
components implemented using C# code. A C# script containing a class which
inherits from Unity’s MonoBehaviour can be instantiated as a component attached
to a GameObject. Every component is displayed in the editor throw its Inspector,
which exposes serialized fields of the component’s class that can be tweeked and
edited directly from the editor.

Unity comes equipped with its own real-time physics engine, which is based on
NVIDIA’s PhysX. Developers have access to a collection of pre-made physics-
based components to subject GameObjects to the physics simulation. The base
component responsible for imparting physics properties to a GameObject is the
Rigidbody. This component enables objects to react to external forces such as
gravity, collisions, and user interactions. Its attributes, including mass, drag, and

9

Background

constraints, can be adjusted dynamically to fine-tune the object’s behavior and
achieve the desired result at runtime.

With a brief introduction to some concepts regarding the Unity framework, this sec-
tion provided readers with a better understanding in preparation for the discussion
on the project implementation proposed for this thesis.

2.2.2 Ragdoll physics

Ragdoll physics [13, 14] represents a procedural approach to character motion
simulation within virtual environments. Unlike traditional kinematic-based anima-
tion methods, Ragdoll-based animation introduces a level of realism by physically
simulating the movement of a character’s articulated skeletal structure in response
to external forces.

At its core, a Ragdoll system relies on the physics engine to treat each bone in the
character’s rig as an independent rigid body, interconnected by joints that mimic
the anatomical constraints of the human body. This approach favors more organic
responses to environmental stimuli, such as collisions or gravitational forces.

This technique is frequently used as a substitute for conventional static death
animations in video games and animated films, providing a more authentic repre-
sentation of how the character model should react to collisions, gravity and external
forces. It also proved to be a key tool in designing specific gameplay mechanics for
certain video games (e.g., Gang Beasts[15], Human Fall Flat[16], Party Animals[17])
which have made Ragdoll Physics-based character movement the core of their game
design.

2.2.3 PID control

PID (Proportional-Integral-Derivative) control is one of the most common approach
when it comes to feedback control methods. Its definition has been extensively
covered by literature related to the field of automatic controls [18, 19, 20].

The idea behind this control method lays on the feedback principle. Figure 2.2
shows the block diagram representation of a traditional feedback control system.
The process represents the entity that has to be controlled, and y(t) is the process
variable.

Controlling the system means ensuring that the process variable y(t) follows a
reference value r(t). To achieve this purpose, a controller module is introduced
upstream of the process: it takes the error between the reference and the process
variable e(t) = r(t)− y(t) as input, and generates a manipulated variable u(t)
based on a specific computational rule. The manipulated variable u(t) is then

10

Background

Figure 2.2: Traditional feedback control system block diagram

passed as input to the process, which will generate the next y(t + 1) value to feed
back into the loop: it will be used to calculate the error e(t + 1) and produce the
new manipulated variable u(t + 1).

PID control is a computational rule that can be implemented into a controller
(called PID controller). It produces an output that can be described as three
separate terms:

1. P (proportional) term: the "present" error. It is proportional to the error at
the instant t.

2. I (integral) term: the accumulation of the "past" errors. It is proportional to
the integral of the error up to the instant t.

3. D (derivative) term: the prediction of the "future" error. It is proportional to
the derivative of the error at the instant t.

The complete analytic expression of the manipulated variable can be written as
follows:

u(t) = Kpe(t) + Ki

∫ t

0

e (Ä) dÄ + Kd

de

dt
(2.1)

Kp, Ki and Kd are respectively called proportional, integral and derivative gain of
the PID controller. These parameters must be properly tuned in order to achieve
the desired behaviour of the system. Figure 2.3 shows an example of feedback
control loop based on a PID controller.

11

Background

Figure 2.3: PID controller system block diagram

12

Chapter 3

Active Ragdoll Module:

System Design

Now that a proper background knowledge has been provided to the readers, in
the following sections there will be a more detailed description of the proposed
solution.

As we briefly exposed in Section 1.2, the core objective is to achieve both plausible
humanoid animations and environmental interactions in a VR real-time application.
The strategy developed by this project aims to move the actual avatar simulation
to the domain of the physics engine, regardless of the technique adopted to animate
the avatar (in this case, it is Motion Matching). For demonstration purposes,
let’s consider a concept pipeline for the real-time animation of an avatar (Figure
3.1).

Figure 3.1: Real-time avatar animation pipeline concept

Starting from the user’s device, the input data are passed to the animation algorithm:
this one calculates the geometrical information about the updated position and

13

Active Ragdoll Module: System Design

rotation of each bone of the avatar 3D model. The output of the animation
algorithm is then passed to the rest of the actual rendering pipeline, which will
draw the avatar’s mesh in the calculated pose.

Our solution can be seen as an additional module that lays between the animation
step and the rendering pipeline: it takes the data calculated by the animation
algorithm as input, and relying on the physics engine it uses them to properly move
a Ragdoll version of the animated avatar. From now on, we will call this module
"Active Ragdoll Module".

Figure 3.2: Active Ragdoll Module: core structure

The core elements of the Active Ragdoll Module are shown in Figure 3.2.

3.1 Ragdoll Maker

The Ragdoll Maker element is responsible of building the actual physics ragdoll.
Starting from a copy of the avatar 3D model, it takes as input the references of
the rig’s bones, and a series of structural data and options (e.g., joints constraints
information, body mass distribution, rigid body simulation options) to build the
Skeleton data structure.

The ragdoll building procedure is not a runtime feature, and it is meant to be
performed before the start of the simulation (considering our framework, while
working in the Unity Editor).

3.1.1 Skeleton structure

The Skeleton is the element that stores all the physics ragdoll information. It is
mainly structured as a collection of BodySegments.

14

Active Ragdoll Module: System Design

Figure 3.3: Active Ragdoll Module: Skeleton structure

A BodySegment is a segment of the human body that can be considered not
articulated. To clearly explain this definition, a simple example is provided.
Considering a human leg, the knee and the ankle allow a flexible and articulated
motion of the art: a leg can’t be defined as BodySegment. Instead, considering
only the upper part of a human leg (the one corresponding to the femour), there
are no joints in the middle of this part that allow to flex it: this section can be
defined as BodySegment.

A number of 18 main BodySegments have been considered for the purpose of our
implementation:

• Head

• Neck (optional)

• Shoulders (optional)

• Upper arms

• Forearms

• Hands

• Trunk

• Hips

• Upper legs

15

Active Ragdoll Module: System Design

• Lower legs

• Feet

Two BodySegments can be connected by a joint, which has to be appropriately
configured to reproduce the realistic constraints of that particular human body
joint.

Figure 3.4: Visual representation of joint connections: white boxes represent
single BodyParts, green lines indicate connections between BodySegments, and
white dotted lines represent connections between BodyParts belonging to the same
BodySegment.

A BodySegment is, in turn, composed by a collection of BodyParts, connected
together with fixed joints. A BodyPart corresponds to a bone of the 3D model rig.
It is the most elementary part of the physics ragdoll, and contains references to its
rigidbody, its transform and its joint.

When the Skeleton data structure is created, it performs the actual ragdoll build-
ing procedure: each bone of the rig, also known as BodyPart, is assigned to a
BodySegment and equipped with a Rigidbody and a Joint component. These
components are configured appropriately using data and options provided by the
Ragdoll Maker.

16

Active Ragdoll Module: System Design

Figure 3.5: Visual representation of BodySegments: pink boxes represent the
centers of mass of BodySegments, while cyan boxes denote the centers of mass of
individual BodyParts. In our example, both the feet and trunk consist of multiple
BodyParts.

3.2 Ragdoll Controller

The Active Ragdoll Controller element is responsible of controlling at runtime the
physics ragdoll created by the Ragdoll Maker.

To achieve this purpose, it acts like a sort of "puppeteer". A copy of the avatar’s
mesh is animated in the scene using a kinematics-based approach (in this case,
Motion Matching): we can call it target rig. The geometrical information about
each bone of that rig is used as a reference for the Active Ragdoll Controller: at
runtime, it updates the ragdoll’s bones rigid bodies to match as closely as possible
the position and orientation of the respective target rig’s bones.

To make each rigid body follow its respective target, the Active Ragdoll Controller
needs to pilot both its position and rotation with the help of the physics engine:
that means they have to be controlled through the application of forces and torques
rather than through geomteric transformations.

In our system design, rotation control is performed on each BodySegment in order
to try matching the target rig local pose. In addition to this, a discrete number of
BodyParts have been equipped with position controllers: these allow a further level
of control in matching the local pose, while also permetting the ragdoll to follow
target rig’s macro-movement (for example moving from point A to point B).

17

Active Ragdoll Module: System Design

3.2.1 Position control: PID controllers

In order to guarantee a versatile level of configuration in their behaviour, the position
controllers of the Active Ragdoll Module have been designed as PID controllers
(2.2.3). This type of control policy allows a straightforward implementation with a
considerably low cost in performance, as long as a sufficient range of customization
in the desired behaviour by properly tuning its coefficients.

As mentioned earlier, while the rotation is controlled for each BodySegment,
only certain BodyParts have been selected to be also position-controlled. These
BodyParts include:

• The hips, as they can be considered the main pivot point for tracking the
Ragdoll’s position in the environment.

• Left and right upper arms, as they could serve as reference points for the
upper part of the body. Also, arms are likely to assume more complex poses
subjected to gravity, so applying a stronger position constraint could preserve
consistency between the target rig pose and the Ragdoll pose.

• Both hands, feet and head, as directly tracking the position of the body’s
extremities could further improve the quality of the match between the target
rig pose and the Ragdoll’s one.

18

Chapter 4

Implementation

4.1 Code architecture

Figure 4.1: Active Ragdoll Module: code architecture diagram.

19

Implementation

4.2 Data and options providers

This section develops a closer look to the main data structures used in the simulation
as providers for parameters, options and references. It will also briefly cover how
they have been implemented in Unity.

The vast majority of the classes described are marked as Serializable, allowing
visual representation in the Unity Editor and consistency between Play mode and
Edit mode.

4.2.1 Skeleton references

SkeletonReferences is a class designed to store the Transform references of the
main bones of a humanoid rigged 3D model. It inherits from an abstract generic
class called TaggedFieldContainer<TFields,TTag>, which permits to tag each
field of the class with the entry of an enum, and retrieve a particular field given its
tag. We used the already existing Unity HumanBodyBones enum as tag type.

Figure 4.2: SkeletonReferences custom Inspector

SkeletonReferences has 18 Transform fields corresponding to the avatar’s BodySeg-
ments (according to 3.1.1). To automate the assignment of these references from the
Unity Inspector, the class implements a IAutoDetectable<TDetector> interface:
this allows to auto-detect its fields starting from a specific detector object (in this
case, a Unity Animator).

20

Implementation

4.2.2 Ragdoll joints data

RagdollJointsData is a Unity ScriptableObject designed for setting up all the
data concerning Ragdoll joint limits. It exposes a series of fields corresponding
to the main BodySegments, each of them of type JointLimitData: this serialized
class stores parameters for constraints of the joint, including its allowed rotation
ranges. The data used in our implementation (Table 4.1) take a cue from previous
works [21] and have been empirically adjusted favoring the actual pose matching
result, rather than anatomical accuracy.

Joint Bend Twist Swing

Head -35° to 17° -85° to 85° -15° to 15°

Neck -20° to 20° -25° to 25° -15° to 15°

Trunk -25° to 45° -25° to 25° -20° to 20°

Shoulder -12° to 50° Free -54° to 54°

Upper arm -85° to 45° -30° to 30° -55° to 55°

Forearm -130° to 15° -60° to 60° -10° to 10°

Hand Free Free Free

Upper leg -65° to 35° -45° to 45° -35° to 35°

Lower leg -3° to 150° 0° 0°

Foot -25° to 35° -15° to 15° -20° to 20°

Table 4.1: Table of joint rotation limits.

The joint rotation axes have been named according to the respective movement
of the joint (bending, twisting, swinging). It is worth underlying that the actual
joint implementation relies on the Unity ConfigurableJoint component: this one
permits to specify rotation limits for three axes, but only one of them can have
asymmetric degree range. For this reason, the bend axis of each joint has been
identified as the primary axis, representing the main movement of that specific
joint (for instance, the primary axis of the forearm joint is the one that allows it to
rotate from a fully extended position to bending near the bicep). Following the
ConfigurableJoint convention, the twist axis corresponds to the joint’s secondary
axis.

21

Implementation

4.2.3 Body mass distribution

BodyMassDistribution is a Unity ScriptableObject that stores information
about the mass proportion of the main BodySegments. It has 8 float fields (Figure
4.3b) limited between 0 and 100: each field represents the percentage of total body
weight that has to be assigned to that respective BodySegment.

(a)

(b)

Figure 4.3: RagdollJointsData (a) and BodyMassDistribution (b) Inspectors.

BodySegment Weight %

Head 6.94

Trunk 43.46

Upper arm 2.71

Forearm 1.62

Hand 0.61

Upper leg 14.16

Lower leg 4.33

Foot 1.37

Table 4.2: Table of body mass distribution based on de Leva [22].

To be realistically consistent, the sum of all fields (counting symmetric BodySeg-
ments as double) has to be exactly 100. For this implementation, the mass

22

Implementation

distribution data have been set up based on the study of de Leva [22], as shown in
Table 4.2.

4.3 HumanoidRagdollMaker component

Setting up a physics Ragdoll could be achieved using components already provided
by Unity, which are based on the built-in physics engine. A Rigidbody component
should be attached to each GameObject that composes an articulated mesh (in this
case, a rigged humanoid 3D model). Then, a series of Unity Joint type components
should be added to connect each articulated part, properly configured to define the
respective rotation and position constraints.

Figure 4.4: HumanoidRagdollMaker custom Inspector.

If performed manually, this procedure could be long, tedious and prone to errors. To
automate it in case of a humanoid rig, we implemented the HumanoidRagdollMaker

component. It is a Unity Monobehaviour designed as a tool for the creation of

23

Implementation

humanoid Ragdolls. It is provided together with a custom Inspector (Figure 4.4):
the interface allows to properly configure the Ragdoll parameters, and exposes
buttons that perform operations in Edit mode, including the actual Ragdoll building
procedure.

The component can be attached to the avatar’s root GameObject. Since our main
objective is not focused on the generation of accurate colliders for a humanoid rig,
the avatar model must be provided with colliders already set up for each bone. We
created the colliders for our avatars using both Unity’s primitive colliders and the
Technie Collider Creator 2 tool by Triangular Pixels [23], which allows to create
custom mesh colliders inside the Unity Editor.

Once the SkeletonReferences (4.2.1) fields have been properly filled, and all the
parameters have been set up as desired, clicking the "Ragdollify" button will invoke
the Ragdollify method of the component class.

The method creates an instance of the Skeleton class and stores it in a serialized
private field of the component. The Skeleton class constructor performs the actual
Ragdoll building procedure, creating the whole data structure while, at the same
time, populating the rig’s GameObjects with Rigidbody and Joint components.
It is important to note that, among all the Joint components that Unity provides,
we chose to use the ConfigurableJoint, as it proves to be the most modular and
potentially customizable of them all.

The field bonesToIgnore exposes an array which can be populated with bones of
the rig that are not meant to be part of the skeleton structure. This feature allows
compatibility with more complex or exotic rigs that include for example bones for
clothes or body attachments.

4.3.1 Ragdoll building algorithm

As mentioned before, the Ragdollify method is responsible for initiating the
procedure that builds the Ragdoll structure. It performs three main tasks:

• Creates and stores an instance of the Skeleton class

• Distributes body mass along the created Skeleton

• Applies secondary parameters to every Rigidbody and ConfigurableJoint

(e.g., gravity toggle, collision detection mode, joint’s linear drive)

The Skeleton class constructor receives a series of parameters set up in the
component’s Inspector, including SkeletonReferences and RagdollJointsData,
and uses them to execute the real Ragdoll building algorithm.

24

Implementation

Algorithm 1 Ragdoll building algorithm pseudo-code.

Require:

- references containing data about rig’s bones Transform;
- root Transform of the rig (usually the hips);
- jointData containing data about constraints for each BodySegment.

1: function BuildSkeleton(references, root, jointsData)
2: Map each element in references to a respective initialized bodySegment
3: BuildRecursively(root, bodySegments[root])
4: return

5: end function

6: function BuildRecursively(current, currentSegment, jointsData)
7: if current has no child objects then return

8: end if

9: Create new bodyPart from current
10: Add Rigidbody component to bodyPart object
11: Add ConfigurableJoint component to bodyPart object
12: if current is a newSegment then

13: Add bodyPart to newSegment
14: if newSegment is not skeleton root then

15: Connect currentSegment to newSegment with a joint
16: Set joint rotation axes orientation
17: Apply jointsData[newSegment] to joint
18: end if

19: currentSegment← newSegment
20: else

21: Add bodyPart to currentSegment
22: end if

23: for each child in current do

24: BuildRecursively(child, currentSegment, jointsData)
25: end for

26: end function

25

Implementation

As shown in the pseudo-code (Algorithm 1) the procedure consists in a recursive
descent that traverses the hierarchy of GameObjects composing the rig. Each
call attempts to identify the current GameObject: it creates the corresponding
BodyPart instance and determines to which BodySegment it belongs.

The BodyPart class constructor attaches a Rigidbody and a ConfigurableJoint

component to its respective GameObject. After that, the newly created BodyPart

is appropriately connected to the existing structure. If it belongs to the same
BodySegment as the parent, it is assigned to that BodySegment and connected
without degrees of freedom. Instead, if the BodyPart marks the beginning of a new
BodySegment, it is assigned to this new one and connected to the previous BodySeg-
ment following the rotation limits specified in the corresponding JointLimitsData

for that particular joint.

4.3.2 Mass distribution policy

After all the Ragdoll components have been instantiated and properly stored, the
HumanoidRagdollMaker component performs a distribution of body mass across
all the Rigidbody components that compose it.

The option to distribute mass uniformly has been made available: in this sce-
nario, each Rigidbody composing the Ragdoll will have a mass m = bodyMass

/ AllRigidbodies.Length. However, providing a reference to an object of type
BodyMassDistribution with appropriately tuned values (our solution is described
in 4.2.3) results in a more realistic physical behavior. In this case, a method
will assign the appropriate percentage of the whole body mass to the target
BodySegment.

If a BodySegment is composed by more than one BodyPart, the computed mass for
that segment is evenly distributed among the parts. However, there is an exception
for the trunk segment, which implements a specific policy empirically tested to
provide a convincing result in the simulation:

1. The trunk body mass percentage is shared between hips, trunk, shoulders and
neck BodySegments;

2. 30% of that percentage is assigned to the hips segment;

3. The remaining 70% is evenly distributed among the BodyParts that make up
the spine if the neck and shoulders are not present as dedicated bones in the
rig;

4. If the rig includes the above-mentioned bones:

• 8% is assigned to each shoulder;

26

Implementation

• 4% is assigned to the neck;

• The remaining 50% is evenly distributed across the remaining bones of
the spine.

4.4 ActiveRagdollController component

Once the Ragdoll structure has been created, starting the simulation will simply
result in leaving all the rigid bodies created in the hands of the physics engine.
For instance, if gravity is enabled for all Ragdoll’s Rigidbodys, at the start of
the simulation the entire articulated structure will fall down, colliding with any
encountered colliders during the fall, such as a ground plane.

The next step of our proposed solution consists in implementing a controller that acts
like a "puppeteer" (as described in Section 3.2). To achieve this purpose, we imple-
mented the ActiveRagdollController component. It is a Unity MonoBehaviour

designed to work together with the HumanoidRagdollMaker component.

Figure 4.5: ActiveRagdollController custom Inspector.

Unlike the previous component, the ActiveRagdollController acts mainly at

27

Implementation

runtime. Its custom Inspector (Figure 4.5) shows two separate sections of param-
eters that affects the two main tasks it performs: rotation control, and position
control.

4.4.1 Joint rotation control

To mimic the movement of a twin animated target rig, the Ragdoll needs to be
physically driven so that its bones relative rotation matches the target bones
orientation. To reproduce this behaviour, we act on each joint that connects
two BodySegments, taking advantage of the Unity ConfigurableJoint component
class which already exposes some useful fields [24] for the purpose:

• targetRotation represents the orientation that the joint’s rotational drive
rotates towards, specified as a quaternion. It is relative to the body that the
Joint component is attached to.

• slerpDrive describes the parameters of the drive torque that rotates the joint
around all local axes. This field is utilized instead of angularXDrive and
angularYZDrive fields since all the Ragdoll’s ConfigurableJoints have the
rotationDriveMode set to Slerp.

The ActiveRagdollController component performs rotation control by manip-
ulating those fields. Initially (and also at runtime if the corresponding option
is enabled), it applies the parameters specified in the angularDrive field to all
ConfigurableJoints connecting two BodySegments. Then, during each step of
the physics simulation (i.e., at every FixedUpdate method call), the component
updates the targetRotation fields with the rotations of the respective bones in
the target rig, thanks to the mapping achieved with targetReferences.

If the option useTargetRigReferences is disabled, the default pose of the Ragdoll’s
avatar will be taken as reference for rotation control.

4.4.2 Bones position control

Given that a Ragdoll is an articulated mechanical system, it might seem logical
that adjusting the local rotation of each BodySegment would be sufficient to mimic
the target rig pose.

However, relying only on rotation control fails to address the need for the Rag-
doll to follow the target rig’s position in world coordinates, essential, for exam-
ple, when it moves from point A to point B. Moreover, the torques applied by
ConfigurableJoint components are often not enough fine-tunable, leading to a
pose match result that lacks accuracy and is easily disrupted. Lastly, the system

28

Implementation

lacks a solution to maintain the Ragdoll upright and balanced in response to the
action of external forces, such as gravity.

The ActiveRagdollController performs position control precisely to address
those criticalities. In line with the solution design (3.2.1), the component exposes
an array of Rigidbody-Transform pairs. Here, the Rigidbody represents the
physical object to control, while the Transform indicates the target position and
rotation for the Rigidbody. This array can be populated with Rigidbodys of
specific Ragdoll’s BodyParts designated to be position-controlled, paired with the
respective reference bones belonging to the target rig. The custom Inspector
(Figure 4.5) provides a button that automatically fills the array with the default
BodyParts (hips, upper arms, hands, feet and head), starting from the target
SkeletonReferences and the Skeleton instance of the Ragdoll stored in the
HumanoidRagdollMaker component.

Unlike rotation control, the ActiveRagdollController does not manage the
position control execution directly. At the start of the simulation, it instantiates
and attaches a new component of type PositionController for each controlled
body, and sets its parameters according to the ones specified in the Inspector. The
rest of the runtime control procedure is performed separately for each BodyPart

by its respective PositionController. The ActiveRagdollController limits its
operation to either enabling or disabling the overall control when requested, or
updating at runtime the parameters of the PositionControllers if the respective
option is enabled.

The PositionController is a simple component that uses a PID controller to make
a Rigidbody follow a target position. The control policy has been implemented in a
dedicated class, the Vector3PIDController, which inherits from a generic abstract
class PIDController. The class exposes a simple Update method, which returns
the controller output result. An example of our PID control policy pseudo-code is
shown in Algorithm 2.

The tuning of the PID parameters has been performed using a simple empirical
approach, focusing solely on the qualitative outcome of the animation. The param-
eters proportion is showed in Table 4.3, with output values clamped between −1000
and 1000. The coefficient Kglobal can be adjusted to fine-tune the responsiveness
of the pose matching. We experimented with values ranging from 500 to 1000,
resulting in movements that exhibit varying degrees of inertia. Lower values tend
to demonstrate more pronounced inertia effects, while higher values yield stiffer
movements that are less susceptible to natural disturbances, maintaining closer
alignment with the target pose.

29

Implementation

Algorithm 2 PID controller pseudo-code.

Require:

- ∆t time interval;
- current value that has to be updated;
- target value as reference;
- outputMin, outputMax as clamping range for the output;
- Isaturation as a clamping range for the error integral.

1: last← 0
2: integration← 0
3: function Update(dt, current, target)
4: e← target− current
5: P ← Kp × e ▷ Proportional term
6: if derivative based on value velocity then

7: ∆e← −(current− last)
8: last← current
9: else

10: ∆e← e− last
11: last← e
12: end if

13: D ← ∆e/∆t ▷ Derivative term
14: integration← integration + e×∆t
15: Clamp(integration,−Isaturation, +Isaturation)
16: I ← Ki × integration ▷ Integral term
17: output← Kglobal × (P + I + D)
18: if clamp output then

19: Clamp(output, outputMax, outputMax)
20: end if

21: return output
22: end function

30

Implementation

Kp Ki Kd

1 0.9 0.1

Table 4.3: PID parameters proportion setup for PositionController.

31

Chapter 5

Combining Active Ragdoll

with VR Motion Matching

In the previous chapters, we extensively discussed the proposed solution for achiev-
ing physics-based animation. This chapter delves deeper into the application of
this approach to the VR Motion Matching technique developed by Ponton [2]. It
is important to note that VR development was conducted using a Meta Quest 2,
with the assistance of tools provided by the XR Interaction Toolkit SDK 2.5.2 [25],
ensuring compatibility across multiple platforms.

In the scene, three main groups of objects are needed:

• A rig that manages the VR control systems. In this case, the template is
provided by the XR Interaction Toolkit SDK.

• A copy of the avatar set up with the components developed by Ponton [2] that
implements VR Motion Matching animation.

• A second copy of the avatar configured with the components of our Active
Ragdoll Module.

The bones of the avatar implementing Motion Matching are used as target references
for the ActiveRagdollController attached to the created Ragdoll.

5.1 Coherence between Ragdoll and target rig

When it comes to using full-body models as avatars in VR, it is important to consider
the differences in heights and body dimensions of the various users. Mapping these
proportions onto the avatar helps to achieve a more precise match of movements.

32

Combining Active Ragdoll with VR Motion Matching

For the purpose of this goal, the Ponton’s implementation of VR Motion Matching
already included an avatar calibration module, that adjusts the scale of the avatar
3D model in order to match its height with the one computed by considering the
distance of the HMD from the ground.

Since the upper limbs are the primary means through which users interact with the
virtual environment, we have integrated this calibration module with an additional
control. This ensures that the length of the 3D model’s arms aligns with the user’s
actual measurements, calculated by determining the ratio between the distance
from the shoulder bones to the hand bones and the distance from the shoulder
bones to the controller trackers. The actual application of arms calibration to
the 3D model is managed by a public field armLengthMlp exposed by the ArmIK

component of the RootMotion’s Final IK [26] package used to compute inverse
kinematic.

This calibration is performed on the target rig. To mirror these adjustments onto
the final Ragdoll, we’ve added a MatchScale component at the base of the Ragdoll
object. This component ensures that the Ragdoll maintains the same scale as the
target rig, aligning their heights. Regarding the arms, since it’s not feasible to
apply the same mesh deformation from the target rig to the Ragdoll at runtime,
we opted to introduce a minimal degree of linear flexibility. We achieved this by
slightly loosening the movement linear constraints along the twist axis of the elbow
and hand joints (Figure 5.1). Specifically, for these two joints, the linearLimit

fields of their ConfigurableJoints were set to 0.1 and 0.08, respectively.

Figure 5.1: Ragdoll arms extension to compensate arm stretching. Red lines
represents linear distance between loosened joints.

5.2 XR Hand Tracking

The emerging technologies in VR headsets are increasingly incorporating augmented
reality features, leading to more XR-oriented experiences. One of the most relevant

33

Combining Active Ragdoll with VR Motion Matching

aspect in this regard is the ability to replace controllers with direct hand control,
thanks to the hand tracking features provided by the latest generation headsets. To
leverage the versatility inherent to the approach pursued in this project, we have
considered testing the results of this method when applied to the implementation
of a physics-based hand tracking system.

The RagdollMaker component has been expanded to include the ability to extend
the construction of the physical Ragdoll even to the fingertips. An inherited
HandSkeletonReferences class has been created, sharing the same functionalities
of SkeletonReferences. On the other hand, the ActiveRagdollController

component undergoes no substantial changes. To provide sufficient precision and
responsiveness of movements, 10 more PID controllers are added to the simulation,
as all rigid bodies corresponding to the fingertip bones are added as controller
bodies to the position control. Those PID controllers share the same parameters
with the ones acting on the other controlled bones.

Regarding the actual hand tracking animation, the XR Interaction Toolkit SDK
already comes with samples for hand tracking controls, including hand visualization.
To reproduce the movement on the target rig hands, we implemented a custom
component called XRHandAnimatorTranslator. By providing a source and a target
HandSkeletonReferences instances, this component applies the same geomatrical
transforms acting on the animated XR hand sample to the mesh of the target rig’s
hand (Figure 5.2).

Figure 5.2: Avatar hands animation with XRHandAnimatorTranslator. The
dark grey meshes are the reference hands provided by XR Interaction Toolkit, the
transparent cyan mesh is the target rig.

34

Chapter 6

Discussion and Results

The following considerations are based on tests conducted within the Unity de-
velopment environment. The workstation used during the tests has the following
hardware specifications:

• CPU: Ryzen 7 3700x

• RAM: 32GB DDR4

• GPU: Nvidia RTX 3070ti

• Storage: 500GB SSD NVMe

6.1 Active Ragdoll Module

Considering the HumanoidRagdollMaker component, the description of its imple-
mentation (4.3) has already highlighted a series of precautions and automations in
the editor aimed at simplifying the Ragdoll setup as much as possible. Having a
rigged 3D model equipped with colliders already available, it is possible to build
the physics Ragdoll in just a few clicks by attaching the HumanoidRagdollMaker

component to the respective GameObject, providing an Animator reference to
automatically populate SkeletonReferences fields (or alternatively assigning
them manually), providing the two references to the BodyMassDistribution and
RagdollJointsData assets, and finally clicking the "Ragdollify!" button.

The presence of the bonesToIgnore array enhances the tool’s compatibility with a
variety of rigged 3D models, allowing it to disregard any additional bones in the
rig that do not represent part of the humanoid skeleton (e.g., bones related to the

35

Discussion and Results

model’s clothing, extra auxiliary bones that do not need to be represented by a
standalone BodyPart).

As shown in Table 6.1, the execution time of the Ragdollify method is entirely
negligible and imposes no burden on the application development process.

Execution time No console log prints With console log prints

Ragdollify 5ms 17ms

Ragdollify (including fingers) 8ms 36ms

Table 6.1: Average execution time measured for the Ragdoll building procedure
performed by HumanoidRagdollMaker component.

Observing the generated Ragdoll responding passively to external forces, we can
conclude that the final parameters chosen to configure the joint limits (4.2.2) allow
for flexibility in line with the natural movements of the human body, while the
body mass distribution (4.2.3) based on de Leva’s research [22], results in a natural
reaction to forces as well.

Moving on to the performance analysis, the ActiveRagdollController and the
PositionController components are the ones designated to run operations at
runtime. Using the Unity Profiler, we pinpointed specific calls and code sections
and observed their impact on the simulation. We focused on the performance of
three particular code sections:

• The FixedUpdate.PhysicsFixedUpdate, which is a Unity native engine sys-
tem call visible in the Profiler. It performs most of the runtime physics engine
tasks (e.g., compute collisions, update rigid bodies).

• The rotation control loop, which updates all the targetRotation fields, exe-
cuted in the FixedUpdate method of the ActiveRagdollController compo-
nent.

• The evaluation of the PID controller output performed by the FixedUpdate

method of the PositionController component

The average execution times are presented in Table 6.2. The time values shown
represent the total time spent executing each specific section. This means that
if there are 18 Ragdolls in the scene, those values are respectively the sum of 18
rotation control calls and 18×NControlledBodies PID update calls executed at each
simulation step. In this test scene, Ragdolls do not include fingers in the physical
skeleton structure, and major debug features were turned off.

36

Discussion and Results

Runtime performance 1 Ragdoll 9 Ragdolls 18 Ragdolls

FixedUpdate.PhysicsFixedUpdate 0.5ms ∼1.8ms ∼3.1ms

Rotation control 0.06ms ∼0.4ms ∼0.8ms

PID controller update 0.01ms ∼0.11ms ∼0.22ms

Table 6.2: Average runtime performances of different code sections.

From an overall perspective, it can be asserted that the overhead introduced by
our Ragdoll control implementation in the simulation is non-intrusive. Comparing
execution times, the workload that the physics engine must handle to simulate the
considerable number of rigid bodies that compose each Ragdoll is more demanding.
However, considering that in this project we aim to use the tools developed to
obtain a single Ragdoll corresponding to the user’s VR avatar, we can assert that
our implementation is usable without significantly impacting performance.

It is worth mentioning that enabling the debug features of HumanoidRagdollMaker

component, useful to visualize the Ragdoll structure in the Scene View, introduces
a non-negligible overhead in performance.

Figure 6.1: Active Ragdoll Module: salute animation. Skeleton structure gizmos
are visible.

To assess the qualitative outcome of the final Ragdoll animation, we initially tested
the developed tools on avatars animated with simple animation clips before evalu-
ating their performance on a VR avatar. The frames proposed for demonstration
(Figure 6.1, 6.2, 6.3) were captured in a test scene, leaving the target rig visible,
rendered with a transparent material and overlayed to the Ragdoll.

Overall, the Ragdoll accurately replicates the movements of the target rig. With the
selected parameters, pose matching remains stable, and the PositionControllers
are not subjected to irreversible divergences. While there is generally minimal

37

Discussion and Results

Figure 6.2: Active Ragdoll Module: drunk walk animation.

Figure 6.3: Active Ragdoll Module: reaction of the Ragdoll to a falling cube. The
visual result is really natural, and the Ragdoll returns to its target pose without
unwanted jittering or artifacts in the movements.

discrepancy between the target rig and the Ragdoll pose, the extent of this differ-
ence varies depending on the speed of the movements performed by the target rig.

38

Discussion and Results

Because of the inertia of the Ragdoll’s masses, its parts may exhibit some deviation
from the target pose, especially during rapid animations. This relative responsive-
ness may introduce a potential delay in reaching the target pose, but on the other
hand it imparts a more physical and natural character to the animation.

6.2 Application to VR Motion Matching

Testing the use of our Active Ragdoll Module with a VR avatar does not require
additional steps beyond what has been mentioned so far.

Two main scenes have been set up. The first consists of a simple empty testing
environment with three mirrors positioned in front of and on both sides of the
avatar, allowing users to observe their movements while wearing the headset. The
second scene has been arranged as if it was a VR app demo environment, featuring
a more complex geometry. It also includes some physics-based props near the
avatar that users can interact with, in order to assess both the environment’s and
the avatar’s response to collisions and external forces.

The ActiveRagdollController faithfully maps the movements of the avatar ani-
mated with Motion Matching. As mentioned earlier, sudden movements introduce a
slight delay in reaching the target. For this type of application, disabling gravity on
the Ragdoll’s rigid bodies has shown an improvement in movement mapping.

Figure 6.4: VR Ragdoll: arms movement mapping.

Regarding the arms, the results are quite satisfying: the articulation of movements

39

Discussion and Results

calculated by the inverse kinematic solver is well mapped, allowing the attainment of
most desired poses (Figure 6.4). In some situations, it may happen that parts of the
Ragdoll get stuck due to collision detections, or that the rotation control causes more
delicate joints (such as those of the shoulder) to reach illegal conditions. However,
the system does not completely diverge, returning to normal after performing
adjustment movements.

Figure 6.5: VR Ragdoll: walking movement mapping.

The locomotion provided by the Motion Matching technique is also properly mapped
to the Ragdoll (Figure 6.5). Occasionally, there are some artifacts in the animation
result due to collisions and dragging of the feet on the ground.

The primary advantage of implementing physics-based animation is the ability
to interact with other elements in the scene governed by the physics engine.
In this regard, the controlled Ragdoll performs its job effectively: there are no
penetrations between the avatar and other collider-equipped objects. For instance,
attempting to pass through a static wall with the hand will result in the hand
being blocked by the wall until the user’s hand returns to a position it can reach
again. This occurs without any manual control over parameters or other aspects of
the ActiveRagdollController or PositionControllers.

Interacting with other rigid bodies in the scene provides a sense of realism, as the
scene reacts realistically to the Ragdoll’s movements. In the second test scene
(Figures 6.6, 6.7, 6.8), the user can push cubes of various sizes, rotate large discs
suspended in mid-air, swing an always-standing puppet, or walk among cones
kicking them away. It is important to note that this research does not aim to

40

Discussion and Results

implement a system for grabbing, handling, or manipulating objects.

Figure 6.6: VR Ragdoll: throwing a cube.

Figure 6.7: VR Ragdoll: spinning a coin. Subjective view.

Figure 6.8: VR Ragdoll: reacting to a hitting body.

This aspect represents the primary benefit of choosing to implement a physics-based

41

Discussion and Results

VR avatar.

6.2.1 Fingers Ragdoll for XR Hand Tracking

In Section 5.2, we briefly mentioned the intention to achieve a complete Ragdoll
down to the fingertips to test the feasibility of mapping physics-based hand tracking
movements. Although the XRHandAnimatorTranslator component is implemented
with a simple and not particularly refined approach to matching the 3D model’s
hand mesh with that of the hand tracking, it still allows for a plausible animation
of the target rig’s hands.

Figure 6.9: VR Ragdoll: physics hands.

Figure 6.10: VR Ragdoll: physics hand interacting with another rigid body.
Fingers deformation on contact is clearly visible.

42

Discussion and Results

However, mapping movements onto the Ragdoll’s hands is more fragile and less
stable than the rest of the body. While the fingertips correctly follow their targets
(Figure 6.9), the overall movement result is often wobbly, and touching objects
often deforms the hand structure (Figure 6.10).

Overall, we can assert that the physics-based hand tracking experiment, as a side
aspect of the main research, does not yield equally satisfying results when simply
approached by extending the Ragdoll to the fingertips and using the same control
methodology.

43

Chapter 7

Conclusions

In this thesis project, we focused our attention on simulating the movements of
a virtual character in a way that is compliant with the physics laws. It has been
highlighted how this can provide a positive contribution during the development of
an interactive experience, whether to meet specific design needs, develop certain
interaction mechanics, or enhance immersion in a VR experience.

The objective was therefore to develop a prototype tool in the Unity environment
that would allow translating a generic animation technique to the domain of the
physics engine. The basic idea behind the design of this prototype was to ensure a
versatile, modular, and ready-to-use approach during development process. The
developed tools were then tested with different avatars, with greater attention
directed towards the application on full-body VR avatars animated with the VR
Motion Matching technique [2].

Overall, we can affirm that the Active Ragdoll Module, with attention paid to its
usability, met expectations of versatility and ease of use, presenting acceptable
performance that does not significantly burden real-time simulation. The fidelity
of movement mapping can be considered effective. The combination of the Active
Ragdoll Module and VR Motion Matching yields an appreciable result overall,
with the desired greatest advantage of eliminating interpenetrations and allowing
interaction with other objects subjected to the action of the physics engine.

Our work still offers room for improvement, considering the presence of defects
and artifacts in the Ragdoll movements. Despite these challenges, we hope that
our work has highlighted the potential of physics-based animation techniques and
underscored the importance of designing development tools that ensure versatility
and ease of use. We aim to inspire research that can have a tangible and pragmatic
impact in a demanding market such as the gaming and VR industry.

44

Conclusions

7.1 Future work

In conclusion, we would like to list below some possible ideas for further developing
the Active Ragdoll Module and evaluating potential improvements:

• Automatic collider generation: Our current solution prioritizes the devel-
opment of core features and does not include automatic collider generation for
the Ragdoll. Exploring methods to automatically generate precise, well-suited,
and optimized colliders based on the avatar’s geometry could further enhance
the usability and versatility of the Active Ragdoll Module.

• Rotation control rework: considering our implementation, the rotation
control was managed by taking advantage of the existing properties avail-
able in the ConfigurableJoint component provided by Unity. Similar to
the approach used for position control, it could be interesting to explore
the possibility of implementing a custom rotation controller, such as a PID
controller handling quaternion values. This would provide greater control over
the mathematics governing the rotations of the Ragdoll’s joints, allowing for
more customization in tuning its parameters.

• Refinement of avatar calibration: the method employed in our implemen-
tation relies on the simple scale management of certain parts of the avatar.
Enhancing the final outcome could involve applying more sophisticated custom
deformation techniques, as well as refining the mapping of these deformations
onto the physics Ragdoll.

• Adjustment of feet positioning: the introduction of collision detection
during locomotion has underscored the need for closer attention to the Ragdoll’s
feet positioning. Therefore, it would be beneficial to add an additional layer
of procedural management to adjust the position of the feet targets to prevent
penetrations and dragging on the ground.

• Exploration of hand tracking application: in this study, the potential
extension of the developed tools for the implementation of a physics-based
hand tracking system was proposed as a simple side experiment. Delving
deeper into this specific aspect could be intriguing, evaluating a more tailored
implementation of the Active Ragdoll Module to achieve a more functional
animated hand Ragdoll.

45

Bibliography

[1] Simon Clavet. «Motion Matching and The Road to Next-Gen Animation».
In: Game Developer Conference. GDC 2016. Mar. 2016. url: https://www.

gdcvault.com/play/1023280/Motion-Matching-and-The-Road (visited
on 03/02/2024) (cit. on p. 6).

[2] Jose Luis Ponton, Haoran Yun, Carlos Andujar, and Nuria Pelechano. «Com-
bining Motion Matching and Orientation Prediction to Animate Avatars for
Consumer-Grade VR Devices». In: Computer Graphics Forum 41.8 (Dec.
2022), pp. 107–118. issn: 0167-7055, 1467-8659. doi: 10.1111/cgf.14628.
arXiv: 2209.11478[cs]. url: http://arxiv.org/abs/2209.11478 (visited
on 10/27/2023) (cit. on pp. 6, 32, 44).

[3] Loïc Caroux, Katherine Isbister, Ludovic Le Bigot, and Nicolas Vibert.
«Player–video game interaction: A systematic review of current concepts». In:
Computers in Human Behavior 48 (July 1, 2015), pp. 366–381. issn: 0747-5632.
doi: 10.1016/j.chb.2015.01.066. url: https://www.sciencedirect.

com/science/article/pii/S0747563215000941 (visited on 02/17/2024)
(cit. on p. 6).

[4] Kay Stanney and Gavriel Salvendy. «Aftereffects and Sense of Presence in
Virtual Environments: Formulation of a Research and Development Agenda».
In: International Journal of Human–Computer Interaction 10.2 (June 1, 1998).
Publisher: Taylor & Francis _eprint: https://doi.org/10.1207/s15327590ijhc1002_3,
pp. 135–187. issn: 1044-7318. doi: 10.1207/s15327590ijhc1002_3. url:
https://doi.org/10.1207/s15327590ijhc1002_3 (visited on 02/17/2024)
(cit. on p. 6).

[5] Kwan Min Lee. «Presence, explicated». In: Communication Theory 14.1
(2004). Place: United Kingdom Publisher: Blackwell Publishing, pp. 27–50.
issn: 1468-2885. doi: 10.1111/j.1468-2885.2004.tb00302.x (cit. on p. 6).

46

BIBLIOGRAPHY

[6] Yujie Tao, Cheng Yao Wang, Andrew D Wilson, Eyal Ofek, and Mar Gonzalez-
Franco. «Embodying Physics-Aware Avatars in Virtual Reality». In: Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems.
CHI ’23. New York, NY, USA: Association for Computing Machinery, Apr. 19,
2023, pp. 1–15. isbn: 978-1-4503-9421-5. doi: 10.1145/3544548.3580979.
url: https://doi.org/10.1145/3544548.3580979 (visited on 10/27/2023)
(cit. on p. 7).

[7] Mar Gonzalez-Franco, Brian Cohn, Eyal Ofek, Dalila Burin, and Antonella
Maselli. «The Self-Avatar Follower Effect in Virtual Reality». In: 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR). 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR). ISSN: 2642-5254.
Mar. 2020, pp. 18–25. doi: 10.1109/VR46266.2020.00019. url: https:

//ieeexplore.ieee.org/document/9089510 (visited on 12/01/2023) (cit.
on p. 7).

[8] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
«DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
Character Skills». In: ACM Transactions on Graphics 37.4 (Aug. 31, 2018),
pp. 1–14. issn: 0730-0301, 1557-7368. doi: 10.1145/3197517.3201311. arXiv:
1804.02717[cs]. url: http://arxiv.org/abs/1804.02717 (visited on
03/01/2024) (cit. on p. 8).

[9] Yongjing Ye, Libin Liu, Lei Hu, and Shihong Xia. Neural3Points: Learning
to Generate Physically Realistic Full-body Motion for Virtual Reality Users.
Sept. 13, 2022. doi: 10.48550/arXiv.2209.05753. arXiv: 2209.05753[cs].
url: http://arxiv.org/abs/2209.05753 (visited on 03/01/2024) (cit. on
p. 8).

[10] Alexander Winkler, Jungdam Won, and Yuting Ye. «QuestSim: Human Mo-
tion Tracking from Sparse Sensors with Simulated Avatars». In: SIGGRAPH
Asia 2022 Conference Papers. Nov. 29, 2022, pp. 1–8. doi: 10.1145/3550469.

3555411. arXiv: 2209.09391[cs]. url: http://arxiv.org/abs/2209.

09391 (visited on 03/01/2024) (cit. on p. 8).

[11] Sunmin Lee, Sebastian Starke, Yuting Ye, Jungdam Won, and Alexander
Winkler. «QuestEnvSim: Environment-Aware Simulated Motion Tracking
from Sparse Sensors». In: Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Proceedings. July 23, 2023,
pp. 1–9. doi: 10.1145/3588432.3591504. arXiv: 2306.05666[cs]. url:
http://arxiv.org/abs/2306.05666 (visited on 10/27/2023) (cit. on p. 8).

[12] Joan Llobera and Caecilia Charbonnier. «Physics-based character animation
for Virtual Reality». In: Mar. 1, 2022, pp. 56–57. doi: 10.1109/VRW55335.

2022.00021 (cit. on p. 8).

47

BIBLIOGRAPHY

[13] Johan Gästrin. Physically Based Character Simulation: Rag Doll Behaviour
in Computer Games. Google-Books-ID: CZjyjwEACAAJ. 2004. 44 pp. (cit. on
p. 10).

[14] Gabe Mulley and Matt Bittarelli. «Ragdoll Physics». In: 2007. url: https:

//www.semanticscholar.org/paper/Ragdoll-Physics-Mulley-Bittarel

li/d80c8dbe9c5864c46e573f92c66df52190be2155 (visited on 02/17/2024)
(cit. on p. 10).

[15] Boneloaf. Gang Beasts. 2014. url: https://gangbeasts.game (visited on
02/17/2024) (cit. on p. 10).

[16] No Broken Games. Human Fall Flat. 2016. url: https://nobrakesgames.

com/games/human-fall-flat/ (visited on 02/17/2024) (cit. on p. 10).

[17] Recreate Games. Party Animals. 2023. url: https://partyanimals.com/

(visited on 02/17/2024) (cit. on p. 10).

[18] Karl Johan Åström and Tore Hägglund. PID Controllers: Theory, Design, and
Tuning. Research Triangle Park, North Carolina: ISA - The Instrumentation,
Systems and Automation Society, 1995. isbn: 978-1-55617-516-9 (cit. on
p. 10).

[19] Heinz Unbehauen. CONTROL SYSTEMS, ROBOTICS AND AUTOMA-
TION - Volume II: System Analysis and Control: Classical Approaches-II.
Google-Books-ID: RF1xDAAAQBAJ. EOLSS Publications, Oct. 11, 2009.
416 pp. isbn: 978-1-84826-141-9 (cit. on p. 10).

[20] Karl Johan Åström and Richard M. Murray. Feedback Systems: An In-
troduction for Scientists and Engineers, Second Edition. Google-Books-ID:
l50DEAAAQBAJ. Princeton University Press, Feb. 2, 2021. 522 pp. isbn:
978-0-691-19398-4 (cit. on p. 10).

[21] Karl Grammer, Bernhard Fink, Elisabeth Oberzaucher, Michaela Atzmüller,
Ines Blantar, and Philipp Mitteroecker. «The representation of self reported
affect in body posture and body posture simulation». In: Collegium antropo-
logicum 28 Suppl 2 (Feb. 1, 2004), pp. 159–73 (cit. on p. 21).

[22] P. de Leva. «Adjustments to Zatsiorsky-Seluyanov’s segment inertia parame-
ters». In: Journal of Biomechanics 29.9 (Sept. 1996), pp. 1223–1230. issn:
0021-9290. doi: 10.1016/0021-9290(95)00178-6 (cit. on pp. 22, 23, 36).

[23] Triangular Pixels. Technie Collider Creator 2 | Physics | Unity Asset Store.
url: https://assetstore.unity.com/packages/tools/physics/techni

e-collider-creator-2-217070 (visited on 03/10/2024) (cit. on p. 24).

[24] Unity Technologies. Unity - Scripting API: ConfigurableJoint. url: https://

docs.unity3d.com/ScriptReference/ConfigurableJoint.html (visited
on 03/03/2024) (cit. on p. 28).

48

BIBLIOGRAPHY

[25] Unity. XR Interaction Toolkit | Documentation. url: https://docs.unity3d.

com/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.

html (visited on 03/04/2024) (cit. on p. 32).

[26] RootMotion. Final IK | Documentation. url: http://www.root-motion.

com/final-ik.html (visited on 03/05/2024) (cit. on p. 33).

49

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Problem overview
	Objective
	Document structure

	Background
	Related work
	Real-time Animation
	Data-driven techniques: Motion Matching
	Embodying Physics-aware Avatars in VR
	AI-based approach to motion simulation

	Preliminary definitions
	Unity Engine framework
	Ragdoll physics
	PID control

	Active Ragdoll Module: System Design
	Ragdoll Maker
	Skeleton structure

	Ragdoll Controller
	Position control: PID controllers

	Implementation
	Code architecture
	Data and options providers
	Skeleton references
	Ragdoll joints data
	Body mass distribution

	HumanoidRagdollMaker component
	Ragdoll building algorithm
	Mass distribution policy

	ActiveRagdollController component
	Joint rotation control
	Bones position control

	Combining Active Ragdoll with vr Motion Matching
	Coherence between Ragdoll and target rig
	XR Hand Tracking

	Discussion and Results
	Active Ragdoll Module
	Application to VR Motion Matching
	Fingers Ragdoll for XR Hand Tracking

	Conclusions
	Future work

	Bibliography

