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Abstract

The kidnapped robot is a well-known problem in mobile robotics; it is a
special case of the global localization problem, which arises when the robot
is physically moved to another location without its knowledge, or gets lost in
the environment. Kidnapped Robot Problem is usually studied and tested to
evaluate the performance of localization algorithms since none of them can
guarantee not to fail. In this thesis, we propose a solution in order to solve
the kidnapped robot problem in dynamic and similar environment based
on Visual Place Recognition (VPR), Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) to initialise the position of the robot
and a particle filter to correct the pose. The VPR algorithm is based on
using a Convolutional Neural Network (CNN) to extract global features from
images and recognise the place where the robot is located, selecting a set
of best poses using a similarity measurement algorithm. The DBSCAN is
used to filter out isolated and small clusters of selected poses and initialise
the position of the robot with the centroid of the largest cluster. A particle
filter is then applied to correct the robot’s pose. The proposed solution is
fully implemented in Robot Operating System (ROS) using Python as the
main programming language. It is first tested in a simulated environment
in the Gazebo platform and then in a real scenario at PIC4SeR (PoliTo
Interdepartmental Centre for Service Robotics). The results show that the
proposed solution is able to correctly relocalise the robot after the kidnapping
event.
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Chapter 1

Introduction

In the realm of mobile robotics, the problem of localization is a fundamental
one. Localization is the process of calculating the pose of robot in a given
map. In this field, we cannot avoid the problem of failure, since we are in
what is called "probabilistic robotics": the robot can only estimate his actual
pose; this means it is also possible that the robot can think to know where
it is located in the environment, while it is not. This is called Kidnapped
Robot Problem and it concerns the case in which the robot is moved to a
different location in the environment, while it is operating. In this case, the
robot has to recognize that it has been "kidnapped" and correct his global
pose. Based on the sensors implemented, there are many ways to solve this
problem. It is not so easy to develop a robust and reliable solution in all
possible scenario. For outdoor scenario, GPS is a good choice to solve the
problem; for indoor scenario, systems based on 2D lidar (Light Detection and
Ranging) have gained popularity thanks to accuracy of the sensor: however,
they have some limitations due to similar environment and the presence of
dynamic objects. Since every type of sensors has its own limitations, it is
possible to combine them to obtain a more robust and reliable solution; this
is the realm of sensor fusion, which has been growing strongly in recent years.
The aim of this thesis is to develop a robust and reliable solution for the
kidnapped robot problem. The solution is based on a lidar-camera system.
The robot detects the kidnapping using a method based on 2D lidar data
and relocalize the robot in the map using Visual Place Recognition with
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Introduction

which robust visual features from RGB images, acquired by a camera, are
extracted by a Convolutional Neural Network (CNN) to recognize the place
and the particle filter of the Monte Carlo localization to correct the pose
through 2D lidar and odometry sensors. The system has been tested in a
real environment at PIC4Ser. The thesis is organized as follows:

• Chapter 1 : a brief introduction about the kidnapped robot problem,
explaining the aim of the thesis and the structure of the document.

• Chapter 2 : overview on robot localization theory and on the state-of-
the-art about the kidnapped robot problem.

• Chapter 3 : in this chapter a detailed explanation about the methodology
used and the system developped is given.

• Chapter 4 : description about the software used to design the system
and the hardware used to test it. A brief explanation about how ROS2
framework works and Gazebo simulation environment is given.

• Chapter 5 : results obtained from the experimental work are shown and
discussed

• Chapter 6 : conclusions and future works are presented.
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Chapter 2

Robot Localization

1 Introduction to Probabilistic Robotics

Probabilistic robotics [32] is an approach to incorporate uncertainty in
perception and action in the field of autonomous robot navigation, based on
the idea of using probability theory. So, instead of relying just on a "best
guess", we consider information based on probability distribution that let
us consider all possible sources of uncertainty: environment, robots, sensors,
models and computation. An example where probabilistic robotics is applied
is mobile robot localization. Mobile robot localization concerns the estimation
of the robot’s pose relative to a reference frame that is linked to a map of the
environment. We use the robot’s belief using a probability density function
and then, through sensor data and probabilistic paradigm, the robot updates
its belief. The localization will be explored in more detail. Additionally,
probabilistic robotics allows to use flexible models because robots can adapt
to changing conditions without having to completely redesign their navigation
algorithms.
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Robot Localization

2 Gaussian Filters
Gaussian filters are fundamental tools used in probabilistic robotics to esti-
mate the state of a dynamic system in the presence of noise and uncertainty;
in fact, they are widely used in the localization and navigation of mobile
robots. Gaussian filters are based on the idea that beliefs are represented by
a multivariate normal distribution:

p(x|µ, Σ) = 1
(2π)d/2|Σ|1/2 exp

A
−1

2(x− µ)T Σ−1(x− µ)
B

(2.1)

where:
• x is the state vector with dimension d.

• µ is the mean vector, that has the same dimension of the state vector.

• Σ is the covariance matrix; it is symmetric and positive-semidefinite.
Its dimension is the state vector dimension squared.

Figure 2.1: Univariate gaussian distribution [36]

2.1 Kalman Filter
Kalman filter , also known as Linear Quadratic Estimator, was invented
by Rudolf E. Kalman in 1960. It evaluates the state of a linear dynamical
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Robot Localization

system using a series of measurements acquired over time, instead of using
just one measurement [33]. The mathematical representation of a linear
dynamical system is given by the following formulae:xt = Atxt−1 + Btut + ϵt

zt = Ctxt + δt

(2.2)

where x is the state vector, u is the control vector, z is the output vector, A,B
and C are matrices, while ϵ is the process noise and δ is the measurement
noise. Both noises are white and indipendent

p(ϵ) ∼ N (0, Rt) (2.3)

p(δ) ∼ N (0, Qt) (2.4)

It is a widely used and extremely powerful tool, useful in different applications.
It is also particularly effective in addressing the following problems:

• State estimation: we can use it to estimate an unobservable variable
of the dynamical system, like estimating the position and velocity of a
robot using sensor data.

• Future prediction: based on the dynamical model of the system and
his past estimates, we can estimate the current state.

• Sensor fusion: it can integrate data coming from different sensors to
increase the accuracy of the state estimate. This capability is particularly
useful in applications where multiple sources of information are available,
such as autonomous vehicle localization using GPS, inertial sensors, and
cameras.

• Filtering noise: use a combination of weighted state estimates and
observations, reducing uncertainty over time. So, the system has more
reliable and accurate estimates.

It is composed of two phases: prediction and measurement update: during
the prediction phase the system estimates the future state using the past
belief taking into account also the process noise, while in the measurement
update, the filter updates the estimation using available information and
sensor noise.
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Algorithm 1 Kalman filter algorithm for linear dynamic system [33]
1: procedure Kalman Filter(µt−1, Σt−1, ut, zt)
2: ▷ µt−1 is the initial state
3: ▷ Σt−1 is the initial uncertainty covariance matrix
4: ▷ ut is the control input
5: ▷ zt is the actual measurement
6: µ̄t = Atµt−1 + Btut ▷ Predicted state estimate
7: Σ̄t = AtΣt−1A

T
t + Rt ▷ Predicted estimate covariance

8: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)−1 ▷ Kalman gain

9: µt = µ̄t + Kt(zt − Ctµ̄t) ▷ Updated state estimate
10: Σt = (I −KtCt)Σ̄t ▷ Updated estimate covariance
11: return µt, Σt ▷ Return the updated state and covariance
12: end procedure

• Prediction (line 6-7): based on old state estimate µt−1, state-transition
matrix A and actual control input ut, we can calculate the posterior
belief of the state and of its covariance matrix.

• Kalman Gain (line 8): it is a matrix that determines how much the state
estimate should be corrected based on the measurement. It is calculated
using the predicted state covariance, the measurement matrix C, the
measurement noise covariance Q and the predicted state covariance.

• Measurement update (line 9-10): the state estimate is updated using the
Kalman gain and the difference between the actual measurement and
the predicted measurement, called innovation.

The image 2.2, illustrate a cycle step of the Kalman filter: in (a) we see
the initial belief of the state with a gaussian distribution, in (b) we see
in bold the gaussian distribution of the measurement, while in (c) we see
the posterior belief calculated by the algorithm; in (d) we see the belief
of the state after motion to the right with a wider distribution caused by
uncertainty in the motion model, and in (e) we have the new measurement
and in (f) the new posterior belief. We can see that the posterior belief is a
compromise between the motion model and the measurement model, and
the uncertainty is reduced over time.
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Figure 2.2: Illustration of the Kalman filter procedure

2.2 Extended Kalman Filter

The Kalman filter is a powerful tool, but his main limitation is that it can
only be applied to linear systems. In most of the robotic applications, the
system is non-linear, so the Kalman filter cannot be used; a simple example
is when the robot moves in a circular trajectory. The Extended Kalman
Filter (EKF) [33] is a solution to this problem; it is a non-linear version of
the Kalman filter, and it is based on the idea of linearizing the non-linear
system using a first-order Taylor expansion at each time step, before applying
the Kalman filter. So, the first assumption is that the dynamical system is
non-linear, and the second assumption is that the non-linear functions are
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differentiable: xt = g(ut, xt−1) + ϵt

zt = h(xt) + δt

(2.5)

Essentially, we replace the matrices A, B and C with Jacobian matrices Gt

and Ht:
Gt = ∂g(ut, xt−1)

∂xt−1
(2.6)

Ht = ∂h(xt)
∂xt

(2.7)

The EKF is a powerful tool, but the main limitation is that it is not always
guaranteed to converge to the true state of the system, especially when the
non-linearities are strong, risking to lead to very unreliable estimates.

Algorithm 2 Extended Kalman Filter algorithm for non-linear dynamic
system [33]

procedure Extended Kalman Filter(µt−1, Σt−1, ut, zt)
2: ▷ µt−1 is the initial state

▷ Σt−1 is the initial uncertainty covariance matrix
4: ▷ ut is the control input

▷ zt is the actual measurement
6: µ̄t = g(ut, µt−1) ▷ Predicted state estimate

Σ̄t = GtΣt−1G
T
t + Rt ▷ Predicted estimate covariance

8: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)−1 ▷ Kalman gain

µt = µ̄t + Kt(zt − h(µ̄t)) ▷ Updated state estimate
10: Σt = (I −KtHt)Σ̄t ▷ Updated estimate covariance

return µt, Σt ▷ Return the updated state and covariance
12: end procedure

3 Particle Filter
The main problem with gaussian filters is that they are based on the assump-
tion that the belief is a unimodal gaussian distribution, but in many cases, the
belief is multimodal or non-gaussian. An alternative to Gaussian technique
are nonparametric filters [33], that don’t rely on fixed form of the posterior
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belief; they can approximate posteriors with a finite set of parameters: as the
number of parameters tends to infinity, the nonparametric filter converges to
the true posterior. The particle filter is the most used nonparametric filter
in the field of robotics, thanks to his nature, especially in the field of mobile
robot localization. It is based on the idea of representing the posterior with
a set of samples, called particles, drawn from the probability distribution,
denoted by:

Xt := {x1t, x2t, . . . , xMt}
where M is the number of samples in the particle set XM . So, the denser a
region of the state space is populated by particles, the more likely it is that
the true state falls into this region. The particle filter algorithm is based on
the following steps:

Algorithm 3 Particle Filter Algorithm [33]
1: procedure Particle Filter(Xt−1, ut, zt)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut, x

[m]
t−1)

5: w
[m]
t = p(zt|x[m]

t )
6: X̄t = X̄t + ⟨x[m]

t , w
[m]
t ⟩

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

13: end procedure

In detail:
• Prediction (line 4): we predict a new state x

[m]
t , that actually is a new

particle, generated from the previous state x
[m]
t−1 and the control input

ut.

• Update (line 5-6): we include in the particle set the measurement calcu-
lating for each particle the importance factor (or weight), that represent
the probability of the measurement given the state. So the set of weight
particles approximate the posterior distribution.
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• Resampling (line 8-10): starting from the weighted particle set (posterior
belief), we draw new particles with replacement; the probability of
drawing a particle is proportional to its importance factor. So, particles
with lower weights (those that are less consistent with the measurement)
are less likely to be drawn, than particles with higher weights.

So, relatively to Gaussian filters, advantages and disadvantages of particle
filters are:

• Advantages: we can represent multimodal and non-gaussian distribu-
tions, and it is more robust than Kalman Filter and Extended Kalman
Filter in non-linear dynamical systems.

• Disadvantages: in order to represent the belief in a proper way, we
need a large amount of particles, that increase computational complexity.
However, researchers developped techniques to adapt the number of
particles online, based on the uncertainty of the belief.

4 Mobile Robot Localization
One of the field of autonomous navigation where probabilitic robotics is
applied is the localization. In the localization, the robot has to estimate its
current pose based on information that come from external sensors. It is
considered the most important problem in mobile robotics, because it is a
fundamental capability for a robot to be able to navigate in an environment.
The pose information can be inferred from measurement data and control
data given a map of the environment. We can classify the localization
problem into three different sub-problems [25] [34]:

• Pose Tracking: it concerns the continuous tracking of the robot pose
while it moves in the environment. It is fundamental for the robot to
be aware of its initial position at the beginning of the trajectory; in
this phase, the system continuously updates the robot’s pose combining
actual sensors informations with previous one. Most of the time odometry
sensors, such as encoders and IMU, are used, but they accumulate errors
over time; pose tracking algorithms needs to handle the uncertainty
to ensure accurate pose estimation. The pose uncertainty is usually
approximated with a unimodal distribution (e.g. Gaussian), so Kalman
Filter approaches are widely used in this phase.
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Figure 2.3: Illustration of the Particle filter procedure

• Global Localization: in this localization problem, the initial position is
unknown. Robots usually use sensor data, for instance, coming from lidar,
cameras or inertial sensors, and they are compared with a map of the
environment, previously built. It is a fundamental problem to be solved,

18
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especially in dynamical environments. The uncertainty of the robot’s
pose is usually approximated with a multimodal distribution, so Kalman
Filter approaches are not suitable to solve this localization problem;
in this case, particle filters are widely used or even more advanced
techniques, like SLAM (Simultaneous Localization and Mapping) [13]
that will be discussed more in detail later.

• Kidnapped Robot Problem: it is a sub-problem of the global lo-
calization, but it is even more difficult because it arises when, during
operation, the robot gets teleported to another location; so, essentially
thinks to know where it is in the map, while it does not. This problem is
studied because most of the localization algorithm cannot be guaranteed
never to fail, so it is essential for the robot to be able to recover from
global localization failures.

Another element that has impact on the localization problem is the environ-
ment. Environments can be static or dynamic:

• Static environments: they are environments where all surrounding
elements remain relatively unchanged over time. Static nature of an
environment simplifies the autonomous navigation because the robot
can rely on stable references (obstacles, features, landmarks), making
the behaviour of the robot more predictable.

• Dynamic environments: they are environments where surrounding
elements can change position over time in an unpredictable way. Robots
has to adapt their plans and actions, like avoiding dynamic obstacles.
Localization could become an hard problem, especially kidnapped robot,
since the robot cannot rely on stable references anymore; so in recent
years, researchers are developping more advance sensor fusion systems
in order to achieve robust localization handling unforeseen situations.

4.1 Monte Carlo Localization
Monte Carlo Localization (MCL) is a probabilistic algorithm used to solve
the global localization problem, and it is based on the idea of using a particle
filter to represent the posterior belief of the robot’s pose. It was introduced
by Dieter Fox in 1999 [9]. The algorithm is based on the idea of representing
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Figure 2.4: Graphical representation of mobile robot localization steps [35]

the posterior belief with a set of particles, that are drawn from the probability
distribution and was born to solve the limitations of the Kalman Filter and
Extended Kalman Filter in non-linear and multimodal environments. It can
bu used for local and global localization.

Algorithm 4 Monte Carlo Localization Algorithm [9]
1: procedure Algorithm MCL(χt−1, ut, zt, m)
2: static wslow, wfast
3: χ̄t = χt = ∅
4: for m = 1 to M do
5: x[m]t = sample_motion_model(ut, x[m]t−1)
6: w[m]t = measurement_model(zt, x[m]t, m)
7: χ̄t = χ̄t + ⟨x[m]t, w[m]t⟩
8: wavg = wavg + 1

M w[m]t
9: end for

10: for m = 1 to M do
11: draw i with probability ∝ w[i]i
12: add x[i]i to χt

13: end for
14: return χt

15: end procedure
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The motion model describes the robot’s motion in the environment; it is
used to predict the new state of the robot given the previous state and the
control input ut. It is generally based on odometry sensors, like encoders and
IMU. The measurement model describes the relationship between the robot’s
pose and the sensor measurements and is used to calculate the importance
factor (or weight) of each particle. In order to globally localize, the MCL
initializes all over the map a set of particles, and then the robot moves in
the environment; the algorithm updates the belief of the robot’s pose using
the motion model and the measurement model. The image 2.5 shows the
procedure used to globally localize on a map; as we can see in (a) we have
the uniform initial belief with particles spread all over the map and thanks
to the motion and measurement model, the belief is updated in (b) and
(c) and the robot is able to localize itself. So, the MCL is good at solving
global localization, but cannot recover from robot kidnapping and global
localization failures, especially in large environments; this is because after
some time, the particles will converge to the true pose, so it is difficult to
recover to the correct pose if it far away from the true one. This problem is
solved by the Adaptive Monte Carlo Localization (AMCL).

Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization (AMCL) is a variant of the classic
Monte Carlo Localization that let to solve the kidnapped robot problem by
adding random poses in the map: this behaviour it is regulated by two new
parameters, wslow and wfast: they represent decay rates for the exponential
filters that estimate the long-term, and short-term, averages, respectively.

4.2 Simultaneous Localization and Mapping
In the field of robotics, during autonomous navigation in an environment, the
robot has to know the map of it and it should be accurate enough depending
on the kind od operation required. However, in many cases, the map is not
available, so the robot has to build it while navigating. So, it is important
to have a system able to map the environment and at the same time to
localize the robot in it. This problem is called Simultaneous Localization and
Mapping (SLAM) [13]. Actually, there are three different types of maps that
can be built:
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Figure 2.5: Global localization using Monte Carlo Localization algorithm
[31]

• Metric Map: it is a discretized map that represents the environment in
a metric way. The environment is divided in grid cells, and each cell is
associated with a probability of being occupied. It is usually built using
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Algorithm 5 Adaptive Monte Carlo Localization Algorithm [31]
1: procedure Algorithm AMCL(χt−1, ut, zt, m)
2: static wslow, wfast
3: χ̄t = χt = ∅
4: for m = 1 to M do
5: x[m]t = sample_motion_model(ut, x[m]t−1)
6: w[m]t = measurement_model(zt, x[m]t, m)
7: χ̄t = χ̄t + ⟨x[m]t, w[m]t⟩
8: wavg = wavg + 1

M w[m]t
9: end for

10: wslow = wslow + αslow(wavg − wslow)
11: wfast = wfast + αfast(wavg − wfast)
12: for m = 1 to M do
13: with probability max{0.0, 1.0− wfast

wslow
} do

14: add random pose to χt

15: else
16: draw i ∈ {1, ..., N} with probability ∝ w[i]t
17: add x[i]t to χt

18: end with
19: end for
20: return χt

21: end procedure

distance sensors, like lidar and sonar. It is generally used for navigation
and avoid obstacles because the robot can plan a safe path through free
cells, avoiding occupied ones.

• Topological Map: it is a map that represents the environment as a
collection of significant places (nodes) linked between them. This kind
of map is useful to represent the environment in a more abstract way,
so it is useful for high-level navigation tasks.

• Feature Map: it is a map that represents the environment highlighting
salient features, relevant for navigation. Features can be something
recognizable in the environment, like corners, edges, lines, and can be
extracted with computer vision algorithms.

Each of this maps has its own advantages and disadvantages, and the choice
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Figure 2.6: Example of metric map[32]

Figure 2.7: Example of graph-like topological map of an environment [32]

of the map depends on the kind of operation required. They can also be
used in combination, for instance, a metric map can be used for low-level
navigation tasks, while a feature map can be used for recognize places. In
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Figure 2.8: Example of feature map built with ORB-SLAM. The black
dots are ORB features [23]

SLAM problem, the robot has to estimate its pose and the map of the
environment at the same time, using exteroceptive sensors, like cameras,
lidar, sonar, and proprioceptive sensors, like encoders and IMU. From a
probabilistic point of view, the SLAM can be classified in two different form:

• Online SLAM: in this type of SLAM, the robot estimates the posterior
belief over the actual pose along with the map

p(xt, m|z1:t, u1:t) (2.8)

• Full SLAM: in this type of SLAM, the robot estimates the posterior
belief over the entire trajectory along with the map

p(x1:t, m|z1:t, u1:t) (2.9)

The SLAM problem is a complex problem, and it is difficult to solve because
of the following reasons:

• Data Association: it is the problem of associating the sensor measure-
ments with known information; in SLAM, it concerns the correlation
between the actual measurement and the estimated pose in map. It is a
basic prerequisite to solve for successful implementation of SLAM.

• Loop Closure: it is a sub algorithm of SLAM useful for recognizing a
place already visited by the robot [16]. It is a powerful tools because
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it allows to correct the drift of the robot’s pose over time and map
misalignment errors. It is fundamental for large environments because
sensors can accumulate errors over time and the map could not be
accurate enough. It can be achieved using different techniques, including
geometric constraints and appearance-based methods.

Figure 2.9: Comparison between map without loop closure (a) and map
with loop closure (b) [16]

5 Sensor Fusion

5.1 Motivation for Sensor Fusion
In the field of robotics and artificial intelligence, the ability to perceive the
environment is a fundamental capability for a robot to be able to navigate
and localize itself in the environment. From autonomous vehicles to in-
dustrial robots to drones, the accuracy and completeness of informations
gathered from sensors are crucial for the success of the operation. However,
processing data from indivisual sensors can be challenging, especially when
the environment is dynamic and unpredictable. In order to achieve robust
and reliable perception and reduce, it is necessary to use multiple sensors,
and to combine their data in a coherent way. This process is called sen-
sor fusion. W. Elmenreich in his paper [10] defines "Sensor Fusion is the
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combining of sensory data or data derived from sensory data such that the
resulting information is in some sense better than would be possible when
these sources were used individually". System that employ sensor fusion are
called multisensor systems and they expect different benefits over a single
sensor systems.

A physical sensor measurement generally suffers from:

• Uncertainty: it is the lack of complete knowledge that makes it hard to
predict the outcome of a particular event. It can be caused by different
factors, like noise, bias, drift, missing data or feature (e.g. occlusions).

• Imprecision: individual sensors can be limited in their ability to
measure the environment

• Sensor Failure: breakdown of a sensor leads to a loss of information.

• Temporal Constraints: some sensors can be limited in their ability
to measure the environment in real-time because they could need some
time to process and transmit data.

• Spatial Constraints: some sensors can be limited in their ability to
measure the environment in a wide area because of their limited range.

So, sensor fusion system has to be able to handle these problems in order
to provide a reliable and accurate perception of the environment. The main
advantages of sensor fusion are:

• Redundancy: it is the ability to use multiple sensors to measure the
same quantity, so if one sensor fails, the system can rely on the other
sensors.

• Extended spatial and temporal coverage: sensors can conver wider
area and one sensor can eprform measurement when other sensors cannot.

• Robustness against interference: the system can be more robust
against noise and interference.

• Increased confidence: having different sensors measuring the same
quantity can increase the confidence of the system.
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5.2 Categories of Sensor Fusion
Sensor fusion can be mainly cathegorized in two different ways [6]: three-level
categorization and Dasarathy’s categorization[8].

Three-level categorization

In this fusion process, we can distinguish three different levels:

1. Low-level fusion: it is often called data fusion and concerns the fusion on
several sources of raw data to produce new ones. It is the most common
form of sensor fusion and it is used to reduce noise and uncertainty in the
data. A common example of low-level fusion is the fusion of odometry
data from encoders and IMU through Kalman Filter.

2. Feature-level fusion: also called information-level fusion, it concerns
the fusion of features extracted from raw data. It is used to combine
different features extracted from different sensors after processing raw
data.

3. Decision-level fusion: it is the highest level of fusion and it concerns
the fusion of decisions made by different sensors. Generally this level
include methods like voting, fuzzy logic and statistical methods.

Dasarathy’s categorization

Dasarathy’s categorization [8] starts from the fusion categorization described
above, but consider also type of input and output. We distinguish five
different categories:

1. Data-in-Data-out: in this category, fusion happens immediatly after the
data acquisition and the output is a new set of data, more robust and
reliable.

2. Data-in-Feature-out: at this level we still fuse raw data after acquisition,
but the output is a set of features extracted to describe the environment
in a more abstract and compact way.

3. Feature-in-Feature-out: in this category, we fuse already processed and
extracted information.
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4. Feature-in-Decision-out: we fuse a set of features of the environment to
provide a decision.

5. Decision-in-Decision-out: in this category, we fuse decisions made by
different sensors to provide a final one that is more robust.

Figure 2.10: Dasarathy’s categorization of sensor fusion [8]

6 State-of-the-Art of Kidnapped Robot Prob-

lem
To introduce the state-of-art of the kidnapped robot problem, we need a
deep understanding of challenges and the main proposed solutions. The
kidnapped robot problem is a sub-problem of the global localization, so it
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has been studied since the beginning of the autonomous navigation field.
Over the years, researchers have developed several different techniques to
solve this problem, depending on the type of sensors used in the system
and the type of environment where the robot operates. Each sensors has its
own advantages and disadvantages, and the choice of the sensor depends on
the kind of operation required. Various sensors play fundamental roles in
providing useful data for the robot to perceive its surroundings and determine
its location accurately. Some commonly used sensors in the field of robotics
are:

• Laser Range Finders (Lidar): this sensors emit many laser beams at
high frequency and measure the time it takes to reflect off objects and
return to the sensor to determine the distance to the obstacles. Thei high
precision makes them suitable for mapping and localization. They are
also versitile and can be used in many different environments, including
indoor and outdoor and during daytimes and nighttime operations.

• Cameras: they are used to capture images of the environment and
process them to extract useful information, like features, landmarks,
and obstacles. There are also more advanced cameras that implement
depth sensing, like stereo cameras and RGB-D cameras, that can be
used to exploit visual information and depth information at the same
time. They are widely used in the field of computer vision and they are
suitable for localization in service robotics. Generally they are used in
combination with other sensors, like lidar and IMU, to provide a more
robust and reliable perception of the environment.

• Inertial Measurement Units (IMU): they consist of accelerometers
and gyroscopes and are used to measure the robot’s acceleration and
angular velocity. So, they provide informations about the robot’s motion
in the environment. Generally, they are used in combination with wheel
encoders to provide odometry data

• Wheel Encoders: they count the number of rotations of the wheels and
with information of the wheel diameter, they can be used to estimate
the distance traveled by the robot. They are used to provide odometry
data, usually in combination with IMU.

• Global Positioning System (GPS): it is a satellite-based navigation
system that provides location and time information. It is widely used in
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outdoor environments, but it has some limitations, like the inability to
work in indoor scenario.

• Wireless Sensors: in the field of robotics localization, wireless sensors
are used to estimate the robot’s position through the acquisition of
signal strength (RSSI) from different wireless access points. They are
mainly used in indoor environments.

In the following sections, we will discuss the main techniques used to solve
the kidnapped robot problem, depending on the type of sensors used in the
system. Since global relocalization has been studied since the beginning of
the autonomous navigation field, we will just discuss the main techniques.

6.1 Lidar-based Relocalization
Lidars are by far the most used sensors in autonomous navigation and
localization. Many localization and relocalization algorithms are based
on lidar data, because of their high precision and accuracy. The most
common techniques used to solve the kidnapped robot problem is based on
Monte Carlo Localization (MCL) and its variant, Adaptive Monte Carlo
Localization (AMCL). The Monte Carlo Localization algorithm, with the
help of a relocalization trigger mechanism, can recover from kidnapping
by reinitializing the particle set, spreading particles all over the map. The
Adaptive Monte Carlo Localization algorithm, instead, is a variant born to
solve the limitations of the classic MCL in relocalization task since it adds
random poses in the map based on the decay rates for the exponential filters
that estimate the long-term and short-term averages. Basically, they rely
on lidar and odometry data to estimate the robot’s pose taking multiple
measurements Zt ≜ {zk=1, . . . , zt} enhancing robot’s pose with robot moving.
So they can have some limitations especially in dynamic, geometrically similar
and large-scale environments. In figure 2.11, we can see the reinitialization
of the particle cloud in MCL relocalization systems. As we can notice, the
particle cloud is spread all over the map, so we need a large amount of
particles to cover it completely, leading to a high computational complexity
and large amount of memory and time; if the scenario is even more complex,
like a large-scale environment and with similar geometric features, it’s easy
for the system to fail. In recent years, researchers have developed more
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Figure 2.11: Reinitialization of particle cloud in MCL relocalization systems
[31]

advanced techniques to solve the kidnapped robot problem, like the use of
visual and wireless sensors to assist the lidar in the relocalization task.

6.2 Visual-based Relocalization
Visual sensors, like cameras, are widely used in the field of robotics, especially
in the field of computer vision. They are used to extract richer features
and landmarks from the environment and to provide a more robust and
reliable perception of it. In the field of relocalization, visual sensors are
used to recognize places to recover from kidnapping. The main techniques
used to solve the kidnapped robot problem are based on visual SLAM and
appereance-based method. Visual SLAM is a very powerful tool based on
the idea of exploiting visual features to estimate the robot’s pose and the
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map of the environment at the same time using exteroceptive sensors, like
cameras, and proprioceptive sensors, like encoders and IMU. When robot is
"kidnapped", visual data get collected from camera sensors and the system
extract distinctive features of the environment and compare them with the
map to recognize the place. One of the most used VSLAM algorithm is ORB-
SLAM: it is a real-time SLAM library for Monocular, Stereo and RGB-D
cameras that implement a Bag-of-Words place recognition module based on
DBoW2 [12] to relocalize the robot; when the robot lost tracking, the system
extract ORB features from the camera images, convert the frame into a bag
of words and compare it with the database to select keyframe candidates
and then perform a PnP [18] pose optimization algorithm to correct the
camera pose. The appereance-based relocalization approach focus on the idea
of recognizing a place already visited directly comparing real-time images
with a database of the environment to identify similar positions and deduce
the robot’s current pose. Since images are generally high-dimensional data,
the system has to reduce the dimensinality extracting global and/or local
features from the images and compare them with the database. The main
advantage of this approach is that it is more robust against changes in the
environment, like illumination changes of dynamic objects. Visual Place
Recognition (VPR) is one of the most used appereance-based strategy used
for relocalization.

6.3 Wireless-based Relocalization
Lidar-camera systems are the most used in the field of robotics and au-
tonomous navigation because of their high precision, accuracy and compact-
ness. However, they have some limitations; lidar has problem in localization
in symmetrical environment, while cameras in featureless ones. In recent
years, researchers have developped systems that use wireless sensors to assist
the lidar and the camera in the relocalization task. The methodologies that
implement wireless sensors are based on the idea of estimating the robot’s
position through the acquisition of signal strength (RSSI) from different
wireless access points, using techniques like fingerprinting. The basic princi-
ple of WiFi fingerprinting involve involves the analysis of the power levels
of the received signal from each access point, and the comparison of these
levels with a database of signal strength maps. In their paper [37], Song
Xu and Wusheng Cho proposed a system that is able to globally relocalize

33



Robot Localization

the robot using WiFi fingerprinting and Adaptive Monte Carlo Localization;
after the robot is kidnapped, with a classical relocalization trigger mechanism
the robot detect the kidnap and start to collect WiFi signal strength data
from the environment and compare them with the database using KNN
to recognize the place and recover from kidnapping. Instead, in [24], re-
searchers proposed a similar method analyzing the RSSI data with Recurrent
Neural Networks (RNN), achieving better results in terms of accuracy and
robustness than with KNN. So, WiFi techniques can only be used in indoor
environments, but they are more robust against changes in the environment,
like illumination changes and dynamic objects; the main limitation is that
they require many access point to properly cover the environment, so the
cost of the system can be high, especially in large environments.
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Chapter 3

Methodology

In this chapter a detailed description of the implemented methodology will
be provided. The system’s goal is to robust relocalize a robot in a dynamical
and similar scenario without any external infrastructure (like WiFi or UWB),
using only a 2D lidar and a camera. The system is based on the use of visual
place recognition as a coarse relocalization method and then a particle filter
is exploited to correct the pose of the robot. The main algorithm is divided
in four main parts: section 1 describes the mapping of the environment
with a slam algorithm and the creation of an image database for visual
place recognition; section 2 describes the implementation of the visual place
recognition system to roughly estimate the pose of the robot; section 3
describes the use of a DBSCAN [11] in order to filter out outliers in the
pose estimation and section 4 describes the use of a particle filter to a fine
relocalization correcting the pose.

1 Mapping for Environment Representation
In order to relocalize a mobile platform, the system needs to have a represen-
tation of the environment whereby matching the current view of the robot
with the stored views. The system implemented involves a 2D lidar and a
camera. The 2D lidar is used to obtain an occupancy grid map where the
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robot localize itself and the camera is used to create an image database for
visual place recognition.

1.1 Occupancy Grid Mapping
The occupancy grid mapping is a technique used to create a map of the
environment using a 2D lidar. The map is represented as a grid where
each cell represents the probability of being occupied; so, basically in any
occupancy grid mapping algorithm, we calculate the posterior

p(mi|z1:t, x1:t) (3.1)

where, m is the map, z1:t the set of all measurements up to time t, and x1:t
is the path of the robot defined through the sequence of all poses. We can
mathematically represent the map as:

m =
Ø

i

mi (3.2)

where mi is the occupancy of the cell i. The probability for each cell to be
occupied is:

p(mi|z1:t, x1:t) (3.3)

and based on it, we can assign "0" if the cell is free, "1" if the cell is occupied.
In my case, I used the SLAM Toolbox [21] to create the occupancy grid map.
SLAM Toolbox is a graph-based SLAM library for 2D and 3D environments
developped in 2021 and it is already implemented in a ROS2 package.

1.2 Image Database for Visual Place Recognition
Once the map is created, we can implement the visual part of the system
starting from the creation of an image database. Visual Place Recognition
will be detailed explained in the next section, but essentially what we need
is to associate an image with a given pose. In order to perform this task, a
ROS2 node has been implemented to run in parallel with the SLAM Toolbox
algorithm. In this node, the OpenCV library is used to capture and save
images from the camera at a frequency of 5 Hz; at the same time, the node
saves the poses of the robot in a numpy array in order to associate each
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Figure 3.1: Example of an occupancy grid map built with a 2D lidar

image with a pose. As we can notice in figure 3.2, the database is really
dense. In the relocalization phase we have to consider that the system has
to load in memory the database, so we need to filter out some images in
order to reduce the computational cost. To do so, there are basically two
possible ways: the first one is to filter out images based on the euclidean
distance and yaw angle difference between adjacent poses; the second one is
to evaluate the similarity between adjacent images, through calculation of
global features and similarity measurement. The problem with the second
method is that it can lead to big holes between poses. In this work, the
first method is implemented because it represents a good trade-off between
computational cost and accuracy. In details, the images were filtered out
when the distance of difference of yaw angle of relative pose between adjacent
images are less than a given threshold.

• Distance threshold: this threshold is used to filter out images based
on the euclidean distance between adjacent poses. The threshold has
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Figure 3.2: Dense image database created with the ROS2 node. The red
path is composed of poses to which images are associated.

been set to 15 cm.

• Yaw angle threshold: this threshold is used to filter out images based
on the yaw angle difference between adjacent poses. The threshold has
been set to 10 degrees.

In figure 3.3 we can see the sparse database created with the ROS2 node.
This filtering process is performed offline in order to evaluate the performance
of the system with different thresholds. However, this task can be also done
online, during the mapping phase.
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Figure 3.3: Sparse image database created with the ROS2 node. The blue
arrows represent poses at which the images were taken.

2 Relocalization Trigger Mechanism

In the context of the kidnapped robot problem, where the robot is relocated
in an unknow location without any prior knowledge, the systems, before
the relocalization phase, needs a trigger mechanism to understand when the
robot is kidnapped. So, it is crucial to select a proper trigger mechanism
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to detect such events and initiate actions to perform the relocalization. As
discussed in the previous chapter, the kidnapped robot problem generally
occurs when the localization algorithm fails, so when the actual information
coming from sensors are not consistent with the map. In thesis, a Monte Carlo
localization algorithm is implemented. It is based on a particle filter where
each of the particles in the set is associated with a weight that represents
the discrete probability distribution of the robot’s pose. So, the distribution
of values of the particles’ weights can be used to detect the kidnapped robot
scenario. There are basically three main strategy to detect the kidnapped
robot problem through the analysis of the particles’ weights:

• Metric-based detector

• Measurement Entropy

• Max Current Weight

2.1 Metric-based Detector
In 2013, Campbell [7] proposed a set of four metrics to detect the kidnapping
event. It is based on the a deterministic scan matching algorithm called
Normal Distributions Transform (NDT) [5] introduced by Biber and Straßer
in 2003. Given two sequential point clouds P and Q, the matrix T P

Q calculated
by the NDT algorithm, represents the transformation of coordinates from
frame Q to frame P and the matrix UQ

P represents the same transformation
but calculated by odometry. Considering these quantities, the four metrics
are defined as follows:

1. Mean squared error (MSE) between the two point clouds defined as:

Qe

1
P, Q, T P

Q

2
= 1

n

nØ
i=1
||pi − qi||2 (3.4)

where pi and qi are the points of the two point clouds P and Q and n is
the number of overlapping points.

2. The likelihood that the NDT-transform point cloud Q is a match to the
point cloud P defined as:

Qs

1
P, Q, T P

Q

2
= 1

n

nØ
i=1

p̃
1
T P

Q bi

2
(3.5)

41



Methodology

where n is the number of point of bi in Q.

3. The standard deviation of the least known pose degree of freedom defined
as:

Qh

1
P, Q, T P

Q

2
=
ñ

maxv
i=1λi (3.6)

where λi are the eigenvalues of NDT optimization function

4. The mean squared error of pointclouds Q transformed by T P
Q and UQ

P

defined as:
Qh

1
Q, T P

Q , UQ
P

2
= 1

n

nØ
i=1
||pi − ri||2 (3.7)

2.2 Measurement Entropy
Under the Monte Carlo localization there are two type of measurement
entropy:

• The first one was defined by Choi in [38] in a topological map where
we can recognize landmarks at each node. He defined the measurement
entropy as:

Ht(p) = −
Ø
x

[y]
t

p
3

st, ot, zt|x[y],m
t

4
log p

3
st, ot, zt|x[y],m

t

4
(3.8)

where at each time step t, we have st,ot,zt that are the distance context
to objects observed, object observed and features extracted from from
them; x

[y]
t is the state of particle y and m is the map.

• The second one is similar to the previous one, but redefined in a more
simple way, calculating the sum of a particle’s weights entropy:

Ht(p) = −
Ø
x

[y]
t

ω
[y]
t log ω

[y]
t (3.9)

Kidnap detection based on measurement entropy can be defined as:

Kidnappedt =
1 Ht(p) ≥ π

0 Otherwise
(3.10)

where π is a proper threshold value.
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2.3 Max Current Weight
Like the measurement entropy, the max current weight is a detection strategy
used in Monte Carlo localization based systems. The samples are weighted
based on the likelihood of the robot’s pose given the sensor measurements
and the map. They reflects how closely the environmental reading provided
by each sample align with the actual reading of the robot; the higher is the
weight of a sample, the more likely is the robot to be in that pose. The max
current weight takes just the biggest value of the importance factors and
compared them with a proper threshold.

Kidnappedt =
1 max ω

[y]
t < γ

0 Otherwise
(3.11)

As we can notice from figure 3.4, the max current weight is a good strategy
to detect the kidnapped robot problem. When the robot is well localized the
normalized max current weight is generally close to 1 and when the robot
is kidnapped, since the particles are spread in the environment because the
localization algorithm is not able to find a good match between the actual
sensor readings and the map, the normalized max current weight is generally
close to 0. This strategy is really simple, effective and light in terms of
computational cost; therefore, it is the method used in this work to detect
the kidnapping event and also to understand when the robot converged to a
good pose after the relocalization phase.

3 Visual Place Recognition for Pose Estima-

tion

3.1 Overview of Visual Place Recognition
Computer vision is one of the field of artificial intelligence (AI) that is growing
faster in the last years. It is the field of study that deals with how computers
can gain high-level understanding from digital images or videos and has
various applications in robotics, autonomous vehicles, augmented reality,
and many others. Visual Place Recognition (VPR) is a subfield of computer
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Figure 3.4: Max Current Weight with normalized values

vision that deals the recognition of places based on visual cues extracted from
images. in the recent years, especially with the advent of machine learning,
VPR is becoming more and more popular, playing crucial role in the field of
robotics and autonomous vehicles. The main goal of VPR involve matching
visual features of one or of a set of multiple images through a similarity
metrics between them and a database of reference images. By leveraging
advancement in deep learning and convolutional neural networks (CNNs),
VPR has been improved in terms of accuracy and robustness, identifying
places across different conditions, such as weather, lighting and dynamic
changes. Therefore, it has great potential in robot relocalization in dynamic
environments. To find matches between images, we need to extract features
and calculate descriptors from them. A descriptor is typically represented
as a numerical vector that describes in a more compact way the visual
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information of an image. Descriptors are abstractions of images calculated
from raw pixel in order to be more robust against changes in viewpoint and
appereance. There are two types of descriptors:

• Local Descriptors: they are calculated from local patches of the image
and they are used to describe the local appearance of it. They encode
the patches with a set of feature vectores {dk|k = 1, ..., K}. They lead to
efficient comparison between query image and database images and are
generally invariant to scale and rotation. The main disadvantage consists
in the fact that they may lack contextual information about the overall
scene, leading to problem in place recognition in environments with
similar local features. Moreover, local descriptors can be sensitive to
noise, affecting reliability with varying lighting conditions and they can
be computationally expensive, especially in large-scale databases. The
most popular local descriptors are SIFT [20], SURF [4] and ORB [28]. In
most cases they are used in combination with local feature aggregation
methods like Bag of Words and Vector of Locally Aggregated Descriptors
(VLAD) [15].

• Global Descriptors: also called holistic descriptors. They represent an
image with just a single feature vector di ∈ Rk, where k is the dimension
of the feature vector. They are robust to dynamic changes to the scene
and the retrieval process is generally faster than local descriptors. The
main disadvantage is that they are sensitive to viewpoint changes. We
can calculate robust global descriptors through convolutional neural
networks (CNNs), like AlexNet [17], VGG [30], ResNet [14], etc...

3.2 Feature Extraction with Convolutional Neural Net-

work for Image Representation
In the context of computer vision, "features" are specific characteristics used
to identify patterns, objects or meaningful information. They can have
a physical meaning, like edges and corners, but also be characteristics on
pixel, intensities, statistical or characteristic based on machine learning.
For instance, the HOG algorithm [22] is a popular algorithm that extract
intensities information and it’s used for description of edges, corners and
shapes of object in an image. Another popular feature extraction algoritm is
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ORB [28], that has a more abstract representation of the image. With the
advent of deep learning, convolutional neural networks (CNNs) have become
increasingly important and relevant in the context of feature extraction due
to their complexity and robustness. CNNs are a type of neural networks
based on convolutional layer that extract robust and abstract information
from raw pixel of the image and dense layers of neurons used to classify the
image. In the context of visual place recognition, it’s extremely important
to used feature extraction algorithm that are robust to changes in viewpoint
and appearance, and CNNs are the best choice. In this work, a pre-trained
CNN model of ResNet-50 [14] is used, that is one of the most popular
convolutional neural network adopted for image representation. It has been

Figure 3.5: ResNet-50 architecture

tested in numerous computer vision context with great results because it is
able to extract discriminative and complex features. In the system, the usage
of global descriptors is preferred because they are more robust to dynamic
changes in the environment, occupies less memory and perform a faster image
retrieval. The main drawback is that, generally, global descriptors are less
robust in viewpoint changes; in order to deal with this problem, the robot
acquires images at a certain frequency while is rotating around his z-axis of
about 360°. This lead to a more robust representation and place recognition.

• Frequency of acquisition: the robot acquires query images at 2.5 Hz
leading to a total of 18 images for each rotation.

• Rotation velocity: the robot rotates at a velocity of 1.0 rad/s leading
to a total of 6 seconds for each rotation.

In order to obtain a global descriptor from the ResNet-50 model, it was
needed to crop the last layer of the model, also called classification layer,
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and pool with average the second to last layer which leads to a feature vector
with dimension of 2048. The same process is done for the database images.

3.3 Similarity Measurement for Pose Estimation
Once we have calculated global descriptors for query images, we can recognize
the place by evaluating similarity between queries and descriptors in the
database. There are basically two main similarity measurement:

• Euclidean Distance: given two feature vectors di and dj we can
calculate euclidean distance as:

dij = ||di − dj||2 (3.12)

The similarity is inversely proportional to the distance, so the smaller is
the distance, the more similar are the images.

sij = 1
dij

(3.13)

• Cosine Similarity: given two feature vectors di and dj we can define
cosine similarity as:

sij = dT
i · dj

||di||2||dj||2
(3.14)

The euclidean distance was actually used in the implemented system. For
each of the 18 query images, we calculate the similarity with each of the
database images and take the first N poses with the highest similarity. From
figure 3.6 we can notice a denser cluster of red dots around the actual pose
of the robot and some isolated points and small clusters as outliers that has
to be taken into account. The filtering phase will be discussed in the next
section.

4 Pose Filtering using DBSCAN
Since it is possible that the visual place recognition system can return some
outliers in the pose selection, it is extremely important to handle them in
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Figure 3.6: Dots represent the poses saved in the database; the red ones
are the selected based on similarity measurement

order to avoid wrong relocalization. In a large number of test, we could
notice that there is generally a larger group of poses around the actual one
and smaller one spread all over the map. Clustering techniques were taken
into account to face this problem. The most popular clustering algorithms
are K-means [19] and DBSCAN [11]. The main differences between the two
are:

• K-means: we have to specify a priori the number of clusters. Ob-
servations are assinged to the closest centroid and the centroids are
recalculated at each iteration, so it generates spherical clusters. The
drawback is that it cannot handle outliers since it assigns all the points
to a cluster.

• DBSCAN: it doesn’t need a priori number of clusters, so they will be
determined automatically by the algorithm. The shape of clusters are
not predefined and it can handle outliers.

For the type of problem to be addressed in the system, DBSCAN is
considered the best choice. The DBSCAN model is based on a simple
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minimum density level estimation, introducing two parameters: minPts and
eps. The eps represent the maximum distance between two point in the

Figure 3.7: Illustration of DBSCAN model [29]: red point are core points,
yellow ones are border points and blue ones are noise points

database to be considered neighbours; minPts is the minimum number of
points within the distance eps in order for a point to be considered a core
point. So it is important also to define the concept of core point, border
point and noise point:

• Core point: it is a point that within the distance eps has at least
minPts neighbours.

• Border point: it is a point that has less than minPts neighbours within
the distance eps, but it is reachable from a core point.

• Noise point: it is a point that is not reachable from any core point
and has less than minPts neighbours within the distance eps.
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Algorithm 6 DBSCAN algorithm [11][29]
Input: Database of poses D, distance threshold eps, minimum number of
points minPts
Output: Clusters of poses
C ← 0
for each point p in D do

if p is not visited then
mark p as visited
neighbours← getNeighbours(p, D, eps)
if size(neighbours) < minPts then

mark p as noise
else

C ← C + 1
expandCluster(p, neighbours, C, D, eps, minPts)

end if
end if

end for

Figure 3.8: Pose distribution analysis with DBSCAN

In figure 3.8 we can notice the difference with figure 3.6. All the isolated
points and small clusters has been filtered out. So, we can initialize the
position of the particles in the particle filter with the centroid of the cluster.
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5 Fusion in Particle Filter for Pose Correc-

tion
There are two types of relocalizations: coarse and fine relocalization. In
the coarse relocalization, a system estimates approximately the pose of the
robot as first step of the relocalization process. There are several type of
coarse relocalization algorithm: feature matching, visual place recognition,
trilateration (in context of wireless relocalization), etc. . . In the fine relo-
calization, the system has to refine the rough estimate calculated by the
coarse relocalization algorithm. Some of the most popular fine relocalization
algorithms are: particle filter, SLAM, bundle adjustment, etc. . . In the im-
plemented system, the coarse relocalization is performed by the visual place
recognition module, slightly refined by the DBSCAN clustering algorithm.
Anyway, it could not still estimate a precise pose of the robot. So a fine
relocalization method is required. Since the robot localize itself on a 2D
map through Monte Carlo localization algorithm, the particle filter method
has been chosen. Once the estimated pose is computed as the centroid of
the cluster, a set of particles is initialized around it with equal covariances.
As we can see in figure 3.9, the particle are spread around the estimated
pose in order to cover a small part of the map where the robot could be.
This method is used especially to correct the orientation of the robot, since
the VPR is able to estimate the position along X-Y coordinates, but not
the yaw angle. As already mentioned in previous chapter, the particle filter
needs to update the particles based on the sensor readings to refine a pose.
In figure 3.10 the set of particles has been updates based on the sensor
readings and the estimated pose has been corrected: as we can notice, the
radius of the particles has been reduced significantly and the 2D lidar point
cloud matches with the occupancy grid map. Since the values of weights of
particles represent the discrete probability distribution of the robot’s pose,
the Max Current Weight strategy can still be used to evaluate when the
robot is well relocalized.
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Figure 3.9: Rough estimated pose has been initialized as the centroid of
the cluster and a set of particles has been generated around it

Figure 3.10: Pose of the robot has been corrected through motion model
and sensor readings
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Figure 3.11: The robot has been considered relocalized when the max
current weight is close to 1
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Chapter 4

Software and Hardware

Tools

In this chapter the sotfware and hardware tools used to test and implement
this project will be discussed. The main software tools used are the Robot
Operating System 2 (ROS2) and Gazebo. All the software runs on a Linux
Ubuntu 22.04 LTS operating system. The system has been implemented on
a Turtlebot2 Kobuki mobile robot, equipped with a Rplidar and a Realsense
camera.

1 Robot Operating System 2
Programming a robot from scratch is a very complex assignment since it
involves many different aspects such as hardware, software, and communi-
cation; therefore, even a simple task could take a while to be developped.
Since ROS [27] was started in 2007, a lot has changed in the robotics and
ROS community. ROS is a middleware that implements services, tools
and libraries used to help software developers to create robotic applications
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that lies between hardware and real software. Robotic Operating System

Figure 4.1: Representation of layers from hardware to higher levels of
software [26]

2 (ROS2) is the second generation of ROS, it is a distributed framework
for robotics that is designed to be more secure, reliable, and more flexible
than its predecessor: it incorporates a fast data distribution service, meets
real-time constraints and can run on different operating systems, such as
Linux and Windows. Its main programming languages are C++ and Python.
A brief introduction is given on how ROS2 works.

1.1 ROS2 architecture

The ROS2 architecture can be represented with a graph: the ROS graph is
essentially a network of nodes and links through which nodes communicate.
The graph is mainly composed by the following blocks:

• Nodes

• Messages

• Topics

• Services

• Actions
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Nodes

Nodes represent the main building blocks of the ROS2 architecture. A node
is essentially a process that performs specific operations, such as receiving
data through messages and topics, publishing data, or providing services.
They can be written mainly in two main programming languages: Python
and C++. One or more nodes can be defined in a single executable. Nodes
can interact and communicate with each other through topics or through
services and actions.

Messages and Topics

Messages are simple data whose structure is defined in a file with the extension
.msg. They are exchanged between nodes via topics. A topic is a channel
through which nodes interface with each other in a uni-directional way;
publishers and subscribers to a topic can be defined in a node. A publisher
is a node that sends messages to a specific topic, while a subscriber is a node
that receives messages from a particular topic. Many nodes can subscribe to
the same topic and, each time a message is published, all subscribers will
run the relative callback function.

Figure 4.2: Representation of a publisher/subscriber communication itner-
face through topic [3]
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Services

Services are another type of communication system between nodes. They
are different from topics and messages because they are bi-directional; while
topics let a continuous flow of data from publisher to subscriber, services
are based on a call-response mechanism. Therefore, a node, called server,
provides data only when another node, called client, requests it. This type of
communication interfaces are defined in a file with the extension .srv, where
the first part is dedicated to the request and the second part to the response.

Figure 4.3: Representation of a client/server communication interface
through service [2]

Actions

Actions are the third type of communication system implemented in ROS2,
but they are intended to be used in long-running tasks. They are based
on client-server mechanism, like services, but they include a goal service
to which the client sends a request to the action server, which will execute
the task, a topic in which the server publishes data stream to the client as
feedback on the task, and a result service to which the server sends the result
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of the task to the client. Actions are defined in a file with the extension
.action, where the first part is dedicated to the goal, the second one to the
feedback, and the third one to the result.

Figure 4.4: Representation of a client/server communication interface
through action [1]

2 Gazebo
Since designing and testing a robot system directly on a physical platform
can be complex and dangerous, it is extremely important to have simula-
tion tools in order to perform tests in a virtual environment. Gazebo is
a popular simulation tool open source that allows you to simulate a 3D
environment with robots and sensors. It provides realistic simulations that
support advanced physical models and provides powerful API that allows
the programmer to extend and customize the simulator by implementing
new plug-ins to add custom sensors, robot models, and other features. It is
also widely used in the robotics community because it can be integrated with
ROS/ROS2 applications. The SDF and URDF languages are used to create
the simulation world model and the robot model, respectively. The URDF
(Unified Robot Description Format) is an XML format used to describe
the robot model properties, like links, joints and sensors, while the SDF
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(Simulation Description Format) is an XML format used to describe the
simulation world properties, like physical ones, lightings, etc. . .

Figure 4.5: Representation of a Gazebo simulation environment

3 Turtlebot2 Kobuki

The Turtlebot2 Kobuki is a mobile robot platform designed by a korean
company called Yujin Robotics. It has been developped for education and
research, especially for indoor environments, built with two motor-driven
wheels and a caster wheel to improve the stability. It has also a modular
design that leads to a wide range of sensors and actuators that can be added
to the robot, that let the user to customize the robot for various type of
applications. Another advantage of the Turtlebot2 Kobuki is that is fully
supported by ROS2, so it is possible to use it with the ROS2 ecosystem. For
this project, the robot is equipped with a Rplidar A1 used for the mapping
and the localization, a Realsense D435i camera used for the visual place
recognition
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Figure 4.6: Turtlebot2 Kobuki mobile robot used for tests

3.1 Rplidar A1
In order to perform the localization on 2D map, the robot is equipped with
a laser scanner device calles Lidar (Light Detection and Ranging), which
is a sensing technology that uses laser beams, generated by a laser emitter
that pulses at a high frequency, to measure the distance between the robot
and the surrounding objects. The 2D Lidar is composes of a mobile part
which rotates thanks to a motor, and a fixed part that contains the laser
emitter and the receiver. On the turtlebot2 kobuki is mounted a Rplidar
A1, a relatively low cost 2D lidar designed by Slamtec, that is also fully
supported by ROS2 ecosystem.
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Size 354 x 354 x 420 mm
Weight 6.3 kg
Max speed 0.65 m/s
Max rotational speed 180°/s
Max payload 5 kg
Battery 2200 mAh Li-Ion (4400 mAh Li-Ion extended)
IMU gyroscope, accelerometer, magnetometer
Odometry 52 ticks/enc rev

Table 4.1: Technical specifications Turtlebot2 Kobuki

Figure 4.7: Rplidar A1 used for mapping and localization

3.2 Realsense D435i camera

Intel Realsense D435i is a popular depth camera that provides RGB images
and depth data at the same time. The depth part consist of a Time-of-Flight
technology that measures the distance between the camera and the objects in
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Resolution distance output < 1%
Range 12 m
Scan rate 5.5 Hz
Angular resolution 1°

Table 4.2: Technical specifications of Rplidar A1

the scene based on the time it takes for an emitted infrared light to return to
the camera. The camera is also equipped with an IMU (Inertial Measurement
Unit) that provides data about the robot’s orientation and acceleration. Like
the Rplidar, the Realsense D435i is upported by ROS2 ecosystem. For the
purpose of this thesis, only the RGB module has been used to perform the
visual place recognition.

Max Frame Resolution 1920x1080
Frame Rate 30 fps
Field of View 64°x 41° x 77°
Resolution 2 MP

Table 4.3: Technical specifications of the RGB module of Intel Realsense
D435i
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Figure 4.8: Realsense D435i camera used for visual place recognition
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Experimental Work

In this chapter, the experimental work will be discussed in detail from a
software and a hardware point of view. The Turtlebot2 Kobuki platform has
been used as mobile platform. The overall system runs on a NUC computer
with 8GB RAM and an Intel(R) Core(TM) i5-7260U CPU @2.20 GHz with
architecture x86_64 64-bit. Two kind of test has been performed: one in the
PIC4SeR laboratory, aimed to test relocalization phase using Vicon motion
capture system as ground truth in static and dynamic scenario, while the
second one has been performed on a larger environment in order to test the
overall system even with the trigger mechanism. All tests were carried out
at PIC4SeR in indoor environment.

1 Tests on Relocalization Phase
As already discussed, the kidnapped robot problem is composed by two phase:
kidnap detection and the relocalization phase. The most important part of
the kidnapped robot is the relocalization phase, because it allows the robot
to recover its position on the map. The first type of tests were performed in
order to evaluate the relocalization phase in a static and dynamic scenario.
In static scenario, nothing has been changed between the mapping phase
and the tests, while the dynamic scenario has been emulated with some
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furniture that has been moved in other positions and with people walking
around the robot. These tests were performed to evaluate if the relocalization
pipeline was able to recover the robot position in a real scenario. The tests
were performed in the PIC4SeR laboratory, where the Vicon motion capture
system has been used as ground truth. The Vicon system is composed by 9
cameras distributed around the laboratory and it is able to track the position
of the robot with millimetric precision. The robot has been equipped with 4
markers, the small balls on the top that can be seen in figure 4.6, that are
coated with an highly reflective material that allows the cameras to track
them; the 4 markers has to be positioned on the robot asymmetrically in
order to be able to track also the orientation. First of all, an occupancy

Figure 5.1: Vicon cameras used for ground truth

grid map of the laboratory has been built with SLAM Toolbox and then 10
different points in the environment has been chosen to test the relocalization
pipeline. In parallel, the database for the VPR has been built. In these tests
the kidnap detection has been triggered manually through a service called
trigger_relocalization that can be called from the terminal with the command
ros2 service call /trigger_relocalization std_srvs/srv/SetBool "{data: true}".
The tests start with the service call, after which the robot starts to rotate to
acquire the query images, and finish when the Max Current Weight reaches
the threshold, set to 0.85. The distance error has been calculated as the

67



Experimental Work

Figure 5.2: Occupancy grid map of the laboratory with the 10 positions
where the relocalization tests have been performed

euclidean distance between the ground truth position of the Vicon and
the estimated position of the robot. In the following table, data from the
analysis of the tests is presented. As we can notice, the dynamic scenario has

Error Initial Pose Error Final Pose
Static Env. Dynamic Env. Static Env. Dynamic Env.

Success (%) 85.0 82.0
Mean (m) 0.666 0.734 0.340 0.328
Min (m) 0.087 0.218 0.095 0.095
Max (m) 1.810 1.806 0.744 0.690

Table 5.1: Results of the tests on relocalization phase in laboratory

just slightly higher error, that demonstrate the robustness of relocalization
pipeline to dynamic scenario and its ability to achieved good results in the
initialization of the pose with the VPR. The success rate has been calculated
as the percentage of the tests where the robot has reached good convergence.
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Figure 5.3: Distance error in position 1 in static and dynamic scenario

Figure 5.4: Distance error in position 2 in static and dynamic scenario

Figure 5.5: Distance error in position 3 in static and dynamic scenario
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Figure 5.6: Distance error in position 4 in static and dynamic scenario

Figure 5.7: Distance error in position 5 in static and dynamic scenario

Figure 5.8: Distance error in position 6 in static and dynamic scenario
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Figure 5.9: Distance error in position 7 in static and dynamic scenario

Figure 5.10: Distance error in position 8 in static and dynamic scenario

Figure 5.11: Distance error in position 9 in static and dynamic scenario
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Figure 5.12: Distance error in position 10 in static and dynamic scenario
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2 Tests on Overall System
Once the effectiveness of the relocalization phase has been tested in laboratory
with Vicon, the overall system, that include even the trigger mechanism,
has been tested in a larger environment. The tests has been carried out
at PIC4SeR, comprising laboratory, corridor and thesist room. Tests has
been performed simulating a navigation task, where the robot has to reach a
goal position following a path calculated by the planner; the kidnapping has
been triggered manually initializing a different position and orientation of
the robot. After manual triggering the kidnap event, the system should have
been able to detect it, recover the position and, after that, recalculate the
path to the goal position. Through ROS2 launch files, three main subsystems
are involved:

• Navigation Stack: the navigation stack has been launched thanks to
the Nav2 package. The navigation stack introduced the behaviour-tree
navigator, the planner and the controller. The planner is responsible
for calculating the path to be followed by the robot to reach the goal
position, based on the global and local costmaps. The controller is
responsible for following the path calculated by the planner; actually it
has been used the MPPI controller that is able to follow the path even in
presence of obstacles, while the behaviour-tree navigator is responsible
to manage specific complex robot behaviours.

• Localization: the localization subsystem launch the AMCL node that
is responsible to estimate the position of the robot on the map. In the file
of parameters, under the amcl namespace, the parameters for the AMCL
node are set: update_min_a and update_min_d, that are the minimum
angle and distance between two consecutive updates, are both set to
0.05 meters, in order have a faster resampling, hence a more accurate
localization, while recovery_alpha_fast and recovery_alpha_slow are set
to 0.0, leading to a number of particles generated equal to min_particles,
set to 1000.

• Kidnapped Robot System: this is the system introduced in this
project, which include the relocalization trigger mechanism and the
recovery pipeline, already described in detail in chapter 3.

The system has been tested through 60 experiments, 10 for each of the
6 different kidnapping positions spread in the mapped environment. The
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scenario can be considered as dynamic since there were people walking around
and some furniture has been moved. Every single experiments start with
the robot well localized in the map; firstly, it receives a goal in the map and
starts to follow the path calculated by the planner. After a while, between
the starting point and the goal, in the selected position, the kidnap event
has been manually triggered, forcing the robot to change its position and
orientation. The kidnapped robot system should then be able to detect the
kidnapping event, recover the pose and recalculate the path to the goal. The
experiment is considered successful if the robot reaches the goal position
within a maximum of two relocalization attempts. Since there is no ground
truth outside the laboratory, the implemented system has been compared
with a classical system based only on Monte carlo localization, where the
same trigger mechanism has been used, but, instead of reinitialize the set of
particles in a smaller part of the map, the particles are reinitialized on the
whole map. The results of the tests are reported in the following table 5.13.

Figure 5.13: Comparison between the implemented system and the monte
carlo ones for kidnapped robot

As we can notice, the implemented system has a higher success rate than
the one that depends only on lidar with only Monte Carlo localization.
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Figure 5.14: Example of an experiment where the robot has been kidnapped;
in A the robot is navigating to the goal, in B it has been manually kidnapped,
in C the position has been initialized and in D, after convergence, the robot
resumed navigating towards the goal
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Conclusions

In this thesis, a system able to solve the kidnapped robot problem has
been developped. The most used localization systems, especially in indoor
environment, are based on 2D lidar sensor, that let to localize the robot
in a occupancy grid map through Monte Carlo localization or lidar-based
SLAM algorithms. Since for kidnapped robot problem, this systems still
struggle a bit in dynamical and similar scenario, for this thesis a framework
based on 2D lidar and RGB camera has been developped. The system is
able to relocalize the robot in the map using only RGB images. It robustly
restrict the area of the map where to find the correct pose of the robot with
a fusion in the particle filter of Monte Carlo localization, correcting the pose
with 2D lidar and odometry sensors. The tests have been performed in a
real environment at PIC4SeR, at first evaluating the effectiveness of the
recovery phase in laboratory using the Vicon system as ground truth, and
then comparing results of the entire pipeline with a relocalization system
based only on Monte Carlo with just the 2D lidar. Also in this second
scenario, the implemented setup shows better performance. Obviously, the
system can still be improved; first of all, next step should be test it in a
large-scale environment; then it could be improved trying to find a solution
to add a visual part in the trigger mechanism, that is just lidar-based, and
also convert the 2D localization in a 3D localization to better adapt the
system in an outdoor scenario.

77





Bibliography

[1] Ros2 service concept, https://docs.ros.org/en/humble/tutorials/beginner-
cli-tools/understanding-ros2-actions/understanding-ros2-actions.html.

[2] Ros2 service concept, https://docs.ros.org/en/humble/tutorials/beginner-
cli-tools/understanding-ros2-services/understanding-ros2-
services.html.

[3] Ros2 topic concept, https://docs.ros.org/en/humble/tutorials/beginner-
cli-tools/understanding-ros2-topics/understanding-ros2-topics.html.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In Computer Vision–ECCV 2006: 9th European Confer-
ence on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings,
Part I 9, pages 404–417. Springer, 2006.

[5] Peter Biber and Wolfgang Straßer. The normal distributions trans-
form: A new approach to laser scan matching. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003)(Cat. No. 03CH37453), volume 3, pages 2743–2748. IEEE,
2003.

[6] Eloi Bosse, Jean Roy, and Dominic Grenier. Data fusion concepts
applied to a suite of dissimilar sensors. In Proceedings of 1996 Canadian
Conference on Electrical and Computer Engineering, volume 2, pages
692–695. IEEE, 1996.

[7] Dylan Campbell and Mark Whitty. Metric-based detection of robot
kidnapping. In 2013 European Conference on Mobile Robots, pages
192–197. IEEE, 2013.

[8] Belur V Dasarathy. Sensor fusion potential exploitation-innovative
architectures and illustrative applications. Proceedings of the IEEE,
85(1):24–38, 1997.

79



Bibliography

[9] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
Monte carlo localization for mobile robots. 2:1322–1328, 1999.

[10] Wilfried Elmenreich. An introduction to sensor fusion. Vienna Univer-
sity of Technology, Austria, 502:1–28, 2002.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. 96:226–231, 1996.

[12] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast
place recognition in image sequences. IEEE Transactions on Robotics,
28(5):1188–1197, 2012.

[13] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Bur-
gard. A tutorial on graph-based slam. IEEE Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

[15] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez.
Aggregating local descriptors into a compact image representation. In
2010 IEEE computer society conference on computer vision and pattern
recognition, pages 3304–3311. IEEE, 2010.

[16] S Karam, V Lehtola, and G Vosselman. Simple loop closing for con-
tinuous 6dof lidar&imu graph slam with planar features for indoor
environments. ISPRS journal of photogrammetry and remote sensing,
181:413–426, 2021.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25, 2012.

[18] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Ep n p: An
accurate o (n) solution to the p n p problem. International journal of
computer vision, 81:155–166, 2009.

[19] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[20] David G Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer
vision, volume 2, pages 1150–1157. Ieee, 1999.

[21] Steve Macenski and Ivona Jambrecic. Slam toolbox: Slam for the
dynamic world. Journal of Open Source Software, 6(61):2783, 2021.

[22] Robert K McConnell. Method of and apparatus for pattern recognition,

80



Bibliography

January 28 1986. US Patent 4,567,610.
[23] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos.

Orb-slam: a versatile and accurate monocular slam system. IEEE
transactions on robotics, 31(5):1147–1163, 2015.

[24] Antonio Pegorelli Neto and Flavio Tonidandel. Analysis of wifi local-
ization techniques for kidnapped robot problem. In 2022 IEEE Inter-
national Conference on Autonomous Robot Systems and Competitions
(ICARSC), pages 53–58. IEEE, 2022.

[25] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. Localization strate-
gies for autonomous mobile robots: A review. Journal of King Saud
University - Computer and Information Sciences, 34:6019–6039, 2022.

[26] Francisco Martín Rico. A Concise Introduction to Robot Programming
with ROS2. Springer International Publishing, Cham, 2023.

[27] Open Robotics. Ros - robot operating system, 2024.
[28] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:

An efficient alternative to sift or surf. In 2011 International conference
on computer vision, pages 2564–2571. Ieee, 2011.

[29] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and
Xiaowei Xu. Dbscan revisited, revisited: Why and how you should (still)
use dbscan. ACM Trans. Database Syst., 42(3), jul 2017.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[31] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents), chapter 8. The
MIT Press, 2005.

[32] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press,
2005.

[33] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents), chapter 1. The
MIT Press, 2005.

[34] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents), chapter 2. The
MIT Press, 2005.

[35] Sebastian Thrun, Dieter Fox, Wolfram Burgard, et al. Monte carlo
localization with mixture proposal distribution. 2000.

[36] Wikipedia. Gaussian distribution wikimedia common.

81



Bibliography

[37] Song Xu and Wusheng Chou. An improved indoor localization method
for mobile robot based on wifi fingerprint and amcl. In 2017 10th
International Symposium on Computational Intelligence and Design
(ISCID), volume 1, pages 324–329. IEEE, 2017.

[38] Chuho Yi and Byung-Uk Choi. Detection and recovery for kidnapped-
robot problem using measurement entropy. In International Conference
on Grid and Distributed Computing, pages 293–299. Springer, 2011.

82


	List of Figures
	List of Tables
	Introduction
	Robot Localization
	Introduction to Probabilistic Robotics
	Gaussian Filters
	Kalman Filter
	Extended Kalman Filter

	Particle Filter
	Mobile Robot Localization
	Monte Carlo Localization
	Simultaneous Localization and Mapping

	Sensor Fusion
	Motivation for Sensor Fusion
	Categories of Sensor Fusion

	State-of-the-Art of Kidnapped Robot Problem
	Lidar-based Relocalization
	Visual-based Relocalization
	Wireless-based Relocalization


	Methodology
	Mapping for Environment Representation
	Occupancy Grid Mapping
	Image Database for Visual Place Recognition

	Relocalization Trigger Mechanism
	Metric-based Detector
	Measurement Entropy
	Max Current Weight

	Visual Place Recognition for Pose Estimation
	Overview of Visual Place Recognition
	Feature Extraction with Convolutional Neural Network for Image Representation
	Similarity Measurement for Pose Estimation

	Pose Filtering using DBSCAN
	Fusion in Particle Filter for Pose Correction

	Software and Hardware Tools
	Robot Operating System 2
	ROS2 architecture

	Gazebo
	Turtlebot2 Kobuki
	Rplidar A1
	Realsense D435i camera


	Experimental Work
	Tests on Relocalization Phase
	Tests on Overall System

	Conclusions
	Bibliography

