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Abstract

Achieving sustainable agriculture requires balancing economic viability with
environmental responsibility, particularly in fertilizer management. The Decision
Support System for Agrotechnology Transfer (DSSAT) is a software application
program widely used among researchers and professionals due to its accuracy and
flexibility in simulating crop growth, development, and final yield across diverse
soil-plant-atmosphere dynamics. It contains the models for many different crops,
and a suite of utilities for soil, weather, crop management, and experimental data
management.

Despite its strengths, DSSAT-CSM exhibits certain limitations. Its whole-
season simulation approach precludes real-time adjustments throughout the growing
season, due, for example, to unexpected weather events or inaccurate forecasts.
Furthermore, its automatic management tool is limited to handling automatically
only irrigation, sowing, and harvesting, and does not provide the option to define
the fertilization strategy. Furthermore, the automatic irrigation, for instance, is
threshold-based, so it is not designed for irrigation optimization.

This thesis specifically addresses these problems by designing a simulation
strategy based on a receding horizon variation of a differential evolution optimization
algorithm on top of the DSSAT crop simulation model. This also includes a weather
forecast in the loop to make the model capable of defining a (sub-)optimal online
strategy for the fertilizer application. In this way, the DSSAT could be used as an
online decision-support tool, with the objective of maximizing the yield given a
fertilizer budget. The algorithm is supposed to be robust against weather variations
and the choice of fertilizer application days.

First, the optimization algorithm is applied and tested with real seasonal weather.
This phase is made to test the algorithm and evaluate its performance. After that,
the hypothesis of knowing the weather is reduced and the optimization is refined
throughout the season.

The evaluation of the results is not trivial, due to the high dependence of the
growth to many aspects that are difficult to reproduce. This is in fact a challenge
for all this kind of research. The results are compared to an extensive simulation
campaign with real weather data, and the shape of the treatments is compared to
some suggestions derived from research papers or equivalent documentation.

Preliminary findings demonstrate the algorithm’s ability to identify patterns
consistent with paper suggestions, achieving performance similar to the simulated
maximum.
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Chapter 1

Introduction

1.1 The role of fertilizer in the growth of corn
cultivars

Corn, also known as maize (Zea mays L.), is a vital cereal crop cultivated worldwide.
For an optimal growth, corn crops rely heavily on a crucial element: fertilizer.
While corn can grow in various soil conditions, it thrives when its nutritional needs
are met through strategic fertilizer application.

Corn, like all plants, requires a specific set of nutrients for optimal growth and
development. These essential elements can be broadly categorized as macronutrients,
needed in large quantities, and micronutrients, required in smaller amounts. Among
the macronutrients, nitrogen (N), phosphorus (P), and potassium (K) play a central
role. Nitrogen is the building block for proteins and chlorophyll, driving vigorous
vegetative growth. Phosphorus is crucial for root development, energy transfer, and
early-stage growth. Potassium strengthens cell walls, promotes water management,
and aids in disease resistance. Deficiencies in any of these elements can significantly
impact corn cultivars.

Without proper fertilization, corn plants would struggle to thrive. Nitrogen
deficiency would result in stunted growth, pale leaves, and a reduced number of
stalks. This translates to significantly lower yields and smaller cobs. Similarly,
phosphorus deficiency hinders root development, limiting the plant’s ability to
access water and nutrients from the soil. This leads to stunted growth, delayed
maturity, and susceptibility to drought stress. Potassium deficiency weakens
the plant structure, making it more prone to lodging (falling over) and disease.
Furthermore, a lack of essential micronutrients like zinc, magnesium, and sulfur
can cause various physiological disorders, further impacting yield and quality.

Understanding the growth phases of corn is crucial for targeted fertilizer ap-
plication. Corn development can be broadly divided into six stages: germination,
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seedling emergence, vegetative growth, tasseling, pollination, and grain filling.
Each stage has specific nutrient requirements. During germination and emergence,
readily available phosphorus in the form of starter fertilizer promotes strong root
development and seedling establishment. As the plant enters the vegetative growth
stage, nitrogen becomes the primary driver, promoting leaf area development and
overall plant growth.

The tasseling and pollination stages are critical for corn yield. Adequate phos-
phorus and potassium are essential during this period to ensure proper pollen
formation and silk receptivity. Finally, during grain filling, the focus shifts back
to nitrogen, along with potassium, for optimal cob and kernel development. By
tailoring fertilizer application to address the specific needs of each growth stage,
farmers can maximize corn yield and quality.

Modern fertilization strategies have moved beyond simply applying a generic mix
of nutrients. Soil testing plays a vital role, allowing farmers to determine the existing
levels of nutrients in the soil. This information, combined with an understanding of
the specific cultivar’s needs, helps develop a customized fertilization plan. Precision
agriculture technologies further refine this process. Techniques like variable rate
application allow for targeted fertilizer distribution within a field, taking into
account soil variability and crop growth patterns.

The use of controlled-release fertilizers is another innovation that helps optimize
nutrient delivery. These fertilizers gradually release nutrients over time, reducing
the risk of leaching and ensuring a steady supply for the growing corn plants.
Additionally, research into biofertilizers and cover crops holds promise for a more
sustainable approach to fertilization. Biofertilizers harness the power of beneficial
microorganisms to enhance nutrient availability and soil health. Cover crops,
planted between corn cycles, help fix nitrogen in the soil and improve organic
matter content, reducing the overall reliance on synthetic fertilizers.

In conclusion, fertilizer plays an indispensable role in the growth of corn cultivars.
By providing essential nutrients throughout the various growth stages, farmers
can ensure healthy plants, maximize yield potential, and ultimately contribute to
global food security. As technology and scientific understanding evolve, fertilization
strategies will continue to adapt, seeking a balance between maximizing productivity
and minimizing environmental impact. Through these advancements, corn can
continue to be a cornerstone of our agricultural landscape, offering a reliable and
nutritious source of food for generations to come.

1.2 DSSAT
The ever-growing demand for food security necessitates continuous advancements in
agricultural practices. In this pursuit, crop modeling has emerged as a powerful tool
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for simulating and analyzing crop growth under varying environmental conditions.
Among the most prominent software programs in this domain is the Decision
Support System for Agrotechnology Transfer (DSSAT). This chapter delves into the
core functionalities of DSSAT, its applications in optimizing agricultural strategies,
and its significance in promoting sustainable food production systems.

DSSAT is a modular software suite encompassing a multitude of dynamic crop
growth simulation models. Currently, it supports over 42 different crops, each model
targeted to represent the intricate physiological processes governing growth and
development. These models act as virtual laboratories, enabling researchers and
agricultural professionals to evaluate the potential impact of diverse management
practices on crop performance.

The strength of DSSAT lies in its multifaceted data integration capabilities. It
seamlessly incorporates user-defined inputs such as soil characteristics, weather
data, and specific crop management practices. This allows for the creation of
highly realistic scenarios that mirror real-world agricultural settings. By simulating
crop growth under these defined conditions, DSSAT facilitates the evaluation
of various management strategies, including planting dates, irrigation regimes,
fertilizer application rates, and cultivar selection. This empowers farmers to make
informed decisions that can significantly impact crop yields, resource utilization
efficiency, and ultimately, farm profitability. The user is helped in this by an
intuitive GUI, reported in Figure 1.1, in which all the support utilities can be found
on the left bar, while on the right are accessible all the experiments that come with
the simulator and the one added by the user.

The benefits of DSSAT extend beyond individual farm operations. Its widespread
adoption in over 100 countries fosters knowledge transfer and the dissemination
of innovative agricultural technologies. Regional climate and soil data can be
incorporated into the software, allowing researchers and policymakers to develop
location-specific strategies for sustainable food production. DSSAT becomes in-
strumental in evaluating the potential impact of climate change and resource
limitations on crop production. By simulating various scenarios, researchers can
identify potential risks and develop adaptation strategies to ensure food security in
the face of evolving environmental challenges.

Furthermore, DSSAT plays a crucial role in risk mitigation strategies. By
simulating the impact of different weather patterns on crop growth, farmers can
gain valuable insights into potential yield losses due to drought, flooding, or extreme
temperatures. This foresight allows them to implement proactive measures such
as adjusting planting dates, selecting drought-resistant cultivars, or implementing
water conservation techniques.

In conclusion, DSSAT stands as a testament to the transformative power of
technology in agriculture. Its comprehensive crop growth simulation models coupled
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with its data integration capabilities empower researchers, policymakers, and farm-
ers alike. By fostering informed decision-making, optimizing resource utilization,
and promoting climate-resilient agricultural practices, DSSAT plays a vital role in
ensuring sustainable food production for future generations.

Figure 1.1: Interface of the DSSAT.

Flexibility of DSSAT
One of the main characteristics of DSSAT is its flexibility. The model takes in
consideration many aspects like row spacing and seed density, and more than
everything the specific parameters of the crops: this allows to have a very realistic
estimate of the growth process of the plant. Even for cultivars that are not
inserted into the already extensive DSSAT seed database, there is a procedure
called calibration. Each seed is characterized by some parameters, that can be
edited in a file. These parameters govern the behavior of the crop in the simulator,
representing some intrinsic characteristics of the crop itself: as a consequence, the
growth of the crops, under all aspects, will change by changing the values of these
parameters.

Seed parameter values can come in two ways. Some producers provide them
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directly with the seeds, offering a convenient starting point for simulations. How-
ever, other parameters require a process called calibration. Calibration involves
fine-tuning these parameters to ensure they accurately reflect real-world growth
conditions. This is achieved by comparing the model’s predicted growth outcomes
with field measurements collected during a growing season.

While calibration offers significant benefits, it does introduce a time constraint.
Since real-world data is necessary for the process, it typically requires at least one
year of field trials with the specific seed variety before the calibrated parameters
are available.

The calibration requires field-collected data. By incorporating measurements
from multiple years, locations, and even different agricultural practices (treat-
ment strategies), we can create a broader and more comprehensive dataset. This
enriched data allows the model to account for variations in factors like soil compo-
sition, weather patterns, and management techniques. The resulting, more robust
calibration leads to simulations that are more reliable and generalizable.

The calibration itself is aided by the software with a simplified interface: the
data is loaded in some special files, and then the DSSAT software will plot a graph
similar to the one in Figure 1.2, where measured data (dots) are compared with
the simulated values (lines). The calibration is an iterative approach, which can be
long but possibly automated, but the outcome, coupled with the DSSAT, can be
used to accurately simulate the growth of the plant.

Figure 1.2: Example of a calibrated seed: the dots are the measured points, while
the lines comes from the simulation. Taken from the IUAM8801 experiment that
come with DSSAT software.
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Chapter 2

Related work

In this chapter will be presented the related work about the current fertilization
strategies. Furthermore, a bit as an anticipation, the literature about the differ-
ential evolution algorithm will be reviewed, which is the optimization algorithm
implemented in the proposed solution.

2.1 Differential evolution algorithm
Differential Evolution (DE) is a powerful and versatile optimization algorithm
belonging to the realm of evolutionary computation. Unlike traditional, non-
heuristic methods that rely on gradient information to navigate the search space,
DE adopts a population-based approach inspired by the principles of natural
selection. This section describes the core functionalities of differential evolution,
explores its strengths and weaknesses compared to other evolutionary algorithms,
and identifies the problem characteristics that make it a compelling choice for
optimization tasks.

Heuristics vs. Non-Heuristics and the Role of differential evolution
Optimization algorithms strive to identify the optimal solution (minimum or
maximum) for a given objective function within a defined search space. Nonheuristic
methods, such as gradient descent, leverage the function’s derivatives to determine
the direction of steepest ascent or descent. However, these methods struggle with
problems lacking readily available derivatives, encountering issues like local optima
– points that appear optimal within a limited region but are not globally optimal
across the entire search space.

Here heuristics such as differential evolution come into play. They employ a set
of guiding principles rather than deterministic rules. differential evolution operates
on a population of candidate solutions, mimicking the concept of a biological
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population evolving over generations. Through a series of mutation, crossover, and
selection processes, the algorithm iteratively improves the population, guiding it
towards the optimal solution.

Differential evolution compared to the other evolution-based algorithms
Differential evolution shares its core philosophy with other evolutionary algorithms,
like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). All three
maintain a population of candidate solutions, iteratively refine them, and select the
most promising individuals for the next generation. However, differential evolution
differentiates itself through its unique approach to mutation and crossover.

GA relies on random bit flips or swaps within solution strings to introduce
variation. PSO, on the other hand, leverages the concept of swarm intelligence,
where individuals adjust their positions based on their best position and the best
position found by the swarm. Differential evolution, instead, utilizes the differences
between existing solutions within the population to create new candidate solutions,
fostering a more informed exploration of the search space.

Problem characteristics favoring differential evolution The efficacy of
differential evolution is highlighted when tackling a specific set of optimization
problems. Here are some key characteristics that make differential evolution a
compelling choice, that are:

• Non-Differentiable Functions: When the objective function lacks readily avail-
able derivatives, differential evolution becomes a viable alternative to gradient-
based methods.

• Multimodality: If the objective function possesses multiple local optima,
differential evolution’s population-based approach is better suited to escape
these traps and converge on the global optimum.

• Continuous Search Space: differential evolution is primarily designed for
problems with continuous solution spaces, where solutions are represented by
real numbers rather than discrete values.

Advantages and disadvantages of differential evolution Differential evolu-
tion has several advantages that make it a popular choice for optimization tasks.

• Robustness: Its reliance on population diversity makes it less susceptible to
getting stuck in local optima compared to deterministic methods.

• Few control parameters: differential evolution requires minimal parameter
tuning compared to other evolutionary algorithms, making it easier to set up
and use.
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• Parallelization potential: The inherent independence of solution evaluations
within the population allows for efficient parallelization, leading to faster
computation times on multi-core systems.

However, differential evolution is not without limitations.

• Convergence speed: While robust, differential evolution can sometimes
exhibit slower convergence compared to gradient-based methods, especially
for problems with smooth objective functions.

• Parameter sensitivity: Although requiring fewer parameters than some
algorithms, differential evolution’s performance can still be sensitive to the
chosen population size, scaling factor, and crossover rate. These parameters
may require fine-tuning for specific problems.

• No guarantees of optimal solution: As with all heuristics, differential
evolution cannot guarantee the finding of the absolute global optimum. How-
ever, its population-based approach significantly increases the probability of
converging to a near-optimal solution.

Differential evolution offers a powerful tool for tackling complex optimization
problems, particularly those characterized by non-differentiability, multimodality,
and continuous search spaces. Its robustness, ease of use, and parallelization poten-
tial make it a valuable asset in various scientific and engineering domains. However,
differential evolution’s convergence speed and sensitivity to certain parameters
necessitate careful consideration when compared to alternative approaches. By
understanding the problem characteristics and differential evolution strengths and
weaknesses, researchers and engineers can leverage this versatile algorithm to unlock
optimal solutions in a diverse range of applications.

2.1.1 Standard implementation
The differential evolution algorithm was initially proposed by R. Storn and K. Price
in [1]. In the following years, this optimization algorithm gained the interest of the
researchers and many different variations had been proposed.

This algorithm belongs to the family of metahuristics: the global optimum is
not guaranteed to be found in general. In this regard, Ghosh et al. in [2] have tried
to demonstrate that this algorithm can find a global minimum, provided that it
is unique (no constrains on the number of local minima) and that the function is
continue: under a specific, yet common, implementation, they showed that with an
infinite number of iterations, the global minimum will be found with probability
equal to one.

8



Related work

Another strategy, as shown by Kitayama et al. in [3], delineates which charac-
teristic should have an evolution strategy to seek the minimum and at the same
time escape from local minima.

In its basic implementation, the algorithm is reported in Algorithm 1. The
algorithm is divided in four main phases:

1. Initialization: a population is initialized with a specific strategy;

2. Mutation: a second population is generated starting from the current best
population, by combining a base individual and the scaled difference of other
two individuals from the current population. Many methods, which are
discussed in the following sections, can be employed for this phase;

3. Crossover : the mutated population is mixed with the current best population,
generating the trial population, making sure that at least one element is
changed in each individual;

4. Selection: the current best population is updated individual-wise. The cost
function for each individual of the best and test population is computed, and
an individual is updated if the cost of the correspondent test individual is
lower.

The points 2-4 are repeated iteratively until a stopping condition has been met.

2.1.2 The algorithm in detail
As already mentioned, the algorithm has an initialization phase, and the other
three phases are executed iteratively to evolve the population. In this section, these
phases are described more thoroughly.

Each evolution strategy is denoted in the literature by the convention DE/x/y/z,
where:

• DE: stands for differential evolution;

• x: is the type of mutation;

• y: is the number of mutation vectors that are used for the mutation;

• z: is the type of crossover;

Initialization phase

Since the objective is to explore the whole input space, a typical initialization
phase is a uniformly random distribution. Since for each variable there might be
constraints on the possible values, the values of each individual are sampled in their
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Algorithm 1 Standard differential evolution algorithm. Good values for the
constants are NP = 50, F = 0.4, Cr = 0.2.

1: procedure Standard Differential Evolution(NP , F, Cr, f)
2: ▷ NP is the number of the element in the population
3: ▷ d is the dimensionality of each element of the population
4: ▷ F ∈ [0, 1]+ is the mutation coefficient
5: ▷ Cr ∈ [0, 1) is the crossover coefficient
6: ▷ f (θ) is the objective function to optimize, where θ denotes the generic

element of the population
7: ▷ Initialization
8: P0 ← rand(NP , d) ▷ Population is randomly initialized
9: t← 0

10: while Stopping condition not met do
11: Mt ← mut (Pt) ▷ Generate the population of mutants (or donors)
12: Tt ← cross (Pt, Mt) ▷ Generate the trial population
13: Pt ← select (Pt, Tt) ▷ Update, individual-wise, the best population
14: t← t + 1
15: end while
16: return arg (minind∈Ptf(ind)) ▷ Best element is returned
17: end procedure
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respective feasibility domains. It is important to highlight that having constraints
in the differential evolution is necessary, because the initialization needs to be
uniform in a finite interval.

To fasten the convergence, however, if an a-priori distribution is known to be
good, then the population can be initialized considering this.

Mutation phase

The mutation is the phase in which a new population, with the same number
of individuals, is generated. This population is generated by combining a base
individual and the scaled difference of other two individuals from the current
population (which is the initial population in the first iteration, and the last
updated population in the following ones).

In general, the mutation consist in generating new individual starting from the
current population. This procedure is repeated for all the individuals in the new
population, which is the same size as the current. In Table 2.1 some of the most
common mutation strategies are reported.

Name Mutation strategy
random vG

i = xG
C1i

+ Cm

1
xG

C2i
− xG

C3i

2
best vG

i = xG
best + Cm

1
xG

C1i
− xG

C2i

2
current-to-best vG

i = xG
i + Cm

1
xG

i − xG
best

2
+ Cm

1
xG

C1i
− xG

C2i

2
Table 2.1: Some of the most common basic mutation strategies, to compute the
i-th individual of the mutant population at the generation G.

In the table, the vector xbest is the individual of the current population for
which the cost function have the lowest value, while xj is the j-th individual of
the current population. C1, C2 and C3 are three randomly picked values for each
individual for each iteration. Cm is instead a parameter of the algorithm, and
remains constant for all the individuals. In particular, Cm is one of the coefficients
that balances the trade-off between exploration and exploitation: a low value
of Cm means that the first element has a limited variation, which promotes the
exploitation of precious solutions, while a higher value promotes exploration instead.
The ccurrent-to-best strategy is called this way because the base vector is a
point between the i-th and the best individuals of the current population.

Mezura-Montes et al. in [4] experimentally show that the different DE mutation
strategies have different characteristics. For example, strategies like DE/best/1,
DE/current-to-best/1 have been shown to have a good convergence speed for
unimodal problems, while DE/rand/1 has a slower convergence, but it is a good
strategy to escape local optima, because it has more variation.
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In the figures Figure 2.1 and Figure 2.2, one can see how basically differential
evolution works.

In particular, in the first case, the mutation pushes the vector towards the ones
with the cheapest cost; however, if the minimum to which they belong is a local
minimum, then moving toward that direction is not advisable. On the other hand,
the random mutation strategy allows to escape from local minimum.

Figure 2.1: Geometrical representation for the two-dimensional mutation
DE/current-to-best/1.

From the geometric point of view, the figures Figure 2.1 are representative
on how the DE/rand/1 and DE/current-to-best/1 will generate a new mutant
vector: it can be seen how the mutant generation works. In the first case, the
samples are randomly selected: this means that if the target is stuck into a local
optima, there is a good chance that the mutant will escape from that due to high
variations. On the other case, the situation is almost the opposite: the current
target is moved towards the best individual of the population, and then another
variation term is added. However, if the best is close to a local minimum, with this
update method also other element will probably be attracted to that minimum.
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Figure 2.2: Geometrical representation for the two-dimensional mutation
DE/rand/1.
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The second parameter associated with the mutation phase is the number of
different vectors used for perturbation. This is straightforward, but as an example,
the mutation strategy DE/rand/2 at the t-th iteration of the algorithm for the i-th
individual is equal to vG

i = xG
C1i

+ F
1
xG

C2i
− xG

C3i

2
+ F

1
xG

C4i
− xG

C5i

2
.

Finally, another final focus is worth for the parameter F . First of all, no
parameter exist that would fit all the stages of the search: typically, being F a
proportional coefficient that is multiplied by a difference vector and added to the
base vector, the bigger it is, the more search is made, making it useful for the
early explorative stages of the search; lower values of F are useful for the second
part of the evolution, for a more fine-grained search which means in turn a faster
convergence.

Crossover phase

The crossover phase is the one in which the current population and the mutated new
population are randomly merged. The outcome of this phase is a third population,
called trial or offspring population.

Also for this phase, there are different strategies and different parameters to get
the result. Some of the most commonly used, that are reported in [5], are:

• binary: a threshold is determined, and for each element of each individual,
a random number is generated from a binary distribution, and if it is below
the threshold, the current population element survives, otherwise the mutated
element will do. Another condition is added to guarantee that at least one
variation is made, which is picking a random integer between 0 and d, where
d is the dimensionality of the individual, and if the index of the element is the
same, then the mutation passes. This integer is sampled every iteration.

• arithmetic recombination: the trial is generated as a convex recombination
of the target vector and a donor vector as:

uG
i = xG

i + ki ·
1
vG

i − xG
i

2
where ki is a randomly generated coefficient. This crossover method guarantees
that the solution is rotational invariant. A similar approach can be employed
to have a component level crossover, by defining a different ki,j for each element
of each individual, loosing the rotational invariant property.

The rotational invariance property in the differential evolution is invalidated in
the crossover schemes if a binary crossover is applied, because the mutation phase is
intrinsically rotation invariant since all the components are modified simultaneously.
What happens with a binary crossover is that part of the information is lost due
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to the change of only some element, so instead of moving all the vector towards a
specific, even if worse, point, just part of that vector survives to the comparison
with the parent in the selection phase. This effect is accentuated if the elements of
an individual are highly dependent between each others. However, comparisons
with a standard binary crossover show that a rotational invariant crossover, and
thus search brings results similar to the standard one [5].

Selection phase

For each individual in the population, the cost is computed and the current
population is updated with the individual with the lowest cost.

An important note is that this update is synchronous, but there are asynchronous
variants, for which this procedure is applied sequentially to each single individual,
so an update would take immediately effect: this translates into having best samples
as long as the elements are selected, so new, better elements can be drew from the
population before the whole population is updated, speeding up the convergence
towards the optimum.

2.1.3 Constraints handling
In the differential evolution algorithm, the handling of the constraints can be
managed at different levels and with different modalities, depending on the type of
constraint and the nature of the problem. Among the different methods, there are
some that are more suitable than others, depending on the problem to optimize.
In some cases, the offspring generated after mutation and crossover is simply not
feasible, and the parent survive the current generation. In some other cases, the
entire population must be considered in the constraint if, for example, there is a
constraint of the type q

xG
i < C: this case is not trivial because it implies that

the entire population is involved in the scheme and the repair, if possible, needs to
exploit the nature of the problem.

According to Asafuddoula et al in [6], the constraint handling techniques in
differential evolution can be broadly clustered into six categories: the most common
is the addition of a penalty term, as a function of the missed constraint, to the
cost function, which however requires in turn the tuning of the weight of this
penalty and a specific scheme to determine how the weight looks like (annealing,
proportional, quadratic, some other non linear function); repairing the values is
another solution, which depends on the nature of the problem under optimization;
the feasibility first constraint handling is another category, and it is based on
selecting first based on feasibility, such that if both parent and test samples are
feasible, then the choice is based on the cost, if only one is infeasible, then the other
is taken no matter the cost function, and finally if both are infeasible, the one with
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the lowest constraint violation is taken, regardless the cost associated to the two
vectors; a similar but yet different approach is the one called ϵ-constraint, which
treats infeasible solutions as feasible by accepting an admissible constraint violation
of ϵ; for multi-objective cost functions, dominance based schemes for handling the
constraints are developed, but this is not relevant for this work; an ensemble of a
set of the mentioned solutions has also been proposed in the literature, but still
needs to deal with the choice of hyper parameters.

2.2 Advanced differential evolution algorithms
Due to its flexibility and adaptability, the differential evolution algorithm has been
subjects to mutations itself. In different publications, different authors tried to
cluster the differential evolution variants into different groups, differentiating by
stage, update method, parameter choice, evolution order. According to [7], the
variants can be classified into three categories, namely new DE strategies, adaptive
DE strategies, and composite DE strategies.

To the first category belong all those algorithms that modify the mutation,
crossover or selection scheme. Examples, that can be found in [7], are: a proposed
solution exploits a trigonometric mutation scheme, where the three coefficients
associated with it lead the vector towards a promising subset of the input space; the
solution proposed by another publication mimics the attraction-repulsion concept
of the electromagnetism, where good samples attract others, while the worst ones
repel the others; GDBE, a parameter free differential evolution, has been proposed,
where the trial is generated starting from the target and a set of good samples,
combined randomly, with parameters drawn by a Gaussian distribution; also
different neighbour-based version has been proposed, in which a set of neighbours
and relatives is associated to each individual, and the evolution is based considering
this newly formatted sub-populations.

To the second category belong all the algorithms that have a particular adaptive
scheme in determining the parameters F and Cr. Examples, that can be found
in [7] as well, are: a fuzzy logic controller to determine the values of F and
Cr; randomly chose between the imposed F value and another that is randomly
generated; a random sample of the parameters in a neighbour of the value that
has been set; JADE is a famous implementation of DE algorithm that evolves the
parameter according to their success rates; SHADE is another implementation
of adaptive success-based scheme, improved in a second time with a reduced
population approach.

Finally, to the third category belong algorithms in which both the structure is
modified and an adaptive parameter scheme is implemented.

According to [5], other than the ones considered in [7], adds the category for

16



Related work

which the number of elements of the population changes during the evolution. The
examples, that can be found in [5], explore different solutions: a solution divides
the computational budget scheduling it among the different iterations; another
proposal is to modify the population size according to the diversity among the
individuals, making it smaller when the samples are not geometrically close, to
promote more exploration; a similar proposal imposes a range for the number of
individual, and if no improvements occur, that could be a symptom of stagnation
and the population is increased, otherwise is decreased.

2.3 Differential evolution with reciding horizon
The deciding horizon principle combined with a differential evolution optimization
algorithm (DE-RH) has been used in the literature. Xiang-Yin and Hai-Bin in
[8] implemented the DE-RH algorithm for formation reconfiguration for a multi-
UAV coordinate control, by reframing the global optimum reformation solution
to an online search of local minima. Similarly, Zhang et al. in [9] enhanced the
solution by applying the same approach by including a tridimensional environment
space and an adaptive strategy for the definition of the parameters. Zhao and Lu
propose another similar study that uses this approach in [10], where they applied
a DE-RH for cooperative search of a multi-UAV swarm, showing the efficiency of
this approach against the typical ones based on basic grid-line searching.

2.4 Nutrient management for maize cultivars
As it holds for any cultivar, the nutrient required depends on many different factors:
the soil nutrient content, which in turn depends on previous crops and treatments,
which might leave residuals that will be reused by the plants in the following season
(a significant percentage of the nutrients is used not for the grain development,
but for the development of some parts of the crop, which can be left there for
the next season after the harvest), and the type of soil, which also might favour
or prevent chemical reactions of the nutrient with the soil, like denitrification in
clay soils, which turns in a nitrogen loss; the type of crop and the specific seed
planted, for which the nutrient uptake varies according to the characteristic needs
and development of the crop; the weather, which has a strong influence on the
management, because it affects the efficacy of the nutrient application; finally the
row spacing and the irrigation type and quantity play a significant role in the crop
development.

For all the mentioned reasons, there is no universal strategy for fertilizer man-
agement. Since in this thesis the objective is to work on a proof of concept, only
nitrogen management is taken into consideration.
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In this regard, the literature on corn fertilizer is present, but this is applicable
in the general case for the reasons listed above. Most indications are general, with
some technical reports on specific geographical areas with similar soil characteristics
and more predictable weather.

An example is reported in [11], nitrogen fertilizer is used most efficiently when
most is applied near the beginning of rapid N uptake or about the eighth leaf stage
(V8). Applications as late as R2 may have a profitable nitrogen yield response, but
applying N after R3 is not recommended.

Another technical report [12] states that in Mississippi the recommended man-
agement practices depend on the grain needed. In particular, since corn uses less
than 10 percent of its nitrogen before rapid vegetative growth begins, there is almost
no need of it during the early stages. This growth spurt usually occurs in late
April through mid-May, depending on the planting date and seasonal temperatures.
Nitrogen can be used more efficiently if only a small portion is applied just after
plants emerge. Add the bulk of your nitrogen fertilizer just before the growth spurt,
when the plants need it most. Their standard nitrogen recommendation is to apply
no more than one-third of the total nitrogen near planting/crop emergence. Apply
the remaining nitrogen about 30 days later. Corn should be higher than 12 inches
or at V6 growth stage by the second application.

Another tech report [13] explains how the nitrogen should be applied 30/40 days
after planting, in accordance to what is suggested in the second reference.

Furthermore, according to the white paper [14] from a known seed producer,
improving fertility practices require matching in-season nutrient uptake with the
availability of nutrients. Furthermore, for some nutrients (e.g., N, P, K, Mg, Mn,
and Fe), as much as two-thirds of total uptake occurs during vegetative growth.
Of critical importance is supplying N to meet corn’s peak needs from V10-V14.
Finally, the nitrogen uptake does not cease when the plant starts its reproductive
stages, because it will need it again during the last part of the growth of the filling
grains.

This is also backed up by the section G of [15], from which the plot and the
comments shows how the nitrogen is supposed to be uptaken by the plant. In
particular, in this technical report is reported an illustration representing the
nitrogen uptake of the corn during the season, which is reported in Figure 2.3:
in the figure, can be seen how the period of biggest uptake period coincides with
the rapid growth, around thirty days after the emergence. The uptake after that
is somehow linear, but very limited in terms of rate with respect to the second
third of the growth period. Then the exact date depends on all the conditions in
which the plant grows, and from the seed itself. All the phases can be found in the
OVERVIEW.OUT file at the end of the simulation. If the weather and soil conditions
are not changed significantly, the fertilizer itself does not change significantly the
date at which the different phases are reached, so to have an idea is more than
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sufficient. In the real case, each growth phase is determined from some properties
of the plant (height, number of leaves, number of ears, and many other).

Figure 2.3: Cumulative nitrogen uptake.
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Chapter 3

Problem and solution
description

This thesis explores an alternative solutions for the fertilizer management, in order
to reduce the use of fertilizer for both economic and environmental reasons. This
method could possibly be applied in both open field scenario and greenhouses.

3.1 Description of the problem
The DSSAT is conceived for many different purposes, but the simulations are
year-wise. Since the simulator takes into consideration many different aspects of
the growth, and many of them depend on the weather, it is necessary to provide
the DSSAT with the yearly weather data. For this reason, the simulator natively
does not allow an online use of the software: this means that it is not possible to
use the model during the season, but only at the end of it, when the weather data
is available.

So the problem that this thesis is addressing is to design an optimization
algorithm on top of the DSSAT model.

This will be achieved by estimating the weather by means of a weak estimator,
which allows to have more accurate results. By using this approach, the model is
accessible in an online manner: of course, the better the estimation of the weather,
the closer the results will be to the same algorithm applied knowing the weather.

Once the simulator can be accessed in an online manner, then an optimization
algorithm is used to optimize the fertilizer strategy.

The problem facing now is to determine which algorithm to use. The computa-
tional time is not a strict requirement. Also, for each of the dates, the model is
continuous. Given this requirements, one approach could be using the differential
evolution algorithm.
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Figure 3.1: Schematic representation of the complexity of the DSSAT software.

21



Problem and solution description

3.2 Proposed solution
The proposed solution consists in using an estimate of the future weather with two
approaches: based on historical five-year daily average and by adding noise on top
of real weather data. Then, fixing a set of dates, called decision days, in which the
fertilizer could be applied, the algorithm returns the strategy (e.g. the amount of
fertilizer applied at each decision day) for the season that optimize the usage of
fertilizer maximizing the yield.

To make this as an online fashion, at each decision day the weather is modified:
up to the decision day, the weather is known, while after that, the weather is
an estimation that comes from the previous years’ data. Then the algorithm
is executed, and the amount of fertilizer defined for that decision day is picked
and applied, while the following are discarded, according to the receding horizon
principle. The same process is repeated, at each decision day, until the decision
days are terminated.

22



Chapter 4

Solution design

4.1 Simulator access
To access the simulator from a script, the method is to modify the configuration
files and then execute the executable that comes with the simulator.

4.1.1 Control file
The control file is the main configuration file. The control file is denoted by the file
extension, which terminates with X: some examples can be SBX for the soybean or
MZX for the maize.

Inside the control file, there are different blocks in which all the features are
determined. An example is reported in Figure 4.1.

In this example, the structure of the file can be seen: many different blocks,
representing different parameters of the simulation, are generated automatically
from the GUI of the DSSAT software. In this particular example, eight different
experiments are defined, and each of those is a combination of different parameters.
As an example, from the block *CULTIVARS can be seen that there are four different
crop types, and the variation in the crops can be seen under the column CU of the
*TREATMENTS block. The same happens with the two options for the fields, in the
*FIELD block: by looking at the FL column of the *TREATMENTS block, the first
four experiments are executed in the first field configuration1, the second half in
the second field configuration.

In general, after the initial notes about the intended experiment, the first block
is named *TREATMENTS, and is used to define the experiments. An example is

1By field configuration is intended, among different other parameters, row spacing, height, soil
profile, associated weather station
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Figure 4.1: Example of the control file.
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reported below:

@N R O C TNAME........ CU FL SA IC MP MI MF MR MC MT ME MH SM
1 1 0 0 TestMaize 1 1 0 1 1 0 1 0 0 0 0 0 1

The N column represents the number of the experiment, while the other represents
all the details associated with the experiment. Some examples are soil analysis,
planting, irrigation, fertilizer, organic amendments, and harvesting. Under each of
these columns, it must be specified which strategy, for each of these aspects, will
be applied in the experiment. As an example, if there are two strategies for the
fertilizer and two for the irrigation, and the user wants to verify what happens in the
different combination of configurations, would have to generate four experiments.

Among the other blocks, the one of interest for this work (but others can be used
to extend the functionality by including other fertilizers, irrigation management,
and organic amendments) is the one about the fertilizer, denoted by the string
*FERTILIZERS (INORGANIC). A sample is reported below:

@F FDATE FMCD FACD FDEP FAMN FAMP FAMK FAMC ... FERNAME
1 23121 FE001 AP009 10 30 0 0 0 ... genFert
1 23221 FE001 AP009 10 34 0 0 0 ... genFert
2 23121 FE001 AP009 10 60 0 0 0 ... genFert

Each line represent a single application, and a complex application can be repre-
sented on different lines. In each line, different informations are reported:

• Number of the strategy, F: the fertilizer strategy, identified by a number. The
fertilizer strategy can be made of more than one application: for this reason,
there is the need to identify a block with the same number. As it can be seen
from the example, there are two applications for strategy one and only one
for strategy two;

• Date of application, FDATE: the date at which the fertilizer has been applied,
expressed in the format YYDOY, where YY are the last two digits of the year
(in this example 23 means that the year is 2023, while the last three digits,
DOY, represent the day of the year, with admissible values from 1 to 365.

• Fertilizer material, FMCD: the material of the fertilizer, expressed as a code;

• Application method, FACD: the method in which the fertilizer has been applied;

• Application depth, FDEP: the depth, in cm, at which the specified fertilizer has
been applied;

• Nutritional components, FAM*: the quantity, in kg/ha, of nutrient applied. In
order, the nutrients are: nitrogen, phosphorous, potassium, and carbon;
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• Fertilizer name, FERNAME: fertilizer name, not relevant for the simulation. Set
a generic value.

4.1.2 Batch file
Finally, the last file to modify is the DSSATbatch.v48, which controls which ones
among the experiments in the control file have to be executed.

The batch file, coupled with an executable provided with the simulator, allows
to access the simulator from command line. This is essential for automating the
experiments and for including the simulator in the loop.

4.2 Weather
4.2.1 Data collection
This thesis leverages weather data from the NASA Prediction of Worldwide Energy
Resources (POWER) project [16]. This comprehensive resource offers over 200
sets of satellite-derived data that include both meteorological and solar energy
parameters. The data is provided as Analysis Ready Data (ARD), ensuring its
usability for further analysis. The POWER project provides data at multiple
temporal resolutions: daily, interannual (including monthly and annual averages),
and climatology. This flexibility allows researchers to tailor their analyses to specific
needs.

Furthermore, the POWER Data Archive boasts impressive global coverage with a
resolution of 0.5 degrees by 0.5 degrees. This fine-grained detail provides researchers
with precise weather and solar data for each part of the world. Additionally, the
archive is updated nightly, ensuring access to Near Real-Time (NRT) data, with
a typical lag of 2-3 days for meteorological parameters and 5-7 days for solar
data. This rapid update cycle is crucial for real-time applications, such as the
optimization of the fertilizer management strategy proposed in this thesis.

4.2.2 Weather file
The format for the weather accepted by the simulator and the one provided by the
NASA database does not match. For this reason, there is another step, which is
to import the data in the WeatherMan application in DSSAT and generate the
weather file in the correct format. WeatherMen allows to import a CSV file and by
renaming or eliminating columns have the weather file in the right format. The file
can then be exported in the correct format or added to a database of the DSSAT
software for later use. Since the weather file has to be modified, the first option
has been chosen.
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Modifying the weather file Each weather file is made of lines, one for each
day, representing the different values for each date. An example is reported below:

@DATE SRAD TMAX TMIN RAIN DEWP WIND RHUM
01001 4.5 -8.3 -14.7 0.5 -12.6 2.1 97.8
01002 9.3 -9.1 -17.0 0.1 -13.8 3.5 97.9
01003 5.3 -0.3 -9.4 0.3 -6.3 2.9 97.3
01004 3.0 0.9 -9.6 6.3 -4.4 4.3 95.9

The columns represent, from left to right, the date of the measure (format YYDOY),
the solar radiation (measured in MJ m−2), the maximum temperature (measured
in °C), the minimum temperature (measured in °C), the precipitation (measured
in mm), the dew point (measured in °C), the wind speed (measured in m s−1), the
relative humidity (expressed in %).

To modify the weather values, a little API has been coded to easily modify the
processed parameters in the right format.

4.2.3 Weather estimation
Weather estimation plays a crucial role in this context. From the weather depends
all the life cycle of the cultivars and, at a more pragmatic level, all the computed
results. In this thesis, two types of weather are considered, and compared, as the
estimation of the weather to provide the simulator with.

The first is the simple average of the past five years: this is the simplest approach.
It is also suggested in [17] as a good first approach to consider, since on average the
weather will not brutally change season to season. On top of that, all the data are
readily available: this means that this would represent a real application scenario.

A second approach is to generate noise on top of real weather: in this case, the
real application flavor is not valid anymore, but this emphasizes more the algorithm
functioning. Also here, the variance of the noise is a parameter that has gone under
test, to see which is the limit of the approach’s capabilities.

4.3 Differential evolution implementation
All the variations of the DE algorithm proposed in the literature aimed at reducing
the convergence time of the input to the optimal one, expressed in terms of the
number of iterations or the evaluation of functions. This can be done by exploiting
different approaches, as reported in the literature review section. In this chapter,
all the specific choices of the implementation used are reported.

First of all, the main difference is to evolve four different subpopulations: each
one is evolved in parallel with the others, but with different strategies and different
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search tasks. Some of them are for exploitation: they will have good individuals,
meaning that they are close to a minimum, thus a more refined search is performed;
some others, instead, are less optimal, hence their role is to explore the input space
searching for another minimum or to get close to an individual with better fit.

The algorithm also works with a promotion mechanism to move the individuals
from one sub-population to another, if the fit is increased enough.

4.3.1 Initialization
The initialisation is random at each iteration, scaling the result to the available
budget. From the second iteration, the first half of population is initialized as
the strategy computed at the previous iteration, and the second one is randomly
initialized. This is because it might help to start from an already computed solution.
Then, all individuals in the population are scaled to the remaining budget. This
allows the propagation of the best strategies for the previous iteration to the
following one, yet keeping a random component, because the previous optimum
could have become a local one after new information about the weather is gained.

However, to introduce more randomness, the budget is not forced to be used
completely. A factor equal to F = 0.6 + 0.4 · rand(0,1) is multiplied with the
remaining budget to allow exploration of the whole space. This is also introduced
considered that, as will be highlighted in the following chapters, having the result
close to a constraint, which is having the total fertilizer used close to the budget,
makes the optimization harder because many of the offsprings generated by mutation
and crossover will exceed budget.

4.3.2 Population sort - the promotion mechanism
An individual with a good fit (relative to the others) must belong to the subpop-
ulation P1. The way this is done is by ordering in ascending order the element
according to their cost function, and then consider the first NP1 elements as
belonging to the subpopulation P1, the second NP2 elements as belonging to the
subpopulation P2, and so on. With this method, a simple ordering of the samples
automatically implements a promotion mechanism.

4.3.3 Mutation
The mutation scheme is inspired by [7]: the entire population is divided in four
sub-populations. The first sub-population is the one with the best fitness - e.g.
with the lower cost function associated with it -, while the second and the third are
the second and third best. The fourth population, instead, is randomly generated
with the initialization method (random timing scaled to a random portion of
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the remaining budget), so if during the generations a decent value is found, the
individual will be put in an higher class. From now the three populations will be
called P1 for the best population, P2 for the middle one, P3 for the worst, and P4
for the one with randomly regenerated individuals.

For each element, are defined ten other closed elements and ten farthest elements,
based on Euclidean distance between vectors. This is interesting because differential
evolution is a simple geometric search algorithm with a population that is evolving,
so considering the population as neighbours and relatives is a logical good approach.

The mutation strategy used of the population is a current-to-best/1, which has
the structure below and is schematically represented in Figure 2.1:

vG
i = xG

i + F ·
1
xG

best − xG
i

2
+ F ·

1
xG

i,R1 − xG
i,R2

2
where the best xG

best and the differential vectors xG
i,R1 and xG

i,R2 are drawn from
different set of elements, depending on the population to which the current element
belongs. Furthermore, in the differential vectors, the individual with the higher
cost function is the second vector, so the differential vector points towards the
direction to the first one, which is in turn a best fit for the cost function considered.

Strategy for the population P1 The best population must promote exploita-
tion, so the update strategy has to be tailored to do so. The sub-population
considered is the one made out of the neighbours of the considered individual. More
explicitly, the mutation strategy is called best-to-nbest/1 :
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where the xG

bestn
is the best element among the neighbours of xG

i and the differential
vectors xG

i,R1n
and xG

i,R2n
are drawn from the neighbours of the element considered.

This allows the vector xG
i to explore only the geometric space around it, in order

to perform a local search.

Strategy for the population P2 The middle population is a sort of trade-off
between exploration and exploitation, and the update strategy is tailored to do
so. The subpopulation considered is the whole population. More explicitly, the
mutation strategy is called best-to-pbest/1 :

vG
i = xG

i + F ·
1
xG

bestp
− xG

i

2
+ F ·

1
xG

i,R1 − xG
i,R2

2
where the xG

bestp
is the best element of the entire population of xG

i and the differential
vectors xG

i,R1 and xG
i,R2 are drawn from the whole population. This method starts by

getting the current element close to the best one so far, and then it modify it with
the difference of elements picked from all over the population. This ensures to get
closer to a good candidate, but differentiating with elements that are potentially
far from the optimum.
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Strategy for the population P3 The best population must promote exploration,
so the update strategy has to be tailored to do so. The sub-population considered
is the one made out of the relatives of the considered individual. More explicitly,
the mutation strategy is called best-to-rbest/1 :

vG
i = xG

i + F ·
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xG

bestr
− xG

i

2
+ F ·
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i,R1r
− xG

i,R2r

2
where the xG

bestrn is the best element among the relatives of xG
i and the differential

vectors xG
i,R1r

and xG
i,R2r

are drawn from the relatives of the element considered.
This allows the target vector xG

i to get closer to the best of its relatives, which
implies a large perturbation since the target is in the population P3 but the parent
could be in P2 or even P1. On top of that, the other two vectors, with almost
random belonging to each of the sub-populations, introduce even more difference,
so the exploration is increased even more.

4.3.4 Crossover
The crossover is kept as in the original implementation: the selection of a random
integer to change at least one element from the offspring, and the comparison of a
number drawn uniformly between zero and one with a crossover threshold.

4.3.5 Selection and constraints handling
Two different types of cost function is considered. The first is simply the yield.
The second considers also a penalty term for the amount of nitrogen used. This
allows the usage of fertilizer to shrink. The penalty term adds the price of corn,
equal to 0,075$/lb and fertilizer 0,5$/lb: the cost (intended as price per quantity
for each hectare) of the nitrogen is removed from the profit of the corn.

4.3.6 Parameter adaptation scheme
Generally, most traditional DE algorithms use fixed parameter settings. However,
the performance of DE is very sensitive to the selected DE strategy and the
associated control parameters, which also indicates that different parameter settings
may be suitable for certain kind of test problems and even be preferred only in
certain evolutionary stage for a specific test problem. Therefore, an adaptive
parameter adaptation scheme is implemented to solve this problem. It consist in
associating a value of both F and Cr to each individual, which will be updated as
the element is evolving.

At each generation G, the scaling factor Fi of each individual Xi is generated
independently based on a Gaussian distribution, which is formulated by:

Fim = Gaussian(Fi, 0.1)
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where Gaussian(Fi, 0.1) is a random real number generated according to Gaussian
distribution with the location parameter Fi and scaling parameter 0.1. Fi is
truncated to be 1 when Fi > 1, and Fi is regenerated when Fi < 0. The location
parameter Fi is initialized to be 0.5 and then updated at the end of each generation,
as defined by:

F G+1
i = wF · F G

i + (1− wF ) · Fim

where wF is a random weight factor in [0.8, 1.0] as suggested in [18], which is
defined as wF = 0.8 + 0.2 · rand(0, 1) where rand(0,1) is a uniformly generated
random number in [0, 1].

However, if the parent survives the iteration it means that the drawn value
might be not really successful to a certain extent, then it is regenerated. In this
case, F G+1

i is updated as follows:

F G+1
i = CF · F G

i + (1− CF ) · rand(0,1)

where CF = 0.5 · rand(0, 1) and rand(0,1) is a uniformly generated random
number in [0, 1].

For the adaptation to the crossover rate, the procedure is similar. At each
generation G, the scaling factor Cri of each individual Xi is generated independently
based on a Gaussian distribution, which is formulated by:

Crim = Gaussian(Cri, 0.1)

where Gaussian(Cri, 0.1) is a random real number generated according to Gaussian
distribution with the location parameter Cri and scaling parameter 0.1. Cri is
truncated to be 1 when Cri > 1. and Cri is truncated to be 0 when Cri < 0. The
location parameter Cri is initialized to be 0.5 and then updated at the end of each
generation, as defined by:

CrG+1
i = wCr · CrG

i + (1− wCr) · Crim

where wCr is a random weight factor in [0.8, 1.0] as suggested in [7], which is
defined as wCr = 0.8 + 0.2 · rand(0, 1) where rand(0,1) is a uniformly generated
random number in [0, 1].

However, if the parent survives the iteration it means that the drawn value
might be not really successful to a certain extent, then it is regenerated. In this
case, F G+1

i is updated as follows:

CrG+1
i = wCr · CrG

i + (1− wCr) · rand(0,1)

where wCr = 0.5 · rand(0, 1) and rand(0,1) is a random number generated
uniformly in [0, 1].
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Considerations This approach shares some of the features with the one proposed
in [7], but in this case the parameters are linked to the individual of the population.
First of all, this is reasonable because all individuals are evolved with a current-to-
best-based strategy, so each mutation always starts with the i-th individual and
will be compared with the i-th mutant. This allows to evolve each individual with
its own parameters, depending also how far geometrically is from the optimum.

The results, reported in Figure 4.2 shows the comparison between using and not
using the adaptive scheme. Even if it starts from a better point, the fixed scheme
has a slower convergence.

Figure 4.2: Comparison between fixed parameter mutation and adaptive paramter
mutation.

4.4 Receding horizon
This thesis addresses an online optimization problem, which means that decisions
must be made continuously as new information becomes available. To address
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this challenge, we employ a receding-horizon approach. This method focuses on
optimizing the strategy for the whole season, given the current weather knowledge.
At each iteration, the optimization algorithm identifies the locally optimal decision.
We then select this first decision,adding it to the final strategy, and discard the
remaining ones.

This strategy facilitates a reactive approach. Unforeseen events, such as extreme
weather events detrimental to crop growth, can be dynamically incorporated into
the optimization process. The receding-horizon approach allows us to adjust our
decisions in real-time to react to these contingencies and optimize crop health.

The use of receding horizon control for online optimization is not novel. As
discussed in the previous section, numerous researchers have explored similar
approaches in various contexts. In particular, the core concept of optimizing a
limited future window is independent of the specific optimization algorithm used.
This decoupling allows us to leverage existing optimization techniques while tailoring
the application principle to the specific challenges of crop yield optimization.

A scheme of the algorithm is reported in Figure 4.3. The population is initialized,
and the optimization algorithm is applied. Then the fertilizer decision for the
current day is added to the strategy, and the entire process is repeated for the
remaining decision days.
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Figure 4.3: Flowchart of the RH-DE.
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Chapter 5

Results

The validation of the strategy in these cases is not trivial. This is because of the
reproducibility of the results. Even with the same crop, the particular conditions
of the terrain introduce variance on the measurements even within the same plot.
On top of that, also the weather plays a significant role in the plant development.

However, some results are presented based on the material listed in the relative
work section. There are mainly two parts in showing the results. The first is related
to show that, perfectly knowing the weather, the algorithm is able to obtain results
that are coherent with the suggestions published in the tech reports, showing that
the algorithm should work in line of principle.

A second set of result show how the result of the receding horizon simulation,
with the two weather estimation methods, works respect to the result obtained
with the known weather.

By concatenating the two results, can be said that the approach can be suitable
for testing in the real world scenario.

5.1 Definiton of the model parameters
The algorithm is very sensitive regarding the values of the hyperparameters. Dif-
ferent test, for the different parameters, has been conducted in order to find a
satisfying set of values to use for the appliccation.

5.1.1 Number of individual in the population
The results in the number of individual in the population is reported in the figures
Figure 5.1 and Figure 5.2. The algorithm has been fixed in terms of methods,
year, decision days, and budget, to make the comparison more clear. In particular,
the method is the one discussed in the previous chapter, the year is the 2023, the
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decision days are nine, evenly split along the growth period, and the budget for the
fertilizer is set to 200 kg ha−1. The number of populations is instead varied: the
number of population chosen is 20, 30, 40, 50, and 75. In this way, an exhaustive
exploration is supposed to be made.

In Figure 5.1, it is seen how the values converge to the best one, which is as
expected the one associated to a population of 75 individuals. The number of
iteration is set to be 600, and the other populations are expected to converge
towards the values obtained by the population with 75 elements by increasing the
number of populations.

Figure 5.1: Convergence of the DE algorithm by varying the number of individuals
in the population

However, in Figure 5.2 is reported the cost, in term of time, for executing the
600 iteration, varying the number of element in the population. The cost, expressed
in seconds, increases linearly with the number of individuals, making the choice of
a big population significantly limiting.

Given the considerations above, the population for the experiment it is chosen
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Figure 5.2: Execution time of the DE algorithm by varying the number of
individuals in the population
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to be 40: this represent a good trade-off between the convergence, which is slightly
worse than 75, but almost twice as fast.

5.1.2 Number of decision days
Another fundamental parameters is the number of decision days. This is important
not only for pure computational reasons, but also for the semantic of the solution:
having more dates means that the solution could be more accurate, since more
days are available for the model.

Even in this case, there are some parameters that are fixed. In particular, the
budget is set to be 200 kg ha−1, and the year is 2023.

The results for this experiment are reported in Figure 5.3 and Figure 5.4. In
particular, the decision days are decided as offsets from the sowing days. in
particular, the offsets from the day of planting for the different options are:

• five decision days: 0, 28, 55, 83, and 105 days after sowing;

• nine decision days: 0, 14, 28, 42, 56, 70, 84, 94, 105 days after sowing;

• fifteen decision days: 0, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, and
105 days after sowing.

From the point of view of the differential evolution algorithm, the population
number needs to be at least around five times the number of features of each
element, which in this case are the number of days. For this reason, to keep the
ratio between the population e the dimensionality of the individual constant, also
the population is changed accordingly, to be five times the number of elements.

In Figure 5.3 is represented the final yield, for the different decision days, and
for three different methods, that are suggested, with the nitrogen penalty in the
cost function and without the penalty.

In Figure 5.4, instead, it is represented the used fertilizer in the budget by the
different methods, with a different number of decision days.

From the results, it can be seen that for five decision days the performances are
slightly lower than the case of nine dates, while they does not improve by much
when the population is set to be fifteen. For this reason, the number of dates that
has to be chosen is nine.

5.2 Comparison of the implementation results
and the suggestions

The objective of this section is to show that the implementation outperforms
suggestions for the management of corn nitrogen. This will be shown by defining
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Figure 5.3: Algorithm performance in terms of end-of-season yield varying the
number of decision days.

Figure 5.4: Algorithm performance in terms of total fertilizer usage varying the
number of decision days.
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the baseline from the literature, and then comparing the results with the ones
obtained by the implementation of the differential evolution implementation.

In this phase, all computations are made with knowledge of the real weather.
This hypothesis is quite heavy, and will be removed in the following section when
the result of the online implementation will be discussed.

5.2.1 Baseline strategy
Referring to the section of the related work, the best period is the final vegetative
/ start reproductive. This period, by looking at that specific information in the
OVERVIEW.OUT output file, is at 30/35 days after planting, which is also the expected
time window. This suggest that great part of the fertilizer has to be applied in this
period. Furthermore, the grain filling phase requires nitrogen as well. So a third
of the nitrogen will be used toward the end of the season. All of this information
defines the baseline strategy that will be used to compare the results obtained.

5.2.2 Comparison of the cost function
The first comparison is about the cost function: in the first case, the cost function
is determined solely by the yield, while in the second case a penalty for the fertilizer
used is added to the cost. The results are reported in Figure 5.5 and Figure 5.6.

Figure 5.5: End-of-season yield in the
two methods

Figure 5.6: Used fertilizer in the two
methods

What can be seen from the graphs is that the yield is almost the same, but
fertilizer usage stabilizes around 150 kg ha−1. This result is particularly significant
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not only because it allows to save nitrogen with clear advantages in economic
and environmental terms, but also because it can be compared with the graph in
Figure 5.7. This graph is taken from [15], and shows how, by increasing fertilizer
use, in terms of quantity, the yield saturates and all excess nitrogen, for high
fertilization rates, is lost in the environment. This is the same result that has
been obtained from the application of the differential evolution algorithm with the
penalty term on the fertilizer strategy.

Figure 5.7: Residual nitrate left in the soil as a function of the fertilization rate
of the crop.

5.2.3 Comparison with the baseline
Defined that the best approach to use fertilizer penalty in the cost function, the
results are compared with those from the suggested management practices. The
comparison is reported in Figure 5.8 and Figure 5.9, the baseline is always below
the one obtained with optimization.

5.2.4 Timing comparison
For what regards the timing,the results show that are consistent with what is
reported in the literature. There are two peaks, exactly during the rapid growth
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Figure 5.8: End-of-season yield in the
two methods

Figure 5.9: Used fertilizer in the two
methods
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phase after around forty days after planting and the grain filling phase right before
the harvest.

Figure 5.10: Timing for the fertilizer application.

5.2.5 Results varying the year
The figures Figure 5.11 and Figure 5.12 report the consistency of the results
throughout different years. For each year, the three methods report the same
trends, with an increasing yield from baseline to DE with nitrogen penalty with
DE without nitrogen penalty. The budget for these eexeperiments is 200 kg ha−1.
For the used fertilizer, for all the years the baseline and the DE without nitrogen
penalty term use almost all the available budget, but the DE with fertilizer penalty
has a partial usage of the budget.

5.2.6 Number of iterations
The number of iterations is the last hyper-parameter to be tuned. The number of
iteration is significant because it essentially needs to be high enough to assure that
there is any upgrade, but also has to be kept low in order to reduce the computation
time.

For this case, the number of iterations is set to be 600. This, from the graph
in Figure 5.13, shows to be sufficient for reaching a plateau zone, which can be
associated to the minimum.
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Figure 5.11: Performance in terms of end-of-season yield for the three methods
in different years.
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Figure 5.12: Performance in terms of used fertilizer for the three methods in
different years.
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Figure 5.13: Evolution of the cost of the best individual with the iterations.
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5.2.7 Comments
This set of results show how the differential evolution algorithm sticks to the
suggestions and the current state of the knowledge, thus leading to results that
are acceptable and promising. All of the results are shown to be coherent, both in
timing and quantity, with current practices for nitrogen management.

5.3 Online optimization
As anticipated, the weather plays a significant role in the model. In the last section,
the results regarding the approach have been discussed with the heavy hypothesis
that the evolution of the weather variables is known from the beginning of the
season. In this section, this hypothesis is removed and the results are presented.

5.3.1 Weather estimation as average of the previous years
The first results that are presented here regard the estimated weather with the
average, day-by-day, of the same value at the same day in the past five years. This
approach is weak, but it is applicable to a real-world application, because the data
of the past years, and online for the current year are publicly available.

Figure 5.14: End-of-season yield as a
function of the relative standard devia-
tion, compared with baseline and offline
algorithm with averaged weather, vary-
ing the budget.

Figure 5.15: Used fertilizer as a func-
tion of the relative standard deviation,
compared with baseline and offline algo-
rithm with averaged weather, varying the
budget.
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5.3.2 Weather estimation as noise added to real weather
As discussed the the previous chapter, the second method for estimating the yield
is the addition of a Gaussian noise, with variable relative standard deviation.

In Figure 5.16 is reported the evolution of the final yield, for a budget of 200
kg ha−1, when the relative standard deviation is varied. Everything is compared
against the values obtained, with the same budget, with the offline version of the
differential evolution algorithm and the baseline, both for 200 kg ha−1. As expected,
the end-of-season-yield is lower than the offline version. From the graph it can
be shown that after a standard deviation of 10%, the noise is so high that the
defined strategy results worse than the defined strategy. However, with a standard
deviation of 15%, the baseline outperforms the model results.

Figure 5.16: End-of-season yield as a function of the relative standard deviation,
compared with baseline and offline algorithm.

In Figure 5.17 and Figure 5.17 the comparison with baseline and differential
evolution algorithm for different budgets is reported.

5.3.3 Comments
In both cases, as expected the performance is sub-optimal, lying between the results
obtained with the baseline and the algorithm applied with the perfect weather
knowledge. The first result shows that the online approach can be considered as an
alternative to the standard recommendations, even with a weak weather estimation.
The second, on the other hand, compares the baseline with a weather estimation
of the weather based on Gaussian noise, with a variation in the relative standard
deviation. First a tentative threshold is determined, that is between 10% and
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Figure 5.17: End-of-season yield as a
function of the relative standard devia-
tion, compared with baseline and offline
algorithm with a relative noise character-
ized by a 10% standard deviation, vary-
ing the budget.

Figure 5.18: Used fertilizer as a func-
tion of the relative standard deviation,
compared with baseline and offline algo-
rithm with a relative noise characterized
by a 10% standard deviation, varying the
budget.
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15% of relative standard deviation. Then the comparison with offline differential
evolution and baseline, for different budgets and a weather estimation with a
relative standard deviation of 10%, is presented, and shows that this approach for
weather estimation outperforms the baseline.

In this set of results, the results are worst than the offline version, which can be
considered as the best approximation of the optimum, but better than the baseline
approach. However, the advantage is that the approach validates the approaches
regardless the model.

Finally, a consideration about the usage of fertilizer, in terms of quantity. With
the average-base weather estimation, the usage is higher when compared with the
solution obtained with the noise-based one. This is reasonably due to the fact that
the first is an average of weather values form different years, that might sometimes
lead to unrealistic values, while the latter is based on real data, which has probably
more influence.
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Conclusion

This thesis aims at founding an alternative, data dirven solution for the prolem of
optimal strategy for the fertilizer management. Since it is a proffo of concept, only
on type of nutrient has been considered in the study.

The hardest part in this work is to find a robust comparison to validate the
results. This is a challenge for all this type of problems, due to the combination of
a lack of unavailability of precise, reproducible setup configurations and an high
sensistivity of the crop to soil, fertilizer and weather variations.

However, the results seem promising: in the first set of results, the comparison
with the baseline and the DE application, with seasonal weather knowledge, not
only shows that the baseline is outperformed for all the budgets, but also that the
fertilizer usage, in the latter case, is significantly lower than in the first one.

With the second set of experiments, with the offline approach based on weather
estimation, results show to be comparable with the baseline. This result is significant
because the result of different studies, which is used as baseline, is obtained in a
different method, which has margin for improvement.

To exploit that margin, the first step would be working at upgrading the weather
estimation model. The historical average estimation is too much weak, while the
noise-based method, on the other hand, might carry a too heavy assumption.

Furthermore, the same approach could be extended in the case of soil variation
within the same field, for a more targeted solution, and including the other nutrient
in the optimization, as well as the irrigation practices.
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