
POLITECNICO DI TORINO

Master Degree
in Computer Engineering

Master’s Degree Thesis

Additive Fast Fourier Polynomial Multiplier For Code
Based Algorithms

Supervisors Candidate
prof. Guido MASERA Abdallah EL MOUAATAMID
prof. Maurizio MARTINA
PhD. Alessandra DOLMETA

Academic Year 2023/2024

Abstract

In the modern era, devices require cryptography to protect information against malicious
behavior that could exploit and damage the user. To address this, various algorithms have
been developed for different purposes. These algorithms leverage complex mathematical
problems to make it computationally infeasible to break a system within a reasonable
timeframe, even for powerful computers. However, the advent of quantum computers
has the potential to significantly impact cryptography by rendering many traditional al-
gorithms vulnerable to attacks. For example, Shor’s Algorithm can break the factoring
problem of RSA in polynomial time.

In response, NIST initiated a process to solicit, evaluate, and standardize one or more
quantum-resistant public-key cryptography algorithms. Different categories of algorithms
were proposed. After four rounds of submission, NIST recommends two primary algo-
rithms to be implemented for most use cases: CRYSTALS-KYBER and CRYSTALS-
Dilithium, FALCON, and SPHINCS+. Now, NIST will create new draft standards for
the algorithms to be standardized and will coordinate with the submission teams to ensure
that the standards comply with the specifications.

NIST expects to select at most one of these two candidates for standardization at
the conclusion of the fourth round. Therefore, in this study, code-based algorithms were
selected. The study focused on improving the execution of polynomial multiplication
within HQC and McEliece, as it was one of the heaviest operations from a computational
standpoint in the respective lattice-based algorithms.

The primary objective centers on the development of a polynomial multiplier based
on the Fast Fourier Transform. The exploration of the finite fields used by HQC and
McEliece led to the subsequent decision to utilize a new class of FFTs, the additive FFTs,
which have the advantage of evaluating and interpolating polynomials in fields that do not
have the desired nth roots of unity, by exploiting the additive vector space construction of
the finite fields. For this specific purpose, the Additive Fast Fourier Transform developed
by Gao and Mateer was chosen for multiplying polynomials that lie in finite fields of
characteristic two, as the one present in HQC and McEliece.

The research is conducted in two main stages. Initially, a software model of the poly-
nomial multiplier was created to run on all levels of security of HQC and McEliece.
Subsequently, The model was then integrated into the official algorithms to verify the cor-
rect functioning of the algorithms when working with the multiplier. The second phase
involved the development of the hardware structure of the multiplier based on the soft-
ware model. Employing a memory-based approach to tackle the high number of points to
evaluate and interpolate, thereby reducing the hardware cost by minimizing the required
number of processing elements.

ii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis organization . 2

2 Cryptography 3
2.1 Cryptography . 3

2.1.1 Symmetric cryptography . 3
2.1.2 Asymmetric cryptography . 4

2.2 Post Quantum Cryptography . 5
2.2.1 Code-based cryptography . 6

3 Background 11
3.1 Finite Fields . 11
3.2 Finite Fields Of Characteristic Two . 12

3.2.1 Modular Reduction . 12
3.2.2 Multiplication . 13
3.2.3 Squaring . 14
3.2.4 Inversion . 15

3.3 Polynomial Multiplication . 16
3.3.1 Polynomial representation . 16
3.3.2 Fast multiplication of polynomials in coefficient form 17
3.3.3 Discrete Fourier Transform . 18
3.3.4 Fast Fourier Transform . 19

3.4 Fast Polynomial Multiplication in Finite Fields 21
3.4.1 Number Theoretic Transform . 21
3.4.2 Additive Fast Fourier Transform . 21

4 Software Implementation 25
4.1 Arithmetic Unit . 26

4.1.1 Multiplication . 26

iii

4.1.2 Squaring . 27
4.1.3 Inversion and Exponentiation . 29

4.2 Additive Fast Fourier Transform . 30
4.2.1 Recursive Additive Fast Fourier Transform 31
4.2.2 Recursive Inverse Additive Fast Fourier Transform 35
4.2.3 Iterative Additive Fast Fourier Transform 36
4.2.4 Inverse Iterative Additive Fast Fourier Transform 38

4.3 Polynomial Multiplication Structure . 39
4.3.1 Pre Processing . 39
4.3.2 Post Processing . 41

4.4 Testing And Integration . 42

5 Hardware Implementation 43
5.1 Field arithmetic logic . 44

5.1.1 Multiplication . 46
5.1.2 Squaring . 46
5.1.3 Inversion . 47

5.2 Memories subsystem . 48
5.3 Fast Fourier Transform subsystem . 49

5.3.1 Memory access scheme . 51
5.3.2 Twisting . 53
5.3.3 Taylor Expansion . 53
5.3.4 Taylor rearrange . 55
5.3.5 Restore memory . 55
5.3.6 Compute initial w . 58
5.3.7 Compute subset sums . 59
5.3.8 Compute w . 61
5.3.9 M to two . 61
5.3.10 Two to m . 64
5.3.11 Pointwise mul . 64

5.4 McEliece subsystem . 67
5.5 HQC subsystem . 70

5.5.1 Kronecker segmentation . 70
5.5.2 Inverse Kronecker segmentation . 71
5.5.3 HQC reduction . 72

5.6 Polynomial multiplier . 75

6 Results 77
6.1 X-HEEP . 77

6.1.1 Simulation Envirorment . 78
6.2 Simulation results . 79
6.3 Modelsim simulation accelerator . 80
6.4 Modelsim simulation software . 83

6.4.1 Comparison simulations . 85
6.5 Potential improvements . 87

iv

7 Conclusion 89

v

List of Tables

2.1 Parameters for Classic McEliece . 8
2.2 Parameters for HQC . 9
4.1 choice of q and w . 40
4.2 HQC and Mceliece execution time comparison 42
6.1 Arithmetic logic F212 hardware . 80
6.2 Arithmetic logic F213 hardware . 81
6.3 Arithmetic logic F216 hardware . 81
6.4 FFT and IFFT hardware modules in F212 81
6.5 FFT and IFFT hardware modules in F213 81
6.6 FFT and IFFT hardware modules in F216 82
6.7 FTT and IFFT hardware . 82
6.8 Mceliece reduction hardware . 82
6.9 HQC reduction hardware . 82
6.10 Kronecker segmentation hardware . 82
6.11 Inverse Kronecker segmentation hardware 83
6.12 Arithmetic logic F212 software . 83
6.13 Arithmetic logic F213 software . 83
6.14 Arithmetic logic F216 software . 84
6.15 FFT and IFFT functions in F212 . 84
6.16 FFT and IFFT functions in F213 . 84
6.17 FFT and IFFT functions in F216 . 84
6.18 Mceliece reduction software . 85
6.19 HQC reduction software . 85
6.20 Kronecker segmentation software . 85
6.21 FFT and IFFT functions in F216 in hardware 86

vi

List of Figures

2.1 Symmetric cryptography . 4
2.2 Asymmetric cryptography . 4
2.3 Digital signature . 5
3.1 Fast Polynomial Multiplication . 18
3.2 8th roots of unity . 18
4.1 recursive calls tree . 37
5.1 Accelerator architecture . 43
5.2 Inversion architecture . 45
5.3 Multiplication architecture . 45
5.4 Squaring architecture . 45
5.5 Multiplication in F212 . 46
5.6 Squaring in F212 . 46
5.7 FSM inversion F212 . 47
5.8 Memory interface . 48
5.9 Rom interface . 49
5.10 FSM Fast Fourier Transform . 50
5.11 Fast Fourier Transform architecture . 50
5.12 Butterfly array data access . 51
5.13 Taylor expansion data access . 52
5.14 Access scheme from level 5 to level 2 . 52
5.15 Twisting finite state machine . 54
5.16 Taylor expansion finite state machine . 56
5.17 Taylor rearrange finite state machine . 57
5.18 Restore memory finite state machine . 58
5.19 Compute initial w finite state machine . 59
5.20 Compute subset sums finite state machine 60
5.21 Compute w finite state machine . 62
5.22 M to two finite state machine . 63
5.23 Two to m finiste state machine . 65
5.24 pointwise multiplication FSM . 66
5.25 McEliece reduction finite state machine . 69
5.26 Kronecker segmentation finite state machine 71
5.27 c(x) polynomial dot view . 71
5.28 Inverse Kronecker segmentation finite state machine 72

vii

5.29 HQC reduction finite state machine . 74
5.30 Polynomial multiplier finite state machine 75
6.1 Testing flow . 80

viii

Chapter 1

Introduction

1.1 Motivation

Cryptography is the study and design of methods to protect information against unau-
thorized access or modification. It serves as the cornerstone in safeguarding sensitive
information from unauthorized access or alteration. It plays a pivotal role in ensuring se-
cure communication channels amidst the omnipresent threat posed by adversaries seeking
to exploit vulnerabilities in digital systems. However, the landscape of digital security is
continually evolving, presenting new challenges that demand innovative solutions.

With the rapid advancement of technologies and the proliferation of sophisticated tech-
niques to breach systems, the efficacy of traditional cryptographic methods is increasingly
being called into question. Of particular concern is the looming specter of quantum com-
puting paradigm-shifting technology poised to revolutionize computational capabilities.

Quantum computers harness the principles of quantum mechanics, such as superposi-
tion and entanglement, to perform computations that transcend the limitations of classical
computing. These systems possess the potential to solve complex mathematical problems,
such as integer factorization and discrete logarithms, at an unprecedented speed, rendering
conventional cryptographic schemes vulnerable to exploitation.

The foundational security of many prevalent public-key cryptosystems hinges on the
computational complexity of these mathematical problems. Consequently, the emergence
of quantum computers poses a significant threat to the integrity of digital communications
and underscores the urgent need to fortify cryptographic defenses against this impending
paradigm shift.

In response to this looming threat, the cryptographic community has embarked on
a quest to develop and standardize new cryptographic protocols resilient to quantum
attacks. This burgeoning field, known as post-quantum cryptography (PQC), seeks to
redefine the cryptographic landscape by furnishing algorithms impervious to the compu-
tational prowess of quantum adversaries.

PQC endeavors to furnish cryptographic primitives and protocols that afford the same
level of security and functionality as their classical counterparts while leveraging novel

1

Introduction

mathematical constructs resilient to quantum threats. By embracing innovative ap-
proaches and mathematical problems immune to quantum attacks, PQC endeavors to
ensure the longevity and resilience of cryptographic systems in the face of impending
quantum supremacy

1.2 Thesis organization
This study focuses on developing a polynomial multiplier, able to run on the two main
code-based algorithms, McEliece and HQC. This aims to reduce the computational load of
the systems, implementing a Hardware-Based Additive Fast Fourier Polynomial Multiplier
Accelerator. The development interested first the creation of the software model of the
accelerator, and then the hardware design was approached. After this first introductory
chapter 1, the thesis is structured as follows:

• chapter 2 is an introduction to cryptography and post-quantum cryptography, with
a particular focus on McEliece and HQC.

• chapter 3 is dedicated to introducing the main mathematical concepts required for
the understanding of the study.

• chapter 4 presents the software implementation of the polynomial multiplier.

• chapter 5 discusses the hardware implementation of the accelerator.

• chapter 6 exhibits and compares the result of the implementation of the accelerator.

• chapter 7 summarizes the conclusion of this thesis.

2

Chapter 2

Cryptography

This chapter introduces the basic ideas of cryptography, covering both asymmetric and
symmetric cryptography, as well as touching on the main post-quantum cryptographic
systems, with a particular focus on McEliece and HQC schemes.

2.1 Cryptography
Cryptography involves using mathematical principles to encode and decode data, ensuring
secure storage and transmission of sensitive information over unsecured networks, making
it inaccessible to unauthorized individuals. These mathematical concepts are applied to
create cryptographic algorithms, which are mathematical functions employed to encrypt
and decrypt data. These algorithms take a key and a plaintext as input and produce a
ciphertext as output.

Cryptographic algorithms are primarily classified into two categories:

• Symmetric cryptography: in this approach, the same secret key is used both for
encryption and decryption.

• Asymmetric cryptography: this method involves key pairs, consisting of a public
key, which is accessible to anyone, and a private key, known only to the key pair
owner.

2.1.1 Symmetric cryptography

Symmetric cryptography involves algorithms that employ a single key both for encrypting
and decrypting data. In Figure 2.1, the algorithm uses the secret key and plaintext to
generate a ciphertext, and vice versa for decryption.

Like every algorithm, Symmetric cryptography has its advantages and disadvantages.
It is very fast for encrypting and decrypting data. However, Symmetric cryptography is
not secure for transmitting secure data due to the difficulty of secure key distribution.

3

Cryptography

DecryptionEncryption

Plaintext
document

Encrypted
document

Plaintext
document

Secret key

Figure 2.1: Symmetric cryptography

2.1.2 Asymmetric cryptography
Asymmetric cryptography, called Public Key Cryptography, is an asymmetric scheme that
uses a pair of keys for encryption and decryption. As shown in Figure 2.2, the private and
public keys have a reciprocal function, when one is used to encrypt, the other one must
be used to decrypt. This feature provides separate benefits, the primary benefit is that
it allows people who have no secure channel to exchange messages securely. This feature

private keypublic key

Plaintext
document

Encrypted
document

Plaintext
document

key pair

Encryption Decryption

Figure 2.2: Asymmetric cryptography

is for example used to share a common secret key on an unsecured channel because all
communications involve only public keys, and no private key is transmitted or shared.
The other benefit is that it could be used as a digital signature. Digital signatures let the
recipient of information verify the authenticity of the information origin, and also verify
that the information was not altered. In this case, the private key is used for encrypting
the data, if the information can be decrypted by the public key this demonstrates that
the file origin is verified (Figure 2.3).

4

2.2 – Post Quantum Cryptography

Sign

Alice's
private key

Digital signed
document

Verify

Alice's
public key

Alice

Bob

Figure 2.3: Digital signature

2.2 Post Quantum Cryptography

Post-quantum cryptography is the development of cryptographic algorithms, that are re-
sistant to quantum computer attacks. The main development of these algorithms interests
public key algorithms, the problem with the popular algorithms such as RSA, DSA, and
ECDSA, is that they rely on mathematical problems that could be solved easily by a
quantum computer running Shor’s algorithm. As of 2023, quantum computers do not
present the required computational power to be able to break the widely used crypto-
graphic algorithms. IBM aims to develop a 100,000-qubit system by 2033[1]. Therefore
is crucial to develop a cryptographic system able to withstand an attack from a quantum
computer. Post Quantum Cryptography research is mostly focused on 4 approaches:

• Lattice-based cryptography: based on hard problems over lattices.

• Multivariate cryptography: based on the NP-complete problem of solving mul-
tivariate equations over a finite field.

• Hash-based cryptography: based on finding the isogeny map between two super-
singular elliptic curves.

• Code-based cryptography: resorts to problems from algebraic coding theory.

This study focuses only on code-based cryptography, with a particular focus on HQC and
McEliece schemes.

5

Cryptography

2.2.1 Code-based cryptography
Code-based cryptographic algorithms offer a unique approach to achieving cryptographic
security by leveraging the mathematical properties of error-correcting codes. These al-
gorithms introduce intentional noise into the encoded message, requiring the recipient
to effectively filter out this noise to retrieve the original message. This noise-based ap-
proach serves as a robust foundation for cryptographic security, as it relies on the inherent
complexity of decoding random linear codes.

The pioneering work in this field is credited to Robert J. McEliece, whose seminal
contribution laid the groundwork for code-based cryptography. In McEliece’s formulation,
the private key comprises a linear code C capable of correcting a certain number of errors.
Conversely, the public key C′ is also constructed as a linear code [21]. The encryption
process involves encoding the message using the public key C′, while decryption relies on
the secret key C to decode the message accurately.

One of the distinguishing features of code-based cryptographic algorithms is their re-
silience to quantum attacks. Unlike many traditional cryptographic schemes vulnerable
to quantum algorithms, code-based cryptography remains robust against quantum com-
puting threats. This inherent resistance to quantum attacks has positioned code-based
cryptography as a promising candidate for securing sensitive information in the era of
quantum computing.

Furthermore, ongoing research in code-based cryptography continues to explore new
techniques and optimizations to enhance both security and efficiency. By leveraging ad-
vancements in coding theory and algorithmic optimization, code-based cryptographic al-
gorithms strive to address emerging challenges and adapt to evolving threat landscapes,
ensuring their relevance and efficacy in modern cryptographic applications.

HQC (Hamming-based Quasi-Cyclic) is a cryptographic scheme that falls under the
umbrella of code-based cryptography. HQC is designed to provide post-quantum security
by leveraging the properties of quasi-cyclic codes derived from Hamming codes. HQC of-
fers a balance between security and efficiency, making it a promising candidate for securing
sensitive information in the face of quantum computing threats. Ongoing research and
standardization efforts aim to further refine and optimize HQC for widespread adoption
in practical cryptographic applications.

Let’s now see the two algorithms a little bit more in detail.

6

2.2 – Post Quantum Cryptography

Classic McEliece

The Classic Mceliece is a code-based public key encryption scheme. This cryptosystem is
based on the Niederreiter framework with binary Goppa code as secret codes. Beginning
with the depiction of the scheme. Suppose m is a positive integer such that q = 2m, where
n is less than or equal to q, and t is a positive integer greater than or equal to 2, satisfying
the condition mt < n. Set k = n−mt. [21].

Moreover, select a monic irreducible polynomial f(z) ∈ F2[z] of degree m and associate
Fq with F2[z]/f(z). Given these conditions, each element in F2m can be expressed as

u0 + u1z + . . . + um−1zm−1

corresponding to a unique vector (u0, u1, . . . , um−1) ∈ Fm
2 .

With these preliminary definitions established, we can now proceed to describe the
public key encryption scheme:

• Key Generation

1. Generate a random monic irreducible polynomial g(x) ∈ Fq[x] of degree t and
select n distinct random elements α1, . . . , αn ∈ Fq.

2. Compute a parity-check matrix H̃ = {h̃ij}ij of the binary Gopppa code with
parameters (g, α1, . . . , αn) by evaluating h̃ij = αi−1

j /g(αj).
3. Apply an invertible matrix to H̃ and permute the columns to obtain a matrix

in systematic form H = (Idn−k|T).
Denote with (α′

1, . . . , α′
n) as the permutation of (α1, . . . , αn) .

Note that (Idn−k|T) is a parity-check matrix of the Goppa code defined by
(g, α′

1, . . . , α′
n)

The private key is the (n + 1)-tuple Γ′ = (g, α′
1, . . . , α′

n).
The public key consists of the (n− k)× (n− k) matrix T and the number t

• Encryption: Encrypt the message as weight t vector e ∈ Fn
2 and compute

c0 = He⊤ ∈ Fn−k
2 .

• Decryption: Extend c0 to v = (c⊤
0 , 0, . . . , 0) ∈ Fn

2 .The parameters Γ′ of the private
key define a Goppa code, enabling the use of a decoding algorithm for Goppa codes
to find a codeword c with distance ≤ t to v (if it exists).

Recover e as e = v − c and verify that it satisfies He⊤ = c0 and is of weight
t.

The decryption process functions as follows: Since H = (Idn−k|T) , we have

Hv⊤ = Idn−k c0 = c0.

Therefore,
H(v + e)⊤ = 0,

7

Cryptography

and c = v− e forms a codeword of the Goppa code defined by Γ′.
Since this code has minimum distance at least 2t − 1, we deduce that v − e is also

the unique codeword within distance t from v. Thus, we can recover the error vector as
e = v− c.

Classic Mceliece, as depicted in Table 2.1, offers various proposed parameter sets, with
corresponding input and output sizes for different security levels. Level 1 provides a
security level of 128 bits, level 3 offers 192 bits, and level 5 provides 256 bits of security.

Parameter set m n t Public key Private key Ciphertext Security level
mceliece348864/f 12 3488 64 261120 6492 128 1
mceliece460896/f 13 4608 96 524160 13608 188 3
mceliece6688128/f 13 6688 128 1044992 13932 240 5
mceliece6960119/f 13 6960 119 1047319 13948 226 5
mceliece8192128/f 13 8192 128 1357824 14120 240 5

Table 2.1: Parameters for Classic McEliece

HQC

HQC (Hamming Quasi-Cyclic) is a public key encryption scheme based on code-based
cryptography. It leverages the quasi-cyclic framework, combining a decodable code of
choice with circulant matrices. Suppose n is such that (xn− 1)/(x− 1) is irreducible over
F2. Choose a positive integer k < n and an [n, k] linear code C with an efficient decoding
algorithm, having error-correcting capacity given by t [21]. Considering the error weights
w, wr, and we, all within the range of

√
n

2 , define R := F2[x]/(xn− 1). Any element a ∈ R
can be expressed as:

a = an−1xn−1 + an−2xn−2 + . . . + a0

for unique a0, a1, . . . , an−1 ∈ F2. For such an element its Hamming weight is denoted

wtH(a) = |{i ∈ {0, 1, . . . , n− 1} | ai /= 0}|.

It is also possible to associate a vector a = (a0, a1, . . . , an−1) ∈ Fn
2 with the element a =qn−1

i=0 aix
i ∈ R, and vice versa. In the following description, any bold letter, e.g., u, refers

to the associated vector in Fn
2 of an element in R, e.g., u ∈ R.

• Key generation: Given the parameters (n, k, t, w, we, wr) , select a generator ma-
trix G of the code C and generate a random h ∈ R .

– Private key: Randomly generate a pair (y, z) ∈ R2 such that wtH(y) =
wtH(z) = w.

– Public key: Compute s = y + hz ∈ R . The public key is (G, h, s, t).

8

2.2 – Post Quantum Cryptography

• Encryption: randomly generate an element e ∈ R such that wt(e) = we and a pair
(r1, r2) ∈ R2 such that wtH(r1) = wtH(r2) = wr.
Let m ∈ Fk

2 be the message, encrypted as the pair c = (u, v) ∈ R2 , where u =
r1 + hr2 and v = mG + sr2 + e .

• Decryption: According to the quasi-cyclic framework, compute:

v− uz = mG + (yr2 − r1z + e).

The term yr2− r1z + e has Hamming weight ≤ t with high probability (this follows
non-trivially from the choice of the parameters). If so, use the decoding algorithm
of C to recover the message m.

The table displayed in Table 2.2 provides the proposed parameters for HQC, accom-
panied by an upper estimate of the decoding failure rate (DFR), as well as the sizes of
ciphertext and keys, all expressed in bytes. The security levels correspond to 128-bit,
192-bit, and 256-bit security, respectively.

Security n w wr = we Public key Private key Ciphertext DFR
Level 1 17669 66 75 2249 40 4481 2−128

Level 3 35851 100 114 4522 40 9026 2−192

Level 5 57637 131 149 7245 40 14469 2−256

Table 2.2: Parameters for HQC

9

10

Chapter 3

Background

The forthcoming section explores the landscape of mathematical foundations essential
for a profound comprehension of the subsequent code implementations. Because of the
complexity of the code, it becomes imperative to establish a small mathematical ground-
work. This section serves as a gateway, offering a concise exploration of the mathematical
concepts and principles that underpin the algorithms and operations to follow.

The chapter begins with an introduction to the concept of finite fields, focusing specifi-
cally on the finite field of characteristic 2. Following this, the discussion transitions to the
introduction of polynomial multiplication, employing the fast Fourier transform (FFT)
for its application. Finally, the chapter concludes by extending the concept of polynomial
multiplication through FFTs to finite fields.

3.1 Finite Fields
In mathematics, a finite field, also known as a Galois field, is a field that consists of a
finite number of elements. A finite field is characterized by an order pn, where p is a prime
number and n is a positive integer. The field is defined by two operations: multiplication
and addition, which satisfy the following properties:

• Elements exhibit closure under addition modulo pn.

• Elements demonstrate closure under multiplication modulo pn.

• Every non-zero element possesses a multiplicative inverse.

Fields with prime order can be used to construct prime-power fields, extending the
field of smaller order using a primitive polynomial. Considering a polynomial

f(x) = a0 + a1x + · · ·+ anxn, ai ∈ Fq (3.1)

f(x) is defined to be irreducible if it can not be factored into the product of two non-
constant polynomials. That implies:

f(x) = a0 + a1x + · · ·+ anxn = 0 (3.2)

11

Background

has no roots in the field Fq.
A primitive element of Fq is a generator of the multiplicative group of the field. A

primitive polynomial is defined as a polynomial in which all the roots belong to the field’s
set of primitive elements. To form a field Fpn , extending the prime field Fp necessitates
the use of a primitive polynomial of degree n. Defined σ a primitive element, the field is
generated as follows:

Fpn = {0, σ, σ2, . . . , σpn−1} (3.3)

The common extension fields encountered in this study are the fields F2n . In the following
sections, we will describe in detail the operations.

3.2 Finite Fields Of Characteristic Two
Finite fields of characteristic two are fields that derive from the extension of the field
F2, obtaining as a result a field F2n . The field elements can be represented as binary
vectors of dimension n, relative to a given basis (α0, α1, . . . αn−1) of F2n as linear space
over F2. Within this context, the core operations of addition and multiplication are of
paramount importance. In particular:

• The addition operation is seamlessly executed through the exclusive OR (XOR)
operation;

• The multiplication is contingent upon the chosen basis.

Beyond these fundamental operations, other crucial algorithms contribute to the robust-
ness and versatility of finite fields of characteristic two. This section will delve into the
intricacies of Modular Reduction, Multiplication, Squaring, and Inversion. These algo-
rithms not only enhance the computational efficiency of finite fields but also play a pivotal
role in various cryptographic applications and error-correcting codes. Understanding and
harnessing these algorithms are imperative for navigating the intricacies of finite fields,
particularly in the realm of characteristic two.

3.2.1 Modular Reduction
When performing arithmetic operations, using an irreducible polynomial ensures that the
result of arithmetic operations stays within the field. This operation is called modular
reduction. The choice of the irreducible polynomial can diminish the complexity of this
operation. By choosing f(x) as a low-weight polynomial, One with the minimum number
of non-zero coefficients, reduction modulo f(x) becomes an operation that can be executed
in time O(Wn), where W is the weight of the irreducible polynomial [3]. In practical
contexts, the irreducible polynomial is either a trinomial or pentanomial (W = 3 or 5).
For a finite field F2n , empirical studies for values of n into the thousands show that
trinomials exist for over half of the values of n covered ([4], [17]). In addition, in all cases
where a trinomial is not available, an irreducible polynomial can be found.

12

3.2 – Finite Fields Of Characteristic Two

Algorithm 1 operates using an irreducible trinomial. It performs reduction of a poly-
nomial of degree 2n− 2, obtaining a polynomial of degree n− 1.

Algorithm 1 Reduction Modulo f(x) = xn + xt + 1, 0 < t < n.

Input: a(x) = a0 + a1x + a2x2 + · · ·+ a2n−2x2n−2 ∈ F2[x]
Output: r(x) ≡ a(x) (mod f(x)), deg r(x) < n .

1: for i = 2n− 2 to n by −1 do
2: ai−n ← ai−n + ai , ai−n+t ← ai−n+t + ai .
3: end for
4: return r(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1

The equivalent for an irreducible pentanomial is defined in Algorithm 2. The considered
algorithms operate with an "in-place" method, avoiding the use of extra storage for the
result r(x).

Algorithm 2 Reduction Modulo f(x) = xn + xt + xj + 1, 0 < t < n.

Input: a(x) = a0 + a1x + a2x2 + · · ·+ a2n−2x2n−2 ∈ F2[x]
Output: r(x) ≡ a(x) (mod f(x)), deg r(x) < n .

1: for i = 2n− 2 to n by −1 do
2: ai−n ← ai−n + ai , ai−n+t ← ai−n+t + ai , ai−n+t+j ← ai−n+t+j + ai .
3: end for
4: return r(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1

3.2.2 Multiplication
The multiplication of two elements of F2n is the product of two polynomials of degree
at most n − 1 in F2[x]. The multiplication of elements in F2n is a carryless version of
the multiplication of two n-bit integers. The majority of the methods for large integer
multiplication could be applied, such as Schönhage and Karatsuba algorithms. The mul-
tiplication of two elements A, B ∈ F2m , with A(α) =

qm−1
i=0 aiα

i and B(α) =
qm−1

i=0 biα
i

is given as:

C(α) =
m−1Ø
i=0

ciα
i ≡ A(α) ·B(α) mod F (α)

where the multiplication is polynomial multiplication, and all αt , with t ≥ m are reduced
with F (α) [11]. Two algorithms can be applied to calculate the product :

• Shift-and-add method with the reduction step inter-leaved [10]

• Comb method [15]

The shift-and-add method with the reduction step interleaved performs the multiplication
by interleaving shift and XOR with the modular reduction, as shown in Algorithm 3.

13

Background

Software implementation of this algorithm is not suitable due to the difficulty of executing
bitwise shifts across the words on a processor

Algorithm 3 Shift-and-Add Most Significant Bit (MSB) first F2m multiplication
Input: A =

qm−1
i=0 aiα

i, B =
qm−1

i=0 biα
i where ai, bi ∈ F2

Output: C = A ·B mod F (α) =
qm−1

i=0 ciα
i where ci ∈ F2

1: C ← 0
2: for i = m− 1 downto 0 do
3: Ci ← bi · (

qm−1
i=0 aiα

i) + (
qm−1

i=0 ciα
i) · α mod F (α)

4: end for
5: Return (C)

The Comb method shown in Algorithm 4 presents a more efficient way to implement
a multiplier. The operation is managed in two separate steps: first, it performs the
polynomial multiplication, obtaining a 2n-bit length polynomial; then, it reduces the
polynomial to the length n using modular reduction.

Algorithm 4 Comb Method for F2m multiplication on a w-bit processor
Input: A =

qm−1
i=0 aiα

i, B =
qm−1

i=0 biα
i where ai, bi ∈ F2

Output: C = A ·B mod F (α) =
qm−1

i=0 ciα
i where ci ∈ F2

1: C ← 0
2: for j = 0 to w − 1 do
3: for i = 0 to s− 1 do
4: C ← bwi+j · SHIFT(A << w.i) + C
5: end for
6: A← SHIFT(A << 1)
7: end for
8: Return (C)

3.2.3 Squaring
Squaring is an operation that does not require XOR and shifting. To square a polynomial:

C ≡ A2 mod F (α)
≡ (am−1α2(m−1) + am−2α2(m−2) + . . . + a1α2 + a0) mod F (α) (3.4)

Polynomial squaring is implemented by increasing the size of C to double its bit-length
and interleaving 0 bits in between the original bits of C, then reducing the double-length
result [11].

14

3.2 – Finite Fields Of Characteristic Two

3.2.4 Inversion
The inversion is usually computed using the extended Euclidean algorithm. This algorithm
is an extension of the Euclidean algorithm, which is used to find the greatest common
divisor (GCD) of two integers. The extended version also finds the coefficients of Bézout’s
identity. Inversion is an operation that is significantly slower than multiplication. An
alternative to the extended Euclidean algorithm is to perform inversion by replacing this
operation with a chain of multiplications and squaring [3]. These schemes are based on
the field equation, which can be reformulated as:

β−1 = β2n−2 =
1
β2n−1−1

22
(3.5)

for all β /= 0 in F2n . The objective is to reduce the number of multiplications by utilizing
squaring, which is cheaper. A technique to minimize the number of multiplications is
described by Itoh and Tsuji (Itoh–Tsujii inversion algorithm) [8]. The method is
based on the identities:

β2n−1−1 =


β(2

n−1
2 −1)(2

n−1
2 +1) =

3
β2

n−1
2 −1

42
n−1

2

β2
n−1

2 −1, n odd,

ββ2n−1−2 = β
1
β2n−2−1

22
, n even.

(3.6)

15

Background

3.3 Polynomial Multiplication
Given two polynomials A(x) =

qn−1
j=0 ajx

j and B(x) =
qn−1

j=0 bjx
j , the result of the product

is a polynomial C(x) =
q2n−2

j=0 cjx
j where cj =

qj
k=0 akbj−k. Computing C(x) using

the schoolbook method would require Θ(n2). There are methods that efficiently solve
polynomial multiplication.

• Karatsuba algorithm Θ(nlog2 3)

• Fast Fourier Transform Θ(n lg n)

In this study, we will explore the techniques and methodologies related to polynomial
multiplication, focusing particularly on the application of the FFT. This exploration will
be structured into the following subsections:

1. Polynomial Representation: Discussing different representations of polynomials,
namely coefficient representation and point-value representation, and the operations
involved in converting between the two representations.

2. Fast Multiplication of Polynomials in Coefficient Form: Introducing practical
methods for multiplying polynomials represented in coefficient form efficiently, laying
the groundwork for the subsequent discussion on FFT.

3. Discrete Fourier Transform (DFT): Providing an overview of DFT, which serves
as the foundation for FFT, and its significance in polynomial multiplication.

4. Fast Fourier Transform (FFT): Exploring the FFT algorithm, its divide-and-
conquer strategy, and its application in polynomial multiplication.

3.3.1 Polynomial representation
A polynomial could be represented in two different ways:

• Coefficient representation.
The coefficient representation of a polynomial A(x) =

qn−1
j=0 ajx

j of degree n is an
array of coefficients a = (a0, a1, . . . , an−1).

• Point-value representation.
The point-value representation of a polynomial A(x), bounded by a degree of n,
consists of a collection of n pairs of point-value coordinates:

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}

where each xk is unique, and yk = A(xk) for k = 0,1, . . . , n − 1. Each polynomial
can be represented with different point-value pairs.

Converting from one representation to the other can be done through two operations:

16

3.3 – Polynomial Multiplication

• from coefficient to point-value, it is required to evaluate the polynomial in coefficient
representation in n distinct points. Using Horner’s method requires Θ(n2) time to
evaluate a polynomial of length n.

• from point-value to coefficient, the operation that is performed is called interpolation.
Starting from a set {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}, the coefficients are computed
by

a = V (x0, x1, . . . , xn−1)−1y (3.7)
where V is the inverse Vandermode matrix and y is the column vector of the yi

points. Solving the linear equations, requires O(n3). A more efficient algorithm for
n-point interpolation relies on Lagrange’s formula:

A(x) =
n−1Ø
k=0

yk

r
j /=k(x− xj)r

j /=k(xk − xj)
. (3.8)

The algorithms based on the Lagrange’s formula require O(n2).
The different representations have different advantages. Given two polynomials, com-
puting the polynomial multiplication in the point-value form takes O(n), while in the
coefficient form, the time required is O(n2).

3.3.2 Fast multiplication of polynomials in coefficient form
For practical reasons, polynomials are always represented in coefficient form. To make
the use of polynomial multiplication in point-value form feasible, an efficient algorithm
for evaluation and interpolation should be devised. The Fast Fourier Transform, using
the special properties of the complex roots of unity as the evaluation points, evaluates
and interpolates a polynomial in Θ(n log n).
This approach is summarized in 3 steps, Fig 3.1:

1. Evaluate: compute the point-value representations of A(x) and B(x) of length 2n,
by applying the FFT of order 2n on each polynomial.

2. Pointwise multiply: compute
C(x) = A(x)B(x)

by multiplying these values together pointwise.

3. Interpolate: compute the coefficient representation of C(x) applying the IFFT on
the point-values pairs.

In terms of computational complexity, the required steps exhibit the following com-
plexities:

• Evaluation: Θ(n lg n)

• Pointwise Multiplication: Θ(n)

• Interpolation: Θ(n lg n)
Overall the complexity over the entire computation is Θ(n lg n).

17

Background

Ordinary multiplication

Evaluation

Pointwise multiplication

Interpolation

 Time

 Time

 Time

 Time

Figure 3.1: Fast Polynomial Multiplication

3.3.3 Discrete Fourier Transform
Before diving into the Fast Fourier Transform, let’s first describe the starting point of the
fast Fourier transform: the Discrete Fourier Transform. The Discrete Fourier Transform
is an operation that transforms a sequence of N complex numbers into another sequence
of complex numbers.

A complex nth root of unity refers to a complex number ω satisfying the equation:

ωn = 1

There are n complex nth roots of unity, that are described by e2πik/n for k = 0, 1, . . . , n−1.
In Figure 3.2, it is possible to observe the 8th roots of unity. the value ωn = e2πi/n is

Figure 3.2: 8th roots of unity

called the principal nth root of unity. All the other values are powers of ωn.

18

3.3 – Polynomial Multiplication

Given A(x) =
qn−1

j=0 ajx
j of degree-bound n, the polynomial will be evaluated at

ω0
n, ω1

n, ω2
n, . . . , ωn−1

n . The yk points are computed as:

yk = A(ωn
k) =

n−1Ø
j=0

ajω
kj
n (3.9)

the vector y = (y0, y1, . . . , yn−1) is the discrete Fourier transform of the polynomial A(x).

3.3.4 Fast Fourier Transform
The Fast Fourier Transform (FFT) is an algorithm designed to efficiently compute the
Discrete Fourier Transform (DFT) and its inverse (IDFT) in Θ(n log n) time complexity.
It achieves this efficiency by leveraging the properties of complex roots of unity.
When addressing a problem of size n, particularly when n is a power of 2, the Fast Fourier
Transform (FFT) method utilizes a divide-and-conquer strategy, using the even-indexed
and odd-indexed coefficients of A(x) separately to define two new polynomials Aeven(x)
and Aodd(x) of degree-bound n/2. In particular:

Aeven(x) = a0 + a2x + a4x2 + · · ·+ an−2xn/2−1

Aodd(x) = a1 + a3x + a5x2 + · · ·+ an−1xn/2−1 (3.10)

Considering that A(x) can be presented as:

A(x) = Aeven(x2) + xAodd(x2) (3.11)

the problem of evaluating A(x) at ω0
n, ω1

n, . . . , ωn−1
n reduces to :

1. evaluating the degree-bound n/2 polynomials Aeven(x2) and Aodd(x2) at the points

(ω0
n)2, (ω1

n)2, . . . , (ωn−1
n)2

2. combining the results according to the equation(3.11).

Applying the halving lemma, the list of values is halved, resulting in n/2 complex (n/2)th
roots of unity, where each root appears exactly twice. Therefore, the FFT recursively
evaluates the two polynomials of degree n/2 at n/2 complex (n/2)th roots of unity.

19

Background

The final algorithm is described in Algorithm 5.

Algorithm 5 Fast Fourier Transform
FFT(a,n)

1: if n == 1
2: return a
3: ωn = e2πi/n

4: ω = 1
5: aeven = (a0, a2, . . . , an−2)
6: aodd = (a1, a3, . . . , an−1)
7: yeven = FFT(aeven, n/2)
8: yodd = FFT(aodd, n/2)
9: for k = 0 to n/2− 1

10: yk = yeven
k + ω yodd

k

11: yk+(n/2) = yeven
k − ω yodd

k

12: ω = ωωn

13: return y

The FFT works as follows. Lines 1-2, represent the base case of the recursion. Lines
5-6, divide the problem into two subproblems. Lines 3,4, and 12 keep ω update. Lines
7-8 compose the two recursive calls. Lines 10-11 are used to combine the results of the
two recursive calls. The inverse of the Fast Fourier Transform can be constructed by
performing the reverse operations in reverse order.

20

3.4 – Fast Polynomial Multiplication in Finite Fields

3.4 Fast Polynomial Multiplication in Finite Fields
The previous section explained how polynomial multiplication can be computed in Θ(n log n)
time by exploiting the Fast Fourier Transform as a means to evaluate and interpolate
polynomials. Various techniques can be employed for polynomial multiplication when co-
efficients belong to a finite field, with common methods including Karatsuba and the Fast
Fourier Transform. This study specifically concentrates on the utilization of modified Fast
Fourier Transform variants to optimize the execution time of polynomial multiplication
within finite fields.

The two algorithms that will be treated are:

• Number Theoretic Transform (discussed in subsection 3.4.1);

• Additive Fast Fourier Transform (discussed in subsection 3.4.2);

The same approach is used to perform the multiplication:

1. Evaluation

2. Pointwise multiplication

3. Interpolation

In this case, the arithmetic operations are substituted with the relative operations of the
field.

3.4.1 Number Theoretic Transform
The Number Theoretic Transform is a special version of the discrete Fourier transform over
a finite field [14]. Given a field Zq, in order to apply the Number Theoretic Transform, the
primitive n-th root of unity ωn should exist [13]. The transformed polynomial is defined
as â = NTT(a), where

âj =
n−1Ø
i=0

aiω
ij
n mod q, j = 0, 1, . . . , n− 1. (3.12)

The inverse transform, denoted by INTT, is defined as a = INTT(â), where

ai = n−1
n−1Ø
j=0

âjω
−ij
n mod q, i = 0, 1, . . . , n− 1. (3.13)

3.4.2 Additive Fast Fourier Transform
The Additive FFT algorithms are a class of algorithms that are based on the additive
properties of the field. Traditional FFT algorithms like the Number Theoretic Transform
and Fast Fourier Transform are applicable when the n points form an n-th roots of unity
(thus constituting a cyclic multiplicative group of order n), where n is either a power of
2 or a product of small primes [7]. These FFT algorithms rely on the factorization of

21

Background

the polynomial xn − 1, which corresponds to the subgroup structure of the multiplicative
group of order n. Due to this factorization, these transforms are often referred to as
multiplicative FFTs.

The limitation of multiplicative Fast Fourier Transforms (FFTs) lies in their inability to
handle problem sizes n that are not products of small primes, or when the underlying fields
lack the necessary n-th roots of unity. This issue arises notably in Fourier Transforms
over finite fields. When working with a field F2k , where n is a power of two, the field
cannot support multiplicative FFTs of length n due to the absence of primitive n-th roots
of unity in any field with characteristic two [7].
An additive Fast Fourier Transform (FFT) is characterized by having evaluation points
that form an additive group. In these algorithms, the polynomial is evaluated at each of
the roots of the polynomial xn−x. By employing an Additive FFT is possible to perform
the evaluation and interpolation on those finite fields where the classic multiplicative FFTs
are not an option.
There are different algorithms based on the Additive Fast Fourier Transform. The major
ones are:

• The additive FFT of von zur Gathen and Gerhard [19]

• The additive FFT of Wang and Zhu [20]

• The additive FFT of Cantor [5]

• Frobenius Additive Fast Fourier Transform [12]

• Gao and Mateer Additive Fast Fourier Transform [7]

This study opts for the Additive Fast Fourier Transform (AFFT) as the primary focus,
citing the abundance of resources on the Gao and Mateer Additive Fast Fourier Transform
and its widespread application in decoding Reed-Solomon codes. Consequently, in subse-
quent references, the Gao and Mateer Additive Fast Fourier Transform will be denoted
simply as the Additive Fast Fourier (AFFT).

Gao and Mateer Additive Fast Fourier Transform

Starting from a field F2m , the number of elements of the field is 2m.
Let n = 2m and f ∈ F[x] of degree less than n. Define B = ⟨β1, . . . , βm⟩ = {a1β1 + · · ·+
amβm : a1, . . . , am ∈ F2}, where βi are linearly independent over F2.
The elements of B are ordered as follows. For any 0 ≤ i ≤ 2m the binary representation
of i is

i = a1 + a2 · 2 + · · ·+ am · 2m−1 = (a1, a2, · · · , am)2, (3.14)
where every aj = 0 or 1. The ith element of B is presented as

B[i] = a1β1 + a2β2 + · · ·+ amβm. (3.15)

provided a polynomial f(x) of degree less than n, the Additive Fast Fourier Transform
computes the values of f at specified points within a set B, represented as

FFT(f, m, B) = (f(B[0]), f(B[1]), . . . , f(B[n− 1])). (3.16)

22

3.4 – Fast Polynomial Multiplication in Finite Fields

The algorithm reduces the problem of size n > 1 to two problems of half the dimension.

Algorithm 6 Additive FFT of length n = 2m (arbitrary m)
Input: (f, m, B) where m ≥ 1, f(x) ∈ F[x] of degree < n = 2m , and

B = ⟨β1, . . . , βm⟩ where βi’s are linearly independent over F2.
Output: FFT(f, m, B) = (f(B[0]), f(B[1]), . . . , f(B[n− 1])).

Step 1. If m = 1 then return (f(0), f(β1))
Step 2. Compute g(x) = f(βmx).
Step 3. Compute the Taylor expansion of g(x) and

let g0(x) and g1(x) be as in (3.17).
Step 4. Compute γi = βi · β−1

m and δi = γ2
i − γi for 1 ≤ i ≤ m− 1

Let G = ⟨γ1, . . . , γm−1⟩, and D = ⟨δ1, . . . , δm−1⟩.
Step 5. Let k = 2m−1 . Compute

FFT(go,m− 1,D) = (u0, u1, . . . , uk−1), and
FFT(g1,m− 1,D) = (v0, v1, . . . , vk−1).

Step 6. For 0 ≤ i < 2m−1 , set wi = ui + G[i] · vi and wk+i = wi + vi

Step 7. Return (w0, w1, . . . , wn−1).

In Algorithm 6, the AFFT is presented. It employs the same structure as traditional
FFTs. In the previous FFT, the problem was reduced by dividing A(x) into two functions,
Aeven(x) and Aodd(x), each with a degree which is half of the original polynomial. In
the additive FFT, this is achieved using the Taylor expansion, as shown in step 3 of
Algorithm 6.
Starting from the polynomial g(x), the Taylor expansion computes

h0(x), h1(x), . . . , hm−1(x) ∈ F[x]

such that
f(x) = h0(x) + h1(x) · (xt − x) + · · ·

+ hm−1(x) · (xt − x)m−1

In the finite fields of characteristic two, the result is represented as:

f(x) =
N/2−1Ø

i=0
hi(x) · (x2 − 1)i,

23

Background

The Algorithm 7 describes the Taylor expansion.

Algorithm 7 TaylorExpansion(f ,N)
Input: f ∈ F[x] of degree < N
Output: The Taylor expansion {h0, . . . , hN/2−1} of f w.r.t. (x2 − x)

1: if N ≤ 2 then
2: return {f}
3: k ← N/4
4: g0 ←

q2k
i=0 fi · xi

5: g1 ←
q2k

i=0 fi+2k · xi

6: for i = 0, . . . , k − 1 do
7: g1(x)← g1(x)⊕ g1,i+k · xi

8: g0(x)← g0(x)⊕ g1,i · xi+k

9: V0 ← TaylorExpansion (g0, N/2)
10: V1 ← TaylorExpansion (g1, N/2)
11: return V0||V1

This operation performs only field additions. At the end, the original polynomial can
be described as

g(x) = g0(x) + (x2 − x)g1(x), (3.17)

where g0(x) and g1(x) are polynomials dimensions halved with respect to the original.
The taylor expansion in terms of complexity requires 1

2N log N − 1
2N additions. In step 2

of Algorithm 6, the weighted polynomial is computed. In step 4, Gammas and Deltas are
calculated using

γi = βi · β−1
m , 1 ≤ i ≤ m− 1, (3.18)

δi = γ2
i − γi 1 ≤ i ≤ m− 1, (3.19)

obtaining
D = ⟨δ1, . . . , δm−1⟩

G = ⟨γ1, . . . , γm−1⟩,

where delta is the new basis for the next recursive call, and gamma is used in step 6. Step
6, combines the result coming from the recursive calls through the butterfly.

24

Chapter 4

Software Implementation

This chapter is dedicated to the description of the software model of the polynomial
multiplier. The core element of this model is the Additive Fast Fourier Transform, which
will be our method for evaluating and interpolating polynomials. Functionally, the model
is organized as follows

• Evaluation of the two polynomials A(x) and B(x)

• Pointwise multiplication of the coefficients of A(x) and B(x)

• Interpolation of the resulting polynomial C(x)

Before and after these steps, depending on the algorithm and the level of security cho-
sen, there will be steps of pre-processing and post-processing of the data to follow the
specifications of the algorithms. The following section will present:

• The arithmetic unit, and all its elements;

• The Additive Fourier Transform;

• The complete multiplier.

• The results achieved after integrating the models in HQC and McEliece

The present section will deal with the presentation of the C code of the different functions
interesting the polynomial multiplier. The model will reuse and readapt algorithms coming
from the PQClean library 1, McEliece2 and HQC3 official algorithms.

1https://github.com/PQClean/PQClean
2https://classic.mceliece.org/impl.html
3https://pqc-hqc.org/implementation.html

25

Software Implementation

4.1 Arithmetic Unit
The arithmetic operations required for the model are based on the algebra of the finite
fields of characteristic two, described in the previous section. In the various algorithms,
the fields of interest are:

• F212/(z12 + z3 + 1) and F213/(z13 + z4 + z3 + z + 1) for McEliece

• F216/(z16 + z5 + z3 + z2 + 1) for HQC

Each field is characterized by an irreducible polynomial used to reduce an element outside
of the field during arithmetic operations. The model necessitates the following opera-
tions: squaring, inversion, multiplication, exponentiation, and addition. Each operation
is specifically developed for a particular field, except for addition, which is the same for
all.

In the implementation of each finite field, distinct source files detail the operations in-
volved. To enhance modularity and streamline functionality, a wrapper function is crafted
for each operation. These wrapper functions serve as centralized points of access, orga-
nizing the execution of multiple underlying functions. Notably, the software architecture
capitalizes on the wealth of algorithms already delineated in the official codebases of HQC
and McEliece. This decision is driven by the desire to expedite model development, and
this ensures an efficient integration of well-established cryptographic algorithms.

4.1.1 Multiplication
As explained in subsection 3.2.2, there are two styles of algorithms that can be applied:
Comb Method and the shift-add method.
For McEliece, the authors opted for the Comb Method; therefore, the multiplication is
conducted in two steps: multiplication and then reduction. In Code 4.1, defined inside the
file gf.c of mceliece460896 from the PQClean library, the multiplication is performed in
lines 15-16 using bitwise operations, storing the intermediate results in the variable tmp.
Finally, from line 19 to line 23, the product is reduced using the irreducible polynomial
f(x) = z12 +z3 +1. The code implements Algorithm 1 as the modular reduction, through
masking and shifting.

The implementation discussed involved the field F213 , and the same approach is applied
for F212 . The difference lies in the number of iterations in the for loop and the mask and
shifting done in the reduction step.

For HQC, the implementation of multiplication does not follow the Comb Method but
instead the shift-and-add method. Therefore, each step considers an intermediate product
followed by the reduction. The Code 4.2, defined in the file gf_16.c of the software model,
implements the multiplication in F216 having f(z) = z16 +z5 +z3 +z2 +1 as the reduction
polynomial. from line 7 to line 15, the multiplication and reduction are performed using
bitwise operations. At each iteration of the loop, for each bit of b that is set, a is added
to the intermediate result. if the most significant bit of a is set to 1, a is shifted to the
left by one position and reduced with the irreducible polynomial.

26

4.1 – Arithmetic Unit

1 uint16_t gf_mul_13 (uint16_t in0 , uint16_t in1)
2 {
3 int i;
4

5 uint64_t tmp;
6 uint64_t t0;
7 uint64_t t1;
8 uint64_t t;
9

10 t0 = in0;
11 t1 = in1;
12

13 tmp = t0 * (t1 & 1);
14

15 for (i = 1; i < GFBITS_13 ; i++)
16 tmp ^= (t0 * (t1 & (1 << i)));
17

18

19 t = tmp & 0 x1FF0000 ;
20 tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
21

22 t = tmp & 0 x000E000 ;
23 tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
24

25 return tmp & GFMASK_13 ;
26 }

Code 4.1: gf_mul_13

4.1.2 Squaring
In the fields F212 and F213 , squaring is implemented following Equation 3.4. The equation
is implemented through two phases: squaring and then reduction.

In the case of F212 , in Code 4.3, defined in gf.c of mceliece348864 in the PQClean
library, the first four lines after the variables declaration perform bit manipulation on
x using the 4-bit masks defined in array B. This corresponds to interleaving 0 bits in
between the original bits of the input. The last lines compute the reduction through the
irreducible polynomial using masking and shifting.

In the codebase of the McEliece algorithms, which employ the field F213 , it is possible
to encounter other variants of squaring that are used to perform efficiently the inversion.
These are:

• gf_sq2_13(in), corresponds to performing out = (in2)2

• gf_sqmul_13(in,m) corresponds to performing out = (in2) m

• gf_sq2_13mul(in,m), corresponds to performing out = ((in2))2 m

The normal square (in2) in F213 is performed through gf_sqmul_13(in, 1).
In HQC where the field employed is F216 , the operation is done using multiplication.

27

Software Implementation

1 uint16_t gf_mul_16 (uint16_t a, uint16_t b)
2 {
3 uint32_t result = 0;
4 uint32_t mask = 1;
5

6 for (int i = 0; i < 16; ++i) {
7 if (b & mask) {
8 result ^= a;
9 }

10 if (a & 0x8000) {
11 a = (a << 1) ^ IRRED_POLY ;
12 } else {
13 a <<= 1;
14 }
15 mask <<= 1;
16 }
17

18 return result ;
19 }

Code 4.2: gf_mul_16

1 uint16_t gf_square_12 (uint16_t in)
2 {
3 const uint32_t B[] = {0 x55555555 , 0x33333333 , 0x0F0F0F0F , 0 x00FF00FF

};
4

5 uint32_t x = in;
6 uint32_t t;
7

8 x = (x | (x << 8)) & B[3];
9 x = (x | (x << 4)) & B[2];

10 x = (x | (x << 2)) & B[1];
11 x = (x | (x << 1)) & B[0];
12

13 t = x & 0 x7FC000 ;
14 x ^= t >> 9;
15 x ^= t >> 12;
16

17 t = x & 0x3000;
18 x ^= t >> 9;
19 x ^= t >> 12;
20

21 return x & ((1 << GFBITS_12) - 1);
22 }

Code 4.3: gf_square_12

28

4.1 – Arithmetic Unit

4.1.3 Inversion and Exponentiation

Inversion in all three fields F212 , F213 , and F216 is implemented using an addition chain of
squaring and multiplication. In particular, as explained previously in subsection 4.1.2, in
F213 , variant functions of squaring were developed by the authors to aid in the computa-
tion. The inversion makes use of the relationship in Equation 3.5, therefore computing
β2n−2 is equivalent to computing β−1.
In F212 , β2n−2 = β4094, To achieve the inversion, the operations in Algorithm 8 are per-
formed.

Algorithm 8 Inversion in F212

1: out = gf_square_12(in)= in2

2: tmp_11 = gf_mul_12(out, in)=in2 · in = in3

3: out = gf_square_12(tmp_11)=in6

4: out = gf_square_12(out)=in12

5: tmp_1111 = gf_mul_12(out, tmp_11)=in12 · in3 = in15

6: out = gf_square_12(tmp_1111)=in30

7: out = gf_square_12(out)=in60

8: out = gf_square_12(out)=in120

9: out = gf_square_12(out)=in240

10: out = gf_mul_12(out, tmp_1111)=in240 · in15 = in255

11: out = gf_square_12(out)=in510

12: out = gf_square_12(out)=in1020

13: out = gf_mul_12(out, tmp_11)=in1020 · in3 = in1023

14: out = gf_square_12(out)=in2046

15: out = gf_mul_12(out, in)=in2046 · in1 = in2047

16: out = gf_square_12(out)=in4094

In F213 , β2n−2 = β8190, To achieve the inversion, the operations in Algorithm 9 are
performed.

Algorithm 9 Inversion in F213

1: tmp_11 = gf_sqmul(in, in) = in2 · in = in3

2: tmp_1111 = gf_sq2mul(tmp_11, tmp_11) = (in3)2)2 · in = in15

3: out = gf_sq2(tmp_1111) = ((in15)2)2 = in60

4: out = gf_sq2mul(out, tmp_1111) = (in60)2)2 · in15 = in255

5: out = gf_sq2(out) = ((in255)2)2 = in1020

6: out = gf_sq2mul(out, tmp_1111) = (in1020)2)2 · in15 = in4095

7: out = gf_sqmul(out, 1) = ((in4095)2 · 1 = in8190

In F213 , β2n−2 = β65534, To achieve the inversion, the operations in Algorithm 10 are
performed.

29

Software Implementation

Algorithm 10 Inversion in F216

1: b = gf_square_16(a) = a2

2: c= gf_mul_16(b,a) = a3

3: d = gf_square_16(b) = a4

4: e = gf_mul_16(c,d) = a7

5: f = gf_mul_16(e,d) = a11

6: g = gf_mul_16(f,d) = a15

7: h = gf_square_16(g) = a30

8: h = gf_square_16(h) = a60

9: h = gf_square_16(h) = a120

10: i = gf_mul_16(h,e) = a127

11: j= gf_square_16(i) = a254

12: k= gf_mul_16(j,a) = a255

13: l= gf_square_16(k) = a510

14: l= gf_square_16(l) = a1020

15: l= gf_square_16(l) = a2040

16: l= gf_square_16(l) = a4080

17: l= gf_square_16(l) = a8160

18: n=gf_square_16(l)= = a16320

19: n=gf_square_16(n) = a32640

20: n=gf_square_16(n) = a65280

21: b=gf_mul_16(n,j) = a65534

The addition chains used for McEliece, are the ones already present in the official
algorithms, while for HQC the addition chain has been generated from a tool.

The exponentiation has been developed as an iterative algorithm performing multipli-
cation. All three algorithms resort to this approach.

4.2 Additive Fast Fourier Transform
The Additive Fast Fourier Transform is the direct development of the algorithm presented
by Gao and Mateer in software. The development of the Additive Fast Fourier Transform
started first from the recursive form presented in the paper by Gao and Mateer [7], fol-
lowed by the work done in the Additive Fast Fourier Transform in HQC, which includes
optimizations proposed by Bernstein, Chou, and Schwabe [2], and the work done by the
library Quadiron, by Vianney Rancurel and Lam Pham-Sy [18]. The additive Fast Fourier
Transform can be divided into multiple steps.

The algorithm takes as input a polynomial with coefficients in F2m with a degree less
than 2m(where m is the power of the field) and a beta basis. The recursive algorithm will
divide the problem into two subproblems of half the dimension.
The polynomial will go through the following steps:

• Twisting

30

4.2 – Additive Fast Fourier Transform

• Taylor expansion

• Gammas and Deltas computation

After the recursive calls, the last step is the calculation of ωi and ωk+i.
The model investigation adopted a recursive approach initially, later transitioning to

an iterative implementation. To facilitate comprehension, the recursive algorithm will be
comprehensively detailed first, succeeded by an exposition of the iterative algorithm.

4.2.1 Recursive Additive Fast Fourier Transform
The Recursive Additive Fast Fourier Transform follows the structure given by the AFFT
realized in HQC. This version is composed of two functions: the wrapper and the recursive
function. The wrapper realizes the first level of the Additive FFT. Then, it calls the
recursive function, which deals with the other levels. The wrapper function is used to
compute some values, before the recursive calls. It computes mainly the starter beta
basis.

Beta Basis Computation

The function compute_fft_betas(uint*betas, pqc_algorithm algorithm), defined
in the file fft_rec.c of the software model, computes the beta basis required as the initial
point for the Additive Fast Fourier Transform.

1 static void compute_fft_betas (uint16_t *betas , pqc_algorithm algorithm)
2 {
3 size_t i;
4 uint16_t beta = primitive_polynomial (algorithm);
5 uint16_t m = parameter_m (algorithm);
6 for (i = 0; i < m - 1; ++i)
7 {
8 if (beta == 2)
9 betas[i] = 1 << (m - 1 - i);

10 else
11 betas[i] = gf_exp_general (beta ,i+1, algorithm);
12 }
13 }

Code 4.4: Beta Basis Computation

The function (Code 4.4) takes as input the pointer of the array that will store the basis
and the algorithm used. The basis is computed starting from the primitive polynomial
relative to the field used. To generate linearly independent values, for each iteration,
the primitive polynomial is elevated. Defined α as the primitive polynomial, the basis is
described as B = ⟨α, α2, . . . , αm−1⟩.

This operation is implemented in two ways:

• when the primitive polynomial is 2, the computation resorts to shifting.

31

Software Implementation

• when the primitive polynomial is not 2, the computation resorts to exponentiation

This is done to optimize the case where the primitive polynomial is 2, without resorting
to complex operations such as the exponentiation.

Twisting

The twisting of the polynomial is an operation that takes a polynomial f(x) of length n
and performs the following computation:

f(βmx) =
n−1Ø
j=0

ajβ
j
m

Code 4.5, defined in the file fft_rec.c of the software model, iterates over the coefficient
of the polynomial f(x), multiplying each term by beta_m_pow, which contains the power
βj

m.

1 static void fft_rec_v2 (uint16_t *w, uint16_t *f, size_t f_coeffs ,
uint8_t m, uint32_t m_f , const uint16_t *betas , pqc_algorithm
algorithm) {

2 .
3 .
4 .
5 if (betas[m - 1] != 1) {
6 beta_m_pow = 1;
7 x = 1;
8 x <<= m_f;
9 for (i = 1; i < x; ++i) {

10 beta_m_pow = gf_mul_general (beta_m_pow , betas[m - 1],
algorithm);

11 f[i] = gf_mul_general (beta_m_pow , f[i], algorithm);
12 }
13 }
14 .
15 .
16 .
17 }

Code 4.5: Twisting of the polynomial

Gammas and Deltas Computation

Gammas and deltas are computed using Equation 3.18 and Equation 3.19. In Code 4.6,
defined in the file fft_rec.c of the software model, the computation is done iterating on
the beta basis, and performing inversion and multiplication.

γi is computed by multiplying βi with β−1
m , the results generated are then used to

compute the deltas, which will serve as the new beta basis in the next recursion call,
while gamma is used in the computation of the gammas sums.

32

4.2 – Additive Fast Fourier Transform

1 static void fft_rec_v2 (uint16_t *w, uint16_t *f, size_t f_coeffs ,
uint8_t m, uint32_t m_f , const uint16_t *betas , pqc_algorithm
algorithm) {

2 .
3 .
4 .
5 for (i = 0; i + 1 < m; ++i) {
6 gammas [i] = gf_mul_general (betas[i], gf_inverse_general (betas[m

- 1], algorithm),algorithm);
7 deltas [i] = gf_square_general (gammas [i], algorithm) ^ gammas [i];
8 }
9 .

10 .
11 .
12 }

Code 4.6: gf_square_12

Gammas sums

Gammas sums are the values derived from the computation of the subset of the gammas,
these are the values effectively used in the AFFT butterfly. The computation derives from
Equation 3.15, to compute the B[j] of a certain j, it is necessary to observe the binary
representation of j. Therefore, the operation is done in the following way:

B[j] =
n−1Ø
i=0

aiβ
i (4.1)

where ai is the bit in position i , of the binary representation of j. Code 4.7, defined
inside fft_rec.c of the software model, itself optimizes the operation by reusing during
the computation the values previously calculated.

1 static void compute_subset_sums (uint16_t * subset_sums , const uint16_t *
set , uint16_t set_size) {

2 uint16_t i, j;
3 subset_sums [0] = 0;
4

5 for (i = 0; i < set_size ; ++i) {
6 for (j = 0; j < (1 << i); ++j) {
7 subset_sums [(1 << i) + j] = set[i] ^ subset_sums [j];
8 }
9 }

10 }

Code 4.7: Computation of the subset of gammas

33

Software Implementation

Taylor Expansion

The Taylor expansion is a directly iterative implementation of the Algorithm 7.

1 static void iterative_optimized_taylor_expand (uint16_t * f0 , uint16_t *f1 ,
uint16_t * f,int n,int m){

2 int level , node , step_curr , step_next ;
3

4 for (level = m; level >= 2; level --)
5 {
6 step_curr = 1 << level;
7 step_next = 1 << (level - 1);
8 int elements = 1<<level;
9 int k = elements /4;

10 for (node = 0; node < n; node = node + step_curr)
11 {
12 uint16_t * g0 = &f[node];
13 uint16_t * g1 = &f[node+ step_next];
14 for(int i=0;i<k;i++){
15 g1[i] = g1[i] ^ g1[i + k];
16 g0[i + k] = g0[i + k] ^ g1[i];
17 }
18 }
19 }
20

21 for(int i=0;i<n;i+=2){
22 f0[i / 2] = f[i];
23 f1[i / 2] = f[i + 1];
24 }
25

26 }
27 }

Code 4.8: Taylor Expansion of f(x)

This recursive algorithm could be identified as a tail-recursive function, where the re-
cursive calls are executed at the end of the function. Transforming this recursive algorithm
into an iterative algorithm is straightforward. Code 4.8, defined in the file fft_iterative.c
of the software model, is implemented as two nested loops: the first loop emulates the
recursive calls and the second loop emulates the node’s processing. In the inner loop the
computation of g1(x) and g0(x) is performed, when each node is processed the outer loop
goes to the next level. The termination of the recursive function translates into restricting
the outer loop between m and 2, as the recursive calls terminate when the length of the
sub-problem is equal to 2 (level=1).
At the end, the algorithm generates the Taylor expansion of the polynomial h(x). The
last four lines, extract g0(x) and g1(x). The even indexed values go to the array g0(x) and
the odd indexed value go to the array g1(x).

34

4.2 – Additive Fast Fourier Transform

Butterfly

The butterfly function in Code 4.9, defined in the file fft_rec.c of the software model,
takes as inputs the gammas sums and values returned by the recursive calls. It computes
the following operation:

wi = ui + G[i] · vi

wk+i = wi + vi.

For 0 ≤ i < 2m−1. The software implementation performs this resorting to a for loop.

1 static void fft_rec_v2 (uint16_t *w, uint16_t *f, size_t f_coeffs ,
uint8_t m, uint32_t m_f , const uint16_t *betas , pqc_algorithm
algorithm) {

2 .
3 .
4 .
5 k = 1;
6 k <<= ((m - 1)); // &0xf is to let the compiler know that m-1 is

small.
7

8 for (i = 0; i < k; ++i) {
9 w[i] = u[i] ^ gf_mul_general (gammas_sums [i], v[i], algorithm);

10 w[k+i] = w[i] ^ v[i];
11 }
12 .
13 .
14 .
15 }

Code 4.9: Butterfly

4.2.2 Recursive Inverse Additive Fast Fourier Transform
The inverse of the AFFT is constructed by executing the inverse of each operation of the
algorithm in reverse order. This implies:

1. compute gammas and deltas

2. compute Gammas Sums

3. compute the inverse butterfly

4. Execute the recursive calls

5. compute the inverse Taylor expansion of the polynomial

6. compute the inverse twisting of the polynomial

35

Software Implementation

Not all operations are executed in reverse order. The computation of gammas, deltas,
and gammas sums needs to be done first to compute the inverse butterfly. The other
operations are developed to perform the inverse operation.

The inverse butterfly will perform:

vi = wi + wi+k.

ui = ui + G[i] · vi

for 0 ≤ i < 2m−1.
After the recursive calls, the algorithm executes the inverse Taylor expansion. The inverse
Taylor expansion, starting from two polynomials half the dimension g0(x) and g1(x) re-
constructs the polynomial g(x). While the direct algorithm is a tail recursive algorithm,
the inverse algorithm presents the recursive calls as the first operations. In the iterative
algorithm, this translates, into starting the outer loop not from m but from 2, to emulate
the bottom-up approach of the recursive calls tree. The last step is the inverse twisting
of the polynomial

f(x) = g(β−1
m x)

The operation done is to multiply each coefficient with the inverse power β−i
m .

4.2.3 Iterative Additive Fast Fourier Transform
When transitioning from a software model to a hardware implementation, the recursive
nature of algorithms, inherent to computer architecture, often hinders parallel execution.
In response to this, the Additive Fast Fourier Transform was transformed into an iterative
structure. This process involved a thorough analysis of the recursive structure, revealing
that the Additive Fast Fourier Transform does not conform to a strictly tail-recursive or
head-recursive algorithm due to its unique characteristics. Consequently, no straightfor-
ward method exists. Among the potential techniques, two approaches emerged as viable
solutions:

• Stack simulation.

• Custom approach.

In the stack simulation, an iterative approach is employed to emulate calls and re-
turns, structured around the definition of a stack data structure. As recursive calls occur,
the simulated stack facilitates the pushing of new stack frames with corresponding argu-
ments. However, this approach lacks the concurrency essential for hardware development,
prompting the study to explore a custom approach.

Upon analyzing the algorithm, two distinct portions emerge, which are the functions
executed before the recursive calls and those executed after. This allows for a logical
division of the function into the following segments:

• Before the recursive calls: twisting and Taylor expansion.

• After the recursive calls: butterfly.

36

4.2 – Additive Fast Fourier Transform

Upon observing the code execution, it becomes apparent that functions before the recur-
sive calls are executed from top to bottom, whereas those after are executed from bottom
to top. Recognizing that the function involves two recursive calls, the recursive call tree
can be discerned in Figure 4.1.

Figure 4.1: recursive calls tree

The tree will have depth depth = log(n) and each level has 2depth−level nodes. To use
a parallel approach the nodes are traversed in Breadth First. This implies elaborating all
the nodes before going to the next level.

The traversal of a tree is implemented using a nested loop, the outer loop iterates over
the levels, and the inner loop iterates on the nodes of a level. The functions before the
recursive calls, traverse the tree from the top to the bottom, therefore the outer loop will
start from log(n) to 2. The termination, is the processing of the nodes, at level 1, and
this is managed by a single loop. Starting from the termination, the function after the
recursive calls are executed. The tree, in this case, is traversed in reverse, therefore the
outer loop starts from 2 to log(n).

Some of the functions such as those that compute the beta basis, gammas, and deltas
are computed at the beginning. The function computing Gammas sums has been moved
after the recursive calls because its values are only used by the butterfly. The final
algorithm has been organized into four main blocks.

Initialization

The first block computes the beta basis, gammas, and deltas for each level. This choice
implies to store log(n) arrays of the maximum dimension of log(n).

Depth first traversal

This part interests those functions that are executed before the recursive calls. The
execution is done by processing all nodes of a level, before going to the next level.

Termination

This block manages the termination. It executes the instruction present in it.

37

Software Implementation

Inverse depth first traversal

This segment specifically pertains to functions executed after the recursive calls, where
the execution unfolds from the leaves of the tree upward, culminating at the top.

4.2.4 Inverse Iterative Additive Fast Fourier Transform
The construction of the Inverse Iterative Additive Fast Fourier Transform mirrors the
structure of its iterative counterpart, with the key distinction lying in the reversed order
of execution for inverse functions. The segment preceding the recursive calls executes the
inverse butterfly and computes the sums of gammas. Subsequently, the portion following
the recursive calls handles the computation of the inverse Taylor expansion and the inverse
twisting.
In the code, the Depth First Traversal processes each node using the inverse butterfly.
Simultaneously, the Inverse Depth First Traversal of the tree applies, at each node, the
inverse Taylor expansion, followed by the inverse twisting.

38

4.3 – Polynomial Multiplication Structure

4.3 Polynomial Multiplication Structure
The polynomial multiplier is organized into five parts:

• pre-processing blocks

• evaluation

• pointwise multiplication

• interpolation

• post-processing blocks

From the software model point of view, the polynomial multiplication is performed in
different functions for McEliece and HQC. This section presents the main pre-processing
blocks and post-processing.

4.3.1 Pre Processing
Pre-processing is an operation performed on the data before going into the evaluation-
pointwise multiplication-interpolation steps. The pre-processing is done only on the inputs
provided by HQC.

HQC during the encryption and decryption of data performs multiplication on polyno-
mial where the coefficients are in F2. Due to the nature of the field, polynomials cannot
be evaluated and interpolated in their original field F2. This is due to the requirements
of the additive fast Fourier transform.

The AFFT requires that the field presents enough evaluation points to evaluate the
polynomial. In the field F2, the number of points is less than the length of the polynomial,
and therefore the condition deg(f(x)) < 2m is not satisfied. To solve that, what is done
is to map a polynomial in F2 to a field F2m [7], where there are enough evaluation points.
This operation is performed through the Kronecker segmentation [6]. The operation is
performed as follows:

1. Partition the polynomial to w-bits blocks.

a(x) = a0 + a1x + · · ·+ ad−1xd−1

→ (a0 + · · ·+ aw−1xw−1) + (aw + · · ·+ a2w−1xw−1)xw + · · ·+ (· · ·)xw(n−1) .

2. Define a field F2m .

3. Map each block to the field F2m :

a′(y) := a′
0 + a′

1y + · · ·+ a′
n−1yn−1 ∈ F22w [y],

such that a′
0 = (a0 + a1z + . . . + aw−1zw−1), a′

1 = (aw + . . . + a2w−1zw−1), . . . , a′
n−1 =

(a(n−1)w + a(n−1)w+1z + . . . + anw−1zw−1).

39

Software Implementation

Defined as q = 2m the order of the field, w the dimension of the block, and n the
degree of the polynomial resulting from the product of A(x) and B(x).

The following conditions are defined:

w < 1 + 1
2 log q (4.2)

ceil

3
n− 1

w

4
< q (4.3)

These conditions determine the choice of q and w, to be able to apply the Additive
Fast Fourier Transform. For HQC has been chosen to use the field F216 , the value of w
chosen is 8, this has been validated against the conditions, Table 4.1.

algorithm n q w(4.2) condition(4.3)
HQC-128 17669 65536 w < 9 = 8 2209 < 65536
HQC-192 35851 65536 w < 9 = 8 4482 < 65536
HQC-256 57637 65536 w < 9 = 8 7205 < 65536

Table 4.1: choice of q and w

Code 4.3.1 of the Kronecker segmentation, implemented in the file kronecker_segmentation.c
in the software model, is done through a for loop that uses a mask to select 8 bits and
position them in an array cell.

1 void kronecker_segmentation (const uint64_t * binary_polynomial ,
size_t bin_length , uint16_t * polynomial)

2 {
3 size_t index = 0;
4 for (size_t i = 0; i < bin_length ; i++)
5 {
6 uint64_t currentValue = binary_polynomial [i];
7 for (int j = 7; j >= 0; j--)
8 {
9 polynomial [index ++] = (uint16_t)((currentValue >> (j * 8)) &

0xFF);
10 }
11 }
12 }

The polynomial generated after the Kronecker segmentation will have the coefficients in
F216 , and it will be then evaluated with the Additive Fast Fourier Transform. After the
interpolation and the pointwise multiplication, the polynomial will be converted back to
the original field F2. In this case, the operation that will be performed is the inverse Kro-
necker segmentation. In the next subsection, we will discuss the post-processing blocks,
which will include the inverse Kronecker segmentation and the reduction functions for
HQC and McEliece.

40

4.3 – Polynomial Multiplication Structure

4.3.2 Post Processing
The Post-processing for McEliece and HQC is done separately. In McEliece, it implies
only the reduction of the polynomial, while in HQC it implies first the inverse Kronecker
segmentation and then the reduction.

HQC Post Processing

The first step is the inverse Kronecker segmentation. Considering two binary polynomials

a(x) = a0+a1x+· · ·+ad−1xd−1 ∈ F2[x]

b(x) = b0 + · · ·+ bd−1xd−1 ∈ F2[x]

They can be mapped to:

a′(y) := a′
0 + a′

1y + · · ·+ a′
n−1yn−1 ∈ F22w [y],

b′(y) := b′
0 + b′

1y + · · ·+ b′
n−1yn−1 ∈ F22w [y],

After evaluating a′(y) and b′(y), pointwise multiplication is performed by multiplying
the coefficients of the transformed function. The resulting product c′(y) will present
coefficients that have a maximum length of 2w − 1, to map back the polynomial to the
original field. We need to compute the binary polynomial adding together at most two
coefficients at any power.

c′(y) = c′
0 + c′

1y + · · ·+ c′
2(n−1)y

2(n−1) ∈ F2m [y]

c(x) = (c0 + . . . + c(2w−1)x
w−1) + (c2w + . . . + c(4w−1)x

w−1)xw + . . . + (. . .)

c(x) = c0 + c1x + · · ·+ c2(d−1)x
2(d−1) ∈ F2[x]

(4.4)

This operation in code is computed with XORing and shifting, the coefficients are
shifted, of as many positions as the exponent, and then it is added to the partial result.
After converting the polynomial the to original field F2, the polynomial is reduced with
the polynomial xn − 1, where n is the binary polynomial length defined by HQC. This is
done to reduce the polynomial to the dimension of the inputs of polynomial multiplication.

McEliece Post Processing

The post-processing in McEliece interests only a reduction of the dimension of the poly-
nomials. This is done through a reduction function F [z], which is different for every level
of security. The operations consist of the computation of the remainder of the product
polynomial C(x).

41

Software Implementation

4.4 Testing And Integration
The polynomial multiplier, in conclusion, presents two different functions dealing with
polynomial multiplication for McEliece and HQC. These functions have been integrated
and successfully tested in the PQClean collection [9].
The execution time concerning the method used by PQClean has been compared, and the
results are reported in Table 4.2.

Algorithm PQClean + Additive FFT Multiplier PQClean
hqc-128 16.470s 0.099s
hqc-192 21.967s 0.360s
hqc-256 30.669s 0.432s

mceliece348864 3.981s 1.553s
mceliece348864f 1.950s 1.191s
mceliece460896 25.781s 3.437s
mceliece460896f 8.498s 2.575s
mceliece6688128 57.289s 9.529s
mceliece6688128f 12.575 4.569s
mceliece690119 1m9.299s 10.939s
mceliece690119f 11.967s 4.512s
mceliece8192128 34.011s 8.361s
mceliece8192128f 13.527s 5.407s

Table 4.2: HQC and Mceliece execution time comparison

The observed results exhibit less-than-expected performance, and the root cause can
be traced back to the Additive Fast Fourier Transform (AFFT). During polynomial eval-
uation, the AFFT assesses the polynomials across all B[i] elements of the fields, leading
to a phenomenon of over-evaluation. Specifically, the polynomial is evaluated on more
points than necessary.

Taking McEliece348864 as an example, where the polynomial length is 64, the resultant
product spans 128 coefficients. In a conventional Fast Fourier Transform (FFT), this would
entail 127 evaluations at points. However, due to the nature of the AFFT, the polynomial
undergoes evaluation at 4096 points, significantly exceeding the required number.

The adoption of the AFFT in the new software versions of HQC and McEliece intro-
duces a noteworthy consideration for the observed decrease in performance. This deviation
from classical methods results in a slower execution due to the inherent over-evaluation
characteristics of the AFFT, necessitating a reevaluation of the chosen transform method-
ology in the context of these specific cryptographic algorithms.

42

Chapter 5

Hardware Implementation

This chapter presents the hardware architecture of the polynomial multiplier. The hard-
ware design follows a memory-based approach, that relies on the use of memory elements
to store intermediate results. This allows to achieve a system that is more flexible and
uses fewer hardware resources. The architecture is shown in Figure 5.1.

KRONECKER
SEGMENTATION

INVERSE
KRONECKER

SEGMENTATION

HQC
REDUCTION

MEMORIES SUBSYSTEM

HQC SUBSYSTEM

FFT

POINTWISE
MULTIPLICATION

FFT SUBSYSTEM

MCELIECE
REDUCTION

MCELIECE SUBSYSTEM

RAM CRAM BRAM A

ROM DELTAS ROM GAMMAS RAM GAMMAS
SUMS

COMMUNICATION SUBSYSTEM

POLYNOMIAL MULTIPLIER

Figure 5.1: Accelerator architecture

It is organized mainly into five subsystems:
• The FFT subsystem that performs the direct and inverse Fast Fourier Transform,

and the pointwise multiplication of the two resulting transformed polynomials.

• The memories subsystem is organised in six memories, ram a, b and c that store

43

Hardware Implementation

the polynomials. rom deltas and gammas that store values required by the FFT,
and a memory that store the gammas sums computed.

• The McEliece subsystem, contains the polynomial reduction for all levels of se-
curity.

• The HQC subsystem, contains the post and pre processing blocks specific to HQC,
and the final reduction.

• The communication subsystem, is a layer of logic, that manages the access to
the memories.

The architecture has been designed following a top-down approach: each block has
been organized in different submodules, in order to simplify the testing and validation of
the system. The development of the accelerator relies on SystemVerilog for the design,
and for the testing, it relies both on SystemVerilog and Python. Before delving into the
implementation of the different subsystems, it will be first presented the arithmetic logic
and the memories used for the polynomials. This choice is motivated by the fact, that all
the subsystems evolve around those components. The section will then be concluded by
the presentation of the functioning of the polynomial multiplier.

5.1 Field arithmetic logic
The arithmetic logic deals with the development of the computational units dedicated to
the fields F212 ,F213 , and F216 . The operations required for the functioning of the system
are:

• Addition

• Multiplication

• Squaring

• Inversion

Each operation is organized as shown in Figure 5.2, Figure 5.3, Figure 5.3. For each opera-
tion architecture, the arithmetic logic for each field is defined. The correct selection of the
field operation is performed through the algorithm signal, which selects the appropriate
output. For the addition operation, it is not provided an architecture, instead, it relies
directly on the behavioral XOR operation.

The next subsection is going to provide the implementation of the field arithmetic logic
of three required operations(multiplication, squaring, and inversion).

44

5.1 – Field arithmetic logic

clk

rst

start

in

out

ready

INV12
out

ready

clk

rst

start

in

algorithm

clk

rst

start

in

out

ready

INV13

clk

rst

start

in

out

ready

INV16

Text is not SVG - cannot display

Figure 5.2: Inversion architecture

a

b
in0

in1

resultMUL12

algorithm

in0

in1

resultMUL13

in0

in1

resultMUL16
result

Text is not SVG - cannot display

Figure 5.3: Multiplication architecture

a

algorithm

in resultSQ12 in resultSQ13 in resultSQ16
c

Text is not SVG - cannot display

Figure 5.4: Squaring architecture

45

Hardware Implementation

5.1.1 Multiplication
The multiplication in hardware is realized as a fully combinational circuit. This operation
is carried out in two steps, multiplication and field reduction. The multiplication as shown
in Figure 5.5, is implemented following the classic structure of the normal multiplication.
The difference lies in the fact that instead of using carry adders, xor gates are used to sum
the values. The code computes in parallel all the product bits, by XORing and ANDing the
correct bits. The field reduction is implemented through masking and shifting, following
Algorithm 1. The same approach is used for the fields F212 ,F213 , and F216 .

Figure 5.5: Multiplication in F212

5.1.2 Squaring
Squaring in hardware, concerning multiplication, does not imply any calculation (except
reduction), it is implemented through bit manipulation as shown in Figure 5.6. The bits
of the input are positioned in the even-indexed positions, while the odd-indexed bits are
set to zero. The result is then reduced to the correct dimension, according to the field.

012345678910111213141516171819202122

01234567891011

Figure 5.6: Squaring in F212

46

5.1 – Field arithmetic logic

5.1.3 Inversion
The inversion in hardware is implemented resorting to squaring and multiplication. Fol-
lowing the addition chain realized in the software model, an FSM employing one multiplier
and one squaring has been created. As shown in Figure 5.7, the FSM, in the case of the
field F212 goes through 18 states, from S0 to S15 the input follows the chain of squaring
and multiplications. The three fields F212 ,F213 , and F216 , follow the same architecture,

S_Off

S_Load

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

start

reset

!start

Figure 5.7: FSM inversion F212

what differs is the length of the chain and sequence of multiplications and squares.

47

Hardware Implementation

5.2 Memories subsystem
The memories subsystem is structured with different types of memories:

• The polynomial memories are organized into 3 RAMs.

• The gammas sums memory.

• ROMs which are organized into 3 ROMs.

The polynomial memories are made by 4 dual port RAMs, that form a unique memory
with 4 ports for reading and writing. This solution is adopted in order to fetch data in
parallel and avoid collisions when accessing the data. As shown in Figure 5.8, the memory
is organized in two sub-memories(RAM A and RAM B), where each one is made up of 2
dual port RAMs. Through the sel signal, when its value is 0 the RAM A outputs are
selected and the enable signals are forwarded to RAM A.

RAM A0 RAM A1

RAM B0 RAM B1

clk
addr_a
addr_b
addr_c
addr_d
data_a
data_b
data_c
data_d

q_a

q_b

q_c

q_d
we_a
we_b
we_c
we_d

RAM A

RAM B

Memory Interface

sel

Figure 5.8: Memory interface

The ROMs, as shown in Figure 5.9, are organized in as many ROMs as the number of
fields, each ROM is a single port memory. In order to access the data of specific ROM,
the signals m,i, and field are used. In particular:

• field signal selects the memory relative to the field.

• m identifies the values belonging to a certain level of the recursion, as the values of
deltas and gammas are computed for each level.

• i selects a particular value of delta and gamma of the level m.

The last memory is the gammas sums, which is a dual port RAM memory, that is used
to store the computed values from the module compute subset sums.

48

5.3 – Fast Fourier Transform subsystem

ROM DELTAS
GF(2**12)

ROM DELTAS
GF(2**13)

ROM DELTAS
GF(2**16)

m

i

field

data

Figure 5.9: Rom interface

5.3 Fast Fourier Transform subsystem
The FFT subsystem is organized into two submodules: pointwise multiplication and FFT.
Being the FFT the larger module, this will be the main focus in this section. The FFT is
structured logically in two parts, as shown in Figure 5.11:

• Control

• Datapath

The control implements the iteration of the two nested for loops of the iterative imple-
mentation of the Fast Fourier Transform. The datapath is the direct mapping of the FFT
C functions into hardware. Together, datapath and control, implement the direct and
inverse Fast Fourier Transform. Each module performs both the direct and inverse oper-
ations. The process begins by taking in input the signals field, fft_ifft and in_sel.
The signal field, selects the field in which the FFT is executed.
The signal fft_ifft, selects the FFT if 0 and the IFFT if 1; The signal in_sel, tells the
FFT from which sub memory start the operation. Following that, the finite state machine,
as shown in Figure 5.10, starts from the state M_TO_TWO. This state executes those
functions that in the recursive FFT are done before the recursive calls. Vice versa in
TWO_TO_M those functions that are after the recursive calls are executed. While the
condition of termination is computed in the state CIW. The states denoted with suffix
_WAIT are used to wait until the operation is terminated before going to the next one.

Before going into detail, about the different modules, it will be first presented the
memory access scheme and organization of the data.

49

Hardware Implementation

WAIT

LOAD_CONFIG

M_TO_TWO

TWO_TO_M

M_TO_TWO_WAIT

TWO_TO_M_WAIT

CIW

CIW_WAIT

FINISH

reset

start

finish_mt2

finish_ciw

finish_2tm

!finish_mt2

!finish_ciw

!finish_2tm

!start

Figure 5.10: FSM Fast Fourier Transform

M_TO_TWO

TWO_TO_M

TWISTING

TAYLOR
EXPANSION

TAYLOR
REARRANGE

RESTORE
MEMORY

COMPUTE INITIAL
W

COMPUTE SUBSET
SUMS

COMPUTE W

FFT

DATAPATHCONTROL

clk

reset

field

start

fft_ifft

m

in_sel

poly_q_a

poly_q_b

poly_q_c

poly_q_d

gammas_data

deltas_data

gs_q

poly_addr_a

poly_addr_b

poly_addr_c

poly_addr_d

poly_data_a

poly_data_b

poly_data_c

poly_data_d

poly_we_a

poly_we_b

poly_we_c

poly_we_d

poly_sel

gammas_m

gammas_i

deltas_m

deltas_i

gs_data

gs_addr

gs_we

out_sel

finish

Figure 5.11: Fast Fourier Transform architecture

50

5.3 – Fast Fourier Transform subsystem

5.3.1 Memory access scheme
The memory access setup was designed having in mind to use single-port memories, al-
though it also works by extension with dual-port RAMs. To explain its functionality, let’s
consider a simplified memory configuration compared to what’s utilized in the accelerator.

Data in memory is arranged with the understanding that a processing element requires
access to two memory locations simultaneously. Consequently, the memory storing the
polynomials is divided into two parts. However, merely dividing the memory isn’t sufficient
for parallel access. To address this, a method has been developed to ensure that data
requiring parallel access is distributed across two different memories, thereby enabling
simultaneous retrieval.

The access scheme is designed following how the computation is done by the Taylor
expansion and the butterfly. In the case of the butterfly, each time two values are read
from the array, one value belongs to the first half of the array and the second value belongs
to the second half of the array. The Figure 5.12, represents the execution of recursion
together with the butterfly function, starting from level 4 to level 3. In the case of level
4, the data in red and blue should be in two different memories to allow parallel access.
The same concept can be applied to all the other levels, therefore all values identified in
red and blue are organized in two different memories.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LEVEL=4

LEVEL=3

Figure 5.12: Butterfly array data access

The case is different for the Taylor expansion. In the case of the butterfly, the function
was simply an execution of a for loop, the Taylor expansion presented a nested loop (due
to the fact that it is a recursive algorithm). Therefore what happens is on each subarray
generated by the recursive calls, the Taylor expansion is executed.
In Figure 5.13, the case considers a problem of dimension 16. The figure represents, in
particular, the execution at level 3, where the problem is divided into two sub-problems
of dimension 8, on each array of the Taylor expansion executed. Knowing that the Taylor
expansion is a recursive algorithm. The data will need to follow the evolution of the access
scheme. The data arrangement will change in relationship to the recursion and the Taylor
expansion. In the case of the butterfly, the access scheme evolves only with the traversal
of the recursive calls of the FFT since the butterfly is only an iterative algorithm with
one for loop.

51

Hardware Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RECURSION
LEVEL=3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TAYLOR
LEVEL=3

TAYLOR
LEVEL=2

TAYLOR
LEVEL=3

TAYLOR
LEVEL=2

Figure 5.13: Taylor expansion data access

The Figure 5.14, illustrates the functioning access scheme across the different levels
of recursion, considering an array of dimension 32. The scheme views the memories
differently. In level 5 the memory is considered as a unique block, in level 4 the memory
is considered as two different blocks, and so on for level 2 and level 3.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BLOCK
0

MEMORY
0

MEMORY
1

(a) Level 5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BLOCK
0

BLOCK
1

MEMORY
0

MEMORY
1

(b) Level 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BLOCK
0

BLOCK
1

BLOCK
2

BLOCK
3

MEMORY
0

MEMORY
1

(c) Level 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MEMORY
0

MEMORY
1

BLOCK
0

BLOCK
1

BLOCK
2

BLOCK
3

BLOCK
4

BLOCK
5

BLOCK
6

BLOCK
7

(d) Level 2

Figure 5.14: Access scheme from level 5 to level 2

The access scheme for reading and writing is implemented through the module ad-
dress_translation.sv. This module takes as input the current level of the recursion
and the address of the memory location. The effective address where the data is stored is
computed through the following steps:

1. The first step is to compute in which memory block the data is stored

2. The second step is to compute in which word of the memory block the data is stored

52

5.3 – Fast Fourier Transform subsystem

3. The third step is to compute in which memory the data is stored

4. The final step is to compute the final address.

The address translation unit is used in all the modules that compose the datapath, in
order to access the correct memory location.

5.3.2 Twisting
The twisting of the polynomial is executed by the module twisting.sv. The function is
implemented as a finite state machine, as shown in Figure 5.15. It performs both the direct
and inverse operations. The module starts by receiving the signals fft_ifft, poly_len,
start_addr, m, field and mem_sel. These signals indicate: the operation to perform; the
length of the input, the start address; the level of the recursion; the field used by the FFT;
and the sub-memory to access. The FSM has an initial state called LOAD_CONFIG,
where the control data in input is memorized in the system. From there it moves to
the state BETA_RETRIEVAL, where beta is read from the deltas rom. In case,
the system is performing the inverse operation, beta needs to be inverted. Therefore
it moves to the state BETA_INV, where the value of beta is inverted. The iteration
present in the C code is implemented through the states FOR_INIT, FOR_EVAL and
FOR_INC, that respectively emulate the for initialization, the condition evaluation, and
the increment. The states READ and WRITE, perform the reading of the data from
memory and writing of the result in memory. The computation is done in the state
COMPUTE, where the product of the beta power and the coefficients of f(x) is done,
also the next power of beta is computed.

5.3.3 Taylor Expansion
The Taylor expansion is realized by the module taylor_expand.sv, as finite state ma-
chine as shown in Figure 5.16. The module realizes both the inverse and direct operation.
The system takes in input:

• fft_ifft: the selection between direct and inverse operation.

• level: indicates the depth of the recursion.

• field: indicates the field use in the FFT.

• address: the starting address of the operation.

• len: indicate the length of the input.

• sel: identifies the sub-memory from what starts the operation.

The operation starts from the state LOAD_CONFIG, where the input control data is
saved in the system. The Taylor expansion as function is realized as a triple loop, the
nested loop emulates the traversal of the tree while the inner loop is used to operate on
the data. In the FSM this translated into having the following states:

53

Hardware Implementation

WAIT

LOAD_CONFIG

BETA_RETRIEVAL

COMPUTE

FOR_INIT

WRITE

FOR_EVAL

READ

FOR_INC

reset

start

FINISH

BETA_INV

BETA_INV_WAIT

fft_ifft

!fft_ifft

i>=x

1<x

!read_inv

read_inv

!start

Figure 5.15: Twisting finite state machine

54

5.3 – Fast Fourier Transform subsystem

• INIT_LEVEL, EVAL_LEVEL, DECREM_LEVEL, emulate the outer loop.

• INIT_NODE, EVAL_NODE, INC_NODE, emulate the iteration on the node
of a level.

• INIT_ELEMENT, EVAL_ELEMENT, INC_ELEMENT, identifies the loop
where the data is computed.

In case, the inverse operation is executed, the behavior of the outer loop changes. First of
all, the evaluation condition becomes LevelTaylor <= m, and the loop will decrement the
variable LevelTaylor instead of incrementing. The other loops will remain unchanged in
both operations.

The computation of the data is performed in the states READ_PE, COMPUTE_PE
and WRITE_PE. the states READ_PE and WRITE_PE, will perform the reading
and writing of the data. The memory address for reading and writing is computed through
the address translation module. The state COMPUTE_PE, resorts to the submodule
taylor_pe.sv , in order to compute the g1(i) and g0(i) from g1(i) ,g1(i+k) and g0(i+k).
The finite state machine terminates when all the nodes of the tree till level=2 (level=m
in the inverse operation) are computed.

5.3.4 Taylor rearrange
The Taylor rearrange module(taylor_rearrange.sv), implements the last for loop present
in the Taylor expansion function. This is implemented as FSM, as shown in Figure 5.17.
The for loop is identified by the states FOR_INIT, FOR_EVAL, and FOR_INC.
The Taylor rearrange operation consists of reordering the memory, this is implemented
through the states, READ, STORE and WRITE, which respectively read 2 values
from memory and store them in 2 new memory locations. The new memory locations
are given through start_address + i/2 + n/2, start_address + i/2, that are stored in
temp_address_n_2 and temp_address

5.3.5 Restore memory
The restore memory operation is an operation executed after all the nodes of a level have
been elaborated by the twisting, Taylor expansion and Taylor rearrange modules. This is
done due to the effect of the taylor expansion to the memory. The Taylor expansion as
an operation, leaves the memory in a different organisation.
In Figure 5.14, the Taylor expansion will leave the data organized following the structure
of level 2. The restore memory operation will reorganize the data to the next level of
recursion. For example, if the current level of the recursion is 5, the next will be 4, in this
case, the restore memory operation will reorganize the data from the structure of level 2
to the structure of level 4.

55

Hardware Implementation

WAIT

LOAD_CONFIG

reset

start

INIT_LEVEL

EVAL_LEVEL

INIT_NODE

EVAL_NODE

INIT_ELEMENT

EVAL_ELEMENT

READ_PE

COMPUTE_PE

WRITE_PE

INC_ELEMENT

INC_NODE

DECREM_LEVEL

END_LEVEL

LevelTaylor >=2

LevelTaylor <2

NodeTaylor < CountNodeTaylor

NodeTaylor >= CountNodeTaylor

ElementTaylor < CountElementTaylor

ElementTaylor >= CountElementTaylor

!start

Figure 5.16: Taylor expansion finite state machine

56

5.3 – Fast Fourier Transform subsystem

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL

READ

STORE

WRITE

FINISH

i>=n

reset

start

i<n

FOR_INC

!start

Figure 5.17: Taylor rearrange finite state machine

57

Hardware Implementation

This action is implemented by the module restore_memory.sv, which implementa-
tion is based on an FSM, as shown in Figure 5.18.
The states FOR_INIT, FOR_EVAL, and FOR_INC, represent the for loop struc-
ture. The states READ, STORE and WRITE, read the data from memory and write
it in a different location. The location is computed using the address translation unit, by
providing the next level and current iteration of the loop, the unit will provide the new
address.

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL

READ

STORE

WRITE

FINISH

i<count_for

i>=count_for

start

reset

FOR_INC

!start

Figure 5.18: Restore memory finite state machine

5.3.6 Compute initial w
Compute initial w is identified by the module compute_initial_w.sv, it implements
the termination of the FFT. The component is realized through an FSM, as shown in
Figure 5.19. It implements a for loop through the states FOR_INIT, FOR_EVAL
and FOR_INC. The module takes as input the signals:

• fft_ifft, selects the direct or inverse operation

• mem_sel, selects the sub memory

• start_address, selects the start address of the operation

• poly_len, identifies the length of the input

• m, identifies the level

• field, identifies the field of the FFT

58

5.3 – Fast Fourier Transform subsystem

After saving the input control data and reading the value of beta, in the state LOAD_CONFIG,
the loop starts. At each iteration, the signal start_address_reg, which stores the ad-
dress for reading and writing, gets incremented. In the states READ, COMPUTE, and
WRITE the data is read, computed, and written. The system will read 4 consecutive
values(value_a,value_b,value_c,value_d), and compute the operations ((value_b ·
betas_0_reg)⊕ value_a) and ((value_d · betas_0_reg)⊕ value_c), then result is then
stored in the memory location of value_b and value_d.
The inverse operation performs ((value_b ⊕ value_a) · betas_0_reg) and ((value_d ⊕
value_c) · betas_0_reg), where betas_0_reg, is the inverse of beta.

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL

READ

STORE

WRITE

FINISH

node_reg < n_reg

node_reg >= n_reg

BETA_INV

BETA_INV_WAIT

fft_ifft

ready_inv

!ready_inv

reset

start

FOR_INC

!start

!fft_ifft

Figure 5.19: Compute initial w finite state machine

5.3.7 Compute subset sums
Compute subset sums, implemented in compute_subset_sums.sv, perform the com-
putation of the gammas sums starting from the values stored in the deltas and gammas
ROMs. The module as shown in Figure 5.20, is implemented as FSM. The C code imple-
ments the function as a nested loop, this is translated in the states:

• FOR_I_INIT, FOR_I_EVAL, and FOR_I_INC, for the outer loop.

• FOR_J_INIT, FOR_J_EVAL, and FOR_J_INC, for the inner loop.

The module receives as input the signal m, which identifies the level of the recursion. The
FSM performs the following operations:

59

Hardware Implementation

1. LOAD_CONFIG, saves the value of the signal m, in the register m_reg.

2. SUBSET_SET_ZERO, initialize the address 0 of the gammas sums memory to
0.

3. FOR_I_INIT, FOR_I_EVAL, FOR_I_INC, FOR_J_INIT, FOR_J_EVAL,
and FOR_J_INC execute the nested loop.

4. READ, in this state the value of gamma(from gammas ROM), together with the
value of gammas sums at address j_reg are read.

5. STORE, saves the value read from memory.

6. WRITE, performs the computation and stores the value in the memory location
j_reg

The process ends when the nested loop is completed.

WAIT

LOAD_CONFIG

FOR_I_INIT

FOR_I_EVAL

FOR_J_INIT

FOR_J_EVAL

SUBSET_SET_ZERO

READ

STORE

WRITE

FOR_J_INC

i_reg < set_size_reg

i_reg >= set_size_reg
FINISH

j_reg < n_reg

j_reg >= n_reg

reset

start

!start

FOR_I_INC

Figure 5.20: Compute subset sums finite state machine

60

5.3 – Fast Fourier Transform subsystem

5.3.8 Compute w
Compute w, is the unit developed to compute the butterfly of the FFT. It performs both
the direct and inverse operations. The module is implemented through an FSM, as shown
in Figure 5.21, that manages the for-loop iterations. The system takes as control input
signals:

• fft_ifft selects the direct or inverse operation.

• start_address is the starting address of the operation.

• m_max is the maximum level of the FFT.

• m is the current level of the FFT.

• field is the field employed by the FFT.

• mem_sel identifies the sub-memory from where the operation starts.

The operation starts, after the signal start is raised. The system will follow this flow:

1. LOAD_CONFIG, stored the control input values.

2. FOR_INIT, FOR_EVAL and FOR_INC, represent the for loop.

3. READ, the values at address v_address and u_address are forwarded to the ad-
dress translation units, and the result is then used to access the polynomial memory.

4. STORE, the values are stored in the registers v and u.

5. WRITE, the computation is performed through the module butterfly_pe.sv,
which computes:

wi = ui + G[i] · vi

wk+i = wi + vi.

the values are then saved in the memory locations generated by the address transla-
tion unit.

In the reverse operation, the module butterfly_pe.sv, performs the reverse operation.

5.3.9 M to two
M to two is a control module, that manages the traversal of the tree of the recursive calls.
The component performs the top-down visiting of the nodes. This is implemented through
an FSM, as shown in Figure 5.22, that manages the execution of the datapath components.
The system can follow two different state flow executions, in relationship if the FFT or the
IFFT are executed. In the case of the FFT, the states executed are TWISTING, TAY-
LOR_EXPAND, TAYLOR_REARRANGE and RESTORE_MEMORY. in-
stead in the IFFT, the states are COMPUTE_SUBSET_SUMS and COMPUTE_W.
The module receives as input the following signals:

61

Hardware Implementation

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL

READ

STORE

WRITE

FINISH

i<k

i>=k

reset

start

FOR_INC

!start

Figure 5.21: Compute w finite state machine

• field, identifies the field of execution of the FFT

• m, identified the degree of the finite field

• fft_ifft, indicates the operation to perform

• in_sel, identifies the sub memory to access

The system will behave differently when dealing with FFT or the IFFT. In the case of the
FFT, each node will be processed by the twisting, taylor_expand and taylor_rearrange
modules. After executing all the nodes of a level, the restore_memory module is executed,
in order to prepare the memory for the next level. The processing completes when all level
are processed. In the case of the IFFT, before executing compute_w, on each node of a

62

5.3 – Fast Fourier Transform subsystem

level. The gammas sums are calculated for the level. Note that compute_w is performing
the reverse operation.

LOAD_CONFIG

WAIT

INIT_LEVEL

EVAL_LEVEL

INIT_NODE

EVAL_NODE

INC_NODE

TWISTING TWISTING WAIT

TAYLOR_EXPAND

TAYLOR_EXPAND_WAIT

TAYLOR_REARRANGE

TAYLOR_REARRANGE_WAIT

RESTORE_MEMORY
RESTORE_MEMORY_WAIT

(level_reg >1) && (!fft_ifft)

(node_reg < n_reg) && (!fft_ifft) &&
(level_reg!=m_reg)(node_reg < n_reg) && (!fft_ifft) &&

(level_reg!=m_reg)

!finish_twisting

finish_twisting

INC_LEVEL

COMPUTE_SUBSET_SUMS

COMPUTE_SUBSET_SUMS_WAIT

COMPUTE_W

COMPUTE_W_WAIT

FINISH

reset

(level_reg >1) && fft_ifft

level_reg <= 1

(node_reg < n_reg) &
& (ff

t_ifft
)

level_reg > 3 && (!fft_ifft) &&
(node_reg >= n_reg)

(node_reg < n_reg) && (!fft_ifft) &&

(level_reg==m_reg)

start

!start

((le
vel_reg <= 3 &&

(!fft
_ifft)

) ||
fft_

ifft)
 &&

(node_reg >= n_reg)

!finish_restore_memory

finish_restore_memory

!finish_w
finish_w

finish_taylor_rearrange

!finish_taylor_rearrange

!finish_taylor_expand

finish_taylor_expand

!finish_subset

finish_subset

Figure 5.22: M to two finite state machine

63

Hardware Implementation

5.3.10 Two to m
Two to m, with respect to m to two, is the module that performs the bottom-up traver-
sal of the recursive calls tree. It is realized as FSM, as shown in Figure 5.23, that
manages the execution of the datapath components. The system can follow two dif-
ferent state flow executions, in relationship if the FFT or the IFFT is executed. In the
case of the IFFT, the states executed are TWISTING, TAYLOR_EXPAND, TAY-
LOR_REARRANGE and RESTORE_MEMORY. instead in the FFT, the state is
COMPUTE_SUBSET_SUMS and COMPUTE_W. The module receives as input
the following signals:

• field, identifies the field of execution of the FFT

• m, identified the degree of the finite field

• fft_ifft, indicates the operation to perform

• in_sel, identifies the sub memory to access

The system will behave differently when dealing with FFT or the IFFT.
In the case of the IFFT, each node will be processed by the twisting, taylor_expand and
taylor_rearrange modules. Before executing all the nodes of a level, the restore_memory
module is executed, in order to prepare the memory for the current level. Note that all
modules are performing the reverse operation. In the case of the FFT, before executing
compute_w, on each node of a level. The gammas sums are calculated for the level.

5.3.11 Pointwise mul
Pointwise mul is the module, dedicate to the pointwise multiplication of the transformed
polynomials A(x) and B(x). This component is implemented through a FSM, as show in
Figure 5.24. The system will receive in input the following values:

• m, indicates degree of the field

• field, indicates the field employed in the FFT

• in_sel, indicates the submemory from which start reading the values.

The component will iterate over all the values, and it will compute the field multiplication
of the coefficient. The result is then saved in the RAM C.

64

5.3 – Fast Fourier Transform subsystem

LOAD_CONFIG

WAIT

INIT_LEVEL

EVAL_LEVEL

INIT_NODE

EVAL_NODE

INC_NODE

TWISTING

TWISTING WAIT

TAYLOR_EXPAND

TAYLOR_EXPAND_WAIT

TAYLOR_REARRANGE

TAYLOR_REARRANGE_WAIT

RESTORE_MEMORY
RESTORE_MEMORY_WAIT

(level_reg <=m_reg) &&
(fft_ifft) && (level_reg<=3)

INC_LEVEL

COMPUTE_SUBSET_SUMS

COMPUTE_SUBSET_SUMS_WAIT

COMPUTE_W

COMPUTE_W_WAIT

FINISH

reset

start

(level_reg <=m_reg) &&

(!fft_ifft)

level_reg > m_reg

finish_taylor_expand
&&

level_reg != m_reg

finish_taylor_expand
&&

level_reg == m_reg

(le
ve

l_r
eg

 <=
m_re

g) &
&

(ff
t_i

fft
) &

& (le
ve

l_r
eg

>3
)

node_reg >= n_reg

(node_reg < n_reg) &&
(!fft_ifft)

(node_reg < n_reg) &&
(fft_ifft)

!start

!finish_taylor_rearrange

finish_taylor_rearrange

!finish_taylor_expand

!finish_twisting
finish_twisting

!finish_w

finish_w

!finish_restore_memory

finish_restore_memory

!finish_subset

finish_subset

Figure 5.23: Two to m finiste state machine

65

Hardware Implementation

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL

READ

STORE

WRITE

FINISH

i_reg<n_reg

i_reg>=n_reg

reset

start

!start

FOR_INC

Figure 5.24: pointwise multiplication FSM

66

5.4 – McEliece subsystem

5.4 McEliece subsystem
The McEliece subsystem consists only of the McEliece reduction. This module performs
the polynomial reduction of the result to the dimension t (refer to Table 2.1), specified
by the parameter set of the algorithm.
McEliece implements 4 reduction algorithms, and due to that the FSM presents 4 flows of
execution. The states of the finite state machine are organized in 3 categories: READ,STORE,
and COMPUTE. Those states represent the reading and writing of a certain element
from the memory.
Analyzing Code 5.1, Code 5.2, Code 5.3 and Code 5.4 (which are the four reduction al-
gorithms) it is possible to observe that some operations are shared through the reduction
algorithms.

1 for (i = (sys_t - 1) * 2; i >= sys_t; i--)
2 {
3 prod[i - sys_t + 3] ^= prod[i];
4 prod[i - sys_t + 1] ^= prod[i];
5 prod[i - sys_t + 0] ^= gf_mul_general (prod[i], 2, algorithm)

;
6 }

Code 5.1: Reduction 1

1 for (i = (sys_t - 1) * 2; i >= sys_t; i--)
2 {
3 prod[i - sys_t + 10] ^= prod[i];
4 prod[i - sys_t + 9] ^= prod[i];
5 prod[i - sys_t + 6] ^= prod[i];
6 prod[i - sys_t + 0] ^= prod[i];
7 }

Code 5.2: Reduction 2

In the FSM (Figure 5.25) this translates into representing each assignment as triplet
READ-STORE-WRITE, in that way, the number of states is reduced.
During execution, the FSM will visit only the states relative to the reduction algorithm.
The module will take as input the value sys_t, which represents t and the reduction
algorithm red.

67

Hardware Implementation

1 for (i = (sys_t - 1) * 2; i >= sys_t; i--)
2 {
3 prod[i - sys_t + 7] ^= prod[i];
4 prod[i - sys_t + 2] ^= prod[i];
5 prod[i - sys_t + 1] ^= prod[i];
6 prod[i - sys_t + 0] ^= prod[i];
7 }

Code 5.3: Reduction 3

1 for (i = (sys_t - 1) * 2; i >= sys_t; i--)
2 {
3 prod[i - sys_t + 8] ^= prod[i];
4 prod[i - sys_t + 0] ^= prod[i];
5 }

Code 5.4: Reduction 4

68

5.4 – McEliece subsystem

READ_3

STORE_3

WRITE_3

READ_1

STORE_1

WRITE_1

READ_2

STORE_2

WRITE_2

READ_0

STORE_0

WRITE_0

READ_10

STORE_10

WRITE_10

READ_9

STORE_9

WRITE_9

READ_6

STORE_6

WRITE_6

READ_7

STORE_7

WRITE_7

READ_8

STORE_8

WRITE_8

READ

STORE

FOR_EVAL FOR_INIT LOAD_CONFIG

WAIT

start

reset

FOR_INC

FINISH

red_reg==RED1

red_reg==RED2
red_reg==RED3 red_reg==RED4

i_reg >= sys_t_reg

i_reg < sys_t_reg

!start

Figure 5.25: McEliece reduction finite state machine

69

Hardware Implementation

5.5 HQC subsystem
The HQC subsystem is made by 3 blocks:

• Kronecker segmentation

• Inverse Kronecker segmentation

• HQC reduction

In this subsection, the hardware implementation of the modules will be presented

5.5.1 Kronecker segmentation
The Kronecker segmentation is the module responsible for dividing into blocks of dimen-
sion 8, a binary polynomial. The system is organized in an FSM, as shown in Figure 5.26.
The component receives input signals:

• the length of binary polynomial in terms of words(len)

• the sub memory from which to operate(mem_sel)

The finite state machine follows this execution:

1. In state LOAD_CONFIG, the input values are saved inside registers.

2. States FOR_INIT,FOR_EVAL and FOR_INC, manage the for loop.

3. States READ,STORE, read and store word from the memory at address i_reg.

4. State WRITE_0,WRITE_1,WRITE_2 and WRITE_3, each blocks of 8 bits
is stored in 4 contiguous memory locations, starting from index i_reg.

70

5.5 – HQC subsystem

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL FOR_INC

READ

STORE

FINISH

WRITE_0

WRITE_1 WRITE_2

WRITE_3

i_reg < len_reg

i_reg >= len_reg

reset

start

!start

Figure 5.26: Kronecker segmentation finite state machine

5.5.2 Inverse Kronecker segmentation
The inverse Kronecker segmentation is the module responsible for converting a polynomial
with coefficient in F216 in a binary polynomial. The module implements an FSM, as shown
in Figure 5.28. Before the pointwise multiplication, the polynomial A(x) and B(x), have
coefficients on 8 bits. After the pointwise multiplication, the coefficients are on 16 bits.
The polynomial obtained will have this form:

c(x) = (a0, a1, a2, . . . , a15) + (a16, a17, a2, . . . , a31)x8 + . . .

the inverse Kronecker segmentation has to sum those bits that share the same exponent,
as shown in figure Figure 5.27.

Figure 5.27: c(x) polynomial dot view

This behavior is implemented by the finite state machine as follows:

71

Hardware Implementation

• The finite state machine will read two words, knowing that they are on 16 bits, it
will have to sum the upper half bits of word 1 and the lower half of word 2.

• The values then need to be stored in the correct word and the correct position in
the word.

• The system fills each word sequentially, arranging the 8 bits of the result in order.

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVAL FOR_INC

READ_PREV

STORE_PREV

READ_CURR

STORE_CURR

READ_WORD

STORE_WORD

WRITE_WORD

FINISH

i_curr < len_reg

i_curr >= len_reg

reset

start

!start

i_curr ==len_reg

i_curr !=len_reg

i_curr == 0

i_curr != 0

Figure 5.28: Inverse Kronecker segmentation finite state machine

5.5.3 HQC reduction
The module hqc_reduction.sv, implements the reduction of the binary polynomial, for
all level of security of HQC. This component implements an FSM, as show in Figure 5.29.
Looking at the C Code 5.5, it is possible to observe that the variables are defined on 64
bits. The accelerator being on 32 bits, has to perform two reads and writes. In the for
loop the elements that are accessed from memory are:

72

5.5 – HQC subsystem

• a[i + vec_n_size_64 - 1]

• a[i + vec_n_size_64]

• a[i]

The finite state machine for each instruction it defines a pair of READS, in the following
way:

• READ_A0 and READ_A1 are used for a[i + vec_n_size_64 - 1]

• READ_A2 and READ_A3 are used for a[i + vec_n_size_64]

• READ_A4 and READ_A5 are used for a[i]

The state COMPUTE performs the operation o[i] = a[i]⊕ r⊕ carry. The value is
written in memory through states WRITE_0 and WRITE_1. The final operation in
line 16, is done in COMPUTE, instead of performing o[i] = a[i]⊕ r⊕ carry, it performs
o[i] = (a[i]⊕ r⊕ carry) & red_mask.

1 void hqc_reduce (uint64_t *o, const uint64_t *a, pqc_algorithm algorithm)
2 {
3 uint64_t r;
4 uint64_t carry;
5 int vec_n_size_64 = binary_2_vec64 (algorithm);
6 int param_n = parameter_n (algorithm);
7 uint64_t red_mask = red_mask_sel (algorithm);
8

9 for (int i = 0; i < vec_n_size_64 ; ++i)
10 {
11 r = a[i + vec_n_size_64 - 1] >> (param_n & 0x3F);
12 carry = a[i + vec_n_size_64] << (64 - (param_n & 0x3F));
13 o[i] = a[i] ^ r ^ carry;
14 }
15

16 o[vec_n_size_64 - 1] &= red_mask ;
17 }

Code 5.5: HQC reduction

73

Hardware Implementation

WAIT

LOAD_CONFIG

FOR_INIT

FOR_EVALFOR_INC

READ_A0

READ_A1

STORE_A0

STORE_A1

READ_A2

READ_A3

STORE_A2

STORE_A3

READ_A4

READ_A5

STORE_A4

STORE_A5

WRITE_0

WRITE_1

COMPUTE

FINISH

count < vec_n_size_regcount >= vec_n_size_reg

reset

start

!start

Figure 5.29: HQC reduction finite state machine

74

5.6 – Polynomial multiplier

5.6 Polynomial multiplier
Now that we’ve covered all the main subsystems and their parts, let’s dive into how the
polynomial multiplier works. The Finite State Machine (Figure 5.30) operates differently
for McEliece and HQC algorithms, but there are some common stages like FFT_A,
FFT_B, POINTWISE_B, and IFFT, which handle the polynomial multiplication.

In HQC, before we do the FFT, we first split the polynomials A(x) and B(x) using
Kronecker segmentation. After the multiplication, what happens next depends on the
algorithm. For McEliece, the polynomial is just reduced to size t. But for HQC, we have
to convert the polynomial back to binary form before reducing it further.

WAIT

LOAD_CONFIG

FFT_A

FFT_A_WAIT

FFT_B

FFT_B_WAIT

POINTWISE_B

POINTWISE_WAIT

IFFT

IFFT_WAIT

MCELIECE_REDUCTION

MCELIECE_REDUCTION_WAIT

KRONECKER_SEGMENTATION_A

KRONECKER_SEGMENTATION_A_WAIT

KRONECKER_SEGMENTATION_B

KRONECKER_SEGMENTATION_B_WAIT

FINISH

INVERSE_KRONECKER_SEGMENTATION

INVERSE_KRONECKER_SEGMENTATION_WAIT

HQC_REDUCTION

HQC_REDUCTION_WAIT

!start
reset

start

((a
lgo

rith
m==

HQC12
8)

||

(al
go

rith
m!==

HQC19
2)

||

(al
go

rith
m==

HQC25
6))

((algorithm!=HQC128) &&
(algorithm!=HQC192) &&
(algorithm!=HQC256))

finish_ks

!finish_ks

finish_ks
!finish_ks

!finish_fft

finish_fft

!finish_fft

finish_fft

finish_pm

!finish_pm

!finish_fft

fin
ish

_f
ft

&&

!h
qc

_m
ce

lie
ce

finish_fft &&
hqc_mceliece

!finish_mr finish_mr

!finish_hr

finish_hr

!finish_iks
finish_iks

Figure 5.30: Polynomial multiplier finite state machine

75

76

Chapter 6

Results

The initial objective of the study was to design a hardware accelerator, that would be
integrated into the X-HEEP1[16] microcontroller. Due to time constraints, the hardware
accelerator was tested as a standalone unit rather than being integrated into X-HEEP
as initially planned. To prove that the accelerator presents a significant advantage with
respect to the software model, the execution time of the software functions was confronted
with the execution time of the hardware modules. In this chapter, the results achieved
through the hardware implementation with those obtained from running the software
implementation on the simulated RISC-V microcontroller X-HEEP are presented. The
chapter will be organized in the following sections:

• X-HEEP: will give a brief introduction to the platform and explain the functioning
of the simulation envirorment.

• Simulation results: will present the performance achieved in software and hardware.

• Comparison: will analyze and compare the results obtained in software and hard-
ware.

• Potential improvements: will discuss the current limitation of the system, and pro-
pose different solutions in order to solve them.

6.1 X-HEEP
X-HEEP(eXtendable Heterogeneous Energy-Efficient Platform) is an open-source RISC-
V microcontroller described in SystemVerilog. It is designed to be highly configurable, ca-
pable of targeting small and tiny platforms, and can be extended to support accelerators[16].
The unique feature of X-HEEP is its simplicity and customizability. It provides a basic
microcontroller unit (MCU) with CPUs, common peripherals, and memories, allowing
users to extend it with their own accelerator without modifying the MCU. This means

1https://github.com/esl-epfl/x-heep

77

https://github.com/esl-epfl/x-heep

Results

users can focus on building their special hardware supported by the microcontroller. X-
HEEP supports simulation with Verilator, Questasim, and others. Firmware can be built
and linked using CMake with either gcc or clang.
In the following subsection, we will discuss the operation and configuration of the simu-
lation environment utilized for the execution of the software functions.

6.1.1 Simulation Envirorment
The X-HEEP simulation environment offers various parameters for adjustment, including
CPU type, BUS type, number of memory banks, and number of interleaved banks.
For the simulation of the software model functions, the following parameters were chosen:

• CPU=cv32e40x

• BUS=NtoM

• MEMORY_BANKS=64

• MEMORY_BANKS_IL=0

Due to the dimension of the algorithm employed in the FFT, the linker parameters relative
to the heap and stack, were modified in order to accommodate the functions.
The simulation envirorment is organized through makefile, which manage the compilation
and execution of the codes. The microcontroller offers performance counters, which are
accessible through dedicated functions defined in the device libraries. In Code 6.1, a
template illustrates the process of capturing the number of clock cycles of a function.
To utilize this template:

1. First, include the library csr.h to access the performance counter.

2. Enable the performance counter (line 26).

3. Reset the performance counter to 0 (line 27).

4. Execute the function of interest (line 29).

5. Capture the number of clock cycles (line 31).

6. Utilize a print function (line 32) to save the cycle count in the file uart0.log.

This process enables the capture of performance metrics, such as the number of clock
cycles, for the specified function. The result is then stored in the file uart0.log for further
analysis.
The performance capture of various software functions follows the template outlined in
Code 6.1. The simulation was conducted using ModelSim.

78

6.2 – Simulation results

1 # include <stdio.h>
2 # include <stdint .h>
3 # include <stdlib .h>
4 # include "csr.h"
5 # include " rv_plic .h"
6 # include " rv_plic_regs .h"
7 # include " rv_plic_structs .h"
8 # include "hart.h"
9 # include "x-heep.h"

10

11 int fibonacci (int n) {
12 if (n <= 1)
13 return n;
14 else
15 return fibonacci (n - 1) + fibonacci (n - 2);
16 }
17

18

19

20 int main(int argc , char *argv [])
21 {
22 unsigned int cycles ;
23 int n, i;
24 n=10;
25

26 CSR_CLEAR_BITS (CSR_REG_MCOUNTINHIBIT , 0x1);
27 CSR_WRITE (CSR_REG_MCYCLE , 0);
28

29 fibonacci (n);
30

31 CSR_READ (CSR_REG_MCYCLE , & cycles);
32 printf (" Number of clock cycles keygen : %d\n", cycles);
33 return EXIT_SUCCESS ;
34 }

Code 6.1: Template performance

6.2 Simulation results
The accelerator underwent simulation and validation against the C-based software model.
Testing procedures were conducted using SystemVerilog and Python. SystemVerilog was
used to develop testbenches for individual modules, while Python was employed to convert
C functions and generate corresponding tests for the modules. The testing flow structure
is depicted in Figure 6.1. Each module includes a test_generation.py file responsible
for generating input data and the golden output for the testbench. This data is then
utilized by the testbench to produce results, which are subsequently compared with the
golden output. If the results match, a pass value is generated.

Each module was successfully tested, and as it stands, the accelerator functions with
all parameter sets of HQC and McEliece.

79

Results

input.data

test_generation.py

testbench.sv

golden.data result.dataequal

PASS/FAIL

Figure 6.1: Testing flow

6.3 Modelsim simulation accelerator

For the different modules of the accelerator, the number of clock cycles to compute their
execution has been computed. The result is divided in different tables:

• Table 6.1, Table 6.2, Table 6.3 summarize the clock cycles for the field operations.

• Table 6.4, Table 6.5 and Table 6.6 summarized the clock cycles for the FFT compo-
nents for the fields considered.

• Table 6.7 summarize the clock cycles for the execution of the FFT and IFFT for the
three fields.

• Table 6.8 and Table 6.9, present the reduction clock cycles for each algorithm and
level of security.

• Table 6.10 and Table 6.11, present the clock cycles for each level of security of HQC
for the direct and inverse kronecker segmentation.

From the result obtained, it is possible to identify as the heaviest operation the FFT, when
executing the polynomial multiplication in HQC-256(the worst case) the FFT occupies
99% of the clock cycles. This implies also that is better to concentrate on improving the
FFT since the other modules occupy just 1 % of the execution time.

Operation Clock Cycles
mul 1
square 1
inversion 18

Table 6.1: Arithmetic logic F212 hardware

80

6.3 – Modelsim simulation accelerator

Operation Clock Cycles
mul 1
square 1
inversion 18

Table 6.2: Arithmetic logic F213 hardware

Operation Clock Cycles
mul 1
square 1
inversion 24

Table 6.3: Arithmetic logic F216 hardware

Module Clock cycles[FFT] Clock cycles[IFFT]
compute_g 20480 20498
iterative_optimized_taylor_expand 64556 64556
compute_initial_w 5124 5142
compute_subset_sums 10284 10284
compute_w 10244 10244
precompute_taylor_expand 964639 1001467
butterfly 147762 147762

Table 6.4: FFT and IFFT hardware modules in F212

Module Clock cycles[FFT] Clock cycle[IFFT]
compute_g 40960 40978
iterative_optimized_taylor_expand 139312 139312
compute_initial_w 10244 10262
compute_subset_sums 20528 20528
compute_w 20484 20484
precompute_taylor_expand 2170916 2244608
butterfly 315751 315751

Table 6.5: FFT and IFFT hardware modules in F213

81

Results

Module Clock cycles[FFT] Clock cycles[IFFT]
compute_g 327680 327704
iterative_optimized_taylor_expand 1359932 1359932
compute_initial_w 81924 81948
compute_subset_sums 163900 163900
compute_w 163844 163844
precompute_taylor_expand 23658547 24444931
butterfly 3015198 3015198

Table 6.6: FFT and IFFT hardware modules in F216

Field Clock cycles[FFT] Clock cycles[IFFT]
F212 1117530 1154376
F213 2496916 2570626
F216 26755674 27542082

Table 6.7: FTT and IFFT hardware

Algorithm Clock cycles
mceliece348864/f 823
mceliece460896/f 1524
mceliece6688128/f 2036
mceliece6960119/f 1184
mceliece8192128/f 2036

Table 6.8: Mceliece reduction hardware

Algorithm Clock cycles
HQC-128 4713
HQC-192 9541
HQC-256 15321

Table 6.9: HQC reduction hardware

Algorithm Clock cycles
HQC-128 4436
HQC-192 8980
HQC-256 14420

Table 6.10: Kronecker segmentation hardware

82

6.4 – Modelsim simulation software

Algorithm Clock cycles
HQC-128 39875
HQC-192 80771
HQC-256 129731

Table 6.11: Inverse Kronecker segmentation hardware

6.4 Modelsim simulation software
The software functions developed in the software model have been executed in the sim-
ulated environment of the RISC-V microcontroller X-HEEP. For each function, the ex-
ecution time has been captured in terms of clock cycles. The result is organized in the
following tables:

• Table 6.12, Table 6.13, Table 6.14 summarize the clock cycles for the field operations.

• Table 6.15, Table 6.16 and Table 6.17 summarize the clock cycles for the FFT com-
ponents for the field considered.

• Table 6.18 and Table 6.19, present the reduction clock cycles for each algorithm and
level of security.

• Table 6.20, presents the clock cycles for each level of security of HQC for the Kro-
necker segmentation.

The functions indicated with the value N/A, due to the time to complete the simulation,
do not present a result. The tables relative to the FFT and IFFT, and the one interesting
the inverse Kronecker segmentation are not presented for the same reason.

Operation Bits Clock Cycles
mul 12 137
square 12 41
inversion 12 1131

Table 6.12: Arithmetic logic F212 software

Operation Bits Clock Cycles
mul 13 155
square 13 155
inversion 13 2286

Table 6.13: Arithmetic logic F213 software

83

Results

Operation Bits Clock Cycles
mul 16 314
square 16 314
inversion 16 6589

Table 6.14: Arithmetic logic F216 software

Module Clock cycles[FFT] Clock cycles[IFFT]
compute_g 1138449 5439249
iterative_optimized_taylor_expand 278764 225467
compute_initial_w 278572 2357293
compute_subset_sums 32886 32886
compute_w 294951 288806
precompute_taylor_expand N/A N/A
butterfly N/A N/A

Table 6.15: FFT and IFFT functions in F212

Module Clock cycles[FFT] Clock cycle[IFFT]
compute_g 2555625 15908585
iterative_optimized_taylor_expand 585984 485580
compute_initial_w 622631 7254056
compute_subset_sums 65661 65661
compute_w 655399 643110
precompute_taylor_expand N/A N/A
butterfly N/A N/A

Table 6.16: FFT and IFFT functions in F213

Module Clock cycles[FFT] Clock cycles[IFFT]
compute_g 35651074 468319747
iterative_optimized_taylor_expand 5374262 4606324
compute_initial_w 9633832 237076521
compute_subset_sums 524446 524446
compute_w 9895976 9797671
precompute_taylor_expand N/A N/A
butterfly N/A N/A

Table 6.17: FFT and IFFT functions in F216

84

6.4 – Modelsim simulation software

Algorithm Clock cycles
mceliece348864/f 9634
mceliece460896/f 3004
mceliece6688128/f 3870
mceliece6960119/f 2537
mceliece8192128/f 3870

Table 6.18: Mceliece reduction software

Algorithm Clock cycles
HQC-128 8653
HQC-192 17445
HQC-256 28885

Table 6.19: HQC reduction software

Algorithm Clock cycles
HQC-128 36578
HQC-192 74062
HQC-256 118942

Table 6.20: Kronecker segmentation software

6.4.1 Comparison simulations
The hardware accelerator has demonstrated significantly reduced execution times com-
pared to a microcontroller-based execution. As stated in section 6.3, the execution time is
heavily capitalized by the FFT. The object of discussion of this comparison will deal with
the FFT since it is the heaviest module inside the polynomial multiplier. The Table 6.21
summarizes the execution time of the FFT functions in the software model and hard-
ware accelerator. As it is possible to observe, the hardware modules present a significant
speedup with respect to the software function. This behavior is mainly due to the arith-
metic logic. Inside the software model, all the critical operations such as multiplication and
squaring are implemented through for loops, this causes to have a high number of cycles
in the operations and consequently in the inversion, as it can be seen in Table 6.13. The
hardware approach solves this problem by implementing multiplication and squaring as
combinational circuits. This translates also in a high performance in the inversion. There-
fore in the FFT, it is possible to observe that when the field operations are used in the func-
tions, a significant speed-up can be observed in the accelerator. This is particularly clear
when looking at compute_g and compute_initial_w, as it is presented in Table 6.21.
Those two functions during inversion rely heavily on the inversion when performing the
inverse operation. The speedup is less noticeable when the functions are not resorting to
the field arithmetic. Considering the iterative_optimized_taylor_expand, the only

85

Results

operation that is executed is the xor, therefore in software, the overhead is given only by
the instructions execution in the pipeline.
In summary, the system achieves a greater performance than the software model due to
the efficient arithmetic logic and reduced overhead in execution, with respect to a micro-
controller.

Module HW
Clock
cycles
[FFT]

HW
Clock
cycles
[IFFT]

SW
Clock
cycles
[FFT]

SW
Clock
cycles
[IFFT]

Speed
up
factor
[FFT]

Speed
up
factor
[IFFT]

compute_g 327680 327704 35651074 468319747 108.79 1429.09
iterative_optimized_taylor_expand 1359932 1359932 5374262 4606324 3.95 3.38
compute_initial_w 81924 81948 9633832 237076521 117.59 2893.01
compute_subset_sums 163900 163900 524446 524446 3.19 3.19
compute_w 163844 163844 9895976 9797671 60.39 59.79
precompute_taylor_expand 23658547 24444931 N/A N/A N/A N/A
butterfly 3015198 3015198 N/A N/A N/A N/A

Table 6.21: FFT and IFFT functions in F216 in hardware

86

6.5 – Potential improvements

6.5 Potential improvements
At its current state, the software model of the accelerator falls short in comparison to
the polynomial computation methods employed in HQC and McEliece schemes. This
discrepancy, if replicated in hardware, would result in poor performance. To enhance the
competitiveness of the accelerator, several strategies could be considered. One potential
improvement is to replace the current Fast Fourier Transform (AFFT) with the Frobenius
Additive FFT as proposed by Li et al. (2018) [12]. This alternative FFT algorithm
may offer better efficiency and performance. Another approach worth exploring is the
implementation of a truncated version of the existing AFFT. By reducing the number of
evaluation points, this approach aims to reduce the execution time of the accelerator.

87

88

Chapter 7

Conclusion

In conclusion, this thesis has introduced a novel approach to polynomial multiplication
in code-based cryptographic algorithms by utilizing the Additive Fast Fourier Transform
(AFFT). Departing from conventional methods, this alternative approach aimed to en-
hance efficiency and performance in hardware acceleration for code-based cryptography.
While the anticipated performance benchmarks were not fully realized, the thesis has
nonetheless succeeded in developing a functional hardware accelerator.

Despite the challenges encountered and the deviation from initial performance expec-
tations, the creation of a working hardware accelerator represents a significant milestone.
This achievement underscores the feasibility and potential of employing AFFT in hard-
ware implementations for polynomial computation in code-based cryptography.

Moreover, the thesis contributes to the broader landscape of algorithmic research and
hardware development in code-based cryptography. By exploring innovative approaches
to polynomial multiplication and hardware acceleration, this work enriches the arsenal of
techniques available to cryptographic researchers and practitioners. The insights gained
from this endeavor pave the way for further refinement and optimization of AFFT-based
hardware accelerators, potentially unlocking new avenues for enhancing the efficiency and
scalability of code-based cryptographic systems.

Looking ahead, future research directions may focus on addressing the performance
limitations identified in this thesis, such as optimizing resource utilization and mitigating
computational overhead. Additionally, continued exploration of alternative algorithms
and hardware architectures could yield further improvements in hardware acceleration
for code-based cryptography. Ultimately, the pursuit of innovative solutions and the
collaborative effort of researchers and practitioners will continue to propel advancements
in cryptographic techniques, ensuring the resilience and security of digital communication
in an ever-evolving landscape of threats and challenges.

89

90

Bibliography

[1] IBM Quantum Computing Blog | Charting the course to 100,000 qubits — ibm.com.
https://www.ibm.com/quantum/blog/100k-qubit-supercomputer. [Accessed 23-
03-2024].

[2] D. J. Bernstein, T. Chou, and P. Schwabe. Mcbits: fast constant-time code-based
cryptography. In Cryptographic Hardware and Embedded Systems-CHES 2013: 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings
15, pages 250–272. Springer, 2013.

[3] I. Blake, G. Seroussi, and N. Smart. Finite Field Arithmetic, page 11–28. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

[4] I. F. Blake, S. Gao, and R. J. Lambert. Construction and distribution problems for
irreducible trinomials over finite fields. In INSTITUTE OF MATHEMATICS AND
ITS APPLICATIONS CONFERENCE SERIES, volume 59, pages 19–32. Citeseer,
1996.

[5] D. G. Cantor. On arithmetical algorithms over finite fields. Journal of Combinatorial
Theory, Series A, 50(2):285–300, 1989.

[6] M.-S. Chen, C.-M. Cheng, P.-C. Kuo, W.-D. Li, and B.-Y. Yang. Faster multiplication
for long binary polynomials. arXiv preprint arXiv:1708.09746, 2017.

[7] S. Gao and T. Mateer. Additive Fast Fourier Transforms Over Finite Fields. IEEE
Transactions on Information Theory, 56(12):6265–6272, Dec. 2010.

[8] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in gf
(2m) using normal bases. Information and computation, 78(3):171–177, 1988.

[9] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers. Improving software
quality in cryptography standardization projects. In 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pages 19–30. IEEE, 2022.

[10] D. E. Knuth. The art of computer programming. 2: Seminumerical algorithms.
Addison-Wesley, Reading, Mass, 2. ed., 24. [print.] - 1995 edition, 1995.

[11] S. S. Kumar. Elliptic curve cryptography for constrained devices. PhD thesis,
Bochum, Univ., Diss., 2006, 2006.

91

https://www.ibm.com/quantum/blog/100k-qubit-supercomputer

BIBLIOGRAPHY

[12] W.-D. Li, M.-S. Chen, P.-C. Kuo, C.-M. Cheng, and B.-Y. Yang. Frobenius additive
fast fourier transform. In Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation, pages 263–270, 2018.

[13] Z. Liang and Y. Zhao. Number theoretic transform and its applications in lattice-
based cryptosystems: A survey. arXiv preprint arXiv:2211.13546, 2022.

[14] P. Longa and M. Naehrig. Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. In Cryptology and Network Security: 15th International
Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings 15, pages
124–139. Springer, 2016.

[15] J. López and R. Dahab. High-speed software multiplication in f. volume 1977, pages
93–102, 01 2000.

[16] S. Machetti, P. D. Schiavone, T. C. Müller, M. Peón-Quirós, and D. Atienza. X-heep:
An open-source, configurable and extendible risc-v microcontroller for the exploration
of ultra-low-power edge accelerators. arXiv preprint arXiv:2401.05548, 2024.

[17] G. Seroussi. Table of low-weight binary irreducible polynomials. 1998.

[18] S. L. Vianney Rancure, Lam Pham-Sy. Quadiron: A library for number theoretic
transform-based erasure codes. 2020.

[19] J. Von zur Gathen and J. Gerhard. Arithmetic and factorization of polynomial over
f 2. In Proceedings of the 1996 international symposium on Symbolic and algebraic
computation, pages 1–9, 1996.

[20] Y. Wang and X. Zhu. A fast algorithm for the fourier transform over finite fields
and its vlsi implementation. IEEE Journal on Selected Areas in Communications,
6(3):572–577, 1988.

[21] V. Weger, N. Gassner, and J. Rosenthal. A survey on code-based cryptography. arXiv
preprint arXiv:2201.07119, 2022.

92

	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis organization

	Cryptography
	Cryptography
	Symmetric cryptography
	Asymmetric cryptography

	Post Quantum Cryptography
	Code-based cryptography

	Background
	Finite Fields
	Finite Fields Of Characteristic Two
	Modular Reduction
	Multiplication
	Squaring
	Inversion

	Polynomial Multiplication
	Polynomial representation
	Fast multiplication of polynomials in coefficient form
	Discrete Fourier Transform
	Fast Fourier Transform

	Fast Polynomial Multiplication in Finite Fields
	Number Theoretic Transform
	Additive Fast Fourier Transform

	Software Implementation
	Arithmetic Unit
	Multiplication
	Squaring
	Inversion and Exponentiation

	Additive Fast Fourier Transform
	Recursive Additive Fast Fourier Transform
	Recursive Inverse Additive Fast Fourier Transform
	Iterative Additive Fast Fourier Transform
	 Inverse Iterative Additive Fast Fourier Transform

	Polynomial Multiplication Structure
	Pre Processing
	Post Processing

	Testing And Integration

	Hardware Implementation
	Field arithmetic logic
	Multiplication
	Squaring
	Inversion

	Memories subsystem
	Fast Fourier Transform subsystem
	Memory access scheme
	Twisting
	Taylor Expansion
	Taylor rearrange
	Restore memory
	Compute initial w
	Compute subset sums
	Compute w
	M to two
	Two to m
	Pointwise mul

	McEliece subsystem
	HQC subsystem
	Kronecker segmentation
	Inverse Kronecker segmentation
	HQC reduction

	Polynomial multiplier

	Results
	X-HEEP
	Simulation Envirorment

	Simulation results
	Modelsim simulation accelerator
	Modelsim simulation software
	Comparison simulations

	Potential improvements

	Conclusion

