
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

UNSUPERVISED MACHINE
LEARNING ALGORITHMS FOR EDGE

NOVELTY DETECTION

Supervisors

Prof. Marcello CHIABERGE

Dott. Umberto ALBERTIN

Dott. Gianluca DARA

Candidate

Ariel PRIARONE

April 2024

feature

algorithm

data
model

clustertraining

snapshot
Signal

Framework

point
dataset

system

number

instance

set ND

Test value

sensor

Fault

Bearing
time

Collection

New

Maintenance
metric

prediction
frequency

Approach
threshold

result
Novelty

function

one
case

mean

validation

first

different

two

Wavelet

structure

Based

Agent

performProblem

parameter

K-mean

RUL

event

train

detect
Example

IMS dataset

novelty detection

Clustering

implementation

centroid

user

Database

defined

proposed

novelty metric

MLA

even

healthyDBSCAN

known

Machine Learning

Machine

done

normal

score

sample

phase

tree

method

plot

previous

profile

possible
trained

see

Outlier

configuration

field

decision

considered

Another

unsupervised learning

state

vector

file

measure

FD

device

behaviour

Detection

Python

Condition

procedure

evaluation

transform

described

Application

solution

Large

silhouette

Common

distance

line

ML

Purpose

technique

faulty

extraction

degradation

classification

standard

output

end

Novel

better

Applied

class

space

GMM

sampling

axis

float

Computing

work

way

evaluate

fourier

called

cost

implemented

just

vibration

edge

Current

Software

Type

Linear

Decomposition

Equation

select

coefficient
unsupervised

Real

evolution
microcontroller

task

General

document

art

allow

positive
scaling

library

Learning

specific

FFT

LOF

radius

still

node

developed

core

Testing

define

Analysis

i

Acknowledgements

I would like to thank the PoliTO Interdepartmental Centre for Service Robotics
(PIC4Ser) for giving me the opportunity to work on this project. The guidance and
infrastructure provided by the centre have been invaluable during the development
of this work.

To my parents, who have given me everything.
Thank you for always making me believe that nothing is impossible.

Ai miei genitori, che mi hanno dato tutto.
Grazie per avermi sempre fatto credere che niente sia impossibile.

Ariel

ii

Abstract

Predictive Maintenance and Novelty Detection are important topics in modern
industrial engineering, aimed at proactively identifying equipment failures before
they affect system functionality. Embracing these practices is crucial for reducing
equipment downtime and optimizing maintenance efforts. Predictive Maintenance
aims to quantify and forecast the state of degradation of a system. A quite
novel frontier is the direct implementation of Predictive Maintenance within the
maintained device, using the principles of Edge Computing.

The fourth industrial revolution is characterized by the integration of Artificial
Intelligence and the Internet of Things paradigm into factories. Nowadays, more
than a decade since the beginning of this industrial revolution, the maintenance
approach remained unchanged in most industrial applications. The primary factor
impeding the advancement of the maintenance approach is the significant expense
associated with implementing Condition-Based or Predictive maintenance strategies,
coupled with a lack of knowledge about the modelling or behaviour of a failing
system.

In most facilities, maintenance continues to be performed according to a pre-
defined schedule. An optimization of this approach involves intervening in the
system only when necessary, which requires the knowledge of when a system is
malfunctioning. Fault Detection and Novelty Detection enable triggering an event
when a known fault occurs or when a new, unfamiliar behaviour emerges in the
maintained system.

In this thesis, a framework that performs Novelty Detection is proposed. The
structure of the framework is thought to be modular and general-purpose to ease the
implementation into different systems. It is developed following an Unsupervised
Machine Learning approach to overcome the common lack of physical models of
the maintained device. The Machine Learning core of the framework is based on
the features extracted from the data gathered from sensors. In the first phase, the
data are used to train the models. Then, the framework operates in real time,
continuously assessing the status of the system. This solution provides a novelty
metric that estimates how unfamiliar the current state of the system is and a
forecast of the future evolution of the system.

iii

Firstly, it has been developed to be executed and tested on a PC using various
Unsupervised Machine Learning algorithms. The algorithm that appeared to
better balance performance and hardware resource consumption was deployed on a
microcontroller. The proposed solution includes all the tools necessary in the data
pipeline. Relying on the general-purpose structure proposed, the framework can be
easily set up on a machine and extended to an arbitrary configuration of sensors
and features.

The PC implementation underwent testing using various Unsupervised algo-
rithms on publicly available datasets, while the edge implementation was tested
through laboratory experiments.

Both the tests on datasets and the experimental results showed that the proposed
framework is able to detect novelties and give an estimate of the future evolution
of the novelty metric of the system.

iv

Table of Contents

List of Tables ix

List of Figures x

Glossary xiv

Acronyms xviii

Symbols xxii

1 Introduction 1
1.1 Preface . 1
1.2 Motivation . 3
1.3 Objective of the thesis . 5
1.4 Notations . 6

2 State of the Art 8

3 Introduction to Novelty Detection 21

4 Machine Learning 23
4.1 Regression . 24

4.1.1 Least Squares . 24
4.1.2 Gradient Descent GD . 27
4.1.3 Stochastic Gradient Descent 28
4.1.4 Avoid overfitting . 29

4.2 Classification . 29
4.2.1 Support Vector Machines SVM 30
4.2.2 Decision Trees DT . 32
4.2.3 Random Forests RF . 35

v

5 Unsupervised Learning 37
5.1 K-means . 38

5.1.1 Training . 39
5.1.2 Variations of the K-means algorithm 41
5.1.3 Selecting the number of clusters 43
5.1.4 Assignation of the new instance to a cluster 45
5.1.5 Evaluation of a new instance 45
5.1.6 Metric for the new instance evaluation 46
5.1.7 Introducing a threshold for the metric evaluation 47
5.1.8 Transformation of the metric for the fault detection 48
5.1.9 Evaluation procedure . 50
5.1.10 Comment about selecting the wrong value of k 50
5.1.11 Limitations of the algorithm 51

5.2 DBSCAN . 52
5.2.1 Overview . 52
5.2.2 Choosing the parameters . 55
5.2.3 Evaluation of a new instance 56
5.2.4 Limitations of the algorithm 56

5.3 Gaussian Mixture Model . 57
5.3.1 Training . 57
5.3.2 Selecting the number of clusters 58
5.3.3 Evaluation of a new instance 59
5.3.4 Limitations of the algorithm 60

5.4 Isolation Forest . 60
5.4.1 Training . 61
5.4.2 Evaluation of a new instance 61
5.4.3 Limitations of Isolation Forest 62

5.5 Local Outlier Factor . 62
5.5.1 Training . 63
5.5.2 Evaluation of a new instance 63
5.5.3 Limitations of Local Outlier Factor 64

5.6 One-Class Support Vector Machine 64
5.6.1 Training . 64
5.6.2 Evaluation of a new instance 65
5.6.3 Limitations of ν-SVM . 65

6 Feature Extraction 66
6.1 Reference dataset . 66
6.2 Time-domain features . 68
6.3 Frequency-domain features . 69

6.3.1 Fourier Transform . 70

vi

6.3.2 Wavelet Packet Decomposition 76
6.4 Feature standardization . 79
6.5 Conclusions . 80

7 Proposed Framework 81
7.1 Commissioning . 82

7.1.1 Data structure . 82
7.1.2 Data acquisition . 83
7.1.3 Training . 83
7.1.4 Evaluation . 83
7.1.5 Model update . 84
7.1.6 Predictions . 84
7.1.7 Instance structure . 87

7.2 Database . 88
7.2.1 Collections . 88

7.3 Software Agents . 93
7.3.1 Field Agent . 93
7.3.2 Feature Agent (FA) . 95
7.3.3 Machine Learning Agent (MLA) 96
7.3.4 Configuration of the framework 99
7.3.5 Command Line Interface (CLI) 100

8 Embedded implementation 102
8.1 Hardware . 103
8.2 Software . 103

8.2.1 Sensor polling . 104
8.2.2 Feature extraction . 104
8.2.3 Evaluation . 105
8.2.4 Custom C functions . 105

9 Validation 106
9.1 IMS dataset No.1 - Bearing 3x sensor 106

9.1.1 Training - K-means . 107
9.1.2 ND Validation - K-means 109
9.1.3 Training - DBSCAN . 110
9.1.4 ND Validation - DBSCAN 111
9.1.5 Training - GMM . 111
9.1.6 ND Validation - GMM . 112
9.1.7 ND Validation - Bayesian GMM 113
9.1.8 ND Validation - ν-SVM . 114
9.1.9 ND Validation - iForest . 114

vii

9.1.10 ND Validation - LOF . 115
9.1.11 Comparison of the results 116
9.1.12 RUL Predictions validation - K-means 117
9.1.13 Retraining, evaluating and predicting after ND event 118
9.1.14 Train and validate considering all sensors 120

9.2 IMS dataset No.2 - Bearing 1 sensor 122
9.2.1 ND instance . 123
9.2.2 FD instance . 124

9.3 IMS dataset No.3 - Bearing 3 sensor 125
9.3.1 ND instance . 125
9.3.2 FD instance . 127

9.4 Experiments on a laboratory shaker - Test 1 127
9.4.1 Training and evaluating . 129
9.4.2 Results . 130

9.5 Experiments on a laboratory shaker - Test 2 131
9.5.1 Training and evaluating . 132
9.5.2 Results . 132
9.5.3 Possible improvements . 136

9.6 Experimental validation on a linear axis 137
9.6.1 Training . 138
9.6.2 Testing on a known profile 139
9.6.3 Feature scaling . 142
9.6.4 Testing the ND . 144

10 Conclusion and future work 147

A Fourier Transform 148
A.1 Continuous Fourier Transform . 148
A.2 Discrete Fourier Transform . 148
A.3 Fast Fourier Transform . 149

B Wavelets 150
B.1 Introduction . 150
B.2 Scaling and translation . 151
B.3 Wavelet Transform . 151
B.4 Wavelet Packet Decomposition . 152

Bibliography 156

viii

List of Tables

1.1 Symbols used in the flowcharts . 7

2.1 Advantages and disadvantages of RM and PM maintenance [25] . . 11
2.2 ML and DL algorithms used in PdM [34] 13
2.3 State of the Art techniques for ND [42] 16
2.4 Clustering algorithms comparison [45]. n = number of samples, k =

number of clusters, d = number of features. 19

6.1 IMS Test setup [65] . 68

7.1 Collections contained in the MongoDB database 88
7.2 Structure of the “raw” collection JSON configuration file. 89
7.3 Structure of the “unconsumed” collection JSON configuration file. . 90
7.4 Structure of the “healthy train” collection JSON configuration file. . 91
7.5 Structure of the “models” collection JSON configuration file. 93
7.6 FA class implemented methods . 95
7.7 MLA class implemented methods 96
7.8 Structure of the framework configuration file. 99
7.9 CLI implemented commands . 101

8.1 Hardware characteristics of STM32F767ZI board 103
8.2 Custom function implemented in C 105

9.1 Comparison of the results for the test n◦1 of IMS dataset. 116
9.2 Specifications of the ADXL335 Accelerometer 128
9.3 Harmonic coefficients for the shaker test. Wave 1 and Wave 2 are

training signals, and Harmonic Injection is the signal to be detected. 129
9.4 Parameters of the second shaker test. 132
9.5 Movement profiles of the linear axis 137
9.6 Tuned embedded models parameters 143
9.7 Movement profiles of the linear axis for Model 5 validation 146

ix

List of Figures

1.1 Evolution of machinery . 3
1.2 Maintenance triangle . 4

2.1 Industrial revolutions . 8
2.2 Standard terminology for industrial maintenance [23] 9
2.3 Downtime comparison (RM and PM) 10
2.4 Typical bearing fault signals [39] . 15
2.5 Preprocessing schematic and spectrum of a bearing fault signal [41] 15
2.6 Types of patterns [43] . 17
2.7 Results provided by [44] for the test n◦1 of IMS dataset. 19

3.1 General working principle of Novelty Detection 21

4.1 Least square regression example . 26
4.2 Gradient Descent comparison . 28
4.3 Overfitting example [7, p. 162] . 29
4.4 Linear SVM example [7, p. 176] . 30
4.5 Kernel Trick example [7, p. 180] . 32
4.6 Decision Tree structure . 33
4.7 Decision Tree overfitting example [7, p. 203] 35
4.8 Random Forest example [7, p. 218] 36

5.1 K-means algorithm in the 2-dimensional space 40
5.2 Metrics for selecting the number of clusters 44
5.3 Cluster model in the 3-dimensional space, with new snapshot Sn . . 45
5.4 Logarithmic Transformation applied to the metric in case the model

is working in fault detection mode 49
5.5 Novelty detection of a new Sj with different values of k 51
5.6 DBSCAN clustering . 52
5.7 Example of core and border points 53
5.8 Silhouette score for different values of ε 55
5.9 Gaussian distribution probability density function 57

x

5.10 Criteria for selecting the number of clusters 58
5.11 Trained Gaussian Mixture Model 59
5.12 Isolation Forest decision function. 61
5.13 Local Outlier Factor decision function. 63
5.14 One-Class Support Vector Machine decision function. 64

6.1 The test rig used by [65] . 67
6.2 “Bearing 3 x” vibration signal from the IMS dataset 67
6.3 All time-domain features for the “Bearing 3 x” vibration signal from

the IMS dataset . 70
6.4 FFT of the signal with known frequency components 72
6.5 FFT of the signal with known frequency components, and an additive

disturbance . 72
6.6 FFT of the signal with known frequency components, with a domain

that is not an integer multiple of the period 73
6.7 Hann and Hamming windows . 73
6.8 FFT of the signal with a domain that is an integer multiple of the

period, and preprocessing techniques applied 74
6.9 FFT of the signal with a domain that is not an integer multiple of

the period, and preprocessing techniques applied 75
6.10 FFT of the “Bearing 3 x” vibration signal from the IMS dataset, in

normal conditions, with preprocessing techniques applied 75
6.11 FFT of the “Bearing 3 x” vibration signal from the IMS dataset, in

normal conditions with Hann window preprocessing applied 76
6.12 Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal

from the IMS dataset, in normal conditions 77
6.13 Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal

from the IMS dataset, in abnormal conditions 78
6.14 Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal

from the IMS dataset, for all the snapshots 78
6.15 Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal

from the IMS dataset, for all the snapshots after the standardization 79

7.1 A 5-axis CNC milling machine. [69] 82
7.2 Novelty metric data to fit with an exponential curve. 85
7.3 Fitted curve for RUL prediction. The scipy library fit fails to esti-

mate the parameter c. The closed-form solution actually minimizes
the error. 87

7.4 The structure of the instances of the framework. 87
7.5 Framework logical structure . 94
7.6 Field Agent flowchart . 94

xi

7.7 Feature Agent flowchart . 95
7.8 Machine Learning Agent flowchart. When it is instanced for ND,

the MLA uses the healthy collection as a training dataset, when it
is instanced for FD it uses the faulty collection. 98

7.9 Command Line Interface help message 101

8.1 Embedded system overview . 102

9.1 Heatmap of the standardized features value for the test n◦1 of IMS
dataset . 107

9.2 Silhouette score for clustering the test n◦1 of IMS dataset (K-means)108
9.3 Inertia score for clustering the test n◦1 of IMS dataset (K-means) . 108
9.4 Scatterplot of training snapshot for the test n◦1 of IMS dataset . . 109
9.5 Results of ND for the test n◦1 of IMS dataset (K-means) 110
9.6 Results of ND for the test n◦1 of IMS dataset (K-means) - detailed

view . 110
9.7 Silhouette score for clustering the test n◦1 of IMS dataset (DBSCAN)111
9.8 Results of ND for the test n◦1 of IMS dataset (DBSCAN) 112
9.9 BIC and AIC for clustering the test n◦1 of IMS dataset (GMM) . . 112
9.10 Results of ND for the test n◦1 of IMS dataset (GMM) 113
9.11 Results of ND for the test n◦1 of IMS dataset (BGMM) 113
9.12 Results of ND for the test n◦1 of IMS dataset (ν-SVM) 114
9.13 Results of ND for the test n◦1 of IMS dataset (iForest) 115
9.14 Results of ND for the test n◦1 of IMS dataset (LOF) 115
9.15 RUL prediction at different instants after the ND event (dashed lines

are the instants of the predictions corresponding to the same-colour
solid line prediction) . 118

9.16 Failed RUL prediction. 118
9.17 Results of ND for the test n◦1 of IMS dataset (K-means) - retrained

model . 119
9.18 RUL prediction at different instants after the ND event with the

retrained model (dashed lines are the instants of the predictions
corresponding to the same-colour solid line prediction) 120

9.19 Scatterplot of all the snapshot for the test n◦1 of IMS dataset . . . 120
9.20 Novelty detection on the IMS dataset No.1 using all the sensors . . 121
9.21 Maximum value of RMS vibration among all bearings 122
9.22 RUL prediction at different instants after the ND event (dashed lines

are the instants of the predictions corresponding to the same-colour
solid line prediction) . 122

9.23 Novelty detection on the IMS dataset No.2 using the sensor of Bearing 1123

xii

9.24 RUL prediction at different instants after the ND event (dashed lines
are the instants of the predictions corresponding to the same-colour
solid line prediction) . 124

9.25 Fault detection on the IMS dataset No.2 using the sensor of Bearing 1125
9.26 Novelty detection on the IMS dataset No.3 using the sensor of

Bearing 3, and the previous model trained on the dataset No.2 . . . 126
9.27 Novelty detection on the IMS dataset No.3 using the sensor of

Bearing 3, and the previous model updated 126
9.28 RUL prediction at different instants after the ND event (dashed lines

are the instants of the predictions corresponding to the same-colour
solid line prediction) . 127

9.29 Fault detection on the IMS dataset No.3 using the sensor of Bearing 3128
9.30 Setup of the shaker tests. 129
9.31 Waveform comparison of the shaker test. 130
9.32 Novelty detection result . 131
9.33 Spectrum of the waveforms. 131
9.34 Novelty detection result . 133
9.35 False Negative and True Positive results. On the diagonal, there

is a histogram of the feature values. The off-diagonal plots are the
scatter plots of the features. The shades are the projection of the
clusters on the considered plane. (Red: False Negative, Magenta:
True Positive, Black: training data) 135

9.36 LOF novelty detection result . 136
9.37 Position reference for the linear axis test 137
9.38 Timeseries of the training set . 138
9.39 features of the training set . 139
9.40 Visualization of the separation between profiles in the feature space 139
9.41 Novelty detection on profile 2. 141
9.42 Feature scaling procedure. 142
9.43 Feature weights obtained with the RF and SelectKBest algorithms . 144
9.44 Novelty detection on known and unknown profiles 145
9.45 Novelty detection on known and unknown profiles 146

B.1 Real and imaginary part of the Morlet wavelet 151
B.2 Effect of scaling and translation on the Morlet wavelet 152
B.3 Wavelet Packet Decomposition tree 153
B.4 Wavelet Packet Decomposition of a signal using a tree of depth 2 to

get 4 sub-bands . 154

xiii

Glossary

sklearn Scikit-learn is a free Python-based machine learning library. It is com-
monly used for classification, regression, and clustering tasks. It implements
algorithms such as support vector machines, gaussian mixtures, random forests,
k-means, DBSCAN and many others. The library integrates with most of
Python’s numerical libraries. 34, 55, 59, 61, 63, 64

agent a computer application that performs tasks continuously and autonomously.
For example, a softeare agent may serve the purpose of continuously checking
for duplicate files in a certain directory and removing the duplicates. This
simple example is non-exhaustive as the tasks performed by agents may be
complex. [1] 12, 17, 83, 93, 94, 96, 99–101, 105, 108, 134

centroid The center of a cluster. It’s the point that minimizes the sum of the
distances between itself and all the points in the cluster. From a physical
point of view, it’s the center of mass of the cluster, if all the points of the
cluster are treated as equal point masses. 22, 38–43, 45, 46, 48, 56

cluster In a set of data points, a cluster is a subset of the former that are more
similar to each other than to the rest of the data points. This is a broad
definition that leaves to the algorithm applied to perform the clustering the
freedom to define what “similar” means. vi, ix–xiii, 6, 16, 18–20, 22, 24, 37–48,
50–60, 62, 80, 93, 96, 97, 100, 105, 106, 108, 110–112, 119, 123–125, 127, 130,
132–136, 138, 143, 147

commissioning to put a new system into working conditions. 82, 83

Condition Based Maintenance A branch of Preventive Maintenance based on
a scheduled or cyclic check of the characteristics and parameters of the main-
tained system, inspections and testing. [2] 9

Corrective Maintenance Maintenance performed to restore the conditions of a
system, after that a fault compromised its working capability. [2] 10

xiv

Deep Learning A brunch of Artificial Intelligence based on Neural Networks
specialized for unstructured data. Common inputs are texts, images, videos
and audio. [3] xix, 12

edge computing Among the computing paradigms, edge is referred to using the
data directly in the device that generated it. This avoids the transmission of
large volumes of data and improves the real time response to inputs. [4] 3, 5,
76, 81, 94, 106, 127, 128, 136, 147

feature a feature is a single measurable property of an object. In the context of
machine learning, a feature is the result of the elaboration of input data into
a new atomic quantity that describes a characteristic of the original data. iii,
iv, vi, ix, xi–xiii, 5, 12–14, 18–20, 23–25, 27, 29, 30, 32–35, 38, 39, 41, 45, 47,
57, 60, 62, 66, 68–70, 76–84, 89–93, 95–97, 99–101, 103–109, 119, 121, 127,
129, 132, 133, 135, 138–140, 142–145

Feature Agent a software agent that extracts the features from the data polled
by the Field Agent and stores them in a database in a suitable formatted way.
xii, xix, 83, 95, 101

Field Agent a software agent that polls the data from the field and stores them
in a database in a suitable formatted way. xi, xv, xix, 83, 93, 94

framework a framework is a structure intended to guide the development and
expansion of a system. [5]. In software development, a framework is a set of
functions, classes and practices that can be recalled to develop a solution to a
problem. iii, iv, vii, ix, xi, 5, 6, 15, 17, 18, 42, 47, 66, 68, 69, 76–78, 80–84,
86–89, 91, 93, 99, 100, 102, 106, 109, 117, 120, 122, 125, 127, 129–131, 136,
137, 142, 144, 147

heuristic is the adjective defining a procedure that has not been proven to provide
the correct solution, but that is used because of the belief that the result is
useful. Heuristics are implemented into systems in the expectation that some
metric would be improved. [6] 39, 41, 63

hyperparameter An hyperparameter is an input of a Machine Learning algorithm
that influences the model generated by the algorithm during the training. It is
a parameter because it is supposed to be set before the training and remaining
constant afterwards. [7, p. 30] 34, 35, 96

JavaScript Object Notation JSON is an open-standard format that uses nested
attribute-value pairs and array structure. It is based on plain text and the
formatting makes it easily readable by humans [8]. xviii, xx

xv

Lead Time The interval between the detection of a novelty, and a malfunction
happening. 116

likelihood function The likelihood function quantifies the probability that the
observed data would be generated by a specific parametric model. In other
words, it is the probability of the observed data given the model parameters,
and it is used to measure how well the already given parameters describe the
experimental data. 58

linearly separable Consider two sets of points in an n-dimensional space. The
data are called linearly separable if there is an (n− 1)-dimensional hyperplane
such that for every couple of points belonging to different sets, the straight
segment that connects them, intersects the hyperplane. In other words, a
hyperplane that separates the sets exists. [9] 30–32, 55

Machine Learning Agent software agent that trains the models, evaluates the
metrics on new data, and makes predictions about the future evolution of the
metrics. It also interfaces itself with the operator. xii, xx, 83, 98, 101

MongoDB a source-available, cross-platform, document-oriented database pro-
gram. ix, 88, 89, 99, 101, 102

NoSQL A database management technique that structures the data in a form
different from tables, such as key-value pairs, arrays and documents. The
peculiar benefits of this practice are enhanced flexibility and scalability. [10]
88

On Line Maintenance A maintenance action performed during the normal op-
eration of the device without effect on performances. [2] 9

On Site Maintenance A maintenance action performed without relocating the
device into a different location. [2] 9

Pickle format A Python module that enables the conversion of an object into a
byte stream. This process (Pickling) is also called serialization. The inverse
operation is also available in this module and it reconstructs the original
object from a byte stream. This is used to save an object (and its current
configuration) into a file and retrieve it when necessary. [11] 92, 93, 97

polling to cyclically collect data from a device. vii, 6, 103, 104

Predictive Maintenance is a Condition-based maintenance technique that aims
to forecast the degradation evolution of the maintained system. It can either
exploit known models or be based on repeated analysis of the device. [2] iii, 9

xvi

Preventive Maintenance A broad classification of maintenance tech that in-
cludes all the cases in which the maintenance action is performed before a
malfunction degrades the system functionality. It aims to reduce the probabil-
ity of malfunctions and failures. [2] 10

python Python is a high-level programming language. It is interpreted, so it is
executed line-by-line without a previous conversion in machine code. The
dynamic semantics make this language suitable for rapid development of
prototype application. It is also popular for writing data processing scripts.
It is a mainstream language for machine learning and data science application.
[12] 5, 6, 70, 81, 86, 88, 93–95, 100, 102, 103, 105, 106, 136

Remaining Useful Life The remaining time before the degradation of a system
becomes unacceptable according to a certain criterion. [13] xxi, 17

snapshot an array of features that describe the state of a system in a specific
time period. It’s filled with any metric (time domain, frequency domain, etc.)
x–xii, 38–48, 50, 51, 56, 63, 69, 76, 78, 79, 84, 88–92, 95–97, 101, 105–109, 112,
114, 115, 117–121, 123–126, 132, 138, 142, 144, 146

standardized a signal that has been translated and scaled in order to have a zero
mean and unit variance. It is commonly used in machine learning to ease the
convergence of the algorithms. xii, 52, 83, 104, 105, 107, 144

Traditional ML Any machine learning technique that is not based on neural
networks. 12

xvii

Acronyms

ν-SVM One Class SVM vi, vii, xii, 65, 83, 114, 116

k-NN k-Nearest Neighbors 12, 13

a.k.a. Also Known As 10, 46

ADC Analog to Digital Converter 93, 103

AE Autoencoder 12, 13

AIC Akaike Information Criterion xii, 58, 111, 112

ANN Artificial Neural Network 12, 13

ANOVA Analysis of Variance 143

ART Adaptive Resonance Theory 12, 13

BGMM Bayesan Gaussian Mixture Model xii, 59, 113, 116

BIC Bayesian Information Criterion xii, 58, 111, 112

BPFI Ballpass frequency, inner race 14, 15

BPFO Ballpass frequency, outer race 14

BSF Ball (roller) spin frequency 14

BSON Binary JavaScript Object Notation 88

CART Classification and Regression Tree 33, 34

CBM Condition Based Maintenance 2, 3, 5, 11, 84

CEP Cepstral Editing Procedure 15

CFT Continuous Fourier Transform 148

xviii

CLI Command Line Interface vii, ix, 100, 101, 107, 147

CNC Computer Numerical Control xi, 81, 82

CNN Convolutional Neural Network 12, 13

CSV Comma Separated Values 95

DBN Deep Belief Network 12, 14

DBSCAN Density-Based Spatial Clustering of Applications with Noise vi, vii, x,
xii, 5, 6, 19, 22, 38, 52–56, 60, 61, 64, 83, 110–112, 114, 116, 136

DFT Discrete Fourier Transform 70, 71, 148, 149

DL Deep Learning ix, 12–14

DLR Deep Reinforcement Learning 12, 14

DMA Direct Memory Access 104

DT Decision Tree v, 12, 13, 18, 32, 34, 35

EM Expetaion Maximization 20, 57, 58

FA Feature Agent vii, ix, 83, 95, 109

FD Fault Detection viii, xii, 2, 5, 14, 17, 18, 21, 22, 87, 91, 92, 96, 98, 118, 122,
124, 127

FFT Fast Fourier Transform xi, 70–78, 149, 150

FiA Field Agent 83, 93, 95, 107, 109

FTF Fundamental train frequency (cage speed) 14

GAN Generative Adversarial Network 12, 14

GD Gradient Descent v, 27–29

GMM Gaussian Mixture Model vii, xii, 38, 59–61, 64, 65, 83, 111–114, 116

GPIO General Purpose Input Output 103, 104

GUI Graphical User Interface 147

HAL Hardware Abstraction Library 104

xix

i.e. “id est” (that is) 83, 150

IDE Integrated Development Environment 104

iForest Isolation Forest vii, xii, 38, 63, 83, 114–116, 136

IMS Center for Intelligent Maintenance Systems vii–xiii, 19, 66–70, 74–79, 106–116,
119–123, 125–128

IOT Internet Of Things 8, 77

ISO International Organization for Standardization 6, 89–91, 93

JSON JavaScript Object Notation ix, 88–91, 93

LCM Least Common Multiple 71

LCSR Loop CurrentStep Response 11

LOF Local Outlier Factor viii, xii, xiii, 38, 62, 63, 83, 115, 116, 136

LR Linear Regressor 18

LS Least Squares 25, 26, 86, 117

ML Machine Learining ix, xvii, 12–14, 18, 21–23, 29, 33, 77, 79, 81–84, 93, 96,
116, 121, 142, 145, 153

MLA Machine Learning Agent vii, ix, xii, 83, 84, 96, 98, 106–109, 117–125, 127,
142, 143

MLP Multilayered Perceptront 12

MSE Mean Squared Error 34

NASA National Aeronautics and Space Administration (USA) 66

ND Novelty Detection vii–ix, xii, xiii, 2, 5, 16–18, 21, 22, 66, 76, 81, 83, 87–89, 91,
96, 98, 106, 109–127, 132, 133, 136, 139, 144, 146

OS Operating System 12

PC Personal Computer iv, 5, 81, 102, 103, 127, 129, 130, 138

PDF Probability Density Function 57, 59, 60

xx

PdM Predictive Maintenance ix, 2, 3, 5, 10, 12–14, 17, 84

PF Particle Filter 12, 13

PM Proactive Maintenance ix, x, 2, 10, 11

POF Pareto Optimal Front 43, 108

PvM Preventive Maintenance 1

PW Pre-Whitening 15

RF Random Forest v, xiii, 18, 35, 143, 144

RM Reactive Maintenance ix, x, 1, 10, 11

RMS Root Mean Squared xii, 68, 99, 121, 122, 129

RMSE Root Mean Squared Error 29

RNN Recurrent Neural Network 12, 13

RTD resistance temperature detector 11

RUL Remaining Useful Life viii, xi–xiii, 12–14, 17, 18, 82, 84, 87, 100, 117–124,
126, 127

SGD Stochastic Gradient Descent 28

SOM Self-Organizing Map 12, 13, 20

SVM Support Vector Machine v, x, xviii, 12, 13, 30–32, 38, 64

TL Transfer Learning 12

TN Transfer Learning 14

UML Unsupervised Machine Learining 2, 5, 37, 83, 89, 92, 100

USA United States of America xx, 3

w.r.t. With Respect To 8, 10, 17, 22, 48, 57, 68, 83, 86, 132, 138, 140

WPD Wavelet Packet Decomposition 77, 78, 150, 152, 153

WT Wavelet Transform 150, 151

xxi

Symbols

c Centroid Point in the features space that represents a cluster. Ideally it is the
center of mass of the cluster it represents. xxii, 38–40, 42, 43, 45, 46, 50

C Cluster A set of objects that are more similar to each other than to those in
other clusters. 38–40, 43, 46, 47

d Distance Vector difference between two points in the features space. 45–48, 50,
54

E Expected value the arithmetic mean of the possible values a random variable
can take, weighted by the probability of those outcomes 69

F Feature number The number of features that describe the state of a system.
57

r Radius Euclidean distance between the centroid c of a cluster and its farthest
point. 46–48, 50

S Snapshot A set of features that describe the state of a system at a given time.
x, xxii, 38–40, 42, 43, 45, 46, 48, 50, 51, 56, 62, 107

S Snapshots Set A set of snapshots S. 38, 40, 42, 107

xxii

Chapter 1

Introduction

1.1 Preface

Imagine being the owner of a piece of technology. It can be any physical device.
Without maintenance, it is unavoidable that, after a certain amount of time of
usage it will have some sort of malfunction. To overcome this problem, usually,
maintenance work is planned and performed by a team of skilled technicians.

The simplest way of executing maintenance is to fix the device when it breaks.
This is called reactive maintenance (RM). This has been done since forever, and it
is still a very popular approach today, but it has numerous drawbacks, including
extended downtime for repairs and logistical challenges associated with spare parts.

The other family of maintenance techniques is called preventive (or proactive)
maintenance (PvM). All those techniques share the property of being applied before
the device shows a malfunction. This is a very broad category, and it includes a
lot of different techniques, most of which will be described in chapter 2.

Back to the example, the owner of the device may want to avoid fixing it when it
has already failed as much as possible, so the first improvement could be to perform
maintenance periodically (on a schedule). This is called predetermined maintenance,
and it is the simplest approach to PvM. It’s basically the same approach that every
motorist uses to minimize the risk of the vehicle breaking down in the middle of the
road. The owner may want to take the technique a step further and seek some sort
of guidance on deciding when to perform maintenance. A very intuitive approach
is to simply ask the skilled technicians to inspect all the devices very often to try
to understand if something is wrong without interfering with the normal operation
of the device.

If a technician has enough experience, he may be able to detect the vast majority
of the problems before they become critical. He may do that simply using his
senses, for example by listening to the sound of the device, or by touching it to feel

1

Introduction

how much it vibrates, how hot is it and so on.
This naive approach can be enhanced by using a large number of sensors to

monitor the most critical parameters of the device. In this case, the technician will
train himself more on the data of the sensors, rather than on inspecting the device
directly.

At this point, the next logical step would be to use the data from the sensor to
train an algorithm, that will detect some patterns in the data that are not easily
detectable by a human. This is called condition-based maintenance (CBM). This is
the most common approach to PM today. If this algorithm is trained only on the
data taken when the device is working properly, it would only be able to detect a
novel behaviour, this is called novelty detection (ND). If the algorithm is trained
on both the data taken when the device is working properly and the data taken
when the device is malfunctioning in a specific way, it would be also able to detect
the specific malfunction, this is called fault detection (FD).

One last improvement to the CBM approach is to use an algorithm that will
also try to predict how much time is left before a critical malfunction will occur.
This approach is referred to as predictive maintenance (PdM). This is the most
advanced approach to PM today.

Both CBM and PdM could be done by using a model of the system that will
predict the future behaviour based on the current state of the system. The problem
with this approach is that it is very difficult to build a model that is accurate
enough to be useful. Most of the time, in industrial applications, such a model
is not available. A workaround to this problem is to apply an Unsupervised
Machine Learning (UML) algorithm to the sensor data. This has the advantage
of not needing a model of the system, but it has the drawback of being a black-
box approach, so the parameters of the algorithm are not easily interpretable
in a physical sense. Furthermore, the algorithm will be fairly good at detecting
anomalies, but it will have some limitations in predicting the future behaviour of
the system since it will likely be based on a forecast done interpolating the data of
the past.

To visualize this evolution of maintenance approaches, let’s have a look at
figure 1.1a. This is a purely mechanical device, so the only way to detect a
malfunction before it causes a failure is by trusting the “gut feeling” of the operator.
Moving on, the device in figure 1.1b is also a steam engine, but it is equipped
with some analogue gauges. In this case, it is possible to define some thresholds for
the readings that are indicative of a malfunction and look at the time evolution of
the values. The measure of the sensor is immediately displayed to the operator.
Moving into nowadays, the device in figure 1.1c is a state of the Art control
room. The data from the sensors are elaborated by a computer and displayed to
the operator on screens. This allows the computer to run algorithms on the sensor

2

Introduction

data.

(a) early steam engine [14] (b) steam engine [15] (c) control room [16]

Figure 1.1: Evolution of machinery

The last comment is about where to run the algorithm. The most common
approach is to run it on a server, that is not part of the device itself. This has the
advantage of not having constraints on how much computational power is needed,
because it’s usually feasible to add more computational power to a computer that
is not located on the device itself. The main drawback is that the data has to be
transmitted to the server. This may not be feasible in some cases, for example for
a mobile device, or for a device that is located in a remote area with no internet
connection. In this case, the algorithm has to be run near the device itself, usually
on a microcontroller that will perform an action when the algorithm detects a
malfunction. This approach is called edge computing. Using a microcontroller also
has the advantage of requiring very little power, which is critical for battery-powered
devices.

Code availability All the code developed in this thesis is available at https:
//github.com/arielpriarone/Thesis.git.

1.2 Motivation
Take, for example, a survey published by the U.S. Department of Commerce in
2020, the maintenance expenditure of the manufacturing industry in the USA was
$57.3 billion, while the losses due to preventable maintenance issues amounted to
$119.1 billion. The top 25% of those establishments relying on reactive maintenance
were associated with 3.3 times more downtime than those in the bottom 25% [17].
This means that the economic impact of failures exceeds the cost of maintenance by
a factor of 2.1, and this is concentrated in those sectors that rely more on reactive
maintenance. The aforementioned emphasizes the importance of developing a
general purpose PdM system that can be applied in a large variety of systems.

In the article [18], the authors divide the CBM strategies in five categories:

3

https://github.com/arielpriarone/Thesis.git
https://github.com/arielpriarone/Thesis.git

Introduction

Knowledge

Data Physics
of failure

Experience
based

Stressor
based

Reliability
statistics

Degradation
based

Model Based
on data

Model Based
Physical

Figure 1.2: Maintenance triangle

• experience based predictions are based on the experience and knowledge outside
or within the company. It is based on little scattered data on average conditions.
The only requirement is that the experience of the experts is quantified and
used;

• reliability statistics predictions are based on the statistical analysis of the
failure data without considering the specific system. These methods also
estimate the life of an average component operating under historically average
conditions;

• stressor based predictions can be considered an extension of the reliability
statistics methods. The difference is that they also consider a measure of the
stress (humidity, temperature, etc.) that the component is exposed to;

• degradation based predictions are based on the extrapolation of the degradation
of the component;

• model based predictions are based on the knowledge of the physics of the
system. The assumption is that the degradation can be computed instead of
measured. They can be based on a physical model or a data-driven model.

The authors of [18] also propose a distribution of these categories in a triangle,
as shown in figure 1.2. Each vertex represents a requisite for the implementation,

4

Introduction

and the distance of the method to the vertex represents how dependent it is on
that requisite. To obtain a general purpose PdM framework, the degradation based
approach seems the most promising, since it is the least dependent on a specific
requisite.

Moreover, to enhance even more the general purpose nature of the framework,
a UML model can be chosen. This choice confines the complexity of the work in
the development of the framework itself, speeding up the implementation of the
framework on a machine about which little is known, plus, it can be implemented
on a new machine without a deep knowledge of the UML algorithms themself.

In the paper [19], it is pointed out that edge computing implementations, not
only enable the use of the framework for special applications but also enhance
the cybersecurity of facilities that may not need an edge implementation due to
technical limitations.

1.3 Objective of the thesis
The goal of this thesis is to design, code and test a degradation based CBM framework
that will perform ND, FD and PdM, using one or several UML algorithms. This
framework is thought to be general purpose, needing just to receive time-series
data from sensors, and to be set in training or evaluation mode. This system will
be implemented twice:

• coding in python and running it on a PC;

• coding in C and running it on a microcontroller.

The development of the framework will be done modular and configurable, so
that it will be easily adaptable to different use cases. Things like the number of
sensors, the sampling frequency, and the number and types of features to extract
will be easily configurable in a single file. The framework will be also designed to
be easily expandable, so that new features can be added simply by developing a
method that appends the new feature to the feature vector, without the need to
modify the rest of the framework.

To do that, first, a real bearing vibration dataset published by [20] will be
analyzed to decide how to preprocess the data, which features to extract and
which algorithm to use. The candidate algorithms described in chapter 5 will
be applied to the dataset and the results will be compared. These algorithms are
K-means, DBSCAN, Gaussian Mixture Model, Isolation Forest, Local
Outlier Factor and One-Class support vector machine.

All of the tests will be carried out trying to follow the most unsupervised
approach possible, so the only information used to train the algorithm will be the
data itself. Every user input needed by the algorithm will be chosen using an easily

5

Introduction

automatable method, to preserve the unsupervised nature of the framework that
will be developed. For example, user inputs are the number of clusters in K-means,
or the radius in the DBSCAN.

At the end of the analysis, considering the trade-off between the performance of
the algorithm, the computational cost and the simplicity, K-means will be chosen
as the algorithm to implement in a real-time framework, developed in python.
Then, the data of the dataset will be polled from a database at regular intervals
and fed to the framework to simulate a real sensor polling the signal directly from
the machine and evaluate the real-time performance of the implementation.

After that, a version of the framework with simplified architecture was imple-
mented in C and tested on a STM32F767ZI microcontroller board.

1.4 Notations
In this thesis, the following notations are used:

• bold lowercase letters (a, b, c) are used to denote vectors;

• italic lowercase letters (a, b, c) are used to denote scalars;

• bold uppercase letters (A, B, C) are used to denote matrices;

• ai(j) is the jth element of the vector ai;

• ||a||2 is the l2-norm of the vector a, defined as
√∑n

i=1 a
2
i , denoted also as ∥a∥

for simplicity;

• ||a||n is the generic ln-norm of the vector a, defined as n

√∑n
i=1|ai|n;

• parenthesis encapsulating an index are used to condense descriptions, for
example “ai(j) is the force applied to the ith (jth) step” means that ai

is the force applied to the ith step and aj is the force applied to the jth step;

• date and times are presented in the ISO 8601 format [21].
For example YYYY-MM-DDThh:mm:ss, where T is the date-time separator;

No distinction in notation is made between a vector in the physical sense (applied
to a point, with a direction, and a magnitude) and a vector in the mathematical
sense (a generic number ∈ Rn).

As regards the flowcharts, the following symbols shown in table 1.1 are used.

6

Introduction

Table 1.1: Symbols used in the flowcharts

Symbol Name Usage

terminator start or stop the process

stored data save some data

data elaborate some data

actions perform automated actions

document read or write a docuument

database perform an action on a database

display report, plot or display a value

manual input request an input from the user

manual operation request the user to do something

or join flow line

predefined process run a programmed process

7

Chapter 2

State of the Art

1784 1969 2011

1st Industrial Revolution
steam power

mechanization

2nd Industrial Revolution
assembly line

mass production

3rd Industrial Revolution
Automation
Computers

4th Industrial Revolution
Industry 4.0

Internet of things
Machine Learning

1870

Figure 2.1: Industrial revolutions

The invention of the modern steam engine in the 18th century marked the
beginning of the first industrial revolution. The second industrial revolution, in
the 19th century, was characterized by the introduction of mass production and
the assembly line. The introduction of computers and automation in factories,
in the 20th century, enabled the third industrial revolution. Nowadays, we are
currently living in the 4th industrial revolution, that embraces the industry 4.0
vision. State-of-the-art industries have small decentralized smart networks that
make decisions autonomously. This is possible thanks to the Internet of Things
(IOT), smart sensors and actuators, and Big Data analysis (figure 2.1). The data
to be monitored varies w.r.t. the field of application. The most common are [22]:

• Vibration Analysis - Efficient method for detecting issues in rotating equip-
ment.

8

State of the Art

• Acoustic Analysis - Detects or monitors cracks in pipes and other structures.

• Lubrication Oils Analysis - Analyzes particles in oils to assess component
wear.

• Particle Analysis in Working Environment - Applied to equipment operating
in fluid environments.

• Corrosive Analysis - Ultrasound measurements to determine corrosion in
various structures.

• Thermal Analysis - Identifies overheating in mechanical and electrical systems.

• Performance Analysis - Efficient technique for pinpointing operational problems
in the system.

Preventive Maintenance

Maintenance

Corrective Maintenance

Condition Based Predetermined

Scheduled, continuous or
on request Scheduled Deferred Immediate

Before a fault happens After a fault happens

Figure 2.2: Standard terminology for industrial maintenance [23]

Standard terminology A standard terminology used for industrial maintenance
is provided by the European committee for standardization with the standard
EN13306:2018 [2]. The terminology is summarized in figure 2.2. The most
advanced maintenance technique family is Condition Based Maintenance. This
category includes the most modern Predictive Maintenance. Note that the
definition does not imply that the “monitoring” of the system must be continuous,
it may also be scheduled or not even scheduled and performed both manually or
by a program.

The standard also defines what On Line Maintenance and On Site Mainte-
nance. All these definitions are reported in the glossary.

9

State of the Art

Reactive

Up state

down state

time

 part fails

pre-repair logistics time to repair post-repair logistics

Reactive

Up state

down state

time

maintenance
begins

pre-repair
 logistics

time to
repair

post-repair
logistics benefit

Figure 2.3: Downtime comparison (RM and PM)

RM vs PM As anticipated in the introduction, the two main approaches are
Reactive Maintenance (a.k.a. Corrective Maintenance), which restores system
functionality, and Proactive Maintenance (a.k.a. Preventive Maintenance),
which preserves system functionality [24].

The former approach leads to very high downtime w.r.t. the latter [17]. For all
the time a system is down, the company forfeits the opportunity to make a profit.
This is called lost opportunity cost. In reality, the total costs of downtime are even
higher, because there are other costs associated with labor overhead and materials
[25]. The second approach optimizes both the pre-repair and post-repair logistics
and, acting before the failure, can reduce also the total downtime. A qualitative
diagram of these benefits is shown in figure 2.3. Other than the downtime, a
more complete comparison between the advantages and disadvantages of the two
approaches is shown in table 2.1.

Passive vs Active maintenance PdM techniques can be divided also into
passive and active. The former uses existing sensors or adds new sensors to the
system and these data are just analyzed. The latter, instead, uses actuators to
perturb the system and then analyzes the response. The former is more common
because it is less expensive and less invasive. The latter, instead, is more accurate
but its application is limited to special applications. The most common field of
application of active PdM is electrical systems, where the perturbation can be
applied by injecting a current or a voltage [26].

In [26], the author proposes also, as an example of active PdM, the use of the

10

State of the Art

Table 2.1: Advantages and disadvantages of RM and PM maintenance [25]

Maintenance Advantages Disadvantages
Reactive low setup costs

easy to setup
unscheduled downtime
increases labour costs
unoptimized resources
increases manufacturing costs

Proactive increases system availability
minimizes logistical downtime
reduces unscheduled downtime
decreases costs
• optimizes parts
• optimizes labour
maintenance is planned
optimizes logistical support

high setup costs
savings not seen immediately
not feasible for all equipment

Loop Current Step Response (LCSR) technique. In this test, an electrical signal
in the form of a step change is sent to the sensor using a Wheatstone bridge,
causing heating in the RTD sensing element. The resulting exponential transient
at the bridge output is analyzed to determine the RTD’s response time. Beyond
measuring response time, the LCSR test can serve other purposes, such as detecting
water levels in a pipe and ensuring the proper installation of temperature sensors
in thermowells. Moreover, it aids in verifying timely responses to temperature
changes and identifying potential degradation due to ageing.

Models of degradation In [27], the authors propose a decision model that
optimizes the inspection schedule and replacement time to minimize the cost of
failure and unavailability. This procedure is based on two variables: the replacement
threshold and the inspection schedule. Most of the non CBM policy can be emulated
with specific values of these two variables. This is applied to gradually deteriorating
single-unit systems. The degradation is simulated with a random model that also
considers the time to perform maintenance for an arbitrary period.

Another approach for characterizing the degradation of a system is to use a
stochastic model hypothesizing the use of an imperfect monitoring system. The
data from the sensors are used to update the model with a Bayesian approach. The
study is tested on simulated data that emulate a decaying system using Markov
chains [28][29].

11

State of the Art

Cloud based PdM A relatively new structure for PdM is proposed in [30]. The
authors investigate a low-cost cloud-based paradigm based on the concept of mobile
agents, implemented in embedded Linux OS with open-source libraries. Compared
to the traditional client-server paradigm, this approach enhances the scalability
and flexibility of the system, reducing also the need for transmission of heavy raw
data.

The concept of mobile agents used in this implementation can be resumed as
autonomous software entities that can migrate from one host to another, carrying
their data and state [31].

The authors of [30] tested the mobile agent implementation with induction motors
that exhibited different failure modes. For example, a motor with a broken rotor
bar defect is analyzed, collecting raw current measurements, envelope analysis, and
spectrum analysis. Spectrum analysis poses challenges in distinguishing healthy
and faulty motor signals. However, a comparison of current envelopes reveals
marked differences in energy concentration associated with broken rotor bar-related
frequencies. The defects analyzed by the system are broken bar, bowed rotor,
unbalanced rotor, stator winding defect, and defective bearing.

In the study [32], a cloud-based PdM system is proposed and tested on a gearbox
in a bench test. This study performs anomaly detection, fault detection, and RUL
prediction. The RUL predictions are made by selecting a health indicator that is
strongly correlated with the remaining life of the component.

Thermal imaging Yet another tool for detecting anomalies, mostly used for
electrical devices, is gathering images of the device using an infrared camera. This
method has the advantage of being noninvasive. The process of images is a whole
discipline, in [33], the authors use a multilayered perceptron MLP to classify
11 features of the images. They achieved 78% accuracy using the MLP alone, which
has been enhanced to 84% performing a graph cut.

Algorithms for PdM To continue the overview of state-of-the-art PdM tech-
niques, we will now focus on the algorithms used to analyze the data. The two
main categories of algorithms are Traditional ML and Deep Learning (DL). The
survey [34] provides a comprehensive overview of the most common algorithms
used in PdM, that we summarized in table 2.2, that is a merge of [34],[35],[36],[37]
and [38]. ANN, DT, SVM, k-NN, PF, ART and SOM are ML algorithms, while
AE, CNN, RNN, DBN, GAN, TL and DLR are Deep Learning algorithms. The
most common field of application of each algorithm is also reported in the table.

12

State of the Art

Table 2.2: ML and DL algorithms used in PdM [34]

Algorithm Acronym Typical application
Artificial Neural Network ANN • fault diagnostic in bearings

• RUL predictions of bearings
Decision Tree DT • fault diagnostic

- grids
- rail vehicles
- bearings
- hydraulics etc.

• fault prognosis
- turbofans
- batteries
- mechanical systems etc.

Support Vector Machines SVM • fault diagnostic
- rotation machinery
- bearings
- wind turbines etc.

• RUL predictions
- batteries
- bearings etc.

k-Nearest Neighbor k-NN • fault diagnostic
• RUL prediction
• Early fault warning

Particle Filter [35] PF • RUL in turbine application [36]
Adaptive resonance theory ART • anomaly detection metal

oxide surge arrester [38]
Self-Organizing Maps SOM • anomaly detection [37]
Auto-Encoder AE • feature extraction

• data fusion
• fault diagnostic
• degradation estimation
• RUL predictions

Convolutional Neural Network CNN • (joint) fault diagnostic
• degradation estimation
• RUL predictions

Recurrent Neural Network RNN • fault diagnostic
• RUL predictions
• health indicator

Continued on next page

13

State of the Art

Table 2.2: ML and DL algorithms used in PdM [34] (Continued)

Deep Belief Network DBN • feature extraction
• fault classification
• RUL predictions

Generative Adversarial Network GAN • class imbalance
• fault identification
• RUL predictions

Transfer Learning TN • fault diagnosis
• RUL predictions

Deep Reinforcement Learning DLR • decision making
• fault diagnosis
• health indicator

Fault / Novelty detection As anticipated in section 1.1, another distinction
in the PdM techniques arise from the data available to build a model and/or to
train it.

Fault detection If there is a knowledge of the peculiar features of most faults,
the algorithms can be trained to detect them. As anticipated, this is called fault
detection (FD). For example, if the monitored system is a ball bearing, it is well
known in the literature that there are four distinct fault modes, each of which has
a specific frequency signature illustrated in figure 2.4 [39]:

Ballpass frequency, outer race (BPFO) = n · fr

2

{
1− d

D
cosϕ

}

Ballpass frequency, inner race (BPFI) = n · fr

2

{
1 + d

D
cosϕ

}

Fundamental train frequency (FTF) = fr

2

{
1− d

D
cosϕ

}

Ball (roller) spin frequency (BSF) = D

2 · d

1−
(
d

D
cosϕ

)2


Where fr is the shaft speed, n is the number of rolling elements, and ϕ is the
angle of the load from the radial plane.

An automated method for bearing diagnosis has been developed by [40]. The
method is parametric and can be adapted to a large variety of cases. In the study,
it has been tested on a helicopter gearbox, a high speed (≈ 12000rpm) test bench
application and a low speed (≈ 1800rpm) radar tower.

14

State of the Art

Figure 2.4: Typical bearing fault signals [39]

The automated procedure [40] has been extended by a more recent study [41]
where the authors applied a Cepstral Editing Procedure (CEP) based signal Pre-
Whitening (PW). The framework has been tested on data collected from seventeen
wind turbines. The procedure was successful in this case study, the preprocessing
flow applied to the time-series, and the resulting spectral in which the BPFI is
exploited to detect the fault, are shown in figure 2.5.

Figure 2.5: Preprocessing schematic and spectrum of a bearing fault signal [41]

15

State of the Art

Novelty detection As anticipated, most of the time there is almost no precise
knowledge about the physics of the system and data collections about faults are not
available. In this case, novelty detection (ND) can be used. The task of detecting
if a condition is “novel” can be seen as a classification problem with only one class
(the data collected on the healthy system). The general idea is that if the one-class
classifier is not able to classify a new observation as “healthy”, it means that the
observation is “novel”.

Once the novelty detection algorithm is trained, it can be used to give an
estimate of “how novel” the current behaviour of the system is. One of the major
issues with ND is to set the threshold value to decide if the observation is novel or
not [42]. This is because the value of the metric is hardly linkable to a physical
property, and the span of the metric is not known a priori.

In table 2.3, the novelty detection techniques described in the comprehensive
review [42] are summarized. The review makes clear that in the field of ND, both
supervised and unsupervised techniques are used. It categorize the techniques into:

• Probabilistic - involves a density estimation of the data;

• Distance-based - are the class of clustering techniques used traditionally for
classification;

• Reconstruction-based - use a regression model to reconstruct the data,
then the error is used to detect the novelty;

• Domain-based - try to define a boundary that contains all the normal data;

• Information-theoretic - is based on the idea that novel data significantly
alter the information content of the dataset.

Table 2.3: State of the Art techniques for ND [42]

Model Type
Mixture models probabilistic, parametric
State-space models probabilistic, parametric
Kernel density estimators probabilistic
Nearest neighbour distance-based
Clustering distance-based
Neural networks reconstruction-based
Subspace-based approaches reconstruction-based

Continued on next page

16

State of the Art

Table 2.3: State of the Art techniques for ND [42] (Con-
tinued)

Support vector descriptors domain-based
One-class support vectors domain-based

The first two terminologies are adopted also in the technical review of ND
methods [43]. This study also categorizes the pattern to be identified in the
following classes:

• Point pattern - are single instances that are anomalous w.r.t. the rest of
the data;

• Contextual patter - are anomalous w.r.t. a specific context;

• Collective pattern - is a collection of data instances that are anomalous if
considered together.

The three distinct concepts are illustrated in figure 2.6.
The task of detecting the novelty is often associated with the task of predicting

the Remaining Useful Life (RUL) before the fault becomes fatal for the component.

Figure 2.6: Types of patterns [43]

A novel framework for performing ND, FD and RUL predictions has been
proposed by researchers at PIC4SeR1 [44]. It is based on several autonomous
agents working together on a database. The authors aimed to perform PdM in
a scenario in which there is no physical knowledge and no prior data collections
about the maintained system. The framework is meant to be set in a training phase

1https://pic4ser.polito.it/

17

https://pic4ser.polito.it/

State of the Art

on a new machine, to collect the normal data and train the ML model. After that,
it will continuously work in testing mode: the framework will compute a prediction
error on the current data that is used as a novelty metric.

The features are pre-processed using a windowing function and a cumulative
absolute sum. Three regression models are used to perform ND and FD: a Linear
Regressor LR, a Decision Tree (DT) and a Random Forest (RF). The user of the
framework can decide which regressor to use in each specific case.

The model can be retrained after a novelty has been detected, to update the
model with the new data. Even if the framework is meant to be trained on a new
machine, it can be used also on a machine that has been in service for years: the
faults already present will be part of the training database, but the predictions will
still be useful because of the tendency of the faults to worsen over time.

The RUL predictions are made by averaging the prediction error in two intervals
and then performing a linear regression on the two points.

This framework has been successfully tested on:

• a synthetic dataset that the authors created to emulate a bearing fault (using
the definitions of the 4 typical faults [39]).

• a real dataset of bearing faults provided by the Center for Intelligent Mainte-
nance Systems [20]

• a laboratory test on spring probes

In the first two cases, the framework was able to detect the novelty and predict
the RUL, in the laboratory test, it was able to recognise the new data as healthy
because the probes were not yet damaged. The graphical results of one test on
real-world data are shown in figure 2.7.

Clustering The most common unsupervised task is clustering. In recent years,
the volume of data collected in a typical factory has increased dramatically. Clus-
tering is a collection of tools to extract information from huge amounts of unlabeled
data.

These algorithms can be divided into: partitioning-based where the task is
to define the boundaries between the clusters; hierarchical-based that shows the
relation between each pair of clusters depending on the medium of similarity or
dissimilarity; density-based that describes the clusters as a dense region of data
points separated by low-density regions; grid-based that apply the transformation of
the feature space into a grid before proceeding with the clustering and model-based
that use a statistical or deep-learning model to describe the data.

Recently, the survey [45] provided a comprehensive overview of the most common
clustering algorithms used in an industrial context, with reference studies. The
comparison of the study is reported in table 2.4.

18

State of the Art

Figure 2.7: Results provided by [44] for the test n◦1 of IMS dataset.

Table 2.4: Clustering algorithms comparison [45]. n = number of samples, k =
number of clusters, d = number of features.

Algorithm Volume High
dim.

Cluster
shape

Complexity n. param.

K-means any no non-convex O(nkd) 1
K-modes large yes non-convex O(n) 1
K-medioids small yes non-convex O(n2dt) 1
PAM small no non-convex O(k(n− k)2) 1
CLARA large no non-convex O(k(40 + k)2+ 1

+k(n− k))
Ward any no non-convex O(n) 1
BIRCH large no non-convex O(n) 2
CURE large yes any O(n2 log n) 2
ROCK large no any O(n2 + n2 log n) 1
Chamelon large yes any O(n2) 3
DBSCAN large no any O(n log n) 2

Continued on next page

19

State of the Art

Table 2.4: Clustering algorithms comparison [45]. n = number of samples, k =
number of clusters, d = number of features. (Continued)

OPTICS large no any O(n log n) 2
DENCLUE large yes any O(D) 2
Wavecluster large no any O(n) 3
STING large no any O(k) 1
CLIQUE large yes any O(ck + mk) 2
OPTGRID large yes any O(nd log n) 3
EM large yes non-convex O(knp) 3
COBWEB small no non-convex O(n2) 1
SOM small yes non-convex O(n2m) 2

20

Chapter 3

Introduction to Novelty
Detection

Models of the
maintained system

Black box

Grey box

White box

Novelty metrics

Fault metrics

Thresholding

Novelty
Detection

Fault
Detection

Figure 3.1: General working principle of Novelty Detection

This short chapter is dedicated to the introduction of the general working
principles behind any kind of ND or FD.

As already mentioned in the introduction and in figure 1.2, the models behind
the study of the behaviour of a system are various. Often, in the field of ND, the
models rely on ML rather than on a physical model. Sometimes, the model is based
on a combination of both, as some physical knowledge is used to guide the ML
model.

Regardless of the model used, to perform ND or FD a measure of the deterioration
of the system is needed. Then, the problem of deciding when to declare a novelty
or a fault arises. All the models that rely on real data have to face the problem of
noise. This unpredictability will cause some outliers in the detection.

21

Introduction to Novelty Detection

Thresholding A common approach used to trigger the ND or FD warnings to
the operator is to set a threshold on the measure of the deterioration. This principle
is illustrated in figure 3.1.

In the case of a physical model, the threshold can be decided by an expert in the
field, as the degradation metric will be a physical measure. In the case of an ML
model, instead, the degradation measure will be harder to interpret in a physical
way.

In chapter 4, several ML models will be described. For some of them, the
measure of the deterioration will be a probability, for others, it will be a distance,
for others, it will be density, and so on. So, in some cases, the deterioration metric
can be interpreted in a geometric way, as in the case of K-means and DBSCAN.

Using the geometric normalization, an educated guess of the threshold can be
made. For example, in the case of K-means, the metric is the distance from the
centroid normalized by the radius of the cluster, so a threshold of 1 would mean
to consider anomalous a measure that is twice as far away from a cluster centroid
w.r.t. the furthest known record.

Another common approach is to first see the distribution of the measure of
the deterioration and then decide the threshold. This operation affects the false
positive and false negative rates.

Approach used in this work Another problem arises when comparing the
performance of different models. The real degradation of the system normally
continues in time, so any model can be made to detect a novelty as soon as it
is desired, by setting the threshold to a very low value. This is clearly not a
fair comparison, because a bias is introduced in the act of deciding the threshold.
To avoid that, a common approach to thresholding will be used among all the
algorithms.

In this work, several models will be compared on the same datasets. For this
reason, a common approach to thresholding will be used. The naive approach is to
decide arbitrarily a time window in which the measure is considered normal. And
set the threshold to a value that is higher than the maximum value of the measure
in the time window. This approach is naive but, being used for all the models, this
will reduce the bias in the comparison.

22

Chapter 4

Machine Learning

Before diving into the description of the unsupervised algorithms used for the
development of this thesis work presented in chapter 5, this chapter aims to be
an introduction of Machine Learning (ML) in general.

An early but useful definition of Machine Learning was given by Arthur Samuel
in 1959: “Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed.” A more recent definition is the following,
from Tom Mitchell: “A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E.” [7, p. 4]

So, in general, the ingredients of ML are:

• some data linked to some task

• a task to be performed

• an algorithm that learns how to perform the task on specific data

The data are usually preprocessed before giving them to the algorithm. The
processed data are called features. This is a generic term that refers to the
information content of the data. For example, if the data are recordings of
temperatures over time, the features could be the mean, the standard deviation, the
minimum, and the maximum of the temperature or, in some cases if the algorithm
is able to learn directly from them, the raw data themself.

The tasks can be divided into main categories:

• regression: the algorithm is trained to measure the relation between the value
of output variables and corresponding values of other input variables;

• classification: the algorithm is trained to assign a label to a new instance,
based on the training dataset of labelled instances;

23

Machine Learning

• clustering: the algorithm is trained to group similar instances into clusters.

• anomaly detection: the algorithm is trained to identify instances that are
different from known previous instances.

4.1 Regression

4.1.1 Least Squares
Let’s consider a set of m observations of a variable y ∈ Rny (output features) that
depends on a variable x ∈ Rnx (input features) and a set of nf · ny parameters
θ ∈ Rnf ×ny .

Suppose to know that the output features are linked to the input features with
nf functions linear in the parameters θ, so that:[

y1 y2 . . . yny

]
=

[
f1(x1, . . . , xnx) f2(x1, . . . , xnx) . . . fnf

(x1, . . . , xnx)
]
·


θ1,1 . . . θ1,ny

θ2,1 . . . θ2,ny

...
θnf ,1 . . . θnf ,ny


Where all the fi are any known functions, yi and xi are known data and θi,j are

the parameters to be found.
Considering the m observations, the previous equation can be extended as:


y1,1 y1,2 . . . y1,ny

y2,1 y2,2 . . . y2,ny

...
ym,1 ym,2 . . . ym,ny

 =


f1(x1,1, . . . , x1,nx) . . . fnf

(x1,1, . . . , x1,nx)
f1(x2,1, . . . , x2,nx) . . . fnf

(x2,1, . . . , x2,nx)
...

f1(xm,1, . . . , xm,nx) . . . fnf
(xm,1, . . . , xm,nx)

 ·

θ1,1 . . . θ1,ny

θ2,1 . . . θ2,ny

...
θnf ,1 . . . θnf ,ny


Rewriting the previous equation in a more compact form:

y1
y2
...

ym

 =


f1(x1) f2(x1) . . . fnf

(x1)
f1(x2) f2(x2) . . . fnf

(x2)
...

f1(xm) f2(xm) . . . fnf
(xm)

 ·

θ1,1 . . . θ1,ny

θ2,1 . . . θ2,ny

...
θnf ,1 . . . θnf ,ny

 (4.1)

24

Machine Learning

That, in the most compact form, becomes:

Y = Φ(X) ·Θ (4.2)

In close form, there is a solution ΘLS, for estimating the parameters that
minimize the error between the estimated output YLS = Φ(X)ΘLS and the real
output Y, that is known. Let’s see, in an intuitive way:

Y = Φ(X) ·ΘLS (4.3)
Φ(X)T Y = Φ(X)T Φ(X)︸ ︷︷ ︸

square

·ΘLS (4.4)

(Φ(X)T Φ(X))−1Φ(X)T Y = ΘLS (4.5)
pinv(Φ(X))Y = ΘLS (4.6)

In fact, it is known that ΘLS = pinv(Φ(X))Y is the solution of the following
minimization problem:

ΘLS = arg min
Θ∈Rnf ×ny

∥Y −Φ(X)Θ∥2
2 (4.7)

That is why this method is called Least Squares (LS). It is proven that if the
data Y affected my white noise, and the data X are known precisely, the solution
converges to the real parameters Θtrue when the number of observations m goes to
infinity.

lim
m→∞

ΘLS = Θtrue (4.8)

Is this considered machine learning? Yes, even being just a simple implementation
of linear algebra, once programmed in a computer, it qualifies as the (simplest)
machine learning algorithm because fitting new data does not require any human
intervention. Let’s see an example. Suppose to have 400 data points, shown in
figure 4.1a, of the variable x, y1 and y2 sampled with noise, that we call Feature
1, Feature 2 and Feature 3, respectively. Suppose that it is known that the output
features are linked to the input feature with a linear combination of the functions
ex, x3, cos(x), sin(x) and cos3(x), but the parameters θ are unknown:

y1 = θ1,1e
x + θ2,1x

3 + θ3,1 cos(x) + θ4,1 sin(x) + θ5,1 cos3(x) (4.9)
y2 = θ1,2e

x + θ2,2x
3 + θ3,2 cos(x) + θ4,2 sin(x) + θ5,2 cos3(x) (4.10)

25

Machine Learning

Feature 1

−2
0

2
4 Fe

at
ur

e
2

0

5

10

F
ea

tu
re

 3

−2

0

2

4

(a) 400 data points

Feature 1

−2
0

2
4 Fe

at
ur

e
2

0

5

10

F
ea

tu
re

 3

−2

0

2

4

(b) data points and the fitted curve

Figure 4.1: Least square regression example

rearranging in matrix form:
y1,1 y1,2
y2,1 y2,2

... ...
ym,1 ym,2


︸ ︷︷ ︸

Y

=


ex1 x3

1 cos(x1) sin(x1) cos3(x1)
ex2 x3

2 cos(x2) sin(x2) cos3(x2)
...
exm x3

m cos(xm) sin(xm) cos3(xm)


︸ ︷︷ ︸

Φ(X)

·


θ1,1 θ1,2
θ2,1 θ2,2
θ3,1 θ3,2
θ4,1 θ4,2
θ5,1 θ5,2


︸ ︷︷ ︸

Θ

(4.11)

applying the LS solution from equation 4.6, we obtain:

ΘLS = pinv(Φ(X))Y =


+1.997 −0.004
−1.498 +0.003
+1.332 −0.018
−0.005 +0.999
−0.032 +1.035


that is quite close to the real parameters used to generate the data:

Θtrue =


+2.0 +0
−1.5 +0
+1.3 +0
+0.0 +1
+0.0 +1


26

Machine Learning

Using the estimated parameters, it is possible to estimate the output features
for new input features, the regression line is shown in figure 4.1b.

Applicability

This is an elegant closed-form solution for a regression problem, however, it has
some limitations:

• if the noise is not white, or it is present also in the input features, the solution
is not guaranteed to converge to the real parameters;

• if there are nonlinearities in the parameters (for example sin(θ1,1x)), the
solution is not applicable;

4.1.2 Gradient Descent GD
To overcome these limitations, another way to estimate the parameters is to use an
iterative algorithm that minimizes a cost function over the parameters space. The
iterations aim to update the parameters in the direction of the steepest descent of
the cost function. This can be done even with nonlinearities in the data, and even
if the noise is not white, but has the drawback of the risk of getting stuck in a
local minimum of the cost function, starting from a random initialization. Another
limitation is the fact that a learning rate η has to be defined, that is a parameter
that defines how much the parameters are updated at each iteration. If the learning
rate is too small, the algorithm will take a lot of time to converge, if it is too large,
the algorithm may overshoot the minimum and avoid convergence.

In the previous closed form solution (subsection 4.1.1), the hypothesis function
was linear in the parameters Y = Φ(X) · Θ, so we can call this prediction
ŷ = hΘ(x).

The cost function to be minimized is usually defined as the mean squared error
between the prediction and the real data:

MSE(X, hΘ) = 1
m

m∑
i=1

(ŷi − yi)2 (4.12)

The gradient of the cost function, used by all gradient descent algorithms, is
defined as:

∇ΘMSE(X, hΘ) =


∂

∂θ1
MSE(X, hΘ)

∂
∂θ2

MSE(X, hΘ)
...

∂
∂θnf ×ny

MSE(X, hΘ)

 (4.13)

27

Machine Learning

The algorithm then updates the parameters at each iteration as:

Θ(i+1) = Θ(i) − η∇ΘMSE(X, hΘ) (4.14)

4.1.3 Stochastic Gradient Descent
The Stochastic Gradient Descent (SGD) is a variant of the GD algorithm that
computes the gradient only on one instance at each iteration, instead of on the
whole dataset. This makes the algorithm much faster, but the cost function will
be much more noisy, and theta will not reach a steady value but instead will
oscillate around the minimum. This has the advantage of being more robust to
local minimum entrapment, but the disadvantage of never reaching the minimum.
To overcome this, the learning rate η can be reduced at each iteration, but this
will slow down the convergence.

−6 −4 −2 0 2

θ1

−4

−3

−2

−1

0

1

2

3

4

θ 2

GD - global minimum

GD - local minimum

GD - LR too high

Stocastic GD

0

6

12

18

24

30

36

42

48
C

o
st

 f
u
n
ct

io
n

Figure 4.2: Gradient Descent comparison

In the figure 4.2 it is visualized graphically what has been said about Gradient
Descent.

28

Machine Learning

4.1.4 Avoid overfitting
The GD algorithm is very powerful, but it can overfit the data. To avoid that,
the problem of when to stop the iterations has to be addressed. A common way
to do that is to split the dataset into a training set and a validation set. The
training set is used to train the algorithm, and the validation set is used to evaluate
the performance of the algorithm on new data. The training is stopped when the
performance on the validation set starts to degrade, even if the performance on the
training set is still improving. This is called early stopping. In the figure 4.3 it is
shown an example of early stopping using as metric the Root Mean Square Error
(RMSE), that is just the square root of MSE, on the validation set.

0 100 200 300 400 500

Epoch

0

1

2

3

R
M

S
E

Best model

Validation set

Training set

Figure 4.3: Overfitting example [7, p. 162]

4.2 Classification
Another common task in ML is classification. In this case, the algorithm is trained
to assign a label to a new instance, based on the training dataset of labelled
instances. Naively, it aims to define a set of rules that divide the space of the input
features in regions, each one associated with a label. The two main approaches
are hard and soft classification. In the former, the algorithm is trained to assign a
single label to each instance, while in the latter, the algorithm is trained to output
a probability for each label, and the label with the highest probability is assigned
to the instance.

Classification is a supervised learning task because the training dataset is labelled.
The labels can be provided by a human or can be generated by another algorithm.
Some classification algorithms are available also in the unsupervised version, where
the labels are not provided, and the task is usually novelty detection.

29

Machine Learning

4.2.1 Support Vector Machines SVM
Support Vector Machines are simple but powerful classification algorithms that
can be used both for hard and soft classification, with medium size datasets. They
are based on the idea of finding the hyperplane that best divides the space of the
input features into two regions, each one associated with a label.

The main drawback is that, natively, they can only be used for binary classifi-
cation (two classes), but there are some extensions that allow to use of them for
multiclass classification. Furthermore, as will be explained in section 5.6, they
can be used also for novelty detection (one class). Another limitation is that, being
a linear classifier, they can only be used for linearly separable data, but using the
kernel trick, they can be used also for nonlinearly separable data.

Linear SVM

0 2 4 6

x0

0

20

40

60

80

x1

Unscaled

−2 −1 0 1 2

x ′
0

−2

−1

0

1

2

x ′
1

Scaled

Figure 4.4: Linear SVM example [7, p. 176]

Looking at figure 4.4, it is possible to visualize what the algorithm does: it
finds the plane that separates one class from the other, and vice-versa for the second
class. In other words, it finds the most distant parallel hyperplanes that separate
the two classes. As evident from the figure, the distance between the hyperplanes
(called margin) is sensitive to the features scaling. The term “support” derives from
the fact that only the instances that are on the margin, define (support) the two
planes. Those instances are called support vectors, and in the figure are highlighted
with a grey circle.

30

Machine Learning

Noninear SVM

As said before, the SVM algorithm can be used also for nonlinearly separable data,
using the kernel trick. The idea is to project the data into a higher dimensional
space, where they are linearly separable, and then use the linear SVM algorithm.
The projection is done using a kernel mapping.

Let’s have a look at what is the function for classifying an instance x(i):

t(i) =
−1 if wT x(i) + b < 0

1 if wT x(i) + b ≥ 0
(4.15)

The model is trained to find the parameters w and b that:

minimize
w,b

1
2wT w (4.16)

subject to t(i)(wT x(i) + b) ≥ 1 ∀i = 1, . . . ,m (4.17)

Since the objective function is convex, and the inequality constraints are differ-
entiable and convex, the solution is the same as the solution of the dual problem
[7, p. 188]:

minimize
α

1
2

m∑
i=1

m∑
j=1

α(i)α(j)t(i)t(j)x(i)T x(j) −
m∑

i=1
α(i) (4.18)

subject to α(i) ≥ 0 ∀i = 1, . . . ,m and
m∑

i=1
α(i)t(i) = 0 (4.19)

Kernel Trick Suppose needing to use a second-degree polynomial mapping, the
mapping function is defined as:

ϕ(x) = ϕ(
[
x1
x2

]
) =

 x2
1√

2x1x2
x2

2

 (4.20)

Transforming two vectors a and b with the mapping function, to be inserted in
equation 4.18:

ϕ(a)Tϕ(b) =

 a2
1√

2a1a2
a2

2


T  b2

1√
2b1b2
b2

2

 = a2
1b

2
1 + 2a1b1a2b2 + a2

2b
2
2 = (aT b)2 (4.21)

So, transforming with a polynomial mapping of degree d, does not require
computing the mapping function, but just computing the dot product of the two

31

Machine Learning

vectors and elevating it to the degree d, in the dual problem. There also are other
kinds of kernels, resumed in the following:

Linear: K(a, b) = aT b

Polynomial: K(a, b) = (γaT b + r)d

Gaussian RBF: K(a, b) = exp(−γ∥a− b∥2)
Sigmoid: K(a, b) = tanh(γaT b + r)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

Figure 4.5: Kernel Trick example [7, p. 180]

The figure 4.5 shows an example of SVM classification of data that are not
linearly separable.

This topic seems unrelated to the scope of this thesis, but in section 5.6 we will
see how to use the SVM algorithm for novelty detection, as a one-class classifier.

4.2.2 Decision Trees DT
Decision Trees are very powerful classification algorithms that can also be used for
regression, thinking of feature values as classes. The classification process is based
on a tree structure, where each sample starts from the root node, and is filtered
through a bunch of if - then statements until it reaches a leaf node, that outputs
the predicted class. In figure 4.6, it is illustrated the structure of a very simple
binary tree with only a split node and three leaf nodes.

32

Machine Learning

Predict a class

Binary condition
on any feature

Binary condition
on any feature

True False

Predict a class Predict a class

True False

Root node

Split node

Leaf nodeLeaf node

Leaf node

Figure 4.6: Decision Tree structure

Gini impurity The classification algorithm is hence very simple, the ML part
is the training process. Let’s consider a leaf node, and imagine processing all the
training samples through the tree. Ideally, all the samples that reach the leaf node
(and any other leaf node) should have the same class. This is possible, but a tree
that does that is most likely very overfitted to the training dataset and will not
perform well on future data. Anyway, the aim of training is to obtain a tree close
enough to the ideal one, without overfitting. To do that, there exists a metric called
Gini impurity that assumes a value of zero if the leaf node is pure (all the samples
that reach it have the same class), or a positive value ∈ (0,0.5] that measures how
different the classes in the node are, 0.5 being the maximum value that means that
all the classes are present in the node with equal frequency. The mathematical
definition is the following:

Gi = 1−
n∑

k=1
p2

i,k (4.22)

where pi,k is the ratio of class k instances among the training instances in the ith
node.

Then the training procedure tries to grow a tree defining the binary conditions
that minimizes the weighted average of the Gini impurity of the two child nodes,
so the cost function is:

J(k, tk) = mleft

m
Gleft + mright

m
Gright (4.23)

where k is the feature index, tk is the threshold value, mleft and mright are the
number of instances in the left and right child nodes, and Gleft and Gright are the
Gini impurity of the left and right child nodes.

A common way for minimization of the cost function is to use the Classification
and Regression Tree (CART) algorithm, which is a greedy algorithm that searches

33

Machine Learning

for the optimal split at each node, but not for the global optimal tree. The algorithm
complexity is O(n×m log2(m)).

Entropy Another metric that can be used instead of Gini impurity inside the
same cost function is the entropy of the node, which is defined as:

Hi = −
n∑

k=1
pi,k log2(pi,k) (4.24)

This renders trees very similar to the ones obtained using Gini impurity, but
the entropy is slightly slower to compute, due to the logarithm. however, it tends
to produce slightly more balanced trees [46].

Avoid overfitting To avoid overfitting the data, the CART algorithm implemen-
tation in sklearn has some hyperparameters that can be tuned:

• max_depth: the maximum depth of the tree;

• min_samples_split: the minimum number of samples a node must have
before it can be split;

• min_samples_leaf: the minimum number of samples a leaf node must have;

• max_leaf_nodes: the maximum number of leaf nodes;

• max_features: the maximum number of features that are evaluated for
splitting at each node.

Increasing the min bound, or decreasing the max bound, will regularize the model,
and reduce the risk of overfitting. In figure 4.7 it is shown an example of overfitting,
where the left plot shows the decision boundaries of a tree with no regularization,
and the right plot shows the decision boundaries of a tree with regularization.

Regression As anticipated, the DTs can also be used for regression, in this case,
the cost function is the MSE of the predicted value in the leaf node:

J(k, tk) = mleft

m
MSEleft + mright

m
MSEright (4.25)

34

Machine Learning

−1 0 1 2
x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

No restrictions

−1 0 1 2
x1

min_samples_leaf = 5

Figure 4.7: Decision Tree overfitting example [7, p. 203]

Advantages and limitations The main disadvantages of DTs are that the
classification procedure uses thresholds on the value of the features (cutting the
hyperspace in orthogonal hyperplanes), so they are sensitive to axis orientation,
and they are very sensitive to small variations in the training data. They are also
very sensitive to the hyperparameters, so a small variation in constraints leads
to very different trees. The main advantages are that they are very fast to train,
and the resulting model is very fast to make predictions, they are very easy to
understand and visualize and they do not require any feature scaling or centring.

4.2.3 Random Forests RF
The high sensitivity of the DTs to small variations in the training data, can be
reduced using the Random Forests (RF) algorithm. The idea is to train a bunch of
DTs on different random subsets of the training data, and then to average their
predictions. The subsets of the training set are usually picked randomly with
replacement, this technique is called bagging (short for bootstrap aggregating).

The benefits of using more threes on subsets of the training data are shown in
the figure 4.8. The left plot shows the decision boundaries of a single DT, and
the right plot shows the decision boundaries of a RF with 500 trees.

Again, this topic seems unrelated to the scope of this thesis, but in section 5.4
we will see how to use the RF algorithm for novelty detection, exploiting the fact

35

Machine Learning

−1 0 1 2
x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

Decision Tree

−1 0 1 2
x1

Decision Trees with Bagging

Figure 4.8: Random Forest example [7, p. 218]

that outliers are usually more isolated (require more split nodes to be reached)
than the normal instances.

36

Chapter 5

Unsupervised Learning

In the previous chapter 4, an overview of the most common supervised learning
algorithms has been provided, but all these techniques require a labelled dataset.
As anticipated in the introduction, most of the time a model of the machine to be
monitored is not available. Furthermore, usually a prior knowledge of the behaviour
of the machine in the healthy or a faulty state is not available either. Even in the
best-case scenario, where some data collection has been done, the data will be
unlabeled.

To address this scenario, two approaches are possible: either label the data
or use an unsupervised learning algorithm. The former would be tedious and
time-consuming in the case the dataset contains both healthy and faulty data. This
is because the faulty data would have to be labelled by hand. If the dataset contains
only healthy data, it would be trivial to automatically label all the instances as
healthy and use a supervised learning algorithm, but this would be a stretch of
the definition of supervised learning. The latter is a more linear approach since
unsupervised learning algorithms are designed to work with unlabeled data.

The most common unsupervised task is dimensionality reduction [7, p. 260]
but, in this thesis, the main focus will be on novelty detection, fault detection and
predictive maintenance, so the considered UML algorithms will be clustering and
density estimation.

37

Unsupervised Learning

Clustering Clustering is the task of grouping together similar instances. The
definition of similar depends on the algorithm used. The most common algorithms
are k-means and DBSCAN. The former is a centroid-based algorithm, it is fast
to evaluate a new instance and produce a lightweight model but performs poorly
in some conditions that will be described in detail. The latter is a density-based
algorithm, it performs better in the condition where k-means fails but has the
drawbacks of being much slower to evaluate a new instance, and to perform novelty
detection, the DBSCAN implementation would have to keep all the train data
in memory. Both will be described in detail in the following section 5.1 and
section 5.2.

Gaussian mixture models The second approach to novelty detection is the use
of Gaussian Mixture Models (GMM). This approach is based on the assumption
that the data is generated from a mixture of several Gaussian distributions with
unknown parameters [7, p. 283]. Then the distribution model can be used for novelty
detection. This approach will be described in detail in the following section 5.3.

Other approaches At the end of the chapter, some other approaches will be
briefly described and tested on the same dataset used for demonstrating clustering
and GMM. These approaches are: iForest, LOF and ν-SVM. The first two are
based on the assumption that outliers are instances that are isolated from the rest
of the data, while the latter is based on a kernelized SVM algorithm.

5.1 K-means

This problem is called k-means because it aims to describe the “clustering” by
separating the data into clusters (C), and define each cluster with its mean (c).
Note that the mean of the cluster, from a physical point of view, is the centre of
mass of the cluster itself as if it is composed of unitary point masses located at the
positions of the data points. The mean is not necessarily a point belonging to the
cluster.

Let’s assume to have extrapolated F features from each of our signals, to produce
a set S of n snapshots Si, i ∈ [1, n],Si ∈ S (every snapshot is a vector of features
∈ RF). The task is to define a set C of k clusters (k ≤ n) Ci, i ∈ [1, k],Ci ∈ C that
minimize the squared sum of the distances between the snapshots and the centroids
ci of the clusters they belong to. This is equivalent to finding the centroids that
minimize the variance of the clusters themselves, so the problem can be formulated
as in the equation 5.1.

38

Unsupervised Learning

arg min
C

k∑
i=1

∑
Sj∈Ci

∥Sj − ci∥2 = arg min
C

k∑
i=1
|Ci|VarCi (5.1)

Unfortunately, this problem is NP-hard, even for as little as F = 2 features
considered [47], so it is not possible to guarantee to find the global optimum in a
reasonable time.

Anyway, heuristic clustering algorithms were already developed in the 1950s.
The first appearance of the term “K-means” was used in 1957 by MacQueen [48],
and the algorithm settled to a “standard” version, published by Stuart Lloyd in
1982 [49] (but developed at Bell Labs in 1957).

Among all the unsupervised clustering algorithms, a survey from 2002 [50] stated
that K-means “is by far the most popular clustering algorithm used in scientific and
industrial applications”. A more recent survey from 2019 [45], cited this algorithm
as first in the group of four most popular algorithms.

Nowadays, the K-means algorithm is implemented in many libraries, such as
scikit-learn for Python, and others for C, R, MATLAB, etc. However, the runtime
performances vary widely depending on the implementation [51]. The problem of
the algorithm returning a local minima instead of the global one is still present.
Most implementations try to minimize the probability of returning this sub-optimal
result by running the algorithm multiple times with different initializations and
then selecting the best result, so the problem of getting a sub-optimal result is not
a common issue in practice.

5.1.1 Training
The naive k-means algorithm consists of a series of iterations. First, the centroids
ci are initialized randomly, then the snapshots are assigned to the nearest centroid,
and finally, the centroids are updated as the mean of the snapshots assigned to
them. These steps are repeated until the position of the centroids does not change
anymore, or a defined maximum number of iterations is reached. This naive
algorithm is summarized in the algorithm 1.

As an example, we can consider F = 2 features, and generate some test points
shaped like three separated clusters. In the figure 5.1 are shown the original
data, the first two iterations of the algorithm, and the final result. The K-means
algorithm had n = 200 snapshots, and k = 3 clusters as input. The colours of
the dots and the shaded areas represent the clusters and the decision boundaries.
The centroids are represented as black crosses. The decision boundaries are a
Voronoi tessellation of the space, and they are defined as the set of points that
are equidistant from the centroids of two different clusters. The algorithm itself
does not compute the boundaries, but it is useful to plot them for visualization
purposes.

39

Unsupervised Learning

−10

0

F
ea

tu
re

 2

Original data Iteration 1

−10 −5 0

Feature 1

−10

0

F
ea

tu
re

 2

Iteration 2

−10 −5 0

Feature 1

Algorithm converged

Figure 5.1: K-means algorithm in the 2-dimensional space

Algorithm 1 Training of the K-means model
1: function K-means.train(S, k)
2: ▷ S is the set of snapshots to be clustered
3: ▷ k is the number of clusters to be obtained
4: ci ← random initialization,∀i ∈ [1, k], ci ∈ Domain of S
5: repeat
6: ▷ Every snapshot is assigned to the nearest centroid. Every centroid

defines a cluster containing the assigned snapshots
7: Ci ←

{
Sp : ∥Sp − ci∥2 ≤ ∥Sp − cj∥2∀j ∈ [1, k]

}
∀i ∈ [1, k]

8: ▷ The centroids are updated as the mean of their snapshots
9: ci ←

1
|Ci|

ΣSj∈Ci
Sj,∀i ∈ [1, k], ▷ |Ci| is the cluster size

10: until All the centroids do not change anymore, or max iterations reached
11: ri ← max ∥Sj − ci∥, ∀Sj ∈ Ci, ∀i ∈ [1, k]
12: return Mk-means ▷ The model contains the centroids ci, the radii ri of the

clusters, and the labels of the snapshots
13: end function

40

Unsupervised Learning

5.1.2 Variations of the K-means algorithm
Kmeans Finding the optimal solution to the k-means problem (equation 5.1),
as said, is NP-hard. To address this problem, some other heuristics algorithms
have been proposed in the last two decades. Simple implementations have time
complexity O(n2) [52]. This means that most algorithms do not scale well as the
number n of snapshots increases. With respect to the number of clusters, the
problem has a linear complexity O(k).

It is worth noticing that an exact solution to the problem has been published [53],
with a time complexity O(nk·F). This is still impractical for actual applications, as
it is exponential with respect to both the number of clusters and the number of
features F .

Lloyd’s algorithm The classic Lloyd algorithm [49] has a complexity O(n ·k ·F).

Various improvements to Lloyd’s algorithm Keeping the same basic idea,
various modifications of the Lloyd algorithm have been proposed to improve the
performances. For example, Kanugo [54] proposed a local search algorithm that has
a complexity O(n3). Another result by Malay [52] has a linear complexity O(n).

Another improvement has been developed by Elkan [55], by keeping track of
the bounds from the instances (snapshots) and the centroids. This algorithm
becomes convenient when the number k of clusters is large (≥ 20), and up to a
dimensionality of F = 1000 features.

A variant of the Lloyd algorithm regarding both the speed of execution and the
memory consumption has been proposed by Sculley [56]. This solution achieves a
reduction of the execution time by orders of magnitude and enables performing the
classification even for datasets that don’t fit in the memory of the machine. This is
achieved by using a mini-batch approach, where the centroids are updated after
each batch of snapshots.

Concerning the problem of converging to a local minimum, the most common
approach is to run the algorithm multiple times with different initializations and
then select the best result, this is avoided by Reddy [57], by using the Voronoi
tessellation of the hyperspace using the data points to generate the initialization
for the centroid positions, this algorithm performs better in the sense that is less
likely to get trapped in a local minimum.

41

Unsupervised Learning

K-means++ The last improved algorithm reported in this section has its own
paragraph because it is the one used in this thesis. It was developed and named
Kmeans++ by Arthur and Vassilvitskii in 2007 [58]. The difference from the Lloyd
algorithm is only in the first initialization of the centroids ci∀i ∈ [1, n]. In this
case, instead of a random initialization for all the centroids, the first centroid c1
is chosen randomly from the snapshots, and then the other centroids are chosen
from the remaining snapshots with a probability that depends on the distance of
the candidate snapshot to the closest already chosen centroid. This approach is
summarized in the algorithm 2.

For the development of the framework of this thesis, the K-means++ algorithm
has been implemented in Python, using the scikit-learn library. The library
function has been modified, adding a method that returns the radii of the clusters,
this information is crucial for our scope, as it will be needed for evaluating if a new
snapshot is a novelty, normal or fault, as it will be explained in the subsection 5.1.6
and subsection 5.1.7.

Algorithm 2 K-means++ algorithm
1: function K-means++.train(S, k)
2: ▷ S = {S1,S2, . . . ,Sn} is the set of snapshots to be clustered
3: ▷ k is the number of clusters to be obtained
4: c1 ← random initialization, c1 ∈ S
5: for i← 2 to k do
6: ▷ D(S) is the distance of the snapshot S from the closest centroid

already chosen
7: ci ← S ′ ∈ S with probability D(S ′)2

ΣS∈SD(S)2

8: end for
9: perform the Lloyd algorithm using the calculated ci,∀i ∈ [1, k] as initializa-

tion, get the model.
10: return Mk-means ▷ The model contains the centroids ci, the radii ri of the

clusters, and the labels of the snapshots
11: end function

42

Unsupervised Learning

5.1.3 Selecting the number of clusters
It is important to notice that, even being an unsupervised learning algorithm, the
K-means algorithm needs to know the number of clusters k in advance. There are
some methods to decide what is the best number of clusters, but they usually need
to perform more iterations of the algorithm with different values of k, and then
compare the results. This task is automatable so, during the training phase, the
user can decide the number of clusters to be used, or leave the selection to the
algorithm itself.

To compare the results of the different iterations, it is possible to use some
metrics on the data and the centroids. The most common metrics are the inertia
and the silhouette score, described in the following paragraphs.

Inertia The inertia metric measures the total (sum) distance of each point
belonging to a cluster from the centroid of the cluster itself, as shown in the
equation 5.2. This is called inertia because, in the physical sense, it is the sum of
the moment of inertia of each cluster if all the snapshots were considered as point
masses (with unitary mass). This analogy is useful to understand that the lower
the inertia, the more compact the clusters are.

Let’s span k ∈ [1,9] and plot the inertia of the clusters for each value of k, on the
previous dataset. The result is shown in the figure 5.2a. As expected, the inertia
decreases as the number of clusters increases. This is not desirable behaviour, if
the aim is selecting the number of clusters, the best guess is to select (by eye or
with some automatism) the Pareto optimal point (POF) of the curve [59].

I =
k∑

i=1

∑
Sj∈Ci

∥Sj − ci∥2 (5.2)

Silhouette score A better metric that can be used to select the number of
clusters is the silhouette score. The silhouette score is defined for each snapshot
as in equation 5.3, where a is the mean distance of the snapshot from the other
snapshots in the same cluster, and b is the mean distance of the snapshot from the
snapshots in the nearest cluster. The resulting silhouette Si of a snapshot Si is a
scalar: Si ∈ [−1,1]. The three relevant cases are:

• a value close to 1 means that the snapshot is far inside its own cluster and far
from snapshots of other clusters;

• a value close to 0 means that the snapshot is on the boundary between two
clusters;

43

Unsupervised Learning

0

2000

4000

6000

In
er

ti
a

Elbow point

(a) Inertia of the clusters for different values of k

1 2 3 4 5 6 7 8 9

Number of clusters

0.4

0.6

S
il
h
ou

et
te

 s
co

re

Max Silhouette

(b) Silhouette score of the clusters for different values of k

Figure 5.2: Metrics for selecting the number of clusters

• a value close to −1 means that the snapshot is far from its own cluster and
close to another cluster, so it may have been misassigned.

Si = bi − ai

max (ai, bi)
(5.3)

At this point, the global silhouette score Sg can be computed as the mean of the
silhouette scores of all the snapshots (equation 5.4). The global silhouette score,
for the same example dataset, is shown as a function of the number of clusters k in
the figure 5.2b. Note that this time k ∈ [2,9], because the silhouette score is not
defined for a single cluster.

In this case, the best value for k is k = 3, because it is the value that maximizes
the silhouette score. This approach is simpler and easier to automate than the
inertia one.

Sg = 1
n

n∑
i=1

Si (5.4)

44

Unsupervised Learning

5.1.4 Assignation of the new instance to a cluster
The procedure for assigning the new snapshot Sn to a cluster is quite simple, it is
sufficient to compute the distance between Sn and the centroids cm, ∀m ∈ [1, . . . , k].
The distance is defined as the l2-norm in the feature space, it can be computed
using the equation 5.5, and assign Sn to the cluster with the minimum distance.

dn,m = ||Sn,f − cm,f ||2 =

√√√√√ F∑
f=1

(Sn,f − cm,f)2 (5.5)

5.1.5 Evaluation of a new instance
At this point, with a model trained on the data, a generic nth new snapshot
instance Sn can be evaluated using the K-means algorithm. From a geometric
point of view, the snapshot Sn is a point in the F -dimensional space, where F is
the number of features used to train the model.

For demonstration purposes, in this section, since it is still feasible to show 3D
plots, it is considered an example with F = 3 features.

Feature
1

−6
−4
−2

0
2

Feature 2

−10

−5

0

5

10

F
ea

tu
re

3

−14
−12
−10
−8
−6

Ci
Cj
ci, cj

Sn
dn,i

dn,j

ri
rj

Figure 5.3: Cluster model in the 3-dimensional space, with new snapshot Sn

In the figure 5.3, the training data are represented in the 3-dimensional space,
where the axis are the features used to train the model. The K-means model

45

Unsupervised Learning

has been ideally trained with an arbitrary number k of clusters but, for display
purposes, only two clusters (Ci and Cj) are plotted.

The entities shown in the figure 5.3 are:

• ci(j) is the centroid of the ith (jth) cluster;

• ri(j) is the radius of the ith (jth) cluster, it is defined as the distance between
the centroid ci(j) and the farthest point belonging to the cluster itself;

• Ci(j) is the set of training snapshots belonging to the ith (jth) cluster, it has
a centroid ci(j) and a radius ri(j);

• Sn is the new snapshot to be evaluated;

• dn,i is the vector between Sn and ci;

• dn,j is the vector between Sn and cj;

• the semi-transparent spheres represent the cluster sizes, the radius of the
spheres is the radius of the cluster itself, and the centre is the centroid of the
cluster;

5.1.6 Metric for the new instance evaluation
Once the new snapshot Sn has been assigned to the right cluster Ci using equa-
tion 5.5, some kind of measure (a.k.a. metric) linked to how novel this snapshot is
needs to be computed. In this document, this measure, referred to the n-th cluster,
will be called en, in order to remind some sort of error, even if it is not an error
in the strict sense. The first simple approach used in this project is computing
the difference between the distance of Sn from the centroid ci and the radius ri of
the cluster itself. With this approach, the measure defined in the equation 5.6 is
relative to the current snapshot, so it is possible to use that as a novelty measure.

en = ||dn,i||2 − ||ri||2, where i is the of the assigned cluster (5.6)

Few consideration about the result of the equation 5.6:

• if en > 0, the new snapshot Sn is outside the sphere of radius ri centred in ci,
so it is probably a novel snapshot;

• if en < 0, the new snapshot Sn is inside the sphere of radius ri, so it is probably
a normal snapshot. In this case, it is worth noticing that this assumption is
reasonable only if the shape of the point cloud resembles a sphere, otherwise,
the radius ri is not a good measure of the cluster size, and use it for novelty

46

Unsupervised Learning

detection would not be reasonable. This emphasizes the importance of
the standardization procedure applied to the features before the
training phase;

Using this metric it is possible to define as novelty all the snapshots with en > 0
and as normal all the snapshots with en < 0. This approach is not very robust
because s snapshot that is even slightly outside the sphere of radius ri will be
considered a novelty, but since the sphere is tuned the training measured data, that
have an aleatory component, this approach will probably detect some novelty even
in normal snapshots.

5.1.7 Introducing a threshold for the metric evaluation
In order to improve the robustness of the novelty detection algorithm, it is possible
to define a threshold ti for each cluster Ci and use it to detect if a snapshot is a
novelty or not. Once the threshold ti is defined, the detection of the novelty can
be triggered by the condition en > ti.

At this point, the problem is that the user would have to define a threshold
for each cluster, and this is not a trivial task. This is because it is likely that
the clusters have different sizes, and so one threshold for all the clusters would be
more conservative for the smaller clusters and less conservative for the bigger ones.
Moreover, most of the times, the clusters’ shape and size will not have a physical
meaning, and the act of manually defining a threshold for each cluster would go
against our goal of designing a fully unsupervised framework.

To address this problem, it is possible to change the definition of the metric itself,
so that is not dependent on the cluster size. This can be done by normalizing the
already defined metric en with the radius ri of the cluster itself, as shown in the
equation 5.7. In this way, ti can be defined as a percentage of the cluster size, so
that the user can define a single threshold for all the clusters, and selecting the
number to assign to ti has a more intuitive meaning. From now on if not otherwise
specified, the metric en will be this normalized version. Obviously, the metric can
be easily displayed as a percentage: en,% = en · 100. This value can be evaluated
in real time and plotted in a graph so that the user can see the novelty metric
behaviour over time.

en = ∥dn,i∥ − ∥rn,i∥
∥rn,i∥

= ∥dn,i∥
∥ri∥

− 1, where i is the of the assigned cluster (5.7)

After applying this scaling, the metric now follows this rule of thumb:

47

Unsupervised Learning

• en ∈ [−1,0] =⇒ Sn is a normal snapshot;

• en ∈ (0,+∞) =⇒ Sn is a novelty;

5.1.8 Transformation of the metric for the fault detection
In the previous subsection 5.1.7 a metric has been proposed to detect how novel
a snapshot is.

Let’s assume now to have trained the model on a dataset of snapshots collected
in a period in which the system was having a known malfunction. In this case, the
metric applied to any future snapshot will carry the information of “how faulty”
the system is, or better “how similarly the system is behaving w.r.t. a known
malfunction”.

Since the metric already defined is the normalized distance of the current
snapshot from the centroid of the cluster, if the clustered data are indicative of
a malfunction, the metric en will be in the range [−1,0] when the system has a
known malfunction present in the training data and en will be in the range (0,+∞)
when the system is not behaving as a known malfunction.

To maintain the same behavior of the metric as in subsection 5.1.7, a trasfor-
mation that maps the range [−1,0] into (0,+∞), and the range (0,+∞) into [−1,0]
is needed. This can be done by applying a logarithmic transformation to the metric,
as shown in the equation 5.8. This transformation is applied only if the model is
working in fault detection mode, otherwise, the metric has to remain the same as
in equation 5.7.

e′
n = − ln(en + 1) = − ln

(
∥dn,i∥
∥ri∥

)
, where i is the the assigned cluster (5.8)

In practice, to avoid numerical representation problems, it is mandatory to avoid
mapping −1 (when the new snapshot happens to be perfectly in the centre of a
cluster) into +∞. To do that, a constant slightly smaller than 1 is multiplied to
the metric before applying the logarithmic transformation, so that the function
will have the vertical asymptote slightly before −1, and all the inputs ∈ [−1,0]
will be mapped into real values. The plot of the settled function is shown in the
figure 5.4.

48

Unsupervised Learning

0 5 10 15 20 25 30

x

0

5

10

y

y= − log(x+1− 10−6)

x=-1

Figure 5.4: Logarithmic Transformation applied to the metric in case the model
is working in fault detection mode

49

Unsupervised Learning

5.1.9 Evaluation procedure
The evaluation procedure developed to address the novelty/fault detection scope
of this thesis can be summarized in the algorithm 3.

Algorithm 3 Evaluation of a new snapshot with a K-means model
1: procedure eval(Mk-means,S, t)
2: ▷Mk-means is the trained K-means model
3: ▷ the model contain the centroids ci and the radii ri of the clusters
4: ▷ S is the new snapshot to be evaluated
5: ▷ t is the threshold for the novelty detection
6: k ← number of clusters in Mk-means

7: min ←∞ ▷ initialize the minimum distance
8: for i← 1 to k do
9: di ← S − ci

10: if ∥di∥ < min then
11: min ← ∥di∥
12: imin ← i
13: end if
14: end for
15: e← ∥dimin∥

∥rimin∥
− 1 ▷ compute the novelty metric

16: if fault detection mode then
17: e← − ln(e+ 1− 10−6) ▷ apply the logarithmic trasformation
18: end if
19: if e > t then
20: return novelty flag, e ▷ the snapshot is novelty
21: else
22: return normal flag, e ▷ the snapshot is normal
23: end if
24: end procedure

5.1.10 Comment about selecting the wrong value of k
A brief comment about what has been done in the experimental phase, in the cases
where the number of clusters k was difficult to define based on the silhouette plots.
This happened when the maximum value of k was shared between more than one
value of k (multiple peaks with similar values or a flat shape of the peak).

In this case, the best choice is to select the maximum value of k that is still
compliant with the silhouette criterion. This is because the in scope of this thesis
the final goal is to detect novelty.

50

Unsupervised Learning

For display purposes, let’s consider an example in the plane (F = 2), with a
dataset that clearly has three distinct clusters. Looking at figure 5.5 it is clear
why it is better to select k larger than the actual number of clusters, rather than
selecting it too small. This is because, if k is larger than the actual number of
clusters, the algorithm will still be able to detect the novelty, but if k is too small,
somewhere the algorithm will be forced to join two clusters together, and a new
snapshot that happens to be in the middle of the two clusters will not be detected
as novelty.

In the case of the figure 5.5, the best actual number of clusters was k = 3, so
selecting k = 2 the algorithm would have joined the two clusters on the right, and
the new snapshot would not have been detected as a novelty. On the other hand,
by selecting k = 4, the algorithm would have correctly detected the novelty, even if
one cluster had been split in two.

−10 0 10

Feature 1

−10

−5

0

5

F
ea

tu
re

 2

k too small
detection failed

−10 0 10

Feature 1

k right
detection succeeded

−10 0 10

Feature 1

k too large
detection succeeded

Train Snapshots Boundaries Centers New Snapshot

Figure 5.5: Novelty detection of a new Sj with different values of k

5.1.11 Limitations of the algorithm
This algorithm has many advantages: it’s simple, popular (easy to find in libraries),
it’s fast, produces a model that does not need to store the original data in order to
perform the classification of a new instance and is well scalable. But it has also
some limits, the most important are [7, p. 273]:

• it performs poorly if the clusters are not spherical;

• it performs poorly if the clusters have very different sizes;

• it performs poorly if the clusters have different densities.

51

Unsupervised Learning

For this reason, it is very important to perform a good preconditioning of the
data. In this thesis, the data are standardized before the training phase, this makes
the clusters more spherical and with similar sizes.

5.2 DBSCAN

5.2.1 Overview

−4 −2 0 2

Feature 1

0

5

F
ea

tu
re

 2

datapoints

(a) training data

−4 −2 0 2

Feature 1

0

5

F
ea

tu
re

 2

Core Points

Reachable Points

Outliers

Clust. 1

Clust. 2

Clust. 3

(b) training result

Figure 5.6: DBSCAN clustering

Looking at figure 5.6a we can see that the data are clearly divided into 3
clusters, but a simple K-means will fail to cluster correctly the data because the
clusters are very stretched. But how do we humans see that there are 3 clusters?
We instinctively look at the density of the points, and we can see that there are 3
areas with a high density of points, and the rest of the space is empty. DBSCAN
is a clustering algorithm that tries to mimic this behaviour.

52

Unsupervised Learning

−3 −2 −1

Feature 1

4.0

4.5

5.0

5.5

6.0

F
ea

tu
re

2

p1

p2

considered points

points within ε to considered points

other points

Figure 5.7: Example of core and border points

DBSCAN is a density-based clustering designed by Martin Ester, Hans-Peter
Kriegel, Jörg Sander and Xiaowei Xu [60]. The algorithm is based on the definition
of what a core point is, and what a density-reachable point is.

The algorithm inputs are:

• D: the dataset

• ε: the radius of the neighbourhood

• MinPts: the minimum number of points to form a cluster

The basic idea is that if a point has a sufficient number of other points (MinPts)
in its neighbourhood of radius ε, then it is a core point. Chosen a core point, all
the other core points in its neighbourhood are assigned to the same cluster, and
the process is repeated for all the core points in the neighbourhood of the just
assigned ones and so on. At a certain point there will be a cluster of core points
that are not near any other core point, when this happens the idea is to include in
the cluster also the points that are not core points but are in the neighbourhood of
the core points of the cluster.

To better visualize the process, figure 5.7 shows some data points. Let’s assume
MinPts = 5 The point p1 is a core point because, in its neighbourhood of radius
ε, there are 7 > MinPts points. The point p2 is not a core point because in
its neighbourhood there are only 3 < MinPts points. even if it is not a core
point, it may be assigned to a cluster, depending on if there is a core point in its
neighbourhood. If a point is not a core point and there is not a core point in its
neighbourhood, then it is a noise point and it is not assigned to any cluster.

53

Unsupervised Learning

Some of the definitions presented in [60] can be resumed for our purpose as
follows:

• Nε(p) = q ∈ D : ∥d ≤ ε∥ is the set of points in the ε-neighbourhood of p;

• a point p is a core point if there are at least MinPts points in the ε-
neighbourhood of p;

• a point p is directly density-reachable from q if p is in the ε-neighbourhood of
q and q is a core point;

• a point p is density-reachable from q if there is a chain of points p1, . . . , pn

such that p1 = q and pn = p and pi+1 is directly density-reachable from pi;

• a point p is density-connected to q if there is a point o such that both p and q
are density-reachable from o;

In the paper [60] the authors propose a detailed pseudocode of the algorithm,
algorithm 4 is a more abstract version of it.

Algorithm 4 Train DBSCAN
1: procedure DBSCAN(D, ε,MinPts)
2: for p ∈ D do
3: if |Nε(p)| ≥MinPts then
4: mark p as a core point
5: end if
6: end for
7: i← 0 ▷ cluster index
8: while there are unassigned points do
9: clusteri ← ∅

10: choose an unassigned point p
11: clusteri ← clusteri ∪ p ▷ add p to the cluster
12: for q ∈ all reachable points from p do
13: ▷ all density-reachable points from p are added to the cluster
14: clusteri ← clusteri ∪ q ▷ add q to the cluster
15: end for
16: if there are no unassigned core points then
17: drop all unassigned points from D ▷ they are noise
18: end if
19: i← i+ 1
20: end while
21: end procedure

54

Unsupervised Learning

5.2.2 Choosing the parameters
Running the algorithm implemented in the sklearn library on the dataset of
figure 5.6a with ε = 0.78 and MinPts = 10 we obtain the result of figure 5.6b.
The algorithm correctly identifies the 3 clusters, also the noise points number is
affected by the choice of ε and MinPts.

Note that the DBSCAN is able to identify clusters with arbitrary shapes, even
if they are not convex and are not linearly separable. This is a big advantage over
the K-means, which is not able to identify clusters with arbitrary shapes.

2

4

n
 o

f
cl

u
st

er
s

corresponding to 3 clusters

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ε

0.0

0.2

0.4

si
lh

ou
et

te
 s

co
re

max for ε≈ 0.78

Figure 5.8: Silhouette score for different values of ε

Even being the DBSCAN an unsupervised algorithm, it has some parameters
that need to be set by the user. The first parameter is ε, the radius of the
neighbourhood. This gives a measure of the density we expect from the clusters.
As seen for the K-means in section 5.1, we can try to find the best ε by using the
silhouette score.

Let’s plot the silhouette score for different values of ε to confirm that using
ε = 0.78 is a good choice. In the figure 5.8 are shown the results that link the
best ε value to 3 cluster being generated.

55

Unsupervised Learning

5.2.3 Evaluation of a new instance
Assume now that the training of the DBSCAN is complete, and a new snapshot
Sn is generated from the sensor data. How can we evaluate if the new snapshot is
novel or not? The DBSCAN algorithm is not able to predict the cluster of a new
instance. However, the task of this project is novelty detection, not classification.
To do that, as has been done for the K-means, a metric linked to how novel a new
snapshot is developed.

The idea used previously to compute the distance to a centroid and normalizing
it by the radius of the cluster is not applicable here, because the DBSCAN do not
use centroids to define clusters. A naive idea for our purpose is to compute the
distance of the new snapshot from the closest snapshot in the training dataset. If
the distance is greater than a threshold, then the new snapshot is considered novel.

And now the question: if we use the distance of a new Sn from the closest Si

in the training dataset (spanning the whole dataset to compute it) why did we
train a model in the first place? Wouldn’t it be simpler to just apply this metric to
the training dataset without clustering it? As far as concerns scope of this thesis,
performing the clustering first has two main advantages:

• ε has been chosen running the DBSCAN, so nobody had to guess it. This is a
big advantage because the choice of ε would be very difficult to do with limited
knowledge of the monitored system. Normalizing the computed distance by ε
we can obtain a measure of how novel a snapshot is for which we can set a
threshold without tuning it on the specific system;

• during the training phase, the DBSCAN has discarded the noise points. This
improves the quality of the metric because the distance from a noise point is
not meaningful.

5.2.4 Limitations of the algorithm
The first limitation of DBSCAN is about cluster density: since ε is fixed, the
algorithm is not able to identify clusters with different densities. In this case, it
will split low-density clusters into multiple clusters. For our purpose, this is not
a problem, because we are interested in novelty detection, so even if a cluster is
misidentified as multiple clusters, the new snapshot will be considered novel. To
increase the sensitivity of the novelty detection ε can be decreased, but this will
increase the number of noise points.

The other main limitation of DBSCAN is that it has a complexity of roughly
O(m2), where m is the number of points in the dataset. This means that the
algorithm is not scalable to large datasets [7, p. 281]. There exist improvements
to the algorithm that reduce the complexity to O(m logm), like the FDBSCAN

56

Unsupervised Learning

developed by Bing Liu [61]. The complexity remains linear w.r.t. the number of
features.

5.3 Gaussian Mixture Model

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

x

0.0

0.5

1.0

P
ro

b
ab

il
it
y
 d

en
si

ty

Normal Distribution PDF: µ= 0.8, σ= 0.3

Figure 5.9: Gaussian distribution probability density function

The figure 5.9 illustrates a Gaussian distribution probability density function
(PDF), also known as normal distribution. The peak represents the mean µ, while
the spread is determined by the standard deviation σ. The equation of the PDF is
the following:

f(x) = 1
σ
√

2π
e− 1

2(x−µ
σ)2

A Gaussian Mixture Model is a probabilistic model that assumes that the data
are generated from a mixture of several Gaussian distributions. Depending on the
parameters of a Gaussian distribution (mean and variance) on each axis (Features),
the data generated from it in the F -dimensional space will have a shape that
resembles an ellipsoid with a centre and an orientation.

5.3.1 Training
As anticipated, the assumption is that every cluster has a normal PDF on each
axis. So, for each feature, the total PDF is a superposition of k normal PDF. The
algorithm used to train the model is the Expectation Maximization (EM) algorithm.
This is a generalization of the k-means algorithm that allows to find the centroids
(means), the covariance matrices of the clusters, and their weights. Unlike the
k-means, the EM is a soft clustering algorithm, meaning that each point is assigned

57

Unsupervised Learning

to each cluster with a probability, instead of being assigned to a single cluster.
The EM algorithm is an iterative algorithm that aims to find the parameters that
maximize the likelihood function.

5.3.2 Selecting the number of clusters

2 4 6 8 10 12 14

Number of clusters

800

1000

1200

1400

In
fo

rm
at

io
n
 C

ri
te

ri
on

Both criteria minimized for k= 3 clusters

BIC

AIC

Figure 5.10: Criteria for selecting the number of clusters

In subsection 5.3.1 we have seen that the EM algorithm needs to know in
advance the number of clusters k to train the model. To select the best k we
could use the same criteria used for the k-means, that is the elbow method or the
silhouette score. But, since the EM is most suitable for ellipsoids-shaped clusters of
very different sizes, it is better to avoid those metrics that work best with spherical
clusters. Instead, we can use the AIC or the BIC criteria, which are functions of
the size m of the training dataset, the number p of parameters, and the max value
of likelihood function L̂.

AIC = 2p− 2 ln(L̂)
BIC = p ln(m)− 2 ln(L̂) (5.9)

Both the criteria in equation 5.9 penalize the models with a large number of
parameters, they usually select the same model, but if they select different models,
the AIC tends to select the most accurate model.

Considering, as an example, the same dataset used in figure 5.6a, and running
the EM algorithm with different values of k, we obtain the results shown in
figure 5.10. As expected the AIC and the BIC criteria select the same model,
that is the one with k = 3.

58

Unsupervised Learning

Totally automated approach

Another advantage of the GMM is that it can be used in a totally automated way.
This can be done using the variation called Bayesian Gaussian Mixture Model
BGMM. This variation is able to assign 0 as weight to some clusters, meaning that
those clusters are not used to generate the PDF of the samples. In this case, we
can set the number of clusters as high as the size of the training dataset, and the
BGMM will select the best number of clusters to use to generate the PDF of the
samples.

5.3.3 Evaluation of a new instance

−4 −3 −2 −1 0 1 2 3 4

Feature 1

−4

−2

0

2

4

F
ea

tu
re

 2

Data points

Cluster centers

0.000

0.064

0.128

0.192

0.256

0.320

0.384

0.448

0.512

0.576

P
ro

b
ab

il
it
y
 d

en
si

ty
Figure 5.11: Trained Gaussian Mixture Model

Once the model is well-trained, we can use it to evaluate a new instance. The
figure 5.11 shows the result of the training of the GMM on the example dataset.
The ellipsoids represent the clusters, the size of the ellipsoids is proportional to
the weight of the cluster, while the orientation and the size of the ellipsoids are
determined by the covariance matrix of the cluster.

The pyhton implementation of the GMM used in this project is the one provided
by the sklearn library. It has an attribute called score_samples that returns the
log value of the PDF of the samples. The bigger the value, the more likely it is to
be inside a cluster. To maintain the same philosophy of the other algorithms, we
can take the negative value of score_samples as a metric to evaluate the novelty
of a new instance.

59

Unsupervised Learning

Selecting the threshold

As said for K-means, and DBSCAN, a threshold will be needed to decide if the new
instance is novel or not. If, as supposed for now, the scenario is that the training
dataset is composed only of normal instances, then the threshold can be selected
by looking at the distribution of the novelty metric on the training dataset and
selecting a value slightly higher than the maximum value for the training dataset.

If the scenario is that the training dataset is composed of both normal and
anomalous instances sampled at constant intervals, and the ratio between normal
and anomalous instances is known, then GMM enables us to select the threshold
in a more sophisticated way.

Suppose for example that 1% of the training dataset is anomalous, since the
model gives us the PDF of the samples, we can compute the threshold as the 1%
percentile of the PDF of the training dataset. This will ensure that the 1% of
the training instances will be classified as anomalous. If the model is correct, also
future evaluations will have the same ratio of anomalous instances.

5.3.4 Limitations of the algorithm
The main limitation of the GMM is that it is not able to identify clusters with
arbitrary shapes.

If the data are not shaped like some ellipsoids, the model can approximate the
data anyway, splitting the clusters into smaller ellipsoids. For our purposes of
novelty detection, this is not a limitation.

The complexity of the algorithm is O(kmF 2 + kF 3), where k is the number of
clusters, m is the number of samples, and F is the number of features [7, p. 281].
This means that the algorithm is not scalable to a large number of features, but it
is scalable to a large number of samples. For our purposes, it’s more important to
have an algorithm that is fast to evaluate a new instance, than an algorithm that
is fast to train.

5.4 Isolation Forest
Similarly to the Random Forest, which is used for classification, the Isolation Forest
is an ensemble method that is used for anomaly detection. The idea is to train the
decision trees to isolate the data from each other, rather than profiling the normal
data, and then provide a score that represents how isolated the data is. The more
isolated the data is, the more likely it is to be an anomaly. This algorithm was
introduced in 2008 by [62], the paper also provides a way of computing the anomaly
score.

60

Unsupervised Learning

This algorithm has the advantage of being very fast to train and requiring very
little memory. For hour purposes, as previously said, it is more important to have
an algorithm that is fast to evaluate a new instance, than an algorithm that is fast
to train.

5.4.1 Training
The algorithm is available in sklearn library, and it is very easy to use. This is
a truly unsupervised algorithm, the function only takes the dataset as input and
manages to automatically select all the rest of the parameters. As an example, I
used the same dataset used in the previous sections for the DBSCAN and GMM
algorithms. The result is shown in figure 5.12.

−4 −3 −2 −1 0 1 2 3 4

Feature 1

−4

−2

0

2

4

F
ea

tu
re

 2

Data points

−0.252

−0.216

−0.180

−0.144

−0.108

−0.072

−0.036

0.000

0.036

0.072

D
ec

is
io

n
 f
u
n
ct

io
n

Figure 5.12: Isolation Forest decision function.

5.4.2 Evaluation of a new instance
The implementation in sklearn provides a function called decision_function,
plotted as a heatmap in figure 5.12. the higher the value, the more likely it is
to be a normal instance. To maintain coherence with the work done up to now,
we can take the negative value of decision_function as a metric to evaluate the
novelty of a new instance.

61

Unsupervised Learning

Selecting the threshold

With this algorithm is it difficult to geometrically interpret the decision function,
so it is not possible to select the threshold a priori. The approach could be to look
at the values of the decision function on the training dataset and select a value
slightly higher than the maximum value for the training dataset.

5.4.3 Limitations of Isolation Forest
The main limitation is that since the algorithm is based on decision trees, the
decision thresholds are defined on the features axis, so the decision boundaries
are highly dependent on the alignment of clusters with the axis. looking back to
figure 5.12, we can see that the decision function has roughly the same value in
the lower right corner as in the lower left corner, even if the lower right corner
is clearly more isolated than the lower left corner. This is because the decision
boundaries are aligned with the axis, and the lower right corner is more isolated
only in the diagonal direction.

The complexity of the training phase is O(tψ logψ) where t is the number
of trees used, and ψ is the size of the subsampling size. The complexity of the
evaluation is instead O(t logψ) [62].

5.5 Local Outlier Factor
The Local Outlier Factor (LOF) algorithm is effective in identifying outliers by
assessing the density of instances surrounding a particular data point in comparison
to the density around its neighbouring points. Typically, an anomaly is considered
more isolated than its k nearest neighbours [7, p. 293].

Formally, the authors that designed this algorithm define the LOF of an instance
S as the average of the ratio of the local reachability density of S and the local
reachability density of its MinPts k-nearest neighbours [63]. This is a measure of
how isolated the instance is with respect to the surrounding neighbourhood.

Using this approach, this algorithm is able to identify outliers in a dataset with
arbitrary shapes. Moreover, it can identify outliers in a dataset with different
densities, as a point very near to a very dense cluster can be declared as an outlier,
while a point even more distant from a less dense cluster could be declared as
normal.

62

Unsupervised Learning

5.5.1 Training

−4 −3 −2 −1 0 1 2 3 4

Feature 1

−4

−2

0

2

4

F
ea

tu
re

 2

Data points

−3.08

−2.64

−2.20

−1.76

−1.32

−0.88

−0.44

0.00

0.44

D
ec

is
io

n
 f
u
n
ct

io
n

Figure 5.13: Local Outlier Factor decision function.

This algorithm is implemented in sklearn library and requires the number
MinPts of k-nearest neighbours to be specified. According to the authors, the
value of LOF of a particular snapshot is neither increasing nor decreasing with the
value of MinPts. They also suggest an heuristic to select the value of MinPts
that is hardly automatable. For this reason, it’s difficult to use this algorithm in a
real-time scenario in an unsupervised way.

Anyway, as an example, using the same dataset used in figure 5.6a, and running
the LOF algorithm with the default value of MinPts = 20, we obtain the results
shown in figure 5.13.

5.5.2 Evaluation of a new instance
The sklearn implementation of the LOF algorithm has a method that returns the
LOF of a new instance. Since the bigger the value is, the more likely it is that the
new snapshot is an outlier, we can take directly this value as a metric to evaluate
the novelty of a new instance.

To select a threshold value, it holds what has been said in subsection 5.4.2
about iForest.

63

Unsupervised Learning

5.5.3 Limitations of Local Outlier Factor
The main limitations are the difficulty of defining a threshold value to declare some
instances as outliers and using this algorithm in a completely unsupervised way.

5.6 One-Class Support Vector Machine
This algorithm is based on the kernelized SVM algorithm. While the standard
application is to find the hyperplane that separates two classes, in this case, the
aim is to separate the instances from the origin. If a new instance is too close to
the origin (of an augmented hyperspace), then it is considered an outlier. It was
introduced in 2001 by Müller [64].

5.6.1 Training
As an example, we refer to the same dataset used in the previous sections for
the DBSCAN and GMM algorithms. The training of the version implemented in
sklearn requires specifying the kernel to use, and the parameter ν that is the
upper bound on the fraction of outlier. Training the algorithm on the dataset, with
Gaussian kernel and ν = 0.002, we obtain the result shown in figure 5.14.

−4 −3 −2 −1 0 1 2 3 4

Feature 1

−4

−2

0

2

4

F
ea

tu
re

 2

Data points

−0.064

−0.056

−0.048

−0.040

−0.032

−0.024

−0.016

−0.008

0.000

0.008

D
ec

is
io

n
 f
u
n
ct

io
n

Figure 5.14: One-Class Support Vector Machine decision function.

64

Unsupervised Learning

5.6.2 Evaluation of a new instance
The decision function is the relative distance from the separation hyperplane, if
it is positive, then the instance is considered normal, if it is negative, then the
instance is considered an outlier.

This allows us to take directly the negative of this value as a metric to evaluate
the novelty of a new instance (to maintain coherence with previous sections).

Furthermore, similarly to the GMM case (section 5.3), if the training dataset
contains only normal instances, we have to guess a positive value for the threshold
by looking at the value of the metric on the training dataset, but if we have a
dataset with a known fraction of outliers, we can use the fact that ν is the upper
bound on the fraction of outliers to select ν correctly in the training phase, and
then use a threshold of zero for the decision function. This should make at most a
ν fraction of future evaluation to be considered outliers.

5.6.3 Limitations of ν-SVM
The limitations are about the sensitivity to the choice of the kernel and the
parameter ν, making it difficult to use in a completely unsupervised manner.

It works well in high dimensional spaces, but it is not suited for large datasets
[7, p. 294]

65

Chapter 6

Feature Extraction

Before diving into the novelty detection framework itself, the features to be used
need to be defined and extracted from the data. Since our goal is to detect a
novel behaviour, we are interested in both “time-domain” and “frequency-domain”
features. The former are used to capture the temporal evolution of the signal,
while the latter are used to capture the spectral content of the signal. In this
chapter, we will first introduce the reference dataset that will be used to test
the framework and then we will describe the features that will be used in the
framework. The ND framework will work on the complete collection of features
F = {Ft,Ff}, where Ft is the collection of time-domain features and Ff is the
collection of frequency-domain features. Some of the features will be extracted
for all the signals available, while some others only on a subset of the signals,
depending on the settings of the framework, as it will be explained in chapter 7.

6.1 Reference dataset
In the field of ND, a famous bearing vibration dataset has been collected from the
Center for Intelligent Maintenance Systems (IMS) of the University of Cincinnati
and made available online on the NASA website [65]. Let’s take this as a starting
point for our work. The dataset contains the vibration measurements collected
at a sampling frequency fs = 20kHz of four forced-lubricated bearings. The shaft
was kept constant at 2000rpm during the data collection. The test rig is shown
in figure 6.1 and the test parameters are summarized in table 6.1, which also
shows the type of faults that happened in each repetition of the test.

To visualize what happens to the vibration signal as the bearing degrades
over time, let’s consider the “Bearing 3 x” signal from the IMS dataset, shown
in figure 6.2. The top plot shows the vibration of the new bearing, while the
bottom plot shows the vibration of the bearing just before the test was stopped.

66

Feature Extraction

It’s evident that the degraded signal reaches greater peaks in vibration and has a
greater variance. The narrow peaks in the degraded signal are due to the presence
of fault frequencies, that are not present in the new bearing signal.

M

shaft

belt

motor

accelerometers

radial load

bearing 1 bearing 2 bearing 3 bearing 4

Figure 6.1: The test rig used by [65]

−0.25

0.00

0.25

am
p
li
tu

d
e

Healthy bearing

0.0 0.2 0.4 0.6 0.8 1.0

time [s]

−5

0

5

am
p
li
tu

d
e

Damaged bearing

Figure 6.2: “Bearing 3 x” vibration signal from the IMS dataset

67

Feature Extraction

Table 6.1: IMS Test setup [65]

Set No. 1 Set No. 2 Set No. 3
Recording Duration 22/10/2003 - 25/11/2003 12/02/2004 - 19/02/2004 04/03/2004 - 04/04/2004
No. of Files 2156 984 4448
No. of Channels 8 4 4
Channel Arrangement Bearing 1 ch 1 & 2

Bearing 2 ch 3 & 4
Bearing 3 ch 5 & 6
Bearing 4 ch 7 & 8

Bearing 1 ch 1
Bearing 2 ch 2
Bearing 3 ch 3
Bearing 4 ch 4

Bearing 1 ch 1
Bearing 2 ch 2
Bearing 3 ch 3
Bearing 4 ch 4

File Recording Interval 5 or 10 min 10 min 10 min
Fault type Bearing 3: inner race defect

Bearing 4: roller element defect
Bearing 1: outer race failure Bearing 3: outer race failure

6.2 Time-domain features
Let’s consider a timeserie x containing n samples x1, x2, . . . , xn. The goal of the
feature extraction process is to extract a set of features Ft = {F1, F2, . . . , Fm} ∈ RF

that can be used to describe the signal. In this section, we will describe the features
that will be used in the developed framework.

Mean The first feature to be considered is simply the mean of the signal. It is
defined as

µ = 1
n

n∑
i=1

xi (6.1)

RMS The Root mean square of the signal RMS is related to the power and is
defined as

RMS =
√√√√ 1
n

n∑
i=1

x2
i (6.2)

Peak-to-peak The peak-to-peak value of the signal is defined as

P2P = max(x)−min(x) (6.3)

Standard deviation The standard deviation is a measure of the dispersion of
the signal and is defined w.r.t. a known distribution with knowledge of the true
mean µtrue as

σ =
√√√√ 1
n

n∑
i=1

(xi − µtrue)2 (6.4)

68

Feature Extraction

but since in our case we don’t know the true mean, we will use the sampled
standard deviation, which is the best estimate, defined as

σ̂ =
√√√√ 1
n− 1

n∑
i=1

(xi − µ)2 (6.5)

Skewness The skewness is a measure of the asymmetry of the signal and is
defined as

γ = E
[(
x− µ
σ

)3
]

(6.6)

and can be estimated on sampled data as

γ̂ =

√
n(n− 1)
n− 2

1
n

∑n
i=1(xi − x)3[

1
n

∑n
i=1(xi − x)2

]3/2 (6.7)

Kurtosis The kurtosis is a measure of the “peakedness” of the signal and is
defined as

κ = 1
n

n∑
i=1

(
xi − µtrue

σ

)4
(6.8)

It can be estimated on sampled data as

κ̂ = (n+ 1)n
(n− 1) (n− 2) (n− 3)

∑n
i=1(xi − µ)4

k2
2

− 3 (n− 1)2

(n− 2)(n− 3) (6.9)

To visualize the evolution of the features over time, consider all the snapshots
of the “Bearing 3 x” signal from the IMS dataset and plot all the time-domain
features described above. The result is shown in figure 6.3. Having seen also
figure 6.2, it’s not surprising that the P2P and the kurtosis are the time domain
features that capture the degradation of the bearing the earliest.

6.3 Frequency-domain features
To capture also the frequency behaviour of the signal, other tools are needed. In this
section, we will describe the frequency-domain features Ff = {Fm+1, Fm+2, . . . , Fl}
that will be used in the developed framework.

69

Feature Extraction

0

20

µ

0

20

R
M

S

0

5

P
2P

Novel behaviour
2003-11-22 16:06

0

20

σ̂

−10

0

γ̂

20
03

-1
0-
21

20
03

-1
0-
25

20
03

-1
0-
29

20
03

-1
1-
01

20
03

-1
1-
05

20
03

-1
1-
09

20
03

-1
1-
13

20
03

-1
1-
17

20
03

-1
1-
21

20
03

-1
1-
25

timestamp

0

10

ˆ

Figure 6.3: All time-domain features for the “Bearing 3 x” vibration signal from
the IMS dataset

6.3.1 Fourier Transform

One powerful tool to analyze the frequency content of a signal is the Fourier
transform or, in the case of a discrete signal, the Discrete Fourier Transform(DFT),
which has a very efficient implementation in the Fast Fourier Transform (FFT)
algorithm [66]. This algorithm is implemented in many programming languages and
libraries, including python and C. The theory behind this topic is briefly described

70

Feature Extraction

in Appendix A.
To have a better understanding of the capability of the FFT to capture the

frequency content of a signal (and the presence of a disturbance in a portion of the
signal), consider the following signal, composed by the sum of four sinusoids with
different frequencies that are plotted with its DFT in figure 6.4:

x(t) = sin(2πf1t) + sin(2πf2t) + sin(2πf3t) + sin(2πf4t),
t ∈ [0, 1], {f1, f2, f3, f4} = {2, 5, 7, 15}Hz (6.10)

In the figure 6.4 it is possible to see the four peaks in the frequency domain,
corresponding to the four frequencies of the sinusoids. Now, consider the same
signal, but with an additive disturbance in a small portion of the signal, as shown
in figure 6.5. The disturbance is a period of the signal x(t) = sin(2πf5t), with
f5 = 50Hz, that is added to the signal in the interval t ∈ [0.4, 0.6]. The DFT of this
signal is shown in figure 6.5. It is possible to see that the disturbance is captured
by the spectrum as a broad frequency additional components, instead of a peak
at f5 = 50Hz. This is because the disturbance is not acting on the whole signal.
For our purpose, this is still good because we can detect the variation of all the
frequencies involved.

Consider the period of the undisturbed signal, that is the LCM of the periods
of the four sinusoids composing the signal.

T = LCM
(1

2s, 1
5s, 1

7s, 1
15s

)
= 1s

So, we were processing a signal that has a period of one second, sampled for
exactly one second. Let’s see what happens if we sample the same signal for a time
that is not an integer multiple of the period. In figure 6.6 it is shown the DFT of
the same signal as before, but sampled for t ∈ [0, 0.9]. It is possible to see that the
peaks are still at the frequencies of the sinusoids composing the signal, but they
are not single points as it appears that also frequencies near the true frequencies
are present. This phenomenon is called spectral leakage and happens because the
signal is not sampled for an integer number of periods [67].

Preprocessing

Up to now, it has been shown that the DFT will translate the presence of a
disturbance in the time domain into several periodic components in the frequency
domain. However, it has the spectral leakage weakness if the sampling interval is
not an integer multiple of the period of the signal which is the most likely scenario
in a real application. To compensate for this phenomenon, it is better to use a
transformation to the signal that makes it artificially start and end with the same

71

Feature Extraction

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−2.5

0.0

2.5

A
m

p
li
tu

d
e

0 100 200 300 400 500

Freq [Hz]

10−4

10−2

100

M
ag

n
it
u
d
e known harmonics

Figure 6.4: FFT of the signal with known frequency components

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−2.5

0.0

2.5

A
m

p
li
tu

d
e

disturbance

0 100 200 300 400 500

Freq [Hz]

10−4

10−2

100

M
ag

n
it
u
d
e

disturbance

Figure 6.5: FFT of the signal with known frequency components, and an
additive disturbance

72

Feature Extraction

0.0 0.2 0.4 0.6 0.8

Time [s]

−2.5

0.0

2.5

A
m

p
li
tu

d
e

0 100 200 300 400 500

Freq [Hz]

10−4

10−2

100

M
ag

n
it
u
d
e spectral leakage

Figure 6.6: FFT of the signal with known frequency components, with a domain
that is not an integer multiple of the period

1 1
4
N 1

2
N 3

4
N N

i

0.0

0.5

1.0

A
m
p
li
tu
d
e

Hann

Hamming

Figure 6.7: Hann and Hamming windows

value. This can be done with a windowing function, or with the flip and reverse
method [68].

The most common windowing functions are the Hann and the Hamming windows,
defined as:

whann(i) = 0.5
[
1− cos

(2πi
n

)]
(6.11)

whamming(i) = 25
46

[
1− cos

(2πi
n

)]
(6.12)

73

Feature Extraction

where i is the considered sample as the independent variable and n is the total
number of samples. Those functions are plotted in figure 6.7. The preprocessing
operation is simply to multiply the signal by the windowing function. this will
make the first and last point of the signal exactly zero in the case of the Hann
window, and very close to zero in the case of the Hamming window but with the
advantage of having a narrower peak in the spectrum.

The “flip and reverse” method is simply to concatenate a flipped copy of the
signal to itself and downsampling it to preserve the original length of the array, as
follows [68]:

xnew(i) =
x(2i) if i ≤ n

2
x(2(n− i)) if i > n

2
∀i ∈ [1, n] (6.13)

A comparison of those preprocessing techniques is shown in figure 6.8 and
figure 6.9. In both figures, it is evident that the “flip and reverse” method
generates a fake peak at half the sampling frequency, while the windowing function
doesn’t. Moreover, looking at figure 6.9, it is possible to see that the Hann window
better suppresses the spectral leakage. In figure figure 6.10 it is shown the effect
of different preprocessing techniques on a real-world signal from the IMS dataset.
The Hann window will be implicitly used in the rest of this section.

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−2.5

0.0

2.5

A
m

p
li
tu

d
e

0 100 200 300 400 500

Frequency [Hz]

10−12

10−5

M
ag

n
it
u
d
e

No preprocessing

Hann window

Hamming window

Flip and Reverse

Figure 6.8: FFT of the signal with a domain that is an integer multiple of the
period, and preprocessing techniques applied

74

Feature Extraction

0.0 0.2 0.4 0.6 0.8

Time [s]

−2.5

0.0

2.5

A
m

p
li
tu

d
e

0 100 200 300 400 500

Frequency [Hz]

10−7

10−3

M
ag

n
it
u
d
e

No preprocessing

Hann window

Hamming window

Flip and Reverse

Figure 6.9: FFT of the signal with a domain that is not an integer multiple of
the period, and preprocessing techniques applied

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−0.5

0.0

A
m

p
li
tu

d
e

0 2000 4000 6000 8000 10000

Frequency [Hz]

0.000

0.002

0.004

M
ag

n
it
u
d
e

No preprocessing

Flip and Reverse

Hann window

Hamming window

Figure 6.10: FFT of the “Bearing 3 x” vibration signal from the IMS dataset, in
normal conditions, with preprocessing techniques applied

75

Feature Extraction

Application to the reference dataset

At this point, to see if the spectrum is representative of a fault, as it has been done
for the time-domain features, we can plot all the spectrum for all the snapshots of
the “Bearing 3 x” signal from the IMS dataset, as shown in figure 6.11. Looking
at the picture, we can see that the signature frequencies of faults are present in
the spectrum, and they become more and more prominent as the bearing degrades.
This is a good sign justifying to use of the spectrum to detect the novel behaviour.

Figure 6.11: FFT of the “Bearing 3 x” vibration signal from the IMS dataset, in
normal conditions with Hann window preprocessing applied

6.3.2 Wavelet Packet Decomposition
Motivation

In the previous subsection 6.3.1, it has been shown that the spectrum of the signal
contains useful information for performing ND. Remembering that the ultimate
scope of this work is to develop a framework that runs in edge computing, it is
important to consider the computational cost of the features extraction, and the
memory usage. Considering only the FFT of all signals of the dataset shown
in figure 6.11 and the fact that a floating point value uses 64 bit, the memory

76

Feature Extraction

usage is 64bit × 10kFeatures × 2156Snapshots ÷ 8bit/byte ≈ 172.5Mb. This is
not a big problem for a desktop computer, but it may be a problem for an IOT
device. Moreover, the FFT is a very computationally expensive operation, with a
complexity of O(n log n), where n is the number of samples.

To overcome this problem it is necessary to find a method that exploits the same
information in the frequency domain, but using much less computational power
and memory. Other tools for the frequency analysis are the Wavelet Transform
and, in particular, the Wavelet Packet Decomposition (WPD) has been used in
the developed framework. The theory behind this topic is briefly described in
Appendix B.

Furthermore, most ML algorithms perform better with a lower number of
features, and the WPD is able to extract a lower number of features. For example,
for a signal like the ones in the IMS dataset x ∈ R2000, the WPD with a depth of 6
will output 26 = 64 coefficients, which are transformed into features. On the other
hand, the FFT will output 2000 coefficients, which can already be considered an
high dimensionality space.

Application to the reference dataset

At this point, let’s consider a WPD with a depth of 6, that outputs 26 = 64
coefficients. We are going to take the norm of each coefficient as a feature so, in the
end, we will have 64 features (from “aaaaaa” that leads from all the approximation
coefficients to “dddddd” that that leads from all the detail coefficients instead,
passing for all the combinations in between). The WPD of the “Bearing 3 x”
signal from the IMS dataset is shown in figure 6.12 as the bearing is new, and in
figure 6.13 as the bearing is degraded. It is possible to see that the WPD is able
to capture the presence of the fault frequencies.

aa
aa

a
a

aa
a
aa

d
aa

a
ad

a
aa

aa
d
d

aa
a
d
aa

aa
ad

ad
aa

ad
d
a

aa
ad

d
d

aa
d
aa

a
aa

d
a
ad

aa
d
a
d
a

aa
d
ad

d
aa

d
d
aa

aa
d
d
ad

aa
d
d
d
a

a
ad

d
d
d

ad
a
aa

a
ad

aa
ad

ad
aa

d
a

ad
aa

d
d

ad
ad

aa
ad

ad
ad

ad
ad

d
a

a
d
ad

d
d

ad
d
a
aa

ad
d
aa

d
ad

d
ad

a
a
d
d
a
d
d

ad
d
d
aa

a
d
d
d
ad

a
d
d
d
d
a

ad
d
d
d
d

d
aa

aa
a

d
aa

a
ad

d
aa

a
d
a

d
aa

ad
d

d
aa

d
aa

d
aa

d
ad

d
aa

d
d
a

d
aa

d
d
d

d
ad

a
aa

d
ad

aa
d

d
ad

ad
a

d
ad

a
d
d

d
ad

d
aa

d
ad

d
ad

d
ad

d
d
a

d
ad

d
d
d

d
d
aa

aa
d
d
a
aa

d
d
d
a
ad

a
d
d
aa

d
d

d
d
a
d
aa

d
d
ad

ad
d
d
ad

d
a

d
d
a
d
d
d

d
d
d
aa

a
d
d
d
a
ad

d
d
d
a
d
a

d
d
d
ad

d
d
d
d
d
a
a

d
d
d
d
ad

d
d
d
d
d
a

d
d
d
d
d
d

Features

0

5

10

V
al
u
e

Figure 6.12: Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal
from the IMS dataset, in normal conditions

At this point, it is possible to extract the features with the WPD and plot them
over time, for the whole dataset, as it has been done for the FFT in figure 6.11.

77

Feature Extraction

aa
aa

a
a

aa
aa

a
d

aa
aa

d
a

aa
aa

d
d

aa
ad

a
a

aa
ad

a
d

aa
ad

d
a

aa
ad

d
d

aa
d
aa

a
aa

d
aa

d
aa

d
ad

a
aa

d
ad

d
aa

d
d
aa

aa
d
d
ad

aa
d
d
d
a

aa
d
d
d
d

ad
aa

a
a

ad
aa

a
d

ad
aa

d
a

ad
aa

d
d

ad
ad

aa
ad

ad
ad

ad
ad

d
a

ad
ad

d
d

ad
d
a
aa

ad
d
a
ad

ad
d
a
d
a

ad
d
a
d
d

ad
d
d
aa

ad
d
d
ad

ad
d
d
d
a

ad
d
d
d
d

d
a
aa

a
a

d
a
aa

a
d

d
a
aa

d
a

d
a
aa

d
d

d
a
ad

aa
d
a
ad

ad
d
a
ad

d
a

d
a
ad

d
d

d
a
d
a
aa

d
a
d
a
ad

d
a
d
a
d
a

d
a
d
a
d
d

d
a
d
d
aa

d
a
d
d
ad

d
a
d
d
d
a

d
a
d
d
d
d

d
d
aa

aa
d
d
aa

ad
d
d
aa

d
a

d
d
aa

d
d

d
d
ad

aa
d
d
ad

ad
d
d
ad

d
a

d
d
ad

d
d

d
d
d
a
aa

d
d
d
a
ad

d
d
d
a
d
a

d
d
d
a
d
d

d
d
d
d
aa

d
d
d
d
ad

d
d
d
d
d
a

d
d
d
d
d
d

Features

0

10

20

30

40

V
al
u
e

Figure 6.13: Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal
from the IMS dataset, in abnormal conditions

The result is shown in figure 6.14. The memory consumption of the data in the
second figure is 64bit × 64Features × 2156Snapshots ÷ 8bit/byte ≈ 1.1Mb, that
means that the memory saving obtained using WPD instead of FFT exceeds 99%.
Despite this huge memory saving, it is possible to see that the WPD is able to
retain the information about the fault frequencies, and it is possible to see that the
fault frequencies become more and more prominent as the bearing degrades over
time. For this reason, the WPD will be used in the developed framework, along
with the time-domain features.

Features

aaaaad
aaaada

aaaadd
aaadaa

aaadad
aaadda

aaaddd

Sn
ap
sh
ot
s

0

500

1000

1500

2000

am
p
li
tu
d
e

0

10

20

30

40

Figure 6.14: Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal
from the IMS dataset, for all the snapshots

78

Feature Extraction

6.4 Feature standardization
Most ML algorithms are sensitive to the feature scale. For this reason, it is
important to apply a preprocessing step to the features to make them span similar
ranges which are neither too small or too wide [7, p. 76].

There are several way to pre-scale the features, like the min-max scaling, the
standardization and the robust scaling. In this work, the standardization will be
used, which is defined as

F̂i = Fi − µi

σi

(6.14)

where µi is the mean of the i-th feature and σi is the standard deviation of the
i-th feature. This will make the features to have a mean of zero and a unitary
standard deviation.

In order to visualize the effect of the standardization, consider the same features
shown in figure 6.14. The first 300 snapshots will be used to calculate the
mean and the standard deviation of each feature, and then the features will be
standardized for all the dataset. The result of the standardization is shown in
figure 6.15. It is possible to see that the standardization has the effect of making
the features to have much more evident increase as the system degrades, and this
will make the features to be more sensitive to the degradation of the maintained
device.

Features

aaaaad
aaaada

aaaadd
aaadaa

Sn
ap
sh
ot
s

0

500

1000

1500
2000

A
m
p
li
tu
d
e

0

25

50

75

100

Figure 6.15: Wavelet Packet Decomposition of the “Bearing 3 x” vibration signal
from the IMS dataset, for all the snapshots after the standardization

79

Feature Extraction

6.5 Conclusions
Even just considering very simple time-domain features, we can already detect
the degradation of the bearing by comparing these feature values to a threshold.
On the other hand, also the frequency-domain features could be just compared
with a threshold to detect novel behaviours. But, as we will see in chapter 7, a
general purpose framework based upon a more sophisticated approach based on
the clustering of the data, it will be possible to condense all the features from all
the signals into a single metric that will be used to detect the novel behaviour.
This will have several advantages. Some of them are being able to detect a novel
behaviour even if it is not possible to define a threshold for each feature, and the
single threshold to be defined on the metric will be easier to interpret and tune.
Moreover, the framework will be able to detect the novelty even earlier and even if
the degradation of the bearing is not captured by the time-domain features, but
only by the frequency-domain features.

80

Chapter 7

Proposed Framework

In the chapter 6 the features extraction process has been described. Before
approaching the problem of performing ND in edge computing, a framework in
python that runs on a PC that is configurable, modular, expandable and general
purpose is built. This framework is used to test the features extraction process and
to test the ML algorithms before selecting one of them to be implemented in edge
computing framework, which will be harder to configure.

A real case application would probably have several signals of several physical
quantities, so a general approach that can manage different types of features, and
extract from each of them the most relevant information, is needed.

The proposed framework is thought to be set up on any type and combination of
sensors. The framework is thought to manage data that are correlated to a specific
fault. For example, think about a CNC machine like the one in figure 7.1. It has
five axes, so a solution would be to instance the framework five times, one for each
axis, linked to vibration sensors, temperature sensors etc. of the considered axis.
This would allow us to pinpoint the fault to a specific axis. Another concern is,
what if the single axis is seeing a normal condition, but the machine as a whole is
not? This may happen if the tool has a problem: the vibration registered in the
spindle would be normal in general, but would not be normal related to the feed
rate that another axis is imposing. To address this scenario, other instances of the
framework can be set up, that also receive the speeds from the machine controller
and the feed rate from the CNC program as well as data from the sensors used in
the other instances. This would allow us to detect a more complex fault, that is
not characteristic of any part of the machine, but of the machine as a whole. The
former kinds of instances would allow specific faults to be detected, giving also an
idea of what the fault is, the latter would allow complex faults to be detected, but
would not give a precise idea of what the fault is. The framework is thought to be
able to manage both of these scenarios and to be able to manage them together.

81

Proposed Framework

Figure 7.1: A 5-axis CNC milling machine. [69]

7.1 Commissioning
To adapt the framework to a specific machine, the commissioning of the ML system
would have to be done in steps. Starting from the data acquisition and ending with
the predictions of RUL and model updates, the steps are described in this section.

7.1.1 Data structure
The first phase of adaptation of the framework to a machine is to define what data
to sample and how to sample them. This includes the decision of which sensors
to use, the sampling frequencies, the data acquisition system and which features
are needed to be extracted from each sensor data. At this point, if more than one
instance of the framework is needed, the sets of sensors and features to be used in
each instance are defined. For example, in a shaft with two bearings, each with
two accelerometers, the first instance of the framework would be linked to the first
bearing, and would use the data from the two accelerometers to extract the features
that are needed to detect the fault in the first bearing. The second instance of the
framework would be linked to the second bearing, and would use the data from
the other two accelerometers to extract the features that are needed to detect the
fault in the second bearing. Optionally, a third instance of the framework would
use the data from all four accelerometers to detect a generic fault in the shaft.
Those decisions influence the structure of the database, which will be described in
section 7.2.

82

Proposed Framework

7.1.2 Data acquisition
Once the structure of the data is defined, the first phase of the commissioning
procedure is to set up the data acquisition. This has to be done when the machine
is new or, at least, someone guarantees that the machine is in a healthy condition.

During the previous phase, the number of instances of the framework is defined.
Each instance would have its own database. This phase is just a matter of storing
the data that will be used to train the models the first time. A software agent,
which we call Field Agent (FiA), is responsible for this task. This phase lasts until
the database is filled with enough data to train the models.

7.1.3 Training
The second phase of the commissioning procedure is to train the models. Once the
healthy data are enough to characterize all the normal conditions of the maintained
system, all the recorded data are elaborated by another software agent that we call
Feature Agent (FA). This agent extracts all the features from the time-series and
stores them in a structured way.

Once all the features are available in the database, another agent called Machine
Learning Agent (MLA) is responsible for training the models. All the models
considered are UML models. The models are trained on a standardized version
of the feature matrix. The standardization is done w.r.t. the time evolution, i.e.
all the features used for training have a time evolution with zero mean and unit
variance. This is done because most ML algorithms are sensitive to the scale of the
features.

All that has been said is valid for a single instance of the framework. If more
than one instance is needed, the training phase has to be done for each instance.

7.1.4 Evaluation
At this point, a model that represents the normal condition of the system is available
(actually a model for each instance of the framework). The next step is to evaluate
the model.

In this phase, the machine continues to perform its normal operations. The
Field Agent provides the sampled data, the Feature Agent extracts the features
and the Machine Learning Agent evaluates the health of the system. The proposed
novelty/fault metric and procedure are specific to the model used, as described
in the dedicated chapter about UML models (subsection 5.1.6 for the k-means,
subsection 5.2.3 for DBSCAN, subsection 5.3.3 for GMM, subsection 5.6.2
for ν-SVM, subsection 5.4.2 for iForest and subsection 5.5.2 for LOF).

Now the ND is up and running. The novelty metric is used to decide if the
system is healthy or not. The metric is plotted for the user to see. Note that in a

83

Proposed Framework

classic ML approach, the dataset is split into a training set and a test set. In this
case, the test set is the data that are sampled during the evaluation phase. It’s
equivalent to saying that the model is trained on the past data and evaluated on
the future data, or that the framework works in testing phase for an undetermined
amount of time, until the user decides to update the models. This is equivalent to
a test phase because if during this phase the framework outputs too many false
positives, the user will decide to update the models. Otherwise, it means that the
models are working properly and this phase can last indefinitely.

7.1.5 Model update
Once the metric overshoots the threshold, the MLA warns the user about the
novelty detected, and starts to perform PdM predicting the future evolution of the
metric and the RUL of the system. Again, this condition can last indefinitely, once
new data are sampled, the MLA evaluates the health of the system and updates
the predictions.

It’s up to the user to determine if the warning is a false positive, a novel but
healthy behaviour, or a real fault. In the first two cases, the user can decide to
command the MLA to update the models. The snapshots that generated the
warning are incorporated into the training set, and the models are retrained,
returning to the evaluation phase. In the latter case, the user can simply perform
the repairs/maintenance needed and restore the system to a healthy condition
or can use the snapshots that generated the warning to train a new model that
represents the fault condition.

If the user decides to train also the second model with the snapshot declared
faulty, the system returns into the evaluation phase, but now the MLA outputs
two metrics: one estimates the health of the system and the other how similar the
behaviour of the system is compared to any known fault condition.

7.1.6 Predictions
The metric generated by the MLA is useful to detect novelties, with a CBM
approach. To actually perform PdM, the MLA has also to predict the future
evolution of the metric. Since, as anticipated in the introduction, this framework
aims to output degradation based predictions, a suitable fitting curve has to be used.
Degradation-based failures are led by an initial defect that worsens over time. Often,
the presence of an early defect further increases the worsening rate of the system.
For this reason, and by observing the features evolution on publically available
datasets, it seems reasonable to model the degradation with an exponential curve.
This approach has been used in [70] and [71].

The candidate function to fit would then be:

84

Proposed Framework

0

20

N
ov

el
ty

m
et

ri
c

Normal

Anomaly to fit

(a)

−10 −8 −6 −4 −2 0 2 4

Time

0

20

40

N
ov

el
ty

m
et

ri
c

Normal

Anomaly to fit

(b)

Figure 7.2: Novelty metric data to fit with an exponential curve.

f(t) = a · eb·t (7.1)

where a and b are the parameters to be estimated. This may work in the case
depicted in figure 7.2a, in which the novelty metric starts from zero and then
increases exponentially. This is a problem for a general case in which the metric
can have a plateau, or start as a step that captures the initial behaviour of the early
defect, and then start an exponential decay, as the example in figure 7.2b. In our
case, in chapter 5, the set of defined metrics to be used are usually negative, to
depict a normal behaviour, and not zero.

The equation 7.1 is nice because, by extracting the logarithm from both sides
(and calling y = log(f(t))), we obtain a linear equation that can be fitted easily
with the least squares method described in subsection 4.1.1. Anyway, for the
reasons explained above, it’s not suitable for our case. A better candidate is:

f(t) = a · eb·t + c (7.2)

This is a better candidate because it can depict the case in which the metric
starts from a value different from zero, and then increases exponentially.

85

Proposed Framework

Scipy fit

Unfortunately, equation 7.2 cannot be arranged in linear form, so the least
squares solution has to be found with some other procedure. The python library
scipy.optimize has a function called curve_fit that can be used to fit a generic
function to a dataset. The problem with this recursive solution is that is very
sensitive to outliers and can’t really estimate the parameter c correctly, as is shown
in figure 7.3.

Closed form fit with least squares

Fortunately, in [72], the author provides a nonrecursive solution to the problem
that minimizes the LS error w.r.t. the parameters a, b and c. The solution has
been converted into the following algorithm 5 and implemented in the framework.
The fitting with this closed-form solution is shown in figure 7.3. This optimal
solution is used as default in the framework to predict the future evolution of the
metric, the scipy implementation can still be used by changing a parameter in the
configuration file because it has the advantage of fitting any function, so it may be
useful in special cases.

Algorithm 5 Exponential regression of the novelty metric.
1: function ExpRegression(x, y)
2: ▷ x = {x1, . . . , xn} is the array of x-coordinates of the data points.
3: ▷ y = {y1, . . . , yn} is the array of y-coordinates of the data points.
4: ▷ Returns the parameters a, b and c of the exponential function y(x) =
a · eb·x + c that minimizes the least squares error.

5: S1 ← 0
6: Sk ← Sk−1 + 1

2(yk + yk−1)(xk − xk−1) for k ∈ [2, n] ∩ N

7:

[
A1
B1

]
←
[

Σ(xk − x1)2 Σ(xk − x1) · Sk

Σ(xk − x1) · Sk ΣS2
k

]−1 [Σ(yk − y1)(xk − x1)
Σ(yk − y1) · Sk

]
8: a1 ← −A1

B1
9: c1 ← B1

10: c2 ← c1
11: θk ← ec2·xk ∀k ∈ [1, n] ∩ N

12:

[
a2
b2

]
←
[
n Σθk

Σθk Σθ2
k

]−1 [Σyk

Σyk · θk

]
13: a← b2
14: b← c2
15: c← a2
16: return a, b, c
17: end function

86

Proposed Framework

−4 −2 0 2 4 6 8

Time

0

50

100

150
N

ov
el

ty
m

et
ri

c
Anomaly to fit

Closed form fitting

scipy fitting

Figure 7.3: Fitted curve for RUL prediction. The scipy library fit fails to
estimate the parameter c. The closed-form solution actually minimizes the error.

7.1.7 Instance structure

Sensor 1

Sensor 2

Sensor 3

Sensor 4

...
...

Sensor n

Sensor m

Set 1

Set 2

Set n

Se
ns

or
 s

et
s

Fr
am

ew
or

k
In

st
an

ce
s

 Instance 1

"Health"
MLA

performs
ND &
PdM

"Fault"
MLA

performs
FD &
PdM

"Health"
MLA

performs
ND &
PdM

"Fault"
MLA

performs
FD &
PdM

 Instance 2

"Health"
MLA

performs
ND &
PdM

"Fault"
MLA

performs
FD &
PdM

 Instance n

Fi
el

d
A

ge
nt

 &
Fe

at
ur

e
A

ge
nt

...
Collections group 1 Collections group 2 Collections group n

...

Database

Figure 7.4: The structure of the instances of the framework.

As anticipated, in order to address different kinds of malfunctions, the framework
is thought to be instanced several times on the same system. To visualize the
structure of the instances, consider the general case described in figure 7.4. Any
instance can rely on data gathered from any sensor subset and can perform ND and
FD. In the figure, the first instance reads the first three sensors and has both the
ND and FD algorithms active (this means that a fault dataset has been gathered
in the past). The second instance reads a shared sensor with the first one, plus two
new sensors. The dashed line surrounding the FD algorithm means that it is not

87

Proposed Framework

active (no fault dataset has been gathered in the past, or it has not been trained).
This instance performs only ND. The last instance is just a general prosecution of
the structure, that can be scaled indefinitely.

7.2 Database
In the previous section 7.1, the setup behaviour phases of the framework have
been described, referring to a generic “database”, without specifying the structure
of the database. Let’s now address the problem of storing the data efficiently
and effectively. Instead of relying on python data structures, it is better to use a
dedicated database manager.

The proposed framework uses MongoDB for the following reasons. It is a widely-
used, open-source NoSQL database that is designed to handle unstructured or
semi-structured data. It utilizes a document-oriented data model, storing data
in flexible, JSON-like BSON format. MongoDB is suitable for implementation in
a ND framework due to its scalability, flexibility, and real-time data processing
capabilities. In novelty detection, the system often deals with diverse and dynamic
data sources, making MongoDB’s “unstructureness” advantageous for handling
varying data formats and evolving data requirements. It has the ability to handle
large volumes of data and support scaling allowing for efficient storage and retrieval
of information in real-time, crucial for real-time applications. Moreover, MongoDB
has a rich query language and secondary indexes that allow for fast and efficient
querying of data and a library for python that makes it easy to use. The JSON
format is also human-readable, which makes it easy to understand the data stored
in the database, and “mongoDB Compass” is a graphical user interface that allows
one to easily explore the database.

7.2.1 Collections

Table 7.1: Collections contained in the MongoDB database

Collection Content
raw time-series and information about them
unconsumed snapshots to be evaluated
quarantined snapshots detected as novelty waiting to be declared

healthy, faulty or be discarded
healthy snapshot declared as normal behaviour

Continued on next page

88

Proposed Framework

Table 7.1: Collections contained in the MongoDB database (Continued)

healthy train training dataset (scaled, processed, packet)
for the ND UML model

faulty snapshots declared as faulty behaviour
faulty train training dataset (scaled, processed, packet)

for the ND UML model
models models trained on healthy and faulty data the metrics

and predictions to be shown
backup time-series, features, models, etc.

MongoDB structure is based on collections, which are groups of (JSON) docu-
ments. A document is a set of key-value pairs that can be nested in several layers.
Documents have a dynamic schema, which means that documents in the same
collection do not need to have the same set of fields or structure, and common fields
in a collection’s documents may hold different types of data. To store the data
needed by the framework the collections reported in table 7.1 are used. In the
following paragraphs, the structure and purposes of each collection are described.

Raw Thinking about the data flow, the first interface between the hardware and
the software would be the sensor readings. Every sensor should have a name and
be sampled at a constant frequency (or, at least, the sensors that provide data for
frequency-domain feature extraction should have a constant sampling frequency).
This data is stored in the raw collection, with the JSON structure summarized in
table 7.2, where _id is the unique identifier of the document, timestamp is the
time at which the data was acquired, in ISO format, and Sensor 1 to Sensor n
are the names of the sensors.

Table 7.2: Structure of the “raw” collection JSON configuration file.

Field Sub-Field Type
_id string
timestamp ISO date

sensor 1 sampling frequency float
time-serie list[float]

sensor 2 sampling frequency float
time-serie list[float]

.

sensor n sampling frequency float
time-serie list[float]

89

Proposed Framework

Each sensor has a sampFreq field that contains the sampling frequency of that
particular sensor, and a timeSerie field that contains the data acquired by the
sensor, as a list. The timeSerie field is a list of floating point numbers, that can
be of any length. Note that the sampling frequencies of different sensors can be
different, for example, if a timestamp contains 1s period of data, a vibration sensor
would be linked to an array with several thousands of samples, while a temperature
sensor would be linked to only one sample.

Unconsumed Once defined the structure that the time-series will have in the
database, let’s define the structure of the snapshots. The features extracted from
the time-series are stored in the unconsumed collection, with the JSON structure
described in table 7.3.

Table 7.3: Structure of the “unconsumed” collection JSON configuration file.

Field Sub-Field Type
_id - string
timestamp - ISO date
sensor 1 mean float

root mean square float
peak to peak float
standard deviation float
skewness float
kurtosis float
wavelet coefficient 1 float
wavelet coefficient 2 float
... ...
wavelet coefficient 2three dept float

sensor 2 mean float
root mean square float
peak to peak float
standard deviation float
skewness float
kurtosis float
wavelet coefficient 1 float
wavelet coefficient 2 float
... ...
wavelet coefficient 2three dept float

...
sensor n mean float

90

Proposed Framework

root mean square float
... ...
wavelet coefficient 2three dept float

novelty evaluated flag - boolean

Notice that different sensors can have different features. The “novelty evaluated”
field is a boolean that is set to false when the snapshot is created, and is set to
true when the ND algorithm evaluates the snapshot. This field is used to avoid
evaluating the same snapshot multiple times while leaving it in the collection until
also the FD algorithm is performed. At this point, the snapshot will be moved
either to the backup collection, discarded or to the quarantine collection if either
the ND or the FD flag it.

Quarantined The “quarantined” collection is used to store the snapshots that
were flagged as “novelty” by the ND algorithm or as “faulty” by the FD algorithm
(or were flagged by both of them). The structure is the same as the “unconsumed”
collection, but the “novelty evaluated” field is not present since, at this point, the
snapshots are guaranteed to have been evaluated. The snapshots in this collection
are waiting to be declared as “healthy” or “faulty” by the user or to be discarded.

Healthy The idea behind the “healthy” collection is to store the snapshots that
are acquired during the first work phase of the framework, before training, or the
snapshots that were in the “quarantine” collection and were declared as healthy
by the user. The documents in this collection have the same structure as the
documents in the “quarantined” collection.

Healthy train In this collection the healthy snapshots are packed together in
different documents, each of them useful in a different phase of the training process.

The first document has the id training_set, that contains all the N training
snapshots, each of them with n sensors signals, characterized by F features. For
ease of accessibility, every bottom-nested field is a list of N elements. The structure
is resumed in table 7.4.

Table 7.4: Structure of the “healthy train” collection JSON configuration file.

Field Sub-Field Type
_id - string
timestamp - list[ISO date]
sensor 1 feature 1 list[float]

feature 2 list[float]

91

Proposed Framework

... ...
feature F list[float]

sensor 2 feature 1 list[float]
feature 2 list[float]
... ...
feature F llist[loat]

...
sensor n feature 1 list[float]

feature 2 llist[loat]
... ...
feature F list[float]

This collection contains other three documents:

• training set scaled, that contains the scaled training set, having the same
structure as the training set document;

• training set MIN MAX, that contains the minimum and maximum values of
the features of the training set, useful to plot the features with a reference
of the bounds of the training set. It has the same structure of the training
set document, but the bottom-nested fields are lists of two elements (the
minimum and the maximum value);

• StandardScaler_pickled. It contains the StandardScaler object that was
used to scale the training set. This object is encoded in Pickle format, and it
is used during the evaluation phase to scale the snapshots before evaluating
them.

Faulty This collection serves the same exact purpose as the “healthy” collection,
but for the faulty snapshots. Faulty snapshots are not discarded because they can
be used to train the FD UML algorithm.

Faulty train This collection serves the same exact purpose as the “healthy train”
collection, but for the faulty snapshots.

92

Proposed Framework

Models This collection contains the models trained on the healthy and faulty
data and a buffer of the predictions and metrics to be displayed to the user.

The structure of the models’ documents is just an identifier and the python
object of the model, encoded in Pickle format. The structure of the predictions
and metrics documents is the table 7.5:

Table 7.5: Structure of the “models” collection JSON configuration file.

Field Sub-Field Type
_id - string
timestamp - list[ISO date]
values - list[float]
assigned cluster - list[int]
anomaly flag - list[bool]
prediction curve parameters - pickle format

Backup The backup collection is a general-purpose container for any document
that needs to be stored for backup purposes. It can contain time-series, features,
models, etc. The structure of the documents in this collection is the same as the
structure of the documents in the other collections.

7.3 Software Agents
In the previous sections, the software agents were mentioned as the main actors
in the framework. This section will provide a more detailed description of the
software agents, their role and their interaction with the environment and the data,
following the flow from the hardware through the time-series, the feature domain
to the ML algorithms. The reference layout is the one in figure 7.5.

Software agents are autonomous programs that perform a specific task in a cycle.
In the proposed python implementation, the agents are classes that are instanced
and run in a loop.

7.3.1 Field Agent
The Field Agent is the interface between the hardware and the software. It is
responsible for the acquisition of the data from the sensors and the communication
with the database. Since some features are related to the spectrum of the data, a
precise and fixed sampling frequency is needed. Hence, the FiA must incorporate
a synchronization with the ADC. It stores data in the raw collection and the
backup collection. In figure 7.6, the flow of operations is shown as a flowchart,
emphasizing the importance of the synchronization with the ADC. This software

93

Proposed Framework

UNCONSUMEDRAW

Field Agent

Field Framework

Sensors

Maintained
system

BACKUP

Feature
Agent

Restore

Machine Learning Agent

Time domain Features domain

Raw data
available for analysts

Operator

MODELSQUARANTINED FAULTYHEALTHY

 plots

 warnings

 predictions

Human
Machine
Interface

Figure 7.5: Framework logical structure

Start

Load configuration

Launch interrupt
timers at all needed
sampling frequencies

pa
ra

lle
l o

pe
ra

tio
ns

Wait until linked timer
interrupt occurs

Poll data
from the
sensor

append to
raw and
backup

collections

Start

First sensor

Sensor ...

Wait until linked timer
interrupt occurs

Poll data
from the
sensor

append to
raw and
backup

collections

Start

Last sensor

Figure 7.6: Field Agent flowchart

agent has not been implemented in python, because the experimental validation of
this work, as it will be described in chapter 9, has been performed directly on the
edge computing platform. During the tests on the publicly available datasets, an

94

Proposed Framework

abstract version of the FiA has been used, that reads the data from the CSV files.

7.3.2 Feature Agent (FA)

Start Read raw
collection

Load configuration
file

 F

 T
Data available?

Extract all
features and
pack them as
a snapshot

Add to
unconsumed
collection

Figure 7.7: Feature Agent flowchart

The FA is responsible for the feature extraction from the raw data. It reads
the data from the raw collection, extracts the features and stores them in the
unconsumed collection. The flow of operation is shown in figure 7.7. The FA
is implemented in python and it is a class that has been designed to be easily
expandable and configurable. The methods implemented in the FA class are shown
in table 7.6.

Table 7.6: FA class implemented methods

Method Description
readFromRaw reads a snapshot from the raw collection

and stores it in the instance self
extractFeatures extract all the features from the current

snapshots, for all the sensors
extractTimeFeautures extract mean, rms, P2P, std, skewness

and kurtosis, based on the config file for
the specified sensor

extractFreqFeautures extract the wavelet coefficients for the
specified sensor, up to the configured
depth

deleteFromraw delete current snap record from the raw
collection

writeToUnconsumed write the extracted features to the uncon-
sumed collection

initialize_barPlotFeatures initializes the bar plot of the features that
is shown to the user

barPlotFeatures updates the bar plot with new features

95

Proposed Framework

run perform the agent operations in a loop.
idle until new data are available in raw
collection

7.3.3 Machine Learning Agent (MLA)
The MLA is responsible for the training and the evaluation of the ML models. It
reads the data from the unconsumed collection, evaluates the snapshot and stores
the result in the models collection, it also constantly updates the information about
the novelty or fault metric to the user. The flow of operation is shown in figure 7.8.
The methods implemented in the MLA class are shown in table 7.7.

This agent is designed to be configured as a ND or FD agent with just one
hyperparameter. If it is instanced for ND, it uses the healthy collection as a training
dataset, if it is instanced for FD it uses the faulty collection. The metric used to
evaluate the snapshots is the novelty metric for ND and the fault metric for FD.
According to the procedure defined in algorithm 3.

Table 7.7: MLA class implemented methods

Method Description
run run the MLA according to its current state
evaluate evaluate the current snapshot based on

the novelty or the fault metric, according
to the type of instance

predict fits the novelty metric with a degradation
curve to predict the future evolution

mark_snap_evaluated set the evaluated flag to true for the cur-
rent snapshot

delete_evaluated_snap remove the evaluated snapshots from the
unconsumed collection

scale_features scales the features of the current snapshot
according to the standard scaler used dur-
ing the training procedure

evaluate_error compute the novelty or fault metric for
the current snapshot, according to the
type of instance

calculate_train_cluster_dist compute the radiuses of the clusters dur-
ing the training procedure

prepare_train_data performs the preprocessing of the data
before training the model

pack_train_data pack the training snapshot in a matrix

96

Proposed Framework

__move_to_train move an entire collection of snapshots to
the training collection

standardize_features make all the features in the training ma-
trix have zero mean and unitary variance

save_features_limits save the unscaled bounds of the training
features

save_StdScaler store the standard scaler instance in
Pickle format into the database

retrieve_StdScaler restore the standard scaler instance in
Pickle format from the database

save_KMeans store the model instance in Pickle format
retrieve_KMeans restore the model instance in Pickle for-

mat
_append_features append the current features in a document
train performs the training of the clustering

models
evaluate_silhouette compute the silhouette score of the train-

ing set snapshots
__plot_silhouette plots the silhouette score against the num-

ber of clusters
evaluate_inertia compute the inertia score of the training

set snapshots
__plot_inertia plots the inertia score against the number

of clusters
packFeaturesMatrix format all the training features as a matrix
retrain perform a new training of the models

97

Proposed Framework

Start Load config. file

evaluate
retrain

train
mode?

data available

pick latest/oldest snapshot
from unconsumed collection

compute the novelty metric

load the trained model from
models collection

 collection
empty

metric > threshold

plot the metric

F

save the metric
into models collection

 warning

fit the future evolution of
the metric

plot the prediction

save the current snapshot to
quarantine collection

 novelty detector

type?

model = helthy_model
train_data = healthy

 fault detector model = fault_model
train_data = faulty

move quarantine
snapshots to healthy or

faulty collection

move all snapshots from
the unconsumed collection into

healthy or faulty collection no
Ask user:

manually separate the
quarantine collection?

manage the transfer of
snapshot between
quarantine, healthy

and faulty collections

yes

n gets 1
n_max gets max clusters from config

fit the UML model with n clusters

predict UML model on training dataset

T

F

compute the total silhouette score
compute inertia for all snapshots

select n that maximizes silhouette
or is Pareto Front on inertia

fit the UML model with n clusters

change mode of operation?

pack all training snapshots into a
matrix in the train collection

standardize the features w.r.t. time axis

Figure 7.8: Machine Learning Agent flowchart. When it is instanced for ND, the
MLA uses the healthy collection as a training dataset, when it is instanced for FD

it uses the faulty collection.

98

Proposed Framework

7.3.4 Configuration of the framework
All the configurations described in this chapter are stored in the config.yaml file.
This file is read by the agents at the beginning of their execution. The configuration
file is divided into sections by topic: database, models etc. The table 7.8 shows
the structure of the configuration file.

Table 7.8: Structure of the framework configuration file.

Field Type Description
Database structure Database configuration
. . . /URI string MongoDB URI
. . . /DB string Database name
. . . /Collection structure Collections configuration
. . . /. . . /Backup string Backup collection name
. . . /. . . /Raw string Raw data collection name

. . . /. . . /Unconsumed string Unconsumed data collection name

. . . /. . . /Healthy string Healthy data collection name

. . . /. . . /Healthy_train string Healthy data collection packed for training
(some healthy data are not used if not novelty)

. . . /. . . /Quarantined string Quarantined data collection name

. . . /. . . /Faulty string Faulty data collection name

. . . /. . . /Faulty_train string Faulty data collection packed for training (some
faulty data are not used if not novelty)

. . . /. . . /Models string Models collection name
Sensors structure Sensors configuration
. . . /Sensor 1/Name string Sensor 1 name
. . . /. . . /Features structure Features configuration of this sensor

. . . /. . . /. . . /Wavelet bool Enable or disable wavelet decomposition for the
considered sensor

. . . /. . . /. . . /Mean bool Enable or disable mean feature for the consid-
ered sensor

. . . /. . . /. . . /RMS bool Enable or disable RMS feature for the consid-
ered sensor

. . . /. . . /. . . /P2P bool Enable or disable P2P feature for the considered
sensor

. . . /. . . /. . . /Std bool Enable or disable Standard deviation feature
for the considered sensor

. . . /. . . /. . . /Skew bool Enable or disable skewness feature for the con-
sidered sensor

99

Proposed Framework

. . . /. . . /. . . /Kurt bool Enable or disable kurtosis feature for the con-
sidered sensor

. . . /.

. . . /Sensor n/Name string Sensor n name

. . . /Sensor_n/Features structure Features configuration of this sensor

. . . /Sensor n/.
Wavelet structure Wavelet Packet Decomposition configuration

. . . /Type string Type of wavelet to be used (ex. db10, Moore,
etc.)

. . . /Mode string Mode of decomposition (ex. Symmetric)

. . . /Level int Depth of the decomposition tree (No. of fea-
tures = 2Level)

Model structure Models configuration

. . . /Max clusters int Maximum number of clusters to attempt during
clustering

. . . /Max iterations int Maximum iterations of the UML algorithm

. . . /queue int Number of RUL predictions to keep in memory

. . . /Plot size int Number of Novelty Metric values to be kept in
memory for plotting

Novelty-Fault structure Configuration of the novelty or fault detection
. . . /Threshold float Novelty - Fault detection threshold
. . . /RUL Threshold float Novelty - Fault threshold for RUL predictions

. . . /Fit points int Number of samples used for fitting the predic-
tion curve

. . . /Outlier filter int Number of consecutive outliers to filter

. . . /Regressor string Type of curve to fit (exp or scipy to select the
closed form solution or the iterative solution)

Log string Path where to store the logs of the framework

7.3.5 Command Line Interface (CLI)
To ease the interaction with the user, a CLI has been implemented. It relies on
the click and typer libraries for python. The CLI allows the user to instance the
agents, to configure the framework, to monitor the agents and to interact with
the database. All the commands are provided with a help message that can be
accessed by typing --help after the command, as shown in figure 7.9 for the
command run-machine-learning-agent. The commands implemented in the
CLI are shown in table 7.9.

100

Proposed Framework

Figure 7.9: Command Line Interface help message

Table 7.9: CLI implemented commands

Command Description
copy-collection Move all the documents from one collec-

tion to another
create-empty-db Create an empty database in MongoDB.

The database should not exist already. It
is configured according with "config.yaml"
file.

ims-converter Transfer the data from the glsims textual
files into the MongoDB database in a suit-
able way.

fault-indicator This function plots the fault metric.
novelty-indicator This function plots the novelty metric.
move-collection Move all the documents from one collec-

tion to another
plot-features Plot the features of the last snapshot in

the UNCONSUMED collection
run-feature-agent Run the Feature Agent - takes the last

snapshot from RAW collection, extracts
features and writes them to UNCON-
SUMED collection

run-machine-learning-agent Run the Machine Learning Agent

101

Chapter 8

Embedded implementation

In chapter 7, an overview of the framework developed in python was given, relying
on the MongoDB database. This chapter will focus on the implementation of the
embedded system. The first big difference is that the embedded system is written
in C, which is not an object-oriented language. The second big difference is that
the embedded system does not use a database, but it relies only on the variables
stored in the RAM. Because of the memory constraints, the training phase relies
upon the communication with a PC for storing the heavy data. Once the model
has been trained, the model is stored in the embedded program and the novelty
detection is performed in real time. The general structure is shown in figure 8.1.

Sensors

Operator
 STM32F767

Sync.
Sampling

Features

Model

Evaluation

Training

Novelty
metric

Sync.
operation

Figure 8.1: Embedded system overview

102

Embedded implementation

8.1 Hardware
The hardware used for the implementation is the STM32F767ZI board. The
characteristics of the board are resumed in table 8.1.

Table 8.1: Hardware characteristics of STM32F767ZI board

Feature Description
Microcontroller STM32F767ZI
Architecture ARM Cortex-M7
Clock Speed Up to 216 MHz
Flash Memory 2 MB
SRAM 512 KB
EEPROM No
GPIO Up to 176
Timers 3 x 12-bit, 12 x 16-bit, 2 x 32-bit
ADC 3 x 12-bit
DAC 3 x 12-bit
Communication Interfaces USART, UART, SPI, I2C, CAN, Ethernet,

USB
Operating Voltage 1.7V - 3.6V
Operating Temperature −40 °C to 150 °C

Similarly to what has been done for the python implementation, the parameters
of the algorithm are configurable. To avoid the reading of files during the operation,
the configuration is held in global variables defined in a header file. The configurable
parameters are the usual: depth of the wavelet three, number of features, sampling
frequency, time-series length etc.

8.2 Software
The code consists of a main loop, that is continuously running. It is responsible
for executing the state machine behaviour, that manages the different phases
of operation. The phases of operation are the same as described for the python
implementation, except for the training phase, in which the microcontroller performs
the sensor polling and the feature extraction and then sends the data to the PC
using serial communication. The PC is responsible for the training phase. This part
is developed again in python, but the final model is then formatted as a model.h
file that can be directly included in the embedded code. The model is then stored
in the flash memory of the microcontroller, together with the rest of the program.

103

Embedded implementation

The hardware configuration has been done using the IDE (STM32cubeIDE tool),
which is a graphical interface that allows the configuration of the microcontroller
and generates the initialization code.

8.2.1 Sensor polling
The microcontroller comes with a Hardware Abstraction Layer (HAL) which
acts as an intermediary layer between the hardware and software. It simplifies
interaction with the microcontroller’s peripherals, such as GPIO, UART, and
timers, by providing standardized functions and APIs. The HAL library enhances
code reusability across different STM32 microcontroller families, streamlining the
development process and enhancing the scalability of embedded systems projects.

To sample the data at a precise sampling frequency, two options are available:

• Use the Direct Memory Acces (DMA) capability of the microcontroller. This
approach allows sampling the GPIO and storing the result in the memory
accessible by the CPU, without using CPU time. The DMA is then configured
to trigger an interrupt at the end of the transfer, and the interrupt is used
to signal the end of the sampling and to start the feature extraction. It is
suitable for high sampling frequencies and in fact, even downscaling the clock
frequency linked to the DMA there is a lower bound of obtainable sampling
frequencies.

• Use the Timer peripheral of the microcontroller. The timer is configured to
trigger an interrupt at a precise frequency, and the interrupt causes the CPU
to poll the sensor data. This approach is suitable for sampling frequencies
that are not too high, and it is the one used in this work (for frequency in
the order of kHz). If too many interrupts are generated, the CPU may not
be able to execute them instantly, so the actual sampling may shift from the
desired frequency, however, in this implementation the only interrupt used
is the one for the sampling, so the CPU is not overloaded and the sampling
frequency is precise.

8.2.2 Feature extraction
The features available to be extracted are the same as the ones described in
chapter 6. The time-domain features are coded directly in a function that is
responsible for extracting them. The frequency-domain features are computed by
another function that relies on the C library wavelib for the wavelet transform
[73]. The power of the wavelet coefficients is then computed and appended to the
feature vector. The feature vector is then stored in the RAM, and it is used for

104

Embedded implementation

novelty detection. The features are then standardized using the same mean and
standard deviation used for the training phase.

8.2.3 Evaluation
When the microcontroller is in the evaluation phase, the feature vector is processed
to compute the novelty metric. The model cluster centroids and radiuses were saved
in the code in the training phase, so now it is possible to run the algorithm 3.

8.2.4 Custom C functions
The C main loop, which executes all the behaviours that in the python implemen-
tation were executed by the various agents, relies on the library functions as well
as on the custom functions resumed in table 8.2.

Table 8.2: Custom function implemented in C

Method Description
setRTCclock Set the clock of the microcontroller to the

current time
get_time Get the current time from the RTC clock
acquireSnapshot Acquire a snapshot from the sensor
calcSnapDistanceError Calculate the novelty metric based on the

model centroids, radiuses and the current
features vector

std_sclr Standardize the features vector
snapReadyHandler Handle the snapshot ready event (the in-

terrupt of the Timer)
norm2 Compute the norm of a vector
packetCoeff Perform the Wavelet packed decomposi-

tion and compute the norm of the coef-
ficients, it relies on the wavelib library
[73]

featureExtractor Extract the features from the snapshot
(both time domain and frequency domain)

eucDist Compute the Euclidean distance between
two vectors

105

Chapter 9

Validation

This chapter is dedicated to the validation of the framework on real-world data.
In chapter 6, the reference dataset [65] has been introduced. Firstly, the python
implementation of the framework is validated on the IMS dataset several times
with different configurations to show the flexibility of the framework, and try to
find the best configuration for the dataset.

The first test in the IMS dataset is carried out with all the implemented machine
learning models, then only the K-mean model is used in the following tests. In
all tests an outlier filter has been implemented, so that the MLA will warn about
the novelty behaviour only if two consecutive snapshots are labelled as outliers.
The number of consecutive snapshots is a parameter that can be adjusted in the
framework settings.

Then, the edge computing implementation of the framework based on the K-
means clustering is validated experimentally on a machine and with a laboratory
shaker.

9.1 IMS dataset No.1 - Bearing 3x sensor
To start the validation, the test No.1 of the IMS dataset is subdivided into training
and testing datasets. The first 500 samples are used for training, and the remaining
samples are used for testing.

For all the algorithms, the assumption about the system is that, even if the
degradation is continuous, the system is surely healthy until 2003-11-07. The
threshold for performing the ND is set conformingly to this assumption, for every
model considered. Otherwise, the performance of any model could be artificially
made as good as desired, by simply setting the threshold to a lower value.

The configuration file is set to use the data from the “bearing 3x” sensor, extract-
ing all the time-domain and frequency-domain features described in chapter 6.

106

Validation

aa
aa

aa

ad
ad

ad

da
da

da

dd
dd

dd

Features

0

9

18

27

36

45

54

63

n
◦
 o

f
re

co
rd

Normal Functioning

aa
aa

aa

ad
ad

ad

da
da

da

dd
dd

dd

Features

2092

2101

2110

2119

2128

2137

2146

2155

n
◦
 o

f
re

co
rd

Abnormal Functioning

0

20

40

60

80

100

F
ea

tu
re

s
v
al

u
e

Figure 9.1: Heatmap of the standardized features value for the test n◦1 of IMS
dataset

The training dataset is used to train the MLA to recognize the normal behaviour
of the bearing, and the testing dataset is used to validate the trained model. The
table 6.1 shows the parameters of test No.1 of the IMS dataset. For display
purposes, the features are standardized, and the heatmap of the standardized
features is shown in figure 9.1 in normal and abnormal conditions.

The abstract version of the FiA has been used to extract the features from
the dataset, creating all the snapshots in the set S = {S1,S2, . . . ,S500}. These
snapshots are stored in the unconsumed collection of the database.

9.1.1 Training - K-means
Using the commands of the CLI, the training procedure has been launched:

1 C:/Users/JohnSmith/Code/framework> python ./MASTER.py
run-feature-agent↪→

2 C:/Users/JohnSmith/Code/framework> python ./MASTER.py
run-machine-learning-agent novelty train↪→

where the first command runs the FiA and the second one runs an “healthy”
instance of the MLA in training mode. At this point, the MLA asks the user to
move the snapshots from the unconsumed to the healthy collection, since the healthy
collection is empty. After the confirmation, the MLA starts the training with a

107

Validation

different number of clusters and outputs the scoring in the form of silhouette and
inertia scores. The results are shown in figure 9.2 and figure 9.3. The user can
confirm that the best number of clusters is 2, as the silhouette score is the highest
and the inertia score is at the POF point, or insert another number of clusters,
remembering that it is best to overestimate the number of clusters to increase the
system sensitivity, as discussed in subsection 5.1.10.

In this case, the number of clusters has been set to 2, so that the MLA saves
the model trained with n = 2 into the database. Even if the feature space has high
dimensionality, the agent plot to the user also a scatter plot of a subset of features
of the training dataset, to have a visual feedback of the clustering, as shown in
figure 9.4, where the points are the snapshots, the crosses are the centroids and
the colours represent the assigned cluster. We can observe that selecting 2 as the
number of clusters is adequate and that the projections of the clusters’ shapes on
some planes are not perfectly spherical but, at least, they are not too elongated.
This is a good sign for the K-means algorithm, as discussed in subsection 5.1.11.

5 10 15 20 25 30 35 40
n of clusters

0.0

0.2

0.4

0.6

S
il
h
ou

et
te

 s
co

re

Max for n= 2

Figure 9.2: Silhouette score for clustering the test n◦1 of IMS dataset (K-means)

0 5 10 15 20 25 30 35 40
n of clusters

10000

20000

30000

In
er

ti
a

POF for n= 2

Figure 9.3: Inertia score for clustering the test n◦1 of IMS dataset (K-means)

108

Validation

−2.5

0.0

2.5
fe

at
u
re

 3
0

−2.5

0.0

2.5

fe
at

u
re

 3
1

0 5

feature 50

−2.5

0.0

2.5

fe
at

u
re

 3
2

0 5

feature 51

0 5

feature 52

Figure 9.4: Scatterplot of training snapshot for the test n◦1 of IMS dataset

9.1.2 ND Validation - K-means
Using the validation partition of the dataset, it is possible to set the MLA in evaluate
mode. The FiA uses the validation partition and fills the raw collection with the
time-series. The FA extract the features and continuously fill the unconsumed
collection with the snapshots. The MLA evaluates the snapshots according to
algorithm 3 and plots the result, as well as generating a warning if the novelty
metric is greater than a certain threshold (in this case 50%, but it is configurable in
the usual .yaml file). The results are shown in figure 9.5, where we can see that
the framework detects the novelty quite early, at 2003-11-16 07:46, while the dataset
authors, declared the test finished because of bearing defects (not catastrophic
failures) at 2003-11-25 23:40. The comparison of the margin of early detection for
different algorithms will be resumed later.

In figure 9.6, a detailed view of the ND metric becoming consistently greater
than the threshold is shown.

109

Validation

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

Sample

0

2000

4000

6000

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2003-11-16 07:46

Novelty metric

threshold

Figure 9.5: Results of ND for the test n◦1 of IMS dataset (K-means)

2003-11-15 2003-11-17 2003-11-19 2003-11-21 2003-11-23 2003-11-25

Sample

100

101

102

103

104

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2003-11-16 07:46

Novelty metric

threshold

Figure 9.6: Results of ND for the test n◦1 of IMS dataset (K-means) - detailed
view

9.1.3 Training - DBSCAN
Using the same partition of the dataset as for the K-means training, we can train
a DBSCAN model. In this case, the silhouette score has to be used to select a
suitable value of the radius ε. As shown in figure 9.7, the optimal value is 8,
which corresponds correctly to the generation of two clusters.

110

Validation

0

200

400

n
 o

f
cl

u
st

er
s

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

ε

0.0

0.2

0.4

0.6

si
lh

ou
et

te
 s

co
re

optimal ε = 8
generate 2 clusters

Figure 9.7: Silhouette score for clustering the test n◦1 of IMS dataset (DBSCAN)

9.1.4 ND Validation - DBSCAN
As it has been done for the K-means, the validation partition of the dataset is now
used for performing ND with the DBSCAN model, as described in subsection 5.2.3.
The result is shown in figure 9.8, where we can see that the DBSCAN model
detects the novelty at 2003-11-22 15:06, that is quite early, but not as early as the
K-means model. This is because the metric generated by the DBSCAN model has
a greater variance so, instead of increasing consistently, it overshoots the threshold
quite before this time but fails to consistently stay above the threshold.

9.1.5 Training - GMM
Let’s now try with the GMM model. The metric for selecting the number of clusters
is now the BIC and the AIC, as shown in figure 9.9. The two metrics diverge but,
as discussed in subsection 5.3.1, the AIC tends to perform better. In this case,
minimizing the AIC leads to select 25 as the number of clusters, which is much
more than what was selected with the K-means, but still a reasonable choice, also
considering that the GMM is a soft clustering algorithm and that we are using the
density as a metric to perform ND.

111

Validation

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

Timestamp

0

200

400

600

N
ov

el
ty

 m
et

ri
c

Novel behaviour
2003-11-22 15:06

Novelty metric value

novelty threshold = ε*(1+0.6)

Figure 9.8: Results of ND for the test n◦1 of IMS dataset (DBSCAN)

0 5 10 15 20 25 30

Number of clusters

−100000

0

100000

200000

In
fo

rm
at

io
n
 C

ri
te

ri
on

optimal 25 clusters

BIC

AIC

Figure 9.9: BIC and AIC for clustering the test n◦1 of IMS dataset (GMM)

9.1.6 ND Validation - GMM
The validation partition of the dataset is now used for performing ND with the
GMM model. The result is shown in figure 9.10, where we can see that the GMM
model detects the novelty at 2003-11-22 03:47. The considerations about this result
are the same as for the DBSCAN model, and in fact, the timestamp of the detection
event is really close to the one obtained with DBSCAN. In figure 9.10, the metric
(density value) appears in coloured dots, as each colour represents the cluster to
which the snapshot has been assigned.

112

Validation

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

Timestamp

106

107

108

109

1010

d
en

si
ty

Novel behaviour
2003-11-22 03:47

density value

threshold

Figure 9.10: Results of ND for the test n◦1 of IMS dataset (GMM)

9.1.7 ND Validation - Bayesian GMM
The other Gaussian model is the BGMM, since this approach is totally unsupervised,
only the validation results are reported here. The result is shown in figure 9.11,
where we can see that the BGMM model detects the novelty around the same time
as the GMM model, at 2003-11-22 03:45.

In both GMM and BGMM the metric (density value) spans a lot of decades, so
the plots are done on a logarithmic scale.

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

Timestamp

103

104

105

106

107

d
en

si
ty

Novel behaviour
2003-11-22 03:45

density value

threshold

Figure 9.11: Results of ND for the test n◦1 of IMS dataset (BGMM)

113

Validation

9.1.8 ND Validation - ν-SVM
The next algorithm to test is the ν-SVM. Again, this is totally unsupervised, so
only the validation results are reported here. The novelty metric evolution over
time is shown in figure 9.12, where we can see that the ν-SVM model detects the
novelty at 2003-11-22 14:56, which is comparable with the DBSCAN and GMM
models.

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

timestamp

0

10

20

30

m
et

ri
c Novel behaviour

2003-11-22 14:56

Novelty metric

threshold

Figure 9.12: Results of ND for the test n◦1 of IMS dataset (ν-SVM)

9.1.9 ND Validation - iForest
The second last technique to test is the one based on the iForest model. The
result is shown in figure 9.13, where we can see that the iForest model detects
the novelty at 2003-11-16 10:08:46, which is a good result comparable with the
K-means model. The problem with the metric of the iForest is that it increases a
lot the variance around the ND event, but the mean does not increase consistently,
so a lot of snapshots are discarded as outliers, before the ND event.

This is, in my opinion, a promising approach. With these settings a lot of
snapshots are discarded as outliers, but with a different outlier filter, based on the
percentage of novelty samples in a window, the iForest model could perform even
better.

114

Validation

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

timestamp

−0.1

0.0

0.1

0.2

m
et

ri
c

Novel behaviour
2003-11-16 10:08:46

Novelty metric

threshold

Figure 9.13: Results of ND for the test n◦1 of IMS dataset (iForest)

9.1.10 ND Validation - LOF
The last algorithm to test is the LOF. The result is shown in figure 9.14, where
we can see that the LOF model detects the novelty at 2003-11-16 07:49, which
is a good result comparable with the K-means model. It doesn’t have the same
problem as the iForest, as there aren’t as many discarded snapshots before the ND
event.

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25

timestamp

0

100

101

102

103

L
O

F

Novel behaviour
2003-11-16 07:48

Novelty metric

threshold

Figure 9.14: Results of ND for the test n◦1 of IMS dataset (LOF)

115

Validation

9.1.11 Comparison of the results
Comparison between the models

Table 9.1: Comparison of the results for the test n◦1 of IMS dataset.

Algorithm ND event Lead Time [min]
K-means 2003-11-16 07:46 13913
DBSCAN 2003-11-22 15:06 4833
GMM 2003-11-22 03:47 5513
BGMM 2003-11-22 03:45 5514
ν-SVM 2003-11-22 14:56 4844
iForest 2003-11-16 10:08 13771
LOF 2003-11-16 07:48 13912
P2P without any ML 2003-11-22 16:06 4774

In table 9.1, the results of all the previous tests are resumed, together with
the result of performing ND without any machine learning algorithm, but just
setting a threshold on the P2P value of the time-series, as it was previously shown
in figure 6.3. This last basic approach detects the novelty around the afternoon
of 2003-11-22.

The ν-SVM and the DBSCAN models are not performing much better than
not even using machine learning (at least on this dataset signal). The GMM and
BGMM models are performing slightly better, but the margin is so low that the
result may be biased by the threshold setting. The iForest, LOF and K-means
models are performing better, they are all very close to detecting the novelty,
around 14000 min = 9.7 days before the end of the test. The K-means model is the
one performing the best, but just slightly better than the iForest and LOF models
so, again, this small difference may not be significant. However, as discussed in the
previous chapters, the K-means model will be used in the rest of the work, as it is
also the most simple and interpretable model.

Comparison with another approach

As anticipated in the chapter 2, about the State of the Art, the signal of the same
bearing (Bearing 3x) of this same test has been used in [44]. In their research, the
authors used a different approach, based on regression, and obtained the result
reported in figure 2.7

116

Validation

Comment about the comparison

Every system that outputs a warning based on a trigger on a threshold is highly
sensitive to the value of the threshold itself. This means that the comparison
of the results is not straightforward, and quite opinable, because selecting a low
threshold will make almost every system trigger earlier. The measure to take
into consideration, in my opinion, is how many false positives are generated if the
threshold is lowered, and how small the variance of the metric is. A high variance,
on this dataset, means that the system is very sensitive while evaluating quite
similar signals.

9.1.12 RUL Predictions validation - K-means
After the ND event, the MLA starts predicting the future evolution of the novelty
metric, and it superimposes the prediction curve to the same plot displayed to the
user. The fitting procedure is the closed form solution of the LS problem applied
to an exponential curve of equation 7.2, as described in subsection 7.1.6. The
samples used for the regression of the curve are the last 230 before the current one.
This parameter of the framework is configurable in the .yaml file.

Some good predictions are shown in figure 9.15. The RUL is the difference
between the intercept of the prediction curve and another threshold, higher than
the one used for ND, and the current time. In the figure, the blue line is a prediction
made just a few hours after the ND event (the vertical dashed line marks the time
of the prediction). The same concept applies to the other predictions performed in
later times.

In some circumstances, the novelty metric starts decreasing slightly, on average,
as can be seen around 2003-11-21. In this case, if the novelty metric has this
behaviour for several snapshots (≈ 230), the fitted curve will be a decreasing
exponential, as shown in figure 9.16.

If this situation occurs, the intercept with the threshold does not exist, and
the RUL prediction fails, so the interpretation of the RUL is left to the user. In
some cases, the defect in a system can “self-heal” (for example a crack in a bearing
can be polished with the use [20]). If this behaviour is possible for the system,
this situation can be interpreted as a sign that the system is going to return to
normality. Otherwise, the user can retain the previous RUL prediction as the RUL
of the system.

117

Validation

2003-11-01 2003-11-05 2003-11-09 2003-11-13 2003-11-17 2003-11-21 2003-11-25 2003-11-29

Timestamp

0

1000

2000

3000

4000

5000

6000

7000

N
ov

el
ty

 m
et

ri
c

[%
]

Novelty metric

2003-11-16 16:49

2003-11-19 15:05

2003-11-20 16:00

2003-11-22 06:32

2003-11-23 12:00

2003-11-24 17:27

RUL threshold

Figure 9.15: RUL prediction at different instants after the ND event (dashed
lines are the instants of the predictions corresponding to the same-colour solid line

prediction)

Nov-20 12:00 Nov-21 12:00 Nov-22 12:00 Nov-23

Timestamp 2003-Nov-23

0

500

N
ov

el
ty

 m
et

ri
c

[%
]

Novelty metric

2003-11-21 16:49

Figure 9.16: Failed RUL prediction.

9.1.13 Retraining, evaluating and predicting after ND event
If the user, after the ND event, performs an investigation that leads to the belief
that the system is still healthy, the user can turn the MLA in retrain mode. In
this case, the snapshots that are in the quarantine collection, are moved to the
healthy collection (faulty if the instance is for FD and the investigation reveals that
the fault is real). The model is then retrained with the new data with the same
procedure used for the first training (silhouette and inertia scores are computed

118

Validation

and the user is asked to confirm the number of clusters).
Let’s investigate what would have happened if the user declared the system

healthy at 2003-11-23 00:00, in the previous scenario of “Bearing 3 x” signal in the
IMS dataset. The MLA suggests that the best number of clusters is still two, so it
has been retrained with the new data. The result of the updated model performing
ND is shown in figure 9.17. The predictions of the RUL are shown in figure 9.18.

This test shows that in an increasingly decaying system retrained with data
very close to the fault condition the MLA is able to detect the fault again. This
comes at the cost of a later detection, and the first predictions after the ND event
are not as good as the previous ones. Anyway, the RUL predictions still become
more accurate as time passes, and the RUL prediction at the end of the test is still
quite accurate (on the same day of the event).

Another consideration is about the RUL threshold: since the model has been
retrained with “worse” data, the threshold for the RUL prediction should be set to
a lower value, because now the clusters are either more in quantity, distorted or
bigger, so it is unlikely that the novelty metric can still reach the same high values
estimated before the retraining.

An intuition about why the sensitivity of the system is reduced after the
retraining comes by examining the scatter plot of the snapshots in the feature
space, shown in figure 9.19, where all the snapshots extracted from the dataset
are displayed. The clusters are more elongated and much bigger. These shapes
arise gradually from the original ones of figure 9.4 so, by performing a retrain,
both the effect of producing bigger clusters and one of the clusters being much
more elongated play a role in reducing the sensitivity of the MLA.

Nov-23 12:00 Nov-24 12:00 Nov-25 12:00 Nov-26

Sample 2003-Nov-26

0

500

1000

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2003-11-24 03:41:24

Novelty metric

threshold

Figure 9.17: Results of ND for the test n◦1 of IMS dataset (K-means) - retrained
model

119

Validation

Nov-23 12:00 Nov-24 12:00 Nov-25 12:00 Nov-26 12:00 Nov-27

Timestamp 2003-Nov-27

0

2000

4000

6000

N
ov

el
ty

 m
et

ri
c

[%
]

Novelty metric

2003-11-24 03:41:24

2003-11-25 14:30

RUL threshold

Figure 9.18: RUL prediction at different instants after the ND event with the
retrained model (dashed lines are the instants of the predictions corresponding to

the same-colour solid line prediction)

0

20

fe
at

u
re

 3
0

0

20

fe
at

u
re

 3
1

0 10

feature 50

0

20

fe
at

u
re

 3
2

0 10

feature 51

0 10

feature 52

Figure 9.19: Scatterplot of all the snapshot for the test n◦1 of IMS dataset

9.1.14 Train and validate considering all sensors
In the previous section, an extensive test of the framework has been performed on a
single signal from the dataset (Bearing 3 x). So the warning given by the MLA was

120

Validation

detecting a problem in a specific component of the maintained system. Let’s now
test a configuration that takes into account all the signals of the dataset, so all eight
signals from the four bearings are used for feature extraction. This configuration
should be able to detect a generic novel behaviour of the system or, better, a
situation in which the system is abnormal as a whole (the signals may be normal
but the combination of them may be abnormal). In this case, the configuration file
has been set to use all the time-domain and all the frequency-domain features, and
the MLA has been trained with the same procedure as before, with the first 600
snapshots of the dataset.

09 11 13 15 17 19 21 23 25

Sample 2003-Nov

0

500

1000

1500

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2003-11-20 23:44

trained with 600 samples

Threshold

Figure 9.20: Novelty detection on the IMS dataset No.1 using all the sensors

In figure 9.20, the evolution of the novelty metric over time is shown. Ignoring
an outlier that appeared at the end of 2003-11-19, the ND event triggered at
2003-11-20 23:44, 5 days before the end of the data acquisition. After the event,
the novelty metric stays consistently over the threshold.

Let’s compare now this result to the classic approach of just using the RMS of
the signals. The maximum value of the RMS among all the bearings is shown in
figure 9.21. It is clear that the ML approach is much more robust, as there is no
threshold that would have both minimised the false positives and triggered a ND
event sufficiently in advance.

Knowing that the ND event is triggered at 2003-11-20 23:44, the RUL prediction
is shown in figure 9.22. The Predictions are made considering the last 250
snapshots of the dataset, and the RUL is predicted at different instants after the
ND event. Most predictions are accurate, except for the one done on 2003-11-23
00:00, which is affected by the temporary local decrease of the novelty metric. In
this case, the last RUL should be retained, as the system is still in a novel state.

121

Validation

21 25 29 Nov 05 09 13 17 21 25

Timestamp 2003-Nov

0.2

0.4

0.6
R

M
S

Max RMS (all sensors)

Figure 9.21: Maximum value of RMS vibration among all bearings

15 17 19 21 23 25 27

Timestamp 2003-Nov

0

1000

2000

3000

4000

5000

N
ov

el
ty

 m
et

ri
c

[%
]

Novelty metric

2003-11-21 00:00

2003-11-22 00:00

2003-11-23 00:00

2003-11-25 21:00

RUL threshold

Figure 9.22: RUL prediction at different instants after the ND event (dashed
lines are the instants of the predictions corresponding to the same-colour solid line

prediction)

9.2 IMS dataset No.2 - Bearing 1 sensor
In the previous sections, the framework capability for detecting novelties has been
tested. Looking back to the table 6.1, dataset No.2 shares the same type of fault
as dataset No.3.

In order to further validate the ND, in this section, a fresh training on dataset
No.2 is performed. This time using the MLA for both performing the ND and FD.

122

Validation

9.2.1 ND instance
The first instance of the MLA is used to detect the ND event. The sensor declared
in the configuration file is the one of Bearing 1, because it is the one that will
experience outer race failure. The training is done on the first 300 snapshots of
the dataset. The silhouette criterion suggested using 2 clusters. The MLA is then
switched in evaluation mode, as usual. The novelty metric computed for the rest
of the dataset is shown in figure 9.23.

The ND event is triggered at 2004-02-16 03:32, 3 days before the end of the
data acquisition. After the event, the novelty metric stays consistently over the
threshold.

15 16 17 18 19

Timestamp 2004-Feb

−102

−101

−100
0

100

101

102

103

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2004-02-16 03:32

Novelty metric

Threshold

Figure 9.23: Novelty detection on the IMS dataset No.2 using the sensor of
Bearing 1

At this point, the RUL can be predicted at various instants after the ND
event. The RUL predictions are shown in figure 9.24. The predictions are made
considering the last 250 snapshots of the dataset. Most predictions are accurate,
except for the one done on 2004-02-18 03:32, which is affected by the temporary
local decrease of the novelty metric. In this case, the last RUL estimation should
be retained.

123

Validation

Feb-15 12:00 Feb-16 12:00 Feb-17 12:00 Feb-18 12:00 Feb-19

Timestamp 2004-Feb-19

0

1000

2000

3000

4000

5000

6000

7000

N
ov

el
ty

 m
et

ri
c

[%
] Novelty metric

2004-02-16 03:32

2004-02-17 03:32

2004-02-18 03:32

2004-02-19 03:32

Threshold

RUL threshold

Figure 9.24: RUL prediction at different instants after the ND event (dashed
lines are the instants of the predictions corresponding to the same-colour solid line

prediction)

9.2.2 FD instance
The second instance of the MLA is used to detect the FD event. The last 75
snapshots of the dataset are used for training. The silhouette criterion suggested
using 8 clusters. The MLA is then switched in evaluation mode.

In this case, the novelty metric provided by the MLA will be the transformed
version, according to equation 5.8. In this case, a positive value of the metric
corresponds to a known fault. When the metric becomes positive, the snapshot
is already inside a faulty cluster, so the FD event is triggered using a negative
threshold. The novelty metric computed for the rest of the remaining samples in
the dataset, after the set used to train the healthy model and before the set used
to train the faulty model. The resulting metric is shown in figure 9.25.

The FD event is triggered at 2004-02-18 03:32, 1 day after the ND event. After
the event, the last 250 values of the novelty metric are used for RUL prediction.

This example illustrates a scenario in which the ND event is detected first, and
then the FD event confirms the presence of a known fault in the system.

124

Validation

12:00 Feb-15 12:00 Feb-16 12:00 Feb-17 12:00 Feb-18 12:00 Feb-19

Timestamp 2004-Feb-19

−100

0

100

200

300

400

500

F
au

lt
 m

et
ri

c
[%

]

Faulty behaviour
2004-02-17 07:44

Fault metric

Threshold

2004-02-17 07:44

2004-02-18 10:30

RUL threshold

Figure 9.25: Fault detection on the IMS dataset No.2 using the sensor of
Bearing 1

9.3 IMS dataset No.3 - Bearing 3 sensor

9.3.1 ND instance

In the previous section about the IMS dataset No.2, the framework capability for
detecting novelties and known faults has been tested. The third dataset exploits
the same fault as the second dataset. This enables testing the framework capability
on detecting novelties and known faults on a new bearing, without retraining the
model from scratch. In this case, the outer race failure is experienced by Bearing 3,
so the sensor declared in the configuration file is the one for this bearing.

Running the MLA in evaluation mode, the novelty metric computed for the
first 300 snapshots of the dataset, is shown in figure 9.26. All the snapshots are
considered novelties. This means that the new bearing behaves differently from
the previous ones.

The MLA saved all these snapshots in the quarantined collection. At this point,
the MLA is switched to re-training mode, and the quarantined collection is used to
update the model. The silhouette criterion suggested using 2 clusters. Since the
previous model was already trained with two clusters, this means that the new
training data are assigned to existing clusters, enlarging them, instead of generating
a new cluster.

The updated model is then switched to evaluation mode. The novelty metric

125

Validation

06:00 12:00 18:00 Mar-18 06:00 12:00 18:00 Mar-19 06:00

Timestamp 2004-Mar-19

0

200

400
N

ov
el

ty
 m

et
ri

c
[%

]

Novelty metric

Threshold

Figure 9.26: Novelty detection on the IMS dataset No.3 using the sensor of
Bearing 3, and the previous model trained on the dataset No.2

computed for the rest of the dataset is shown in figure 9.27. The ND event is
triggered at 2004-04-12 19:21, ≈ 5 days before the end of the data acquisition. After
the event, the novelty metric returns to the same level as before the event for two
more days, before increasing again over the threshold and remaining consistently
over the threshold.

05 07 09 11 13 15 17

Timestamp 2004-Apr

0

500

1000

1500

N
ov

el
ty

 m
et

ri
c

[%
]

Novel behaviour
2004-04-12 19:21

Novelty metric

Threshold

Figure 9.27: Novelty detection on the IMS dataset No.3 using the sensor of
Bearing 3, and the previous model updated

At this point, the RUL can be predicted. The predictions made considering the
last 250 snapshots of the dataset are shown in figure 9.28. The first prediction
shown is made at the same time as the ND event. Even with only two snapshots
exceeding the threshold, the fitted curve is correctly diverging. This first RUL
prediction is quite accurate. The second fit in the figure is made when the novelty
metric started to increase abruptly, so it results in a very short RUL prediction,
shorter than the actual remaining time of the dataset.

126

Validation

09 10 11 12 13 14 15 16 17 18 19

Timestamp 2004-Apr

0

1000

2000

3000

4000

5000

6000

7000

N
ov

el
ty

 m
et

ri
c

[%
]

Novelty metric

2004-04-12 19:21

2004-04-17 00:13

Threshold

RUL threshold

Figure 9.28: RUL prediction at different instants after the ND event (dashed
lines are the instants of the predictions corresponding to the same-colour solid line

prediction)

9.3.2 FD instance
The same test done for the ND instance, can be repeated for the FD instance of
the MLA. The threshold is the same as for the previous test on dataset No. 2. The
framework is set in fault evaluation mode, and all the dataset is analyzed.

The fault score evolution over time is shown in figure 9.29. The FD event
is triggered at 2004-04-17 17:33, hours before the fault. An increasing pattern
appears quite before the FD event, and before that, the metric is very steady. This
allows lowering the threshold to trigger the FD event earlier.

Another observation about the fault metric is that, even at its maximum value,
it remains still negative. This means that the pattern in the feature space becomes
closer and closer to the fault cluster, as time passes, without actually entering the
cluster boundaries.

9.4 Experiments on a laboratory shaker - Test 1
After the PC implementation of the framework has been tested widely on the IMS
dataset, the edge computing implementation had to be validated experimentally.
The first test was done with a laboratory shaker, which is basically a powerful active
speaker with a really wide band that can be attached with a bolt to a structure, to
vibrate it.

In this case, an accelerometer, whose key specifications are shown in table 9.2,

127

Validation

Apr 03 05 07 09 11 13 15 17 19

Timestamp 2004-Apr

−100

0

100

200

300

400

500

F
au

lt
 m

et
ri

c
[%

]

Faulty behaviour
2004-04-17 17:33

Fault metric

Threshold

2004-04-17 17:33

RUL threshold

Figure 9.29: Fault detection on the IMS dataset No.3 using the sensor of Bearing
3

was used to capture the vibration signal. The accelerometer was attached to the
shaker, with a custom 3D-printed fixture. This first test has the scope of checking
the capability of the edge computing implementation to detect a new low amplitude
harmonic in the signal. The signal is generated as a .wav file and fed to the shaker
by a player. Both the input of the shaker and the output of the accelerometer were
monitored with a digital oscilloscope. The setup is shown in figure 9.30.

Table 9.2: Specifications of the ADXL335 Accelerometer

Parameter Value
Supply Voltage 1.8V to 3.6V
Sensing Range ±3g
Sensitivity 300 mV/g
Bandwidth 0.5 Hz to 1600 Hz
Output Type Analog
Output Voltage Range 0V to VCC

Operating Temperature -40°C to +85°C
Package 3mm× 5mm× 1mm

128

Validation

Figure 9.30: Setup of the shaker tests.

Table 9.3: Harmonic coefficients for the shaker test. Wave 1 and Wave 2 are
training signals, and Harmonic Injection is the signal to be detected.

Signal Name Harmonic frequency [Hz] Amplitude [mV]pp30 70 100 300 800 1400
Wave 1 0.1 1.0 1.0 - 1.0 1.0 1000
Wave 2 0.1 0.8 1.0 - 3.0 0.6 1000
Harmonic Injection 0.1 1.0 1.0 0.1 1.0 1.0 1000

9.4.1 Training and evaluating
The framework was firstly set to gather the data, extract the features according to
the configuration, and send the data to the PC for training. The training signals are
two waves with different harmonic content and the test signal is very similar to one
used for training, except for the presence of an additional harmonic with a small
amplitude. The train and test signals harmonic content is reported in table 9.3.
The amplitude of the vibration has been tuned at each test to ensure that the
microcontroller was reading a signal of 1Vpp. The amplitude of the signals has
been kept constant to test the capability of the framework to detect the frequency
content of the signal in the feature extraction phase. The waveform of the test
signals is shown with the one of one training signal in figure 9.31, to show the
similarity of the two signals.

The setting of the framework can be resumed as follows:

• 67 features extracted from the signal (26 = 64 features from the wavelet
decomposition, mean, P2P, and RMS);

129

Validation

• 110 samples for training for each signal.

• sampling frequency of 5kHz, for 1s of acquisition.

After the data gathering was completed, the training was done on the PC, as
usual. The silhouette score correctly suggested 2 as the best number of clusters to
be used. The PC part of the framework outputs the model.h file directly in the
embedded project folder, so just a new upload of the firmware was needed to test
the detection. The microcontroller was then set in evaluation mode and both the
two training signals and the test signal were fed to the shaker.

9.4.2 Results
The result of the novelty detection is shown in figure 9.32. The result is consistent
with the expected outcome, as the training signals produced a negative novelty
metric, while the test signal produced a positive (and quite high) novelty metric.
The spectrum of the signals used is shown graphically in figure 9.33.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time (s)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
m

p
li
tu

d
e

Waveform 1

Harmonic injection

Figure 9.31: Waveform comparison of the shaker test.

130

Validation

0 10 20 30 40 50 60 70

Test number

−60

−40

−20

0

20

40

60

80

100

R
el

at
iv

e
d
is

ta
n
ce

 t
o

cl
os

es
t

cl
u
st

er
 [
%

]

First wave

Second wave

Harmonic injection

Threshold

Figure 9.32: Novelty detection result

101 102 103 104

Frequency (Hz)

0

250

500

750

1000

1250

A
m

p
li
tu

d
e

Harmonic to be
detected

Waveform 1

Waveform 2

Harmonic injection

Figure 9.33: Spectrum of the waveforms.

9.5 Experiments on a laboratory shaker - Test 2
In the previous section, the first test on the shaker was presented. The test has
shown the capability of the framework to detect unknown harmonics. A second
test was done to evaluate the capability to detect time-domain variations and the
effect of reducing the frequency resolution.

131

Validation

9.5.1 Training and evaluating
This new configuration has been set to use only 4 frequency-domain features and
the same 3 time-domain features of the previous test, for a total of 7 features. The
signal used for training and testing is resumed in table 9.4. The set is composed of
the same signal at different amplitudes used for training and testing, plus another
signal with different frequency content but the same amplitude as a training signal
used for testing.

The training has been carried out in the same way as the previous test, the
training of the K-means model has been done with 4 clusters, and loaded on the
microcontroller.

Table 9.4: Parameters of the second shaker test.

Harmonic frequency [Hz] Amplitude [mVpp] No. of snapshots
10 30 60 70 100 Train Test
- 0.1 - 1.0 1.0 580 100 10
- 0.1 - 1.0 1.0 1000 100 10
- 0.1 - 1.0 1.0 1980 100 10
- 0.1 - 1.0 1.0 1540 100 10
- 0.1 - 1.0 1.0 2000 - 20
- 0.1 - 1.0 1.0 0 - 10
- 0.1 - 1.0 1.0 800 - 10
- 0.1 - 1.0 1.0 200 - 10
- 0.1 - 1.0 1.0 1220 - 10

1.0 1.0 0.1 - - 1540 - 10

9.5.2 Results
The result of the novelty detection is shown in figure 9.34. The first 4 lines have
been correctly identified as normal, as they were in fact a repetition of the training
signals. Then the purple and cyan line in the figure is the same training signal,
but 20 mV higher in amplitude w.r.t. the training signal. The novelty metric
overshoots the threshold in 5 samples out of 20. An increase of 2% in amplitude
generates the ND event 25% of the times can be observed with this signal.

The brown, grey and light-green lines are the same signal, but with a bigger
difference in amplitude w.r.t. the training signal. All the snapshots of these signals
correctly generated a novelty metric above the threshold. The blue line is the signal
with a different frequency content, and it has been correctly identified as a novelty
event, this is the confirmation that even with just 4 frequency bins, the wavelet

132

Validation

0 20 40 60 80 100

Sample [-]

−100

−50

0

50

100

150

200

N
ov

el
ty

 M
et

ri
c

[%
]

Vpp = 580mV

Vpp = 1000mV

Vpp = 1980mV

Vpp = 1540mV

Vpp = 2000mV

Vpp = 0mV

Vpp = 800mV

Vpp = 200mV

Vpp = 2120mV

Vpp = 2000mV

Vpp = 1540mV (second wave)

threshold

Figure 9.34: Novelty detection result

decomposition is still generating features that are informative.
The pink line is the test signal with an amplitude of 800mV. It’s evident that the

novelty metric is below the threshold, and the signal has been classified as normal
even if it is not in the training dataset. Let’s investigate how this happened. The
first consideration is that the 800mV amplitude is quite tight to both the 1000mV
and 580mV signals used for training. Moreover, in this case, the total number
of features is just 7. This allows plotting all the features against each other, to
see why the ND event has not been detected. In figure 9.35 the scatter plot of
the features is shown. It’s evident that, in this environment, even performing the
standardization of the features, the clusters are still very elongated, resembling
almost a line. To fit an elongated cluster in a hypersphere, it is inevitable that in
some sections, the hypersphere will not closely surround the cluster, leaving “space”
for false negative results. Another problem is that the k-means algorithm tends to
split long clusters. In the figure, the red dots are the false negative results, and the
grey shades are the hypersphere projection on the considered features plane. The
black dots are the training data. The effect of the elongated clusters is particularly

133

Validation

evident in the plot of the “Feature 3” against “Feature 2”, where the red dots are
in between two clusters, that are modelled as one. On the other hand, looking at
the plot of “Feature 1” against “Feature 4”, a very long cluster has been split in
two. This is an example of exploiting the limitations of the k-means algorithm
anticipated in subsection 5.1.11. For completness, in figure 9.35, also the true
positive results are shown, as magenta dots.

134

Validation

F
ea

tu
re

 1
F
ea

tu
re

 2
F
ea

tu
re

 3
F
ea

tu
re

 4
F
ea

tu
re

 5
F
ea

tu
re

 6

Feature 1

F
ea

tu
re

 7

Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7

Figure 9.35: False Negative and True Positive results. On the diagonal, there is
a histogram of the feature values. The off-diagonal plots are the scatter plots of

the features. The shades are the projection of the clusters on the considered plane.
(Red: False Negative, Magenta: True Positive, Black: training data)

135

Validation

9.5.3 Possible improvements
The environment of this test is very challenging for the k-means algorithm. As
discussed in chapter 5, there are algorithms that are not affected by the clusters’
shapes. The candidate algorithms that may perform better in this situation are
the LOF, the iForest and DBSCAN. Future work could be to implement these
algorithms in the edge computing framework, despite being more demanding in
computational power and memory, and test them in this environment.

As proof of concept, the LOF implementation in python has been used to
perform ND on the same dataset used in this section in edge computing. The
results are reported in figure 9.36. The LOF algorithm has been able to correctly
identify all the ND events, even the signals with just 20mV variation from the
training dataset, and the 800mV signal that was problematic for the K-means. The
LOF, however, generated a false positive on the 580mV signal. This false positive
may be avoided by increasing the threshold, but this would also increase the false
negative rate.

0 20 40 60 80 100

Sample [-]

0

200

400

600

N
ov

el
ty

 M
et

ri
c

[%
]

Vpp = 580mV

Vpp = 1000mV

Vpp = 1980mV

Vpp = 1540mV

Vpp = 2000mV

Vpp = 0mV

Vpp = 800mV

Vpp = 200mV

Vpp = 2120mV

Vpp = 2000mV

Vpp = 1540mV (second wave)

threshold

Figure 9.36: LOF novelty detection result

136

Validation

9.6 Experimental validation on a linear axis
The experimental validation reported in the previous section 9.4 and section 9.5
was carried out in a well-controlled environment with a shaker that was able to
generate vibrations according to specific references. To further test the framework,
a real-world application is considered in this section. The setup consists of a
machine equipped with a linear axis, that is used to move a platform. On the
moving platform the same accelerometer described in table 9.2 has been attached
using a custom 3D-printed fixture.

The test consists of defining a set of movements to be actuated by the platform,
the accelerometer is used to capture the characteristics of each movement. As done
previously, some movement profiles are used for training and others for testing.
The position reference is shown in figure 9.37, and the parameters of the profiles
are resumed in table 9.5.

0 2000 4000 6000 8000 10000 12000

Time [ms]

−400

−200

0

200

400

P
os

it
io

n
[m

m
]

Profile N. 1 Profile N. 2 Profile N. 3 Profile N. 4

Figure 9.37: Position reference for the linear axis test

Table 9.5: Movement profiles of the linear axis

Profile N. Speed [ms−1] Acceleration [ms−2] Jerk [s]
1 0.8 6 0.02
2 0.4 3 0.02
3 0.4 6 0.02
4 0.6 8 0.02

137

Validation

9.6.1 Training
To perform the training, a loop has been implemented on the PC that manages
the axis movements. The script cyclically actuates the axis to follow the reference
profile and asks the microcontroller to start the acquisition of the accelerometer
data at the beginning of the movement. The received features are then stored in a
file, and the process is repeated for each profile. The sampling frequency of the
microcontroller is 5kHz, for a total of 6000 samples each timeserie.

Although not useful for the training, the microcontroller has been set not only to
transmit the features to the PC but also the time-series, for visualization purposes.
The time-series of the training set are shown in figure 9.38, and the features are
shown in figure 9.39.

In the time-series set it is possible to see some outliers, for example, there is a
record in which profile 1 started being actuated by the axis with a delay w.r.t. the
others. Profile 4, instead, has some outliers due to the axis sometimes overshooting
the reference position. These outliers are caused by the axis control, and the
investigation about why it happens is out of the scope of this work.

The training set contains 100 snapshots for each profile, for a total of 400
snapshots. The K-means model is then trained for n = 5 clusters, according to the
silhouette criterion.

As done previously, the training is performed with the user confirming the
correct number of clusters. And updating the model into the microcontroller.

t˙1 t˙1001 t˙2001 t˙3001 t˙4001 t˙5001

time [ms]

−1

0

1

2

ac
ce

le
ra

ti
on

 [
g]

profile 1

profile 2

profile 3

profile 4

Figure 9.38: Timeseries of the training set

138

Validation

F
ea

tu
re

 1
F
ea

tu
re

 2
F
ea

tu
re

 3
F
ea

tu
re

 4
F
ea

tu
re

 5
F
ea

tu
re

 6
F
ea

tu
re

 7
F
ea

tu
re

 8
F
ea

tu
re

 9
F
ea

tu
re

 1
0

F
ea

tu
re

 1
1

F
ea

tu
re

 1
2

F
ea

tu
re

 1
3

F
ea

tu
re

 1
4

F
ea

tu
re

 1
5

F
ea

tu
re

 1
6

F
ea

tu
re

 1
7

F
ea

tu
re

 1
8

F
ea

tu
re

 1
9

F
ea

tu
re

 2
0

F
ea

tu
re

 2
1

F
ea

tu
re

 2
2

F
ea

tu
re

 2
3

F
ea

tu
re

 2
4

F
ea

tu
re

 2
5

F
ea

tu
re

 2
6

F
ea

tu
re

 2
7

F
ea

tu
re

 2
8

F
ea

tu
re

 2
9

F
ea

tu
re

 3
0

F
ea

tu
re

 3
1

F
ea

tu
re

 3
2

F
ea

tu
re

 3
3

F
ea

tu
re

 3
4

F
ea

tu
re

 3
5

F
ea

tu
re

 3
6

F
ea

tu
re

 3
7

F
ea

tu
re

 3
8

F
ea

tu
re

 3
9

F
ea

tu
re

 4
0

F
ea

tu
re

 4
1

F
ea

tu
re

 4
2

F
ea

tu
re

 4
3

F
ea

tu
re

 4
4

F
ea

tu
re

 4
5

F
ea

tu
re

 4
6

F
ea

tu
re

 4
7

F
ea

tu
re

 4
8

F
ea

tu
re

 4
9

F
ea

tu
re

 5
0

F
ea

tu
re

 5
1

F
ea

tu
re

 5
2

F
ea

tu
re

 5
3

F
ea

tu
re

 5
4

F
ea

tu
re

 5
5

F
ea

tu
re

 5
6

F
ea

tu
re

 5
7

F
ea

tu
re

 5
8

F
ea

tu
re

 5
9

F
ea

tu
re

 6
0

F
ea

tu
re

 6
1

F
ea

tu
re

 6
2

F
ea

tu
re

 6
3

F
ea

tu
re

 6
4

F
ea

tu
re

 6
5

F
ea

tu
re

 6
6

F
ea

tu
re

 6
7−

4
−

2
0

2
4

6
8

V
al

u
e

profile 1

profile 2

profile 3

profile 4

Figure 9.39: features of the training set

Feature 5

F
ea

tu
re

 6

Feature 5

F
ea

tu
re

 2
5

Feature 5

F
ea

tu
re

 2
6

Feature 6

F
ea

tu
re

 2
5

Feature 6

F
ea

tu
re

 2
6

Feature 25

F
ea

tu
re

 2
6

Figure 9.40: Visualization of the separation between profiles in the feature space

9.6.2 Testing on a known profile
The microcontroller is then set in evaluate mode and the ND is performed on a
loop that repeats the movement of profile 2. The result of this first model (Model
1) is shown in figure 9.41. We can see that the model immediately falsely detects
a novelty, despite profile 2 being part of the training set. The figure also shows a
clearer view of the evolution of the novelty score, obtained by applying a moving

139

Validation

average filter on the last 5 values of the novelty metric.
Let’s investigate why this model gives almost all false positive results. Analyzing

the features of the training set (figure 9.39), we can see that the first features, up to
≈ 12, are grouped by profile, but most of the remaining features are not, this arises
the suspect that these features may not be significative of the movement, but maybe
just representing noise. This is likely also because the necessary standardization
procedure ensures that each feature will have unitary standard deviation, regardless
of the magnitude of the feature itself w.r.t. the others. This may cause “noise”
features to be amplified in the model. Moreover, it’s clear that, being most of the
features not significant, the model is not able to distinguish between the profiles.

In figure 9.40, a better visualization of the problem is presented. Features 5
and 6 are significative of the specific movement as we can see in the scatter plot,
because the data points are grouped by profile. Features 25 and 26, instead, are
not significative, as the data points are not grouped by profile.

140

Validation

−
1.0

−
0.5

0.0

0.5

1.0

Novelty metric
N

ov
elty

 m
etric com

p
arison

0
100

200
300

400
500

600

S
am

p
le

−
0.5

0.0

0.5

1.0

Novelty metric

N
ov

elty
 m

etric com
p
arison

 M
ov

in
g A

v
erage (last 5 sam

p
les)

M
od

el 1
M

od
el 2

M
od

el 3
M

od
el 4

M
od

el 5

Figure 9.41: Novelty detection on profile 2.

141

Validation

9.6.3 Feature scaling
To address the problem of the non-significative features, a feature scaling method is
proposed. The idea is to scale the features in such a way that the most significant
features will have a higher weight in the model. To do that, a naive approach could
be to visually select the important features (by eye it’s evident that are the first
few) and apply a small scaling factor to the others.

This approach goes against the principle of the framework being fully automatic
to train. To address this problem, an unsupervised and automatic method is
proposed. The idea is to scale the features in such a way that the most significant
features will have a higher weight in the model. To do that, it’s possible to exploit
the fact that, at this point, the K-means model is already trained and the training
procedure provided labels for the dataset. It’s now possible to apply a supervised
ML algorithm in a way that is transparent to the user, so the whole procedure
remains unsupervised.

The framework is then extended to include the possibility of applying feature
scaling. The two possibilities are to use the Random Forest classifier or the
SelectKBest algorithm to provide the weights. Since this scaling will affect also
future snapshots, a new train of the MLA is necessary. The new model is then
trained with the same training set but with the scaled features. This approach is
illustrated in figure 9.42.

Fe
at

ur
es

 labels K-meanstemporary
training

St
an

da
rd

iz
at

io
n

 weights

Random Forest
or

SelectKBest

final training

Scaler

Figure 9.42: Feature scaling procedure.

This scaling technique is used with several configurations for both scaling the
feature and reducing the number of features, by discarding the unnecessary ones.
The settings of each tuned model are resumed in table 9.6. These models are
described later in this section.

142

Validation

Table 9.6: Tuned embedded models parameters

Model Feature Scaling Feature
Subset

Training Snapshots
(per each profile) N of

clustersSelectKBest Random Forest 1 2 3 4
Model 1 100 100 100 100 5
Model 2 100 100 100 100 3
Model 3 100 100 100 100 3
Model 4 100 200 100 100 5
Model 5 100 100 100 100 6

Random Forest

The Random Forest classification algorithm gives a measure of the importance of
each feature, and this measure can be used to scale the features. The RF algorithm
is trained on the training set, with the labels provided by the K-means model.

The feature importance is based on the idea that the Gini impurity is reduced
at a split in each decision tree of the forest. The more the impurity is reduced, the
more important the feature used for that split is [74]. This concept, averaged over
all splits of all the trees, gives a measure of the importance of each feature.

For our purpose, the importance is then normalized to have a maximum value
of 1, so the most important feature will remain unscaled.

SelectKBest

Another tool for analyzing the importance of features is the SelectKBest algorithm.
It is available in the scikit-learn library and is used to select the k most important
features or, alternatively, to output a score for each feature, based on ANOVA
statistics.

Results

At this point, both the training of the RF and SelectKBest is performed. The
weights obtained with both methods are shown in figure 9.43. The two methods
gave very similar results. Now it is possible to train the MLA with the scaled
features, Model 2 and Model 3 are trained with the RF and SelectKBest weights,
respectively. Both models perform better than the original model because they give
a smaller novelty score for the testing set. However, the problem of eliminating
the false positive results is not yet solved, because the novelty score is still greater
than zero.

To further refine the model, a fourth version is provided, this time extending the
training set to include the first 100 samples of this testing set. So the Model 4 will

143

Validation

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

feature

0.0

0.2

0.4

0.6

0.8

1.0

w
ei

g
h
t

Random Forest

SelectKBest

Figure 9.43: Feature weights obtained with the RF and SelectKBest algorithms

be trained on a total of 200 snapshots for profile 2. In the figure 9.41, of course,
the novelty score is always negative for the first 100 samples, because they are part
of the training set. Then, the novelty score becomes positive only in isolated cases,
and even then it remains quite low. In this scenario, a novelty threshold of 20% is
enough to run all the datasets without any false positive result, even without the
activation of the outlier filter.

9.6.4 Testing the ND
Test 1

The previous experiment was done to test the capability of the framework to
identify a known profile. Now the framework is tested to identify a profile that is
not part of the training set, so it should trigger a ND event. The test consists of
actuating the axis alternating between unknown profiles and known profiles (10
snapshots each repetition). For reference, also Model 1, Model 2, and Model 3 are
used, even if they were discarded in the previous section.

The results are shown in figure 9.44. Model 4 performs poorly because, even
if it avoids completely giving false positive results, it gives a lot of false negative
results. Unknown profiles are not detected as novelties, or they are detected only
in isolated cases, with a very low novelty score that is not enough to trigger the
ND event, considering the threshold discussed in the previous section.

Model 5 is a further refinement: instead of using the features importance metric
for scaling them, it is used to select a subset of features to be used. In this case
F = 7 features are selected, and the model is trained with the standardized features.
The training set consists of the original 400 snapshots, as the first three models.
In figure 9.44 it’s evident that this is the best model that clearly distinguishes
between known and unknown profiles, without giving any false positive or false

144

Validation

negative results.
The better performance of Model 5 is due to both the fact that the most

important features are used, and the fact that the number of features is reduced.
The latter phenomenon is known as curse of dimensionality, and it’s a common
problem in ML that arises when the number of dimensions of the feature space
increases. In general, regressors and classifiers have an optimal number of features,
and the performance decreases if the number of features is too high [75].

−1

0

1

N
ov

el
ty

 m
et

ri
c

Novelty metric comparison

0 10 20 30 40 50 60

Sample

0

1

N
ov

el
ty

 m
et

ri
c

Novelty metric comparison Moving Average (last 5 samples)

Model 1 Model 2 Model 3 Model 4 Model 5

Figure 9.44: Novelty detection on known and unknown profiles

Test 2

At this point, Model 5 seems promising. The Previous test gave just a qualitative
result, so a further test is performed to quantify the performance of the model.
The test consists of actuating the axis with several known and unknown profiles
and finding the limit of the capability of the model. The profiles used for training
and testing are resumed in table 9.7. The results are shown in figure 9.45. The
novelty score is always negative for the known profiles, and always positive (and
very large) for the profiles 4, 5, 7 and 8.

Profile 6 has a small variation in acceleration ≈ 17%, and this causes the novelty
to be detected only in some instances, with a low score. This can be considered the
sensitivity limit in this specific case. On the other hand, a variation in acceleration

145

Validation

of ≈ 33% is enough to trigger the ND event for all the snapshots of profile 5.
Profile 9 shows a variation in speed of ≈ 50%, and this is enough to trigger

the ND event for most snapshots, but not all. This performance is considered
acceptable because the speed reference is quite rarely actuated during the execution
of the movement. Moreover, the sensor measures acceleration, not speed. So the
expectation to detect a change in speed relies on the assumption that the change
in speed will cause a change in the acceleration evolution.

Table 9.7: Movement profiles of the linear axis for Model 5 validation

Profile N. Speed[ms−1] Acc.[ms−2] Jerk[s] N. of snapshots
Train Test

1 0.4 6 0.02 100 10
2 0.6 6 0.02 100 10
3 0.8 6 0.02 100 10
4 0.8 3 0.02 - 10
5 0.8 4 0.02 - 10
6 0.8 5 0.02 - 10
7 0.6 4 0.02 - 10
8 0.4 3 0.02 - 10
9 0.2 6 0.02 - 10

0 20 40 60 80

Snapshot

−50

0

50

100

150

200

N
ov

el
ty

 m
et

ri
c

[%
]

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Profile 6

Profile 7

Profile 8

Profile 9

Figure 9.45: Novelty detection on known and unknown profiles

146

Chapter 10

Conclusion and future work

The proposed framework has demonstrated the capability of detecting anomalies
in generic time domain data. The proposed modular structure is a key for enabling
the framework to be considered a prototype that can be applied to a wide range of
applications. The unsupervised learning approach further eases and accelerates the
adaptation of this solution into different domains.

The deployment of the solution also for edge computing enables the framework to
expand the range of applicability beyond classical industrial environments, toward
non-standard applications. The intrinsic cybersecurity of edge devices is a nice
byproduct that can be exploited whenever the framework is deployed in a critical
infrastructure.

In future work, there is significant potential for further testing and refinement
of the already developed framework. One path to explore involves testing the edge
implementation on a degrading system rather than relying on simulated degradation
through environmental parameter changes. This approach could provide invaluable
insights into the robustness and adaptability of the framework in critical scenarios.
Additionally, deploying the remaining algorithms within the edge framework to
address the limitations of K-means clustering presents an exciting opportunity.
Since the repertoire of algorithms shown promising results on real word datasets,
deploying all of them also in the edge version of the framework allows to offer a
more comprehensive solution to complex problems in edge computing environments.

The framework could also be enhanced from the user experience perspective
by developing a Graphical User Interface (GUI) that allows to interact with the
framework in a more intuitive way. The already developed CLI could remain a
secondary option for advanced users, or be used in the background by the GUI to
execute the framework’s functionalities.

147

Appendix A

Fourier Transform

This appendix aims to provide a brief and non-exhaustive introduction to the
Fourier Transform. The various types of Fourier Transform are key tools in a vast
range of fields in engineering, physics and mathematics. In computer science, the
Fourier Transform is used in signal processing, image processing, data compression,
and many other applications.

A.1 Continuous Fourier Transform

Most of the modern signal processing techniques find their roots in the Fourier
Transform, which is a mathematical tool that allows the decomposition of a non-
periodic signal into its frequency components. For periodic signals, The transform
is a train of impulses, whose amplitudes are linked to the Fourier series coefficients.

The Continuous Fourier Transform (CFT) of a signal x(t) is defined as:

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt, ∀f ∈ R

where X(f) is the Fourier Transform of x(t), f is the frequency variable and j is
the imaginary unit. The quantity 2πf is the angular frequency.

A.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a sampled version of the Continuous
Fourier Transform. From an engineering perspective, the DFT is of particular
interest because most of the signals are sampled in time and therefore, the DFT is
the most commonly used form of the Fourier Transform.

148

Fourier Transform

The DFT is used to transform a sequence of N complex numbers x(n) into
another sequence of N complex numbers X(k). The DFT is defined as:

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N , ∀k ∈ {0, 1, . . . , N − 1} (A.1)

where X(k) is the DFT of x(n), k is the frequency index and N is the number of
samples in the sequence.

The output spectrum given by the DFT is also discrete and finite, with the
same number of samples as the input signal. The sampling frequency of the signal
x(n) determines the upper frequency limit of the DFT output, as the faster the
sampling rate, the higher the frequencies that can be represented. The length of
the signal x(n) determines the frequency resolution of the DFT output, as the
longer the signal, the finer the frequency resolution is.

Computational complexity Examining the definition of the DFT in Equation
A.1, we can notice that it requires N complex multiplications and N(N) complex
additions. Therefore, the computational complexity of the DFT is O(N2), which
does not scale well for large values of N .

A.3 Fast Fourier Transform
To overcome the computational complexity of the DFT, the Fast Fourier Transform
(FFT) algorithm was developed in the 1960s by Cooley and Tukey [66]. Choosing a
data length N that is a power of 2, the FFT algorithm reduces the computational
complexity of the DFT from O(N2) to O(N log2 N). This becomes particularly
important for large values of N , where the FFT algorithm is significantly faster
than the DFT.

In the classic algorithm, a single multiplication happens many times. The general
idea of this fast algorithm is to exploit the periodicity of the complex exponentials
in the DFT to divide the computation into smaller sub-problems and reuse the
already computed multiplication.

Breaking the exponential into its sine and cosine components, it becomes
intuitive that the same result appears multiple times in the computation. The FFT
algorithm takes advantage of this redundancy to reduce the number of operations,
recursively dividing the problem into half-sized subproblems up to the point that
the subproblems have only one sample.

149

Appendix B

Wavelets

B.1 Introduction
In the previous chapter, the FFT has been briefly described. It maps N time-
domain datapoints into N frequency-domain datapoints. The FFT retain the
information about the original signal, expressing it in the frequency domain. In
other words, the FFT does not retain any knowledge about the time evolution of
the signal and preserves the number of datapoints.

Another tool for signal processing is the wavelet. There are two main categories:

• Wavelet Transform (WT), which maps the datapoints of a 1D signal into a 2D
plane, giving information about the frequency content of a signal at a given
time.

• Wavelet Packet Decomposition (WPD), which is a tool that allows to decom-
pose a signal into a tree of sub-bands, down-sampled signals.

A mother wavelet is a function that complies with the following conditions:∫ ∞

−∞
ψ(t)dt = 0 i.e. it has a mean value of zero. (B.1)∫ ∞

−∞
|ψ(t)|2dt = 1 i.e. it has a unitary energy. (B.2)

For example, the Morlet wavelet is a complex wavelet, which complies with the
above conditions. It is defined as:

ψ(t) = 1√
πfb

ei2πfcte−t2/fb = 1√
πfb

[cos(2πfct) + j · sin(2πfct)]e−t2/fb (B.3)

where fc is the central frequency and fb is the bandwidth. The Morlet wavelet is a
complex wavelet, which means that it has a real and an imaginary part, as shown
in Figure B.1.

150

Wavelets

−5.0 −2.5 0.0 2.5 5.0

Time

−0.4

−0.2

0.0

0.2

0.4

0.6

A
m

p
li
tu

d
e

Real part

−5.0 −2.5 0.0 2.5 5.0

Time

Imaginary part

Figure B.1: Real and imaginary part of the Morlet wavelet

B.2 Scaling and translation
The wavelet is a function of time, and it can be scaled and translated. The scaling
allows to investigate the frequency content of the signal, while the translation
allows to investigate the time evolution of the signal.

So a general wavelet is obtained by scaling and translating a mother wavelet:

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
(B.4)

where a is the scaling factor and b is the translation factor. ψ1,0 is the mother
wavelet. Some wavelets are shown in Figure B.2.

B.3 Wavelet Transform
Intuitively, the WT is a tool that allows to investigate the frequency content of a
signal at a given time. The transform is defined as a function of the scaling and
translation factors:

W (a, b) = 1√
a

∫ ∞

−∞
x(t)ψ

(
t− b
a

)
dt (B.5)

151

Wavelets

−5.0 −2.5 0.0 2.5 5.0

Time

−0.50

−0.25

0.00

0.25

0.50

A
m

p
li

tu
d

e

Real part

−5.0 −2.5 0.0 2.5 5.0

Time

Imaginary part

ψ1,0(t) ψ1,3(t) ψ0.5,−3(t) ψ5,0(t)

Figure B.2: Effect of scaling and translation on the Morlet wavelet

where x(t) is the signal. The wavelet transform is a 2D plane, where one axis is
the scaling factor and the other axis is the translation factor.

B.4 Wavelet Packet Decomposition
The WPD is a tool that allows to decompose a signal into a tree of sub-bands, down-
sampled signals. Each level is computed by the decomposition of the previous level,
forming a binary tree [76]. Being a binary tree, as shown in the figure B.3, the
number of sub-bands at level n is 2n. The downsampling, done at each level, reduces
the number of datapoints by a factor of 2, so the overall number of datapoints is
preserved.

At each stage, the signal is passed through a low-pass filter and a high-pass
filter. The low-pass filter is used to compute the approximation coefficients, while
the high-pass filter is used to compute the detail coefficients. The filters are finite
impulse response filters, and the coefficients are computed by convolution. The
decomposition is done recursively, until the desired level is reached.

Since this is just a transformation, the original signal can be reconstructed by the
inverse wavelet packet decomposition. The reconstruction is done by upsampling
the coefficients and passing them through the inverse filters.

As an example, the figure B.4 shows the result of the WPD of a signal using
a tree of depth 2 to get 4 sub-bands. The original signal is shown in the top left
corner. In the top right corner, the norm of the coefficients is shown. The rest
of the sub-bands are shown in the central and bottom rows. It’s possible to see

152

Wavelets

LP filter

HP filter detail coef.

approx coef.

HP filter detail coef.

LP filter approx coef.

HP filter detail coef.

LP filter approx coef.

Figure B.3: Wavelet Packet Decomposition tree

that xaa(n) is the approximation of the original signal, while xdd(n) contains the
high-frequency content of the original signal.

The signals xaa(n), xad(n), xda(n), and xdd(n) can be used to reconstruct exactly
the original signal, using the inverse wavelet packet decomposition. For the purpose
of this thesis, the WPD is used to decompose the signals into sub-bands, and the
coefficients l2-norms are used as features for the ML algorithms.

153

Wavelets

0 100 200 300 400

Sample [-]

−10

0

10

A
m

p
li

tu
d

e
[-

]

x(n)

|xaa(n)|2|xad(n)|2|xda(n)|2|xdd(n)|2
Node

101

P
ow

er
[-

]

Power of the subbands

0 25 50 75 100

Sample [-]

−20

0

A
m

p
li

tu
d

e
[-

]

xaa(n)

0 25 50 75 100

Sample [-]

−20

0

A
m

p
li

tu
d

e
[-

]

xad(n)

0 25 50 75 100

Sample [-]

−1

0

1

A
m

p
li

tu
d

e
[-

]

xda(n)

0 25 50 75 100

Sample [-]

−1

0

1

A
m

p
li

tu
d

e
[-

]

xdd(n)

Figure B.4: Wavelet Packet Decomposition of a signal using a tree of depth 2 to
get 4 sub-bands

154

Bibliography

[1] Vladimir Zwass. Software Agent. Category: Science & Tech. url: https:
//www.britannica.com/technology/software-agent (cit. on p. xiv).

[2] CEN/TC 319. Maintenance - Maintenance terminology. CEN Standard EN
13306:2018. English, French, and German language. European Committee for
Standardization (CEN), 2018, p. 93 (cit. on pp. xiv, xvi, xvii, 9).

[3] Vijay Kotu and Bala Deshpande. «Chapter 10 - Deep Learning». In: Data
Science (Second Edition). Ed. by Vijay Kotu and Bala Deshpande. Second
Edition. Morgan Kaufmann, 2019, pp. 307–342. isbn: 978-0-12-814761-0.
doi: https://doi.org/10.1016/B978-0-12-814761-0.00010-1. url:
https://www.sciencedirect.com/science/article/pii/B978012814761
0000101 (cit. on p. xv).

[4] Accenture. What is edge computing? url: https://www.accenture.com/us-
en/insights/cloud/edge-computing-index#:~:text=Edge%20computin
g%20is%20an%20emerging,led%20results%20in%20real%20time. (cit. on
p. xv).

[5] Ben Lutkevich. Definition of Framework. TechTarget Network. Accessed
on March 25, 2024. 2020. url: https://www.techtarget.com/whatis/
definition/framework (cit. on p. xv).

[6] Marc HJ Romanycia and Francis Jeffry Pelletier. «What is a heuristic?» In:
Computational intelligence 1.1 (1985), pp. 47–58 (cit. on p. xv).

[7] Aurelien Geron. Hands-On Machine Learning With Scikit-Learn, Keras &
TensorFlow. English. O’Reilly Media, 2022, p. 850. isbn: 9781098125974 (cit.
on pp. xv, 23, 29–32, 35–38, 51, 56, 60, 62, 65, 79).

[8] JSON (JavaScript Object Notation). Moodle Glossary of common terms.
Accessed on March 25, 2024. url: https://moodle.org/ (cit. on p. xv).

[9] Alina Lazar and Bradley A. Shellito. Linearly Separable Data. IGI Global,
2009. Chap. 14, p. 7. doi: 10.4018/978-1-59140-995-3.ch014 (cit. on
p. xvi).

156

https://www.britannica.com/technology/software-agent
https://www.britannica.com/technology/software-agent
https://doi.org/https://doi.org/10.1016/B978-0-12-814761-0.00010-1
https://www.sciencedirect.com/science/article/pii/B9780128147610000101
https://www.sciencedirect.com/science/article/pii/B9780128147610000101
https://www.accenture.com/us-en/insights/cloud/edge-computing-index#:~:text=Edge%20computing%20is%20an%20emerging,led%20results%20in%20real%20time.
https://www.accenture.com/us-en/insights/cloud/edge-computing-index#:~:text=Edge%20computing%20is%20an%20emerging,led%20results%20in%20real%20time.
https://www.accenture.com/us-en/insights/cloud/edge-computing-index#:~:text=Edge%20computing%20is%20an%20emerging,led%20results%20in%20real%20time.
https://www.techtarget.com/whatis/definition/framework
https://www.techtarget.com/whatis/definition/framework
https://moodle.org/
https://doi.org/10.4018/978-1-59140-995-3.ch014

BIBLIOGRAPHY

[10] Craig S. Mullins, Jack Vaughan, and Barney Beal. «NoSQL (Not Only SQL
database)». In: TechTarget Network (2021). Last updated in April 2021.
url: https://www.techtarget.com/searchdatamanagement/definition/
NoSQL- Not- Only- SQL#:~:text=NoSQL%20is%20an%20approach%20to,
%2C%20distributed%2C%20flexible%20and%20scalable. (cit. on p. xvi).

[11] Python Software Foundation. Python English Documentation. Python 3.12.2
Documentation. Accessed on March 25, 2024. url: https://docs.python.
org (cit. on p. xvi).

[12] What is Python? Executive Summary. Python Software Foundation. Python
Software Foundation, 2024. url: https://www.python.org/doc/essays/
blurb/ (cit. on p. xvii).

[13] ISO/TC 108/SC 5. «Condition monitoring and diagnostics of machines -
Prognostics - Part 1: General guidelines». In: ISO 13381-1 (Sept. 2015).
Status: Published, Edition: 2, ICS: 17.160, Corrected version (fr): 2021-
12, Stage: International Standard to be revised [90.92], p. 21. url: https:
//www.iso.org/standard/51436.html (cit. on p. xvii).

[14] Elizabeth Peterson. «Who Invented the Steam Engine?» In: Live Science
(Mar. 2014). url: https://www.livescience.com/44144-who-invented-
the-steam-engine.html (cit. on p. 3).

[15] Ferguson Brothers Ltd. Triple Expansion Reciprocating Steam Engine of
Engine Grab Hopper Dredger Anadrian. Photograph. Malta Maritime Museum
Collection, Wikimedia Commons. Wikimedia Commons, 1951. url: https://
commons.wikimedia.org/wiki/File:Triple_expansion_reciprocating_
steam_engine_Anadrian_MMM_n03.jpg (cit. on p. 3).

[16] Evosite Control Rooms, Control Consoles & Ergonomic Chairs. Accessed:
March 27, 2024. Evosite, Inc. 2023. url: https://www.evosite.net/ (cit. on
p. 3).

[17] Brian A. Weiss Douglas S. Thomas. Economics of Manufacturing Machinery
Maintenance. Tech. rep. U.S. Department of Commerce, 2020. url: https:
//doi.org/10.6028/NIST.AMS.100-34 (cit. on pp. 3, 10).

[18] Wieger Tiddens, Jan Braaksma, and Tiedo Tinga. «Exploring predictive
maintenance applications in industry». In: Journal of quality in maintenance
engineering. 28.1 (2022). issn: 1355-2511. doi: 10.1108/JQME-05-2020-0029.
url: https://doi.org/10.1108/JQME-05-2020-0029 (cit. on pp. 3, 4).

157

https://www.techtarget.com/searchdatamanagement/definition/NoSQL-Not-Only-SQL#:~:text=NoSQL%20is%20an%20approach%20to,%2C%20distributed%2C%20flexible%20and%20scalable.
https://www.techtarget.com/searchdatamanagement/definition/NoSQL-Not-Only-SQL#:~:text=NoSQL%20is%20an%20approach%20to,%2C%20distributed%2C%20flexible%20and%20scalable.
https://www.techtarget.com/searchdatamanagement/definition/NoSQL-Not-Only-SQL#:~:text=NoSQL%20is%20an%20approach%20to,%2C%20distributed%2C%20flexible%20and%20scalable.
https://docs.python.org
https://docs.python.org
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.iso.org/standard/51436.html
https://www.iso.org/standard/51436.html
https://www.livescience.com/44144-who-invented-the-steam-engine.html
https://www.livescience.com/44144-who-invented-the-steam-engine.html
https://commons.wikimedia.org/wiki/File:Triple_expansion_reciprocating_steam_engine_Anadrian_MMM_n03.jpg
https://commons.wikimedia.org/wiki/File:Triple_expansion_reciprocating_steam_engine_Anadrian_MMM_n03.jpg
https://commons.wikimedia.org/wiki/File:Triple_expansion_reciprocating_steam_engine_Anadrian_MMM_n03.jpg
https://www.evosite.net/
https://doi.org/10.6028/NIST.AMS.100-34
https://doi.org/10.6028/NIST.AMS.100-34
https://doi.org/10.1108/JQME-05-2020-0029
https://doi.org/10.1108/JQME-05-2020-0029

BIBLIOGRAPHY

[19] Moamin A. Mahmoud, Naziffa Raha Md Nasir, Mathuri Gurunathan, Pre-
veena Raj, and Salama A. Mostafa. «The Current State of the Art in Re-
search on Predictive Maintenance in Smart Grid Distribution Network: Fault’s
Types, Causes, and Prediction Methods—A Systematic Review». In: Ener-
gies 14.16 (2021). issn: 1996-1073. doi: 10.3390/en14165078. url: https:
//www.mdpi.com/1996-1073/14/16/5078 (cit. on p. 5).

[20] Hai Qiu, Jay Lee, Jing Lin, and Gang Yu. «Wavelet filter-based weak signature
detection method and its application on rolling element bearing prognostics».
In: Journal of Sound and Vibration 289.4 (2006), pp. 1066–1090. issn: 0022-
460X. doi: https://doi.org/10.1016/j.jsv.2005.03.007. url: https:
//www.sciencedirect.com/science/article/pii/S0022460X0500221X
(cit. on pp. 5, 18, 117).

[21] International Organization for Standardization. «ISO 8601 — Date and time
format». In: (2019). Date and time format, Representations for information
interchange. url: https://www.iso.org/iso- 8601- date- and- time-
format.html (cit. on p. 6).

[22] P Coandă, M Avram, and V Constantin. «A state of the art of predictive
maintenance techniques». In: IOP Conference Series: Materials Science and
Engineering 997.1 (Dec. 2020), p. 012039. doi: 10.1088/1757-899X/997/
1/012039. url: https://dx.doi.org/10.1088/1757-899X/997/1/012039
(cit. on p. 8).

[23] Ali Rastegari. «Condition Based Maintenance in the Manufacturing Industry:
From Strategy to Implementation». ISBN 978-91-7485-355-1, ISSN 1651-
4238. PhD Thesis. School of Innovation, Design and Engineering: Mälardalen
University, 2017. url: https://www.researchgate.net/publication/
321883047 (cit. on p. 9).

[24] J. Moubray. Reliability-Centered Maintenance. Revised. Industrial Press, Inc.,
1997 (cit. on p. 10).

[25] Daniel Sillivant. «Reliability centered maintenance cost modeling: Lost op-
portunity cost». In: Jan. 2015, pp. 1–5. doi: 10.1109/RAMS.2015.7105111
(cit. on pp. 10, 11).

[26] H. M. Hashemian. «State-of-the-Art Predictive Maintenance Techniques».
In: IEEE Transactions on Instrumentation and Measurement 60.1 (2011),
pp. 226–236. doi: 10.1109/TIM.2010.2047662 (cit. on p. 10).

[27] A. Grall, L. Dieulle, C. Berenguer, and M. Roussignol. «Continuous-time
predictive-maintenance scheduling for a deteriorating system». In: IEEE
Transactions on Reliability 51.2 (2002), pp. 141–150. doi: 10.1109/TR.2002.
1011518 (cit. on p. 11).

158

https://doi.org/10.3390/en14165078
https://www.mdpi.com/1996-1073/14/16/5078
https://www.mdpi.com/1996-1073/14/16/5078
https://doi.org/https://doi.org/10.1016/j.jsv.2005.03.007
https://www.sciencedirect.com/science/article/pii/S0022460X0500221X
https://www.sciencedirect.com/science/article/pii/S0022460X0500221X
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://doi.org/10.1088/1757-899X/997/1/012039
https://doi.org/10.1088/1757-899X/997/1/012039
https://dx.doi.org/10.1088/1757-899X/997/1/012039
https://www.researchgate.net/publication/321883047
https://www.researchgate.net/publication/321883047
https://doi.org/10.1109/RAMS.2015.7105111
https://doi.org/10.1109/TIM.2010.2047662
https://doi.org/10.1109/TR.2002.1011518
https://doi.org/10.1109/TR.2002.1011518

BIBLIOGRAPHY

[28] Giuseppe Curcurù, Giacomo Galante, and Alberto Lombardo. «A predictive
maintenance policy with imperfect monitoring». In: Reliability Engineering &
System Safety 95.9 (2010), pp. 989–997. issn: 0951-8320. doi: https://doi.
org/10.1016/j.ress.2010.04.010. url: https://www.sciencedirect.
com/science/article/pii/S0951832010000955 (cit. on p. 11).

[29] G. Galante, A. Lombardo, and A. Passannanti. «Tool-life modelling as a
stochastic process». In: International Journal of Machine Tools and Manufac-
ture 38.10 (1998), pp. 1361–1369. issn: 0890-6955. doi: https://doi.org/
10.1016/S0890-6955(98)00019-4. url: https://www.sciencedirect.
com/science/article/pii/S0890695598000194 (cit. on p. 11).

[30] Jinjiang Wang, Laibin Zhang, Lixiang Duan, and Robert Gao. «A new
paradigm of cloud-based predictive maintenance for intelligent manufactur-
ing». In: Journal of Intelligent Manufacturing 28 (June 2017), pp. 1125–1137.
doi: 10.1007/s10845-015-1066-0 (cit. on p. 12).

[31] J. Cucurull, R. Martí, G. Navarro-Arribas, S. Robles, B. Overeinder, and
J. Borrell. «Agent mobility architecture based on IEEE-FIPA standards».
In: Computer Communications 32.4 (2009), pp. 712–729. issn: 0140-3664.
doi: https://doi.org/10.1016/j.comcom.2008.11.038. url: https:
//www.sciencedirect.com/science/article/pii/S014036640800618X
(cit. on p. 12).

[32] Francesca Calabrese, Alberto Regattieri, Marco Bortolini, Mauro Gamberi,
and Francesco Pilati. «Predictive Maintenance: A Novel Framework for a Data-
Driven, Semi-Supervised, and Partially Online Prognostic Health Management
Application in Industries». In: Applied Sciences 11.8 (2021). issn: 2076-
3417. doi: 10.3390/app11083380. url: https://www.mdpi.com/2076-
3417/11/8/3380 (cit. on p. 12).

[33] Irfan Ullah, Fan Yang, Rehanullah Khan, Ling Liu, Haisheng Yang, Bing Gao,
and Kai Sun. «Predictive Maintenance of Power Substation Equipment by
Infrared Thermography Using a Machine-Learning Approach». In: Energies
10.12 (2017). issn: 1996-1073. doi: 10 . 3390 / en10121987. url: https :
//www.mdpi.com/1996-1073/10/12/1987 (cit. on p. 12).

[34] Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, and Ruilong Deng. A
Survey of Predictive Maintenance: Systems, Purposes and Approaches. 2019.
arXiv: 1912.07383 [eess.SP] (cit. on pp. 12–14).

[35] Andrea Schirru, Simone Pampuri, and Giuseppe De Nicolao. «Particle fil-
tering of hidden Gamma processes for robust Predictive Maintenance in
semiconductor manufacturing». In: 2010 IEEE International Conference on
Automation Science and Engineering. 2010, pp. 51–56. doi: 10.1109/COASE.
2010.5584518 (cit. on pp. 12, 13).

159

https://doi.org/https://doi.org/10.1016/j.ress.2010.04.010
https://doi.org/https://doi.org/10.1016/j.ress.2010.04.010
https://www.sciencedirect.com/science/article/pii/S0951832010000955
https://www.sciencedirect.com/science/article/pii/S0951832010000955
https://doi.org/https://doi.org/10.1016/S0890-6955(98)00019-4
https://doi.org/https://doi.org/10.1016/S0890-6955(98)00019-4
https://www.sciencedirect.com/science/article/pii/S0890695598000194
https://www.sciencedirect.com/science/article/pii/S0890695598000194
https://doi.org/10.1007/s10845-015-1066-0
https://doi.org/https://doi.org/10.1016/j.comcom.2008.11.038
https://www.sciencedirect.com/science/article/pii/S014036640800618X
https://www.sciencedirect.com/science/article/pii/S014036640800618X
https://doi.org/10.3390/app11083380
https://www.mdpi.com/2076-3417/11/8/3380
https://www.mdpi.com/2076-3417/11/8/3380
https://doi.org/10.3390/en10121987
https://www.mdpi.com/1996-1073/10/12/1987
https://www.mdpi.com/1996-1073/10/12/1987
https://arxiv.org/abs/1912.07383
https://doi.org/10.1109/COASE.2010.5584518
https://doi.org/10.1109/COASE.2010.5584518

BIBLIOGRAPHY

[36] C. Yang, Q. Lou, J. Liu, and et al. «Particle filtering-based methods for time
to failure estimation with a real-world prognostic application». In: Applied
Intelligence 48 (Aug. 2018), pp. 2516–2526. doi: 10.1007/s10489-017-1083-
0. url: https://doi.org/10.1007/s10489-017-1083-0 (cit. on pp. 12,
13).

[37] Alexander von Birgelen, Davide Buratti, Jens Mager, and Oliver Niggemann.
«Self-Organizing Maps for Anomaly Localization and Predictive Maintenance
in Cyber-Physical Production Systems». In: Procedia CIRP 72 (2018). 51st
CIRP Conference on Manufacturing Systems, pp. 480–485. issn: 2212-8271.
doi: https://doi.org/10.1016/j.procir.2018.03.150. url: https:
//www.sciencedirect.com/science/article/pii/S221282711830307X
(cit. on pp. 12, 13).

[38] GRS Lira, EG Costa, VS Brito, and LAMM NOBREGA. «Adaptive Reso-
nance Theory Applied to MOSA Monitoring». In: Proceedings of the XVII
international symposium on high voltage engineering. Hannover, Germany.
2011 (cit. on pp. 12, 13).

[39] Robert B. Randall and Jérôme Antoni. «Rolling element bearing diagnos-
tics—A tutorial». In: Mechanical Systems and Signal Processing 25.2 (2011),
pp. 485–520. issn: 0888-3270. doi: https://doi.org/10.1016/j.ymssp.
2010.07.017. url: https://www.sciencedirect.com/science/article/
pii/S0888327010002530 (cit. on pp. 14, 15, 18).

[40] Nader Sawalhi and Robert B Randall. «Semi-automated bearing diagnostics-
Three case studies». In: Non Destructive Testing Australia 45.2 (2008), p. 59
(cit. on pp. 14, 15).

[41] Michael Schlechtingen and Ivan Santos. «Automated wind turbine gearbox
bearing diagnosis algorithm based on vibration data analysis and signal pre-
whitening». In: Proceedings of 13th SIRM: The 13th International Conference
on Dynamics of Rotating Machinery. Technical University of Denmark. 2019,
pp. 88–114 (cit. on p. 15).

[42] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, and Lionel Tarassenko.
«A review of novelty detection». In: Signal Processing 99 (2014), pp. 215–
249. issn: 0165-1684. doi: https://doi.org/10.1016/j.sigpro.2013.
12.026. url: https://www.sciencedirect.com/science/article/pii/
S016516841300515X (cit. on pp. 16, 17).

[43] Dubravko Miljković. «Review of novelty detection methods». In: May 2010,
pp. 593–598. isbn: 978-1-4244-7763-0 (cit. on p. 17).

160

https://doi.org/10.1007/s10489-017-1083-0
https://doi.org/10.1007/s10489-017-1083-0
https://doi.org/10.1007/s10489-017-1083-0
https://doi.org/https://doi.org/10.1016/j.procir.2018.03.150
https://www.sciencedirect.com/science/article/pii/S221282711830307X
https://www.sciencedirect.com/science/article/pii/S221282711830307X
https://doi.org/https://doi.org/10.1016/j.ymssp.2010.07.017
https://doi.org/https://doi.org/10.1016/j.ymssp.2010.07.017
https://www.sciencedirect.com/science/article/pii/S0888327010002530
https://www.sciencedirect.com/science/article/pii/S0888327010002530
https://doi.org/https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/https://doi.org/10.1016/j.sigpro.2013.12.026
https://www.sciencedirect.com/science/article/pii/S016516841300515X
https://www.sciencedirect.com/science/article/pii/S016516841300515X

BIBLIOGRAPHY

[44] Umberto Albertin, Giuseppe Pedone, Matilde Brossa, Giovanni Squillero, and
Marcello Chiaberge. «A Real-Time Novelty Recognition Framework Based
on Machine Learning for Fault Detection». In: Algorithms 16.2 (2023). issn:
1999-4893. doi: 10.3390/a16020061. url: https://www.mdpi.com/1999-
4893/16/2/61 (cit. on pp. 17, 19, 116).

[45] Abla Chouni Benabdellah, Asmaa Benghabrit, and Imane Bouhaddou. «A
survey of clustering algorithms for an industrial context». In: Procedia Com-
puter Science 148 (2019). The second international conference on intelli-
gent computing in data sciences, ICDS2018, pp. 291–302. issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2019.01.022. url: https:
//www.sciencedirect.com/science/article/pii/S1877050919300225
(cit. on pp. 18–20, 39).

[46] Sebastian Raschka. «Why are implementations of decision tree algorithms
usually binary and what are the advantages of the different impurity metrics?»
In: Machine Learning FAQ (2013). Available at: http://sebastianraschka.
com/faq/docs/decision-tree-binary.html (cit. on p. 34).

[47] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. «The planar
k-means problem is NP-hard». In: Theoretical Computer Science 442 (2012).
Special Issue on the Workshop on Algorithms and Computation (WALCOM
2009), pp. 13–21. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2010.05.034. url: https://www.sciencedirect.com/science/article/
pii/S0304397510003269 (cit. on p. 39).

[48] James MacQueen et al. «Some methods for classification and analysis of
multivariate observations». In: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967,
pp. 281–297 (cit. on p. 39).

[49] S. Lloyd. «Least squares quantization in PCM». In: IEEE Transactions on
Information Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.
1056489 (cit. on pp. 39, 41).

[50] Pavel Berkhin. Survey of clustering data mining techniques. Tech. rep. San
Jose, CA: Accrue Software, 2002 (cit. on p. 39).

[51] Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. «The (black) art
of runtime evaluation: Are we comparing algorithms or implementations?»
In: Knowledge and Information Systems 52.2 (Oct. 2017), pp. 341–378. issn:
0219-3116. doi: 10.1007/s10115-016-1004-2. url: https://doi.org/10.
1007/s10115-016-1004-2 (cit. on p. 39).

161

https://doi.org/10.3390/a16020061
https://www.mdpi.com/1999-4893/16/2/61
https://www.mdpi.com/1999-4893/16/2/61
https://doi.org/https://doi.org/10.1016/j.procs.2019.01.022
https://www.sciencedirect.com/science/article/pii/S1877050919300225
https://www.sciencedirect.com/science/article/pii/S1877050919300225
http://sebastianraschka.com/faq/docs/decision-tree-binary.html
http://sebastianraschka.com/faq/docs/decision-tree-binary.html
https://doi.org/https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/https://doi.org/10.1016/j.tcs.2010.05.034
https://www.sciencedirect.com/science/article/pii/S0304397510003269
https://www.sciencedirect.com/science/article/pii/S0304397510003269
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/10.1007/s10115-016-1004-2

BIBLIOGRAPHY

[52] Malay K. Pakhira. «A Linear Time-Complexity k-Means Algorithm Using
Cluster Shifting». In: 2014 International Conference on Computational Intel-
ligence and Communication Networks. 2014, pp. 1047–1051. doi: 10.1109/
CICN.2014.220 (cit. on p. 41).

[53] Mary Inaba, Naoki Katoh, and Hiroshi Imai. «Applications of Weighted
Voronoi Diagrams and Randomization to Variance-Based k-Clustering: (Ex-
tended Abstract)». In: Proceedings of the Tenth Annual Symposium on
Computational Geometry. SCG ’94. Stony Brook, New York, USA: Asso-
ciation for Computing Machinery, 1994, pp. 332–339. isbn: 0897916484. doi:
10.1145/177424.178042. url: https://doi.org/10.1145/177424.178042
(cit. on p. 41).

[54] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,
Ruth Silverman, and Angela Y. Wu. «A local search approximation algorithm
for k-means clustering». In: Comput. Geom. 28.2-3 (2004), pp. 89–112 (cit. on
p. 41).

[55] Charles Elkan. «Using the Triangle Inequality to Accelerate K-Means». In:
Proceedings of the Twentieth International Conference on International Con-
ference on Machine Learning. ICML’03. Washington, DC, USA: AAAI Press,
2003, pp. 147–153. isbn: 1577351894 (cit. on p. 41).

[56] D. Sculley. «Web-Scale k-Means Clustering». In: Proceedings of the 19th
International Conference on World Wide Web. WWW ’10. Raleigh, North
Carolina, USA: Association for Computing Machinery, 2010, pp. 1177–1178.
isbn: 9781605587998. doi: 10.1145/1772690.1772862. url: https://doi.
org/10.1145/1772690.1772862 (cit. on p. 41).

[57] Damodar Reddy and Prasanta K. Jana. «Initialization for K-means Clustering
using Voronoi Diagram». In: Procedia Technology 4 (2012). 2nd International
Conference on Computer, Communication, Control and Information Technol-
ogy(C3IT-2012) on February 25 - 26, 2012, pp. 395–400. issn: 2212-0173.
doi: https://doi.org/10.1016/j.protcy.2012.05.061. url: https:
//www.sciencedirect.com/science/article/pii/S2212017312003404
(cit. on p. 41).

[58] David Arthur and Sergei Vassilvitskii. «K-Means++: The Advantages of
Careful Seeding». In: vol. 8. Jan. 2007, pp. 1027–1035. doi: 10.1145/1283383.
1283494 (cit. on p. 42).

[59] Lilian Bejarano, Helbert Espitia, and Carlos Montenegro. «Clustering Anal-
ysis for the Pareto Optimal Front in Multi-Objective Optimization». In:
Computation 10 (Mar. 2022), p. 37. doi: 10.3390/computation10030037
(cit. on p. 43).

162

https://doi.org/10.1109/CICN.2014.220
https://doi.org/10.1109/CICN.2014.220
https://doi.org/10.1145/177424.178042
https://doi.org/10.1145/177424.178042
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/https://doi.org/10.1016/j.protcy.2012.05.061
https://www.sciencedirect.com/science/article/pii/S2212017312003404
https://www.sciencedirect.com/science/article/pii/S2212017312003404
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.3390/computation10030037

BIBLIOGRAPHY

[60] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. «A density-
based algorithm for discovering clusters in large spatial databases with noise».
In: kdd. Vol. 96. 34. 1996, pp. 226–231 (cit. on pp. 53, 54).

[61] Bing Liu. «A Fast Density-Based Clustering Algorithm for Large Databases».
In: 2006 International Conference on Machine Learning and Cybernetics.
2006, pp. 996–1000. doi: 10.1109/ICMLC.2006.258531 (cit. on p. 57).

[62] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. «Isolation Forest». In: 2008
Eighth IEEE International Conference on Data Mining. 2008, pp. 413–422.
doi: 10.1109/ICDM.2008.17 (cit. on pp. 60, 62).

[63] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
«LOF: Identifying Density-Based Local Outliers». In: SIGMOD Rec. 29.2
(May 2000), pp. 93–104. issn: 0163-5808. doi: 10.1145/335191.335388. url:
https://doi.org/10.1145/335191.335388 (cit. on p. 62).

[64] Klaus-Robert Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and
Bernhard Schölkopf. «An Introduction to Kernel-Based Learning Algorithms».
In: IEEE TRANSACTIONS ON NEURAL NETWORKS 12.2 (2001), p. 181
(cit. on p. 64).

[65] J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services. «Bearing
Data Set». In: IMS, University of Cincinnati (2007). Available at: https:
/ / www . nasa . gov / intelligent - systems - division / discovery - and -
systems-health/pcoe/pcoe-data-set-repository/ (cit. on pp. 66–68,
106).

[66] James W Cooley and John W Tukey. «An algorithm for the machine calcula-
tion of complex Fourier series». In: Mathematics of computation 19.90 (1965),
pp. 297–301 (cit. on pp. 70, 149).

[67] Arvid Breitenbach. «Against spectral leakage». In: Measurement 25.2 (1999),
pp. 135–142. issn: 0263-2241. doi: https://doi.org/10.1016/S0263-
2241(98)00074- 8. url: https://www.sciencedirect.com/science/
article/pii/S0263224198000748 (cit. on p. 71).

[68] Chao-Yen Wu and A.Terry Bahill. «Preprocessing methods in the computation
of the fast fourier transform». In: Computers & Industrial Engineering 21.1
(1991), pp. 653–657. issn: 0360-8352. doi: https://doi.org/10.1016/0360-
8352(91)90168- 6. url: https://www.sciencedirect.com/science/
article/pii/0360835291901686 (cit. on pp. 73, 74).

[69] Fagor Automation. IBARMIA - 5 AXES MACHINING CNC 8065. Sept. 2017.
url: https://www.flickr.com/photos/fagorautomation/35762600461/
(cit. on p. 82).

163

https://doi.org/10.1109/ICMLC.2006.258531
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://doi.org/https://doi.org/10.1016/S0263-2241(98)00074-8
https://doi.org/https://doi.org/10.1016/S0263-2241(98)00074-8
https://www.sciencedirect.com/science/article/pii/S0263224198000748
https://www.sciencedirect.com/science/article/pii/S0263224198000748
https://doi.org/https://doi.org/10.1016/0360-8352(91)90168-6
https://doi.org/https://doi.org/10.1016/0360-8352(91)90168-6
https://www.sciencedirect.com/science/article/pii/0360835291901686
https://www.sciencedirect.com/science/article/pii/0360835291901686
https://www.flickr.com/photos/fagorautomation/35762600461/

BIBLIOGRAPHY

[70] Victorchan An and William Meeker. «Estimation of Degradation-Based Reli-
ability in Outdoor Environments». In: (Oct. 2001) (cit. on p. 84).

[71] Mingming Yan, Xingang Wang, Bingxiang Wang, Miaoxin Chang, and Isyaku
Muhammad. «Bearing remaining useful life prediction using support vector
machine and hybrid degradation tracking model». In: ISA transactions 98
(2020), pp. 471–482 (cit. on p. 84).

[72] Jean Jacquelin. Régressions Et Équations Intégrales. Première édition : 14
janvier 2009 - Mise à jour : 3 janvier 2014. 2009, pp. 16–18. url: https://www.
scribd.com/doc/14674814/Regressions-et-equations-integrales (cit.
on p. 86).

[73] Rafat Hussain. wavelib. https://github.com/rafat/wavelib.git. Dec.
2014 (cit. on pp. 104, 105).

[74] Stefano Nembrini, Inke R König, and Marvin N Wright. «The revival of
the Gini importance?» eng. In: Bioinformatics 34.21 (Nov. 2018), pp. 3711–
3718. issn: 1367-4811. doi: 10.1093/bioinformatics/bty373. url: https:
//doi.org/10.1093/bioinformatics/bty373 (cit. on p. 143).

[75] G. V. Trunk. «A Problem of Dimensionality: A Simple Example». In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-1.3 (1979),
pp. 306–307. doi: 10.1109/TPAMI.1979.4766926 (cit. on p. 145).

[76] A. N. Akansu and Y. Liu. «On Signal Decomposition Techniques». In: Optical
Engineering Journal 30 (July 1991). (Invited Paper), special issue Visual
Communications and Image Processing, pp. 912–920 (cit. on p. 152).

164

https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales
https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales
https://github.com/rafat/wavelib.git
https://doi.org/10.1093/bioinformatics/bty373
https://doi.org/10.1093/bioinformatics/bty373
https://doi.org/10.1093/bioinformatics/bty373
https://doi.org/10.1109/TPAMI.1979.4766926

	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acronyms
	Symbols
	Introduction
	Preface
	Motivation
	Objective of the thesis
	Notations

	State of the Art
	Introduction to Novelty Detection
	Machine Learning
	Regression
	Least Squares
	Gradient Descent gd
	Stochastic Gradient Descent
	Avoid overfitting

	Classification
	Support Vector Machines svm
	Decision Trees dt
	Random Forests rf

	Unsupervised Learning
	K-means
	Training
	Variations of the K-means algorithm
	Selecting the number of glo:clusts
	Assignation of the new instance to a glo:clust
	Evaluation of a new instance
	Metric for the new instance evaluation
	Introducing a threshold for the metric evaluation
	Transformation of the metric for the fault detection
	Evaluation procedure
	Comment about selecting the wrong value of k
	Limitations of the algorithm

	dbscan
	Overview
	Choosing the parameters
	Evaluation of a new instance
	Limitations of the algorithm

	Gaussian Mixture Model
	Training
	Selecting the number of glo:clusts
	Evaluation of a new instance
	Limitations of the algorithm

	Isolation Forest
	Training
	Evaluation of a new instance
	Limitations of Isolation Forest

	Local Outlier Factor
	Training
	Evaluation of a new instance
	Limitations of Local Outlier Factor

	One-Class Support Vector Machine
	Training
	Evaluation of a new instance
	Limitations of nusvm

	Feature Extraction
	Reference dataset
	Time-domain glo:features
	Frequency-domain glo:features
	Fourier Transform
	Wavelet Packet Decomposition

	Feature standardization
	Conclusions

	Proposed Framework
	Commissioning
	Data structure
	Data acquisition
	Training
	Evaluation
	Model update
	Predictions
	Instance structure

	Database
	Collections

	Software Agents
	Field Agent
	Feature Agent (fa)
	Machine Learning Agent (mla)
	Configuration of the glo:frmwrk
	Command Line Interface (cli)

	Embedded implementation
	Hardware
	Software
	Sensor glo:polling
	Feature extraction
	Evaluation
	Custom C functions

	Validation
	ims dataset No.1 - Bearing 3x sensor
	Training - K-means
	nd Validation - K-means
	Training - dbscan
	nd Validation - dbscan
	Training - gmm
	nd Validation - gmm
	nd Validation - Bayesian gmm
	nd Validation - nusvm
	nd Validation - iforest
	nd Validation - lof
	Comparison of the results
	rul Predictions validation - K-means
	Retraining, evaluating and predicting after nd event
	Train and validate considering all sensors

	ims dataset No.2 - Bearing 1 sensor
	nd instance
	fd instance

	ims dataset No.3 - Bearing 3 sensor
	nd instance
	fd instance

	Experiments on a laboratory shaker - Test 1
	Training and evaluating
	Results

	Experiments on a laboratory shaker - Test 2
	Training and evaluating
	Results
	Possible improvements

	Experimental validation on a linear axis
	Training
	Testing on a known profile
	Feature scaling
	Testing the nd

	Conclusion and future work
	Fourier Transform
	Continuous Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform

	Wavelets
	Introduction
	Scaling and translation
	Wavelet Transform
	Wavelet Packet Decomposition

	Bibliography

