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Summary

Within the field of Robotics, human-robot interaction and cooperation are fasci-
nating topics with important real-world applications. The overall objective is to
program robots capable not only of safely sharing the environment with a human
but also of actively interacting with the person to jointly accomplish tasks. The
main challenges are meeting safety requirements and making the interaction feel as
natural as possible, so that the robot can easily integrate with the human workflow.
Recent advancements in machine learning have made it easier and more convenient
to develop such solutions. They provide powerful computer vision algorithms
which require only camera sensors to operate. The present thesis tries to address
these issues by experimenting with a mobile manipulator, the LoCoBot wx250s.
The robot is equipped with a mobile base and a 6DOF arm. It can monitor its
surroundings with a LIDAR and a RGB-D camera. Its task is to navigate in an
environment, such as a laboratory or warehouse, to pick up a designated object and
to safely hand it to a human. The robot is controlled through the ROS framework,
which is the standard for robotic applications. The navigation and robot’s arm
control systems are managed through standard ROS packages. Custom solutions
leveraging a mix of classical and machine learning algorithms were developed to
take care of object recognition, grasp point prediction and object handover. The
robot must be able to detect the target object, grasp it in a way that is functional to
its subsequent handover and then perform the handover itself. It must be ensured
that the human is presented with the safe part of the object. The solution for the
grasp point prediction is based on the concept of part affordance, where each part
of the object is labeled with its apparent purpose. In this application, the focus is
on detecting which parts of the object are dangerous or safe to grasp for the human.
Since it relies on visual data, affordance detection is tightly linked with object
detection, so both independent and joint solutions were tested. The proposed
solutions leverage popular algorithms such as YOLO, DeepLab and others. The
handover solution combines the MediaPipe framework for hand tracking and the
depth camera stream to map the human hand in the 3d space. The robot is then
able to extend its arm towards the human hand and release the object once the
handover is completed. The present thesis discusses in detail the implementation
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of the algorithms, the challenges encountered, the possible alternative solutions
and the future developments, and it showcases the results on the real robot.
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Chapter 1

Introduction and problem
statement

Robots are widely employed across various sectors, particularly in industry and
logistics. They are traditionally utilized for repetitive tasks requiring precision
and/or physical strength. Typically, they perform a series of predefined actions,
such as in assembly lines. Even when they possess a certain degree of autonomy,
they operate in highly controlled environments leading to the development of
extremely specific solutions.

Recently, there has been growing interest in service robots. This type of robot
is designed to work closely with humans, providing assistance and collaborating
on shared tasks. However, developing these robots poses significant challenges.
Firstly, they must operate in dynamic and unstructured environments that are
difficult to model beforehand. Robots need to interact with and manipulate a
wide range of objects and navigate new and dynamic surroundings. Furthermore,
since they work in close proximity to humans, ensuring safety is fundamental,
and it is important to make interactions feel natural and pleasant. Given all the
requirements at play, recent advancements in machine learning algorithms can be
immensely helpful. These algorithms have seen significant development, particularly
in the field of computer vision, offering a wide array of tools to enhance robotic
capabilities. From sophisticated neural networks for object detection, classification,
and modeling to advanced algorithms for understanding human poses and gestures,
these technological advancements play a pivotal role in improving human-robot
interaction.

To develop service robots, it is crucial not to only focus on software and algo-
rithms but also to ensure the hardware platform is well-suited. Mobile manipulators
are the ideal choice for this purpose. They possess a mobile base, upon which one
or more robotic arms are mounted. Combining a moving base with a manipulator
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Introduction and problem statement

grants these robots both the mobility of mobile robots and the dexterity of manip-
ulators. They are highly versatile and efficient, making them ideal for completing
pick-and-place and object-handling tasks in large workspaces.

1.1 Thesis goal
The aim of this thesis is to explore various techniques and strategies for object
manipulation to facilitate collaboration and interaction between humans and robots.
Specifically, it seeks to experiment with new solutions enabled by advancements
in machine learning. To achieve this goal, the design of a robotic assistant based
on a mobile manipulator is proposed, tasked with assisting humans in their work
by identifying and delivering requested objects. The robot must autonomously
navigate to an object repository, identify the requested item, pick it up, navigate
back to the human, and deliver it. Ensuring safety and providing a pleasant and
natural experience for humans is crucial throughout the process. In particular,
the robot must recognize hazardous parts of the object to consider them during
transport and delivery. To address this problem, it is necessary to develop:

• An object recognition system that not only identifies the object but also
provides additional information about its hazardous parts.

• A grasping system that takes into consideration the dangerous part of the
object and facilitates the subsequent handover.

• A handover system which allows the robot to autonomously and safely deliver
the object to the human.

1.2 Thesis structure
This thesis is organized as follows. In Chapter 2, the state-of-the art and recent
advancements in subjects related to the thesis goal will be analyzed. Chapter 3
presents an overview of the main software platform used to build the solutions. In
particular, it focuses on the Robot Operating System (ROS). Chapter 4 describes
the hardware of the mobile manipulator. Chapters 5 and 6 describe in great detail
possible models and solutions for handover and grasping. Chapter 7 describes the
machine learning model used, with emphasis on the building of the dataset. Chapter
8 describes how handover, grasping and navigation solutions are implemented on
the real robot through dedicated software modules. Chapter 9 describes all the
experiments run on the robot to test the developed solutions. Finally, the conclusion
and future works can be found in Chapter 10.
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Chapter 2

State of the art

The context in which this thesis is developed is quite complex, as it encompasses
various research domains. It transitions from classical robotics problems, such as
managing robotic arm movement and navigation, to interdisciplinary issues, like
interaction and modeling of the surrounding environment. Part of the challenge
lies in integrating traditional robotics algorithms with novel tools. In this regard,
particular emphasis is placed on machine learning algorithms, which in recent years
have made significant strides forward, enabling much more natural interaction with
humans and the environment. In this chapter, an analysis of the state-of-the-art
related to the research problem will be presented.

2.1 Mobile base and manipulator planning
Every robotics application depends on the possibility of controlling the robot’s
movement. The motion planning problem can be divided into path planning
and trajectory planning. Path planning involves determining a feasible path or
route from the robot’s current position to a designated goal location within its
environment. It focuses on high-level decision-making, considering some factors,
such as kinematic constraints, obstacles, terrain, and efficiency, to find an optimal
or near-optimal path. On the other hand, trajectory planning deals with the
detailed execution of movements along the planned path, considering the robot’s
dynamic constraints. Motion planning for manipulators depends on the inverse
kinematic problem which aims to find the joint angles or positions needed to reach
a desired end-effector pose. The computed solution can be employed to create a
path and then a trajectory within the joint space. The Open Motion Planning
Library (OMPL) [1] offers many state-of-the-art sampling-based motion planning
algorithms and is the default in the popular robotic framework ROS.

Mobile base motion planning consists of global and local planners. A global
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planner generates a high-level path from the robot’s current position to its des-
tination, considering the overall environment and obstacles. On the other hand,
the local planner focuses on the immediate surroundings of the robot, adjusting
the path generated by the global planner to account for real-time changes and
obstacles encountered during navigation. In [2], the authors made a comprehensive
review of state-of-the-art mobile robot planning algorithms.

For mobile manipulators, there are two ways to handle the planning of the
mobile base and manipulator motion. The simpler method involves using separate
planners for each system. This divides the robot’s movement into two tasks, but
it does not ensure the best overall solution for the entire robot. Alternatively, a
holistic planner can be used, treating the mobile manipulator as one integrated
system and planning for both the manipulator and base simultaneously. Although
this creates a more complex system with higher degrees of freedom, it allows for
simultaneous movement of the base and manipulator, resulting in smoother and
more natural motion.

In this thesis, the decision has been made to use two independent planners.
While it may not be the most efficient solution, it simplifies development and
experimentation since it allows for the development of separate modules for base
and manipulator control.

2.2 Affordance estimation
To let the robot perform complex actions with objects, like robot tool use and
robot-to-human or human-to-robot handover, manipulable objects must be modeled
in a much finer way, conveying information on the apparent use of each object
part. This is the concept behind part affordance, which refers to the perceived
and actual properties of an object that determine how it can be used. Affordance
can be estimated by means of classical algorithms by relying on object geometrical
or material properties. However, machine learning offers a wide range of different
solutions. In [3], the authors propose an algorithm for simultaneous object detection
and affordance estimation. The algorithm is based on convolutional neural networks
(CNNs) and outputs a bounding box of the object plus an affordance map, where
an affordance label is assigned to each pixel inside the bounding box. So the
network is both an object detection network and an image segmentation network.
The algorithm is trained on the IIT-Affordance dataset presented in [4]. A similar
approach is proposed in [5] but translated to 3D objects. The authors designed
3D AffordanceNet, a dataset with point-wise affordance annotations over the
object’s point clouds. The dataset, containing 23 object classes and 18 affordance
labels, is then tested on popular 3D point cloud classification algorithms such as
PointNet++ [6] and DGCNN [7]. Tests were also performed on partial view point
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clouds. In addition to these more generic algorithms, specific techniques have
also been proposed to tackle more targeted problems. For instance, [8] introduces
Ganhands, a neural network for estimating how a human would grasp objects.
This can prove highly beneficial for human-robot interaction tasks, as it enables
the robot to understand the manipulable part for the human and it facilitates
a handover accordingly. The authors propose a generative model, which takes a
single RGB image as input, regresses the 3D shape and pose of the objects in the
scene, estimates the grasp types, and predicts the pose of a 3D hand model that
minimizes a graspability loss.

2.3 Object detection and pose estimation

For any task involving autonomous object manipulation, the initial crucial step is
undoubtedly the ability to recognize and identify the object of interest within the
working environment. In this realm, machine learning has proven to be exceptionally
effective, representing the state of the art of performance. Detection over 2D RGB
images will be taken into consideration. Detecting an object involves predicting
either its bounding box (a rectangular frame outlining the object’s spatial extent
in the image) or, for more detailed detection, a segmentation mask, which precisely
outlines the boundary of each object within the image. Two main approaches
exist: (i) two-stage and (ii) single-stage detectors. In two-stage detectors, a region
proposal network (RPN) generates potential object bounding boxes, which are
then refined and classified by a subsequent network. Examples of this approach
are Faster R-CNN [9], for bounding box prediction, and Mask R-CNN [10] for
instance segmentation. Single-stage detectors directly predict bounding boxes and
class probabilities for all objects in a single step, making them faster and more
suitable for real-time applications. The main algorithm using this approach is
YOLO [11], which in its latest version, YOLOv8, offers both instance segmentation
and bounding box models.

Pose estimation goes a step further from object detection. It refers to the
process of determining the position and orientation (pose) of objects or other
entities relative to a reference frame. This is a fundamental problem in robotics,
since the grasping pose of the object must be known. The robot uses sensors such as
LIDARs, cameras and depth cameras to gather information about its environment,
then an algorithm is applied to perform the estimate. Classical algorithms involve
manual feature extraction and are mainly based on geometric features. Machine
learning has been proven very useful in this field, especially to work with limited
input data, such as only RGB streams. In [12], the authors present a network that
uses CNNs to directly regress object pose from a single RGB image.
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2.4 Grasp pose estimation

Alongside traditional grasping techniques involving separate object detection, pose
estimation, optional affordance detection and a hand-crafted grasp pose, recent
advancements in machine learning have facilitated the development of end-to-end
solutions that handle all or some of these tasks simultaneously. Grasping can be
performed with multiple end-effectors, the most popular ones are parallel grippers
and suction cups, but a lot of work is being done on anthropomorphic hands as
well. Since the mobile manipulator used for developing this thesis is equipped
with a parallel gripper, only this kind of solutions will be taken into consideration.
Numerous grasping algorithms exist, but due to the robot’s setup with only a single
RGB-D camera, only algorithms that utilize either a single-shot color or depth
image will be considered. Estimating a grasp pose usually means predicting a
gripper pose, characterized by a point and a rotation relative to a fixed frame and
the gripper target width. In [13], the authors propose a network called GPD, to
directly predict the grasping of unknown objects in a dense object clutter without
explicitly relying on pose estimation. The algorithm samples grasp candidates
from the point cloud and then classifies them using a CNN. This work is extended
in [14], where the GPD algorithm is improved and integrated with an affordance
estimation algorithm, based on mask R-CNN, to filter out, before classification, all
the grasping points incompatible with a target task. A more complex approach for
task-constrained grasping is explored in [15]. In that paper, the authors propose
an architecture comprised of two modules: a grasp affordance module and a visual
affordance module. The grasp affordance module predicts coarse grasp candidates
from depth data based on the target task, and then the prediction is refined with
the information from the visual affordance module, which builds a 3D heat map
of object affordance combining geometrical and color information. The visual
affordance module is trained on the already mentioned 3D AffordanceNet. The
grasp affordance module is trained on an expanded version of the ACRONYM
dataset [16], a synthetic dataset containing 3D object models labeled with grasps
obtained in simulation, where each grasp was also labeled with a task-related
label. The performance of that machine learning algorithm depends heavily on
the training dataset. Datasets for general object manipulation are very difficult to
build and annotate. The authors of [17] proposed REGRAD, a synthetic dataset
containing cluttered scenes annotated with object bounding boxes, 3D and 2D grasp
poses, segmentation masks and, most interesting a relational hierarchy of objects in
the scene, which describes how objects overlap together. At the time of writing, one
of the best-performing task-agnostic object grasping algorithms in cluttered scenes
is AnyGrasp [18], an improvement over [19]. Some of its performance advantages
depend on its training on the Graspnet-1billion dataset [19], which contains more
than 90000 real-word RGB images annotated with 1 billion grasps.
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2.5 Handover
Handover is an integral part of human-robot assistive applications, since it enables
the robot to interact with a human by sharing objects with that person. As we
are dealing with a mobile manipulator, handover presents challenges related to
both the movement of the mobile base and the planning of the robot arm’s motion.
In [20], the authors devised a framework for grasping an object and planning a
handover on a stationary robot. It assumes that the 3D model of the object is
available. The robot’s grasp position for the object is determined by predicting
how a human would grasp the object, using the previously mentioned Ganhands
neural network. The handover point is then computed by tracking the human hand
using the MediaPipe framework [21]. In [22], the authors explore various options
for mobile handovers, with a specific emphasis on the receiver’s perception. They
particularly investigate on-the-go handovers, where the exchange occurs without
necessitating the robot to come to a complete stop.
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Chapter 3

Software platform

3.1 ROS

The Robot Operating System [23] is a framework that makes possible to easily
build robotic applications. Despite its name, it is not an operating system, but
a collection of tools and libraries, offering drivers, state-of-the-art algorithms,
development tools and more. ROS is available on multiple platforms. However,
since it works very closely with the computer’s operating system and libraries,
every ROS version is tested and certified to work on a specific Ubuntu LTS release.

At the time of writing ROS is transitioning from version 1 to version 2. ROS 2
introduces a lot of breaking changes and the code written in the two versions is
not interoperable and needs porting. Because of this, some ROS 1 packages are
still not available in ROS 2, and this is slowing the transition.

3.1.1 Architecture

The main idea behind ROS is to divide a complex task into smaller and simpler
tasks, each carried out by a dedicated process, which exchanges information with
the other processes. A crucial characteristic of ROS is the possibility of making
these subprocesses run on multiple machines, connected to the same network. This
makes it possible to offload heavy computation from the robot to a workstation
next to the robot’s environment.

The main components of the software architecture are: nodes, topics, messages,
services and the parameter server. These elements can be grouped and distributed
in packages.
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Nodes

Nodes are the backbone of ROS-based robotic systems, embodying modularity and
encapsulation. Each node represents a distinct unit of computation that performs
a specific task, such as processing sensor data, controlling actuators, or executing
algorithms. Nodes communicate with each other through ROS topics, services, and
actions, facilitating a distributed architecture, where functionalities are decoupled
and can run concurrently. This modularity enables developers to create complex
systems by composing and connecting smaller, reusable components, fostering
code reusability and maintainability. Each node is uniquely identified by its name.
Nodes can be written in both Python and C++ languages.

In each ROS system, there is a node running as the ROS master. It is the first
node to be started. It provides naming and registration services to other nodes
and it tracks services and topics. It also manages the parameters server. Overall
the job of the ROS Master is to enable the nodes to locate each other. After the
location process, the nodes communicate with each other peer-to-peer.

Topics

Topics provide a publish-subscribe communication mechanism that enables nodes
to exchange messages. Topics serve as communication channels, through which
nodes can publish messages to be consumed by other nodes that have subscribed
to the same topic. In this way, nodes do not need to interact directly but can use
topics as a bridge, ignoring the underlying implementation. This approach reduces
complexity and allows for flexible and scalable architectures, where nodes can be
added, removed, or replaced without disrupting the overall system functionality.
Furthermore, topics support one-to-many communication, enabling multiple nodes
to subscribe to the same topic and receive relevant data concurrently, enhancing
system flexibility and efficiency. Topics are created the first time a node publishes
or subscribes to it. Each of them is characterized by its name and the message
type it can serve.

Messages

Messages serve as the means by which nodes exchange data asynchronously. Mes-
sages are structured units of information defined by specific message types, en-
capsulating various types of data, such as sensor readings, control commands, or
state updates. Message types are defined using ROS message description language
and are typically stored in ROS packages. This standardized format ensures
interoperability between different components of the system, allowing nodes to
communicate seamlessly despite potential differences in programming languages
or hardware platforms. Additionally, the lightweight and efficient nature of ROS
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messages facilitates real-time processing and distributed computation, enabling
robotic systems to handle diverse data sources and perform complex tasks.

Services

Services offer a request-response communication pattern that allows nodes to call
specific functionalities provided by other nodes. Services define a clear interface for
invoking operations or accessing resources offered by nodes, enabling synchronous
communication between clients and servers. This interaction model is particularly
useful for tasks that require direct interaction or coordination between nodes, such
as requesting sensor calibration, querying robot status, or triggering specific actions.
Services provide a reliable and deterministic means of communication, ensuring
that requests are processed and responses are received promptly.

Parameter server

The ROS Parameter Server is a centralized key-value storage system that enables
nodes within a ROS-based system to store and retrieve parameters dynamically at
runtime. It provides a convenient mechanism for sharing configuration parameters,
settings, and other data among different nodes.

3.1.2 Robot description

To be able to effectively use and control the robot’s hardware, ROS provides
abstractions for describing the physical characteristics and kinematics of robots.
This is done through URDF files and the transformation tree.

URDF

ROS Unified Robot Description Format (URDF) is a markup language, widely used
in the ROS ecosystem for describing the physical characteristics and kinematics
of robotic systems. URDF files define the geometry, visual appearance, inertial
properties, joint structure, and sensor configurations of robots in a structured XML
(eXtensible Markup Language) format. These descriptions are essential for the
visualization, simulation, motion planning, and control of robots within ROS-based
environments. URDF files provide a standardized way to represent robotic models,
making it easier for developers to create, share, and integrate robotic systems in
ROS.
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Transformation tree

The transformation tree in ROS refers to the hierarchical relationship between
coordinate frames, known as the TF tree. This tree represents the spatial trans-
formations between different coordinate frames in a robotic system, allowing for
accurate localization, navigation, and sensor data fusion. Each node in the TF
tree corresponds to a specific coordinate frame, such as the base link of a robot
or the frame of a sensor. The transformation tree is managed by the TF package
[24]. This package keeps track of multiple coordinate frames in time and enables
to make conversions between them.

A standard transformation tree is usually defined as something like:

map → odom → base_link → sensor_link

. In this transformation tree:

• map is the static fixed frame

• odom is the frame where the robot localizes itself. In the case of mobile robots
this changes over time, otherwise is fixed.

• base_link is a coordinate frame fixed to the base of the robot.

• sensor_link is a frame fixed to one of the robot sensors. For each sensor, there
will be a specific frame of this type.

3.1.3 Simultaneous mapping and localization
Simultaneous mapping and localization (SLAM) is the process of a robot construct-
ing a map of its environment while simultaneously determining its position within
that map. Thanks to SLAM, a map of the environment can be built without prior
knowledge by just moving a robot into it.

RTAB-Map

RTAB-Map [25] (Real-Time Appearance-Based Mapping), solves the SLAM prob-
lem by merging odometry data from motion sensors with measurements from
LIDARs and RGB-D cameras. This is achieved by performing loop closure, which
is the process of detecting and correcting errors in the estimated trajectory of a
robot by recognizing previously visited locations. The robot extracts meaningful
features from its sensors and the loop closure detector uses a bag-of-words approach
to determine how likely these features come from a previous location or a new
location. RTAB-Map uses a memory management technique to limit the number
of locations considered as candidates during loop closure detection. This greatly
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improves performance and makes it possible to run the algorithm in real time.
RTAB-Map uses a graph to represent robot poses at different times. Once a loop
closure is detected, graph optimization is performed to refine the map by taking
into consideration spatial constraints obtained by sensor data.

SLAM toolbox

SLAM toolbox [26] is a simpler and more lightweight alternative to RTAB-Map. It
uses odometry data and lidar scans to build a representation of the environment.
Localization is then performed by matching observed features from the scans to
features of the map. Although it does not offer the same advanced features as
RTAB-Map, the performance are still satisfactory and it is preferred for resource-
constrained applications.

3.1.4 Navigation and localization
Navigation in ROS is managed by the navigation stack [27], which is a collection
of different software that enables autonomous navigation. Once a map of the
environment is provided, the stack employs path-planning algorithms to determine
the robot trajectory needed to reach the desired pose while avoiding obstacles.
The position of the robot in the map is constantly updated through localization
algorithms, and it is possible to implement dynamic obstacle avoidance.

Cost-map

The aim of a cost-map is to represent the reachability of a location in the environ-
ment, by taking into consideration obstacles, map boundaries and robot physical
constraints. At its core, a cost-map divides the robot’s operating space into a
grid of cells, with each cell assigned a label indicating whether it is free, occupied
or unknown. This occupancy grid is then enriched by a process called inflation,
in which cost values assigned to cells in the cost-map are adjusted to create a
buffer zone around obstacles. The purpose of cost-map inflation is to ensure that
the robot maintains a safe distance from obstacles while navigating and to make
the planning algorithm aware of narrow passages. Usually, inflation is performed
by specifying a radius and expanding the boundaries of obstacles by that radius.
The cost-map can also be dynamically updated from sensors, such as cameras or
LIDARs to represent dynamic obstacles.

Path planning

Path planning is managed by two components: a local and a global planner. Global
path planning involves generating a high-level path from the robot’s current position
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to a specified goal while considering the overall layout of the environment. Usually,
only static obstacles are taken into consideration. ROS offers many algorithm
options, such as A* or Dijkstra’s. Local path planning manages small adjustments
in the robot path to keep the globally planned path while avoiding obstacles. ROS
packages related to navigation implement popular algorithms such as Dynamic
Window Approach (DWA) and Timed Elastic Band (TEB).

Localization with AMCL

While SLAM Toolbox and RTAB-Map both offer their own localization algorithm
(primarily based on feature matching), another popular localization algorithm is
the Adaptive Monte Carlo Localization (AMCL) [28]. The AMCL approach uses a
particle filter to track the pose of a robot against a known map. The probability
distribution of the robot pose is represented by particles scattered over the map.
The particles move around following the odometry data, then their position is
refined based on information about the robot’s surroundings obtained by the lidar.

3.1.5 Perception
It is crucial that the robot is aware of its surroundings, in particular, to manage
obstacle avoidance during navigation and arm movement. The most basic form
of perception is done through the LIDAR, which gives a planar representation of
obstacles. A more advanced representation of obstacles in 3D space can be achieved
with depth cameras and Octomap [29].

Octomap

Octomap takes a point-cloud or depth image as input and constructs a voxel-based
representation of an obstacle in 3D space. A 3D occupancy grid is built, where
every voxel can be labeled as either free or occupied space. This information
is saved in an octree data structure. An octree is a hierarchical data structure
commonly used in computer graphics, robotics, and computational geometry to
partition three-dimensional space. At the top level, the octree represents the entire
3D space as a single cube. As the structure is recursively subdivided, each cube
is split into eight smaller cubes, and this subdivision continues until a certain
condition is met, such as reaching a predefined depth or having a minimum size for
each cube. Thanks to the efficiency of this data structure, Octomap can be used
to track obstacles in real-time. Efficiency can be further improved by Octomap’s
tuning options that enable the user to specify voxel size, limit the input camera
view distance and more.
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3.1.6 Motion planning
Motion planning involves generating feasible trajectories for the robot’s manipulator
to move its end-effector from an initial configuration to a desired goal configuration
while satisfying constraints. Motion planning in ROS is handled by the MoveIt!
framework.

MoveIt!

MoveIt! [30] is an open-source framework, which offers a convenient and high-level
interface to control a manipulator and also to manage grasps. The framework must
be correctly set up to work with the desired manipulator by providing a physical
description (from a URDF file) and the actuator’s physical constraints.

The user can specify a desired end-effector pose and the framework will try to
compute a feasible path. Different planning algorithms are available. By default
MoveIt! relies on the OMPL framework for planning, offering CHOMP and STOMP
as alternatives. Constraints of various types can be imposed, such as joint states,
links position and orientation and visibility of a sensor. The framework offers three
kinds of interfaces:

• C++ interface, to write C++ code.

• Python interface, to write Python scripts.

• RViz GUI, a graphical interface used for testing.
Both the C++ and Python interfaces provide a MoveGroupCommander object,

equipped with methods for querying desired poses, imposing constraints, and
planning and executing motion. Additionally, a ScenePlanningInterface object is
accessible, offering functions for incorporating obstacles into the planning scene in
the form of 3D shapes and meshes.

MoveIt! further extends its functionality through a plugin system. For instance,
an Octomap plugin is available to dynamically manage obstacle mapping in real
time.

3.2 Machine learning
As previously discussed, machine learning is becoming increasingly used in robotics
applications. It offers state-of-the-art solutions for object detection and lately, a lot
of work has been also done on grasping and affordance detection algorithms. As it
will be discussed in Chapter 7, machine learning models were trained and adapted
to accomplish some of the robot’s tasks. The model implementations were done
using popular machine learning frameworks such as PyTorch [31] and TensorFlow
[32].
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3.3 MediaPipe
For the handover task, it is crucial to know the position of the human receiving
the object. This can be done in a convenient way using the MediaPipe framework
[33]. MediaPipe is a collection of machine learning algorithms for computer vision
developed by Google. Each algorithm is written and trained in TensorFlow with the
goal of being efficient and have good performances on mobile devices. Mediapipe
provides ready-made solutions with models already trained for tasks like:

• Object detection

• Image segmentation

• Pose estimation

• Hand tracking

• Facial recognition

Python, java, javascript and ios libraries and examples are available for each
solution. These allow to quickly and easily write code for desktop, web and mobile
applications. MediaPipe also provides the C++ framework in which the solutions
have been developed, thus allowing the development of customized solutions.

Hand landmark solution

This solution takes as input an RGB image and returns the position of 21 key
points of the hand (corresponding to the joints), as in Figure 3.1, and their position
in 3D space relative to the geometric center of the hand. This permits to track
the position of the hand in 2D space and to reconstruct a 3D model of the hand.
The solution allows the tracking of one or two hands and can classify a hand as
the right or left hand.

The machine learning model is divided into two components that work in cascade:

• Hand detector: it is a CNN that behaves like a single shot detector to estimate
the region of the image where the hand is located.

• Hand tracker: it is a CNN that performs a regression on the portion of the
image returned by the hand detector to estimate the key points.

This solution is further developed in the gesture recognition solution to not only
predict keypoints, but to also classify hand gestures. The hand landmarks are
inputted into another neural network dedicated to classification. Eight gesture labels
are defined: Unknown, Closed_Fist, Open_Palm, Pointing_Up, Thumb_Down,
Thumb_Up, Victory and ILoveYou.
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Figure 3.1: Hand landmarks predicted by MediaPipe hand landmark solution
[34].

3.4 2D and 3D image manipulation

To perform handover and grasping tasks, the robot must understand its environment
by analyzing RGB-D camera streams. This involves using tools to process 2D
images and manage 3D representations of the surroundings. Additionally, preparing
data for training neural networks also necessitates the use of image manipulation
libraries.

OpenCV and PIL

OpenCV (Open Source Computer Vision Library) [35] is a popular and feature
rich multi-platform framework for image processing and computer vision. At its
core, OpenCV provides a vast collection of optimized algorithms and functions
designed to tackle a diverse range of tasks, including image and video acquisition,
manipulation, enhancement, and analysis. From fundamental operations like image
resizing, color space conversions, and filtering to more advanced functionalities,
such as feature detection, object recognition, and motion estimation, OpenCV
offers a comprehensive toolkit for both research and practical applications.

PIL (Python Imaging Library) [36] is a versatile library primarily focused on
image processing and manipulation tasks in Python. It provides simple yet powerful
tools for tasks such as opening, saving, and converting images in various file formats,
as well as performing basic operations like resizing, cropping, and rotating images.
Additionally, PIL offers a range of filters and enhancements for adjusting image
properties such as brightness, contrast, and color balance. While not as extensive
as OpenCV, PIL excels in its simplicity and ease of use.
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Open3D

Open3D [37] is a powerful Python open-source library designed to facilitate 3D data
processing tasks, including point cloud manipulation, geometry processing, and
scene reconstruction. One of its key capabilities is its ability to efficiently handle
large-scale 3D data, enabling tasks such as point cloud registration, alignment,
and downsampling with ease. Moreover, Open3D offers a rich set of functions for
geometric operations, including surface mesh generation, and voxelization, which
are essential for tasks like 3D modeling and simulation. Another notable feature of
Open3D is its support for segmentation and clustering algorithms.
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Hardware platform

The robot in use is a LoCoBot WX250 6DOF [38] from Trossen Robotics. It is a
small mobile maniplator equipped with a mobile base, an arm with 6 degrees of
freedom and various environmental sensors. It is suited for applications where the
robot needs to navigate in an environment and to pick and place small objects.

Manipulation hardware

The robot is equipped with a WidowX 250 manipulator with 6 degrees of freedom
(DOF), capable of reaching up to 650 mm with a payload capacity of 250 g. It is
powered by Robotis’ DYNAMIXEL X Series servos, achieving a movement accuracy
of 5 mm to 8 mm and a repeatability of 1 mm. It offers advanced features including
high resolution (4096 positions), customizable PID parameters, temperature and
positional feedback, among other functionalities.

The gripper is simply made of two parallel fingers actuated by an electric servo,
which is enough for most applications. No force sensor is present.

Mobile base

The robot’s mobile base is the Kobuki base; it is a low-cost mobile base designed
for education and research on state of art robotics. Its onboard battery guarantees
90 minutes of autonomous navigation. It is driven by two powered wheels located
on diametrically opposite sides of the base, while stability is granted by 2 caster
wheels, one on the front side and the other on the back one. This means that
the base is equipped with a differential drive. Its highly accurate odometry and
calibrated gyroscope enable precise navigation.
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On-board computer

All the computations and hardware control are managed by an Intel NUC. A
NUC is a small form factor computer, with somewhat constrained computational
capabilities, especially regarding GPU performance, but with great connectivity
and low power consumption. It runs Ubuntu 20.04 with ROS Noetic and comes
with ROS packages from Trossen Robotics to control all of its peripherals.

LIDAR

The robot is equipped with the RPLIDAR A2, a 2D LIDAR designed for indoor use,
offering a complete 360-degree scanning capability. With a rapid rotation speed,
each unit can capture up to 8000 laser range samples per second. It can perform
comprehensive 2D scans operating within a 12-meter range. The resulting 2D point
cloud data facilitates tasks such as mapping, localization, and object/environment
modeling.

Camera

The robot mounts an Intel RealSense D435 camera. The camera captures two
video streams, one with RGB data and another with depth information. The ideal
operating range of the camera is between 0.3 m and 3 m. The depth information
is obtained by projecting infrared light on the scene and analyzing how the light
is reflected. By combining these two streams, the robot can reconstruct a scene
in 3D space. This is particularly useful in navigation, object detection and object
grasping. The camera is not in a fixed position and can be tilted and panned
thanks to two motors.
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Chapter 5

Handover

The handover is a procedure where the robot hands to the human the object it
picked up. Since the human and the robot must interact together, the procedure is
very delicate and must be carefully planned. The two main challenges are safety
and figuring out how to make the interaction feel natural.

5.1 Scene Modeling
In a basic handover scenario, the robot and human face each other. It may be
feasible for the robot to track the human’s movements and position itself directly
in front of the person. This could be achieved using a human pose detection model,
like MediaPipe Pose Landmark Detection. Further exploration of this approach
could be considered for future research. The current study focuses on a static
handover, where the robot is already in the handover area and will reach the
handover point without moving its base. It is essential to create models of both the
object being grasped and the human hand, in order to calculate the handover point
and pose accurately. These models ensure that the object is both comfortable and
safe for the human to grasp. Additionally, the planned arm movement needs to
ensure that the object does not move in any dangerous manner.

5.1.1 Reference frames
To better understand the handover scene, four coordinate frames are defined:

• The world frame, centered at the robot base with axes oriented as in Figure
5.1a. The XY-plane represents the plane the robot is moving on.

• The camera frame, centered in the middle of the camera sensor with axes
oriented as in Figure 5.1b. It describes the position and orientation of the
robot camera.
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• The gripper frame, centered on the gripper with axes oriented as in Figure
5.1c. It describes the position and orientation of the gripper

• The object frame, centered on the object with axes oriented as in Figure
5.1d. It describes the position and orientation of the object.

(a) (b)

(c) (d)

Figure 5.1: World frame (a), camera frame (b), gripper frame (c) and object
frame (d). Red represents the x-axis, green the y-axis and blue the z-axis.

5.1.2 Object representation
The object the robot is designed to interact with has sharp edges, blades, and
other hazardous parts. In objects modeling, it is crucial to consider these elements
to ensure safety. To keep things simple, objects are modeled as boxes, where the
z-dimension (height), the x-dimension (width) and the y-dimension (depth) are
fixed and chosen as the maximum width, height and depth of the manipulable
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objects. On the x-axis, the end of the box pointing towards the positive direction
represents the object handle, while the other is the dangerous part. More complex
options for object modeling will be discussed in Section 6.1.2.

5.1.3 Hand representation
The position and the geometry of the hand are obtained by the MediaPipe hand
tracking solution already described in Section 3.3. The robot takes pictures of
the human standing in front of it with the RGB-D camera. The RGB stream is
fed to MediaPipe, configured to recognize a single hand. If a hand is detected,
the keypoints are overlayed onto the depth images and projected in the 3D space
by using the depth camera intrinsic parameters provided by ROS. The camera is
modeled as a pinhole camera and is characterized by an intrinsic matrix of the
form:

K =

fx 0 cx
0 fy cy
0 0 1


where:

• fx and fy are the focal lengths on the x and y axis expressed in pixels.

• cx and cy indicate the offset in pixels between the pixel coordinates and
the camera coordinate system. The camera coordinate system usually has
its origin in the center of the image while the pixel coordinate system of the
image has its origin in the top-left corner.

The hand keypoints coordinates in the camera coordinate system are the fol-
lowing. The Z value is the distance measured by the depth camera. The X and Y
values are obtained as:

X = (x − cx) Z

fx
(5.1)

Y = (y − cy) Z

fy
(5.2)

where [X,Y,Z] are the coordinates in the camera system and [x,y,z] are the
coordinates in the image system. The keypoints coordinates can then be converted
from the camera frame into the world frame by ROS.

This method has a few limitations. The primary one is that it does not consider
hand self-occlusion, which means that keypoints hidden by the hand may appear
closer to the camera than their actual positions. Another limitation is related to
the precision of the depth camera. Occasionally, slender objects like fingers and
fingertips may not be accurately detected by the depth camera, causing keypoints
to be mistakenly placed in the background.
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To mitigate this, the hand is modeled as a sphere as in Figure 5.2. The center of
the sphere is computed as the center of the 6 palm keypoints. The sphere radius is
modeled around an approximation of a finger length. This lets the robot know the
position and the encumbrance of the hand without any information on where the
hand is facing. This model was chosen because it is simple and takes into account
all possible hand positions, making it safer.

Figure 5.2: The hand modeled as a sphere over the point cloud.

A more complete model could be built by exploiting MediaPipe 3D hand
reconstruction capabilities. MediaPipe Hands also provides the keypoints in 3D-
world coordinates, using a coordinate system that has its origin at the geometric
center of the hand. By using the pinhole camera model, it is possible to get the
transformation between this coordinate system and the camera coordinate system
and build a mesh of the hand.

5.1.4 Handover pose
The robot performs the handover by moving its 6 DOF arm while holding the
object inside the gripper. Te arm movement is controlled by ROS through MoveIt!,
which computes the path to bring the gripper to a desired pose. So the final pose
reached by the object during the handover is not controlled directly, but through
the gripper pose. The gripper pose is described as a point (handover point) and a
quaternion (handover orientation) representing the offset and the rotation between
the gripper frame and the world frame. It is assumed that the human is in front of
the robot, the human hand is modeled as a sphere as described in Section 5.1.3, and
the object is held perpendicular to the gripper. The target final pose for the object
is perpendicular to the XY-plane (the ground) with the handle pointing upwards,
so that the dangerous part of the object is not pointing towards the human.

The handover point is located on the line connecting the base link of the robot
arm to the center of the sphere representing the human hand (Figure 5.3). This
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point is located at a distance from the hand center equal to the radius of the sphere
plus a safety margin. The gripper needs to reach this point while remaining parallel
to the XY-plane (ground). To increase the reach of the robotic arm, the gripper
is rotated around the world Z-axis to align with the line connecting the arm base
link to the hand. The target gripper pose is shown in Figure 5.3

Figure 5.3: The handover point (red sphere) and the final gripper pose.

5.1.5 Handover path
It is essential for the robot to move predictably and safely to ensure that no
hazardous parts of the object are exposed during its movement. This also helps
the human to anticipate where the object will be coming from. The handover
starts with an object held close to the robot’s body and already oriented vertically.
The planned path must ensure that the robot keeps the object vertical and the
movement occurs in a constrained portion of space. In this case, the gripper should
be moved only along the line connecting its starting point to the handover point,
as in Figure 5.4, and be only free to rotate around the world Z-axis.

Through the OMPL planner, MoveIt! offers the possibility to impose constraints
over the planned path, as already mentioned in Section 3.1.6. To achieve the
desired motion two kinds of constraints are used:

• Position constraints. A bounding volume is defined for a specific link (in
this case the gripper), ensuring that the position of the link remains within this
volume throughout the motion. The volume dimension can be manipulated so
that it becomes a plane or a line.

• Orientation constraints. A quaternion is assigned to a specific link to
maintain its predefined orientation. Tolerances ranging from 0 to 1 are set
for each axis, indicating the degree of deviation allowed from the specified
orientation. A value of 1 indicates unrestricted rotation along that axis.
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Figure 5.4: The handover path (yellow line). The pink box represents the object.

5.2 Procedure
The handover process begins with the robot positioned at the handover point, its
arm retracted in the carrying position, and the object held in the gripper. From
there, it proceeds through the following steps:

• When a human hand is inside the robot’s field of view, the robot can start
receiving commands.

• When the command to start the handover is given, the robot locks the current
hand position and extends its arm towards it. If during this step the human
hand moves, the new position will not be taken into account.

• Once the arm’s final position is reached, the arm locks in place and the robot
is ready to receive further commands.

• At this point the human can safely grasp the object and then give the robot
the command to open the gripper.

5.2.1 Commands
The robot and the human must synchronize before performing certain steps of
the handover procedure. This is achieved by making the robot wait for human
commands. The commands can be issued in multiple ways. The simplest one is
through a computer program, but it makes the interaction very unnatural, as the
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human is not directly interacting with the robot. A more elegant way is to use
hand gestures. As stated in Section 3.3, MediaPipe Hands offers a solution for
hand gesture recognition. It is possible to map a command to a MediaPipe gesture,
triggering actions when a gesture is detected. For instance, the handover sequence
could initiate upon recognizing the Open_palm gesture.
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Chapter 6

Grasping and Detection

Grasping is a fundamental and challenging part of robot object manipulation. There
are multiple valid approaches to grasping, each dependent on the task requirements
and the target objects. For this application, it is important that the performed
grasp is functional to the subsequent handover and guarantees safety. In this
scenario, the specific object to grasp is not predetermined. Instead, the robot is
trained to identify objects from a diverse range of classes. When presented with
a scene, the robot’s task is to detect an unfamiliar object, determine its location,
and then use the grasping algorithm to pick it up.

6.1 Scene Modeling
It is assumed that the robot has reached the pick-up area and the objects are laying
in front of it. The robot must be able to recognize the correct object and calculate
a feasible path to reach it and grasp it with the gripper. The grasp pose must
be functional to the subsequent handover, taking into consideration the different
affordances of the objects. To describe the scene a world and camera frame are
defined as in Section 5.1.1.

6.1.1 Object detection and affordance representation
Object detection makes the robot able to detect and classify objects by using a
machine learning network like YOLO to predict 2D bounding boxes over the camera
RGB images. The bounding boxes are used to isolate each object from the scene
clutter. Information on object part affordance is obtained by giving each pixel of
an input image its appropriate affordance label. Four different affordance labels
were defined for this task:

• Background, each pixel which is not part of the object.
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• Danger, the parts of the objects that are directly used to perform some kind
of job, like blades, points etc. These are usually also the most dangerous parts
of the object.

• Handle, the part of the objects used to hold the tool, likes handles. Ideally,
these parts must be kept free for the human to grasp.

• Grasp, for each class of objects some parts are defined so that they are
suitable for the robot to grasp but do not interfere with human grasping.

The affordance mask obtained in this way can be overlayed on top of the point cloud
to know the affordance label of each point and infer affordance to the object 3D
representation. This detailed affordance representation can be obtained by training
a segmentation network, like DeepLab, over the whole RGB image taken by the
robot camera or just a portion of the image cropped around the object bounding
box. Further details can be found in Section 7.4. A simpler representation of
affordance can be achieved by defining a keypoint for each affordance label, except
for the background. These keypoints can be generated from the affordance mask
by calculating the center of the pixels associated with each affordance label. A
machine learning model, such as the YOLO Pose, can then be employed to identify
the object’s bounding box and forecast the keypoints. More information on this
process can be found in Section 7.3. The affordance information can be brought
from the 2D image to the object point cloud following the steps detailed in Section
5.1.3. This makes it possible to define affordance volumes in 3D space. The same
can be done for affordance keypoints.

6.1.2 Improved object representation and pose estimation
The depth and color data captured by the RGB-D camera can be utilized to
construct a three-dimensional model of an object. However, due to the limitations
of capturing the image from a single viewpoint and the occlusion of the object
itself, only an approximate model can be created, resulting in a loss of detail. First
of all the point cloud of the scene is constructed by projecting the captured image
in 3D space (Figure 6.1), as discussed in 5.1.3. The points belonging to the objects
are extracted. This can be done on the color image by computing the affordance
mask and removing all pixels labeled as background. Alternatively, it can be done
on the point cloud itself, by using a RANSAC algorithm to find the plane where
the object is laying on, and remove all the points that belong to it. The result is
shown in Figure 6.1. The point cloud of the object can be turned into a 3D model
by computing its convex hull, which is the minimal convex shape which completely
encloses all the point cloud points. Using PCA (principal component analysis) it
is possible to compute the three-dimensional bounding box of the convex hull, as
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Figure 6.1: The object point cloud and the segmented point cloud.

Figure 6.2: The object convex hull enclosed by the oriented bounding box obtained
from PCA.

shown in Figure 6.2. This can be used to model the object as a box with width,
length and eight equal to the ones of the bounding box. The object is assumed to
lay on a plane parallel to the XY-plane (the ground). Its position is defined by a
point representing its center and an angle describing its rotation around the Z-axis.
These two parameters can be determined from the three-dimensional bounding
box. The orientation of the bounding box is represented by a coordinate frame
(object frame) with axes aligned to the object’s principal components. Specifically,
the x-axis aligns with the object’s major axis. Therefore, the rotation angle is
calculated by measuring the angle between the world system’s X-axis and the
projection of the object frame’s x-axis onto the world XY-plane. The center is
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simply obtained as the center of the bounding box. The positive direction of the
object frame’s x-axis should align with the object handle to indicate the location
of the object’s safe and hazardous areas. To ensure that affordance information is
used, a guide vector is defined as the projection over the XY-plane of the vector
connecting the center of the object "handle" volume to the center of the object
"danger" volume. If the object frame x-axis and the guide vector lay on opposite
quadrants, the object frame is rotated by 180° to align with it. The final object
model is shown in Figure 6.3.

Figure 6.3: The estimated object pose represented with the grey box.

6.1.3 Grasp pose
The robot performs a parallel grasp. To do that, the gripper must be aligned
with the object, so the gripper frame must be rotated to match the object frame.
Furthermore, the gripper must be perpendicular to the world XY-plane (the ground),
so a 90° rotation over the gripper y-axis is performed to align its x-axis with the
world Z-axis. The grasp point is computed as the center of the "grasp" volume.

6.1.4 Obstacles modeling
The robot must be aware of its surroundings to be able to plan a collision-free path
for the grasp. MoveIt! provides the option to consider obstacles during planning.
These obstacles can be incorporated into the planning scene as 3D meshes or
represented by voxels, which can be dynamically updated through integration
with Octomap. The integration with Octomap is suitable for environments that
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change dynamically. However, it can be computationally intensive, and issues may
arise when the robot’s arm blocks the camera’s view. Octomap tracks the robot
model’s real-time position and uses the data to exclude areas blocked by the robot’s
components from the obstacle representation. This works well except when the
robot’s arm gets really close to the camera. Due to the camera characteristics,
depth perception degrades when the object is closer than 30 cm. This creates
artefacts in the point cloud used by Octomap, which are wrongly detected as
obstacles. As the robot is not intended to grasp objects in a dynamic environment,
we can model the scene by converting its point cloud into a 3D model, which can
then be loaded into MoveIt! Obtaining a mesh from a point cloud is not trivial
and surface reconstruction techniques must be used. Some of them are:

• Alpha shapes. The alpha shape is a generalization of the convex hull. It is
essentially a bounding structure that encapsulates the original points, allowing
the identification of concave and convex regions within the point cloud. The
parameter alpha determines the level of detail in the reconstruction, influencing
the size of geometric elements in the resulting model. Higher alpha values
yield simpler shapes, while lower values capture finer details. With alpha set
to its maximum level, the alpha shape is equal to the convex hull.

• Ball pivoting. Conceptually a 3D ball with a specific radius is dropped onto
a point cloud. If the ball touches three points (and does not pass through
them), it forms a triangle. Then, the algorithm initiates pivoting the ball
from the edges of these triangles, creating additional triangles whenever it
encounters three points where the ball does not fall through. Smaller values
of the ball’s radius produce more detailed surfaces, while larger values result
in smoother approximations.

• Poisson surface reconstruction. This method solves an optimization
problem to obtain a smooth surface. It has usually better performance than
the other two methods.

Another method involves defining a voxel grid and marking a voxel as occupied
whenever a point from the point cloud falls within it. Subsequently, this voxel
representation can be transformed into a 3D mesh. Some scene modeling example
are shown in Figure 6.4.

6.2 From grasp to handover
The grasp should conclude in a position conducive to subsequent navigation and
handover. This entails holding the object and arm as close to the robot’s body as
possible to avoid obstacles during navigation. Additionally, aligning the gripper
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Figure 6.4: From the top-left (clockwise): scene point cloud, Octomap occupancy
grid, scene mesh reconstructed from alpha shape and scene voxels representation.

parallel to the ground is advantageous due to the orientation constraints outlined in
Section 5.1.5. To achieve these objectives, a standard arm and gripper pose, referred
to as the "carrying position", is engineered by manually assigning appropriate values
to the manipulator joints. MoveIt! simplifies motion planning to this pose by
providing methods to specify desired target joint values. The carrying pose is
shown in Figure 6.5.
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Figure 6.5: Robot carrying position.
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Chapter 7

Models training

Machine learning models are used for object and affordance estimation tasks, as
already stated in Chapter 6. Three different solutions were trained:

• Simultaneous object and full affordance detection using AffordanceNet.

• Simultaneous object and simplified affordance detection using YOLO Pose.

• Object detection with YOLO and subsequent full affordance detection with
DeepLab.

7.1 Dataset
A custom dataset was built to tackle both object and affordance detection, ensuring
compatibility across all three solutions without the need for any modifications. The
dataset contains 7 classes of heterogeneous objects and 3 affordance labels. The
affordance labels are already discussed in Section 6.1.1 and are "danger", "handle"
and "grasp". The classes are: knife, hairbrush, razor, screwdriver, paintbrush,
lighter and highlighter. These objects were chosen because the parts used to
accomplish a task are clearly distinguishable from the handles. Additionally, their
shapes and weights were considered to ensure that the robot could easily distinguish
them using the depth camera and physically manipulate them. The same objects
appear multiple times with pictures taken from multiple angles.

Each entry of the dataset is comprised of the following:

• Rgb image of the object.

• Object mask, an image labeling the pixel as either part of the object or as
part of the background.
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• Affordance mask, an image labeling object parts with their corresponding
affordance labels.

• Serialized affordance mask, a ".sm" file containing the affordance mask
serialized using the pickle Python package. It is used by AffordanceNet.

• YOLO annotation file, a text file containing the position of the object
bounding box, the object class and, optionally, the keypoints for the YOLO
Pose model.

• AffordanceNet annotation file, an XML file containing the position of the
object bounding box and the object class.

Figure 7.1: An entry of the dataset with the RGB image, segmentation mask,
object mask, bounding box and keypoints.

7.1.1 Image acquisition and annotation
The pictures are taken from the robot’s point of view with its Intel RealSense
D435 camera. A simple ROS program was written to perform the task. The robot
is controlled by a DualShock 4 controller, the mobile base can be moved around
with the left analog stick and the shoulders button, the camera can be tilted and
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panned with the right analog stick and pictures can be taken by pressing the
"X" button. The depth and RGB streams are aligned and synchronized and are
accessible through Rviz to see what the robot is looking at. The object is placed in
front of the robot and multiple pictures are taken from different angles. To allow
better generalization, the dataset is complemented with some pictures taken with
a phone camera.

Once the images are taken, bounding boxes and object mask must be extracted.
This process is automated with the help of the U2Net machine learning model for
background removal [39]. The model is pre-trained on a wide variety of objects
and shows to work well on the objects included in the dataset. It outputs an
RGBA image (Figure 7.2), where the alpha channel is used to make the background
transparent and highlight the object. The object mask is constructed by extracting
the alpha channel, thresholding it so that each pixel has either value 0 or 255 and
exporting it into a gray-scale image. The bounding box is obtained by taking the
object mask and extracting the minimum enclosing rectangle with the OpenCV
findContours method.

Figure 7.2: Output of U2Net and mask.

The affordance mask is obtained by manual annotation using a custom-made
Python script built using OpenCV. The script iterates over each image contained
in a specified folder, displays it to the user and lets the person draw two rectangles
over the picture, a blue one surrounding the handle of the tool and a red one
surrounding the dangerous part of the tool. Then, the object mask is applied so that
the portions of the rectangles outside the object are merged into the background.
Finally, the segmentation mask is created as a gray-scale image, where each pixel
in the original masked image is assigned a new value according to the following
procedure: the background black pixels get a value of 0, the red pixel value of 3,
the blue pixel value 2, and the remaining pixels, representing the part of the object
graspable by the robot, value 1. The full process is detailed in Figure 7.3.
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Figure 7.3: The full process of affordance annotation.

Data augmentation

Since the dataset is very small, data augmentation is of great help in avoiding over-
fitting. Data augmentation involved randomly adjusting the brightness, sharpness,
and contrast of the images. Additionally, new images were generated by changing
the backgrounds. A script was developed to isolate the object using the object
mask, blur the edges of the object, and then place it onto the new background. A
sample of augmented images is shown in Figure 7.4.

7.2 AffordanceNet
AffordanceNet performs both object detection and affordance estimation. It takes
as input the color image of a cluttered scene and for each object outputs the
bounding box, the class label and the affordance mask. Each pixel inside the
bounding box is classified with its appropriate affordance label.

The network structure is described in Figure 7.5. A CNN backbone is used to
extract features and works jointly with a region proposal network to output a feature
map and the regions of interest (bounding boxes) where objects could be located.
The RoIAlign layer takes the feature of the regions of interest and pools them into a
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Figure 7.4: A sample of augmented images.

fixed size. These fixed-size feature maps are then fed to two branches. The first one
is an object classification branch made of two fully connected layers, which outputs
the object class and regress the object location. The second one is an affordance
detection branch made of convolutional layers, which outputs the affordance mask.
The loss function is comprised of 3 terms: the output of the classification layer, the
output of the regression layer in the object classification branch and the output of
the affordance detection branch. The original implementation is built in the Caffe
framework, but a TensorFlow implementation is also available [40].

Figure 7.5: AffordanceNet architecture [3].
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7.2.1 Training and results
The custom dataset was formatted in the VOC2012 format. The network was
slightly modified to work with the correct number of classes and labels. For each
image in the dataset, AffordanceNet necessitates an XML file containing information
on the bounding box and a serialized affordance map. The XML file is created
with the xml.etree.ElementTree Python module. Each file contains the object class,
the coordinates of the top-left and bottom-right corners of the bounding box, the
filename and its dimensions. The serialized affordance mask is simply obtained by
converting the affordance mask image as a numpy array, and serializing it using
the pickle package in a binary ".sm" file.

Due to hardware limitations training was not possible.

7.3 YOLO
YOLO stands out as a leading solution for object detection in cluttered scenes. It
processes RGB images and provides outputs of bounding boxes and class labels for
detected objects. The implementation utilized here is YOLOv8 from Ultralytics
[41], which offers models with added functionalities, such as predicting oriented
bounding boxes and poses. YOLOv8’s architecture mainly comprises convolution
layers.

Training sessions were conducted for both the YOLOv8 Base model and the
YOLOv8 Pose model. The Pose model not only outputs bounding boxes but also
keypoints that represent significant points in the detected objects. In the Pose
model, object affordances are encoded as these keypoints. Each keypoint serves
as the geometric center for points labeled with specific affordances, as illustrated
in Figure 7.1. Given the shapes of the objects in the dataset, this simplified
representation of affordances should be enough to provide the robot with sufficient
information to perform its task. The keypoints enables the detection of the direction
of the hazardous object part and the identification of a safe grasping point.

7.3.1 Training and results
Training and evaluation can be easily performed using the Ultralytics Python
package. In addition to the augmentations already applied, the package provides
a broad range of augmentation options. Particularly noteworthy is the ability
to merge multiple images into one, called mosaicing, allowing the model to train
for cluttered scenes, even if the original dataset only includes single objects. An
example is reported in Figure 7.6.

For each image in the dataset, YOLOv8 necessitates a text file containing the
object class label, the position and dimension of the bounding box and keypoints
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Figure 7.6: An example of mosaicing for YOLOv8 Base and Pose models.

location for the Pose model. The file contains a row for each object in the picture.
The metrics used to evaluate the network are:

• Precision and Recall: Precision measures the proportion of true positive
predictions among all positive predictions made by the model. Recall measures
the proportion of true positive predictions among all actual positive instances
in the dataset.

• IoU (Intersection over Union): IoU measures the overlap between the predicted
bounding boxes and the ground truth bounding boxes. It is calculated as the
ratio of the area of intersection to the area of union between the two bounding
boxes. A high IoU score signifies accurate localization of objects.

• F1 Score: F1 score is the harmonic mean of precision and recall. It provides a
balance between precision and recall and is often used as a single metric to
evaluate model performance.

The training of both models was performed on a train set of 1700 images. The
validation set contained 28 images. The hyperparameters used are described in
Table 7.1. In both cases, the mosaicing augmentation is turned off in the latest
50 epochs. The evolution of the model losses on the train and validation set is
described in Figures 7.7 and 7.8. The Pose model achieves a mean average precision
(computed across IoU thresholds from 50 to 95) of 0.98 for pose estimation and
0.95 for bounding box detection. The mean average precision for the Base model
is 0.96. Some of the results of both models over the validation set are shown in
Figure 7.9
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Pose model Base model
Batch size 16 16

Epochs 210 250
Image size 640 640

Learning rate 0.01 0.01
Class loss weight 0.5 0.5
Box loss weight 7.5 7.5
Pose loss weight 12.0 0

Table 7.1: YOLOv8 models hyperparameters.

Figure 7.7: Losses in the YOLOv8 Pose model training.
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Figure 7.8: Losses in the YOLOv8 Base model training.

Figure 7.9: YOLOv8 models predictions over the validation images.
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7.4 DeepLab
DeepLab is a type of semantic segmentation network designed to analyze images
by assigning a class label to each pixel. In its implementation, DeepLabV3Plus
utilizes MobileNet as the backbone for feature extraction, which is pre-trained
on ImageNet. However, other backbones like ResNet or Xception can also be
employed. DeepLab operates as a fully convolutional neural network, leveraging
atrous convolution extensively. This technique involves spacing out kernel weights,
allowing the network to encompass a wider area of input without inflating the
parameter count. As a result, it can capture more context and detail without
significantly increasing computational requirements.

7.4.1 Training and results
The training utilizes a DeepLabV3Plus implementation in PyTorch [42]. The
model is trained on images from the dataset along with affordance masks cropped
around annotated bounding boxes. To diversify the dataset and mitigate overfitting,
images and masks in the training set are cropped using randomly varying bounding
boxes, achieved by applying random scaling factors to the original bounding boxes.
Moreover, the images are scaled to 256x256 pixels. To prevent distortion a black
padding is added if needed. An example is shown in Figure 7.10.

Figure 7.10: Cropped images and affordance masks to be used with
DeepLabV3Plus.

The main metric used for evaluation is the intersection over the union between
the affordance mask and the segmented image. The training was performed on a
set of 3200 images (more augmentation was performed) with a validation set of 28
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images. The hyperparameters used are described in Table 7.2. The model reaches
a main IoU of 0.88. The loss and mean IoU curves are in Figure 7.11

DeepLabV3PlusMobileNet
Batch size 16
Iterations 15K

Learning rate 0.01
Crop size 256

Table 7.2: Caption

Figure 7.11: Loss and mean IoU during training for DeepLabV3MobileNet.
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Software architecture

The code governing the robot’s operations is segmented into various modules. Each
module handles specific subtasks, contributing to the overall task. This modular
approach enhances scalability and aligns with the design principles of ROS. Not all
modules run directly on the robot, enabling the utilization of algorithms beyond
its computational limits.

Each module consists of one or more ROS nodes. Communication between them
is managed through ROS topics, services and Python interfaces. There are three
service modules:

• The image acquisition module takes depth and image streams from the
camera.

• The navigation module builds the map of the robot environments and
controls the mobile base making the robot move and avoid obstacles.

• The manipulation module controls the robot’s arm for manipulation.

There are two main modules:

• The grasping module identifies the object and its affordances, calculates
the optimal pose for grasping the object, and commands the arm to execute
the grasp.

• The handover module controls the arm to perform the handover sequence.

The overall structure is sketched in Figure 8.1
The service modules heavily rely on the software packages offered by Trossen

Robotics for LoCoBot development. These packages provide fundamental function-
alities that are essential for the operation of the grasping and handover modules
(main modules).
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Figure 8.1: The overall software architecture.

8.1 Image acquisition module
The image acquisition module manages the Intel Realsense D435 camera using the
Realsense2 ROS package from Intel. It offers configurability, enabling users to set
the frame rate and resolution for both the color and depth streams. Additionally,
it aligns the field of view of the two streams, ensuring perfect overlap between the
depth and color images. It also dynamically publishes intrinsic camera parameters,
crucial for constructing 3D projections and point cloud generation. Optionally, it
can publish point clouds as well.

Interface

These are the data published by the module:

• Aligned depth stream on topic /camera/aligned_depth_to_color/image_raw.

• Color stream on topic /camera/color/image_raw.

• Intrinsic parameters on topic /camera/aligned_depth_to_color/camera_info.

• Point cloud on topic /camera/depth/color/points.

8.2 Manipulation module
The manipulation module takes care of the robot arm and end-effector movement.
Planning and control are done trough MoveIt! framework.
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8.2.1 Motion planning
Motion planning is performed by one of the algorithms provided by the OMPL
Planner library, which offers a collection of state-of-the-art sampling-based motion
planning algorithms. In particular, the RTT algorithm is used. The desired end-
effector pose is declared through a PoseStamped message containing a quaternion
representing the desired orientation and a point representing the desired position.
It is also possible to specify the desired state for each joint and plan a path to
reach those states. The handover use case requires imposing some path constraints,
as discussed in Section 5.1.5. Constraints are declared in a constraints message,
which contains four arrays, one for each kind of constraint. Position constraints
are represented as a bounding volume delimiting the area where the specified link
can be moved. Orientation constraints for the specified link are represented as
absolute tolerances (in radians) over the orientation described by a quaternion.
To improve the planner performance in the presence of path constraints, the
enforce_joint_model_state_space option was set to true in the ompl_planning.yaml
configuration file. This forces the use of the joint space for all plans.

8.2.2 Obstacles and object modeling
The grasped object is depicted as a rectangle with fixed dimensions. After a
successful grasp, the object is incorporated into the robot gripper model. This
ensures that future planning takes into account the object to prevent collisions
with everything except the robot gripper. For simplicity, it is assumed that the
robot faces the object without any additional obstacles, so only the floor is modeled.
Octomap was also evaluated for dynamic obstacles modeling. Upon spawning the
rectangle representing the object, the corresponding area in the map is cleared to
enable collisions between the gripper and the object.

Interface

The module functionalities are made available through the MoveIt! Python interface;
in particular, the following classe are involveds:

• MoveGroupCommander allows users to establish the desired end-effector
pose or the desired joint states, initiate and halt motion, impose constraints,
and define velocity and acceleration scaling factors. Two instances of this class
were instantiated, one for controlling the gripper and another for controlling
the arm.

• PlanningSceneInterface allows users to add and remove objects from the
planning scene and to attach objects to the robot’s joints.
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8.3 Navigation module
The navigation module manages the movement of the robot’s mobile base within
the working environment. It primarily utilizes the move_base package [43] for base
control and integrates other packages for mapping, localization, obstacle detection,
and path planning.

8.3.1 Mapping
For effective navigation, the robot requires a representation of its environment in
the form of a map. The map creation process is managed by the SLAM Toolbox.
During this process, the robot is manually guided around the room by a human
operator using a DualShock4 controller. The SLAM Toolbox integrates LIDAR
data from various positions and merges them to construct the map. Real-time
updates of the map can be visualized using the RViz interface. The map can be
saved either through an RViz plugin or a rosservice call, and it is stored both as a
".pgm" image for use with the map_server [44] node and localization methods like
AMCL, and as a serialized pose-graph for localization within the SLAM Toolbox
itself and potential map refinement.

Localization on the finalized map was also tested using SLAM Toolbox, which
matches recent LIDAR scans to the saved pose-graph. A comparison with the
standard AMCL algorithm is elaborated in Section 9.1.

8.3.2 Path planning
The move_base node handles path planning through its implementation of both
local and global planners. Users can customize the planner by modifying the
move_base_params.yaml configuration file. Other configuration files are avail-
able, with options to adjust parameters such as map layer inflation, map update
frequency, base recovery behavior, and planning attempts. The map inflation
considers the obstruction caused by the object held in the gripper during move-
ment. For the global planner, Dijkstra’s algorithm from the global_planner [45]
package is utilized, while the local planner employs the TEB algorithm from the
teb_local_planner [46] package. Moreover, the move_base node can dynamically
manage obstacle avoidance by receiving obstacle position information and updating
costmaps accordingly. LIDAR serves as the primary information source for obstacle
detection, but it has limitations in detecting objects of certain heights. To address
this, depth scans are also utilized to detect small objects in front of the robot
camera. This functionality is achieved using three rtabmap nodelets: rgbd_sync,
points_xyzrgb, and obstacle_detection. These nodelets filter out the robot model to
account for self-occlusion and generate a downsampled point cloud of the robot’s
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environment, which is then fed to the move_base node. The target goal for the
mobile base is specified as a MoveBaseGoal message which contains a PoseStamped
message.

Interface

The module functionalities are made available through the actionlib Python package.
In particular, it offers the following classes:

• SimpleActionClient interfaces with the move_base node and enables to
send pose goals.

8.4 Grasping module
The grasping module consists of two nodes: the grasp_control_node and the ob-
ject_modeling_node. The grasp_control_node is responsible for manoeuvring the
robot to the object depot, executing the grasp on the detected object, and trans-
porting it into the carrying position. On the other hand, the object_modeling_node
handles object detection, affordance estimation, and pose estimation. Together,
they incorporate the functionalities outlined in Chapter 6.

8.4.1 Grasp control node

The node waits until it receives a target object from the human, then it proceeds
with the following operations:

• The node interfaces with the navigation module to navigate from its starting
position to the depot area.

• Upon reaching the depot area, the object_modeling_node is activated. If the
target object is detected, its affordance is estimated, and its pose is modeled.
This information is then sent back to the grasp_control_node, which remains
idle, awaiting instructions.

• When the object’s pose is received, it is converted into a suitable grasp pose
and the grasp is executed by interfacing with the manipulation module.

• Once the object is securely held in the carrying position described in Section
6.2, a message is dispatched to the handover module, signaling its readiness.
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8.4.2 Object modeling node
The node uses a simplified version of the technique described in Section 6.1.2 to
model the object pose. The node uses YOLO v8 Pose to predict the object bounding
box together with the affordance keypoints. The keypoints are then projected into
3D space. The object is approximated with a rectangle with fixed dimensions, so
to determine the pose it is sufficient to find its center and its rotation. The center
is set to the coordinates of the grasp keypoint, while the rotation is described by
the vector connecting the grasp keypoint to the danger keypoint.

Interface

The module uses the following topics for external communications:
• /grasp/grasp_status, to signal a successful grasp to handover module as a

String message.

• /grasp/grasp_target, to receive the target object from the user as a String
message.

In addition, some topics are declared to manage communication internally between
the two nodes:

• /grasp/model/object_pose, to exchange the estimated object pose as a PoseS-
tamped message.

8.5 Handover module
The handover module is made of two nodes: the handover_control node and the
hand_tracking node. The first one takes care of moving the robot from the grasp
area to the handover area, and performs the handover. The second one takes care
of tracking the human hand and detecting hand gestures. They implement the
functionalities described in Chapter 5.

8.5.1 Handover control node
This node waits until it receives a message from the grasping module indicating
that the grasp was successful, then it proceeds with the following operations:

• The node interfaces with the navigation module to navigate from its current
position to the handover area.

• Once the handover area is reached and the motion is completely stopped,
the hand_tracking node is started and the waiting status to receive the hand
position begins.
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• When the hand position is received, the manipulation module is tasked to
bring the object towards the human exactly as described in Section 5.1.4.
Once the final pose is reached, the robot waits 2 seconds, then it starts slowly
opening the gripper so that the human can take the object.

8.5.2 Hand tracking node
The node utilizes MediaPipe to track the position and gestures of the human hand
and to model its position as described in Section 5.1.3. In order to project the
hand keypoints in 3D space, perfect alignment between the color and depth images
is essential, along with the availability of camera intrinsic parameters. The image
acquisition module provides three separate topics for color and depth images and
camera parameters, necessitating synchronization using a TimeSynchronizer from
the message_filters package [47]. Subscribing to the TimeSynchronizer triggers a
callback each time a depth and a color image message, along with a camera info
message sharing the same timestamp, are received. The color images are inputted
into the Mediapipe gesture recognition model. Upon detecting the Open_Palm
gesture, the identified keypoints are used to compute the center of the hand sphere
model, represented as a PointStamped message. To ensure accurate 3D projection,
depth images are clipped at a distance of 2 meters, as the robot cannot extend
beyond this range.

8.5.3 Interface
Some topics are declared to manage communication internally between the two
nodes:

• /handover/model/hand_pose, to exchange the hand pose as a PointStamped
message.
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Chapter 9

Experiments

Multiple experiments were designed to assess the functionalities of the architecture
described in Chapter 8 within the real-world scenario.

Experiments were carried out in a controlled laboratory setting, featuring a
level floor surface, consistent lighting, and static obstacles such as walls and desks.
Occasionally, the laboratory environment was augmented by introducing cardboard
boxes to simulate additional obstacles.

9.1 Mapping

The mapping capabilities of the navigation module (Section 8.3) were tested.
The results of these experiments will be utilized for future experiments involving
navigation. A human operator pilots the robot around the room using a DualShock4
controller to evaluate the mapping capabilities of SLAM Toolbox, as described
in Section 8.3.1. Only the portion of the laboratory used for the experiments is
fully mapped. The resulting map, shown in Figure 9.1, demonstrates satisfactory
outcomes, albeit with some noise. SLAM Toolbox localization is tested by placing
the robot in random places in the environment. Localization succeeds only if
the robot position is next to the map origin or a rough estimate of its initial
position is published on the /intialpose topic and red by SLAM toolbox. Once
the initial position is successfully determined the localization goes on without any
issue. Figure 9.2 shows an example of successful localization with SLAM Toolbox.
To overcome SLAM Toolbox limitation an experiment was conducted on ACML
as well. Initially, ACML assumes a uniform distribution of the robot position on
the whole map. By moving the robot around, this estimate is continuously refined
until the robot’s real position is matched as shown in Figure 9.3.
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Figure 9.1: The map obtained with SLAM Toolbox.

Figure 9.2: Localization with SLAM Toolbox. The red lines represent the lidar
output and match with the map.

9.2 Object detection and affordance estimation
The algorithms for object detection and affordance estimation developed in Chapter
7 were put to the test in a real-world setting. Objects were placed on the laboratory
floor, as in the scenario shown in Figure 9.4. The robot was then manoeuvred
around to assess how well it could detect objects and estimate their affordances in
real time. The algorithms ran on a remote computer leveraging the distributed
compute capabilities of ROS, rather than directly on the robot hardware.
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Figure 9.3: Localization with AMCL. The red arrows represent the position
distribution, which improves over time.

Figure 9.4: The setup for detection and affordance testing.

YOLOv8 Pose model

The initial experiment utilized the YOLOv8 Pose model. This model predicts
bounding boxes for objects along with their class labels and affordance keypoints.
In this context, the red keypoint indicates the hazardous area, the yellow keypoint
represents the handle, and the green keypoint denotes the part suitable for grasping.
Notably, the model demonstrates robust performance even when multiple objects
are present within the field of view. The results are depicted in Figure 9.5.
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Figure 9.5: The result of YOLOv8 Pose on four different objects.

YOLOv8 plus DeepLabV3Plus

The second experiment employed a combination of the YOLOv8 Base model for
object detection and DeepLabV3Plus for affordance segmentation. YOLO analyzes
the entire image to generate bounding boxes, while DeepLab processes the cropped
image around each predicted bounding box to produce an affordance mask. In the
resulting affordance mask, red indicates hazardous areas, yellow corresponds to
handle locations, and green represents areas suitable for grasping. Both networks
exhibited excellent predictive capabilities. However, utilizing two different networks
had a noticeable impact on performance, resulting in slower processing times.
Figure 9.6 displays the outputs of the two networks side by side, while Figure 9.7
shows the merged outputs.

Figure 9.6: Outputs of YOLOv8 Base model and DeepLabV3Plus side by side.
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Figure 9.7: Merged outputs of YOLOv8 Base model and DeepLabV3Plus on four
different objects.

9.2.1 Considerations on the different solutions
Both solutions have demonstrated excellent performance. The advantages of
using YOLOv8 Pose are training a single network and achieving better real time
performance. On the other hand, the solution based on YOLOv8 Base model
and DeepLabV3Plus offers a more comprehensive representation of affordance
and is better suited for analyzing complex objects. However, using two separate
networks makes the solution slower during execution and more challenging to train.
Nevertheless, employing two separate networks can also have its benefits. Firstly, it
allows training the two networks on different datasets. Since object detection is a
well-studied problem, using a pre-existing dataset to train YOLOv8 Base can result
in a more robust detection. Additionally, this approach is more modular, providing
the option to perform affordance estimation only for a subset of manipulable objects.
In the upcoming experiments, YOLOv8 Pose will be employed for both detection
and affordance estimation due to its speed and simplicity.

9.3 Grasping
The experiments were structured to evaluate the functionalities of the grasping
module outlined in Section 8.4 in a real-world setting. Objects were positioned in
front of the robot, requiring it to accurately estimate their poses and plan effective
grasps, factoring in affordances and handover necessities.

Grasp pose estimation

The technique for estimating object poses and grasp poses outlined in Sections
6.1.3 and 6.1.2 is put to the test. However, rather than executing the entire process
of pose estimation and object modeling, a simplified approach is employed, as
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implemented in the object_modeling_node, Section 8.4.2. This method utilizes
the output of YOLOv8 Pose projected into 3D space. The object’s pose, and
consequently, the grasping pose, are defined by the grasp keypoint (depicted as a
green sphere) and the rotation around the world Z-axis of the vector connecting
the grasp keypoint (green sphere) to the danger keypoint (red sphere).

Figure 9.8: YOLOv8 Pose predictions in 3D space (red, green, yellow spheres)
and simplified object pose estimation (red arrow) over the scene point cloud.

Stationary grasp

In this experiment, the robot is tasked with several steps: detecting an object,
estimating its pose, planning a grasp while considering affordances, and then
positioning the object for handover, as implemented in the grasp_control_node,
Section 8.4.1. As depicted in Figure 9.9, the grasp sequence operates seamlessly.
Figure 9.10 illustrates how the grasp pose varies for different target objects with
distinct orientations.

9.4 Handover

The experiments aimed to assess the performance of the handover module, Section
8.5, and its integration with the grasping module, Section 8.4, in a real-world
environment. The experiments involved the robot selecting an object, navigating
to the designated handover point, and transferring the object to a human operator.
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Figure 9.9: A real-world grasp.

Figure 9.10: Different gripper orientations for different object poses.

Hand tracking

The functionalities of the hand_tracking_node, Section 8.5.2, are tested. The node
uses MediaPipe to model the hand in 3D space as a sphere, as described in Section
5.1.3. During testing, a human operator sits in front of the robot, while moving
the hand. If the Open_palm gesture is detected, the sphere representing the hand
moves; otherwise, it remains stationary. The results are shown in Figure 9.11
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Figure 9.11: Hand tracking and gesture recognition.

Stationary handover

Functionalities of the handover_control_node, Section 8.5.1, which involve hand
tracking, gesture recognition, and arm motion planning, were put to the test. A
human operator sits in front of the robot, while the robot holds an object in the
carrying position. Upon detecting an Open_palm gesture from the human, the
robot initiates the handover process by extending its arm toward the hand, adhering
to the constraints and final pose specifications detailed in Sections 5.1.4 and 5.1.5.
The handover point is set at 20cm from the center of the human hand. Once the
robot reaches its final position, the gripper opens, allowing the human to take the
object. The entire process is illustrated in Figure 9.12.

Full handover

All functionalities of the handover module underwent testing. The robot initially
begins from a predefined resting position next to the human’s desk, holding an
object in the carrying position. Its objective is to autonomously navigate through
the environment to a predetermined handover location, facing the human. To
increase the difficulty level, obstacles are introduced into the scene. Once the robot
reaches the designated area and identifies the correct gesture, the handover process
proceeds similarly to the stationary scenario. The complete procedure is outlined
in Figure 9.13.

Grasp plus handover

The coordination between the handover and grasp modules was evaluated in a
static setting. An object is positioned in front of the robot, which must detect it,
plan a grasp, and transport it into the carrying position. Subsequently, the robot
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Figure 9.12: A real world handover sequence. The robot waits for the activation
gesture, then the object is delivered.

Figure 9.13: The full task of navigating the environment to reach the human and
deliver the object.
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remains idle until it detects the appropriate gesture from the human, performing
the handover process. The complete procedure is shown in Figure 9.14.

Figure 9.14: A grasp followed by a handover with the robot in a stationary
position.
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Chapter 10

Conclusions and future
works

The aim of the thesis was to explore the topic of object manipulation in the context
of the development of robotic applications with humans in collaborative tasks. In
particular, the goal was to explore the possibilities offered by recent developments
in machine learning algorithms, with the objective of finding safe solutions and
achieving human-machine interaction as naturally as possible.

The contribution of this thesis is the implementation of grasping and handover
algorithms. These algorithms allow a mobile robot to manipulate novel objects,
belonging to a predefined set of object classes, and deliver them to a human in
real-world scenarios. Since the end goal was to safely perform the handover, the
grasp had to be planned accordingly. That was made possible by machine learning.

Thanks to affordance estimation algorithms, it is possible to obtain crucial
information about the object’s characteristics and consequently implement a grasp
that takes into account its orientation and hazardous parts. In particular, two
solutions based on neural networks for affordance estimation were developed, both
inspired by the current state of the art. The first is based on the YOLOv8 Pose
estimation model, which outputs the object bounding box together with a compact
affordance representation based on keypoints. The second solution is based on
the joint use of YOLOv8 and DeepLabV3Plus, for object detection and image
segmentation respectively, with the aim of obtaining object location alongside a
more complete affordance representation based on a segmentation mask.

Subsequently, to train and test the solutions, a custom dataset was developed,
containing images and annotations (bounding boxes and affordance masks/key-
points) of instances of manipulable object classes. The dataset contains 7 object
classes with 3 affordance labels. Both solutions yielded excellent results and allowed
the creation of intelligent grasps that prioritized safety.
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Due to the small size of the dataset, it is not possible to provide reliable data
on performance. However, tests indicated that the approach is valid and capable
of yielding good results.

In the future, expanding the dataset could allow for a more detailed analysis of
performance.

Handover planning allowed to consider aspects related to naturalness in interac-
tions between robots and humans. The handover must ensure the safe delivery of
the object while also being natural and intuitive for the recipient.

The thesis conceived and implemented, using tools offered by ROS, a sequence
of movements that satisfies these requirements and taht is predictable. Once
again, machine learning proved extremely useful. The handover algorithm uses
the MediaPipe hand-tracking solution to determine the human hand position in
real time and compute the best object handover pose relative to the recipient’s
hand. Additionally, considering the robot’s mobile base and its ability to navigate
the surrounding environment, handover and grasping were also planned with this
robot’s capability in mind. The final experiments provide concrete examples, in a
real scenario, of the robot’s capabilities.

Unfortunately, the hardware of the robot exhibited some limitations that affected
overall performance. Firstly, the accuracy of the depth camera makes it difficult to
distinguish small variations in depth (between 0.5 cm and 1 cm) at the working
distance of 1 meter. This results in an inaccurate representation of objects seen
by the robot and makes grasp planning for slender and low objects more difficult.
Additionally, the precision of the mobile base and arm is not excellent. The arm-
planned movement suffered from errors between 1 cm and 2 cm, while the mobile
base was sometimes off from 3 cm to 5 cm.

As further developments are concerned, it would be beneficial, as already men-
tioned, to improve and expand the dataset used for training affordance estimation
and object detection solutions so that the model can generalize better and perfor-
mance can be measured. It could also be worthwhile to try extending the types
of objects manipulable by the robot, transitioning to more complex and intricate
objects. In this case, with objects that are more difficult to model manually, it
would be interesting to try using generative grasping solutions based on machine
learning. More generally, it would be possible to expand the robot’s ability to
interact with humans, even by making greater use of the mobile base. For example,
it would be interesting to expand the possibilities of handover by developing a
system for tracking and following people, to autonomously reach the person to
assist without any prior knowledge.
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