
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Development of a monitoring system for
non-rechargeable lithium batteries

Supervisors

Prof. Danilo DEMARCHI

Ph.D. Umberto GARLANDO

Ph.D. Alessandro SANGINARIO

Dott. Mattia BAREZZI

Candidate

Francesco CORIANÒ

April 2024

Summary

This thesis is an improvement of the electronic systems that compose WAPPFRUIT,
a regional project focusing on smart technologies for water management in fruit
growing, aiming to promote rural development in the Piedmont region. The
project deployed systems to collect essential soil data (e.g., soil temperature, matric
potential, volumetric water content) using LoRa network nodes to characterize and
irrigate orchard fields. Efficient and long-lasting power supply is crucial for these
systems. They rely on a primary battery in lithium-thionyl chloride (LiSOCl2)
chemistry without estimating the SOH (State of Health) battery. This chemistry
is challenging in the monitoring of this parameter. When the battery is almost
dead, there is a steep voltage drop phenomenon, making end-of-life detection vital
in such a way as to prevent an electronic system for real-time monitoring from
being switched off suddenly. This work has been addressed two main objectives.
Firstly, firmware has been developed for managing battery end-of-life using the
BQ35100 IC (Integrated Circuit) from Texas Instruments. Lastly, a PCB (Printed
Circuit Board) has been designed to realize a new electronic prototype estimating
LiSOCl2 battery end-of-life. The research started with a deep analysis of BQ35100
manuals, revealing its complexity with RAM, flash memory, and internal algorithm
for battery end-of-life assessment. Communication is established via the I2C (Inter-
Integrated Circuit) protocol. Software development began with implementing
the I2C command sequence to read the BQ35100’s RAM, considering its timing
constraints. The next phase involved the creation of a library for reading and
writing data to flash memory, essential for LiSOCl2 gauge operational mode. After
the software development step, the challenge shifted to the selection of a suitable
testing method to discharge the battery quickly and estimate the battery lifetime.
Given the big battery capacity and the low maximum current discharge battery
value, a full cycle could take months or years. A stress test solution has been
designed to test BQ35100 functionalities and to observe the direct correlation
between battery depletion and increasing internal battery resistance. In addition to
this work, a PCB has been developed to monitor innovative electronic systems for
precision agriculture, guaranteeing the maximum performance from the BQ35100
side. The thesis concluded by verifying effective battery end-of-life management.

ii

This value will be extended beyond WAPPFRUIT, offering an accurate way to
estimate LiSOCl2 battery lifetime in such a way as to realize long-lasting IoT
(Internet of Things) devices for precision agriculture.

iii

Acknowledgements

"Alla nonna Carmela e al nonno Uccio"

Non è semplice riassumere a parola tutta la mia gratitudine per le persone che
sono qui con me a condividere questo traguardo importante.

Ai miei nonni che ormai non ci son più, ringrazio loro per il sostegno datomi
durante tutto il mio percorso e questo traguardo è dedicato anche a loro.

Ai miei genitori Orazio e Lucia e a mio fratello Mattia che mi hanno assistito
durante tutta la mia vita e soprattutto durante tutto questo lungo percorso uni-
versitario, perché nonostante tutto mi han sempre aiutato e supportato e senza di
loro non sarei arrivato dove sono ora.

Ai miei amici “di giù e di su” che mi avete fatto passare momenti indimentica-
bili che probabilmente rimarranno con me per sempre.

A Ludovica per avermi supportato e incoraggiato in questo tempo insieme, nonos-
tante le difficoltà incontrate non mi mai fatto perdere il sorriso o la voglia di andare
avanti.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 LoRaWAN Protocol . 2

2 Technological Background 6
2.1 Analysis of the Battery: LS14500 6
2.2 Microcontroller with Transducer LoRa 8

3 System Design Steps 10
3.1 Battery Gauge . 10

3.1.1 Measurments . 11
3.1.2 Features . 13
3.1.3 Operating Mode Choice . 14

4 Firmware Development 16
4.1 Introduction . 16
4.2 I2C Characteristics . 16
4.3 Type of commands . 16

4.3.1 Data Commands . 17
4.3.2 Control Subcommands . 20

4.4 BQ35100 Functions Code . 23
4.4.1 General Functions . 23
4.4.2 Data Commands . 27
4.4.3 Command MAC Subcommands 28
4.4.4 Memory Commands . 30

4.5 Data Memory Mapping . 32

vi

5 Firmware Test 34
5.1 Previous Consideration for Test Procedure 34

5.1.1 Individual Command Test 35
5.2 Current Consumption Estimation 36

5.2.1 Python Code For Current Consumption 37
5.2.2 Estimation of Time to End 39

5.3 Possible Procedures . 40
5.3.1 First Test Procedure . 40
5.3.2 Second Test Procedure . 41

5.4 Final Setup . 42
5.5 Test Code . 42

5.5.1 Starting project . 42
5.5.2 Main function . 43
5.5.3 LoRaWAN Protocol Functions 45
5.5.4 Additional Timer Elapse Routines 52

5.6 Decoder for TTN . 56

6 Experimental Results 59
6.1 Data Managing . 59
6.2 First Test . 59
6.3 Second Test . 62

7 Hardware Development 65
7.1 Components Required . 65
7.2 Schematic . 71
7.3 PCB Layout . 73
7.4 Bills Of Materials . 74
7.5 3D Models . 75
7.6 Manufacturing . 75

8 Conclusion and Future Perspective 77

Bibliography 78

vii

List of Tables

1.1 Maximum payload length in LoRa protocol considering The Things
Network constrains. 3

7.1 Bill Of Materials. 74

viii

List of Figures

1.1 WAPPFRUIT – Intelligent Technologies Applied to Water Manage-
ment in Fruit Cultivation [1]. 1

1.2 CSS Modulation of LoRa Protocol(Source [2]). 2
1.3 (LoRa class-A)Bidirectional end devices timing of transmission/re-

ception cycle(Source [2]). 4
1.4 (LoRa Class-B) Bidirectional end devices with scheduled receive slots

timing of transmission/reception cycle(Source [2]). 4
1.5 (LoRa Class-C) Bidirectional end devices with maximal receive slots

timing of end device timing of transmission/reception cycle(Source
[2]). 5

1.6 Protocol stack of LoRaWAN(Source [2]). 5

2.1 LS14500 AA Size Battery . 6
2.2 Typical LS14500 discharge profiles at + 20°C(Source [3]). 7
2.3 Voltage plateau versus Current and Temperature (at mid-discharge)

[3]. 8
2.4 Restored Capacity versus Current and Temperature with 2.0 V

cut-off [3]. 8
2.5 STM32-WL55JC1 Nucleo Board from STMicroelectronics (Source [4]). 9

3.1 BQ35100 Single-Cell Simplified Implementation [5]. 11
3.2 Functional Block Diagram of BQ35100 [5]. 12
3.3 Current consumption of BQ35100 according to datasheet [5]. 14
3.4 EOS Usage Diagram from [7]. 15
3.5 Scaled Resistance Profile of LS14500 Battery with EOS Flag Thresh-

olds from [8]. 15

4.1 I2C-Compatible Interface Timing Characteristics from datasheet [5]. 17
4.2 Data Command Summary. 18
4.3 Example I2C Data Command Transition Sequence. 20
4.4 Control MAC Subcommands Summary. 21

ix

4.5 Example I2C Control Subcommand Transition Sequence. 23

5.1 Control_Status Command Example 35
5.2 Consumption Monitored From System Monitoring Soil Water Con-

tent [11]. 36
5.3 Consumption Monitored From Drip Irrigation System [12]. 37
5.4 Setup Configuration for Testing Procedure. 42
5.5 Flow Chart of Testing Procedures. 43

6.1 TTN decoded samples from TTN console network. 59
6.2 Voltage vs Time (First Test). 60
6.3 State Of Health Behaviour vs Time (First Test). 61
6.4 Internal Resistance Behaviour vs Time (First Test). 61
6.5 State Of Health Behavior During Time (Second Test). 62
6.6 Voltage Behaviour respect to Time and Depth-of-Discharge (Second

Test). 63
6.7 Internal Resistance Behaviour respect to Time and Depth-of-Discharge

(Second Test). 64

7.1 3D Model of LoRaTO Module. 65
7.2 BQ35100-PWR Chip. 66
7.3 HDC3022 Temperature and Humidity Sensor Chip (Source [16]). . . 66
7.4 STQL020C33R Voltage Regulator (Source [17]). 68
7.5 SIP32431 P-channel Pass Transistor (Source [18]). 68
7.6 Example of SMD Capacitors. 69
7.7 1024TR AA-size Battery Holder. 69
7.8 1210L Series PTC RESET (Source [19]). 70
7.9 LM66100, Low IQ Ideal Diode With Input Polarity Protection. . . . 70
7.10 Schematic Sheet. 72
7.11 Top and Bottom View with Highlighting on Different Zones. 73
7.12 Top 3D view and Bottom 3D view of the PCB. 75
7.13 Top view and Bottom view of the Frost Detection System assembled. 76

x

Acronyms

ACK
Acknowledge

ADC
Analog to Digital Converter

DoD
Deph of Discharge

EOS
End Of Service

GE
Gauge Enable

IoT
Internet of Things

I2C
Inter-Integrated Circuit

LoRa
Long Range protocol - physical layer

LoRaWAN
Long Range Wide Area Network - networking layers

MCU
Micro Controller Unit

xii

MAC
Manufacturing Access Control

NACK
Not Acknowledge

SCL
Serial Clock

SDA
Serial Data

SOH
State Of Health

TRM
Technical Reference Manual

TTN
The Things Network

xiii

Chapter 1

Introduction

This thesis project is the prosecution of project WAPPFRUIT - Smart technologies
applied to water management in fruit growing for rural development in Piedmont.

Figure 1.1: WAPPFRUIT – Intelligent
Technologies Applied to Water Manage-
ment in Fruit Cultivation [1].

The main goal of WAPPFRUIT is to
innovate the fruit farming through the
use of state-of-the-art technologies that
enable the determination of the correct
water requirements and the complete
automation of the micro-irrigation sys-
tem utilizing available market sensors
to measure the soil matric potential,
thereby indirectly determining the wa-
ter needs of the plants.
The data are collected at regular time
intervals (preset by the user) using a
control unit and will be remotely avail-
able using through a web interface and a
dedicated smartphone app allowing the
user to monitor in real-time the field
conditions.
To achieve the goal have an efficient
and long-lasting power supply for the
control unit is needed and for this aim
the most suitable choice was to employ
an Lithium-Thionyl Chloride (LiSOCl2)
primary battery.
So it becomes clear that the management of the battery conditions is a crucial
aspect in WAPPFRUIT that must be taken into account. This is the main goal of
this work: to develop a system to manage the Lithium-Thionyl Chloride battery

1

Introduction

that allows the user to have in real-time messages with the status of the battery
and to be alerted at a settled point before the end-of-life battery condition.
It’s clear that all developed systems among WAPPFRUIT are IoT compliant, which
means that each system is a part of a network of physical objects (or "things") that
are embedded system that can communicate and exchange data with other devices
and system over the internet.
So each system of WAPPFRUIT uses a LoRa gateway, the stakeholder that gathers
data from all nodes, that is the connection between the local LoRa network and
the internet.
In the following section a little introduction of LoRaWAN protocol is shown along
with some theoretical concepts associated with it. This will help in understanding
certain discussions that will be covered in the subsequent chapters.

1.1 LoRaWAN Protocol
LoRa technology is one of the Low Power Wide Area Network (LPWAN) technolo-
gies available on the market. This technology uses radio frequency bands in the
sub-gigahertz range without licensing, each carrier waves different in each terrestrial
zone, for example in Europe the carrier waves used are at 169 MHz, 433 MHz, 868
MHz.
LoRa technology uses Chirp Spread Spectrum (CSS) modulation technique, in
which to code the information each pulse is modulated in frequency linearly in
a wideband. If the frequency increases in time it is called up-chirp and if the
frequency decreases linearly in time it is called downchirp. The frequencies are
shown in Figure 1.2.

Figure 1.2: CSS Modulation of LoRa Protocol(Source [2]).

2

Introduction

This technique enables long-range transmission up to 2 to 5 km in urban regions
and 10 km in rural regions using a very low amount of energy.
This technology can be employed for end-to-end communication in which two
devices, called nodes, can exchange data without any supporting appliances or
exchange data from some devices to the internet thanks to a gateway which collects
data from each LoRa device in its area of action and sends them to a LoRa provider
via LAN or WLAN.
In order to classify a radio protocol the bit rate (Rb) must be evaluated in relation
to the CCS modulation variables:

Rb = SF · 1
2SF

· BW bits/sec,

where BW is the modulation bandwidth (125 kHz, 250 kHz or 500 kHz), the
interval of frequencies where the signal is up-chirped or down-chirped centered on
the carrier frequency, and SF is the spreading factor that can change from 7 to 12
and it defines how many bits are encoded in a single chirp.
So, fixing a certain slot of time, higher values of SF means also higher airtime on
the transmission medium.
In Table 1.1 are reported all typical values of data rate for EU868.

Data Rate Configuration Bandwidth Bits/s Maximum Data Payload
DR0 SF12 125kHz 250 51
DR1 SF11 125kHz 440 51
DR2 SF10 125kHz 980 51
DR3 SF9 125kHz 1760 115
DR4 SF8 125kHz 3125 222
DR5 SF7 125kHz 5470 222
DR6 SF6 125kHz 11000 222
DR7 FSK:50kpbs 50kbps 50000 222

Table 1.1: Maximum payload length in LoRa protocol considering The Things
Network constrains.

As shown, LoRa uses six possible spreading factors (SF7 to SF12) to adapt the
data rate and range tradeoff. Higher spreading factors allows longer range at the
expense of lower data rate, and vice versa.
In addition to these rules, each LoRa provider provides some kind of fair access
policy in such a way that each end device can send data with a 30 seconds uplink
airtime, per 24 hours, per device and at most 10 downlink messages per 24 hours,
including the ACKs for confirmed uplinks as reported on The Things Network
website.

3

Introduction

LoRaWAN provides various classes of end devices to address different requirements
in IoT appliances.

• Class-A: allows bidirectional communication whereby each uplink transmission
(from an end device) is followed by two short downlink reception windows, as
shown in Figure 1.3.

Figure 1.3: (LoRa class-A)Bidirectional end devices timing of transmission/re-
ception cycle(Source [2]).

These transmission slots are scheduled by the end device based on its own
communication needs (distance, power consuption...) . This class is the lowest
power end-device system for applications that only requires short downlink
communication after the end device has sent an uplink message.

• Class-B: they have the same timing as class-A where these devices open extra
receive windows at the scheduled time. To open these receive windows at
the scheduled time, end devices receive a time-synchronized beacon from the
base station. In this way, the network server knows when the end device is
listening.

Figure 1.4: (LoRa Class-B) Bidirectional end devices with scheduled receive slots
timing of transmission/reception cycle(Source [2]).

• Class-C : have almost continuously open RX windows and only close when
transmitting. This guarantees low latency at the expense of greater energy
consumption.

4

Introduction

Figure 1.5: (LoRa Class-C) Bidirectional end devices with maximal receive slots
timing of end device timing of transmission/reception cycle(Source [2]).

It is important to clarify that these classes are defined by the protocol where the
first class (class-A) is the most common, class-B is on the market but less common,
and class-C is still under development. The result is a so-called LoRa protocol
stack that is shown in Figure 1.6.

Figure 1.6: Protocol stack of LoRaWAN(Source [2]).

5

Chapter 2

Technological Background

2.1 Analysis of the Battery: LS14500
The subject of examination is the LS14500 AA battery manufactured by Saft (Figure
2.1), identified as a lithium thionyl chloride (LiSOCl2) battery.

Figure 2.1:
LS14500 AA
Size Battery

According to the information provided in the datasheet [3], this batter
1% per year of storage at 20 °C. Additionally, it is characterized by
high capacity and energy density, resulting in a nominal capacity of
2.6 Ah. Operating at a standard voltage of 3.6 V and being AA-sized,
it also demonstrates resistance to corrosion and exhibits an extensive
operating temperature range from −60 °C to 85 °C.
Of significant note is its nominal voltage, which offers practical
advantages by necessitating only a low-dropout regulator to uniformly
distribute the supply voltage across the entire system at 3.3 V,
a widely used nominal voltage for low-voltage electronic devices.
Furthermore, throughout its entire life cycle, the discharge profile
of this battery maintains a consistently flat voltage, as depicted in
Figure 2.2. When the resistance load is high (so, the output current
is in the order of a few mA), as shown by red, blue, green lines, it
is always in the proximity of a cell voltage of 3.4 V-3.6 V. This is a
good benefit when the system is operative but declares some issues
in the estimation of when the battery is at end-of-life condition and
should be replaced.
As partial drawbacks of this type of battery, it is useful to highlight the fact that it
has a very high output impedance. The chemical reaction that enables extremely
low self-discharge and long shelf life (passivation formation) have the unwanted
effect of limiting the available output current:

• a maximum continuous output current of 50 mA;

6

Technological Background

Figure 2.2: Typical LS14500 discharge profiles at + 20°C(Source [3]).

• a maximum peak output current up to 250 mA for 0.1 sec.

Those values are definitively low with respect to other non-rechargeable batteries.
But in real case scenario of an smart-agriculture system this is not a big problem
because the current consumption in LoRa transmission/reception is lower respect
to the maximum continuous current output limit (45mA) and lasts few seconds,
but this can be an issue when it comes to test an entire life cycle of the battery.
This issue will be better discussed later in chapter 5.
Also another drawbacks to take into account is the fact that the LS14500, as all
other lithium-ion based batteries, has differences in the voltage and the capacity
when a load is connected respect to the nominal values.
In particular the behaviour of both battery voltage is show in figure 2.3 and battery
capacity is shown in figure 2.4. As shown:

• the value of the battery voltage decreases respect to the nominal value when
a higher consumption is requested from the battery, so to have a value close
to the nominal battery voltage value a consumption near 1mA is needed;

• the battery capacity has an initial lower value, increasing when the consumption
is between 1mA and 2mA and decreasing constantly after 2mA.

Having said this, these considerations must be taken carefully into account when
the battery is used inside a of smart agriculture systems, so a proper sub-system
inside of it which deals with the management of battery life and the prediction of
the end-of-life condition is needed.

7

Technological Background

Figure 2.3: Voltage plateau versus Current and Temperature (at mid-
discharge) [3].

Figure 2.4: Restored Capacity versus Current and Temperature with 2.0 V
cut-off [3].

2.2 Microcontroller with Transducer LoRa
The MCU used in the development of the system is the STM32-WL55JC1 [4] that
is required to handle the communication between the system and the gateway using
the LoRaWAN protocol, to synchronize each operation properly. It is a dual core
ultra-low-power MCU with an embedded radio module handling the LoRa protocol.
The figure of the Nucleo board is shown in figure 2.5.

8

Technological Background

Figure 2.5: STM32-WL55JC1 Nucleo Board from STMicroelectronics (Source
[4]).

9

Chapter 3

System Design Steps

The design steps are based of the characteristic of the battery under consideration
and the STM32-WL55JC1 MCU.
The needed solution must be able to detect the battery end-of-life condition while
also have some way to communicate with the MCU, in order to extract data that
an host would willing to have available for any kind of use.

3.1 Battery Gauge
As discussed in previous section the characteristic of the LS14500 primary battery
make difficult to predict the end-of-life condition of the battery itself, because of
the very flat behaviour of the voltage.
The optimal solution to achieve the detection of end-of-life condition is to use the
BQ35100 integrated circuit from Texas Instrument, that is specially designed for
lithium-ion based non-rechargeable batteries. A basic usage of the gauge is shown
in figure 3.1.

The BQ35100 gauge is an integrated circuit suitable for monitoring the conditions
of the battery regardless the chemical type of lithium battery.
The working principle can be explained seeing the Figure 3.2 recorded from its
datasheet [5], that shows the functional block diagram of the BQ35100.

As reported in the datasheet [5], the BQ35100 is a complex integrated circuit
that has inside:

• Internal Oscillator with an operating frequency of 2MHz;

• Integrating Analog to Digital Converter (ADC) providing voltage and temper-
ature measurements;

• Coulomb Counter providing current measurements using a sense resistor
between SRN and SRP pin;

10

System Design Steps

Figure 3.1: BQ35100 Single-Cell Simplified Implementation [5].

• Internal Temperature Sensor;

• Data Memory used to program the gauge according to the features needed
based on the application;

• Gauge Enable digital pin used to enable the gauge and the internal LDO;

• Linear Voltage Regulator with 2.5V output voltage;

• Peripheral Unit with a ALERT signal that can be configured to be triggered
by a variety of status conditions;

• Internal Processing Unit responsible for applying the Gauging Algorithm in
order to determine SOH and EOS of the battery;

• I2C Interface that allows the communication with an external MCU unit.

3.1.1 Measurments
The BQ35100 is capable to make different measures that it internally uses in the
gauge algorithm to determine the when the battery is near at the end-of-life.

11

System Design Steps

Figure 3.2: Functional Block Diagram of BQ35100 [5].

Among the measurements the battery gauge can measure:
• Current: it measures the discharge current of the battery by measuring the

voltage drop across a small-value sense resistor between the SRP and SRN
pins using the integrating delta-sigma ADC in the device;

• Battery input Voltage: using the same delta-sigma ADC, which at will can be
scaled by the internal translation network, whose translation gain function is
determined during calibration process;

• Temperature: it can use either

a) Internal Sensor with a voltage gain GT EMP = −2mV/◦C;
b) External NTC thermistor.

The choice between the two is made by setting the corresponding pin in the
right cell in data memory during configuration process.

According to the datasheet [5] the gauge must be first calibrated following the
calibration procedures listed in the TRM [6]. Each calibration routine follows the
next procedure:

12

System Design Steps

1. Enter calibration mode;

2. Enter the known value of the quantity that must be calibrated;

3. Measure the designed quantity (temperature, voltage or current);

4. Evaluate the difference between the inserted value and the measured one;

5. Save the parameters calculated in the dedicated memory cell;

6. Exit calibration mode.

If the calibration is not performing well, than that will be a more considerable
error in data collected.

3.1.2 Features
As said before the BQ35100 battery gauge has three different operating modes
that can be use to determine the status of any kind of battery. Each one of the
mode can be selected by triggering the rigth bits in a specific memory cell. The
behaviour of each mode is reported below like in the datasheet[5] and TRM[6]:

1. Accumulator Mode (ACC): this mode is suitable for any kind of battery when
the capacity of the battery is known. In this mode, the BQ35100 device
measures and updates cell voltage, cell temperature, and load current every
1s. To begin accumulation, the gauge must be put in active mode, and when
accumulation ends, the gauge must be put in stop mode. Then the gauging
algorithm evaluate the accumulated charge used and compared it with the full
capacity of the battery, which determine the Depth-Of-Discharge.

2. State Of Health Mode (SOH): this mode is suitable for determining SOH for
lithium manganese dioxide (Li-MnO2) chemistry. In this mode, cell voltage
and temperature are measured immediately after the GE pin is asserted. The
gauge uses this data to compute SOH. Once the initial update occurs and the
host reads the updated SOH, then the device can be powered down.

3. End Of Service Mode (EOS): this mode is suitable for gauging lithium thionyl
chloride (Li-SOCl2) cells. The end-of-service (EOS) gauging algorithm uses
voltage, current, and temperature data to determine the resistance and rate
of change of resistance of the battery. The resistance data is then used to find
Depth of Discharge (DOD) = DOD(R). As above, SOH is determined and in
turn used to determine the EOS condition, but it can happen that SOH is
wrong depending on various factor, so in this mode it is not reliable.

13

System Design Steps

(a) BQ Modes Current Consumption.

(b) Current profile of BQ35100.

Figure 3.3: Current consumption of BQ35100 according to datasheet [5].

The BQ35100 datasheet also provides the consumption of the gauge accordingly to
the operational mode used. Those values are shown in figure 3.3. The datasheet [5]
shows another important characteristic of this battery gauge: a very low battery
consumption both in active mode (300µA maximum in EOS mode data-burst) and
in disable mode (0.05µA).

3.1.3 Operating Mode Choice
Accordingly to the battery chemical and discharge characteristic of the battery
LS14500 the most suitable mode to use the BQ35100 is the EOS mode, that allows
to related the internal resistance of the battery to the end-of-life condition of the
battery.
The gauge algorithm uses temperature, current and voltage measurements in order
to allow the gauge to evaluate the internal resistance of the battery and to detect
when the battery reach a certain DOD.
The cycle of the EOS learning procedure is shown in figure 3.4.

14

System Design Steps

Figure 3.4: EOS Usage Diagram from [7].

An example of the behaviour of the internal resistance of the battery with
respect to time is presented in figure 3.5

Figure 3.5: Scaled Resistance Profile of LS14500 Battery with EOS Flag Thresh-
olds from [8].

15

Chapter 4

Firmware Development

4.1 Introduction
The main part of the project is to develop a library with commands that can exploit
every functionality of the BQ35100 that use the I2C protocol in order enable the
communication between the the MCU and the gauge following the requirements
reported in the datasheet [5].

4.2 I2C Characteristics
In order to do so the first step is to understanding properly the characteristics of
the I2C of the gauge in terms of conditions on timing.
The timing characteristics are shown in Figures 4.1a and Figure 4.1b taken form
the datasheet of the gauge [5]: The timing constrains don’t just put conditions on
how the firmware have to be written, but also they put a restriction on the values of
the pull-up resistors used on SCL and SDA lines. Those considerations are covered
in chapter 7 related to the PCB development and they will not discussed in this
chapter anymore.

4.3 Type of commands
The BQ35100 chip has two different types of command that are related that
differs one another from the length of the command, the type of the command
(red-only/write-only) and the procedure that must be followed in order for the
command to be properly interpreted by the gauge.

16

Firmware Development

(a) I2C-Compatible Interface Timing Diagrams.

(b) I2C-Table Parameters: TA = –40°C to 85°C, 2.45 V < VREGIN = VBAT < 5.5 V;
Typical Values at TA = 25°C and VBAT = 3.6 V (unless otherwise noted).

Figure 4.1: I2C-Compatible Interface Timing Characteristics from datasheet [5].

4.3.1 Data Commands
These commands are the most simple ones and so the perfect choose to begin
with. The Data Commands are related to the data collected from the sensors and
available trough the RAM of the BQ35100. All Data Commands are reported in
figure 4.2, shown in both datasheet [5] and TRM [6].

As shown in the table, this kind of command is read-only command with some
exceptions:

• 0x00 Control: Issuing a Control() (or Manufacturer Access Control or MAC)
command requires a 2-byte subcommand;

• 0x02 AccumulatedCapacity: This read-word 4-byte command returns the
accumulated coulombs since the coulomb counter was started. It provides an
unsigned integer value with the range of 0 to 4.29E9 µAh. If the value reaches
full it will hold at the full count and not roll over;

• 0x06 Temprature: This read-only command pair returns an unsigned integer

17

Firmware Development

Figure 4.2: Data Command Summary.

value of the temperature, in units of 0.1°K, measured by the device and has a
range of 0 to 6553.5°K. The source of the measured temperature is configured
by the [TEMPS] bit in Operation Config A;

• 0x08 Voltage: This read-word command pair returns an unsigned integer value
of the measur eed battery voltage in mV with a range of 0 V to 65535 mV;

• 0x0A BatteryStatus: This read-only register provides indications on the status
of the battery;

• 0x0B BatteryAlert: This read-only register provides indications on the cause
of the ALERT pin trigger. An ALERT bit only clears if the condition for
it is removed. Reading this register causes the ALERT pin to deassert and
also clears the ALERT bit in BatteryStatus(). Note the ALERT pin is only
asserted if it is configured to do so for a particular condition;

• 0x0C Current: This read-only command pair returns a signed integer value
that is the average current flowing through the sense resistor. It is updated
every 1 second with units of 1 mA per bit;

• 0x16 Scaled R: This read-only command pair returns an integer value of the
scaled resistance of the cell. It is updated upon a new resistance update in
EOS mode only with a resolution of 1 mW per bit;

• 0x22 Measured Z: This read-only command pair returns an integer value of the
measured impedance of the cell. It is updated upon a new resistance update
in EOS mode only with a resolution of 1 mW per bit;

18

Firmware Development

• 0x28 InternalTemperature: This read-only command pair returns an unsigned
integer value of the internal temperature sensor in units of 0.1°K, measured
by the device, and has a range of 0 to 6553.5°K;

• 0x2E StateOfHealth: This read-only command returns an unsigned integer
value of the predicted state-of-health (SOH). Where state-of-health is predicted
as:

SOH = RemainingAvailableCharge

DesignCapacity
· 100[%];

• 0x3C DesignCapacity: This read-only command pair returns the expected full
charge capacity with units of 1 mAh per bit. The value is stored in Design
Capacity.

• 0x3E ManufacturerAccessControl: This read-write word function returns the
subcommand that is currently active for reads on MACData(). Word writes
to this function will set a subcommand. Commands that do not require data
will execute immediately (identical to writes to Control());

• 0x40 MACData: This read-write block returns the result data for the currently
active subcommand. It is recommended to start the read at ManufacturerAc-
cessControl() to verify the active subcommand. Writes to this block are used
to provide data to a subcommand when required;

• 0x60 MACDataSum: This read-write function returns the checksum of the
current subcommand and data block. Writes to this register provide the
checksum necessary in order to execute subcommands that require data. The
checksum is calculated as the complement of the sum of the ManufacturerAc-
cessControl() and the MACData() bytes. MACDataLen() determines the
number of bytes of MACData() that are included in the checksum;

• 0x61 MACDataLen: This read-write function returns the number of bytes of
MACData() that are part of the response and included in MACDataSum().
Writes to this register provide the number of bytes in MACData() that should
be processed as part of the subcommand. Subcommands that require block
data are not executed until MACDataSum() and MACDataLen() are written
together as a word;

• 0x79 Cal_Count: Command used during calibration routine for counting the
number of samples to average.

• 0x7A Cal_Current: Command used during calibration routine for converting
the current measured value in order to evaluate the ccdelta and ccgain;

19

Firmware Development

• 0x7C Cal_Voltage: Command used during calibration routine for converting
the voltage measured value in order to evaluate the voltage offset;

• 0x7E Cal_Temperature: Command used during calibration routine for con-
verting the temperature measured value in order to evaluate the temperature
offset.

All other Data Commands are used to read a specific parameter that the gauge
update itself at regular intervals, depending on the type of data. For example the
Current command returns the average current flowing through sensor resistor is
updated every one sec when the gauge is in active mode, otherwise the Voltage
command returns the value of the measured battery voltage in real time.
Due to the read-only behaviour of this type of commands, in order to be properly
executed by the BQ35100 each command needs a transmission followed by a
reception on the I2C line.
An example of command sequence for a generic data command is presented in the
manual [9] and shown in figure 4.3, where:

• S : represents the START messages;

• P : represents the STOP messages;

• A : represents the ACK messages;

• N : represents the NACK messages.

Figure 4.3: Example I2C Data Command Transition Sequence.

4.3.2 Control Subcommands
The Control Subcommands are commands that needs first to send the Control
command and after one addition two-command bytes that specifies the particular
function desired (TRM [6]). They can be read-only commands or write-only com-
mands, but those that are write-only are commands that instruct the gauge tto do
some specific action in certain situations.
The table including all Control Subcommands is referenced in TRM [6] and shown
in figure 4.4.
Those commands are responsible for exploiting all the functionalities of the BQ35100

20

Firmware Development

Figure 4.4: Control MAC Subcommands Summary.

as explained below:

• 0x0000 CONTROL_STATUS: This command instructs the device to return
status information to Control addresses 0x00/0x01;

• 0x0001 DEVICE_TYPE: When reading DEVICE_TYPE(), a block read is
used. This requires that a write to 0x00 of 0x0200 should be followed by a
read of 0x40 with 6 bytes to be read out. All In little-endian order, the first 2
bytes are DEVICE_TYPE(), then 2 bytes of FW_VERSION() and 2 bytes
of FW_BUILD;

• 0x0002 FW_TYPE: When reading FW_VERSION(), a block read is used.
This requires that a write to 0x00 of 0x0200 should be followed by a read
of 0x40 with 6 bytes to be read out. All in little-endian order, the first 2
bytes are DEVICE_TYPE(), then 2 bytes of FW_VERSION() and 2 bytes
of FW_BUILD;

• 0x0003 HW_TYPE: This command instructs the device to return the hardware
version to addresses 0x00/0x01;

21

Firmware Development

• 0x0005 STATIC_CHEM_CHKSUM: This command instructs the fuel gauge
to calculate chemistry checksum as a 16-bit unsigned integer sum of all static
chemistry data;

• 0x0006 CHEM_ID: This command instructs the fuel gauge to return the
chemical identifier for the programmed chemistry configuration to addresses
0x00/0x01;

• 0x0007 PREV_MACWRITE: This command instructs the fuel gauge to return
the previous command written to addresses 0x00/0x01. The value returned is
limited to less than 0x0020;

• 0x0009 BOARD_OFFSET: This command instructs the fuel gauge to calibrate
board offset when is in ACTIVE mode;

• 0x000A CC_OFFSET: This command instructs the fuel gauge to calibrate
the coulomb counter offset when in ACTIVE mode;

• 0x000B CC_OFFSET_SAVE: This command instructs the fuel gauge to save
the coulomb counter offset after calibration when it is in ACTIVE mode;

• 0x0011 GAUGE_START: This command instructs the fuel gauge to enter
ACTIVE mode;

• 0x0012 GAUGE_STOP: This command instructs the fuel gauge to exit
ACTIVE mode and complete all tasks;

• 0x0020 SEALED: This command instructs the fuel gauge to transition from
UNSEALED state to SEALED state;

• 0x002D CAL_ENABLE: This command instructs the fuel gauge to enable
entry and exit to CALIBRATION mode;

• 0x002E LT_ENABLE: This command instructs the fuel gauge to enable
Lifetime Data collection;

• 0x0041 RESET: This command instructs the fuel gauge to perform a full reset.
This command is only available when the fuel gauge is UNSEALED;

• 0x0080 EXIT_CAL: his command instructs the fuel gauge to enable exit to
CALIBRATION mode;

• 0x0081 ENTER_CAL: his command instructs the fuel gauge to enable entry
to CALIBRATION mode;

22

Firmware Development

• 0xA613 NEW_BATTERY: This command instructs the fuel gauge to prepare
itself for the next resistance update and EOS determination to be with a new
cell.

An example of command sequence for a generic control subcommand is presented
in the SLUA790 manual [9] and shown in figure 4.5.

Figure 4.5: Example I2C Control Subcommand Transition Sequence.

4.4 BQ35100 Functions Code
At this point the real code development begins, Where all commands of the BQ35100
are translated in software functions that enable the MCU to command the gauge
accordingly to the behaviour wanted.
For this scope a separated library is created with all declarations and implementa-
tions of the functions separately to allow the better portability of the software.
The developed functions are divided in different sections base on the type of func-
tions they have to exploit. Each functions also contains a detailed description of
what the function does and what is needed for.

4.4.1 General Functions
This functions are not directly related to the BQ35100 itself, but they assure to
meet specific constrains specified in the manuals.

Transmission and Reception Sequence

The first step in the actual writing of the code is to create a function that allow the
MCU to concatenate properly a transmission and a reception reported Listing 4.1.

Listing 4.1: Tx and Rx concatenation function.
1 void I2C_Tx_Rx(uint8_t ∗command , uint16_t commandSize , uint8_t ∗

rxData , uint16_t rxS i z e)
2 {
3 /∗ Function that i s used f o r commands that , a f t e r be ing sent ,

expect s a data in re sponse .

23

Firmware Development

4 ∗ The parameters used are :
5 ∗ command : a po in t e r to an array that r e p r e s e n t s the command

that must be sent to the s l a v e
6 ∗ d iv ided in bytes from LSB to MSB;
7 ∗ commandSize : the s i z e o f the command that must be sent ;
8 ∗ rxData : a po in t e r to an array that r e p r e s e n t s the data

r e c e i v e d from the s l a v e d iv ided in
9 ∗ bytes from LSB to MSB;

10 ∗ rxS i z e : the s i z e o f the data that must be r e c e i v e d . ∗/
11 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, command , commandSize ,

50) ;
12

13 HAL_Delay(1) ; /∗ Delay needed in order to s a t i s f y the cond i t i on
f o r the de lay between

14 ∗ a stop and the s u c c e s s i v e s t a r t that must be at l e a s t 66 micro
−seconds ∗/

15 HAL_I2C_Master_Receive(&hi2c1 , BQ_ADDRESS, rxData , rxS ize , 50) ;
16 } ;

The function simply uses the HAL commands for I2C transmission and reception
and insert between them a delay of 1 ms in order to assure the constrain on 66 µs
between a start and a stop condition.

Check Sum Calculation

The CheckSum parameter is a value needed to be sent to the gauge during the
sequence to write in the data flash of the gauge and it is reported in List 4.2.

Listing 4.2: Check_Sum Calculation Function.
1 uint8_t Check_Sum(uint8_t ∗ value , uint16_t va lueS ize , uint8_t ∗memAdd

, uint16_t memAddSize)
2 {
3 /∗ Function that i s used f o r c a l c u l a t i n g the Check_Sum needed to wr i t e

c o r r e c t l y in data f l a s h .
4 ∗ The parameters used are :
5 ∗ value : a po in t e r to an array that r e p r e s e n t s the value that

must be wr i t t en to the data memory
6 ∗ d iv ided in bytes from MSB to LSB ;
7 ∗ va lueS i z e : the s i z e o f the value that must be wr i t t en ;
8 ∗ memAdd: a po in t e r to an array that r e p r e s e n t s the memory

address d iv ided in bytes from LSB to MSB;
9 ∗ memAddSize : the s i z e o f the memory address .

10 ∗ The c a l c u l a t i o n i s performed as f o l l owed :
11 ∗ 1) Sum each byte from memAdd and add each byte o f the value that

must be wr i t t en ;
12 ∗ 2) Truncate to the l e a s t s i g n i f i c a n t byte ;
13 ∗ 3) Evaluate the complementary o f that . ∗/

24

Firmware Development

14 uint8_t checksum = 0xFF ;
15 uint16_t temporary = 0x0000 ;
16

17 f o r (i n t i = 1 ; i < memAddSize+1; i++)
18 {
19 temporary += memAdd[i] ;
20 } ;
21

22 f o r (i n t i = 0 ; i < va lueS i z e ; i++)
23 {
24 temporary += value [i] ;
25 } ;
26

27 checksum = 0xFF − (0xFF & temporary) ;
28

29 re turn checksum ;
30

31 } ;

In practice the command takes the command that must be written into memory
and the address of every location that must me written, each byte is added with
the others and it takes the complementary of the result.
The procedure is accomplished as reported in TRM [6].

Data Length Calculation

As the previous one this command is related to the operation of write on the data
flash of the gauge and it is reported in Listing 4.5.

Listing 4.3: Data Length Calculation function.
1 uint8_t Data_Len(uint16_t va lu eS i z e)
2 {
3 /∗ Function that i s used f o r c a l c u l a t i n g the Length needed to wr i t e

c o r r e c t l y in data f l a s h . ∗/
4 uint8_t l ength = 0x00 ;
5

6 l ength = 0x04 + va lueS i z e ;
7

8 re turn l ength ;
9 } ;

The function calculates the length needed to write correctly in the data flash, by
adding four to the size of the value that must be written.

25

Firmware Development

Floating Point Conversion

The function is use during the current calibration and it is needed to shift the values
of CC_Gain and CC_Delta from a integer value to a floating point representation
divided in sign, mantissa, exponent and base. Those values must be evaluated
properly and stored in memory to have correct current measurements.
The TRM page 18 reports a flow chart of the rational flaw to proper convert the
values into some that can be correctly be written in data flash[6]. (The size of the
figure does not allow it to be reported here.

Listing 4.4: Floating Point Conversion function.
1 void Float_Conversion (f l o a t value , uint8_t ∗rawData)
2 {
3 /∗ Function that convert a value from f l o a t i n g po int r e p r e s e n t a t i o n

in a s u i t a b l e
4 ∗ r e p r e s e n t a t i o n d iv ided by bytes . ∗/
5 f l o a t val , module , tmp_val , k = 2 5 6 . 0 ;
6 i n t exp = 0 ;
7 uint8_t byte [3] ;
8

9 va l = value ;
10 i f (va l < 0)
11 {
12 module = −va l ;
13 } e l s e
14 {
15 module = va l ;
16 }
17 tmp_val = module ;
18 i f (tmp_val < 0)
19 {
20 whi le (tmp_val < 0)
21 {
22 tmp_val = 2 ∗ tmp_val ;
23 exp++;
24 }
25 }
26 i f (exp > 127)
27 {
28 exp = 127 ;
29 } e l s e i f (exp < −128)
30 {
31 exp = −128;
32 }
33 f o r (i n t i = 0 ; i < exp ; i++)
34 {
35 k = k/(f l o a t) 2 ;

26

Firmware Development

36 }
37 tmp_val = k ∗ module − 128 ;
38 byte [2] = (uint8_t) tmp_val ;
39 tmp_val = 256 ∗ module − byte [2] ;
40 byte [1] = (uint8_t) tmp_val ;
41 tmp_val = 256 ∗ module − byte [1] ;
42 byte [0] = (uint8_t) tmp_val ;
43 i f (va l < 0)
44 {
45 byte [2] = byte [2] | 0x80 ;
46 }
47 rawData [0] = (uint8_t) (exp + 128) ;
48 rawData [1] = byte [2] ;
49 rawData [2] = byte [1] ;
50 rawData [3] = byte [0] ;
51 } ;

Creation of Command Stream for Memory Commands

The function takes an address of the data memory that is a uint16_t data and
converts it in an array of uint8_t.

Listing 4.5: Command Stream Creation function.
1 void From_Addr_To_Command(uint8_t ∗command , uint16_t memAddress)
2 {
3 /∗ This f u n c t i o n s i s used to convert the address memory that i s

ta rge t ed f o r the
4 ∗ operat ion and trans form i t in a command s u i t a b l e f o r I2C standard .
5 ∗ The parameters are :
6 ∗ command = the array that conta in s the command to be sent in

I2C format ,
7 ∗ the dimension s t a r t s from 1 because the a c c e s s in

memory needs
8 ∗ primary a MAC command and than the memory address ;
9 ∗ memAddress = the address o f the c e l l memory ta rge t ed f o r the

operat i on . ∗/
10 command [2] = memAddress >> 8 ;
11 command [1] = memAddress & 0 x f f ;
12 } ;

4.4.2 Data Commands
In this section the structure of a data command type.
All data commands uses the same structure:

27

Firmware Development

1. writing the command to the gauge,

2. reading from the gauge as many bytes as required accordingly to the command
send.

An example of a data command structure is shown in Listing 4.6, where the Accu-
mulated_Capacity command is shown.

Listing 4.6: Accumuilated Capacity Function.
1 uint32_t BQI2C_Accumulated_Capacity ()
2 {
3 /∗ Function that reads four bytes the value in uAh o f the accumulated
4 ∗ coulombs s i n c e the coulomb counter was s t a r t e d . I f i t r eaches the
5 ∗ maximum value i t w i l l hold the f u l l count . ∗/
6

7 uint32_t acc_cap ;
8 uint8_t b u f f e r [4] ;
9

10 I2C_Tx_Rx(&ACC_CAP, 1 , bu f f e r , 4) ;
11 acc_cap = (b u f f e r [3] < <24) | (b u f f e r [3] < <16) | (b u f f e r [1] << 8) |

b u f f e r [0] ;
12

13 re turn acc_cap ;
14 } ;

First the MCU sends the command (code 0x02), after that four bytes are read and
finally the bytes are sorted together to make it possible for the MCU to read the
result correctly.

4.4.3 Command MAC Subcommands
As said previous in section 4.3.2 the command MAC subcommands are commands
that enables to exploit all functionalities of the BQ35100.
The structure of this type of command is the same for each one, so all of them
shares the same construction.
As example of a subcommand the New_Battery() is shown in Listing 4.7.

Listing 4.7: New_Battery Functions.
1 void BQI2C_New_Battery ()
2 {
3 /∗ This func t i on i n s t r u c t s the gauge to update f o r the next

r e s i s t a n c e and EOS
4 ∗ determinat ion with a new c e l l . ∗/
5 uint8_t new [3] ;
6

28

Firmware Development

7 new [0] = CONTROL;
8 From_Addr_To_Command(new , NEW_BATTERY) ;
9 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, new , 3 , 50) ;

10 HAL_Delay(1) ;
11 } ;

As shown the command MAC subcommands follow a specific procedure, as written
in the TRM [6]:

1. send the Control command first (code 0x00),

2. send the LSB part of the command (code 0x13) ,

3. send the MSB part of the command (code 0xA16).

This procedure ensures the correct interpretation of the command by the gauge.
Although all this type of commands share the same procedure there are some that
requires additional steps because they may fail to be received or that requires some
time when received to proper trigger a bit in Control Status Register. So in order
to properly handle those specific situation the command itself provides a check on
the proper bit until it is settled. An example the Exit_Cal() is in Listing 4.8.

Listing 4.8: Exit_Calibration Functions.
1 void BQI2C_Exit_Calibration ()
2 {
3 /∗ When in a c t i v e mode t h i s f unc t i on i n s t r u c t s the gauge to e x i t

c a l i b r a t i o n mode .
4 ∗ I t a l s o conta in s the rou t in e that c o n t r o l s i f the command i s

r e c e i v e d and
5 ∗ performed by the gauge . After i t i s c o r r e c t l y performed a

BQI2C_Gauge_Stop ()
6 ∗ i s used to e x i t a c t i v e mode . ∗/
7 i n t cal_ex_flag = 0 ;
8 uint8_t c a l [3] ;
9 uint16_t cnt_status ;

10

11 c a l [0] = MAC;
12 From_Addr_To_Command(ca l , EXIT_CAL) ;
13 HAL_Delay(1) ;
14

15 do{
16 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, ca l , 3 , 50) ;
17 HAL_Delay(50) ;
18 cnt_status = BQI2C_Control_Status () ;
19 i f ((cnt_status | 0xEFFF)== 0xEFFF)
20 {
21 cal_ex_flag = 1 ;
22 } ;

29

Firmware Development

23 HAL_Delay(500) ;
24 } whi l e (cal_ex_flag != 1) ;
25

26 BQI2C_Gauge_Stop () ;
27 do{
28 cnt_status = BQI2C_Control_Status () ;
29 HAL_Delay(500) ;
30 } whi l e (! (cnt_status & G_DONE_MASK)) ;
31 } ;

As shown a continuous check on the Cal_Mode bit on Control_Status to control if
the gauge actually exits the calibration mode or not.
And at the end of it the function controls that the G_DONE byte is set, which
means that the gauge completed its task and can be powered down.

4.4.4 Memory Commands
In this section the commands listed are those that implement the operations relative
to the data memory (reading and writing).
In order to be able to interact with the data memory a specific sequence of command
must be followed that differs a little for reading and writing, as described in the
gauge communication manual [10].
For reading from memory:

1. send MAC command,

2. send MAC_Data command,

3. read as many bytes as needed.

The function shown in Listing 4.9 is the one exploiting the sequence of commands
to read a certain address of the memory.

Listing 4.9: Read Memory Functions.
1 void BQI2C_Read_Mem(uint16_t mem_Address , uint16_t memAdd_Size ,

uint8_t ∗ b u f f e r)
2 {
3 /∗ This f u n c t i o n s i s used to read from the data f l a s h o f the gauge .
4 ∗ The va lue s i n s i d e data f l a s h are d iv ided in bytes , so i f one data
5 ∗ i s l a r g e r than a byte a conse cu t i v e read ing i s performed .
6 ∗ The parameters used are :
7 ∗ mem_Address = the address o f the f i r s t −c e l l o f the wanted value
8 ∗ in the data f l a s h ;
9 ∗ memAdd_Size = the dimension o f the data s to r ed that must be read ;

30

Firmware Development

10 ∗ b u f f e r = a po in t e r to an array o f memAdd_Size dimension
needed

11 ∗ to save the value o f the data d iv ided in bytes from
12 ∗ the MSB to the LSB∗/
13 uint8_t comando [3] = {} ;
14

15 From_Addr_To_Command(comando , mem_Address) ;
16 comando [0] = MAC;
17

18 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, comando , 3 , 50) ;
19 HAL_Delay(1) ;
20 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, &MAC_DATA, 1 , 50) ;
21 HAL_Delay(1) ;
22 HAL_I2C_Master_Receive(&hi2c1 , BQ_ADDRESS, bu f f e r , memAdd_Size ,

50) ;
23 HAL_Delay(1) ;
24 } ;

The function is used to read a memory cell from the memory and requires the
address of the first memory to be read and the size of the data that must be read
and returns the value divided per bytes.
For writing into memory the procedure is more complex:

1. calculate Check_Sum and Data_Len,

2. send MAC command,

3. send MAC_Data followed by the address of the memory (LSB first),

4. send Check_Sum,

5. send Data_Length.

The function shown in Listing 4.10 is the one exploiting the sequence of commands
to write into the memory.

Listing 4.10: Write Memory Functions.
1 void BQI2C_Write_Mem(uint16_t mem_Address , uint16_t memAdd_Size ,

uint8_t ∗ data)
2 {
3 /∗ This f u n c t i o n s i s used to wr i t e a data to the data f l a s h o f the

gauge .
4 ∗ The va lue s i n s i d e data f l a s h are d iv ided in bytes , so i f one data
5 ∗ i s l a r g e r than a byte a conse cu t i v e wr i t i ng i s performed .
6 ∗ The parameters used are :
7 ∗ mem_Address = the address o f the f i r s t −c e l l that must be wr i t t en
8 ∗ in the data f l a s h ;

31

Firmware Development

9 ∗ memAdd_Size = the dimension o f the data s to r ed that must be
wr i t t en ;

10 ∗ data = a po in t e r to an array o f memAdd_Size dimension that must
11 ∗ be wr i t t en d iv ided in bytes from the MSB to the LSB

∗/
12 uint8_t comando [3] = {} ;
13 uint8_t M_D[memAdd_Size + 1] ;
14 uint8_t M_C[2] = {MAC_DATA_SUM, 0x00 } ;
15 uint8_t M_L[2] = {MAC_DATA_LEN, 0x00 } ;
16

17

18 From_Addr_To_Command(comando , mem_Address) ;
19 comando [0] = MAC;
20 M_D[0] = MAC_DATA;
21 f o r (i n t i = 1 ; i< memAdd_Size+1; i++)
22 {
23 M_D[i] = data [i −1] ;
24 } ;
25 M_C[1] = Check_Sum(data , memAdd_Size , comando , 2) ;
26 M_L[1] = Data_Len(memAdd_Size) ;
27

28 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, comando , 3 , 50) ;
29 HAL_Delay(1) ;
30 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, M_D, memAdd_Size + 1 ,

50) ;
31 HAL_Delay(1) ;
32 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, M_C, 2 , 50) ;
33 HAL_Delay(1) ;
34 HAL_I2C_Master_Transmit(&hi2c1 , BQ_ADDRESS, M_L, 2 , 50) ;
35 HAL_Delay(1) ;
36 } ;

4.5 Data Memory Mapping
In addition to the product code, in order to make the code adaptable to any possible
usage with all kind of battery having different chemistry or for different scopes, a
code that maps all data memory cells of the BQ35100 is made.
The characteristics of a single cell in the data memory that differs one another are:

1. Cell Address: that is an hexadecimal value from 0x4000 to 0x43FF;

2. Cell Size; that can be one, two, four or eight.

For this reason to better handling the mapping of the memory of the BQ35100, a
struct, presented in Listing 4.11, is used to describe each memory cell.

32

Firmware Development

Listing 4.11: Example of The Struct used to Map a Cell From Data Memory.
1 typede f s t r u c t
2 {
3 const uint16_t Mem_Address ; /∗Code o f Memory Address ∗/
4 const uint16_t Mem_Cell_Dimension ; /∗ Dimension o f the data ∗/
5 }Memory_Cell ;

Indeed the code is very self explicative, it describes a generic memory cell by using
the address and the dimension of the cell accordingly to the TRM [6].
Depending of the data that is taken into account, it must be consider that inside
of the memory there are unsigned, integers, floating point values and also a string.
So when reading/writing into a specific memory cell it must be taken into account.
An example of the code made for mapping the data memory is shown in Listing
4.12, where Op_Config_A and OT_Dsg cell are described.

Listing 4.12: Example of Memory Cells Description.
1 Memory_Cell Operation_Config_A = {0x41B1 , ONE} ;
2 /∗ Operation Config A: used to change s e t t i n g parameters o f
3 ∗ the gauge acco rd ing ly to the needs ∗/
4

5 Memory_Cell OT_Dsg = {0x41D6 , TWO} ;
6 /∗Maximum Temperature Threeshold : when the temperature ,
7 ∗ measured by i n t e r n a l s enso r or the e x t e r n a l NTC,
8 ∗ r eaches the s e t t ed l e v e l f o r OT_Dsg_Time seconds the
9 ∗ ALERT s i g n a l i s t r i g g e r e d (i f the co r r i spond ing a l e r t

10 ∗ pin was enabled in Alert_Config c e l l) ∗/

Each memory cell keeps the same name as the one reported in TRM and also it is
provided with a simple description of the data that is held inside.

33

Chapter 5

Firmware Test

The aim of this chapter is to underline the reasons behind the test procedure
developed to test the produced firmware during a complete discharge of a full
capacity battery.

5.1 Previous Consideration for Test Procedure
Before even take into account the test project there are many considerations that
must be done before:

1. the current consumption of a real case scenario of an electronic system for
precision agriculture;

2. the amount of time the test will take;

3. the condition in which the test can be made;

4. the expected battery life of the battery;

5. the data of the BQ35100 that are meaningful for the analysis;

6. possible problematic that can be encountered during a real case scenario.

So the best choice is to firstly test individually the commands produced and after
that to design a proper stress test of the battery, in accordance to the manuals in
order to try to achieve the best possible results.

34

Firmware Test

5.1.1 Individual Command Test
The first step is the individual test of each command in order to see if they work
properly and also to see how the BQ35100 responds to some commands that change
its status in run-time.
As example the command Control_Status and the reception of the data is shown
in figure 5.1.

(a) Command Transmission from MCU to the gauge

(b) Data Reception from the gauge to MCU

Figure 5.1: Control_Status Command Example

The figure shows the SCL signal in the channel 1 (yellow one) and the SDA

35

Firmware Test

signal in channel 2(blue one) in the oscilloscope. The first figure represents the first
part of the procedure where the BQ address and the Control_Status command are
sent (0xAA for writing and 0x0000), the second figure shows the final reading part
of the procidure where two bytes are read from the BQ (0x80 and 0x20) LSB first.

5.2 Current Consumption Estimation
After the evaluation of the commands accuracy, the current consumption of the
system in a real case scenario must be evaluated in order to estimate the battery
discharge time.

The consumption regarding a real case scenario of a system for smart agriculture
using the LS14500 are taken from two different studies one that provides the
current consumption measurements of a ultra low power, wireless, battery-powered
node for measuring soil water content [11] and the second study that provides the
consumption of an STM32 MCU battery-powered node to manage the control stage
of a drip irrigation system [12].
The figures below shows the current consumption monitored in the two case of
study.

Figure 5.2: Consumption Monitored From System Monitoring Soil Water Content
[11].

36

Firmware Test

Figure 5.3: Consumption Monitored From Drip Irrigation System [12].

In particular:

• in the figure 5.2 the consumption of the Teros21 sensor (enlightened in green
circle) is the one that is important for the considerations made;

• in the figure 5.3 the control stage consumption curve (green curve) is the one
of interest and, more specifically, the second cycle of LoRa-node sending frame
and the subsequent ignition of the MCU is taken into account (circled in blue).

5.2.1 Python Code For Current Consumption
In order to analyze the data discussed before a python code is written in order
to evaluate the average current consumption of the STM32 MCU (current_Lora
in the code) and the current consumption of the Teros21 sensor when activated
(current_Sensor_eff in the code) and to estimate the battery end-of-life time in
both real case scenario and a possible test. The code part for the current con-
sumption calculation is shown in Listing 5.1, where a trapezoidal approximation
among intervals of 20ms over each of the experimental results is used. After that
the average current over one hour is calculated.

37

Firmware Test

Listing 5.1: Python Code For Current Consumption.
1 import os
2 from sc ipy . i n t e g r a t e import t rapz
3

4 de f r e a d _ f i l e (SpringF , times , read ings , f i le_name) : # checked
5 f i l e = open (fi le_name , ’ r ’)
6 s l eep_value = 0.000026
7 previous_value = 0 .0
8 f o r l i n e in f i l e :
9 parameters = l i n e . s p l i t (’ , ’)

10 value = max(f l o a t (parameters [0]) , 0 .000018)
11 i f " s enso r " in f i le_name :
12 runtime_current = 0.01107 − 0.005741
13 t0 = 95 .22
14 i f (f l o a t (parameters [1]) > 95 .22) and (f l o a t (parameters

[1]) < 96 .36) :
15 r ead ings . append (max(value − runtime_current ,

s l eep_value))
16 t imes . append (f l o a t (parameters [1]) − t0)
17 e l s e :
18 dt = 0 .0
19 i f SpringF == 9 :
20 dt = 0.3492
21 t0 = 34 .35
22

23 i f (f l o a t (parameters [1]) > 34 .35) and (f l o a t (parameters
[1]) < 41 .14) :

24

25 i f f l o a t (parameters [1]) < 34 .35 + dt :
26 value = max(value , prev ious_value)
27 previous_value = value
28 t imes . append (f l o a t (parameters [1]) − t0)
29 r ead ings . append (value)
30

31 f i l e . c l o s e ()
32 . . .
33

34 i f __name__ == ’__main__ ’ :
35 . . .
36 SF_12_t_c = []
37 SF_9_t_c = []
38 SF_12_v_c = []
39 SF_9_v_c = []
40 SF_12_t_s = []
41 SF_9_t_s = []
42 SF_12_v_s = []
43 SF_9_v_s = []
44

45 . . .

38

Firmware Test

46

47 pw_LORA = trapz (SF_9_v_c , SF_9_t_c)
48 pw_Sensor = trapz (SF_9_v_s , SF_9_t_s)
49 current_Lora = 1000 ∗ pw_LORA / de l t a
50 current_Sensor_ef f = 6 ∗ 1000 ∗ pw_Sensor / de l t a
51 . . .

The code is designed to take into account only the signal parts circled in figure
5.2 and figure 5.3. For the consumption of the soil sensor the system can have six
of them activated at the same time so the consumption of six of them is taken as
worst case scenario. Then the average consumption is calculated among the period
of each transmission (for SF = 9 is 35 seconds). The results of the average current
consumption are the following:

ILora = 0.00441 mA ISensor = 0.01315 mA ISleep_Mode = 0.0026 mA

5.2.2 Estimation of Time to End
With the results obtained above the battery time-to-end can be estimated, by
considering also the average current consumption of the BQ35100 in EOS mode.

According to manual [8] and manual [13], the cycle for a proper EOS updating
data must follow some conditions:

1. if the interval between different measurements is less than 1 minute than the
gauge must be not powered down,

2. the Gauge_Start command must be received prior any major discharge,

3. after Gauge_Stop command is received 15 seconds must be wait prior to any
other action in order to allow the gauge algorithm to perform the internal
resistance data updating.

The part of the code in Listing 5.2 evaluates the average consumption of the gauge
in EOS mode over a time period of one hour.

Listing 5.2: Python Code for BQ35100 EOS Mode Consumption.
1 . . .
2 pw_BQ = (0 .315 ∗ 14 + 0.075 ∗ 15 + 0.00005 ∗ 3571)
3 current_BQ = pw_BQ / de l t a #mA
4 . . .

The average current consumption results:

IBQ_EOS = 0.001587 mA

39

Firmware Test

Now the life time estimation of the battery can be made by using the formulas
below:

CAP = Battery_Capacity = 2600 mAh

Iaverage = ILora + ISensor + ISleep_Mode + IBQ_EOS = 0.03714mA

Expected_Time_to_End[days] = CAP

Iaverage ∗ 24[hour/day] ≈ 2917days

The same evaluation is made also by using a python code shown in Listing 5.3

Listing 5.3: Python Code Time to End Estimation in Norml Conditions.
1 . . .
2 # averege cur rent consumption in normal c o n d i t i o n s
3 I_normal_condition = current_BQ + current_Sensor_ef f +

current_Sleep + current_Lora # mA
4 # number o f days f o r d i s cha rge in normal c o n d i t i o n s
5 days_for_discharge_normal_condit ion = battery_max_capacity / (

I_normal_condition ∗ hours_for_day) # days
6 pr in t (" Giorn i e f f e t t i v i : " + s t r (

days_for_discharge_normal_condit ion))
7 . . .

It becomes clear that a test in real case consumption conditions would require
to much time to discharge the battery, so more effective stress is needed.

5.3 Possible Procedures
Taking into accounts all said before, it is now necessary to understand how to speed
up a test in such a way that the BQ35100 can predict properly the battery status.
By looking at the TRM manual, it is clear that can be two different approaches for
a testing procedure: one that requires the gauge to be always on to measure every
single discharge from the system, the other procedure requires different a different
pulse to force a little discharge and to enable the gauge to make measurements of
the parameters needed for the gauge algorithm to evaluate the battery status.

5.3.1 First Test Procedure
The first stress procedure is based on the prospect to make it last for a maximum
of 14 days.
After the time limit set than the average current consumption of the system:

I = BAT_Capacity

14days ∗ 24hour
days

≈ 7.74mA

40

Firmware Test

As discussed section 5.2.1 the average consumption of the MCU and the TEROS21
sensor doesn’t allow a system to speed up.
To make this possible instead of using multiple sensor to induct a higher current
consumption to speed up the procedure, the best choice is to use a resistor as a
load for a certain amount of time. Some calculation are made in order to consider
a proper resistor to use, taking into account that when SF = 9 the LoRa protocol
needs at least 35 seconds before another possible transmission.
Calculation made are shown below:

I = ILoRa + ILoad + IBQ + ISleep

So considering to have a constant consumption on the resistance for 7 seconds:

ILoad ≈ 7.73mA −→ ILoad ≈ 38.65mA = BAT_V oltage

RLoad

−→ RLoad ≈ 82Ω

Because in this case the data must be collected for each LoRa cycle, it becomes
clear that switching on and off the gauge can only slow down the test so for these
reason the BQ35100 will be always kept on by the MCU.
But even if it is said that it is possible in the TRM, this can make the gauge reach
an unkwown state and the results will show how this particular usage will affect
the detection.
So in this case the estimated duration of the test will be:

Days = BAT_Capacity

I ∗ 24hour
days

= 13.5days.

5.3.2 Second Test Procedure
The second test procedure is thought on two different assumptions:

• LiSOCl2 batteries needs a proper amount of time to rest after a major discharge,

• the internal resistance evaluation made by the BQ35100 for predicting EOS
condition are not time-related so it only requires a short pulses to take
measurements and do not require to be active on every discharge event.

This being said, the procedure will has four different phases:

1. LoRa Transmission and Reception windows;

2. After seven seconds the gauge is activated a little pulse is uses to make
measurements and after that the gauge is disabled;

3. One hour of a very high current consumption using the same resistance as
before;

41

Firmware Test

4. One hour of letting the battery rest.

In this condition the expected duration for the entire testing procedure will be
approximately 4 days.

5.4 Final Setup
For both testing procedures the BQ35100-EVM is used [14].The functional block
scheme with the set-up for the test is shown in figure 5.4.

Figure 5.4: Setup Configuration for Testing Procedure.

After the test is launched the data will be send by the MCU to the LoRa gateway
where they will be available to read.
The flow chart with the procedures flow is shown in figure 5.5.

5.5 Test Code
Taking into account the previous consideration a dedicated code for the testing
procedures is made.
In each section there will be both codes produced so when the first one is explained
and for the second one only the differences with the previous one will be highlighted.

5.5.1 Starting project
The firmware made for the test uses the library explained in chapter 4 in combination
with the firmware dedicated to handle the LoRaWAN protocol, starting from an
example project for the board under exam LoRaWAN_End_Node (Source [15])
for STM32-WL55JC1 that is the same for both testing procedures.
The project implements initialization of all needed peripherals, in particular it takes

42

Firmware Test

START

System Inizialization

Transmission...

Reception

Controlled Current...

Stop Cycle

Gather Parameters for...

Wait For New Transmission cycle

Figure 5.5: Flow Chart of Testing Procedures.

care of the initialization the LoRa protocol and the handling of the communication
for Class-A end device like shown in figure 1.3.
The following section shows the the pieces of code added to the original one in
order to adapt it to the test procedure for the detection of the battery end-of-life
condition.

5.5.2 Main function
The Listing 5.4 reports the main function with initialization of all the peripherals
uses in the first procedure.

43

Firmware Test

Listing 5.4: main.
1 i n t main (void)
2 {
3 /∗ USER CODE BEGIN 1 ∗/
4 uint16_t c_s = 0x0000 ;
5 /∗ USER CODE END 1 ∗/
6 /∗ MCU Conf igurat ion

−−∗/
7 /∗ Reset o f a l l p e r i phe ra l s , I n i t i a l i z e s the Flash i n t e r f a c e and

the Sys t i ck . ∗/
8 HAL_Init () ;
9 . . .

10 /∗ Conf igure the system c lock ∗/
11 SystemClock_Config () ;
12 . . .
13 /∗ I n i t i a l i z e a l l c on f i gu r ed p e r i p h e r a l s ∗/
14 . . .
15 /∗ USER CODE BEGIN 2 ∗/
16 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_SET) ;
17 /∗Wait f o r BQ i n i t i a l i z a t i o n ach i eve . ∗/
18 HAL_Delay(500) ;
19 do{ /∗ Control i f i n i t i a l i z a t i o n i s achieved ∗/
20 c_s = BQI2C_Control_Status () ;
21 HAL_Delay(500) ;
22 } whi l e (! (c_s & INIT_COMP_MASK)) ;
23 /∗ USER CODE END 2 ∗/
24 /∗ I n f i n i t e loop ∗/
25 /∗ USER CODE BEGIN WHILE ∗/
26 whi le (1)
27 {
28 /∗ USER CODE END WHILE ∗/
29 MX_LoRaWAN_Process() ;
30 /∗ USER CODE BEGIN 3 ∗/
31 }
32 /∗ USER CODE END 3 ∗/
33 }

The addiction made is the setting of the GPIO_PIN_5 (directly connected with
the GE pin of the BQ35100) and while for controlling the accomplishment of the
internal initialization of the BQ35100 by reading if the INITCOMP pin of the
Control_Status register is asserted.
And after the condition is verified then the code moves to the while loop.
For the second procedure there is no change in the main function because the gauge
does not need to be always on.

44

Firmware Test

5.5.3 LoRaWAN Protocol Functions
In this section the addictions to the LoRa protocol handling functions are imple-
mented.

Initialization of LoRa Stack

• First Procedure:
The addiction to the initialization function of the LoRa protocol is shown in
5.5.

Listing 5.5: LoRaWAN_Init For Procedure 1.
1 void LoRaWAN_Init(void)
2 {
3 . . .
4 /∗ USER CODE BEGIN LoRaWAN_Init_Last ∗/
5 UTIL_TIMER_Create(&SxTimer , 7000 , UTIL_TIMER_ONESHOT,

OnSxTimerEvent , NULL) ;
6 UTIL_TIMER_Create(&SxEndTimer , 7000 , UTIL_TIMER_ONESHOT,

OnSxEndEvent , NULL) ;
7 UTIL_TIMER_Create(&DataTimer , 13000 , UTIL_TIMER_ONESHOT,

OnDataTimer , NULL) ;
8 /∗ USER CODE END LoRaWAN_Init_Last ∗/
9 . . .

10 }

The code creates three different timers that are needed to handling the EOS
routine.
In specific:

1. SxTimer: this timer is used to introduce a delay before the burst current
consumption on the resistor to give time to complete the LoRa cycle, the
reload value can be both set to 1s and to 7s depending on if a downlink
message is received or not;

2. SxEndTimer: this timer is used to activate the burst current consump-
tion;

3. DataTimer: this timer is used to introduce a delay to let the proper
amount of time for the gauge algorithm to evaluate the battery status,
accordingly to the TRM [6].

• Second Procedure:
The addiction to the initialization function of the LoRa protocol is shown in
5.6.

45

Firmware Test

Listing 5.6: LoRaWAN_Init For Procedure 2.
1 void LoRaWAN_Init(void)
2 {
3 . . .
4 /∗ USER CODE BEGIN LoRaWAN_Init_Last ∗/
5 UTIL_TIMER_Create(&MeasurementTimer , 7000 , UTIL_TIMER_ONESHOT,

MeasureTimer , NULL) ;
6 UTIL_TIMER_Create(&BurstModeTimer , 3600000 , UTIL_TIMER_ONESHOT,

EndBurstEvent , NULL) ;
7 UTIL_TIMER_Create(&RestModeTimer , 3600000 , UTIL_TIMER_ONESHOT,

EndRestEvent , NULL) ;
8 /∗ USER CODE END LoRaWAN_Init_Last ∗/
9 . . .

10 }

As the previous one this code creates three different timers that that are
needed to handling the EOS routine.
In specific:

1. MeasurementTimer: this timer is used to introduce a delay before the
burst current consumption on the resistor to give time to complete the
LoRa cycle;

2. BurstModeTimer: this timer is used to activate the burst current
consumption;

3. RestModeTimer: this timer is used to let the battery rest.

LoRa Preparation of Transmission Frame

The function SendTxData prepares uploads the data in AppDataBuffer before
sending the buffer in the next transmission session. The common addiction for
both procedures on the code is in Listing 5.7.

Listing 5.7: SendTxData.
1 s t a t i c void SendTxData (void)
2 {
3 . . .
4 i f (LmHandlerIsBusy () == f a l s e)
5 {
6 . . .
7 AppData . Port = LORAWAN_USER_APP_PORT;
8 . . .
9 i f ((LmHandlerParams . ActiveRegion == LORAMAC_REGION_US915) | | (

LmHandlerParams . ActiveRegion == LORAMAC_REGION_AU915)
10 | | (LmHandlerParams . ActiveRegion == LORAMAC_REGION_AS923))
11 . . .

46

Firmware Test

12 e l s e
13 {
14 /∗ Updating Payload f o r Uplink ∗/
15 f o r (i = 0 ; i< 19 ; i++)
16 {
17 AppData . Buf f e r [i] = up_payload [i] ;
18 }
19 f o r (i = 19 ; i < 24 ; i++)
20 {
21 AppData . Buf f e r [i] = 0x00 ;
22 }
23 }
24 AppData . B u f f e r S i z e = i ;
25 . . .
26 s t a tu s = LmHandlerSend(&AppData , LmHandlerParams . IsTxConfirmed ,

f a l s e) ;
27 . . .
28 }
29 . . .
30 }

The code added loads the data created in the AppDataBuffer: the first twenty
bytes are from actual data read from the gauge, the other twenty-five bytes are
used to simulate a real time scenario data frame in which forty four bytes are
needed. The differences in the procedures begins in line 29 of the code.

• First Procedure:
in the first procedure after preparing the payload to be send and the trans-
mission of the data then the timer for a new transmission is started again as
shown in Listing 5.8;

Listing 5.8: SendTxData Proedure 1.
1 . . .
2 i f (EventType == TX_ON_TIMER)
3 {
4 UTIL_TIMER_Stop(&TxTimer) ;
5 UTIL_TIMER_SetPeriod(&TxTimer , MAX(nextTxIn , TxPer iod i c i ty)) ;
6 UTIL_TIMER_Start(&TxTimer) ;
7 }
8 . . .
9

• Second Procedure:
The code control if the join between the LoRa node and the LoRa gateway
is established, by controlling the join flag, and if it is so then the Measur-
mentTimer is started, otherwise the transmission timer is started so another

47

Firmware Test

transmission is needed. This was made in order to avoid missing measure-
ments due to burst consumption before the join between the end node and
the gateway is established, as shown in Listing 5.9.

Listing 5.9: SendTxData Proedure 2.
1 . . .
2 i f (EventType == TX_ON_TIMER)
3 {
4 i f (j o i n == 1)
5 {
6 UTIL_TIMER_Stop(&MeasurementTimer) ;
7 UTIL_TIMER_Start(&MeasurementTimer) ;
8

9 } e l s e
10 {
11 UTIL_TIMER_Stop(&TxTimer) ;
12 UTIL_TIMER_SetPeriod(&TxTimer , MAX(nextTxIn ,

TxPer iod i c i ty)) ;
13 UTIL_TIMER_Start(&TxTimer) ;
14 }
15 }
16 . . .
17

LoRa Transmission Timer Callback

The OnTxTimerEvent callback is called when the TxTimer reaches the reload value.
The callback is shown in Listing 5.10.

Listing 5.10: OnTxTimerEvent.
1 s t a t i c void OnTxTimerEvent (void ∗ context)
2 {
3 /∗ USER CODE BEGIN OnTxTimerEvent_1 ∗/
4 MX_I2C1_Init () ;
5 i n t ex i t_loops = 0 ;
6 i f (down_payload [0] == 0x10)
7 {
8 /∗Change Max Temperature Command∗/
9 uint16_t user_Temperature = 0x0000 ;

10 user_Temperature = (down_payload [0] << 8 | down_payload [1]) ;
11 BQI2C_Write_OT_Dsg(user_Temperature) ;
12

13 } e l s e i f ((cal_done == 1) && (down_payload [0] == 0x00))
14 {
15 BQI2C_Calibration_Routine () ;
16 cal_done = 0 ;
17 } e l s e i f ((new_BAT_flag == 1) && (down_payload [0] == 0x01))

48

Firmware Test

18 {
19 BQI2C_New_Battery () ;
20 BQI2C_From_Sealed_to_Unsealed () ;
21 BQI2C_From_Unsealed_to_FullAccess () ;
22 up_payload [1 5] = 0x00 ;
23 down_payload [0] = 0xFF ;
24 new_BAT_flag = 0 ;
25 }
26 . . .
27 }
28 }

When the callback is called a control on the the received command (down_payload)
is done and the proper action is taken accordingly.
Based on the received sequence of bytes:

• if the first command byte received is 0x10 then the temperature value inserted
by the user is converted into a single data of two bytes and write it in the
data memory of the gauge;

• if the 0x01 then the new battery command is received by the user so it means
that a new battery is inserted and the MCU firstly send the New_Battery
command;

• if the command received is 0x00 than the calibration routine is activated and
the MCU uses another resistor connected to another pin in order to calibrate
the gauge Voltage, Current and Temperature.

The differences in the procedures begins in line 27 of the code.

• First Procedure:
in the first procedure after controlling the received command from the host,the
periodicity of the SxTimer is set to 7s and the gauge is activated by send the
Gauge_Start command and a control if the gauge switches to activation mode.
After all this the transmission timer and SxTimer are started; as shown in
Listing 5.11;

Listing 5.11: OnTxTimerEvent Procedure 1.
1 . . .
2 UTIL_TIMER_SetPeriod(&SxTimer , 7000) ;
3 BQI2C_Gauge_Start () ;
4 do{
5 HAL_Delay(500) ;
6 cont ro l_s ta tus = BQI2C_Control_Status () ;
7 ex i t_loops += 1 ;

49

Firmware Test

8 } whi l e (! (cont ro l_s ta tus & GAUGE_ACTIVE_MASK) && (ex i t_loops <
100)) ;

9 i f (ex i t_loops > 100)
10 {
11 Reset = 1 ;
12 }
13 . . .
14 /∗Wait f o r next tx s l o t ∗/
15 UTIL_TIMER_Start(&TxTimer) ;
16 /∗ USER CODE BEGIN OnTxTimerEvent_2 ∗/
17 UTIL_TIMER_Start(&SxTimer) ;
18 /∗ USER CODE END OnTxTimerEvent_2 ∗/
19 . . .
20

• Second Procedure:
The code control if the join between the LoRa node and the LoRa gateway
is established, by controlling the join flag, and if it is so then the Measur-
mentTimer is started, otherwise the transmission timer is started so another
transmission is needed.
This was made in order to avoid missing measurements due to burst consump-
tion before the join between the end node and the gateway is established, as
shown in Listing 5.12.
.

Listing 5.12: OnTxTimerEvent Proedure 2.
1 . . .
2 i f (EventType == TX_ON_TIMER)
3 {
4 i f (j o i n == 1)
5 {
6 UTIL_TIMER_Stop(&MeasurementTimer) ;
7 UTIL_TIMER_Start(&MeasurementTimer) ;
8

9 } e l s e
10 {
11 UTIL_TIMER_Stop(&TxTimer) ;
12 UTIL_TIMER_SetPeriod(&TxTimer , MAX(nextTxIn ,

TxPer iod i c i ty)) ;
13 UTIL_TIMER_Start(&TxTimer) ;
14 }
15 }
16 . . .
17

50

Firmware Test

LoRa Reception Callback

The OnRxData callback is used to encode the downpayload if received otherwise
the callback is not called.
The addiction for the first testing procedure is shown in Listing ??.

Listing 5.13: OnRxData
1 s t a t i c void OnRxData(LmHandlerAppData_t ∗appData , LmHandlerRxParams_t

∗params)
2 {
3 . . .
4 MX_I2C1_Init () ;
5 . . .
6 case LORAWAN_USER_APP_PORT:
7 i f (appData−>B u f f e r S i z e == 1)
8 {
9 /∗ I f the frame dimension i s 1 ==> Ca l i b ra t i on command or

10 ∗ New Battery command i s r e c e i v e d . ∗/
11 down_payload [0] = appData−>Buf f e r [0] ;
12 i f (down_payload [0] == 0x01)
13 {
14 /∗New Battery Command∗/
15 new_BAT_flag = 1 ;
16 } e l s e i f ((down_payload [0] == 0x00) &&(c a l i b r a t i o n _ f l a g == 0))
17 {
18 /∗ Ca l i b ra t i on Command∗/
19 c a l i b r a t i o n _ f l a g = 1 ;
20 cal_done = 0 ;
21

22 } e l s e {
23 /∗ Update the up_payload with the e r r o r sequence
24 ∗ to inform the use that a wrong command has
25 ∗ been sent . ∗/
26 up_payload [1 6] = 0xFF ;
27 }
28 } e l s e i f (appData−>B u f f e r S i z e == 3)
29 {
30 /∗ I f the frame dimension i s 3 ==> Change Max
31 ∗ Temperature command i s r e c e i v e d . ∗/
32 down_payload [0] = appData−>Buf f e r [0] ;
33 down_payload [1] = appData−>Buf f e r [1] ;
34 down_payload [2] = appData−>Buf f e r [2] ;
35 i f ((down_payload [0] != 0x10))
36 {
37 /∗ Update the up_payload with the e r r o r sequence
38 ∗ to inform the use that a wrong command
39 ∗ has been sent . ∗/
40 up_payload [1 6] = 0xFF ;
41 }

51

Firmware Test

42 } e l s e {
43 /∗ I f the frame has d i f f e r e n t dimension ==>
44 ∗ Errata command i s r e c e i v e d . ∗/
45 down_payload [0] = appData−>Buf f e r [0] ;
46 up_payload [1 6] = 0xFF ;
47 }
48 up_payload [1 6] = down_payload [0] ;
49 UTIL_TIMER_Stop(&SxTimer) ;
50 UTIL_TIMER_SetPeriod(&SxTimer , 1000) ;
51 UTIL_TIMER_Start(&SxTimer) ;
52 break ;
53 . . .
54 }

The code added activates a different procedure to encode the received command
based on the size of the command received from user:

• if the size of the command is one than the command can be either a sequence
for a new battery command or a calibration command;

• if the size is three than the command to change the maximum temperature
value in the memory is received.

The code also control if the received sequence is an actual command or if it is a
wrong command and it updates the sixteenth bit of the uplink frame. Then the
SxTimer is stopped, its period is changed to 1s and then it is started again.
In the case of the OnRxData function, for the second procedure the only change
made is the elimination of the part handling the SxTimer stop, change period and
restart.
In the case of the reception callback the second procedure has the same code as the
first one but only deleting the lines from 48 to 51, the rest of the code is exactly
the same.

5.5.4 Additional Timer Elapse Routines
Here the callbacks of the additional timers used for both testing procedures are
listed. The first three refer to the first testing procedure and the other three refer
to the second testing procedure.

Sensor Simulation Timer Start Callback

This callback is shown in Listing 5.14.

Listing 5.14: OnSxTimerEvent.
1 s t a t i c void OnSxTimerEvent (void ∗ context)

52

Firmware Test

2 {
3 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET) ; /∗ ∗/
4 UTIL_TIMER_Start(&SxEndTimer) ;
5 }

The callback enables the pin connected to the resistor used to consumes a fixed
amount of current that simulate the soil sensors consumption and to speed up the
test procedure and after that it make the SxEndTimer start.

Sensor Simulation Timer End Callback

The callback is called when the seven seconds of the constant current consumption
are finished in order to reset the pin connected to the resistor. The code is shown
in Listing 5.15.

Listing 5.15: OnSxEndEvent.
1 s t a t i c void OnSxEndEvent (void ∗ context)
2 {
3 MX_I2C1_Init () ;
4 i n t ex i t_loops = 0 ;
5 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET) ; /∗ ∗/
6 BQI2C_Gauge_Stop () ;
7 i f (Reset != 1) {
8 do{
9 ex i t_loops +=1;

10 HAL_Delay(500) ;
11 cont ro l_s ta tus = BQI2C_Control_Status () ;
12 } whi l e (! (cont ro l_s ta tus & G_DONE_MASK)&& (ex i t_loops < 100)) ;
13 } e l s e
14 {
15 BQI2C_Reset () ;
16 BQI2C_From_Sealed_to_Unsealed () ;
17 BQI2C_From_Unsealed_to_FullAccess () ;
18 BQI2C_Eos_Init () ;
19 Reset = 0 ;
20 }
21 UTIL_TIMER_Start(&DataTimer) ;
22 }

The function first deactivates the pin and after that it send the Gauge_Stop
command and it controls that the gauge goes into stop mode by controlling the
G_DONE bit on the Control_Status register. If some problems occurs the gauge
is reset and re-initialized. After everything the OnDataTimer is started.

53

Firmware Test

Data Collection Timer Callback

The callback is used to to enter a time interval large enough to allow (according to
TRM [6]) the gauge algorithm to make calculation on battery status and save data
in the memory, as shown in Listing 5.16.

Listing 5.16: OnDataTimer.
1 s t a t i c void OnDataTimer (void ∗ context)
2 {
3 MX_I2C1_Init () ;
4 BQI2C_Data_Gathering_and_Payload_Creation (up_payload) ;
5 }

The only function of the callback is to gather the data and create the frame payload
that must be send during next transmission.

Measurement Timer Start Callback

This callback is shown in Listing 5.17.

Listing 5.17: MeasureTimer.
1 s t a t i c void MeasureTimer (void ∗ context)
2 {
3 MX_I2C1_Init () ;
4 i n t ex i t_loops = 0 ;
5 i f (Reset != 1)
6 {
7 BQI2C_Gauge_Start () ;
8 do{
9 HAL_Delay(500) ;

10 cont ro l_s ta tus = BQI2C_Control_Status () ;
11 ex i t_loops += 1 ;
12 } whi l e (! (cont ro l_s ta tus & GAUGE_ACTIVE_MASK) && (ex i t_loops <

100)) ;
13 i f (ex i t_loops >= 100)
14 {
15 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_RESET) ;
16 }
17 e l s e
18 {
19 HAL_Delay(1000) ;
20 BQI2C_Gauge_Stop () ;
21 do{
22 ex i t_loops +=1;
23 HAL_Delay(500) ;
24 cont ro l_s ta tus = BQI2C_Control_Status () ;
25 } whi l e (! (cont ro l_s ta tus & G_DONE_MASK)&& (ex i t_loops < 100)) ;
26 BQI2C_Data_Gathering_and_Payload_Creation (up_payload) ;

54

Firmware Test

27 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_RESET) ;
28 }
29 } e l s e
30 {
31 Reset = 0 ;
32 }
33 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET) ;
34 UTIL_TIMER_Start(&BurstModeTimer) ;
35 }

The callback first control if a reset is needed and otherwise it provides as follow:

• the Gauge_Start command is issued;

• a control loop to verify if the gauge enters active mode is done;

• if the activation fail the gauge is switched off, otherwise a second of delay is
applied to allow the gauge to take measurements;

• the Gauge_Stop command is issued;

• a control loop to verify if the gauge exit active mode is done;

• the data are gathered to create the payload;

• the gauge is switched off;

• the pin connected to the resistance is activated to provide the current burst;

• finally the BurstModeTimer is activated.

End Burst Timer Callback

The callback is called when one hour passes after the pin connected ti the resistance
load is set to enabling the current discharge.
The code is shown in Listing 5.18.

Listing 5.18: EndBurstEvent.
1 s t a t i c void EndBurstEvent (void ∗ context)
2 {
3 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET) ;
4 UTIL_TIMER_Start(&RestModeTimer) ;
5 }

It simply put the pin in reset mode and starts the rest timer in order to let the
battery rest for one hour.

55

Firmware Test

End Rest Timer Callback

The callback code is shown in Listing 5.19.

Listing 5.19: EndRestEvent.
1 s t a t i c void EndRestEvent (void ∗ context)
2 {
3 UTIL_TIMER_Start(&TxTimer) ;
4 }

The only function of the callback is to started the transmission timer.

5.6 Decoder for TTN
Live data from The Things Network console can show the received frame payload
but, if you want to know the meaning of it is needed to write a decoding code. An
easy way to do it is to write it in Javascript. In Listing 5.20 is shown the employed
code based on what is programmed in the firmware code of the MCU.

Listing 5.20: Decoder fot TTN.
1 f unc t i on Decoder (bytes , port) {
2 var bitMapping = {
3 0x01 : " Battery Low" ,
4 0x02 : " Temperature High " ,
5 0x04 : " Temperature Low" ,
6 0x08 : "EOS"
7 } ;
8 var decoded = {} ;
9 i f (port == 2) // runtime port

10 {
11 var Bq_condition = bytes [0] ;
12 var r i s u l t a t o = " " ;
13 i f (Bq_condition === 0) {
14 r i s u l t a t o = "OK " ;
15 } e l s e {
16 f o r (var b i t in bitMapping) {
17 i f (Bq_condition & par s e In t (b i t)) {
18 r i s u l t a t o += bitMapping [b i t] + " , " ;
19 }
20 }
21 }
22 i f (r i s u l t a t o . l ength > 0) {
23 r i s u l t a t o = r i s u l t a t o . s l i c e (0 , −2) ;
24 }
25 decoded . _1Bq_condition = r i s u l t a t o ;
26 var Voltage = (bytes [1]<< 8) | (bytes [2]) ;

56

Firmware Test

27 decoded . _2Voltage = Voltage /1000 ;
28 var Temperature = (bytes [3]<< 8) | (bytes [4]) ;
29 decoded . _3Temperature = (Temperature /10) −273.15;
30 var Current = (bytes [5]<< 8) | (bytes [6]) ;
31 decoded . _4Current = complementToDecimal (Current , 16) ;
32 var Scaled_R = (bytes [7]<< 8) | (bytes [8]) ;
33 decoded . _5Scaled_R = Scaled_R ;
34 var Impedance_Z = (bytes [9]<< 8) | (bytes [1 0]) ;
35 decoded . _6Impedance_Z = Impedance_Z ;
36 var SOH = bytes [1 1] ;
37 decoded ._8SOH = SOH;
38 var Status = bytes [1 3] ;
39 decoded . Status = Status . t oS t r i ng (2) ;
40 var Aler t = bytes [1 2] ;
41 decoded . Aler t = Aler t . t oS t r i ng (2) ;
42 var Cnt = (bytes [14]<< 8) | (bytes [1 5]) ;
43 decoded . Cnt = Cnt . t oS t r i ng (2) ;
44 var last_command = bytes [1 6] ;
45 decoded . last_command = last_command ;
46 re turn decoded ;
47 }
48 }

After an if-condition to select the right port (fixed port in this application), the
decoder evaluates all data read from the gauge and sent to the server.
The decoder takes the payload from the LoRa message and divides it in the infor-
mation that represents:

• Byte[0] represents the gauge conditions converted in string message according
on the value;

• Byte[1] e Byte[2] represent the voltage measured by the gauge in mV and
reconverted into V for user view;

• Byte[3] e Byte[4] represents the external temperature measured by the
gauge in 0.1K and reconverted in Celsius;

• Byte[5] e Byte[6] represent the last current sample measured by the gauge
in mA;

• Byte[7] e Byte[8] represents the internal resistance of the battery calculated
by the gauge in mΩ;

• Byte[9] e Byte[10] represents the internal impedance of the battery calcu-
lated by the gauge in mΩ;

• Byte[11] represents SOH percentage calculated by the gauge;

57

Firmware Test

• Byte[12] represents the Battery_Status register presented as sequence of bit;

• Byte[13] represents the Battery_Alert register presented as sequence of bit;

• Byte[14] e Byte[15] represents the Control_Status register presented as
sequence of bit;

• Byte[16] represents the last command received by the user.

58

Chapter 6

Experimental Results

This chapter will presents the results of the two tests and some consideration regard
how much the test can be reliable for the battery under test.
For the purpose of the project the reliability of the test is the ability to detect
properly the change in the internal resistance of the battery because it is the only
way to predict when a LiSOCl2 battery comes close to the end-of-life condition.

6.1 Data Managing
During the whole tests the data are constantly monitored with TTN Console
Network. An example of the data coding is presented below in figure 6.1

Figure 6.1: TTN decoded samples from TTN console network.

The data for both testing procedures uses the same decoder, so they were
presented in the same way.

6.2 First Test
The test ended as expected took 13 days to have a complete discharge of the battery
and obviously for the the MCU to stop sending messages.
During almost the whole test the measurements where taken every 35 seconds

59

Experimental Results

ending up to have approximately 30000 samples for all test.
For this test data for voltage measurement shows a behaviour as expected, as the
behaviour of the battery cell voltage is shown in figure 6.2. The profile of the

0 5 10 15
Days [d]

0

0.5

1

1.5

2

2.5

3

3.5

V
o
lt

a
g
e
 [

V
]

Voltage vs Time

Figure 6.2: Voltage vs Time (First Test).

battery voltage is very very flat for almost the entire test and it starts decreasing
only six hours before the battery died completely, as expected for LS14500 battery.
Indeed the measured voltage from the test shows almost the same behaviour as the
one described in the LS14500 datasheet [3] and shown in figure 2.2.
Despite of the voltage being measured properly, other parameters measured present
an unexpected behaviour.
For example the State of Health (SOH, shown in figure 6.3) determined by the
BQ35100 exhibits a consistent 96% level for the majority of the test duration,
except for the fact that it starts to decline steadily during the final 6 hours of the
test, eventually reaching 0% just before the battery discharges completely and the
MCU sends the last message.

The other important value that presents an unusual behavior is the internal
resistance calculated by the gauge algorithm.
The value remains quite always fixed value after very few samples instead of growing
drastically, as said in EOS configuration manual [8], when the battery is at 50%
of discharge, as in figure 3.5. This behaviour is shown in figure 6.4. In order to
explain this strange behaviour it must be consider two things that are explained in
BQ35100 datasheet [5]:

1. after receiving the gauge stop and asserted the G_DONE bit the gauge should
be turned off;

2. the gauging algorithm made calculation on resistance and SOH starting
from the battery voltage measured each cycle when the gauge received a

60

Experimental Results

0 5 10 15
Days [d]

0

20

40

60

80

100

S
O

H
 [

%
]

SOH vs Time

Figure 6.3: State Of Health Behaviour vs Time (First Test).

0 5 10 15
Days [d]

0

2000

4000

6000

8000

10000

S
ca

le
d
 R

 [
m
Ω

]

Scaled R vs Time

Figure 6.4: Internal Resistance Behaviour vs Time (First Test).

Gauge_Start command, so in order to take accurate calculation of the resis-
tance the battery needs a proper time to rest in order to restore its voltage as
close as possible to the first one measured during first cycle.

That said there are some possible problems related to the first testing procedure:

• the battery had never get enough rest time so the voltage is always a little
lower the first voltage measure each cycle is lower so the average resistance
calculated remains the same each time, so its value is constant and the same
concept can be extended also to the SOH behaviour;

• the manuals regarding the BQ35100 does not show any example of the case
where the gauge is used without being powered off, even if it is said that it
can be used either this way; so there is a possibility that some adjustments
are needed that are not specified in the manuals;

61

Experimental Results

• another possibilities is that the time the gauge used to do the calculations
given by the manuals (15 sec) is too short considering that the interval of time
to gather measurements is at least 14 seconds, so maybe this value should be
changed in data flash.

6.3 Second Test
For the second test procedure the duration of the test does not last exactly four
days but some hour less.
Unlike the previous test in this test all data read from the gauge presents a behaviour
quite close to the expected and desirable one.
As proof of the correctness of the results obtained the State-Of-Health of the battery
decreases linearly during time as the test progressed, as shown in figure 6.5.

0 0.5 1 1.5 2 2.5 3 3.5 4
Days [d]

0

20

40

60

80

100

S
O

H
 [

%
]

SOH vs Time

Figure 6.5: State Of Health Behavior During Time (Second Test).

The figure shows that the SOH decreased each time it is sampled from the
battery gauge as it would be expected in a normal behaviour, but also a very
important fact is that the SOH decreases linearly.
The first samples show the same value because firstly the BQ35100 considers
that LiSOCl2 presents a passivation layer that is removed during the first three
burst consumption and in order to take this phenomenon into account the gauge
automatically considers the SOH the same for the first samples.
Taking into account that in this test the measurement of the SOH is reliable for
the performance analysis a more accurate analysis on the parameters can be done.
In particular in this case is possible to correlate also the voltage and the internal
resistance not only with time, but also with respect to the Depth-of-Discharge
(DoD).
The battery voltage behaviour monitored during the test is shown in figure 6.6.

62

Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4
Days [d]

0

0.5

1

1.5

2

2.5

3

3.5

V
o
lt

a
g

e
 [

V
]

Voltage vs Time

(a) Voltage Behaviour vs Time (Second Test).

0 10 20 30 40 50 60 70 80 90 100
DoD [%]

0

0.5

1

1.5

2

2.5

3

3.5

V
o
lt

a
g

e
 [

V
]

Voltage vs DoD

(b) Voltage Behaviour vs Depth Of Discharge (Second Test).

Figure 6.6: Voltage Behaviour respect to Time and Depth-of-Discharge (Second
Test).

As shown in figure 6.6a the battery voltage is the one expected from an LS14500,
but in this case the battery discharges during the burst consumption before the
last message with the last measurement taken from the gauge so the last data are
missing. The same can be said for the battery voltage behaviour respect to DoD in
figure 6.6b, in this case the voltage monitoring ends when the SOH reaches 80%,
the trend of the voltage is flat between 0%-60% of DoD and decreases very slowly
after that point.
During this test a quite remarkable result can be seen by looking at the behaviour
of the internal resistance measured by the BQ35100.
To analyze correctly the internal resistance behavior it must be considered when
related to the time but more important when considered respect to the DoD. The
figures showing this relation are presented in figure 6.7.

63

Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4
Days [d]

0

2000

4000

6000

8000

10000

S
ca

le
d

 R
 [

m
Ω

]

Scaled R vs Time

(a) Behaviour of Internal Resistance vs Time (Second Test).

0 10 20 30 40 50 60 70 80 90 100
DoD [%]

0

2000

4000

6000

8000

10000

S
ca

le
d

 R
 [

m
Ω

]

Scaled R vs DoD

(b) Behaviour of Internal Resistance vs DoD (Second Test).

Figure 6.7: Internal Resistance Behaviour respect to Time and Depth-of-Discharge
(Second Test).

The plots presented above in both figures 6.7a and 6.7b shows the exact same
behaviour as the one shown in figure 3.5. So in this case the internal resistance
measured by the gauge algorithm shows a correct behaviour.
In particular:

• firstly it shows a flat behaviour with the resistance value almost stuck below
2000mΩ;

• after the gauge reaches 50% of DoD then the resistance starts to increase until
reaching the final value before the battery discharges completely.

64

Chapter 7

Hardware Development

For completion reasons a PCB project is developed with the battery gauge involved.
The project is involved in a project different from WAPPFRUIT, but it is also
related to a smart-agriculture system powered by LS14500 battery that provides
measurements of environment humidity and temperature.

7.1 Components Required
The first design in a PCB project is the definition of the materials needed and
the analysis of the electrical and dimensional requirements of each one in a PCB
design.

Lorato Module

This is a system based on STM32-WL55 MCU developed in a parallel project by
the eLiONS research group, the 3D view of the component is shown in figure 7.1.

Figure 7.1: 3D Model of LoRaTO Module.

65

Hardware Development

The Lorato Module is equipped also with an RF module that is used to implement
and to handle the LoRaWAN communication protocol.

Battery Management: BQ35100

The battery gauge used for calculating the near battery end-of-life condition. The
chip is shown figure 7.2.

Figure 7.2: BQ35100-PWR Chip.

Temperature and Humidity Sensor

Regarding the choice of the sensor, the best choice is to use the HDC302x family
from Texas Instruments, and the sensor chosen for the task is the HDC3022 sensor
by Texas Instruments shown in figure 7.3.

Figure 7.3: HDC3022 Temperature and Humidity Sensor Chip (Source [16]).

The HDC3022 is an integrated humidity and temperature sensor that provides
high accuracy measurements with very low power consumption and programmable
interrupt thresholds to provide alerts and system wake-ups without requiring a

66

Hardware Development

MCU to be continuously monitoring the system and also it has a very low current
consumption and a condensation protection feature with integrated heater.
The self-heating ability is what poses the most critical problem because it requires
a very large amount of current when activated and it can last for more then 10
seconds, so it can be an issue for the compatibility with LS14500.
The data from the sensor can be available through I2C interface for the MCU to
read.
Due to the higher thermal conductivity of copper, running solid ground planes
between other components on the board and the sensor will cause undesired heat
transfer, so it is best to avoid copper planes near the sensor that are connected to
the copper planes of other components on the board.

LDO Voltage Regulator

One very important aspect to take into account for minimizing the power consump-
tion of smart agriculture systems is the low standby consumption. When the device
does not have to collect data from sensors, the MCU must stay in stop mode.
It is not recommended to power the MCU using directly the battery voltage because
it can expose the core of the system to several possible problems (dead battery,
high loads, spike of voltage) depending on the nature of an electrochemical battery.
As that said it is recommended to power the MCU with a regulator in order to
guarantee a stable voltage without possible stranger behaviours. The most common
value as supply voltage for this kind of systems is 3.3 V, considering also the MCU
and sensors.
The most reasonable choice for this scope is to use a LDO (Linear Dropout)
STLQ020 Voltage Regulator of the STMicroelectronics [17]. The scheme of the
component is shown in figure 7.4. This regulator has a maximum dropout voltage
of 160 mV (with maximum load of 200 mA) but also a very low quiescent current
(300 nA with no load), that are very important for keeping stand-by consumption
as low as possible. The regulator is also available in SOT323-5L package that is
very convenient for this latter model.

Load Switches

In order to avoiding unwanted current going through resistors for the calibration of
the battery gauge, it is very important to isolate the resistance.
A very good choice is to use a load switch in a pass transistor configuration and
for this task the SIP32431 p-channel Pass Transistor from Vishay [18] directly
controlled by the MCU. The scheme of the component is shown in figure 7.5.

67

Hardware Development

Figure 7.4: STQL020C33R Voltage Regulator (Source [17]).

Figure 7.5: SIP32431 P-channel Pass Transistor (Source [18]).

In this way it is possible to keep the stand-by consumption to 10 pA, when the
system does not calibrate the gauge.

Passive Components

The passive components are important for the system because they provide noise
filtering, constant current consumption and so on.

68

Hardware Development

Figure 7.6: Example of SMD Capacitors.

In the choice of the passive components (as resistances and capacitors) a very
important feature to take into account for a PCB design is the dimension of the
component because it directly affect the overall size of the board and consequently
also the cost of the system.

Battery Holder

Last but not less important is the choice of a battery holder suitable for the
LS14500.
The best choice would be a battery holder with a lower part opened in order to
place the NTC thermistor in the middle to keep track constantly of the battery
temperature, but that it is also product with SMD connections.
For this purpose the battery holder chosen is the 1024TR AA-size from Digikey,
which is shown in figure 7.7.

Figure 7.7: 1024TR AA-size Battery Holder.

Even if the battery holder has no opening for placing the NTC thermistor, an
hole will be made before assembling it.

69

Hardware Development

Over-current Protection

• PTC Reset Fuse: The 1210L Series PTC provides surface mount overcur-
rent protection for applications where space is at a premium and resettable
protection is desired.

Figure 7.8: 1210L Series PTC RESET (Source [19]).

• Polarity Protection Diode: for reverse polarity protection in order to protect
the device from a miswired input, such as a reversed battery, the best option
is to use the LM66100 from Texas instrument, shown in figure 7.9.

Figure 7.9: LM66100, Low IQ Ideal Diode With Input Polarity Protection.

As stated in [20] the LM66100 is a Single-Input, Single-Output integrated ideal
diode that that contains a P-channel MOSFET which can operate over an
input voltage range of 1.5 V to 5.5 V and can support a maximum continuous

70

Hardware Development

current of 1.5 A. The chip enable works by comparing the CE pin voltage to
the input voltage. When the CE pin voltage is higher than VIN, the device
is disabled and the MOSFET is off. When the CE pin voltage is lower, the
MOSFET is on.

7.2 Schematic
The next step is the realization of a schematic that connects all the components
together and describes all the electrical connections. The schematic sheet of the
PCB project produced is shown in figure 7.10.

71

H
ardw

are
D

evelopm
ent

Figure 7.10: Schematic Sheet.

72

Hardware Development

7.3 PCB Layout
When all logical connections are issued in the schematic, the last step is the design
of the PCB Layout.
This step is important because it has to satisfy geometry constrains, physical
constrains and reliability constrains.
For this project the most important constrains is related to the fact that it is
necessary to leave place where the Lorato module will be assembled (in the blue
rectangle) without any other component.
In this project both top layer and bottom layer In figure 7.11 the different planes
on the board are highlighted.

Figure 7.11: Top and Bottom View with Highlighting on Different Zones.

As shown there is a specific isolated plane where the temperature and humidity
sensor (highlighted in purple) will be placed in order to avoid heat from current

73

Hardware Development

flowing through the ground plane.
Multiple holes (highlighted in orange) are placed in order to insert the external
support for the case.

7.4 Bills Of Materials

Designator Comment Description Quantity
C1, C2, C3, C12 GRM21BR71H105KA12L 1uF Capacitor 3
C4, C5, C6, C7, C8, C9 06033D104KAT2A 0.1uF Ceramic Capacitor, Multilayer,

Ceramic, X5R, 15% TC, 0.1uF, Surface
Mount, 0603

7

C10 106033D104KAT2A 0.1uF Ceramic Capacitor, Multilayer,
Ceramic, X5R, 15% TC, 0.1uF, Surface
Mount, 0201

1

C11 12065C474JAT2A 0.47uF General Purpose Ceramic Ca-
pacitor, 1206, 470nF, X7R, 15%, 50V

1

ESD1, ESD2 TPD1E10B06DPYR TVS DIODE 5.5V 14V 2X1SON 2
J1_Battery_Holder Battery Holder 1024TR: 1 Cell AA-size Battery Holder 1
J1_NTC NT06104F3435B1F Thermistor NTC 10k 0603 1
R1, R2, R3, R4, R10, R12 CRCW0603100RFKEA Resistor 100Ω, 100 mW,-55 to 155 degC,

0603 (1608 Metric)
6

R5 CRCW0603100KFKEAC Resistor 100kΩ SMD, 1/10W, 0603 1
R6, R8 CRCW06031K00JNEA Resistor 1kΩ Thick Film, 0.1W, 0603 2
R7 CRCW06031M00JNEA Resistor 1MΩ Thick Film, 0.1W, 0603 1
R9, R11 CRCW060310K0FKEA Resistor 10.0kΩ Chip Resistor, 100 mW,

-55 to 155 degC, 0603 (1608 Metric)
2

RS1 WSL1206R1000FEA 0.1 Ohm sense resistor 1
U1 LDO STLQ020C33R Voltage Regulatore -Output 200mA

SOT-323-5, IC REG LIN 3.3V 200MA
SOT323-5

1

U2 SiP32432 "p-channel MOS Pass Transistor 10 pA,
Ultra Low Leakage and Quiescent Cur-
rent, Load Switch with Reverse Block-
ing"

1

U3 HDC3022 Serial Switch/Digital Temperature and
Humiduty Sensor, 14 Bit(s), 0.40Cel,
Square, Surface Mount

1

U4 LORATO LORATO Module 1
U5 BQ35100PWR IC BATTERY MONITOR 14TSSOP 1
U6 LM66100DCKT Ideal diode with Integrated FET 6-SC70

-40 to 105 1.5-V to 5.5-V, 1.5-A, 0.5-uA
IQ

1

F1 FEMTOSMDC005F-2 Resettable fuse PTC Polymeric 15V 50
mA Ih Surface mount 0603 (1608 met-
ric), Concave, time to trip 0.1 sec, power
dissipation 0.5W

1

Table 7.1: Bill Of Materials.

74

Hardware Development

7.5 3D Models
The 3D-model of the complete system of the frost detection board with the Lorato
module is presented in figure 7.12.

Figure 7.12: Top 3D view and Bottom 3D view of the PCB.

7.6 Manufacturing
Manufactured printed circuit board assembled with all components and LoRaTO
module is shown in 7.13.

75

Hardware Development

Figure 7.13: Top view and Bottom view of the Frost Detection System assembled.

76

Chapter 8

Conclusion and Future
Perspective

The main perspective of this project to develop a system (firmware and hardware)
for smart-agriculture systems in which the management of the proper time to
change the battery when it comes near to the end-of-life condition and to integrated
it in a system that has different task to achieve.
In particular the experimentation done with the battery gauge allows to establish
that the best solution for battery gauging well being is to use a separate learning
pulse to take correct measurements and evaluate properly the battery status,
because the measurements of the BQ35100 taken during the stress test reflect
almost perfectly the same results as the ones reported in the manuals.
There are also some aspects that can further exploited in order to make better
evaluations on the system developed for better fit in the smart-agriculture systems.
For example a proper evaluation of the firmware should be made with a real case
scenario discharge test, this because the amount of time the battery would rest
before taking any measure is far greater than the one used in test procedure so
the computation of battery replacement can be more precised as the estimation of
state of charge.
Regarding this aspect, the software to drive the developed board will be perfected
and the board will be tested in an on-field test during the 2024 in order to complete
the system.

77

Bibliography

[1] eLiONS, Politecnico di Torino. WAPPFRUIT – Intelligent Technologies Ap-
plied to Water Management in Fruit Cultivation. URL. 2014-2020 (cit. on
p. 1).

[2] LoRa Alliance. LoRa documentation. url: https://lora.readthedocs.io/
en/latest/# (cit. on pp. 2, 4, 5).

[3] Primary lithium battery LS 14500. URL. Saft. 2009 (cit. on pp. 6–8, 60).
[4] Description of STM32WL HAL and low-layer drivers. STMicroelectronics.

url: https://www.st.com/content/ccc/resource/technical/document/
user_manual/group1/6f/be/85/55/8c/26/4c/22/DM00660673/files/
DM00660673.pdf/jcr:content/translations/en.DM00660673.pdf (cit.
on pp. 8, 9).

[5] BQ35100 Lithium Primary Battery Fuel Gauge and End-Of-Service Monitor
datasheet (Rev.E). Texas Instrument. 2019. url: https://www.ti.com/
lit/ds/symlink/bq35100.pdf?ts=1695628913180&ref_url=https%253A%
252F%252Fwww.ti.com%252Fproduct%252FBQ35100 (cit. on pp. 10–14, 16,
17, 60).

[6] bq35100 Technical Reference Manual (Rev.C). Texas Instrument, 2018. url:
https://www.ti.com/lit/ug/sluubh1c/sluubh1c.pdf?ts=16955863292
43&ref_url=https%253A%252F%252Fe2echina.ti.com%252Fsupport%252F
machine-translation%252Fmt-power-management%252Ff%252Fmt-power-
management-forum%252F310729%252Fbq35100-bq35100-ti%252F1040390
(cit. on pp. 12, 13, 17, 20, 25, 26, 29, 33, 45, 54).

[7] Alternative Gauging Techniques for Flow Meters and the Benefits of the
bq35100. Texas Instrument. 2018. url: https://www.ti.com/lit/an/
slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%
252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ3510
0%2526tisearch%253Dsearch-everything%2526usecase%253DGPN (cit. on
p. 15).

78

https://elions.polito.it/home/projects-and-technology-transfer/wappfruit/
https://lora.readthedocs.io/en/latest/#
https://lora.readthedocs.io/en/latest/#
https://www.master-instruments.com.au/file/60342/1/Saft-LS14500.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/6f/be/85/55/8c/26/4c/22/DM00660673/files/DM00660673.pdf/jcr:content/translations/en.DM00660673.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/6f/be/85/55/8c/26/4c/22/DM00660673/files/DM00660673.pdf/jcr:content/translations/en.DM00660673.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/6f/be/85/55/8c/26/4c/22/DM00660673/files/DM00660673.pdf/jcr:content/translations/en.DM00660673.pdf
https://www.ti.com/lit/ds/symlink/bq35100.pdf?ts=1695628913180&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100
https://www.ti.com/lit/ds/symlink/bq35100.pdf?ts=1695628913180&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100
https://www.ti.com/lit/ds/symlink/bq35100.pdf?ts=1695628913180&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100
https://www.ti.com/lit/ug/sluubh1c/sluubh1c.pdf?ts=1695586329243&ref_url=https%253A%252F%252Fe2echina.ti.com%252Fsupport%252Fmachine-translation%252Fmt-power-management%252Ff%252Fmt-power-management-forum%252F310729%252Fbq35100-bq35100-ti%252F1040390
https://www.ti.com/lit/ug/sluubh1c/sluubh1c.pdf?ts=1695586329243&ref_url=https%253A%252F%252Fe2echina.ti.com%252Fsupport%252Fmachine-translation%252Fmt-power-management%252Ff%252Fmt-power-management-forum%252F310729%252Fbq35100-bq35100-ti%252F1040390
https://www.ti.com/lit/ug/sluubh1c/sluubh1c.pdf?ts=1695586329243&ref_url=https%253A%252F%252Fe2echina.ti.com%252Fsupport%252Fmachine-translation%252Fmt-power-management%252Ff%252Fmt-power-management-forum%252F310729%252Fbq35100-bq35100-ti%252F1040390
https://www.ti.com/lit/ug/sluubh1c/sluubh1c.pdf?ts=1695586329243&ref_url=https%253A%252F%252Fe2echina.ti.com%252Fsupport%252Fmachine-translation%252Fmt-power-management%252Ff%252Fmt-power-management-forum%252F310729%252Fbq35100-bq35100-ti%252F1040390
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN

BIBLIOGRAPHY

[8] How to Configure the BQ35100 for EOS Mode. Texas Instrument. 2022.
url: https://www.ti.com/lit/an/sluaal7/sluaal7.pdf?ts=16956
75921331&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%
252FBQ35100 % 253FkeyMatch % 253DBQ35100 % 2526tisearch % 253Dsearch -
everything%2526usecase%253DGPN (cit. on pp. 15, 39, 60).

[9] Using I2C Communications With the bq34110 bq35100 and bq34z100-G1
Series of Gas. Texas Instrument. 2016. url: https://www.ti.com/lit/an/
slua790/slua790.pdf?ts=1695665499672&ref_url=https%253A%252F%
252Fwww.google.com%252F (cit. on pp. 20, 23).

[10] Gauge Communication. Texas Instrument. 2017. url: https://www.ti.com/
lit/an/slua801/slua801.pdf?ts=1695617690314&ref_url=https%253A%
252F%252Fwww.ti.com%252Fproduct%252Fko- kr%252FBQ40Z80 (cit. on
p. 30).

[11] M. Barezzi et al. «Long-Range Low-Power Soil Water Content Monitoring
System for Precision Agriculture». In: 2022 IEEE 13th Latin America Sympo-
sium on Circuits and System (LASCAS). Puerto Varas, Chile, 2022, pp. 1–4.
doi: 10.1109/LASCAS53948.2022.9789070 (cit. on p. 36).

[12] M. Barezzi et al. «Long-Range Low-Power Electronic System for Drip Irriga-
tion in Precision Agriculture». In: 2023 IEEE Conference on AgriFood Elec-
tronics (CAFE). Torino, Italy, 2023, pp. 167–171. doi: 10.1109/CAFE58535.
2023.10291511 (cit. on pp. 36, 37).

[13] Using the bq35100 with Li-Primary Based Applications. Texas Instrument.
2018. url: https://www.ti.com/lit/an/slua904/slua904.pdf?ts=
1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduc
t%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-
everything%2526usecase%253DGPN (cit. on p. 39).

[14] bq35100EVM-795 Evaluation Module User’s Guide. Texas Instrument. 2016.
url: https://www.ti.com/lit/ug/sluubh7/sluubh7.pdf?ts=16956
77832988&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%
252FBQ35100 % 253FkeyMatch % 253DBQ35100 % 2526tisearch % 253Dsearch -
everything%2526usecase%253DGPN (cit. on p. 42).

[15] STMicroelectronics. STM32Cube MCU Package examples for STM32WL
Series. URL. Last update 2023 (cit. on p. 42).

[16] Texas Instruments. HDC3020 Datasheet. Dicember 2022. url: https://
www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_
url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%
253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%252
6usecase%253DGPN-ALT (cit. on p. 66).

79

https://www.ti.com/lit/an/sluaal7/sluaal7.pdf?ts=1695675921331&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/sluaal7/sluaal7.pdf?ts=1695675921331&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/sluaal7/sluaal7.pdf?ts=1695675921331&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/sluaal7/sluaal7.pdf?ts=1695675921331&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua790/slua790.pdf?ts=1695665499672&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slua790/slua790.pdf?ts=1695665499672&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slua790/slua790.pdf?ts=1695665499672&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slua801/slua801.pdf?ts=1695617690314&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fko-kr%252FBQ40Z80
https://www.ti.com/lit/an/slua801/slua801.pdf?ts=1695617690314&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fko-kr%252FBQ40Z80
https://www.ti.com/lit/an/slua801/slua801.pdf?ts=1695617690314&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fko-kr%252FBQ40Z80
https://doi.org/10.1109/LASCAS53948.2022.9789070
https://doi.org/10.1109/CAFE58535.2023.10291511
https://doi.org/10.1109/CAFE58535.2023.10291511
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/an/slua904/slua904.pdf?ts=1695676027012&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/ug/sluubh7/sluubh7.pdf?ts=1695677832988&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/ug/sluubh7/sluubh7.pdf?ts=1695677832988&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/ug/sluubh7/sluubh7.pdf?ts=1695677832988&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.ti.com/lit/ug/sluubh7/sluubh7.pdf?ts=1695677832988&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ35100%253FkeyMatch%253DBQ35100%2526tisearch%253Dsearch-everything%2526usecase%253DGPN
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/60/76/ee/50/9d/f2/40/35/DM00660670/files/DM00660670.pdf/jcr:content/translations/en.DM00660670.pdf
https://www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT
https://www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT
https://www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT
https://www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT
https://www.ti.com/lit/ds/symlink/hdc3020.pdf?ts=1706169374654&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FHDC3020%253FkeyMatch%253DHDC3020%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT

BIBLIOGRAPHY

[17] STMicroelectronics. STLQ020 Datasheet. October 2021. url: https://www.
st.com/resource/en/datasheet/stlq020.pdf (cit. on pp. 67, 68).

[18] Vishay. SIP32431 Datasheet. July 2020. url: https://www.vishay.com/
docs/66597/sip32431.pdf (cit. on pp. 67, 68).

[19] Littelfuse. 1210L Series Datasheet. 2024. url: https://www.littelfuse.
com/media?resourcetype=datasheets&itemid=b3a2be92- 83a1- 491d-
9c6d-dc64451de047&filename=1210l-datasheet-update (cit. on p. 70).

[20] Texas Instruments. LM66100 Datasheet. June 2019. url: https://www.ti.
com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_sour
ce%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-
null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm661
00%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%
2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMb
ss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
(cit. on p. 70).

80

https://www.st.com/resource/en/datasheet/stlq020.pdf
https://www.st.com/resource/en/datasheet/stlq020.pdf
https://www.vishay.com/docs/66597/sip32431.pdf
https://www.vishay.com/docs/66597/sip32431.pdf
https://www.littelfuse.com/media?resourcetype=datasheets&itemid=b3a2be92-83a1-491d-9c6d-dc64451de047&filename=1210l-datasheet-update
https://www.littelfuse.com/media?resourcetype=datasheets&itemid=b3a2be92-83a1-491d-9c6d-dc64451de047&filename=1210l-datasheet-update
https://www.littelfuse.com/media?resourcetype=datasheets&itemid=b3a2be92-83a1-491d-9c6d-dc64451de047&filename=1210l-datasheet-update
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds
https://www.ti.com/lit/ds/symlink/lm66100.pdf?ts=1705312697427&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM66100%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dapp-null-null-gpn_en-cpc-pf-google-eu%2526utm_content%253Dlm66100%2526ds_k%253DLM66100%2526dcm%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiAzJOtBhALEiwAtwj8ttfdMvD_7lrJJ9OG6cEtaXuMbss4P7eLPJRgBvhvJuhHHekWn-U0ixoC0cEQAvD_BwE%2526gclsrc%253Daw.ds

	List of Tables
	List of Figures
	Acronyms
	Introduction
	LoRaWAN Protocol

	Technological Background
	Analysis of the Battery: LS14500
	Microcontroller with Transducer LoRa

	System Design Steps
	Battery Gauge
	Measurments
	Features
	Operating Mode Choice

	Firmware Development
	Introduction
	I2C Characteristics
	Type of commands
	Data Commands
	Control Subcommands

	BQ35100 Functions Code
	General Functions
	Data Commands
	Command MAC Subcommands
	Memory Commands

	Data Memory Mapping

	Firmware Test
	Previous Consideration for Test Procedure
	Individual Command Test

	Current Consumption Estimation
	Python Code For Current Consumption
	Estimation of Time to End

	Possible Procedures
	First Test Procedure
	Second Test Procedure

	Final Setup
	Test Code
	Starting project
	Main function
	LoRaWAN Protocol Functions
	Additional Timer Elapse Routines

	Decoder for TTN

	Experimental Results
	Data Managing
	First Test
	Second Test

	Hardware Development
	Components Required
	Schematic
	PCB Layout
	Bills Of Materials
	3D Models
	Manufacturing

	Conclusion and Future Perspective
	Bibliography

