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Abstract

Collective communications are widely used in parallel computing applications and

create one of the main bottlenecks in large system architectures due to their over-

head. With the rise of Graphic Processing Units (GPUs), Many-core, and Multi-core

architectures, the importance of these operations and their impact on the system’s

energy and performance is continuously increasing.

This project aims to develop a reduction-capable crossbar to allow reduction oper-

ations during data transmission, accelerating M-to-1 communications. Regardless

of the general-purpose capability of the developed crossbar, an in-depth study was

conducted on global barrier mechanisms which can be implemented with reductions.

The device was synthesized for GlobalFoundries 12nm with different configura-

tions, leading to a considerable area overhead. Additionally, the crossbar was inte-

grated into Occamy, a system with 216 RISC-V processors, to run various kernels

evaluating the performance speedup. Analysing the global barrier under different

conditions, the maximum achieved speedup was 6.9, while in the worst condition,

the hardware version is still 15% faster than the software. To observe the impact on

a real application, the developed feature was exploited in the bitonic sort algorithm,

reaching a speedup of up to 2.43.

To our knowledge, this is the first work where reduction capabilities have been in-

tegrated inside a crossbar for general-purpose systems.
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Chapter 1

Introduction

1.1 Motivations

In today’s rapidly evolving technological landscape, the widespread adoption of het-

erogeneous systems, such as System-On-Chips (SoC), Many-Core architectures, and

Graphic Processing Units (GPU), is reshaping the electronic systems’ paradigm.

These advancements not only provide unparalleled computational power but also

pose significant challenges in managing efficiency and communication among sys-

tem components.

In this context, ”Collective Communications” [1] emerge as a critical element for

optimizing performance and fully harnessing the potential of these cutting-edge ar-

chitectures. A fundamental aspect within this framework is the necessity of a robust

communication system, such as a reliable crossbar, to facilitate efficient and rapid

communication among various cores and system components.

Numerous application fields today leverage collective communications, especially

in reduction operations. An illustrative example is found in AI applications like

Deep Neural Networks (DNN), which extensively use these operations to construct

neural models. Similarly, Machine Learning (ML) systems often exploit Graphic

Processing Unit (GPU) to perform parallel operations that must later be consoli-

dated on a central core. The challenges of large-scale systems become pronounced

when considering the exchange of data among masters and slaves. The communica-

tion bottleneck introduced by high traffic and limited bandwidth poses a significant

hurdle. For instance, in distributed computing environments, the efficient exchange

of information between different processing units is essential for seamless coordina-

tion and optimal performance, emphasizing the need to address this bottleneck for

scalability and effectiveness. Moreover, the increasing demand for computational

power is noteworthy. Operations such as reduction are currently executed through

software techniques, employing specialized program paradigms like OpenMP [2] or

CUDA [3].

An example of reduction operations widely used in parallel computation is barrier

synchronization mechanisms. Both aforementioned paradigms allow barriers among

1
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multiple cores, but the synchronization overhead can reduce the theoretical speed-up

estimated by Amdahl’s Law. Several studies have been done to accelerate software

implementations on different architectures [4, 5, 6], and specific hardware supports

have been designed for some reduction operations [7, 8, 9, 10].

Introducing the possibility of performing these operations at the hardware level,

maintaining the general purpose structure of the system, can potentially alleviate

the strain on bandwidth, meeting application demands more efficiently. This shift to

hardware-level execution offers a promising avenue to not only enhance performance

but also optimize the utilization of computational resources.

In this project, an Advanced eXtensible Interface (AXI) crossbar developed in the

PULP team was extended to perform reduction operations during the transmission

of data. This approach aims to reduce the exchange of information among cores in a

multi-core system, increasing the available bandwidth and the system performance.

1.2 Contributions

The key contributions of this project are:

1. Design of a reduction-capable AXI XBAR for fast M-to-1 communication.

The architecture was designed for general purpose system and therefore it can

be extended to support different reduction operations. The actual version

supports only logic AND that can be used for barrier mechanism.

2. Investigation of the area cost introduced with the reduction logic for Glob-

alFoundries 12nm technology.

3. Integration of the designed interconnection infrastructure in a real multi-core

system based on RISC-V processors further extended to issue reduction re-

quest.

4. Analysis of the global barrier mechanism with and without hardware support

in different situations and conditions to identify advantages and drawbacks of

the hardware support, bottlenecks and limitations.

1.3 Project Overview

This thesis description is organized as follows. In Section 2, all the information and

background knowledge collected at the beginning of the project, necessary to fully

understand the problem and find a solution, are presented with a focus on related

works. Then, in Section 3, the methodology to design the reduction-capable cross-

bar, together with the testbench implementation, is described, focusing on all the

rules and limitations of the developed system. Subsequently, Section 4 explains the

steps followed to integrate the crossbar into a real multi-core system, including the

2 Chapter 1 Lorenzo Leone
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extension of the internal cores to issue reduction requests. In the same chapter, the

main software applications used to test and measure the performance introduced by

the reduction crossbar are described. Section 5 summarizes all the results obtained

during the project. It includes both the outcomes retrieved from the synthesis of

the crossbar and all performance metrics derived from various experiments. Finally,

Section 6 concludes the thesis and outlines future works to improve the system.

Lorenzo Leone Chapter 1 3
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Chapter 2

Background

This chapter provides essential background information to grasp the concepts of

reduction operations and their key properties (Section 2.1). Additionally, consid-

ering that the project builds upon an existing implementation of a communication

crossbar [11], the architectural structure of the original device is detailed in Section

2.3, while the protocol that the crossbar must adhere to is explained in Section

2.2. Subsequently, as the latter part of the project aims to integrate the designed

XBAR into a real multi-core system, Section 2.4 delves into the system organization

details and describes the internal cores’ structure. Lastly, the State of the Art is

examined in Section 2.5 to provide an overview of current methodologies employed

for performing reduction operations.

2.1 Collective Communications

Collective communications, as delineated in [1, 12], entail the exchange of informa-

tion among different processing elements. This communication paradigm involves

collaborative efforts among various actors to process a dataset following specific pat-

terns.

There are two primary subgroups under which Collective Communication operations

can be classified:

• Redistributions: These are simple data transfer, without any additional

logic or arithmetic operation.

• Reductions: These are data transfers that also involve some computations.

2.1.1 Redistributions

The first subset comprises mechanisms for transferring data from one or multiple

nodes to one or more nodes. Several operations fall under this category, including:

Broadcast: A single Processing Element (PE) possesses information that

needs to be disseminated to all other nodes within the system. The sender is

5



2.1. COLLECTIVE COMMUNICATIONS

referred to as the ”root,” and all other nodes in the system act as receivers.

This operation is also known as ”All-to-One” communication, resulting in all

nodes having a copy of the transmitted data.

Gather: Each node k possesses a sub-vector xk. Every PE sends its sub-

vector to a central node (the ”root”), which aggregates all sub-vectors into a

final vector x.

Allgather: An extension of the ”gather” mechanism, where each node receives

the final vector x obtained by combining all sub-vectors xk.

Numerous other Data Redistribution Operations exist.

2.1.2 Reductions

Nodes often collaborate to compute a shared result. Partial results are indepen-

dently evaluated by different nodes and then must be reduced to a single value,

yielding a final result. Collective communication operations in this case involve not

only data transfer but also logical/arithmetic operations on the collected data.

Not all operators are suitable for reductions. A generic operator ⊕ can be used for

reduction applications if it is associative, i.e., a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c. This re-

quirement allows for parallelization of operations, as partial results can be computed

concurrently and reduced together independently on the order. If the reduction op-

erator ⊕ is also commutative, i.e., a⊕ b = b⊕ a, more efficient implementations are

possible. Examples of reduction operations include addition, multiplication, maxi-

mum, minimum, and logical OR, AND, XOR.

The final result of the reduction can be distributed among nodes in different man-

ners:

Reduce: Similar to ”gather,” this mechanism performs an operation on all

data (OR, AND, sum, etc.) instead of merely concatenating the data sent by

different nodes at the root, with the final result collected only by the root.

Allreduce: Similar to ”reduce,” but the final result is distributed among all

nodes.

2.1.3 Barrier Synchronization

Another type of collective communication operation, often distinguished from the

aforementioned families, is barriers. These mechanisms are crucial in parallel com-

puting applications, requiring synchronization among nodes executing the program.

Barrier mechanisms halt program execution at any node that reaches a designated

point until all other actors reach the same stage of the program.

In barrier synchronization, there is no data transfer among nodes; instead, a stall

6 Chapter 2 Lorenzo Leone
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mechanism is employed upon each node’s arrival at the barrier until the last node

also arrives.

In this Degree Project, not all mentioned mechanisms will be supported by the

reduction-capable XBAR. The thesis aims to develop an interconnection crossbar

capable of handling M-to-1 reductions, with a focus on the logical AND operator,

which can also support the ”Barrier Synchronization” mechanism among different

masters connected to the same interconnection system. Additionally, leveraging the

intrinsic nature of the AXI4 protocol [13], ”1-to-All” communication can be imple-

mented for Barrier scenarios where no information is shared among the processing

elements.

2.2 AXI4 Protocol

The reduction-capable XBAR developed during the project is based on the AMBA

AXI (Advanced eXtensible Interface 4) protocol [13]. This protocol defines interface

specifications among different IPs that need to exchange information.

In this section, the main characteristics of the protocol are explained, focusing on

aspects considered during the design of the crossbar. The terminology used through-

out this report differs slightly from that in the official documentation. The main

terms are defined in the glossary.

2.2.1 Channels Description

An AXI compliant interface features five distinct channels, as depicted in Fig. 2.1:

AW: The Address Write channel is used by masters to specify the address

and control information for outgoing write transactions.

W: The Write channel transfers data to be written at the destination.

B: The Write Response channel is used by the receiving slave to notify the

master of the completion status of the write transaction.

AR: The Address Read channel is employed to specify the address and control

information for outgoing read transactions.

R: The Read data channel is used by the slave to send both data and the read

response, indicating the completion of transactions.

2.2.2 Handshake

All channels in the interface feature different signals necessary for communication,

detailed in [13] A2. Regardless of the channel type, communication between masters

Lorenzo Leone Chapter 2 7



2.2. AXI4 PROTOCOL

Figure 2.1: AXI Interface

and slaves is enabled by a handshake protocol. All AXI channels have VALID and

READY signals. When information is transmitted, whether data or control sig-

nals, the source asserts the VALID signal to indicate availability, and the destination

asserts the READY signal when ready to receive. Transfer occurs only when both

VALID and READY signals are active. The master’s role as a source or destination

depends on the channel. For example, in the AW channel, the master is the source,

while the slave is the destination. Conversely, in the B channel, used by the slave

to notify the master of the completion of a write transaction, the VALID signal is

tied from the slave to the master, while the READY signal operates in the opposite

direction.

To illustrate a channel transfer, consider the timing diagram depicted in Figure 2.2a.

At the end of the first clock cycle, the source of the information has a VALID data,

asserting the VALID signal. The source must maintain the information stable until

the transfer is complete. By the third clock cycle, the destination is READY to

sample the data and thus asserts the READY signal. Transfer occurs at the begin-

ning of the fourth cycle when both handshake signals are active. Upon completion

of the transfer, the data can be removed from the interface, and both the VALID

and READY signals are reset.

It’s important to note that the order in which the VALID and READY signals are

asserted can vary. The READY signal can be asserted before the VALID if the des-

tination can sample the data before it’s available, or both signals can be activated

simultaneously in the same clock cycle. Naturally, the fastest transfer occurs when

both signals are asserted simultaneously, as depicted in Figure 2.2b.

2.2.3 Write Transaction

The timing diagram of a write transaction is depicted in Figure 2.3, illustrating a

master sending a single data to a slave unit. The transaction involves the following

steps:

1.

2. First, the master sends the address of the data to be written in the destination
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(a) VALID before READY (b) Simultaneous VALID and READY

Figure 2.2: Examples of handshake transfers.

and other information to specify data length, burst type, etc. This step, known

as Address Write, utilizes the AW channel. As shown in Figure 2.3, the address

becomes available by the second clock cycle, at which point the master also

asserts the VALID signal associated with the AW channel. The data must

remain stable until the completion of the address write transfer, and during

the third clock cycle, the slave asserts the READY signal, resulting in the

transfer occurring during the fourth positive edge of the clock. After this, all

handshake signals and the address are reset.

3. The next step is the Write Data. At cycle n+2, when the master has the data

ready, it notifies the slave by asserting the VALID signal associated with the

W channel. Additionally, the master sends a control signal called WLAST,

indicating when the sent data is the last of the write data transfer. If the

transfer involves burst transfers, the WLAST signal would be kept low for all

transfers except the last one. Since the slave already asserted the READY

signal in cycle n, the data transfer completes in cycle n+ 3.

4. The final step is the Write Response, during which the slave sends back infor-

mation to the master to indicate the success or failure of the write transaction.

As the B channel is driven by the slave, the VALID signal is asserted from

the slave during cycle n+ 3, and the handshake associated with the B channel

completes at the end of the same cycle.

Upon completion of the B transfer, the write transaction concludes.

2.2.4 Transaction Identifiers

All transactions in the AXI4 protocol are tagged with an identifier. This identifier

is crucial for determining whether transactions should be handled in-order or out-

of-order. Transactions with the same ID must remain in-order, while transactions

with different IDs can have responses that are out-of-order.
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Figure 2.3: Example of a complete write transaction using the AXI interface proto-
col.

This aspect is of utmost importance in the design of the AXI crossbar (see Section

2.3.2).

2.3 AXI XBAR

Given the aim of the thesis to develop a reduction-capable crossbar based on an

existing version [11, 14], this section offers an overview of the original crossbar.

In 2.3.1, a general explanation is provided on how the system is organized and

its main features. Subsequently, detailed explanations of the demultiplexers and

multiplexers implemented within the crossbar are presented in sections 2.3.2 and

2.3.3, respectively.

2.3.1 XBAR Overview

The AXI crossbar serves as an interconnection system facilitating communication

among various masters and slaves. A simplified diagram of the device is depicted in

Fig. 2.4.

The slave ports of the crossbar are where the masters can connect, while the mas-

ter ports are utilized by the slaves. This terminology is chosen because, from the

perspective of masters, the device behaves as a slave (slave ports), and conversely,

it acts as a master for the slaves connected downstream (master ports). This termi-

nology remains consistent throughout the thesis (see GLOSSARY).

A fundamental component of the system is the Address Map, used by the Address
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Figure 2.4: AXI crossbar block diagram.

Decoder to determine the target slave for incoming requests. The address map func-

tions as a table where each entry represents an address range mapped to a specific

master port. In cases where transactions are directed to non-existing destinations,

two possibilities arise [11]:

1. Default Port: A master port can be designated as default. When the input

address doesn’t match any entry in the address map, the request is automati-

cally redirected to the default port. This option proves useful in hierarchical

systems, as explained in 2.4.

2. Decode Error: If the default port option isn’t utilized, and the input address

doesn’t match any address map entries, the request is forwarded to the decode

error module, which sends an error message back to the requesting master.

Upon address decoding, the input request and associated signals are transmitted to

a Demultiplexer, responsible for selecting which master port the request should be

forwarded to. Subsequently, all requests converge at all master ports via Multiplex-

ers. Each multiplexer listens to input requests from masters and arbitrates them,

forwarding one request at a time to the slave.

While demultiplexers and multiplexers serve as the main elements of the crossbar,

they incorporate additional components to implement the AXI protocol, making

them more than simple logic multiplexers/demultiplexers.

2.3.2 Demultiplexer

One of the pivotal modules in the crossbar is the demultiplexer, responsible for re-

ceiving write/read input requests from a slave port and forwarding them to one of
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the master ports. Fig. 2.5 illustrates a detailed diagram of this module.

Starting from the slave ports, each of the AXI channels features a spill register used

to cut the combinational path. These registers are optional and can be configured

using synthesis parameters. Both the AW and AR channels possess a select signal

determining the destination master port, typically driven by an external address

decoder.

For write transactions channels (AW, W, and B), as depicted in the left half of the

diagram in Fig. 2.5, two primary components manage the transactions: a FIFO

memory and an axi id counter.

The FIFO stores the select signals of incoming transactions, which are later used

to select the data direction on the write channel W. Conversely, the axi id counter

is a specialized module handling transactions with different IDs and their corre-

sponding B responses. In the AXI protocol [13], transactions with distinct IDs can

complete out-of-order. To manage this scenario, the axi id counter comprises paral-

lel counters, one for each ID. Upon an AW handshake, the counter associated with

the transaction’s ID is incremented, and when a B response returns, the associated

counter is decremented. This ensures that all transactions with the same ID are

handled in-order. Considering a system with AxiIdWidth bits to encode transaction

IDs, a total of 2
AxiIdWidth

counters are necessary for the write channels. The same

number is required for read channels, summing up to 2 × 2
AxiIdWidth

counters. To

mitigate costs, users can opt to utilize only a subset of the ID bits, known as Ax-

iLookBits, to determine if two transactions share the same ID. This choice reduces

the axi id counter’s area but may lead to increased conflicts among transactions, as

different IDs may share the same least-significant AxiLookBits.

B responses are routed back using a round-robin arbiter.

The read channels (AR, R) are structured similarly to the write channels, with the

exception that there is no FIFO. An ordering constraint has been introduced dur-

ing the design to reduce the crossbar’s complexity: “when one slave port receives

two transactions with the same ID and direction but targeting two different master

ports, it will not accept the second transaction until the first has completed”[14].

Consequently, if multiple outstanding R responses must return, they originate from

the same master port, and thus, the select signal used to route back these responses

remains constant.

2.3.3 Multiplexer

All write/read requests from the slave ports converge to all master ports through the

multiplexer modules. Fig. 2.6 illustrates the block diagram of this module. Each

multiplexer unit connects the slave ports to a single output master port where the

requests can be forwarded.

This module is also responsible for forwarding responses (B, R) from the master

to the slave ports. The transaction ID associated with the input request alone is
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Figure 2.5: XBAR demultiplexer block diagram.

insufficient to route responses back to the requesting master. Consequently, the

multiplexer internally extends the ID by appending the index associated with the

slave port from which the request was accepted. As a result, the output AW and AR

feature a wider ID, with dlog(NoSlavePorts)e bits introduced as the most significant

bits to the input IDs.

The AW (AR) input requests are selected using a round-robin arbiter. When an AW

request is accepted, the prepended IDs are stored in a FIFO to determine which of

the W channels must be forwarded to the master port. The FIFO is updated upon

an AW handshake and is cleared when the associated data transfer completes, i.e.,

when the last data transfer is finished.

In conclusion, when the slave sends back the B (R) response, a logical demultiplexer

routes that signal back to the correct slave port. This is accomplished through the

most significant bits associated with the B response, which were appended when the

request was accepted.

2.4 Occamy-Snitch PEs

The xbar serves as an interconnection system facilitating communication among

various cores and clusters within multi-core systems. One such system utilizing this

crossbar design is Manticore [15], a 4096-core RISC-V architecture optimized for

efficient floating-point computing. Based on this architecture, a subsequent system

named Occamy [16] was developed to explore scalability and performance. Both

Occamy and Manticore rely on numerous Snitch processors [17].

To assess the functionality of the reduction-capable xbar and evaluate its perfor-
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Figure 2.6: XBAR multiplexer block diagram.

mance under diverse conditions, the newly designed crossbar version presented in

this thesis has been integrated into the Occamy system. This integration neces-

sitated extensions in both the internal modules of Occamy and within the Snitch

Cores to enable the issuance of reduction requests.

In this section, a brief explanation of Occamy and the main features of Snitch pro-

cessors are provided in sections 2.4.2 and 2.4.1, respectively.

2.4.1 Snitch Core

Zarube et al. [17] developed a RISC-V-based processor called Snitch, incorporating

custom instructions to enhance floating-point utilization. Illustrated in Fig. 2.7, the

Snitch block diagram delineates its internal structure.

At the smallest level lies the Snitch Core Complex, comprising a RISC-V core.

This core is partitioned into integer and floating-point sides. The integer side im-

plements the integer base RV23I instruction set, with the majority of instructions

executable in a single clock cycle. Multiply/divide instructions are offloaded to a

shared multiply/divide unit among Snitch CC. The Arithmetic Logic Unit (ALU) is

fully combinatorial, and executes operations within a single cycle. The Load-Store

Unit (LSU) monitors issued loads, with responses from memory required to return

in-order.

Conversely, the FP Subsystem manages operations involving floating-point data, en-

compassing arithmetic/logic operations and load/store operations of floating-point
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numbers. Unlike the integer subsystem, the FPU is pipelined, and floating-point

instructions entail multiple cycles. These instructions are dispatched from the in-

teger to the FP subsystem via the accelerator interface, enabling the single-issue

core to behave as dual-issue by overlapping independent integer and floating-point

instructions.

A collection of Snitch Cores forms the Snitch Hive, where cores within the same

hive share an L1 instruction cache and multiply/divide unit. These hives are then

aggregated into a Snitch Cluster. Here, interconnection occurs via a XBAR, linking

the cores to a shared Tightly Coupled Data Memory (TCDM), cluster peripherals,

and other external Snitch clusters, as observed in multi-core systems like Occamy

(Section 2.4.2).

In conclusion, the Snitch architecture introduces two ISA extensions called Stream

Semantic register (SSR) and Floating-Point Repetition instruction (FREP) to achieve

high floating-point utilization.

Figure 2.7: Snitch processor internal architecture.

2.4.2 Occamy

Occamy is a 216-core chiplet architecture developed to assess the efficiency and

scalability of the PULP RISC-V-based architecture [16].

The system’s top view, as illustrated in Fig. 2.8, showcases its architecture, which

comprises six groups, each containing four clusters. Fig. 2.8b outlines the internal

group organization, where four Snitch Clusters (see Section 2.4.1) share a constant

cache and a zero memory. Additionally, a narrow 64-bit and a wide 512-bit crossbar

are employed for the LSU and for the instruction cache and Direct Memory Access

(DMA), respectively.

Within each cluster (Fig. 2.8c), eight worker Snitch cores reside, each equipped
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with an integer core, a small L0 instruction cache, and a double-precision FPU.

Additionally, a ninth core controls a DMA engine for cluster coordination. A shared

L1 instruction cache is provided among all the cores, along with a multiply/divide

unit. Moreover, a wide AXI XBAR is shared between the DMA and L1 cache to

access the global memory system, accessible to all Snitch cores via a narrow 64-bit

crossbar.

Each cluster also features a 128 KiB TCDM and a 64 KiB Zero Memory, where all

read accesses return a zero value, and all writes are accepted without actual data

write occurring. Table 2.1 depicts the address space of the first cluster within the

first group, with each cluster mapped to a 256 KiB address space, resulting in a

total of 1 MiB address space for the entire cluster.

Table 2.1: Address space of group 0 cluster 0

Name Size Status Start End
TCDM 128 KiB used 0x1000 0000 0x1001 ffff

PERIPHERAL 64 KiB used 0x1002 0000 0x1002 ffff
ZERO MEMORY 64 KiB used 0x1003 0000 0x1003 ffff

2.5 Related Works

In this section different related works aiming to support reduction in hardware and

software are reviewed.

2.5.1 Hardware

In the past decade, several hardware solutions have been developed to address the

bottleneck arising from the use of collective communication in modern Chip Multi-

Processors (CMP) systems.

Ma et al. [7] introduced a new framework and routing algorithm to manage multicast

and reduction communication in cache coherence protocols. In a directory-based sys-

tem, when a cache line is upgraded, an invalid signal must be sent to all other nodes

in the system (1-to-M), followed by acknowledgment signals (ACK ) from all destina-

tions (M-to-1) before the cache line can be modified by the source. Their hardware

solution for reduction relies on a Message Combination Table (MCT) present in all

routers and a message framework appended to the packet’s header. This framework

includes two key pieces of information: identifying the last node in the network to

replicate the message and utilizing a 3-bit field as a message ID to manage multiple

outstanding multicast packets from a common node. Upon replication, an entry is

added to the Message Table, encoding all necessary information, and the header is

updated with the current node ID. Additionally, a counter tracking the number of

destinations reached from that node is included in the entry to count ACK signals

during the reduction phase. Each destination then sends an ACK signal back to
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(a) Top View

(b) Internal group view (c) Internal cluster view

Figure 2.8: Occamy system block diagram
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the last replication node, updating the associated MCT entry upon arrival and for-

warding the signal to the next node encoded in the MCT entry when the counter

reaches zero.

Krishna et al. [8] adopted a different approach, focusing on improving efficiency

in 1-to-M forking and M-to-1 aggregation in cache coherence applications. Their

Flow Aggregation In-Network (FANIN) logic aims to aggregate incoming ACKs at

each node before forwarding a single signal to the next node. Unlike the previous

approach [7], FANIN doesn’t employ tables to track responses. The first arriving

ACK, termed the “master”, is buffered and determines the port to poll, identified

using the reverse Whirl, i.e. the reverse path of the routing algorithm used in the

coherence protocol’s first phase. Each incoming ACK carries a counter field indicat-

ing the number of aggregated responses. The master updates its counter, drops the

incoming flit, and forwards the flit to the next node once all ACKs from the tracked

port have arrived.

The proposed reduction-capable XBAR differs from previous solutions in several

ways. Firstly, while previous approaches targeted traditional mesh NoC topology,

the AXI XBAR is a fully connected crossbar used in a tree structured interconnec-

tion system which can be classified as a hierarchical star topology. Additionally,

prior works aimed to enhance multicast and reduction for specific applications like

message passing in cache coherence protocols, whereas the extension proposed in

this thesis aims to remain a general-purpose solution capable of various reduction

operations applicable in diverse contexts.

One significant class of reduction operations is the barrier synchronization mech-

anism commonly used in parallel computing applications to synchronize multiple

processors before proceeding with computations. Various approaches have been pro-

posed to accelerate global barriers, such as the barrier filter introduced by Sampson

and Gonzalez [10]. This solution leverages cache line access and the subsequent stall

before line filling. A hardware module called the ”Barrier Filter” is integrated into

the cache memory controller. When a thread participating in a barrier is ready, it

sends an invalidation signal to notify its arrival by accessing the shared ”arrival ad-

dress tag” among all threads in the barrier. The Barrier Filter detects this operation

and blocks thread fill requests until the last thread arrives, allowing the cache line

fill request to proceed. Finally, each thread signals its exit to participate in a new

barrier. According to the authors, this solution doesn’t require any ISA extension

since all required operations are commonly included in current architectures. In

contrast, the reduction-capable XBAR requires a minor extension of the Processing

Element (PE) to issue reduction requests. However, no new instructions are needed,

as the request issuance utilizes the Control Status Registers (CSR) supported in the

RISC-V standard (4.2). Moreover, while the arrival address must be assigned to

each thread by the operating system in the barrier filter approach, the method used

in the XBAR extension doesn’t rely on an operating system. Consequently, inte-

grating the barrier filter into some shared level of memory may introduce significant
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communication latency, particularly in large scale systems.

In the late 1990s, several parallel computers were designed with dedicated networks

for barrier synchronization mechanisms or more general reduction operations. For

instance, the CM5’s control network [18] comprised three different interconnection

networks, one of which was dedicated to broadcasting and combining operations,

supporting five reduction operations: bitwise OR and XOR, signed maximum and

both signed and unsigned addition. Instead, in the reduction XBAR, only bitwise

logic AND is currently supported, but the architecture is designed to be easily ex-

tended for additional operations.

Additionally, IBM developed the Blue Gene/L massively parallel system [9, 19] in

the early 2000s, featuring 65,536 dual-processor compute nodes interconnected via a

three-dimensional torus network with five networks. Among these, a global barrier

network is specifically dedicated to facilitating hardware barriers.

2.5.2 Software

Given the significance of multi-core processors and the need for rapid reduction and

synchronization operations, various research efforts have focused on accelerating

these mechanisms in software. For example, Gao et al. [4] conducted an exten-

sive study on OpenMP synchronization performance on ARMv8-based multi-core

systems. While OpenMP synchronization performance had previously been studied

for x86 CPU architectures, Gao et al. performed experiments to illustrate the bar-

rier synchronization overhead on ARMv8 systems. Subsequently, they designed an

optimized algorithm based on the ”f-way tournament” to align with the hardware

architecture. Similarly, an extended version of the butterfly barrier was developed

for Intel and AMD microprocessors in [5]. A similar approach was employed during

the benchmarking of the reduction XBAR to ensure that the software barrier per-

formed well in the Occamy system. This underscores the importance of adapting

software implementations to the underlying architecture to identify the most suit-

able algorithm that minimizes synchronization overhead.

Another common scenario where synchronization mechanisms and reduction opera-

tions are widely employed is in Graphic Processing Unit (GPU) architectures. Par-

ticularly, the Compute Unified Device Architecture (CUDA) paradigm enables par-

allel computing across multiple multithreaded SIMD processors. Typically, threads

collaborate on a common algorithm, necessitating data sharing and, consequently,

synchronization. Harris [6] presented seven techniques and programming strategies

to enhance the performance of reduction operations in parallel computing. Addi-

tionally, the granularity of synchronization mechanisms is a crucial factor in parallel

computing. With the introduction of the cooperative groups model [20], CUDA

programmers now have increased flexibility and can synchronize groups of threads

smaller than thread blocks. A similar objective is achieved with the reduction

XBAR, as each master driving the crossbar’s slave port can request reduction. Thus,
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in a multi-core system like Occamy, where a hierarchical interconnection XBAR is

utilized, reduction can be performed at the processor, cluster, and group levels.
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Chapter 3

Methods I: Reduction-XBAR

In the following chapter, the complete process necessary to develop and test the

functionalities supported by the Reduction-capable XBAR (R-XBAR) will be ex-

plained. In section 3.1, an overview of the extended crossbar is provided, focusing

on design choices, limitations, and rules that users must fulfil to employ the de-

vice. Subsequently, section 3.2 delves into the details of the RTL implementation,

demonstrating how all the AXI channels have been extended to support reduction

requests. To verify the functionalities, an exhaustive testbench described in sec-

tion 3.3 has been developed. Finally, the R-XBAR has been synthesized to explore

Power, Performance, Area (PPA) overheads, with the synthesis steps discussed in

section ??.

3.1 Overview

Reduction operations constitute a specific class of collective communications, wherein

an associative operation, denoted ⊕, is applied to several elements to obtain a single

final result, expressed as res = el1⊕ el2⊕· · · eln. Examples of reduction operations

include addition, bitwise logic AND/OR, as well as maximum/minimum computa-

tions.

In parallel computing applications, the algorithm workload is distributed among

various PEs that operate in parallel. When the application necessitates a reduction

among all the results computed by the different PEs, data must be transmitted from

one processing unit to another, where a partial reduction is performed. This process

iterates until the final result is obtained. However, this conventional approach of-

ten results in significant traffic within the interconnection system. To mitigate this

issue, this thesis proposes extending the interconnection system to facilitate reduc-

tion operations directly during data movement. In essence, instead of transferring

data among cores, each processing unit can transmit its own element along with a

specialized request to the XBAR. Upon receiving all elements, the interconnection

system will perform reduction on the aggregated data, and the resulting value will

be transmitted to a designated destination specified in the reduction request control
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signals.

3.1.1 Many-to-1 or 1-from-many

To support reduction two different approaches can be employed:

• Many-to-1: All the masters involved in the reduction can issue a write reduc-

tion request. The XBAR will listen to these requests, and upon data avail-

ability, it will perform the reduction and store the result in the destination

address.

• 1-from-Many: A master module initiates a read reduction request, specifying

the involved masters. The XBAR forwards the read request to multiple des-

tinations (multicast). Upon receiving the data back into the interconnection

system, the crossbar performs the reduction and completes the read transac-

tion by forwarding the result to the requesting master.

Both approaches are valid; the primary difference lies in the source that triggers

the operation request. In the Many-to-1 approach, the producers of the elements to

be reduced initiate the transaction, whereas in the 1-from-Many approach, it is the

destination that sends the reduction request. In other words, with the Many-to-1

approach, each producer can start a write transaction (AW), and all the data are

reduced inside the XBAR, with the result forwarded to the destination port. Upon

receiving the result, the slave can send back the B response signal, which must be

routed back to all the participants (multicast). Conversely, using the 1-from-Many

approach, the consumer initiates a read transaction (AR), which must be forwarded

to all the participants. Subsequently, when all the producers send back the data on

the R channel, the XBAR can reduce them and provide the results to the requesting

slave port.

The two approaches are almost dual, but some crucial differences can be identified:

• In the second method, the transaction is initiated by the destination. In the

AXI protocol, slaves cannot initiate any transactions. Hence, this approach

requires a module connected simultaneously as a slave and as a master to use

the master side to send the read request, and then internally store the data

in the correct location. Such modules are common; for example, in Occamy,

the snitch clusters can drive the XBAR as masters, and the internal TCDM

is connected as a slave.

• Even though clusters have internal memory, it may be necessary to store the

reduction result in external locations, such as the HBM integrated into the

Occamy chip. In this case, the memory cannot initiate the reduction request.

Therefore, the workflow to perform the reduction requires first reducing the

elements and storing the result inside one TCDM. Later, the cluster holding
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the result must perform a normal write transaction to the main memory. This

approach leads to an increased latency.

• Considering the specific case of global barriers, using the write channels to

perform the reduction allows all the masters that need to synchronize to simply

send a reduction request upon arrival at the barrier. Only when all the requests

arrive the reduction is forwarded to the slave, which will then reply with the

B response. This strategy can be easily used to create a blocking reduction

request for synchronization purposes. In contrast, using the second approach

makes synchronization more complex because the reduction is requested by

the destination. In this case, it is necessary to design a specific module to

connect to the XBAR, which must request reduction from all the masters to

synchronize and continuously poll the reduction result. Only when it is set

to a specific value, this module can wake up the participants. This second

approach can require more extensions to the system, while the first approach

is intrinsically based on the AXI protocol rules.

In conclusion, considering all the drawbacks deriving from the 1-from-Many ap-

proach, the Many-to-1 method was chosen for this project.

3.1.2 Reduction Mask

Once the AXI transaction type for performing reduction has been chosen, the next

crucial step was to devise a strategy for encoding the list of participants. When a

reduction needs to be executed, multiple requests will arrive at the XBAR, and the

device must recognize them as reduction requests. Additionally, the R-XBAR must

ascertain the list of participants to poll their slave ports until all the masters are

ready for the reduction.

To achieve this, the AXI AW user field can be utilized. As described in the official

protocol documentation [21, p.200], a user field can be added to each AXI channel.

It is not mandatory for this field to be introduced in every channel, thus only the

AW channel was extended.

For identifying the list of participants, an encoding strategy similar to the Bit String

introduced by Chi-Ming and Lionel [22] can be employed. The main principle in-

volves adding a reduction mask alongside the address that matches a specific port

of the crossbar. This mask, used together with the address, represents a range of

addresses corresponding to the list of masters participating in that specific reduc-

tion. When a bit in the mask is set to 1, the corresponding bit in the address field

can be considered as a don’t care, while a mask bit set to 0 indicates that the same

bit in the address field must be considered.

Let’s consider the example shown in Fig. 3.1. In the depicted system, there are four

modules connected as both master and slaves. These modules could, for instance,

be Snitch Clusters [17], where the crossbar’s slave port is driven by the Cluster’s
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XBAR, while the master port is connected to the TCDM (Fig. 2.7). Assuming each

memory has an address range of 256 KiB as shown in Table 2.1, if master A and B

want to participate in a reduction, the reduction mask to provide is as follows:

RedMask = 0x1004 0000 (3.1)

Indeed, when comparing the start addresses of the two modules, they differ in the

18th bit. By masking the result of the comparison with the mask 3.1, and considering

that the 18th bit is set to 1, the equivalent bit in the result is treated as a don’t care.

If the same mask is used to compare the address of module A with that of module

C, the two addresses don’t match because they differ in the 19th bit, which is not

masked. Additionally, if C and D participate in the same reduction, mask 3.1 can

be used to match the two addresses.

Hence, to determine when some masters participate in the same reduction, three

pieces of information are necessary:

• Redmask : The reduction mask to be applied after comparing the masters’

addresses.

• FirstAddr : The start address of the first master sending the reduction request.

• CurrAddr : The start address of the current master requesting a reduction.

With these parameters, Equation 3.2 can be used to ascertain if two or more masters

participate in the same reduction:

match = &
h

(FirstAddr ⊕ CurrAddr) + RedMAsk
i

(3.2)

where ⊕ denotes the logical XOR operation, + represents the logical OR operation,

and & stands for bitwise AND.

Figure 3.1: Interconnection XBAR with four modules connected both to slave and
master ports. Each master port is associated to and address space of 256 KiB.
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In conclusion, with the explained method, each master port of the XBAR is associ-

ated with an address space that can be represented either by the tuple (start address , end address)

or by the tuple (start address , bit mask).

3.1.3 Design Rules and Limitations

With the reduction mask logic described earlier, certain features can be supported by

the R-XBAR, but users must adhere to specific design rules. Additionally, to ensure

the proper functioning of the crossbar, limitations have been introduced to manage

the complexity of the architecture, aiming to strike a balance between flexibility and

simplicity. The following is a comprehensive list of rules and considerations.

Address Space

With the introduction of the Reduction Mask logic, we have a method to identify

multiple address spaces simultaneously. Since the logic is mask-based, not all ranges

can be represented, but certain rules must be satisfied:

• Memory Map: To define the participant list, it’s necessary to associate an

address space with each master. In the original XBAR, the slave ports are

not identified with any addresses, since only the AXI transaction destinations

(slaves) require them. However, with the reduction extension, the only way to

encode the participant lists is by defining some imaginary addresses. Often,

cores like those used in Occamy are connected to the XBAR both as master and

slave. Instead of introducing a dedicated memory map for the masters only, it

has been decided to associate the slave ports with the same address space as

the master port with the same index. Hence, when different reduction-capable

modules are connected to the XBAR, as shown in Fig. 3.1, each module must

be connected as a slave and master to ports with the same index: slave port

ith and master port ith. In this fashion, the ith entry of the address map can

be used for both ports.

• Number of Participants: Given a start address and a reduction mask with

N bits set to 1, 2N address spaces can be represented with the same tuple.

Therefore, all masters identified by this tuple must participate in the reduction.

Consequently, reduction operations can only be performed with a group of

power-of-two masters. For instance, in Fig. 3.1, if Redmask = 0x100C 0000,

all four address spaces match the mask, requiring all four masters to participate

in the reduction; otherwise, the R-XBAR will indefinitely wait.

• Stride: The reduction mask introduces the possibility of synchronizing non-

contiguous masters. For example, if master A and C from Fig. 3.1 want to

participate in the same reduction, setting Redmask = 0x1008 0000 is sufficient.

Therefore, the mask-based logic enables the synchronization of masters with

a certain stride.
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Errors Detection

In the AXI protocol, AW transfers are characterized by several parameters. Among

these are the W transfer size, which denotes the number of bytes in each W data

transfer; the write length, indicating the number of transfers in a W transaction;

the burst type, identifying how the address provided must be incremented between

consecutive transfers in the same transaction; and finally, the destination address of

the slave where the data must be written.

In the case of reduction requests, all these parameters must be the same among the

AW requests arriving from the different sources involved in the reduction. In the

designed R-XBAR, these fields are assumed to be identical among the requests, with

no error detection mechanisms. Therefore, it is the user’s responsibility to ensure

that all participants set the same value for the mentioned parameters. Additionally,

reduction transactions can only have a zero length; in the current reduction-capable

crossbar, burst mode transactions are not supported. However, this extension may

be introduced in the future to move larger portions of data while performing reduc-

tion, further improving the overall system’s performance.

Some error detection mechanisms can be easily introduced in the current version,

albeit at an additional area cost.

Transaction ID

As specified in the AXI protocol [21, p.93], each transaction is identified with an

ID. As explained in sections 2.3.2 and 2.3.3, these IDs serve to maintain the order

among transactions with the same ID. In a normal write transaction, the ID is

received through the AW channel from the slave, and during the B response step,

the same ID is sent back to the XBAR and internally used to route the response

to the correct demultiplexer. However, in a reduction transaction, multiple requests

are received from the XBAR, but only a single response is sent from the destination

slave. Since this single B response must be routed back to all participants in the

reduction, two possible design strategies have been considered:

1. All masters involved in the same reduction must use the same ID for that

transaction. This allows the same ID encoded in the B responses to be sent

back to all requesting masters.

2. Each master can use a different ID for the reduction request. This approach

requires the introduction of extra hardware to store the received ID, which

will be routed back to the master upon arrival of the B response.

Both solutions are valid. The first one introduces an extra rule for the user but

saves some area, while the second approach provides more flexibility at the cost of

larger devices. For the purpose of this thesis, the first approach was chosen.
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Opcode

The implemented R-XBAR aims to perform generic reduction operations. Therefore,

a reduction request also requires an opcode to specify which of the possible reduction

operations must be performed. This opcode is embedded in the least significant bits

of the AW user field. The width of this field can be set through synthesis parameters,

allowing for the inclusion of more operators in the system. Currently, the only

supported operator is the bitwise logic AND, which is sufficient to implement barrier

synchronization mechanisms and test the functionalities of the crossbar.

3.2 Architecture Design

Since the XBAR needs to listen and wait for data coming from all the involved mas-

ters to perform reduction, the architectural extension primarily affects the crossbar’s

multiplexer. This is the location where multiple master requests converge, and only

here can the XBAR detect reductions and properly handle them. In section 3.2.1,

the small variations introduced in the demultiplexer are explained. Due to the

complexity of the multiplexer, section 3.2.2 focuses solely on the multiplexer AW

channel. In section 3.2.3, the elements introduced to support reduction during data

transmission are explained, and finally, section 3.2.4 delves into the details of the B

channel to multicast responses back.

3.2.1 Demultiplexer

While the original demultiplexer could support reduction, the design of the Reduction-

capable XBAR (R-XBAR) prompted the following considerations: In a large-scale

system with numerous cores, such as the one depicted in Fig. 2.8a, the processing

elements are interconnected through a hierarchical XBAR structure. Consequently,

it is possible for two masters engaged in the same reduction to be linked through

a higher-level XBAR. In such cases, a reduction request should only be treated as

a reduction if other masters connected at the same level also seek reduction. If no

such masters exist, it indicates that the participant is connected to the next level,

and thus the request can be processed as a normal transaction.

To implement this logic, the multiplexer was extended with the introduction of the

logic illustrated in Fig. ??. In the depicted block diagram, the module named

is in reduction simply applies equation 3.2 to determine if any of the address rules

match the reduction mask. If a match is found, the LSB of the OPCODE is set

to 1 to signal the downstream demultiplexer that the incoming request is indeed a

reduction. Conversely, if none of the slave ports connected to the XBAR participate

in the reduction, the original OPCODE LSB is set to 0.
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Figure 3.2: Unicast reduction management logic inside the demultiplexer AW chan-
nel

3.2.2 Multiplexer: AW Channel

Fig. 3.3a illustrates the internal organization of the extended AW channel for re-

duction support. To describe how the crossbar manages reduction requests, only

the main building blocks are shown due to the complexity of the system. Before

delving into the design details, some information is provided to better understand

the schematic:

• Thin arrows represent single-bit signals.

• Thick arrows denote buses carrying various signals.

• When buses are not specified by any width, it indicates that they comprise

signals with different meanings. For example, the AW channel encompasses a

user field, a length field, an address field, etc.

• Yellow elements have been introduced in the reduction extension.

• The term AwUserWidth is a synthesis parameter used to configure the AW

channel user’s width to encode the reduction mask and the opcode.

• All signal and module names correspond to those used in the SystemVerilog

RTL description.

As depicted in Fig. 3.3a, the majority of the elements necessary to manage reduc-

tions were introduced alongside the original system. The grey region represents the

round-robin side where input requests were scheduled, as explained in Section 2.3,

while the white part is necessary only for reductions.

Starting from the input ports, all the NoSlavePorts are connected to the reduc-

tion side through a module named REDUCTION SYNCH and to the original side

through a round-robin arbiter. To detect if the input request is a reduction, it’s
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sufficient to check the user field: when it’s zero, the transaction is normal; other-

wise, the input request is a reduction. Only normal requests are arbitrated from the

round-robin side, while the others are handled by the reduction one. The reduction

synchronization module, described later in Section 3.2.2, detects all the reduction

requests and asserts the AW VALID signal after all the reduction participants have

asserted their valid signal. It’s also responsible for computing the participants list

(slv reduction not in list) that will be used by the W channel to perform the reduc-

tion operation only among the data sent by the involved masters.

Upon assertion of the AW VALID on the reduction side (aw valid reduction), a

priority encoder determines which of the input channels must be forwarded to the

master port. The channel can be any of the participants’ channels because the AW

control signals must be the same among all the involved masters, as explained in

Section 3.1. Once the reduction AW VALID signal is asserted, the multiplexer enters

the so-called ”reduction mode”. Therefore, no other requests, neither reduction nor

normal transactions, can be accepted until the end of the actual reduction operation.

For this reason, the reduction valid signal is used to disable the First-In-First-Out

(FIFO) push signal.

Finally, a selector is used at the interface with the master ports to choose between

the AW signals coming from the reduction or round-robin side. In the case of reduc-

tion, the AW READY signal is back-propagated to all the involved masters. This

multicast operation is performed by using the Not In List (NIL) signal selected from

the priority encoder.

Reduction Synchronisation Module

The reduction synchronization module depicted in Fig. 3.3b serves as the pivotal

element of the entire Reduction-capable XBAR (R-XBAR). The main aspect to con-

sider when performing reduction is the synchronization among the various requests.

Since each master operates independently from the others, reduction requests can

arrive at different times. The synchronization module has been designed to monitor

each slave port, and upon arrival of a reduction request, it checks whether the other

participants have already sent the associated reduction request or not. When all

requests have been detected, the module asserts the AW VALID signal downstream,

which is subsequently propagated to the output as described previously (section

3.2.2).

Using equation 3.2, the synchronization module determines, for each input port, the

Not In List (NIL) signal that defines which masters are involved. Each bit in NIL is

associated with one slave port: when the ith bit is asserted, the ith slave port does

not take part in the reduction; otherwise, it does. Hence, the NIL signal is used to

mask all the non-involved reduction requests.

In conclusion, by utilizing the logic AND/OR tree and comparing the reduction

masks from all the masters, the output AW VALID signal can be asserted only

when all participants are ready.
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(a) Detailed block diagram of the reduction-capable crossbar AW channel

(b) Internal architecture of the Reduction Synch module
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Deadlock

The design considerations for the AW channel are crucial to understanding the final

architecture, particularly regarding potential deadlock conditions.

Initially, the plan was to employ only one synchronization module in each multi-

plexer, intending to grant control of the module to the first arriving request at the

multiplexer. However, this approach posed a risk of deadlock. Consider a system

with three masters: MA, MB, and MC. Suppose two reductions are to be performed:

the first between B and C (RBC) and the second between A and B (RAB). Since

each master operates independently, there is a chance that the first request issued

is from (RAB), thereby giving module control to master A. As B has not generated

the same request, the AW VALID signal cannot be asserted, and the module will

await B. However, when the request for the reduction between B and C arrives, the

module is already under the control of master A. Consequently, the request cannot

be handled. Thus, as RBC cannot be processed, and B will never send the request

RAB, the system will indefinitely stall.

To avoid this scenario, it is necessary to utilize one reduction synchronization mod-

ule for each slave port. This ensures that each port has its module to monitor the

arrival of all participants, mitigating the risk of deadlock.

3.2.3 Multiplexer: W Channel

To manage sent data, the system depicted in Fig. 3.4a has been developed. The

grey side represents the original implementation already described in Section 2.3.3,

where input W channels are selected using a multiplexer driven by the First-In-

First-Out (FIFO) data from the AW channel. However, when reductions must be

performed, this approach is not sufficient because the data from different sources

can arrive asynchronously. Hence, the Reduction-capable XBAR (R-XBAR) must

have the capability to wait for all involved masters, and only upon the arrival of all

items, it can finally reduce them. Additionally, considering that the reduction list is

not known a priory, the system must implement some masking operations to mask

data from the rest of the W channels.

The module responsible for all mentioned tasks is called REDUCTION OPERATOR.

Reduction Operator

Figure 3.4b illustrates a block diagram of the reduction operator module. Two main

functionalities can be distinguished. Firstly, it must select which of the input chan-

nels carrying the strobe, last, and user signals must be forwarded. To achieve this

goal, the select w chan signal, derived from the AW side select aw chan signal, is

used to select only one of the involved channels. It is not important which of them

is selected since they must have the same configuration signals while participating

in the same reduction.
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(a) Detailed block diagram of the reduction-capable crossbar W channel

(b) Internal architecture of the Reduction Operand module
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Additionally, the module is responsible for the reduction itself. As mentioned earlier,

the current version of R-XBAR supports only the logic AND operation, although the

system has been designed for future extensions. Therefore, in the following descrip-

tion, more operators are considered even though they have not been implemented.

Before performing the arithmetic/logic operation, all data channels not involved in

the reduction must be masked. For this purpose, a look-up table filled with neu-

tral operands for all operators can be used. The operand is selected by the opcode

coming from the AW control signals: the neutral operand for the logic AND is a

data with all bits set to one, for the OR it is a zero value, and similarly, in the case

of addition, a zero data can be used, while in the case of maximum and minimum

operators, it depends on whether the numbers are signed or unsigned. This table

can be easily extended with more operators if necessary.

Then, the signal carrying the list of participants already evaluated on the AW side

(not in list) is used to select for each channel between the neutral operand or the

original data coming from the slave port. Finally, the opcode selects the operation

to be performed inside the reduction Arithmetic Logic Unit (ALU), which can be

extended to support various operators.

W Valid/Ready

The W VALID signal is asserted downstream only after detection of all valid signals

coming from the involved slave ports. The list of participants evaluated in the AW

channel is used to listen only to the necessary ports and mask the others. On the

other hand, the W READY signal is multicast back to the participant ports. Since

the data can arrive asynchronously along with their associated valid signals, the

ready signal is rooted back only when the handshake is detected on the master port

side. Therefore, the W READY sent from the slave is sent back to all participants

only upon the arrival of W VALID signals from all the masters.

In conclusion, similarly to what is done on the AW side, a selector is used to choose

between the original side and the reduction channels. This selection is performed

by examining the status of the R-XBAR, i.e., by observing the reduction mode q

signal that is asserted on the AW side only after acceptance of the AW VALID and

completion of all outstanding normal transactions.

3.2.4 Multiplexer: B Channel

To back propagate the B response from the master port to the slave ports, the

architecture depicted in Fig. 3.5 is utilized. In this diagram, the arrows are bidirec-

tional to underline that the VALID signal is replicated from the master port to the

slave ports, while the ready signal is reduced in the opposite direction. Some main

modules can be identified:

• B COUNTER: It is an UP/DOWN counter used to track the outstanding

normal transactions. As explained in Section 3.2.2, before assertion of the
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AW VALID signal for reduction requests, all outstanding transactions must

be completed. The term ”outstanding” refers to all write transactions which

are in-flight, i.e., those transactions which have been accepted because the

AW handshake already occurred, but didn’t receive the B response yet. The

First-In-First-Out (FIFO) in the AW channel can be used to determine how

many of the accepted AW requests already sent the associated data, while the

B counter is used to track all the transactions from the moment when the data

is sent (W LAST = 1) to the reception of the associated B response. Only

when the FIFO is empty and the counter is zero, no normal transactions are

outstanding, and a reduction request can be accepted, leading the R-XBAR

into the reduction mode.

• REPLICATION: When the B response associated with a reduction request

is received, it must be routed back to all the participants in the reduction.

This operation can be easily performed using the not in list signal computed

on reception of the AW reduction request. Care must be taken with the

handshake on the B channel. The B VALID signal is driven from the slave,

while several B READY signals come from multiple masters and they can

be asserted at any moment regardless of the other ready signals. Therefore,

as soon as the valid is asserted, it is routed to all participants. But in each

B channel, upon reception of the B READY, the valid is removed to avoid

multiple valid detections from the masters. Only when all the B READY

signals have been asserted, the ready is also activated downstream on the

master port side to notify the completion of the B response to the slave. In

this way, the slave removes the valid only after reception from all the involved

masters, and each master detects the valid signal for a single cycle as required

by the Advanced eXtensible Interface (AXI) specification.

Reduction ID limitation

As described in Section 3.1, to have a working system, each AW request associated

with a specific reduction must have the same transaction ID. This ensures that the

same ID received from the slave can be sent back to all participants while receiving

the B response. To provide flexibility to the user, a synthesis parameter named

EnableRedId can be set to introduce enough registers to store the IDs coming from

all the masters involved in the reduction. This allows each request to have a different

ID, and when the B response is backpropagated, the correct IDs to be routed back

to each slave port are held in specific registers. As mentioned before, this extension

will increase the final area.
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Figure 3.5: Block diagram of the reduction-capable crossbar B channel

3.3 Verification

To verify the functionality of the reduction-capable crossbar, the original testbench

has been extended to generate reduction requests. Before delving into the details

of the extended version, a short explanation of the general organization is provided

in Section 3.3.1, and the complete version capable of generating reductions and

checking for their correctness is explained in Section 3.3.2.

3.3.1 Testbench Overview

Figure 3.6 illustrates a simplified structure of a common testbench for Device Under

Test (DUT) verification. Several modules can be identified:

• Driver: This unit is responsible for generating stimuli sent to the device.

• DUT: This is the designed system to be tested and verified.

• Monitor: This module is responsible for monitoring the input and output

signals.

• Scoreboard: This element compares the obtained results with those ex-

pected. The expected results are usually determined from the scoreboard by

implementing a gold model of the DUT and applying it to the driven stimuli.

The same structure has been used for the Crossbar (XBAR). Figure 3.7 depicts

the complete organization of the testbench. Each master and slave is driven by

independent drivers to simulate real conditions where devices asynchronously send

and receive requests. Each driver generates requests randomly, i.e., with random
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Figure 3.6: Diagram of a generic testbench for verification purposes

AW configuration signals (length, size, burst, etc.), and issues them at a random

time. Similarly, slaves accept arriving requests and send responses back in a random

fashion while still being compliant with the Advanced eXtensible Interface (AXI)

protocol. Alongside the drivers and the DUT, a monitor tracks the input stimuli

and evaluates the expected signals at the output ports of the XBAR, which are the

master ports for the request signals and the slave port for the response signals. The

gold model and the checking functionality are directly embedded inside the monitor

unit.

Figure 3.7: Complete diagram of the XBAR testbench

3.3.2 Testbench Extension

The original testbench didn’t consider many aspects that became crucial with the

introduction of reduction support. The main extensions have been introduced in

the drivers and in the monitor.
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The main challenge encountered in the driver extension came from the lack of corre-

lation among masters. They were modelled with objects, each with its own attributes

used to generate the requests. Each object is associated with a thread and there-

fore they run concurrently. Originally, there was no necessity to have inter-master

communication mechanisms, while the introduction of reduction support makes this

aspect crucial.

Drivers extension

As previously explained, each master generates its write/read requests independently

of the others. This approach cannot be used to model reduction requests because a

reduction is a shared operation among various participants. In a real-world system,

this aspect is obvious: considering a multi-core architecture, each core executes a

specific part of a parallel program and then the reduction is issued when necessary

by all participants. Therefore, in the model, it is necessary to ensure that before

sending a reduction request, all the involved masters know they must take part in

the same reduction. Additionally, even though a communication mechanism among

the involved masters is introduced, the testbench must ensure that each master still

issues its request whenever it wants, at a random time, without being affected by

the other masters, to test the Reduction-capable XBAR (R-XBAR) functionalities

with asynchronous requests.

To solve all these problems, a shared queue-based structure has been used among

all the masters. This structure is depicted in Fig. 3.8. It can be seen as a set of

queues, one per master. Every time a master wants to issue a request, this can be

normal or a reduction. The probability to choose one or the other can be defined

in the testbench. When a master generates a reduction request, it checks its queue

and two scenarios can occur:

1. Empty Queue: In the case of an empty queue, the master is not part of any

outstanding reductions. Consequently, it’s free to generate a random mask and

all the AW control signals to associate with the request. These must satisfy

the rules imposed by the R-XBAR design. Then, it must communicate to all

participants that they will take part in the reduction as soon as they need to

issue a reduction request. This communication is performed by pushing all

the information associated with the request into all participants’ queues. This

update operation must be arbitrated using a semaphore because each master

is an independent thread and it might interrupt the execution of all the others.

At the end of this process, all the involved masters will have the queue filled

with the necessary information to issue a reduction request coherent with that

already sent.

2. Full Queue: If the queue contains at least one element, it indicates that the

master is part of a reduction initiated by another master. In this case, the
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master reads the information from the queue’s entry, forwards the request, and

removes the element to prepare for potential subsequent reductions.

With this structure and the use of a semaphore to arbitrate queue accesses, each

master can randomly decide when to issue a reduction request while maintaining

consistency with the rest of the participants.

As illustrated in Fig. 3.8, each queue entry contains all the information shared

among AW reduction requests. This includes details such as the write transfer

length, size, and burst. While the current version of the R-XBAR does not support

burst transactions, and therefore the size and burst type are fixed, they have been

included in the queue data structure for future extensions of the crossbar. This

design choice ensures that the testbench can be easily adapted and extended in the

future.

Figure 3.8: Queue-based structure to maintain coherence among the various threads

Monitor extension

The monitor has also been extended to ensure the correctness of reductions. The

main change involves the control of the W DATA field. Previously, without the

reduction extension, the XBAR solely transferred data from the input to the output

port, requiring verification that the output data matched the input. However, with

the introduction of reductions, this is no longer sufficient. Inside the R-XBAR,

multiple operations can now be performed based on the OPCODE set during the

AW transfer. Therefore, the monitor has been augmented to track all reduction

requests, wait for the arrival of all the associated data, and subsequently verify that

the output data meets expectations.

Verification Status

In conclusion, numerous tests with different configurations have been conducted to

verify the correct functionality of the system. All combinations ranging from 2 to

8 master and slave ports have been tested successfully in simulations. In each test

scenario, every master issued a total of 600 requests, with half being write requests
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and half read requests. Additionally, among the write requests, a portion were

reductions, with the probability of generating them set to 50%.
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Methods II: System Level

After designing the reduction-capable XBAR, the next step in the project involved

its integration into a real system called Occamy [16]. Section 4.1 analyzes the im-

plications of integrating the R-XBAR into the real system and explains the further

extensions introduced. Subsequently, section 4.2 demonstrates how the Snitch pro-

cessor was extended to issue reduction requests. Finally, to test the entire system

and evaluate performance improvements, various applications have been developed,

and their structure is explained in section 4.3.

4.1 Occamy Integration

In this 216 core-based architecture depicted in Fig.2.8, crossbars are utilized to in-

terconnect the internal cores in a hierarchical structure. Each Snitch core is grouped

within a cluster comprising eight Snitch CC units. Four of these clusters are further

grouped together and interconnected via both a 64-bit and a 512-bit XBAR. Finally,

inter-group communication is facilitated by a last level crossbar that connects the

six groups within the Occamy chip.

To facilitate the hardware instantiation of all necessary modules, a Python script

named occamygen [23] is utilized. This script relies on a configuration file that users

can modify to test different versions of the Occamy system, adjusting parameters

such as the number of clusters in a group or the overall system. It generates the Sys-

temVerilog files required to build the chip, ranging from the cluster level depicted

in Fig.2.8c to the SoC view in Fig.2.8a. To accommodate the reduction-capable

crossbar, the script has been appropriately modified to allow users to instantiate

either a reduction or a normal crossbar. However, due to the complexity of the

system, the R-XBAR architecture outlined in section 3.2 did not fully meet certain

constraints imposed by the Occamy architecture. Therefore, further extensions were

necessary to integrate the interconnection infrastructure. The following list details

the extensions made and highlights some limitations introduced to achieve a fully

functional system.
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4.1.1 Master and Slave ports

During the initial design phase of the R-XBAR, it was assumed that the intercon-

nection system would accommodate an equal number of master and slave ports, i.e.,

NoSlavePorts = NoMasterPorts. However, as illustrated in Fig.2.8, this assumption

does not hold in real systems, where a crossbar may have a varying number of mas-

ters and slaves connected to it.

This discrepancy impacts another aspect of the original design: the encoding of the

list of participants in a reduction. As mentioned in 3.1, slave ports must be associ-

ated with an address space to encode the list of participants. To avoid duplicating

the address map, it was decided to assign the same address rules to both master and

slave ports. Consequently, reduction-capable masters are connected as both mas-

ter and slave units, a configuration commonly seen in systems like Occamy, where

clusters, groups, and Snitch cores are connected to both master and slave ports.

However, the possibility of having a different number of interconnected masters and

slaves introduces the option for devices to be connected solely as master or slave

units. For example, in the architecture depicted in Fig.2.8a, the purple modules

function solely as slaves and cannot issue requests, while the Ariane RISC-V CPU

is connected exclusively as a master unit.

To address this issue, modifications were made to the R-XBAR as depicted in Fig.4.1,

4.2a, and 4.2b. The added interconnections are highlighted in red. A new synthesis

parameter, NoRedPorts, has been introduced to identify the number of intercon-

nected masters capable of issuing reduction requests. Modules connected to these

reduction ports must adhere to the following rules:

• Ports Duality: A reduction-capable master connected to a reduction port

must also have a connection to a slave port with the same index.

• Connection Order: Reduction ports must be associated with the lowest

indexes in the address map. Therefore, the first NoRedPorts address rules are

associated with both slave and master ports.

These rules ensure consistency in the connections. However, it means that Ariane

cannot issue reduction requests. This limitation is not significant because, for par-

allel computation, Snitch cores are typically utilized. In many-core systems, each

core may have its own internal memory and thus would be connected to both a slave

and a master port. The only restriction is the connection order.

4.1.2 Default Port

The XBAR specifications [11] allow users to designate a default master port where

requests are forwarded when the destination address does not match any address

map rules. In Occamy, this feature is used to implicitly define the address space

of the port where the next XBAR level is connected. Consider the group view in
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Figure 4.1: AW channel extension to support mixed type ports, reduction and
normal slave ports

Fig.2.8b. Each group is linked to the SoC crossbar through dedicated master and

slave ports. To simplify the address space representation, these ports are not asso-

ciated with any address rules. By enabling the default port, any requests that do

not match any rules are automatically routed to these ports.

However, this approach conflicts with the reduction rules introduced earlier. To rep-

resent the participants list, all reduction ports must be associated with an address

rule (3.1). Therefore, the SoC slave port cannot be used to issue reduction requests

because the current R-XBAR implementation cannot identify that port as a reduc-

tion source. Nevertheless, this port can be utilized as a destination for reductions,

enabling reduction operations among all clusters and groups in the system, facilitat-

ing global synchronization mechanisms. The drawback is that reduction operations

must always traverse the entire interconnection subsystem.

Let’s consider a scenario where a reduction needs to be performed among all

clusters from group 0 and 1, with the result stored inside the first cluster’s TCDM.

The optimal approach for such a reduction would be as follows:

1. The items from the clusters inside group 0 reduce in the first XBAR level,

yielding a partial result. Simultaneously, the items from the second group of

clusters reduce inside their group.

2. Since the final destination is inside the first group, there is no need to forward

the partial result from the first group to the second XBAR level. Instead, it’s

necessary only to move the result from the second group upward to the SoC
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(a) W channel extension

(b) B channel extension

Figure 4.2: Extensions to support mixed type ports, both reduction and normal
slave ports.
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level and then downward to the first group.

3. Finally, the XBAR can evaluate the final result in the first group XBAR and

store the data in the destination.

This workflow is illustrated in Fig.4.3a, where the red arrows identify the path cov-

ered by the partial results, while the blue arrow represents the path taken by the

final result to reach the destination. This approach minimizes unnecessary data

exchanges with the next level, resulting in shorter latency and a more balanced load

across the network. It also helps reduce the number of hotspots in the intercon-

nection system. However, to forward the partial result from the second group deep

into the first group’s crossbar, the slave port connecting the SoC XBAR with the

first group must be configured as a reduction port. Since this port is defined as the

default in the L1 XBAR, this cannot be done.

Thus, the current version of R-XBAR does not support this feature. To execute

the described reduction, the destination port must reside within the SoC XBAR. In

this scenario, partial results are received from both groups, and the ultimate value

is calculated and stored in any of the connected slave units. The data flow is illus-

trated in Figure 4.3b.

In conclusion, the Python script has been modified to fulfil all the aforementioned re-

quirements. The outlined rules do not impose significant restrictions on the original

system; they slightly limit the flexibility compared to the original plan. However, fur-

ther extensions can be incorporated into the Reduction-capable XBAR (R-XBAR)

to eliminate such limitations, thereby enhancing the final performance even further.

4.2 Snitch Extension

In order to utilize reduction operations within the Reduction-capable XBAR (R-

XBAR), the Occamy extension alone was insufficient. Additionally, the internal

Snitch cores required an extension to issue reduction requests. Specifically, the

designed crossbar can execute reductions when the input write request is associated

with a user field carrying the list of participants. This information needs to be set by

the user during the software development process to be executed on the architecture.

Therefore, several strategies for setting the reduction mask have been considered.

Two solutions have been analysed:

1. ISA Extension: One possibility involves extending theISA by adding some

instructions for reduction management.

2. CSR: Another possibility is to leverage the CSR features already supported

in the RISC-V ISA.
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(a) Asymmetric reduction tree

.

(b) Symmetric reduction tree

Figure 4.3: Example of reduction data flow in a simplified version of the Occamy
system. In Figure 4.3a, the final result is computed directly in the L1 Crossbar
(XBAR) close to the final destination. This asymmetric structure reduces the la-
tency required to store the result in the final destination. In Figure 4.3b, the final
result is evaluated in the L2 XBAR, stored in a slave, and then retrieved back from
Cluster 0, which is the actual destination. This second approach results in greater
latency.
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The first approach would necessitate extending the entire ISA to introduce a few

instructions. Conversely, with the second approach, no further instructions need to

be introduced in the microarchitecture: the RISC-V ISA already supports CSR [24,

Chapter 2], which can be utilized to set the mask and opcode for crossbar reduction

requests. Hence, the second approach has been chosen to extend Snitch capabilities.

4.2.1 Control Status Registers

The RISC-V architecture encompasses both privileged and unprivileged Instruction

Set Architecture [24, Chapter 1]. At any given time during execution, a RISC-V hart

(hardware thread) is running code at some privilege level. These levels are useful for

ensuring protection between different elements in the software stack. Three main

levels can be identified:

• User: The U mode is intended for application codes.

• Supervisor: The S mode is used by the operating system.

• Machine: The M level has the highest privilege and is mandatory for any

RISC-V architecture.

The RISC-V “Zicsr”extension supports a separate address space for 4096 Control

Status Registerss. These registers can be used for various functionalities, and some

of them can be utilized for custom read/write operations. Table 4.1 depicts the

instruction format for Control Status Registers handling. The first 12 bits in the

Table 4.1: Control Status Registers instruction format

31 20 19 15 14 12 11 7 6 0
csr rs1 funct3 rd opcode

source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm[4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm[4:0] CSRRCI dest SYSTEM

CSR format represent the address at which the register is mapped. The upper 4 bits

are utilized to identify whether the register is read/write or read-only. Additionally,

bits csr[9:8] encode the lowest privilege level that can access the register.

For reduction purposes, CSRRW and CSRRWI are the main operations that can be

used. To send reduction requests, the core requires two pieces of information: the

mask and the reduction opcode. Two control status registers can be employed to

hold their values, and they can be set and cleared using the aforementioned instruc-

tions. Specifically, CSRRW atomically swaps values between the source and control

status register. With CSRRWI, an immediate value can be used instead of the source

register, facilitating the cleaning of the CSR.
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Therefore, two control status registers have been allocated. The first, called CSR MREDMASK,

holds the reduction mask encoding the list of participants, while the second register,

named CSR MOPCODE, is dedicated to storing the reduction opcode to specify which

of the reduction operations must be executed inside the R-XBAR. Both CSRs have

been selected from the machine-level list. Thus, no protection is provided against

incorrect application codes.

4.2.2 Core Extension

Once the technique for setting the reduction mask and opcode was identified, the

core was extended to support reduction requests.

Initially, the need for the AW user field necessitated extending the internal interfaces

to include this field as well. Moreover, the introduction of the aforementioned control

status registers was insufficient to issue reduction requests. As explained in Section

3.1, during the design of the R-XBAR, it was decided to utilize write transactions

to issue reduction requests. From the processor’s perspective, these transactions

are simple STORE operations. Therefore, the information to be sent alongside the

write operation must be routed through the LSU. Additionally, this module needed

to be modified to forward the contents of the Control Status Registers (CSR) while

adhering to the expected protocol at the LSU interface.

Load-Store Unit

Before delving into the details of the Load-Store Unit extension, a brief description

of the original structure is provided below.

Two FIFOs are utilized to handle load/store requests. The first one is essential for

storing all the information related to load operations. This includes the destination

register tag to identify the rd where the loaded data must be written back, the signed

flag to properly shift the value upon reception, the address location offset, and the

data size. All this information is necessary for managing the data during the write-

back stage. In the case of a store operation, such information is not required.

A second FIFO is then used to detect whether the accepted request was a store or

a load. This information is necessary to determine how many loads are outstanding

and to assert the response valid signal at the interface between the core and the

LSU only upon completion of a load; stores always proceed without a response to

the core.

The protocol used is a custom interface called reqrsp interface, based on common

principles found in other interconnects such as AXI. It is characterized by a request

and response channel, respectively named q and p. In the case of a request, the

initiator (i.e., the core) asserts the valid signal, and the receiver asserts the ready

signal whenever it is ready to receive the transaction. When both signals are active,

as per the AXI protocol, the transaction is deemed successful.
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LSU Extension

Considering that one of the primary applications where reductions can be exploited

is to implement synchronization barrier mechanisms, the Load-Store Unit has been

extended not only to forward the values of Control Status Registerss for generic

reduction operations, but also to stall the core on barrier requests until the arrival

of all participants. To achieve this, a specific reduction opcode has been associated

with barriers. When this opcode is detected by the LSU, the store operation is

treated as blocking. Consequently, when a core wants to synchronize with others, it

can issue the reduction request and then will be automatically stalled by the LSU.

Recalling the working principle of the R-XBAR, only when all the involved cores

have sent the reduction request can the transaction reach the destination, which can

then reply with the AXI B response. Upon receiving the store response, the LSU

removes the stall signal, allowing the cores to begin executing the next instructions.

Several signals have been introduced at the LSU interface:

• red mask i: This is the concatenation of the CSR MREDMASK and CSR MOPCODE

used to set the AW user field expected by the R-XBAR.

• red mask o: This is the output user field sent alongside the store request.

• glb barr stall o: This signal is used by the LSU to stall the core on a barrier

operation.

If the core is not stalled, the input reduction mask is forwarded to the output with-

out any delay. Therefore, when the user wants to issue a reduction request, the

control status registers must be set first, and then the reduction store operation can

be sent. Subsequently, the CSRs must be cleared; otherwise, all future stores would

be identified as reduction requests because they would have a non-zero user field.

When the input reduction mask has the opcode associated with the barrier opera-

tion, the barrier stall signal is asserted as soon as the store handshake is detected.

The stall signal can only be removed upon receiving the store response. Since mul-

tiple outstanding stores are allowed in the system, the introduction of a counter was

necessary to track their responses and identify the response associated with the bar-

rier request. Thus, every time a store is accepted, the counter is incremented, while

the arrival of a store response will decrement its value. The condition to set the bar-

rier stall signal low is that the counter has a value equal to one, and the load-store

unit detects a store response. By ensuring that the counter is equal to CNT = 1, we

ensure that the stall signal is removed in the same cycle as the response reception,

allowing the core to immediately start executing the next instruction.

In conclusion, once the Snitch core has been extended to issue reduction requests

and the AW user field has been expanded in interfaces from the core level upwards
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to the cluster level, the Occamy system and its internal cores were ready to utilize

the reduction features supported in the reduction-capable XBAR.

4.3 Software Development

Once the system was ready for testing, the benchmarking phase of the project

could commence. This phase aims to assess the correct behaviour of the developed

Reduction-capable XBAR (R-XBAR) and measure the performance of different ap-

plications to identify the speedup gained with the extended crossbar. In this section,

various setups are presented to understand how the results shown in chapter 5 were

obtained. As explained in section 3.2, the designed crossbar currently supports only

logic AND reductions. However, this operation can be leveraged to implement bar-

rier mechanisms for global synchronization. For this reason, all the experiments

study the speedup of the global barrier and programs that exploit this synchroniza-

tion mechanism for parallel computations.

Before delving into the details of the experiments, section 4.3.1 illustrates how the

synchronization mechanism can be implemented either in software or hardware.

Then, three experiments have been set up: two aimed at assessing the performance

of the global barrier under different conditions, explained in sections 4.3.2 and 4.3.3,

while the last experiment, analysed in section 4.3.4, utilizes a sorting algorithm to

evaluate the impact of barrier acceleration on a real application.

4.3.1 Barrier Synchronisation

Barriers are specific examples of reduction operations [12] commonly used in par-

allel computing to synchronise actors working on parallel tasks towards a common

goal. Barriers delineate a specific step in the algorithm where each processing unit

cannot proceed further until all other participants have reached the same point.

A common paradigm in parallel programs is the “fork-join”model, where a task

is divided into subtasks that are executed concurrently (forked) and then joined

back together to form the result or resume sequential execution. In many cases,

all parallel units must be synchronized. For example, some graph algorithms like

Breadth-First Search (BFS) [25] can be parallelized using the fork-join model, where

different nodes are investigated in parallel by multiple tasks. However, at each level

of the BFS traversal, all tasks must synchronize to ensure that the next level is

processed correctly. Another example is parallel matrix operations, where each pro-

cessor computes a sub-matrix product. In this case, some processors may need to

wait for results from others before they can proceed with their computation, and

global barriers can be exploited to synchronize all processors after each phase of the

computation.

Therefore, sometimes the percentage of time spent on synchronization is comparable

to computation time, constituting a non-negligible overhead of the fork-join model.
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For this reason, the global barrier mechanism has been chosen as an example to

demonstrate the performance improvement introduced by hardware support for re-

duction operations.

Software Implementation

The common way to implement a barrier is by means of a shared counter. Each time

a processing element reaches the barrier, it increments the counter. Only when the

counter’s value corresponds to the number of participants does it indicate that all

units can proceed to the next step in the program. The pseudo-code in Algorithm 1

Algorithm 1 Non optimised software barrier

Require: shared cnt← 0

atomic add(shared cnt)
if shared cnt = N then
shared cnt← 0

else
while shared cnt ! = 0 do

;
end while

end if

depicts an example of how the barrier can be implemented. As illustrated, once the

counter is updated, all cores enter a loop except the last, which resets the counter

to free the other units. The main reason why the software barrier can be time-

expensive is the increment of the shared counter. Indeed, this operation must be

done atomically, but atomicity might create a lot of contention. If two or more cores

try to access the counter simultaneously, only one of them can be served, and thus

the others must wait. This results in serial access to the shared variable, which can

increase the overall synchronization time.

Additionally, the above algorithm has some other problems:

• Loop Condition: The inner loop condition stalls all units until the last core

arrives. If only a single counter is employed, some cores might be stalled in-

definitely. For instance, if two consecutive barriers are performed, it’s possible

that after resetting the counter, some units reach the barrier before others

from the previous synchronization step exit the loop. If those units increment

the counter value, the loop condition would remain valid, preventing the cores

associated with the previous barrier from exiting the loop. The only way to

avoid this situation is to use a second counter to track the ”barrier iteration,”

as shown in Algorithm 2.

• Memory Latency: Considering the system architecture in Fig. 2.8, the

shared counter is stored in the HBM. This memory location is far from all
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the Processing Elements (PEs), and therefore the latency to atomically read

and increment its value can be high. To mitigate this issue, the counter can

be stored inside the first cluster’s TCDM, where all other units can access it

faster.

• Instruction Cache Miss: Another significant issue arises from the possibil-

ity of instruction misses. To accurately estimate the execution time for the

software barrier, it’s crucial that all phenomena not related to the execution

of the algorithm don’t affect the outcomes. The counter is reset by the slowest

core, but if the barrier is executed multiple times, at each iteration, a dif-

ferent core might clean the counter. Consequently, with this version of the

algorithm, it’s challenging to control that no instruction misses occur because

theoretically, for each of the N barriers executed, a different core might reset

the counter, resulting in a cold miss because it has never fetched the instruc-

tion before. To address this, the pseudo-code can be modified as shown in

Algorithm 2, where the task to reset the counter is always assigned to the

same processing unit.

Algorithm 2 Optimsed software barrier

Require: shared cnt← 0, shared barrier iter ← 0 // Stored in TCDM

atomic add(shared cnt)
loc barr iter ← shared barrier iter
if core number = 0 then

while shared cnt ! = N do
;

end while
shared cnt← 0
atomic add(shared barrier iter)

else
while loc barr iter = shared barrier iter do

;
end while

end if

In the optimized version of the software barrier, all units check the value of a barrier

iterator except for the first core. This first core is stalled until the shared counter

reaches the maximum value. Then, it resets the counter and increments the barrier

iterator, freeing the other units. In this way, all cores are guaranteed to exit from

the loop properly synchronized.

Additionally, the memory latency problem is addressed by storing the shared counter

and barrier iterator in the first cluster’s TCDM. This ensures faster access for all

units. Furthermore, cache misses can be easily mitigated by repeating the code

twice. Since at the second iteration, all cores will have the necessary instructions

already in the cache, potential cache misses are effectively removed.
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Hardware Implementation

To perform the barrier in hardware, the algorithm in Algorithm 3 can be utilized.

With the GCC Extended Asm, inline assembly instructions can be directly used in

the C code. For instance, the set mask function simply utilizes the RISC-V CSRRW

instruction to set the value of the CSR reduction mask. Similarly, the CSR opcode

is defined with the set opcode function. Finally, for both control status registers,

two C functions can be used to reset them. These functions are based on the CSRRWI

RISC-V instruction, with the immediate field set to zero.

Thanks to this bare-metal code, the user can exploit the reduction capabilities of the

developed system. For global barrier synchronization, the user only needs to define

the reduction mask following the methodology explained in section 3.1 to select the

appropriate list of participants. Additionally, the opcode must be set to zero, which

corresponds to the barrier operation code.

Algorithm 3 Hardware barrier

set mask(RED MASK)
set opcode(RED OPCODE)
clear mask()
clear opcode()

4.3.2 Barrier arrival times

Once all necessary functions to support the software and hardware barriers in C

code were developed, experiments could be conducted to evaluate performance and

verify the correct behaviour of the entire system.

The first interesting aspect to evaluate was the dependency of the barrier speedup

on the arrival time of each participant at the barrier. The main drawback of the

software barrier is the usage of atomic operations, which can create contention and

force parallel code to be serialized because only one computation unit can access

the shared variable at a time. Conversely, the hardware barrier was implemented

to handle parallel requests. Therefore, the arrival time of each core at the barrier

constitutes a critical aspect of the overall application.

As depicted in Fig. 4.4a, if the participants are scattered enough during arrival at

the barrier, the overhead introduced by the use of atomic accesses becomes negligi-

ble because each unit has enough time to fetch and increment the shared counter

before the next PE requires access to the same memory location. Thus, the speedup

introduced by the hardware implementation is solely in the last step between the

arrival of the slowest unit and completion of the synchronization mechanism. When

the number of cores is high, that speedup may be small compared to the overall

application.

In contrast, the worst scenario for the software barrier occurs when all cores arrive
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simultaneously. As illustrated in Fig. 4.4b, regardless of whether all cores arrive

at the same time, the atomic operation can be performed by only one unit at a

time. Therefore, each core stalls waiting for the previous one to fetch and incre-

ment the shared counter. Consequently, if tamoadd represents the time necessary

to atomically fetch and increment the variable, the last core will wait for a total

of tN wait = (N − 1)× tamoadd before it receives permission to access the counter.

Instead, the hardware barrier is capable of managing all requests in parallel, and

therefore the execution time of the total barrier is simply AXI write transaction

round-trip delay. To test the speedup gained with the hardware barrier under dif-

(a) Scatterred arrival time (b) Simultaneous arrival time

ferent conditions, the arrival time of each core can be varied in a controlled fashion,

and the performance evaluated. Each core can generate a random delay drawn from

a uniform distribution, wait for that time, and then send the barrier request to

notify its arrival. Algorithm 4 outlines the main steps of this process.

Algorithm 4 Speed up test with different arrival times

delay ← prng delay(MaxDelay)
hw barrier()
wait for(delay)
barrier request()

Delay generation

The generation of delays constituted a crucial step in the experiment. In order to

maintain sufficient control over the setup, a pseudo-random number generator func-
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tion was devised. The Leapfrog Method [26] was employed for generating numbers

from a uniform probability density function ranging from zero to MaxDelay, a con-

stant value adjustable between experiments. For instance, to examine the scenario

where all cores reach the barrier simultaneously, MaxDelay could be set to zero.

delay ∼ U(0,MaxDelay) (4.1)

Synchronisation mechanism

Controlling the arrival time requires synchronizing all cores at the outset. Hardware

global barriers rely on the AXI B response. When all cores issue the reduction re-

quest and the B response is sent back from the destination, it arrives simultaneously

at all participants. Consequently, if each core is assigned the same workload, all

computational units will remain synchronous after receiving the B response. There-

fore, to ensure participant synchronicity before awaiting the computed delay time,

the hardware barrier mechanism can be utilized.

Waiting routine

After computing the delay time, each core must be stalled for that duration. This

task can be accomplished by employing a polling loop, which essentially halts core

execution for a certain number of iterations proportional to the delay time. Before

measuring barrier performance, multiple executions were conducted to determine

this proportionality term. Analysing the generated assembly code enabled the de-

termination of the required number of cycles to execute one iteration of the loop.

Subsequently, using this information, the total number of iterations could be com-

puted based on the generated delay.

It’s worth noting that the constant value correlating the number of iterations with

the delay depends on the target machine and the compiler used. Hence, all pertinent

information necessary for replicating the experiment will be detailed in the Results

chapter 5.

Barrier request

After cores have waited for the computed delay, the barrier request can be issued.

To assess the speedup introduced by the hardware barrier, both the software and

hardware algorithms explained in section 4.3.1 can be utilized.

4.3.3 Number of participants impact

Another aspect to consider when analysing barrier performance is the number of par-

ticipants. As previously noted, the primary overhead in the software version stems

from contention generated by the amoadd instruction. Consequently, increasing the
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number of participants leads to more accesses and, consequently, more time spent

on synchronization. Conversely, the hardware version should remain unaffected by

the number of participants because the design was implemented in a manner such

that all requests in the same reduction can be detected simultaneously, thanks to

the tree structure illustrated in Fig. 3.3b.

Only the cores involved in the computation issue the barrier. Recalling the limita-

Algorithm 5 Speed up test for different number of participants

if core idx < NumParticipants then
hw barrier()
barrier request()

end if

tions of the R-XBAR, the number of participants must be a power of two. Addition-

ally, since in this experiment the effect of different arrival times is not important,

before initiating the barrier request used to measure performance, a hardware bar-

rier is executed to ensure that all cores are synchronised and the delay among them

is zero.

4.3.4 Bitonic Sort algorithm

In conclusion, after studying the performance of global barriers, a real application

was implemented to assess the impact of the provided synchronization acceleration

on the overall program. Various applications utilize barriers, such as the BFS algo-

rithm, the FFT, certain matrix multiplications, or sorting algorithms. To evaluate

performance under real conditions, the Bitonic Sort algorithm was selected.

Basis

First devised by Batcher [27], the bitonic sort is renowned as one of the fastest

sorting algorithms [28]. A sequence of numbers is defined as bitonic if it comprises

two subsequences, one in ascending order and the other in descending order (or vice

versa). An example is the sequence s shown in equation 4.2, where the first four

elements are ascending while the second half is descending.

s = 1, 2, 9, 13, 11, 8, 5, 3 (4.2)

The sorting algorithm can be generalized for any length L that is not a power of

two. However, for the purpose of this experiment, the length is always a power of

two. Given a generic bitonic sequence of length L = 2×N , two bitonic sequences s0

and s00 can be created by applying the rules in equation 4.3. It can be demonstrated

that none of the elements in s0 are greater than those in s00. By repeating this pro-

cedure for each of the obtained sequences, four bitonic sequences of length N/2 are
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obtained. This procedure can be repeated for log2(L) steps, and in the final step, L

bitonic sequences of length 1 are obtained, leading to a sorted sequence.

s0 = {min(s1, sN+1),min(s2, sN+2), ...,min(sN , s2N)} (4.3)

s00 = {max(s1, sN+1),max(s2, sN+2), ...,max(sN , s2N)} (4.4)

Implementation

Figure 4.5 illustrates the sorting algorithm applied to the example 4.2. The arrows

represent comparison operations between two vector elements. At each step, a total

of L/2 comparisons are performed, and they can be executed in parallel by L/2

cores. However, before proceeding to the next step, a barrier must be employed

to ensure that all involved units have completed their tasks, as each core might

work on elements swapped by another before. The total number of barriers required

is equal to log2(L). To evaluate the algorithm’s performance more effectively by

Figure 4.5: Bitonic sort algorithm applied to the sequence 4.2

exploiting the hardware barrier, an initial implementation was developed, and the

corresponding pseudo-code is presented in Algorithm 6. The indexes of the elements

to be compared can be computed as a function of the core index, as shown in equation

4.5, where coreidx represents the core index obtained from a built-in function, stride

indicates the distance between the elements being compared, and % denotes the

modulo two operation. As depicted in Fig. 4.5, in the first step, the stride is equal

to half of the input sequence length, then it becomes one fourth, and so forth.

seq idx = bcore idx/stridec ∗ len+ core idx%stride (4.5)

Once the algorithm was implemented, the performance evaluation yielded unsatis-

factory results, with a speedup of less than 3% for a sequence length of 8 elements.
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Algorithm 6 Non-optimal bitonic implementation

if core idx < len/2 then
while len > 1 do
stride← len/2
seq idx← core idx/stride ∗ len+ core idx%stride
val1← sequence[seq idx]
val2← sequence[seq idx+ stride]
if val1 > val2 then
swap(val1, val2)

end if
barrier request()
len← len/2

end while
end if

Upon analysing the assembly code, it was discovered that the time spent on syn-

chronization was negligible compared to the rest of the program. The primary issue

stemmed from each core’s access to the sequence. Specifically, the sequence was

stored in the HBM (Fig. 2.8a), which is shared among all cores in the Occamy chip.

The utilization of this shared memory led to two critical considerations:

• The latency could be significant since the HBM is located far from the cores.

• All cores attempted to access the memory simultaneously, creating contention

at the interface and further increasing access time.

Consequently, optimizing the algorithm for the Occamy architecture became funda-

mental to minimize computation time as much as possible and assess the impact of

barrier acceleration on the overall program’s execution time.

Since the primary inefficiency stems from the sequence’s location, the optimization

revolves around storing the elements inside the TCDM of each cluster to improve

their locality. Essentially, at the beginning of the program, each core moves the

first pair to be compared from the HBM into its TCDM. From that point onwards,

each core performs the comparison and instead of writing the data back to the main

memory as done in Algorithm 6, it directly writes them into the TCDM of the clus-

ter, which will work on the same elements in the next step.

Each core should identify the next location by simply knowing the current step.

Unlike the first version, computing the next core index cannot be achieved with a

closed-form equation like in 4.3 because the floor function b c is non-injective, mean-

ing various inputs can yield the same results. To discern a pattern for determining

the next core index based on the algorithm step, the diagram in Fig. 4.6 was de-

vised. This schematic represents the data flow between cores for a sequence of 16

elements. The values within each node denote the element indexes on which each

core is operating at a specific step. For instance, during the first step, the first core
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will compare element zero with the 8th; in the second step, the comparison will be

between 0 and the 4th, and so forth. In each step, every cluster must transmit only

Figure 4.6: Bitonic sort algorithm data flow for a sequence of 16 elements.

one of the two elements, which can be either the first or the second. Examining the

first iteration, the first half of the cores retain the first element and transmit the

second to the core situated four indexes away (Core0 → Core4, Core1 → Core5,

etc.). Conversely, the second half retains the second element and transmits the first

to the core located four indexes before (Core4 → Core0, Core5 → Core1, etc.). As

mentioned in [27], after the first step, two bitonic sequences are obtained, allowing

the same algorithm to be applied to them independently. Moreover, since none of

the elements in the first sequence is greater than those in the second, there won’t be

any data exchange between the first and second half of the cores. Focusing on the

first four cores, the same data flow described previously can be observed, i.e., the

first half retains the first element and transmits the second, while the second half

does the opposite. With the flow illustrated in Fig. 4.6, each core can determine

in which TCDM the processed data must be written, enhancing their locality and

consequently reducing the synchronisation-free region time. This optimized version

of the bitonic algorithm enables the evaluation of the speedup gained with the hard-

ware barrier.

The tasks assigned to each core are not overly complex; they simply involve compar-

ing two values and determining the address of the next TCDM location where the

data must be written. Therefore, the percentage of code devoted to synchronization

is comparable to the synchronisation-free region. To observe the effect of compu-
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tation time on the final speedup, the sequence length can be increased to ensure

that the number of comparisons to be performed exceeds the available cores in the

system. This increases the workload distributed to each core and artificially extends

the length of the synchronisation-free region. In conclusion, the original implemen-

tation was further expanded to support cases where the system lacks sufficient cores

to parallelize the entire code.

Scaling

With the designed algorithm, various types of studies can be analysed. In parallel

computing applications, two scaling models can be evaluated [29]:

• Strong Scaling: In this scenario, the parallel code is executed on more com-

putational units without altering the total problem size. Consequently, the

workload assigned to each unit decreases.

• Weak Scaling: In this model, not only is the number of cores increased, but

the problem size is also enlarged. This results in a constant workload per PE.

These two models aim to examine different aspects. Strong scaling applications are

those categorized as CPU-bound, where the majority of time is spent on computa-

tion. Conversely, weak scaling is often used for Memory-bound applications. The

bitonic sort algorithm does not necessitate extensive computation since the tasks

performed are limited. However, a significant portion of the total time is spent on

data movement between cores and synchronization. Both scaling aspects can be

analysed with the described setup:

1. The strong scaling can be studied by utilizing the feature introduced in the

latest version, i.e., selecting a specific sequence length and executing the code

on different numbers of cores. The workload assigned to each core will vary,

but the problem size remains constant.

2. Conversely, weak scaling can be examined by simultaneously increasing the

number of cores and the sequence length.

From this study, it’s possible to determine which, between the software and hard-

ware barrier, scales better with the problem and architecture size.

To summarize, this chapter has presented various applications and experimental

setups. All results and performance metrics are detailed in Chapter 5.
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Results

The synthesis and performance results are presented in the following chapter. Sec-

tion 5.1 focuses on the outcomes obtained after synthesizing the designed reduction-

capable crossbar, with a primary focus on the area overhead introduced by the

extension. Subsequently, in section 5.2, the performance metrics associated with

the software experiments described earlier are analysed. Specifically, the impact of

arrival time at the barrier is studied in 5.2.1, while the effect of the number of partic-

ipants on the gained speedup is detailed in section 5.2.2. Finally, all considerations

and outcomes derived from the bitonic sort algorithm are summarized in 5.2.3.

5.1 Synthesis

In this section, the implementation of several reduction-capable XBAR instances is

analysed in terms of area and performance.

The crossbar interconnection system was synthesized for GlobalFoundries 12nm

technology using Synopsys Fusion Compiler 2022.03. The place and route was car-

ried out with the same tool. For this technology node, one Gate Equivalent (GE) is

equal to 0.121µm2. Table 5.1 summarises all the synthesis parameters: To synthe-

Table 5.1: Synthesis Parameters

# Masters ∈ [2, 4, 8, 16]
# Slaves ∈ [2, 4, 8, 16]

Enable Reduction ∈ [0, 1]
Reduction Id Registers ∈ [0, 1]

Spill Registers ∈ [0, 1]

Operating Corner
SS/0.72 V/125°C
TT/0.80 V/25°C
FF/0.88 V/-40°C

Target Frequency 1 GHz

size the system, Synopsys Fusion Compiler has been used to perform both the logic

and physical synthesis. In the latter phase, not all the steps usually included in the
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physical implementation have been executed. In the floorplan step, a utilization of

0.2 has been chosen, and no other constraints were given to the tool. Then, all the

steps towards the routing have been performed except for the clock tree synthesis

(CTS). The main objective for the project was to obtain area metrics of the R-XBAR

to be compared with the original version. Therefore, many of the physical synthesis

steps have been executed, providing the possibility to obtain more realistic results.

Indeed, in a fully connected crossbar, routing can be the critical aspect, and logic

synthesis alone would not be detailed enough to evaluate this aspect thoroughly.

All results shown in the following sections are relative to the TT/0.80 V/25°C corner.

5.1.1 Area

As shown in table 5.1, different R-XBAR instances have been synthesized to de-

termine the area overhead introduced by the reduction logic. Only symmetrical

crossbars with the same number of master and slave ports were synthesized. Given

the possibility to have spill registers either at the input or output ports, the two

extreme cases with and without registers were analysed. Additionally, recalling from

section 3.2.4 the limitation on the reduction IDs, both versions with and without

ID registers were synthesized to evaluate the cost in terms of area introduced by the

more flexible version.

No Spill registers

The first synthesized version doesn’t include spill registers. Figure 5.1 illustrates

the area of the original and reduction-capable XBAR for a number of master and

slave ports ranging from 2 to 16. From the regression diagram, it can be observed

that the overhead is below 5% for a crossbar interconnecting less than 4 masters

and slaves. For an 8× 8 configuration, the reduction-capable version occupies 23%

more area, while for large systems with 16 masters and slaves interconnected to the

same XBAR, the reduction logic can lead to an interconnection system 57% bigger

than the original version. Regarding the latter condition, two considerations must

be made:

• First, it’s not common to have a 16×16 crossbar in a large system because the

total area and the interconnection latency can be too large. Considering multi-

core systems like Occamy, a more realistic situation is to use crossbars with

fewer than eight masters and slaves; then, all cores are grouped in a hierarchical

architecture, and these levels are interconnected through hierarchical XBARs

as depicted in Fig. 2.8.

• Additionally, the synthesized version doesn’t include spill registers. Although

they are not mandatory, they are often utilized to cut the combinational path,

which otherwise would be too big and might reduce the performance of the
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overall system. Therefore, with spill registers, the reduction logic might in-

troduce a lower overhead since these registers constitute a big portion of the

interconnection infrastructure, and the reduction logic does not affect their

dimensions too much.

(a) Area comparison (b) Area overhead

Figure 5.1: Synthesis outcomes for reduction and original crossbar without spill
registers.In both diagrams the depicted area is the total one, i.e. including sequential
cells, combinational logic and also the buffer cells introduced during the synthesis
to meet all the constraints.

Moreover, from the overhead diagram, it is possible to notice that the introduced

logic increases quadratically with the number of master and slave ports. This result

is consistent with the expectations. From the design step in section 3.2.2, it’s clear

that the reduction synchronization module in Fig. 3.3b has been instantiated in each

multiplexer for a total of times equivalent to the number of slave ports. Therefore,

in a symmetric crossbar, the total overhead can be computed as shown in equation

5.1:

RXBAR overhead = RedSyncharea × (NoSlavePorts×NoMasterPorts) (5.1)

where:

• RedSyncharea: area of the introduced logic to manage reduction requests.

• NoSlavePorts: number of masters (red synch) connected to the XBAR.

• NoMasterPorts: number of slaves (mux) connected to the XBAR.

Already from this analysis, it’s clear that the majority of the introduced logic is

combinational. To better study the obtained outcomes, table 5.2 identifies, for each

configuration, the total area, showing how much of it is due to sequential elements

and how much to combinational logic without considering the area associated with

Lorenzo Leone Chapter 5 63



5.1. SYNTHESIS

the buffers inserted during the synthesis. Let’s focus on the 8 × 8 XBAR. The

sequential area is not affected by the introduction of the reduction logic. It’s a

different case for the combinational area: the original system was made by 71671

GE combinational cells whereas the reduction crossbar is made up of 94121 cells,

31% more.

Table 5.2: Detailed area overview without spill registers. All results are provided in
GE and the combination area does not include buffers.

XBAR R-XBAR
Size

Combinational Sequential Combinational Sequential
2× 2 6802 5093 7074 4683
4× 4 21995 11848 23773 11262
8× 8 71671 27113 94121 26607

16× 16 253899 62343 411016 64311

Spill registers

Figure 5.2 illustrates the overhead for a crossbar with spill registers both at the

input and output ports. The introduction of a user field in the AW channel to send

the reduction mask alongside the write request also influences the spill registers’ di-

mensions. Indeed, these modules are decoupling interfaces that hold the information

associated with the AXI channels at the crossbar’s interfaces. Therefore, increasing

the AW user field leads to wider registers and more sequential elements in the final

interconnection system.

In the synthesized R-XBAR, the AW user field has a width of 34 bits, where 32

bits are allocated for the reduction mask and the two LSB are dedicated to the op-

code. In a real system, the user field can be narrower. Indeed, the reduction mask

can be encoded in fewer bits than the AW address width. Each port is associated

with an address space, and the least significant bits of the address rule identify the

locations that match the port. Therefore, these bits are not necessary to encode

a reduction list because a request coming from any port will reduce data coming

from some other ports with the same address space size. Considering Occamy as an

example, all clusters are mapped with a 256 kiB address space, and hence the 18

LSB of the address can be omitted from the reduction mask since only the others

are useful to encode the list of participants as explained in Section 3.1. Considering

the synthesized version with a 34-bit AW user field, two different behaviours can be

observed. For an interconnection system with less than 8 masters and slaves, the

overhead introduced by the reduction logic is greater than that obtained without

spill registers. Indeed, a 4×4 R-XBAR is 9% larger than a normal crossbar, whereas

before it was 4.8% times bigger than the original version. For small interconnection

systems, the introduction of spill registers can further increase the final area since

the reduction logic added in each multiplexer is comparable to the sequential cells

at the input/output ports.
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(a) Area comparison (b) Area overhead

Figure 5.2: Synthesis outcomes for reduction and original crossbar including spill
registers. In both diagrams the depicted area is the total one, i.e. including se-
quential cells, combinational logic and also the buffer cells introduced during the
synthesis to meet all the constraints.

A different behaviour occurs for configurations greater than an 8 × 8 crossbar. In

this case, the overhead introduced by the reduction logic, considering also the AW

user field expansion inside spill registers, decreases to 18%. Indeed, in big systems,

the area associated with spill registers is critical, and it outweighs the combinato-

rial reduction logic, reducing the overall overhead. Table 5.3 illustrates for each

Table 5.3: Detailed area overview including spill registers. All results are provided
in GE and the combination area does not include buffers.

XBAR R-XBAR
Size

Combinational Sequential Combinational Sequential
2× 2 7298 20303 7214 21958
4× 4 19251 42448 20783 46155
8× 8 53963 88787 72614 96806

16× 16 185442 187027 318440 206068

configuration both the area occupied by the combinational and by the sequential

logic.

ID Registers

Another configuration that has been analysed is the reduction crossbar, both with

and without ID registers. This feature, as previously explained in section 3.2.4, offers

increased flexibility to the user. Its implementation necessitated the instantiation

of various registers to monitor the IDs associated with incoming reduction requests.

Contrary to expectations, the introduction of these registers does not significantly

increase the overall area, especially in the specific case of R-XBARs with spill reg-

isters. This is because each multiplexer necessitates NoSlavePorts registers, each
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with a width equal to the transaction ID, which, in the synthesized crossbars, was

set to 4 bits. Consequently, for a 16 × 16 R-XBAR with spill registers, the incor-

poration of ID registers results in 16× 16× 4 = 1024 flip-flops, constituting almost

1.8% of the sequential area of a R-XBAR of the same size but lacking ID registers.

In conclusion, this feature can be supported at a low hardware cost.

Considerations

To summarise table 5.4 illustrates the synthesis outcomes in different conditions.

Two main aspects must be taken into account:

Table 5.4: Synthesis results for different crossbar configurations

Area Overhead
Size

No Spill Registers Spill Registers
4× 4 4.8% 9%
8× 8 23% 18%

16× 16 57% 42%

• AW user: In a real system, the user field width can be reduced, decreasing the

sequential area overhead introduced by the extension. Therefore, the R-XBAR

with spill registers can be smaller than those that have been synthesized.

• Mux logic: The main contribution to the reduction extension comes from

the combinatorial logic inserted in each multiplexer. As mentioned before,

equation 5.1 identifies the overhead introduced by this logic. Recalling the

limitations in Section 4.1.2, in the current version of the reduction-capable

crossbar, only symmetrical reductions are allowed. Therefore, considering Fig.

4.3b, there won’t be any situations where the reduction request comes from

a higher interconnection level downwards to a lower level. Hence, the reduc-

tion logic can be instantiated only inside the multiplexer that connects the

L1 XBAR with the next hierarchical level. This will reduce the introduced

overhead by a factor equal to the number of master ports, i.e., the overhead

becomes equation 5.2. For the 8× 8 crossbar with spill registers, the overhead

might decrease up to 2.2%.

RXBAR overhead = RedSyncharea ×NoMasterPorts (5.2)

5.1.2 Frequency

The target frequency for the synthesized system was 1 GHz. All tested configura-

tions met the timing, resulting in a positive slack. From a detailed analysis of the

outcomes obtained after routing, it has been noticed that for large systems such as

the 16× 16 crossbar, the original version is characterised by a positive slack greater

than the one obtained from the reduction version. Therefore, a further analysis was
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conducted to evaluate the maximum frequency that could be met for different con-

figurations. Figure 5.3 illustrates the maximum frequency for various XBAR sizes.

In the case of small systems, the frequency is almost the same between the reduc-

tion and original version, while larger R-XBARs meet a slower target frequency. In

the diagram, for each point, an error bar is also shown, corresponding to 5% of the

target frequency. As stated in [30], Synopsys employs heuristic methods to derive

the outcomes from synthesis, and this is the reason why results can differ between

different runs. Therefore, a rule of thumb is to ”allow 5% uncertainty in synthesis

results”.

The only configuration in which the original and reduction XBAR target frequen-

cies differ by more than 5% is the 16× 16. Analysing the timing report, it has been

identified that the reduction logic was inserted in the critical path. In particular,

increasing the crossbar dimension will also increase the reduction synchronization

tree depth (Section 3.2.2), leading to a bigger propagation delay. A possible way to

limit this drawback is by inserting pipeline registers in the reduction tree to cut the

critical path.

Since the objective for the thesis was to reach a frequency of 1 GHz and this timing

constraint is met by all configurations, the aforementioned critical path issue is left

as future work.

Figure 5.3: Maximum frequency for different interconnection sizes. These outcomes
refer to the TT/0.80 V/25°C corner.
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5.2 Benchmark

In the following sections, all results obtained from the experiments outlined in sec-

tion 4.3 are presented and analysed.

To measure performance and analyse the hardware barrier, the built architecture

depicted in Fig.2.8 is utilized, with the difference that 8 quadrants have been in-

stantiated instead of 6, resulting in a 288-core architecture. Another important

consideration is the granularity of the barrier. In the Snitch CC, there was already

the option to execute a barrier in hardware among the 8 + 1 cores within each

cluster. The introduction of the R-XBAR adds the capability to execute the barrier

among different clusters and groups as well. Hence, in the following experiments,

only one core per cluster is utilized, allowing for a maximum of 32 cores. This ap-

proach aims to ascertain the performance gained solely due to the reduction-capable

crossbar, without any influence from the use of the already implemented hardware

barrier mechanism. In the future, the hardware support within each cluster might

be eliminated, and the cluster’s XBAR might be replaced with a reduction-capable

one to observe the impact.

In conclusion, table 5.5 summarizes all the necessary tools to conduct the same

experiments and their respective versions.

Table 5.5: Tools versions

Name Version
GCC 9.2.0
G++ 9.2.0
LLVM 0.12.0

RISC-V GCC 8.3.0
QuestaSim 2022.3

5.2.1 Barrier arrival times

As elucidated in section 4.3.2, the initial experiments aimed to scrutinize the bar-

rier’s speedup for different delays among the participants. In this scenario, the max-

imum number of cores was utilized, i.e., each of the DM cores inside each cluster

issued a reduction request. Initially, all cores were synchronized, and subsequently,

after a random delay drawn from a uniform distribution U(0,MAXDELAY ), a

second barrier was initiated for performance evaluation. The kernel was executed

twice to mitigate cold misses that could impact the results. Additionally, due to the

randomness of the delay, multiple measurements were conducted, and the average

was considered.

The execution time was measured as the duration between the arrival of the first

core and the completion of the barrier, i.e., when the last core exits the barrier.

Figure 5.4 illustrates the obtained results in two distinct situations. Specifically,
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the bar diagram in Fig. 5.4a illustrates the performance of both the software and

hardware barriers in the first iteration, while the second plot in Fig. 5.4b depicts the

execution time obtained in the second iteration. By comparing the two diagrams, it

is evident that both the hardware and software versions are affected by cache misses.

Therefore, the second diagram was utilized for performance evaluation.

As anticipated, as the delays among the different arrival times increase, the speedup

diminishes. In the best-case scenario, where all requests are issued simultaneously,

the R-XBAR introduces a speedup of sbar = 304/44 ’ 6.9. However, this value de-

creases to sbar = 1124/978 ’ 1.15 when the last core issues the request after 1000

cycles from the first synchronization. These outcomes lead to several considerations:

• To achieve the maximum speedup, it is crucial to balance the workload as

evenly as possible among all working units. In this manner, the PE can be

synchronized first, and subsequently, the scattering among them is kept very

low. This approach is feasible only with the hardware barrier because the

release phase in the software version is executed by polling a shared counter,

resulting in each core accessing it at different instances. Conversely, in the

hardware implementation, the release phase is executed using the AXI B re-

sponse signal, which is simultaneously detected by all cores if the crossbar is

not congested.

• From the result associated with MAX DELAY = 0, it is discernible that the

round-trip latency for the reduction request is approximately 44 cycles.

5.2.2 Number of PEs

In the second experiment, the objective was to evaluate how the speedup is affected

by the number of PE participating in the synchronisation. In this case, the delay

between arrival times is maintained at zero to eliminate its effect from the outcomes.

The utilization of a reduction mask in the R-XBAR to encode the list of participants

imposes certain limitations, as elucidated in section 3.1. One of these limitations is

that the number of participants must be a power of two. Consequently, only four

configurations were tested, ranging from 4 to 32 cores.

Figure 5.5 illustrates the obtained results. As expected, with an increase in the

number of participants, the software barrier performs poorer due to a higher number

of accesses occurring simultaneously to the shared counter, which must be accessed

atomically. The speedup is equal to 2.32 in the worst-case scenario and can reach

a maximum value of 6.9, consistent with the findings of the previous experiment.

From this study, it can be observed that the performance of the hardware barrier

does not depend on the number of participants. This outcome aligns with the design,

as the R-XBAR has been designed to handle all requests within the same reduction

operation in parallel. This represents one of the primary advantages introduced by

the reduction-capable crossbar compared to the software implementation. However,
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(a) Performance evaluation affected by instruc-
tion cache misses.

(b) Performance without cache misses.

(c) Speedup without cache misses.

Figure 5.4: Performance comparison between software and hardware barrier. In
Fig.5.4a the software barrier performs worst than Fig.5.4b because some cache misses
occur increasing the overall execution time. Instead the hardware barrier never
experiences those misses. Plot 5.4c depicts the speed up without misses.

70 Chapter 5 Lorenzo Leone



5.2. BENCHMARK

it’s worth noting that in this study, the only operations performed by the working

cores are barriers, resulting in relatively low traffic in the interconnection system.

The latency of reduction requests might increase if other cores issue write requests

directed to the same destination as the barrier, as explained later in the bitonic sort

experiment in section 5.2.3.

(a) Execution time (b) Speedup

Figure 5.5: In 5.5a is depicted the execution time of the global barrier for different
number of participants. In 5.5b the speedup introduced by the hardware support is
illustrated.

5.2.3 Bitonic Sort algorithm

The final experiment aimed to assess the impact of the barrier’s speedup on a real

application, specifically the bitonic sort algorithm described in section 4.3.4. Various

measurements were taken to analyse different aspects.

Weak Scaling

Figure 5.6 illustrates a comparison between the performance obtained with both

software and hardware barriers for synchronizing multiple cores during the sorting

algorithm. This diagram illustrates the weak scaling problem for the scenario where

the sequence length corresponds to twice the number of available cores. As de-

scribed in 4.3.4, the number of comparisons to be performed in parallel corresponds

to SeqLength/2, with each core executing a single comparison per step. This con-

figuration is characterized by a quick synchronization-free region, highlighting the

importance of accelerating the synchronization phase. The maximum speedup is

equal to 1685/692 ’ 2.43 and is achieved with 32 cores, corresponding to a sequence

of 64 elements, the largest problem size that can fit in the employed architecture.

Let’s examine the case with 4 cores. Upon analysing the assembly code, it was ob-

served that the execution time of the software barrier was not equal to the expected

96 cycles, as depicted in Fig. 5.5a, but instead was almost equal to 80 cycles. The
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reason behind this discrepancy lies in the arrival time of each core at the barrier.

With the software version, cores exit the barrier at different times, making it rare for

them to arrive simultaneously at the next barrier. Consequently, even though the

expected speedup is 2.23, the effective speedup at the barrier was measured to be 1.6,

resulting in an overall speedup of 302/243 ’ 1.23. In conclusion, weak scaling has

(a) Bitonic Sort execution time (b) Bitonic Sort speed up

Figure 5.6: Bitonic sort analysis in weak scaling condition. The workload of each
core is kept constant by doubling the sequence length together with the number of
working units.

been investigated with different problem sizes. For example, if the sequence length

is equal to 16 but only 4 cores can be utilized, the workload of each core will double

compared to the previous study. Consequently, the time spent on synchronization

across the entire code will decrease, leading to a decrease in speedup as well. Figure

5.7 illustrates the weak scaling trend for three different workloads. The blue plot

depicts the scenario where the total problem size can fit in the architecture, allowing

each core to perform a single comparison. The orange trend represents a sequence

length four times the number of available cores, resulting in two comparisons per

core. Finally, the green line illustrates the case with four comparisons per core.

As anticipated, the speedup decreases with the increasing problem size since the

time spent on synchronization reduces as well. The three trends exhibit almost the

same dependency on the number of cores.

Strong Scaling

Another aspect analysed is the strong scaling speedup. In this study, the problem

size is kept constant while the number of working units is varied, thereby altering

the workload distribution among cores.

Let’s begin by considering the case with 32 cores. Increasing the sequence length

beyond the maximum problem size (SeqLen = 64), the total speedup decreases, as

depicted in Fig. 5.8. In this experiment, the problem sizes are such that they can-

not be completely parallelized because the number of comparisons to be performed
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Figure 5.7: Weak scaling analysis for different workloads.

exceeds the number of cores. Consequently, the time spent on the synchronization-

free region increases, reducing the application speedup. As shown in Fig. 5.8, the

minimum speedup is equal to 1.27, achieved with a synchronization-free region of

almost 72%. Focusing on the best and worst cases, the following observations can

be made:

• Seq Len = 64: In this scenario, the percentage of time spent on synchro-

nization corresponds to 86%, indicating that the maximum achievable speedup

is 1/0.14 ’ 7. However, the execution time with the hardware barrier is 2.43

times the original. The discrepancy from the ideal speedup is due to unbal-

anced workload distribution. Although each core must perform the same num-

ber of comparisons, some may require swapping operations while others may

not, resulting in non-uniform workload distribution and varying arrival times

at the barrier. Upon analysis, a delay of almost 30-40 cycles has been identi-

fied. Using the inverse of Ahmdal’s law and the obtained bitonic sort speedup,

the actual acceleration of the barrier was evaluated, resulting in around 3.21,

consistent with the outcomes shown in Fig. 5.5b, where the expected speedup

for a barrier with a maximum delay of 50 cycles is approximately 3.5.

• Seq Len = 512: In this scenario, the application speedup is equal to 1.27,

and since the synchronization-free region corresponds to 72% of the entire

execution time, the maximum achievable speedup is equal to 1/0.72 ’ 1.38.

sbitonic =
1

(1− pbarr) + pbarr
sbarr

→ pbarr
1

sbitonic
− (1− pbarr)

(5.3)
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(a) Bitonic Sort execution time (b) Bitonic Sort speed up

Figure 5.8: Bitonic sort analysis for Seq Length > 2 × NumCores. In this exper-
iment the workload of each core is not constant, it increases together with the
sequence length. The red trend represent the percentage of code spent on the
synchronisation-free region, while the blue plot depicts the seed up of the bitonic
algorithm for different problem sizes.

Theoretical Model

To assess the validity of the results, a theoretical model (5.4) has been derived to

estimate the code execution time under different conditions:

T ex = log2(L)× L

2N
× T sfr + log2(N)× T sync (5.4)

Where:

• T ex: Execution time.

• L: Sequence length.

• N : Number of available cores.

• T sfr: Synchronisation-free region time.

• T sync: Synchronisation region time

From the experiment in Fig. 5.5, it was observed that the hardware barrier does not

depend on the number of involved cores, indicating that T sync HW remains constant.

Conversely, the software barrier is strongly dependent on the number of partici-

pants, meaning that T sync SW is a function of N . To determine this relationship,

the experiment described in section 5.2.2 was repeated for the software version with

fine-grained synchronization from 1 to 32 cores. Figure 5.9 illustrates the obtained

outcomes. The trend shows two distinct hops: the first from 1 to 2 cores and the

second from 4 to 5 cores. When only the first core issues the barrier request, the

shared counter being stored inside the first cluster TCDM, the latency to access
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it is minimal. However, when a second core in a different cluster participates, its

store request must be forwarded from the internal cluster crossbar upward to the

group XBAR (Fig. 2.8c) and then downward to the first cluster. This path incurs

a longer latency compared to the previous one. Similarly, when fewer than 5 cores

synchronize, the store requests remain confined inside the first quadrant. However,

when the 5th core issues the request, it is routed to the TCDM passing through the

top-level XBAR (Fig. 2.8a).

Once all the parameters in equation 5.4 were known, the expected execution

Figure 5.9: Execution time of the Software barrier for fine grained synchronisation.

time in the strong scaling condition was evaluated for three different problem sizes:

SeqLen = 128, SeqLen = 256, and SeqLen = 512. The three plots are depicted in

Fig. 5.10. As illustrated in Fig. 5.11, the model provides a reasonably accurate

prediction of the real outcomes, especially starting from 8 cores. However, it over-

estimates the execution time when only 4 cores are used. This discrepancy arises

from the interpolation performed to estimate the software barrier execution time

with 4 cores based on the data from 5 to 32 cores. However, the hardware barrier

prediction also does not match the obtained results when only 4 cores are utilized.

The theoretical speedup, represented by dashed lines, appears larger than the real

speedup, indicated by continuous lines.

Investigation into the assembly code revealed the cause of this phenomenon. As

the number of cores decreases, each core is tasked with performing more operations

in the algorithm. Specifically, each operation involves a comparison between two

values. If they are already correctly ordered, the core can proceed to the next pair;

otherwise, it must perform a swap operation before proceeding. Consider a scenario

with a sequence length of 512 elements, resulting in 256 comparisons in each step

of the algorithm. With only 4 cores, each core is responsible for 64 comparisons.
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Consequently, there may be cases where all 64 comparisons for one core are in the

correct order, while those associated with another core are all in the wrong order.

In the latter case, each comparison is followed by a swap operation, which consumes

nearly 3-4 cycles. This discrepancy in workload distribution leads to a variation in

arrival times at the barrier, approximately 200 cycles apart.

From the previous study in Fig. 5.4, when cores have an arrival delay of 200 cycles,

the barrier speed-up becomes 1.8. This discrepancy elucidates why the observed

speedup is lower than expected.

Another aspect that can be identified in Fig. 5.11 for a SeqLen = 128, is the

Figure 5.10: Prediction of the bitonic sort execution time for different problem sizes
and architecture configurations.

presence of a minimum execution time for the software version at 16 cores, after

which the execution time starts increasing with 32 cores. In contrast, the hardware

version continuously decreases in execution time. This highlights the advantage of

the hardware implementation, which remains unaffected by the number of cores.

In conclusion, since from the previous results the theoretical model seems to be a

good tool to approximate the expected execution time, except for a 4-core system, it

can be exploited to estimate the execution time trend for configurations that cannot

be simulated. For instance, it has been used to evaluate the trend up to 256 cores

as depicted in Fig. 5.12. Recalling that in all the experiments done so far, one core

per cluster has been used, 256 cores would mean 256 clusters. Imagining a system

organization like the one in Occamy (9 cores per cluster), such a system would result

in 2304 cores. Perhaps, this hypothetical system would have more hierarchical levels

in the interconnection subsystem, something like Manticore [15].

The software barrier exhibits an optimal number of cores beyond which the synchro-

nization overhead outweighs the benefits of parallelization. In this evaluation, the
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Figure 5.11: Comparison between the expected and measured execution times.

Figure 5.12: Prediction of the expected execution time for both hardware and soft-
ware global barrier in very large systems.
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relationship between the synchronization time T sync SW and the number of cores N

obtained previously was used. This relationship holds reasonably well for a system

with only two hierarchical levels (clusters and groups). However, in a larger sys-

tem with 2304 cores, which would likely have more levels of hierarchy resembling a

structure akin to Manticore, the trend might deviate. The expected trend is similar

to that depicted in Fig. 5.9, where after 32 cores, a new drop in performance should

occur. This expectation arises from the arrangement of clusters and groups, where

after a certain point, the 9th group may be connected via a different chip, necessitat-

ing communication through a third-level crossbar. Consequently, the plotted trend

may overestimate the actual execution time.

Conversely, the hardware version demonstrates increasingly improved performance

as the number of cores increases until reaching a saturation point determined by the

required number of cores, i.e., half of the sequence length. However, in a system

with a larger number of cores, such as 2304, the assertion that the time to perform a

hardware barrier does not depend on the number of cores may no longer hold true.

With an additional level in the interconnection system, the latency for performing

a hardware barrier may increase. Assuming a round-trip time of 50 cycles for the

barrier, with 25 cycles each for the reduction request to reach its destination and

for the ”restart” signal to travel back to the cores, and considering two hierarchical

levels, each XBAR level may introduce a 25-cycle delay. Thus, in the hypothetical

2304-core system, an estimated latency of around 75 cycles may be anticipated.

In conclusion, while this theoretical study overlooks factors such as off-chip commu-

nication latency, it serves as a preliminary exploration of the benefits of the hardware

barrier in alternative system configurations.

78 Chapter 5 Lorenzo Leone



Chapter 6

Conclusions

In this report, a reduction-capable crossbar designed to accelerate fast M-to-1 com-

munications has been presented. The AXI-based XBAR, already developed by the

PULP team, was extended to support reduction operations in a general-purpose

manner. The current version is capable of performing the logic AND operation,

which is sufficient for barrier synchronization mechanisms in parallel computing

systems. The interconnection infrastructure was designed flexibly to allow for fu-

ture extensions, enabling the integration of more operations. An extensive testbench

was implemented to verify the correct functionality both with and without reduction

generation.

Regarding area efficiency, post place-and-route results were presented using Glob-

alFoundry 12nm technology. Different configurations were synthesized, resulting

in an overhead ranging from 3% for a 2×2crossbar to 42% with 16 master and slave

ports.

Subsequently, the R-XBAR was integrated into Occamy, a 216-core system for par-

allel computing applications. This integration necessitated the extension of the

internal Snitch cores to issue reduction requests. The RISC-V-based processing el-

ements were extended to exploit AXI functionalities and reduction logic AND for

barrier mechanisms capable of stalling each unit until the arrival of all participants.

In conclusion, an extensive benchmarking process was conducted to assess the gained

performance under various circumstances. Firstly, the impact of arrival times at the

barrier was analysed, resulting in a maximum speed-up of up to 6.9 times in the

best-case scenario. Secondly, an experiment was conducted to evaluate the impact

of the number of synchronizing modules on the hardware barrier speed-up, revealing

that with only four cores, the speed-up was around 2.2 times, while with 32 cores,

the hardware barrier could be 6.9 times faster than the software version. Finally, the

Bitonic Sort algorithm was employed to study the effective acceleration introduced

by the hardware barrier in real conditions, yielding an overall program speed-up

ranging between 1.27 times and 2.43 times.

Looking ahead, several extensions can be introduced in the developed R-XBAR to

perform other reduction operations such as addition, logic OR, maximum, and min-
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imum. Furthermore, the optimization strategy outlined in Section 5.1.1, aimed at

reducing area overhead, could be implemented to instantiate the reduction logic se-

lectively on the necessary master ports, thus potentially improving efficiency. More-

over, expanding the scope of barrier benchmarking to encompass a wider range of

applications, each with distinct workloads that utilize synchronization mechanisms,

would facilitate more comprehensive functional testing and enable the collection of

additional performance data. This would provide a more holistic understanding of

the RXBAR’s impact across various scenarios. Finally, considering that the current

project primarily focused on M-to-1 communication, an alternative avenue for explo-

ration could involve modifying the reduction logic to adopt a 1-from-many approach.

This adjustment might yield different outcomes in terms of both area utilization and

performance, warranting further investigation and experimentation.
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Glossary

Master In an interconnection system, the term Master refers to the module that can

initiate any transactions, whether it’s a write or read transaction. The AXI

documentation utilizes the term Manager to refer to what is called Master

in this report.

Slave In an interconnection system, the term Slave refers to the module where a

master can write data to or from which it can read information. In other

words, slaves are the destination of the write and read transactions. The

AXI documentation utilizes the term Subordinate to refer to what is called

Slave in this report.

Synchronisation Free Region In parallel computing, this term represents the

portion of code executed by each core in the computation.

Synchronisation Region In parallel computing, this term represents the portion

of code executed by each core in the synchronization with the other partic-

ipants.

Transaction A transaction is the set of transfers necessary for a Master to send a

complete message, either a write or read, to a Slave. A transaction comprises

several transfers. A write transaction consists of a write address request, fol-

lowed by a write data transfer, and finally, it concludes with a write response

received back from the Slave. Similarly, a read transaction is composed of a

read address request and the response received back from the Slave, which

sends the requested data along with a response signal.

Transfer A transfer refers to a single-cycle communication on an AXI channel. A

write transaction consists of three transfers: write address request, write

data, and write response. A read transaction consists of two transfers: read

address request, read data.
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